WO2022127806A1 - 一种无线通信的方法及装置 - Google Patents

一种无线通信的方法及装置 Download PDF

Info

Publication number
WO2022127806A1
WO2022127806A1 PCT/CN2021/138217 CN2021138217W WO2022127806A1 WO 2022127806 A1 WO2022127806 A1 WO 2022127806A1 CN 2021138217 W CN2021138217 W CN 2021138217W WO 2022127806 A1 WO2022127806 A1 WO 2022127806A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
judgment
parameter
terminal
Prior art date
Application number
PCT/CN2021/138217
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022127806A1 publication Critical patent/WO2022127806A1/zh
Priority to US18/331,950 priority Critical patent/US20230354438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0891Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access for synchronized access

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for wireless communication.
  • Satellite communications etc. have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions. Since traditional terrestrial networks cannot provide seamless coverage, especially in places where base stations cannot be deployed in the sea, desert, and air, the 3rd generation partnership project (3GPP) introduces non-terrestrial networks into the fifth generation of mobile communications ( In terrestrial networks such as fifth generation (5G) systems, efforts are made to build a unified communication network for sky, air, and ground communications.
  • 3GPP 3rd generation partnership project
  • NTN non-terrestrial networks
  • the number of IoT terminals in the Internet of Things is large, and the cost of the terminals is low, and the radio frequency transmission power is not large. In order to enhance the coverage, the coverage is usually improved by repeatedly sending data.
  • the IoT terminal establishes a connection with the network device through random access. For the purposes of cost, protocol simplification, and power saving, when an IoT terminal moves from one cell coverage area to another cell coverage area, it also needs to implement cell handover through random access. If the number of repeated transmissions is large, the occupied time of random access will be longer. In the scenario of satellite fusion IoT, due to the mobility of satellites, the existing random access process will have a high access failure rate.
  • Embodiments of the present application provide a method and device for wireless communication, which implements random access when sending data takes a long time, reduces the probability of random access failure, and improves communication efficiency.
  • an embodiment of the present application provides a method for wireless communication, the method comprising: a first communication device receiving first information sent by a second communication device, where the first information indicates a judgment threshold of a parameter in a first parameter set,
  • the first parameter set includes at least one of the following parameters: location information, delay information, timing advance change rate, timing advance change rate change rate, Doppler value, Doppler change rate, and remaining coverage time;
  • the first information judges whether the access condition is satisfied, and random access is performed when the access condition is satisfied.
  • the first communication device judges whether the access conditions are met according to the first information sent by the second communication device, and performs random access only when the conditions are met, thereby reducing the probability of random access failure.
  • the first information indicates the judgment thresholds of one or more parameters, and the judgment thresholds of these parameters related to time delay, location, etc. are used to indicate the remaining time that the cell/beam of the second communication device maintains coverage of the first communication device, The random access failure caused by the coverage time of the cell/beam being less than the time of the random access process is avoided, and the communication efficiency and power waste are avoided when the next cell/beam is re-accessed to the system.
  • the first communication device before judging whether the access condition is satisfied, obtains the corresponding relationship between the judgment threshold of the parameters in the first parameter set and the coverage level and/or the amount of service data.
  • Terminals with different coverage levels and/or service data volumes have different times of repeated transmission when accessing the system or data transmission, and the time spent is also different, so the remaining coverage time required is also different. Defining different judgment thresholds for the amount of business data can improve the flexibility and accuracy of judgment, thereby improving communication efficiency.
  • judging whether the access conditions are met according to the above-mentioned first information includes: obtaining first comparison information according to the location information of the first communication device and/or the location information of the second communication device; A comparison information and the first information determine whether the access condition is satisfied.
  • the first communication device obtains the first comparison information according to its own position information and/or the position information of the second communication device, and the first comparison information is the parameter value in the first parameter set, such as the latitude and longitude value of the current position, the current position and the first comparison information.
  • the first communication device when the first parameter in the first parameter set has multiple judgment thresholds, the first communication device obtains its own coverage level and/or service data volume, and according to the own coverage level and/or service data volume Selecting a corresponding judgment threshold from the plurality of judgment thresholds; judging whether the access condition is satisfied according to the first comparison information and the first information, specifically including: according to the corresponding first comparison information and the first parameter The judgment threshold is used to judge whether the access condition is satisfied.
  • the first parameter may be location information, delay information, timing advance rate of change, rate of change of timing advance rate of change, Doppler value, Doppler rate of change, and/or remaining coverage time.
  • One or more judgment thresholds are defined according to one or more coverage levels and/or traffic data volumes.
  • the terminal selects a corresponding judgment threshold according to its own coverage level and/or service data volume and compares it with the above-mentioned first comparison information to obtain a judgment result, so as to judge whether the access conditions are met more flexibly and with high precision.
  • the plurality of judgment thresholds include a reference threshold and at least one difference.
  • one reference threshold and at least one difference value are used to represent, that is, the signaling overhead can be saved by using the differential method to represent.
  • judging whether the access conditions are met according to the first comparison information and the first information includes: comparing the first comparison information and the judgment threshold of the parameters in the first parameter set according to the judgment conditions, and judging whether the access conditions are met. The access condition is satisfied; wherein the judgment condition corresponds to the judgment threshold of the parameters in the first parameter set.
  • the judgment condition is greater than or equal to the judgment threshold, greater than the threshold, less than the judgment threshold, less than or equal to the judgment threshold, within a certain judgment threshold.
  • the first information also indicates the judgment condition corresponding to the judgment threshold of the parameter in the first parameter set; the first communication device directly obtains the judgment condition according to the first information, and the complexity is low; or, the judgment condition It is a preconfigured condition, for example, a default judgment condition is agreed through a communication protocol, which can save the signaling overhead sent by the second communication apparatus to the first communication apparatus; or, the judgment condition is determined by the first communication apparatus according to the second communication apparatus.
  • the location information and/or the movement direction of the device can be determined, which can save the signaling overhead between the second communication device and the first communication device.
  • the location information is latitude and longitude information or information of at least two location points, wherein the at least two location points are used to determine a location threshold line, and the first comparison information includes the location of the first communication device ;
  • the delay information is first delay information between the first reference line and the second communication device, and the first comparison information includes the difference between the first communication device and the second communication device.
  • the second delay information wherein the second delay information is obtained through the location information of the first communication device and the location information of the second communication device;
  • the timing advance change rate is a first timing advance change rate between the second reference line and the second communication device
  • the first comparison information includes the first communication device and the second communication device.
  • a second timing advance change rate between communication devices wherein the second timing advance change rate is obtained according to the position information of the first communication device and the position and speed information of the second communication device;
  • the Doppler value is a first Doppler value between the third reference line and the second communication device
  • the first comparison information includes the difference between the first communication device and the second communication device.
  • the second Doppler value of wherein the second Doppler value is obtained according to the position information of the first communication device and the position and velocity information of the second communication device.
  • the first information includes index information, and the index information is used to indicate a judgment threshold of parameters in the first parameter set corresponding to the cell where the first communication device is located.
  • the positional relationship between the cell/beam and the satellite can be related to the judgment threshold, coverage level and/or service data volume.
  • the first communication device and the second communication device may preconfigure a mapping relationship table, which is used to represent the relationship between the cell/beam and the judgment threshold, the coverage level and/or the amount of service data.
  • the first communication apparatus may acquire the corresponding judgment threshold from the mapping relationship table according to the index information included in the first information. This method can save signaling overhead.
  • an embodiment of the present application provides a wireless communication method, which is applied to a second communication device.
  • the method includes: acquiring first information, where the first information indicates a judgment threshold of a parameter in a first parameter set, wherein the first parameter set includes at least one of the following parameters: location information, delay information, timing advance change rate, The change rate of the timing advance change rate, the Doppler value, the Doppler change rate, and the remaining coverage time; send the first information to the first communication device, so that the first communication device judges whether the connection is satisfied according to the first information. entry conditions.
  • the judgment threshold of the parameters in the first parameter set is indicated to the first communication device, so that the first communication device judges whether the access condition is satisfied according to the judgment threshold. Before accessing the system, it is judged whether the conditions are met, and access is performed only when the conditions are met.
  • the location information, time delay information, timing advance or Doppler value-related information in the first parameter set is used to indicate the remaining time that the cell/beam of the second communication device maintains coverage of the first communication device, avoiding the The random access failure caused by the coverage time of the cell/beam is less than the time of the random access process, so as to avoid low communication efficiency and waste of electricity caused by re-accessing the system in the next cell/beam.
  • the first information also indicates the corresponding relationship between the judgment threshold of the parameters in the first parameter set and the coverage level and/or the amount of service data.
  • Terminals with different coverage levels and/or service data volumes have different times of repeated transmission when accessing the system or data transmission, and the time spent is also different, so the remaining coverage time required is also different. Defining different judgment thresholds for the amount of business data can improve the flexibility and accuracy of judgment, thereby improving communication efficiency.
  • the first parameter in the first parameter set has multiple judgment thresholds, and each judgment threshold in the multiple judgment thresholds corresponds to a corresponding coverage level and/or service data volume.
  • the first parameter may be location information, delay information, timing advance rate of change, rate of change of timing advance rate of change, Doppler value, Doppler rate of change, and/or remaining coverage time.
  • One or more judgment thresholds are defined according to one or more coverage levels and/or service data volume, so that the first communication device selects the corresponding judgment threshold according to its own coverage level and/or service data volume and the above-mentioned first comparison information The comparison is performed to obtain the judgment result, and it can be judged more flexibly and accurately whether the access conditions are met.
  • the plurality of judgment thresholds include a reference threshold and at least one difference.
  • one reference threshold and at least one difference value are used to represent, that is, the signaling overhead can be saved by using the differential method to represent.
  • the first information further indicates the judgment condition corresponding to the judgment threshold of the parameters in the first parameter set.
  • the judgment condition is greater than or equal to the judgment threshold, greater than the threshold, less than the judgment threshold, less than or equal to the judgment threshold, within a certain judgment threshold.
  • the first communication apparatus When the first information indicates the judgment condition, the first communication apparatus directly obtains the judgment condition according to the first information, and the complexity is low.
  • the location information is latitude and longitude information or information of at least two location points, and the location points are used to determine the location threshold line;
  • the delay information is the time delay between the first reference line and the second communication device.
  • the timing advance change rate is the first timing advance change rate between the second reference line and the second communication device;
  • the Doppler value is the difference between the third reference line and the second communication device; the first Doppler value in between.
  • the first information is index information
  • the index information is used to indicate a judgment threshold of the first parameter corresponding to the cell where the first communication device is located.
  • the positional relationship between the cell/beam and the satellite can be related to the judgment threshold, coverage level and/or service data volume.
  • the first communication device and the second communication device may preconfigure a mapping relationship table, which is used to represent the relationship between the cell/beam and the judgment threshold, the coverage level and/or the amount of service data.
  • the index information included in the first information can be used to obtain the corresponding judgment threshold from the mapping relationship table. This method can save signaling overhead.
  • an embodiment of the present application further provides a communication device, which can be used for the first communication device described in the first aspect, and the communication device can be a terminal device, or a device in a terminal device (for example, , chip, or chip system, or circuit), or a device that can be used with the terminal equipment.
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit is used for calling the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • a transceiver unit configured to receive the first information sent by the second communication device; the first information indicates the judgment threshold of parameters in the first parameter set, wherein the first parameter set includes at least one of the following parameters: location information, delay information, Timing advance rate of change, timing advance rate of change rate of change, Doppler value, Doppler rate of change, remaining coverage time;
  • the processing unit is configured to judge whether the access condition is satisfied according to the first information, and perform random access when the above-mentioned access condition is satisfied.
  • the processing unit before judging whether the access condition is satisfied, is further configured to obtain the corresponding relationship between the judgment threshold of the parameters in the first parameter set and the coverage level and/or the amount of service data.
  • the processing unit is used to judge whether the above access conditions are met according to the first information, and is specifically used to obtain the first comparison information according to the position information of the first communication device and/or the position information of the second communication device. ; According to the first comparison information and the first information, determine whether the above access conditions are met. .
  • the processing unit is further configured to, when the first parameter in the above-mentioned first parameter set has multiple judgment thresholds, obtain its own coverage level and/or service data volume; according to its own coverage level and/or service data A corresponding judgment threshold is selected from a plurality of judgment thresholds according to the above-mentioned corresponding relationship; and whether the access condition is satisfied is judged according to the first comparison information and the corresponding judgment threshold of the first parameter.
  • the plurality of judgment thresholds include a reference threshold and at least one difference.
  • judging whether the access condition is met according to the first comparison information and the first information includes: comparing the first comparison information and the judgment threshold of the first parameter according to the judgment condition, and judging whether the above-mentioned access condition is met; wherein The judgment condition corresponds to the judgment threshold of the first parameter.
  • the above-mentioned first information also indicates the judgment condition corresponding to the judgment threshold of the first parameter; or, the above-mentioned judgment condition is a pre-configured condition; or, the above-mentioned judgment condition is determined by the first communication device according to the second communication device. location information and/or motion direction determination.
  • the above-mentioned location information is latitude and longitude information or information of at least two location points, wherein the at least two location points are used to determine a location threshold line, and the above-mentioned first comparison information includes the location of the first communication device;
  • the time delay information is the first time delay information between the first reference line and the second communication device
  • the first comparison information includes the second time delay between the first communication device and the second communication device. delay information, wherein the second delay information is obtained through the location information of the first communication device and the location information of the second communication device;
  • the timing advance change rate is the first timing advance change rate between the second reference line and the second communication device
  • the first comparison information includes the difference between the first communication device and the second communication device.
  • the second timing advance rate of change is obtained according to the position information of the first communication device and the position and speed information of the second communication device;
  • the above-mentioned Doppler value is the first Doppler value between the third reference line and the second communication device
  • the first comparison information includes the first Doppler value between the first communication device and the second communication device.
  • the above-mentioned first information is index information, and the index information is used to indicate a judgment threshold of the first parameter corresponding to the cell where the first communication device is located.
  • an embodiment of the present application further provides a communication device, which can be used for the second communication device described in the second aspect, and the communication device can be a network device (satellite) or a network device in the network device.
  • a device eg, a chip, or a system of chips, or a circuit
  • the communication device may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions described in the second aspect, and the modules or units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing unit and a transceiver unit. The processing unit is used for calling the transceiver unit to perform the function of receiving and/or sending. Exemplarily:
  • a processing unit configured to acquire first information, where the first information indicates a judgment threshold of a parameter in a first parameter set, where the first parameter set includes at least one of the following parameters: location information, delay information, and timing advance change rate , the change rate of the timing advance change rate, the Doppler value, the Doppler change rate, and the remaining coverage time; the transceiver unit is used to send the first information to the first communication device, so that the first communication device A message judges whether access conditions are met.
  • the above-mentioned first information further indicates the corresponding relationship between the judgment threshold of the parameter in the first parameter set and the coverage level and/or the amount of service data.
  • one parameter in the first parameter set has multiple judgment thresholds, and each judgment threshold in the multiple judgment thresholds corresponds to a corresponding coverage level and/or service data volume.
  • the multiple judgment thresholds include a reference threshold and at least one difference.
  • the above-mentioned first information further indicates the judgment condition corresponding to the judgment threshold of the parameters in the first parameter set.
  • the above-mentioned location information is latitude and longitude information or information of at least two location points, and the location points are used to determine the location threshold line;
  • the above-mentioned time delay information is the first time delay information between the first reference line and the second communication device
  • the above-mentioned timing advance change rate is the first timing advance change rate between the second reference line and the second communication device
  • the above-mentioned Doppler value is the first Doppler value between the third reference line and the second communication device.
  • the above-mentioned first information is index information, and the index information is used to indicate a judgment threshold of the first parameter corresponding to the cell where the first communication device is located.
  • an embodiment of the present application also provides a communication device, including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • a communication device including a processor, configured to execute a computer program or executable instruction stored in a memory, when the computer program or executable instruction is executed, the device is made to perform as described in Section 1.
  • processor and memory are integrated;
  • the above-mentioned memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, including a processor for executing a computer program or executable instruction stored in a memory, and when the computer program or executable instruction is executed, the device is made to The second aspect and the method in each possible implementation of the second aspect.
  • processor and memory are integrated;
  • the memory is located outside the communication device.
  • the communication device also includes a communication interface for the communication device to communicate with other devices, such as the transmission or reception of data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • Input and output interfaces are used for input or output of signals or data.
  • the input and output interface is specifically used for the first information;
  • the logic circuit is used to execute the method in the above-mentioned first aspect and any one of its possible implementations to determine whether the access condition is satisfied according to the first information, and perform the process when the access condition is satisfied. random access.
  • an embodiment of the present application further provides a communication device, including an input and output interface and a logic circuit.
  • Input and output interfaces are used for input or output of signals or data.
  • a logic circuit is configured to perform the method of the second aspect above and any of its possible implementations to determine the first information.
  • the input and output interface is specifically used for outputting the first information.
  • the embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is executed by a processor, so that the first aspect and any one of the above-mentioned possibilities Some or all of the steps of the method described in the implementation of the second aspect and any possible implementation thereof are performed.
  • the embodiments of the present application also provide a computer program product including executable instructions, when the computer program product is run on a user equipment, the first aspect and any possible implementation thereof, the second Some or all of the steps of the methods described in the aspects and any possible implementations thereof are performed.
  • an embodiment of the present application further provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application further provides a communication system, including the first communication apparatus provided in the third aspect and the second communication apparatus provided in the fourth aspect.
  • FIG. 1A is a schematic diagram of a communication system to which an embodiment of the present application is applied.
  • FIG. 1B is a schematic diagram of another communication system to which the embodiments of the present application are applied.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 3 is a graph showing the relationship between the height of the circular track, the distance from the cell edge and the remaining dwell time.
  • FIG. 4 is a schematic diagram of another application scenario of the embodiment of the present application.
  • FIG. 5 is an interactive schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an exemplary application scenario in which location information provided by an embodiment of the present application is used as a judgment threshold.
  • FIG. 7 is a schematic diagram of another exemplary application scenario in which location information provided by an embodiment of the present application is used as a judgment threshold.
  • FIG. 8 is a schematic diagram of an exemplary application scenario of the judging threshold contour line provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of still another communication apparatus provided by an embodiment of the present application.
  • Embodiments of the present application provide a method and device for wireless communication, which implements random access when sending data takes a long time, reduces the probability of random access failure, and improves communication efficiency.
  • any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs.
  • the meaning of "plurality" refers to two or more.
  • multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • NTN non-terrestrial network
  • HAPS high altitude platform station
  • LTE long term evolution
  • new radio new radio
  • 5G fifth generation
  • FIG. 1A is an example of a communication system applicable to the embodiments of the present application.
  • satellites and gateways are network devices for providing communication services for terminals.
  • the gateway station can also be called a gateway station.
  • the link between the satellite and the terminal is called the service link, and the link between the satellite and the gateway station is the feeder link.
  • the satellite When the satellite works in the transparent mode, the satellite has the function of relaying.
  • the gateway station has the function of the base station or part of the base station function.
  • the gateway station can be regarded as a ground base station; or, the ground base station can be deployed separately from the gateway station.
  • the delay of the feeder link includes the delay from the satellite to the gateway station and from the gateway station to the ground base station.
  • the transparent transmission mode in the embodiment of the present application is described by taking the case where the gateway station and the ground base station are set together or are located close together as an example.
  • the feeder link delay can be the sum of the delays from the satellite to the gateway station and the gateway station to the base station.
  • the satellite When the satellite works in a regenerative mode, the satellite has the data processing capability, the function of a base station or a part of the base station function, and the satellite can be regarded as a base station.
  • Satellites can work in staring or non-staring mode.
  • staring mode as the satellite moves, the coverage area of the satellite on the ground does not change, that is, the coverage area of the satellite signal does not move with the movement of the satellite for a period of time; in the non-staring mode, the coverage area of the satellite signal on the ground changes with Moving with the movement of the satellite can also be understood as the angle of the satellite transmitting the signal to the ground does not change.
  • the satellite mentioned in the embodiments of this application may be a satellite base station, or a network side device mounted on the satellite.
  • the satellite base station, gateway station or terrestrial base station can be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a base station in 5G network, broadband network gateway (BNG), aggregation switch or non-first A 3rd generation partnership project (3rd generation partnership project, 3GPP) access device, etc., is not specifically limited in this embodiment of the present application.
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine
  • M2M machine-to-machine
  • Internet of Things Internet of Things
  • the core network device is, for example, a device in a 5G network core network (core network, CN).
  • core network As the bearer network, the core network provides an interface to the data network, and provides communication connection, authentication, management, policy control, and bearer of data services for user equipment (UE).
  • CN may further include: access and mobility management network element (Access and Mobility Management Function, AMF), session management network element (Session Management Function, SMF), authentication server network element (Authentication Server Function, AUSF), policy Control node (Policy control Function, PCF), user plane function network element (User Plane Function, UPF) and other network elements.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF authentication server network element
  • Policy control Function Policy control Function
  • PCF user plane function network element
  • UPF User Plane Function
  • the terminal mentioned in the embodiments of this application may be an Internet of Things terminal, and may specifically refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit (subscriber unit), a subscriber station, a mobile station (mobile station), a remote station, remote terminal, mobile device, terminal equipment, wireless communication device, user agent or user equipment.
  • UE user equipment
  • UE user equipment
  • access terminal a subscriber unit (subscriber unit), a subscriber station, a mobile station (mobile station), a remote station, remote terminal, mobile device, terminal equipment, wireless communication device, user agent or user equipment.
  • subscriber unit subscriber station
  • mobile station mobile station
  • remote station remote terminal, mobile device, terminal equipment, wireless communication device, user agent or user equipment.
  • the terminal device may also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local) loop, WLL) station, personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, communication devices carried on high-altitude aircraft, wearables equipment, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in unmanned driving (self driving), telemedicine ( Wireless terminal in remote medical), wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home Terminals, 5G networks, 6G networks, or terminal equipment in future communication networks, etc., are not limited in this application.
  • FIG. 1B is an example of yet another communication system applicable to the embodiments of the present application. As shown in Figure 1B, it is an air to ground (ATG) communication system.
  • the network equipment includes a ground base station, and the user terminal includes a mobile device mounted on a high-altitude aircraft. In this scenario, the network equipment is generally fixed, and the terminal has high-speed mobility.
  • satellite communication systems can be divided into the following three types: high-orbit (Geostationary Earth Orbit, GEO) satellite communication systems, also known as synchronous orbit satellite systems; Orbit (Low Earth Orbit, LEO) satellite communication system.
  • GEO satellites are generally called geostationary orbit satellites, with an orbital altitude of 35786km. Its main advantage is that it is stationary relative to the ground and provides a large coverage area.
  • GEO satellite orbit satellites are also relatively prominent: if the distance from the earth is too large, a larger-diameter antenna is required; the transmission delay is large, about 0.5 seconds, which cannot meet the needs of real-time services; at the same time, its orbit resources are relatively tight.
  • MEO satellites with orbital altitudes between 2000 and 35786 km, can achieve global coverage with a relatively small number of satellites, but their transmission delay is higher than that of LEO satellites, and they are mainly used for positioning and navigation.
  • Orbital altitudes between 300 and 2000km are called low-orbit satellites (LEO).
  • LEO satellites have lower orbital altitudes than MEO and GEO, with smaller data propagation delay, smaller power loss, and relatively lower launch costs. Therefore, the LEO satellite communication network has made great progress in recent years and has attracted attention.
  • NTN networks especially LEO satellites with low launch costs and low latency, and the Internet of Things is an important development direction.
  • IoT devices In the Internet of Things, it is necessary to realize network communication for objects, which requires a large amount of Internet of Things devices, and requires low cost of Internet of Things communication devices. To reduce costs, IoT devices use low-priced mid-RF components with low RF transmit power. In order to enhance the coverage, the method of repeated transmission is usually used to improve the coverage. Hereinafter, IoT devices may also be referred to as low-cost terminals or IoT terminals.
  • the method of repeatedly sending data can be used to improve the decoding performance of the receiving end, so as to achieve the purpose of improving the coverage. For example, the channel quality and coverage conditions at the location of the IoT terminal may be poor.
  • TTI Transmission Time Interval
  • 3 different coverage levels are set, which correspond to different repetition times when the signal is sent. For example, it can be divided into normal coverage, extended coverage, and extreme coverage, corresponding to 0/1/2 coverage levels respectively.
  • 128 repetitions of data transmission can be used when transmitting the signal.
  • 64 repeat data transmissions can be used.
  • 8 repeat transmissions can be used.
  • the number of repetitions of sending data is just an example, and different repetitions will be selected according to specific channel measurement values during specific communication.
  • IoT endpoints may be installed in locations without power and require batteries for power.
  • the cost of replacing the battery is relatively high. In some scenarios where battery replacement is inconvenient, the life of the battery will determine the life of the IoT terminal. Therefore, the IoT terminal is also required to have the characteristics of low power consumption and saving points. For the purposes of cost, protocol simplification, and power saving, when an IoT terminal moves from one cell coverage area to another cell coverage area, it also needs to implement cell handover through random access.
  • the length of time taken by IoT terminals to randomly access the system and subsequently transmit data will vary.
  • the random access duration is about 5 seconds when in normal coverage level.
  • the power consumption of IoT terminals in the random access phase accounts for about 15% of the total power consumption during the communication process.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • cell 1 no longer covers the location of the terminal, and the terminal switches from cell 1 to cell 2.
  • the length of time a terminal can camp on or be within the coverage of that cell/beam is related to the orbit height and distance from the cell/beam edge.
  • the terminal is farther away from the edge of the cell in the opposite direction to the movement of the satellite (for example, the left edge in Figure 2), the longer the terminal can stay in the cell; the terminal is farther away from the cell in the opposite direction of movement of the satellite.
  • FIG. 3 is a graph showing the relationship between the height of the circular track, the distance from the cell edge and the remaining dwell time.
  • the dwell time is longer, because the higher the orbital altitude, the lower the angular velocity of the satellite, and the longer the satellite takes to sweep the same distance. It can be seen from FIG. 3 that when the terminal is more than 30 km away from the edge of the cell, the terminal can stay in the cell for more than 4 seconds.
  • the length of time required to access the system and subsequently send data will also be different. The longest time is required when using the extreme coverage level.
  • a certain cell/beam may have a short coverage time for the terminal applying for access to the system, resulting in the cell/beam covering time/dwelling time for the terminal is not enough to complete the application for access. system and data transfer.
  • the terminal needs to switch to an idle state and re-apply for access to the system in another cell/beam, which will cause interruption of data transmission and waste of power.
  • FIG. 4 is a schematic diagram of another application scenario of an embodiment of the present application. It is assumed that the beam emitted by the satellite to the ground is a moving beam.
  • the coverage time of cell 1 for the terminal is not enough to complete the random access procedure.
  • the cell 2 covers the location of the terminal, the random access can only be requested again in the cell 2, which reduces the communication efficiency and causes a waste of power.
  • the remaining coverage time or dwell time of the terminal within the coverage area of cell 1 is 3 seconds, during which message 1 (Msg1), message 2 (Msg2), and message 3 are completed between the terminal and the network device. (Msg3) transmission.
  • the terminal When the network device (satellite) wants to send message 4 (Msg4), due to the movement of the satellite, the terminal has entered the coverage of cell 2, and the terminal has been unable to receive Msg4 sent by the network device in cell 1. If the random access of the terminal fails, it can only re-apply for access to the system in cell 2. Exemplarily, if the terminal can successfully access the system from cell 1, but complete transmission of uplink data is not completed within the coverage time of cell 1. After the terminal enters cell 2, it needs to continue to send uplink data, and at this time, the terminal also needs to re-initiate random access in cell 2.
  • Msg4 message 4
  • embodiments of the present application provide a method for wireless communication and a related communication device.
  • the first communication device involved in this application may be a terminal, such as an IoT terminal, and the second communication device may be a network device, such as a satellite base station, a gateway station, a terrestrial base station, and the like.
  • the following description takes the first communication device as a terminal and the second communication device as a network device.
  • FIG. 5 is an interactive schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • the network side indicates a judgment threshold
  • the terminal judges whether the access conditions are currently met according to the judgment threshold, and performs random access only when the conditions are met, to avoid random access when the conditions are not met.
  • the random access of the current cell fails and needs to be re-accessed in the next cell.
  • a network device acquires first information, where the first information indicates a judgment threshold of a parameter in a first parameter set.
  • the first parameter set includes at least one of the following parameters: location information, delay information, timing advance change rate, change rate of timing advance change rate, Doppler value, Doppler change rate, and remaining coverage time.
  • the first parameter in the first parameter set has multiple judgment thresholds, and the judgment threshold of the first parameter has a corresponding relationship with the coverage level and/or the amount of service data.
  • the plurality of judgment thresholds may include a reference threshold and at least one difference.
  • the first parameter may be location information, delay information, timing advance rate of change, rate of change of timing advance rate of change, Doppler value, Doppler rate of change, and/or remaining coverage time.
  • the judgment thresholds of the parameters in the first parameter set have corresponding judgment conditions.
  • the first information also indicates the judgment condition corresponding to the judgment threshold of the parameter in the first parameter set; or the judgment condition is a preconfigured condition, for example, as agreed in a communication protocol, this method can save signaling overhead; or the judgment condition It can be determined by the terminal according to the location information and/or the movement direction of the satellite (network device), thereby saving signaling overhead.
  • the judgment condition may be greater than or equal to the judgment threshold, greater than the judgment threshold, less than the judgment threshold, less than or equal to the judgment threshold, at the judgment threshold The same side or opposite side of the satellite movement direction of the contour line, the east side/west side or south side ⁇ north side of the contour line of this judgment threshold, etc. It should be pointed out that whether the judgment condition includes a condition equal to the judgment threshold or a condition on the judgment threshold line does not affect the essence of the technical solution of the present application.
  • the first information includes index information, where the index information is used to indicate a judgment threshold of parameters in the first parameter set corresponding to the cell where the terminal is located.
  • the network device sends the first information, and correspondingly, the terminal receives the first information.
  • the network device broadcasts or multicasts the first information to the terminal.
  • the first information can be carried in a system information block (system information block, SIB) 1, other system information (other system information, OSI) or master system information block (mater information block, MIB), and can also be carried in other broadcast information middle. Broadcasting or multicasting the above information to terminals can avoid scheduling different resources to different terminals for sending the above signaling, save signaling overhead of scheduling resources and reduce system scheduling complexity.
  • the first information when a radio resource control (RRC) connection is established and subsequent communication, the first information may be carried in RRC information (for example, an RRC setup (RRCSetup) message RRC reconfiguration message ( RRCReconfiguration), RRC recovery message (RRCResume)), downlink control information (DCI), group DCI, media access control (MAC) control element (control element) or timing advance command (timing advance command, TAC) and other information; sending the above information to the terminal alone can flexibly control the parameter value of each terminal, and configure different parameter values for the terminal according to the different locations or areas of the terminal to optimize system parameters and optimize terminal communication performance/system communication performance. Purpose.
  • RRC radio resource control
  • the network device may send the first information along with the data transmission; or send the first information in a separately allocated physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PDSCH physical downlink shared channel
  • the terminal determines whether the access condition is satisfied according to the first information.
  • judging whether the access conditions are met refers to judging whether the coverage time of the cell/beam can meet the time required to complete random access and/or data communication.
  • the terminal obtains the first comparison information according to its own location information and/or the location information of the network device, and determines whether the anytime access condition is satisfied according to the first comparison information and the first information.
  • the terminal can obtain its own location information according to the Global Navigation Satellite System (GNSS); the terminal can obtain the location information of the network device according to the ephemeris information.
  • GNSS Global Navigation Satellite System
  • the ephemeris information may be sent by the network device to the terminal, or may be information pre-stored locally by the terminal, which is not limited here.
  • the terminal before judging whether the access conditions are met, obtains the corresponding relationship between the judgment threshold of the parameters in the first parameter set and the coverage level and/or the amount of service data.
  • the corresponding relationship may be sent by the network device through the first information; the corresponding relationship may be indicated by index information in the first information, and the terminal determines the corresponding relationship from a preconfigured mapping relationship table according to the index information.
  • the terminal when the first parameter in the first parameter set has multiple judgment thresholds, and the multiple judgment thresholds have a corresponding relationship with the coverage level and/or the amount of service data, the terminal obtains its own coverage level and/or or business data volume, and select a corresponding first parameter judgment threshold from a plurality of judgment thresholds according to its own coverage level and/or business data volume and corresponding relationship, and further, according to the selected first parameter judgment threshold and the first parameter Compare the information to determine whether the access conditions are met.
  • the terminal can select the coverage level to use according to the reference signal received power (Reference Signal Receiving Power, RSRP). For example, the terminal detects that the signal-to-noise power ratio (SNR) of the downlink is -10dB through the downlink reference signal, then the terminal selects coverage level 2, and if it detects that the SNR is -5db, selects coverage level 1; 2db, select coverage level 0.
  • RSRP Reference Signal Receiving Power
  • the anytime access condition is satisfied according to the first comparison information and the first information. Specifically, whether the access condition is satisfied is judged by comparing the first comparison information and the judgment value of the parameter in the first parameter set according to the judgment condition. Wherein, the judgment condition corresponds to the judgment threshold of the parameters in the first parameter set.
  • the above judgment condition may be indicated by the first information, and the terminal obtains the judgment condition according to the first information;
  • the judgment condition is a preconfigured condition
  • the terminal obtains the judgment condition according to the pre-stored configuration information or adopts the default judgment condition, thereby saving signaling overhead sent by the network device to the terminal.
  • the judgment condition may be determined by the terminal according to the position information and/or the movement direction of the satellite (network device), thereby saving the signaling overhead sent by the network device to the terminal.
  • the terminal When the access conditions are met, the terminal initiates a random access request.
  • the terminal judges the access conditions in S503, and when the judgment result is that the access conditions are met, it means that the coverage time of the current cell/beam meets the conditions and is sufficient for the terminal to perform random access and/or data transmission, and the terminal initiates random access.
  • the terminal when the terminal initiates random access, it informs the network of its own coverage level and/or service data volume by sending a preamble, so that the network device can allocate communication resources for it.
  • the terminal informs the network equipment of its own coverage level and/or service data volume by selecting the resources used for sending the preamble; the preamble can also be grouped, and the terminal informs itself of the coverage level and/or the preamble by selecting different groups of preambles. or business data volume.
  • the terminal waits for the next cell/beam before making a judgment, or performs random access in the next cell/beam.
  • Location information that is, the parameters in the first parameter set include location information.
  • the terminal determines whether the terminal can complete random access and the time required for subsequent data communication within the time covered by the cell/beam according to the indication of the location information (first information) sent by the network side, so as to avoid the process of applying for access to the system. Re-apply for random access after interruption.
  • the network device determines the minimum distance the terminal needs from the cell edge according to the time required for the terminal to access the system, and then determines the judgment threshold according to the minimum distance.
  • the network device may also use the time required for the terminal to access the system and subsequent data communication to determine the minimum distance that the terminal needs to be from the cell edge.
  • the network device determines the minimum distance that the terminal needs to be from the cell edge according to the time required for the terminal to access the system according to one or more coverage levels and/or service data volume, and according to the different coverage levels and/or service data The minimum distance corresponding to the quantity determines one or more judgment thresholds.
  • the location information may be longitude and latitude information, such as longitude information, latitude information, or longitude and latitude information; the judgment threshold is a longitude value, a latitude value, or a longitude and latitude value.
  • FIG. 6 is a schematic diagram of an exemplary application scenario in which location information is used as a judgment threshold in an embodiment of the present application.
  • the network device determines three lines of longitude according to the time when the terminals of the three coverage levels access the system. See Table 1 for the correspondence between the judgment thresholds, judgment conditions and coverage levels.
  • Coverage level 0 represents the lowest coverage level, for example, corresponding to normal coverage; coverage level 2 represents the highest coverage level, for example, corresponding to extreme coverage.
  • the judgment threshold is 20 degrees west longitude, 19.9 degrees west longitude, or 19.8 degrees, and the judgment condition is less than or equal to, or less than.
  • FIG. 6 and Table 1 are only an example of judging access conditions based on location information in the embodiment of the present application, and are not intended to be limiting.
  • the judgment threshold and condition may also be greater than or equal to 8 degrees east longitude, or greater than or equal to 8 degrees east longitude and less than or equal to 10 degrees north latitude, and so on.
  • Coverage level 0 1 2 Judgment thresholds and conditions less than or equal to 20 degrees west longitude Less than or equal to 19.9 degrees west longitude Less than or equal to 19.8 degrees west longitude
  • the network device sends information (the first information) indicating the correspondence between the judgment threshold, the judgment condition and the coverage level. After receiving the terminal, the terminal judges whether the above access conditions are met according to its own position as the comparison information. random access. For example, for the scenario in Figure 6, if the location of the terminal with coverage level 1 is 18 degrees west longitude, random access is performed; if the location of the terminal with coverage level 1 is 20 degrees west longitude, wait for the next The cell then performs judgment or random access.
  • the judgment condition may be indicated implicitly, and the terminal may determine the judgment condition according to the satellite position and the movement direction of the satellite. Or pre-configured judgment conditions, such as less than or equal to, greater than or equal to, greater than, less than and so on. Or the network device indicates the judgment condition in the first information.
  • the network device does not send the correspondence between the judgment threshold and the coverage level, but only needs to send one judgment threshold, and terminals of all coverage levels use the same judgment threshold for judgment. For example, the network device only indicates the judgment threshold corresponding to coverage level 2 in Table 1 for use by all terminals within the coverage of the cell/beam. This saves signaling overhead.
  • the information sent by the network device may also indicate that the condition of random access is not satisfied, that is, the condition that random access cannot be performed.
  • the terminal judges whether the above conditions are met according to its own location, and if so, it does not perform random access. For example, for the scenario in FIG. 6 , the network device sends information indicating the correspondence as shown in Table 2. When the location of the terminal whose coverage level is level 0 is greater than 20 degrees west longitude, random access is not performed.
  • Coverage level 0 1 2 Judgment thresholds and conditions greater than 20 degrees west longitude greater than 19.9 degrees west longitude greater than 19.8 degrees west longitude
  • a differential method may be selected to transmit location information.
  • the network device can send longitude and latitude information 1, longitude and latitude difference information 2 and longitude and latitude difference information 3 to the terminal.
  • the difference information of longitude and latitude may be a positive value or a negative value, which is not limited in this application.
  • the location information may also be information of at least two location points, where the at least two location points are used to determine the location threshold line.
  • the corresponding judgment threshold is the coordinate value of the position point, for example, the coordinate value in the Earth-Centered, Earth-Fixed, ECEF.
  • the network device may use the two position points to represent a position threshold line passing through the two position points as the judgment threshold.
  • FIG. 7 is a schematic diagram of another exemplary application scenario in which location information is used as a judgment threshold in an embodiment of the present application.
  • the network device determines three location threshold lines according to the time when terminals of three coverage levels access the system, each location threshold line is determined by at least two location points, and each threshold line divides the coverage area into two areas. That is, three position threshold lines are indicated by 6 position point information: position threshold line 1 is determined according to position point L1 and position point L2; position threshold value line 2 is determined according to position point L3 and position point L4; position threshold value line 2 is determined according to position point L5 and position point L6 Location threshold line 3.
  • three or more position points may also be used to determine a position threshold line, which is not limited in this application.
  • the judgment threshold is the position threshold line 1
  • the corresponding judgment condition is the same side of the satellite movement direction of the position threshold line 1
  • the judgment threshold is the position threshold line 2
  • the corresponding judgment condition is located on the same side of the satellite movement direction of the position threshold line 2
  • the judgment threshold is the position threshold line 3
  • the corresponding judgment condition is the same side of the satellite movement direction of the position threshold line 3.
  • the network device sends information (first information) indicating the correspondence between the judgment threshold, the judgment condition and the coverage level.
  • the terminal judges whether the above access conditions are met according to its own location, and if so, initiates random access in the current cell. .
  • first information indicating the correspondence between the judgment threshold, the judgment condition and the coverage level.
  • the terminal judges whether the above access conditions are met according to its own location, and if so, initiates random access in the current cell. . For example, for the scenario in Figure 7, if the terminal with coverage level 1 is located on the east side of the location threshold line (the right side in Figure 7, that is, on the same side of the satellite movement direction), random access is performed in the current cell. If the terminal whose coverage level is 1 is located on the west side of the location threshold line (the left side in FIG. 7 ), it will wait for the next cell to perform judgment or random access.
  • the information sent by the network device may also indicate that the condition for random access is not met, that is, the condition for not being able to perform random access.
  • the terminal judges whether the above conditions are met according to its own location, and if so, does not perform random access. For example, for the scenario in FIG. 7 , the judgment condition in Table 3 is changed to be on the opposite side of the satellite motion direction of the position threshold line. If the terminal with coverage level 1 is located on the west side of the location threshold line (the left side in FIG. 7 , that is, on the opposite side of the satellite movement direction), wait for the next cell before making judgment or random access.
  • the determination condition may include a value on the location threshold line, that is, when the location of the terminal is on the location threshold line, it may be determined that the access condition is satisfied.
  • the determination condition may also not include the value on the location threshold line, that is, when the location of the terminal is on the location threshold line, it may be determined that the access condition is not satisfied.
  • the judgment condition may be indicated implicitly, and the terminal may determine the judgment condition according to the satellite position and the movement direction of the satellite.
  • the judgment condition is preconfigured, for example, the default judgment condition is the same side/opposite side, or the east side/west side of the satellite movement direction of the position threshold line.
  • the network device indicates the judgment condition in the first information, for example, represented by 1 bit, 0 represents the same side of the satellite movement direction, 1 represents the opposite side of the satellite movement direction; similarly, 0 can represent the east side of the position threshold line, 1 may represent the west side of the position threshold line; of course, 1 may represent the same side or east side of the satellite movement direction, and 0 may represent the opposite side or west side of the satellite movement direction, which is not limited here.
  • the network device does not send the correspondence between the judgment threshold and the coverage level, but only needs to send one judgment threshold line, and terminals of all coverage levels use the same judgment threshold line for judgment.
  • the network device only sends the location threshold line 3 corresponding to the coverage level 2 in Table 3 for use by all terminals within the coverage area of the cell/beam.
  • a differential method may be selected to transmit the location point information.
  • the network device may only send a reference value and a difference value. After receiving, the terminal obtains the position of each position point according to the reference value and the difference value. For example, the network device sends location point information 1 (L1) and step size ( ⁇ L), and the terminal obtains the information of location point information 2, 3, 4, 5 and 6 according to L1 and ⁇ L respectively after receiving it.
  • L2 L1+ ⁇ L
  • L3 L1+2* ⁇ L
  • L4 L1+3* ⁇ L
  • L5 L1+4* ⁇ L
  • L6 L1+5* ⁇ L.
  • FIG. 7 and Table 3 are only an example of judging access conditions based on location information in the embodiment of the present application, and are not intended to be limiting.
  • the judgment condition can also be that the terminal position is on the south side or the north side of the position threshold line, and the judgment condition can also be represented by 1 bit, for example, 0 means the south side of the position threshold line, 1 means North side of the location threshold line.
  • Delay information that is, the parameters in the first parameter set include the delay information.
  • the terminal determines whether the terminal can complete random access and the time required for subsequent data communication within the time covered by the cell/beam according to the indication of the delay information (first information) sent by the network side, avoiding the process of applying for access to the system Re-apply for random access when an interruption occurs.
  • the time delay information represents the time delay information between the satellite (network device) and the reference point, and may specifically be the one-way delay or the round-trip delay between the satellite and the reference point.
  • the following takes the one-way delay as an example for description.
  • a first reference line also called a delay contour
  • This first reference line separates the cell/beam into two regions.
  • the network device determines the minimum distance that the terminal needs to be from the edge of the cell according to the time required for the terminal to access the system, and then determines the judgment threshold according to the minimum distance.
  • the judgment threshold may be the first reference line, and then determines the delay information of the first reference line, The delay information corresponding to the first reference line is indicated to the terminal.
  • the network device may also use the time required for the terminal to access the system and subsequent data communication to determine the minimum distance that the terminal needs to be from the cell edge.
  • FIG. 8 is a schematic diagram of an exemplary application scenario of judging a threshold contour in an embodiment of the present application.
  • the network device determines three judgment threshold contour lines, namely three delay values, according to the time when the terminals of the three coverage levels access the system.
  • the judgment threshold contour lines can be called the first reference line or the delay value. contour line.
  • Each decision threshold contour divides the coverage area into two regions.
  • Coverage level 0 corresponds to the judgment threshold contour line 1, that is, 7ms; coverage level 1 corresponds to the judgment threshold contour line 2, that is, 6.8ms; coverage level 2 corresponds to the judgment threshold contour line 3, that is, 6.6ms.
  • coverage level 0 corresponds to normal coverage, coverage level 1 corresponds to extended coverage, and coverage level 2 corresponds to extreme coverage.
  • FIG. 8 and Table 4 are only an example of judging access conditions by using the delay information in the embodiment of the present application, and are not intended to be limiting.
  • the network device transmits information (first information) indicating the correspondence between the judgment threshold, the judgment condition and the coverage level.
  • the terminal determines the corresponding judgment threshold and judgment conditions according to the coverage level used by itself, and then determines the one-way delay or round-trip delay between the terminal and the satellite according to its own position information and satellite position information as the comparison information to judge whether The above access conditions are met, and if so, random access is initiated in the current cell.
  • the terminal uses coverage level 0, and the judgment threshold and condition used by the terminal are: less than or equal to 7ms.
  • the terminal obtains its own position according to GNSS and other technologies, obtains the position of the network device according to the ephemeris information, and then calculates the one-way delay according to the position of the terminal and the position of the network device as the comparison information for judgment. If the calculated one-way delay is 6.88ms, and the condition of less than or equal to 7ms is met, perform random access in the current cell; if the calculated one-way delay is 7.2ms, and the condition of less than or equal to 7ms is not met, wait The next cell will then make a judgment or random access.
  • the judgment thresholds and conditions indicated in Table 4 may also be on the same side of the satellite moving direction of the delay contour, that is, the terminal on the same side of the satellite moving direction separated by the delay contour indicates that the access conditions are met , the terminal is on the opposite side of the satellite movement direction separated by the delay contour line, indicating that the access condition is not met; or, the judgment threshold and condition can also be the opposite side of the satellite movement direction of the delay contour line, that is , the terminal on the opposite side of the satellite moving direction separated by the delay contour line indicates that the access conditions are met, and the terminal on the same side of the satellite moving direction separated by the delay contour line indicates that the access conditions are not met.
  • the delay contour is represented by the delay value on the first reference line. It should be noted that when the terminal is located on the delay threshold line, it can be judged that the access conditions are met; when the terminal is located on the delay threshold line, it can also be judged that the access conditions are met.
  • the judgment condition may be indicated implicitly, and the terminal may determine the judgment condition according to the satellite position and the movement direction of the satellite. For example, the terminal judges whether the satellite is far away or close to itself according to the ephemeris information of the satellite or the position and velocity information of the satellite and its own position information. Assuming that the satellite is far away from the terminal, that is, the satellite and the terminal move backwards, when the comparison information is less than the delay information (judgment threshold), the terminal can choose to access the system from this cell/beam. Otherwise the terminal may not access the system from this cell/beam.
  • the terminal can choose to access the system from this cell/beam. Otherwise the terminal may not access the system from this cell/beam.
  • Such implicit indication can save signaling overhead.
  • the judgment condition may be preconfigured, for example, the judgment condition is defaulted to be less than or equal to, greater than or equal to, greater than, less than, etc. through a communication protocol.
  • the network device indicates the judgment condition in the first information.
  • the judgment conditions between the comparison information and the judgment threshold value under different conditions can be agreed according to the specific situation.
  • the network device does not send the correspondence between the judgment threshold and the coverage level, but only needs to send one judgment threshold, and terminals of all coverage levels use the same judgment threshold for judgment. For example, the network device only indicates the delay value corresponding to coverage level 2 in Table 1 for use by all terminals within the coverage of the cell/beam. This method can save signaling overhead.
  • a differential method may be selected to transmit delay information.
  • the time delay difference information may be a positive value or a negative value, which is not limited in this application.
  • the first parameter set may also include a timing advance (TA) rate of change (TA rate), a rate of change of the timing advance rate of change (TA rate), a Doppler value, or a Doppler rate of change ( Doppler rate) and other parameters.
  • TA timing advance
  • TA rate rate of change of the timing advance rate of change
  • TA rate rate of change of the timing advance rate of change
  • Doppler rate Doppler rate
  • the timing advance change rate represents the change rate of the timing advance used by the terminal, where the timing advance may be the timing advance used by the terminal to send uplink data.
  • the timing advance rate of change is related to the satellite movement speed, the satellite movement direction, the satellite position, the UE position or the location of the coverage area, or the above parameters determine the size of the timing advance change rate.
  • the change rate of the timing advance change rate represents the change rate of the above-mentioned timing advance change rate.
  • the Doppler value represents the frequency shift caused by the satellite signal received by the terminal due to satellite motion.
  • the Doppler value may be obtained according to the position of the terminal, the position of the satellite, and the relative velocity between the terminal and the satellite.
  • the Doppler rate of change represents the rate of change of the above-described Doppler value.
  • the Doppler rate of change is related to the speed of satellite motion, the direction of satellite motion, the position of the satellite, the position of the UE or the location of the coverage area, or the above parameters determine the size of the Doppler rate of change.
  • the network device determines the minimum distance that the terminal needs to be from the cell edge according to the time required for the terminal to access the system, and then determines the judgment threshold according to the minimum distance. Determine the TA rate value, TA rate rate of change value, Doppler value or Doppler rate value of the threshold contour line, and indicate to the terminal the corresponding TA rate value, TA rate rate of change value, Doppler value or Doppler rate value.
  • the network device may also use the time required for the terminal to access the system and subsequent data communication to determine the minimum distance that the terminal needs to be from the cell edge.
  • the judgment threshold contour line corresponding to the TA rate can be called the TA rate value contour line or the second reference line; the judgment threshold value contour line corresponding to the Doppler value can be called the Doppler value contour line or the third reference line; TA rate changes
  • the judgment threshold contour line corresponding to the rate can be called the TA rate change rate value contour line or the fourth reference line; the judgment threshold contour line corresponding to the Doppler rate can be called the Doppler rate value contour line or the fifth reference line.
  • the network device can determine the contour lines of different judgment thresholds for terminals with different coverage levels to access the system. For example, as shown in Figure 8, the network device determines three judgment threshold contours according to the time when the terminals of the three coverage levels access the system. Wire.
  • the network device transmits information (first information) indicating the correspondence between the judgment threshold, the judgment condition and the coverage level. After receiving the information, the terminal determines the comparison information according to its own position information and satellite position information. Specifically as follows:
  • the terminal can calculate and obtain the TA rate value according to its own position, satellite position, satellite speed and direction (predicting satellite position information and speed information for a period of time according to ephemeris information).
  • the change rate is used to judge whether the access conditions are met for the comparison information.
  • the terminal can calculate the Doppler rate value as the comparison information according to its own position, satellite position, satellite speed and direction (predicting satellite position information and speed information for a period of time according to ephemeris information). Determine whether the access conditions are met.
  • Remaining coverage time that is, the parameters in the first parameter set include the remaining coverage time of the cell/beam.
  • the terminals in the entire cell or beam will switch at the same time, which means that the remaining coverage time or dwell time of the terminals in the entire cell or beam in the cell or beam is the same.
  • the network device can indicate the remaining coverage time to the terminal, where the remaining coverage time represents: the remaining time before the cell/beam is switched, or the remaining time that the cell/beam covers the current area, or the remaining dwell time.
  • the terminal judges whether the remaining coverage time of the cell/beam meets the access requirements of the terminal according to the coverage level and/or the amount of service data to be used by the terminal.
  • Beam access system if not, optional, wait for the next cell or beam to cover the area, and then obtain the remaining coverage time sent by the network equipment of the next cell/beam, and determine whether the conditions are met and whether the cell is sent from the cell or not. Access the system, or initiate random access at the next cell/beam.
  • the network device indicates to the terminal the judgment threshold of the remaining coverage time, so that the terminal can judge whether the system can be accessed in the cell/beam.
  • the judgment threshold of the remaining coverage time For example, as shown in Table 5, coverage levels 0, 1, and 2 correspond to different remaining coverage times, respectively.
  • the terminal selects the corresponding judgment threshold of the remaining coverage time according to the coverage level used by itself, and judges whether the conditions are met according to the received remaining coverage time, specifically, whether the remaining coverage time is greater than or equal to the judgment threshold, or whether the remaining coverage time is judged. greater than the judgment threshold. If the conditions are met, you can apply for access to the system from this cell/beam.
  • the terminal can access the system in the current cell/beam; if the coverage level to be used by the terminal is 0 If it is 1 or 2, the terminal waits for the next cell/beam to judge or initiate random access.
  • a judgment threshold of the remaining coverage delay of the differential method transmission can be selected.
  • the differential transmission method reference may be made to the differential transmission of the above-mentioned latitude and longitude information, location point information, time delay information and other parameters, which will not be repeated here.
  • the time unit representing the remaining coverage time may be ms, 10ms, 500ms, a time slot length, a subframe length, a frame length, or the like.
  • the signaling bit length and signaling overhead can be saved.
  • a time length with higher precision can be indicated to the terminal, so that the terminal can judge whether to access the system from the cell or beam, and a more accurate indication can be provided for the terminal.
  • different coverage levels can use different time units, for example, level 0 uses a 250ms time unit, level 1 uses a 500ms time unit, and level 2 uses a 1-second time unit.
  • level 0 uses a 250ms time unit
  • level 1 uses a 500ms time unit
  • level 2 uses a 1-second time unit.
  • the coverage level is high (the channel quality is poor)
  • the signal sent by the terminal and the network equipment is repeated many times, and the signal transmission takes a long time, which requires a long coverage time.
  • the indication accuracy of the remaining coverage time is relatively low, and a larger time unit. In this way, signaling overhead of sending the remaining coverage time corresponding to different coverage levels can be saved.
  • the network device may also judge the correspondence between the thresholds and the amount of service data.
  • the amount of service data can also be used as the terminal to determine whether the conditions for accessing the system are met. For example, as shown in Table 6, the amount of business data is qualitatively represented by low, medium, and high, and the mapping relationship between the judgment threshold and the condition is established. The terminal selects a corresponding judgment threshold and compares the conditions according to the amount of its own service data.
  • the service data volume when the service data volume is equal to 5 slots, it can also indicate a low service data volume, and when it is equal to 10 slots, it can also represent a medium service data volume.
  • the judgment conditions in Tables 6 and 7 may be less than or equal to or less than.
  • the network device may also indicate the corresponding relationship between the judgment threshold, the coverage level, and the amount of service data.
  • the terminal selects the corresponding judgment threshold and conditions according to its own service data volume and coverage level.
  • the delay information is used as an example to describe the corresponding relationship between the judgment threshold, the amount of service data, and the coverage level.
  • the judgment threshold and The conditions may also have the above-mentioned corresponding relationship, which will not be repeated here.
  • the positional relationship between the cell/beam and the satellite can be linked to the judgment threshold and coverage level.
  • the network device and the terminal may preconfigure a mapping relationship table, which is used to represent the relationship between the cell/beam, the judgment threshold, and the coverage level.
  • the pre-configured table may be agreed upon in a protocol, or may be sent by the network device to the terminal by means of broadcast or unicast transmission.
  • Table 8 is an example of the mapping relationship table.
  • Judgment thresholds and conditions corresponding to different coverage levels are respectively defined for different index numbers.
  • T1, T2, etc. represent the above-mentioned latitude and longitude values, delay values, TA rate values and other judgment thresholds.
  • Judgment conditions similar to the above may be implicitly expressed, pre-configured, standard conventions, etc., which will not be repeated here.
  • mapping relationship table may also be added to the mapping relationship table to represent the corresponding relationship.
  • mapping relationship table may also be added to the mapping relationship table to represent the corresponding relationship.
  • the network device only needs to indicate the index number to the terminal according to the coverage of the cell where the terminal is currently located, and the terminal selects the judgment threshold and condition of the corresponding row according to the index number.
  • This method can save the indication signaling overhead.
  • the size of N can be determined according to the actual situation, which is not limited here.
  • the coverage of the cell where the terminal is currently located means that the location of the terminal can receive the signal of the corresponding cell, that is, the coverage of the terminal in the corresponding cell.
  • the terminal can simultaneously receive signals from multiple cells (eg, broadcast signals), each cell only needs to send the index number corresponding to its own cell to the terminal.
  • the network device acquires and sends first information, where the first information indicates a judgment threshold of parameters in the first parameter set, and accordingly, the terminal receives the first information.
  • the terminal determines whether the access condition is satisfied according to the first information.
  • the terminal initiates a random access request, and the random access request indicates the judgment result of the above judgment.
  • the judgment result is that the access conditions are met
  • the terminal initiates and completes random access in the current cell/beam
  • the network device sends a message to the terminal that the terminal is about to enter after receiving the random access request.
  • the communication resources of the cell/beam are used for the terminal to complete the subsequent random access process or subsequent service data transmission, thereby reducing the probability of random access failure.
  • the above-mentioned communication resources may be timing information, frequency adjustment information, and/or time-frequency resources for transmitting uplink and downlink data.
  • the terminal starts to apply for access to the system through cell 1/beam 1, but the remaining coverage time of the cell 1/beam 1 for the terminal is not enough to complete the random access procedure or subsequent service data transmission.
  • the terminal determines that the remaining coverage time of cell 1/beam 1 is not enough to complete the random access process or subsequent service data transmission through the above various possible methods, it indicates the above when sending Msg1 to the network equipment of cell 1/beam 1. critical result.
  • one group of random access preambles indicates that the access conditions are met, and the other group of random access preambles indicates that the access conditions do not meet;
  • the corresponding random access preamble group is selected to be used.
  • the random access timings may be grouped and indicated to the terminal, where one group of random access timings indicates that the access conditions are met, and the other group of random access timings indicates that the access conditions are not met; The result of whether the access conditions are met is selected to use the corresponding random access timing group.
  • the random access opportunity represents time-frequency resources that the terminal can use when sending the random access preamble.
  • the network device instructs the terminal through Msg2 to instruct the terminal to send Msg3 and receive Msg4 to the network device in cell 2/beam 2.
  • Relevant resource information such as timing, frequency adjustment information and/or the time of transmitting uplink and downlink data. frequency resources, etc.
  • the transmission and reception of Msg3 and Msg4 may occur within the coverage of another cell 2/beam 2.
  • cell 2/beam 2 and cell 1/beam 1 are cells/beams under the same network device (satellite), after cell 1/beam 1 receives the Msg1 sent by the terminal, the network device sends the cell to the terminal in Msg2. 2/Relevant resource information of beam 2.
  • the Msg2 may be delivered through cell 2/beam 2, or may be delivered through cell 1/beam 1.
  • the network devices share the correlation between the terminal sending Msg3 and receiving Msg4 to the network device in cell 2/beam 2 resource information.
  • the network devices also exchange the coverage level and/or service data volume indicated by the terminal through the preamble, and the temporary cell radio network temporary identifier TC-RNTI (temporary cell radio network temporary identifier, TC-RNTI) value corresponding to the terminal.
  • TC-RNTI temporary cell radio network temporary identifier
  • the terminal completes the transmission of Msg1, Msg2, Msg3 and Msg4 in cell 1/beam 1, wherein Msg4 sent by the network side instructs the terminal to subsequently send uplink data and data within the coverage of cell 2/beam 2 Relevant resource information of downlink data is received. For example, timing, frequency adjustment information, and/or time-frequency resources for transmitting uplink and downlink data, etc.
  • the terminal accesses the system through cell 1/beam 1.
  • the terminal is about to access the coverage of cell 2/beam 2, and the network side of cell 1/beam 1 can pass downlink messages.
  • Relevant resource information for subsequent transmission of uplink data and reception of downlink data in cell 2/beam 2 is sent to the terminal. For example, timing, frequency adjustment information, and/or time-frequency resources for transmitting uplink and downlink data, etc.
  • the network device corresponding to cell 1/beam 1 obtains the above information in the cell from the network device corresponding to cell 2/beam 2 2/ Relevant resource information for sending uplink data and receiving downlink data within the coverage of beam 2.
  • the network devices also exchange the coverage level and/or service data volume indicated by the terminal through the preamble, and the temporary cell radio network temporary identifier TC-RNTI (temporary cell radio network temporary identifier, TC-RNTI) value corresponding to the terminal.
  • TC-RNTI temporary cell radio network temporary identifier
  • the terminal can not only avoid the cell/beam switching process, but also ensure the continuity of communication, and at the same time avoid the random access process again, and avoid wasting power.
  • this application is not limited to using only one of the above various judgment thresholds or contour lines, and can use location-related information, time delay information, TA rate value, TA rate rate of change value, Doppler value, Doppler value in combination. Two or more of the rate value and the remaining coverage time are used as judgment thresholds.
  • the moving speed of the terminal is much lower than the speed of the satellite, in this embodiment of the present application, when judging whether the coverage time of the cell/beam can meet the time required for the terminal to complete random access and/or data communication, no mention is made of the terminal's own direction and speed of movement. It should be understood that when the terminal is on a high-speed moving vehicle, when the terminal obtains the comparison information according to its own position information and the position information of the satellites, the moving direction and speed of the terminal should be considered, which will not be repeated here.
  • a method for wireless communication in which a network device indicates a judgment threshold (and a judgment condition) to a terminal, and the terminal judges whether to access the system according to the judgment threshold and conditions, and performs random access only when the conditions are met , to avoid random access failure when the conditions are not met, resulting in the need to re-access in the next cell. Further defines the correspondence between the coverage level and/or service data volume of the terminal and the judgment thresholds and conditions of the parameters in the first parameter set, so that the terminal selects the judgment threshold according to the actual coverage level and/or service data volume, and judges whether Access to the system improves the flexibility and accuracy of judgment.
  • the terminal equipment and the network equipment may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. Function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the communication apparatus 900 may be a terminal or a network device, that is, a first communication device or a second communication device, or a device in a terminal device or a network device, or a device that can be matched with a terminal device or a network device.
  • the communication apparatus 900 may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions performed by the terminal in the above method embodiments, and the units may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication apparatus 900 may include a processing unit 910 and a transceiver unit 920 .
  • the processing unit 910 may be configured to call the transceiver unit 920 to perform functions of receiving and/or sending.
  • the transceiver unit 920 is configured to receive the first information sent by the second communication device; the first information indicates the parameters of the parameters in the first parameter set.
  • Judgment threshold wherein the first parameter set includes at least one of the following parameters: position information, delay information, timing advance change rate, change rate of timing advance change rate, Doppler value, Doppler change rate, remaining coverage time; the processing unit 910 is configured to determine whether the access condition is satisfied according to the first information, and perform random access when the access condition is satisfied.
  • the processing unit 910 before judging whether the access conditions are met, is further configured to obtain the corresponding relationship between the judgment threshold of the parameters in the first parameter set and the coverage level and/or service data volume.
  • the processing unit 910 is configured to determine whether the access condition is satisfied according to the first information, and is specifically configured to obtain the first comparison according to the location information of the first communication device and/or the location information of the second communication device. information; according to the first comparison information and the first information, determine whether the access condition is satisfied. .
  • the processing unit 910 is further configured to, when the first parameter in the above-mentioned first parameter set has multiple judgment thresholds, obtain its own coverage level and/or service data volume; A corresponding judgment threshold is selected from a plurality of judgment thresholds according to the amount of data and the above-mentioned corresponding relationship; whether the access condition is satisfied is judged according to the first comparison information and the corresponding judgment threshold of the first parameter.
  • the processing unit 910 is used to judge whether the access condition is satisfied according to the first comparison information and the first information, and is specifically used to compare the judgment threshold of the first comparison information and the first parameter according to the judgment condition, and judge whether the access condition is satisfied.
  • the access condition is satisfied; wherein the judgment condition corresponds to the judgment threshold of the first parameter.
  • the processing unit 910 is configured to acquire first information, where the first information indicates the judgment threshold of the parameter in the first parameter set, wherein the first A parameter set includes at least one of the following parameters: position information, delay information, timing advance change rate, timing advance change rate change rate, Doppler value, Doppler change rate, remaining coverage time; transceiver unit 920 , which is used to send the first information to the first communication device, so that the first communication device determines whether the access condition is satisfied according to the first information.
  • the transceiver unit 920 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the above method embodiments.
  • the processing unit 910 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and the network device in the foregoing method embodiments, which will not be repeated here.
  • each functional module or unit in each embodiment of the present application may be integrated in the A processor may also exist physically alone, or two or more modules or units may be integrated into one module or unit.
  • the above-mentioned integrated modules or units may be implemented in the form of hardware, or may be implemented in the form of software function modules.
  • an embodiment of the present application further provides a communication apparatus 1000 for implementing the functions of a terminal and a network device in the above method, that is, the functions of a first communication apparatus and a second communication apparatus.
  • the communication device may be a terminal, a network device, or a device in a terminal or a network device, or a device that can be matched and used with the terminal or network device.
  • the communication apparatus 1000 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1000 includes at least one processor 1010, which is configured to implement the functions of the terminal and the network device in the method provided in the embodiment of the present application.
  • the communication apparatus 1000 may also include a communication interface 1020 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1020 is used for the apparatus in the communication apparatus 1000 to communicate with other devices.
  • the processor 1010 may perform the functions performed by the processing unit 610 in the communication apparatus 600 ; the communication interface 1020 may be used for performing the functions performed by the transceiver unit 620 in the communication apparatus 600 .
  • the communication interface 1020 is used to receive the first information sent by the second communication device; the first information indicates the judgment threshold of the parameters in the first parameter set, wherein the first parameter The set includes at least one of the following parameters: location information, delay information, timing advance change rate, timing advance change rate change rate, Doppler value, Doppler change rate, and remaining coverage time; the processor 1010, using It is judged whether the access condition is satisfied according to the first information, and random access is performed when the access condition is satisfied.
  • the processor 1010 is configured to acquire first information, where the first information indicates a judgment threshold of a parameter in a first parameter set, where the first parameter set includes at least one of the following Item parameters: position information, delay information, timing advance change rate, change rate of timing advance change rate, Doppler value, Doppler change rate, remaining coverage time; communication interface 1020, used to communicate with the first The device sends the first information, so that the first communication device determines whether the access condition is satisfied according to the first information.
  • the communication interface 1020 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the above method embodiments.
  • the processor 1010 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and network device in the foregoing method embodiments, which will not be repeated here.
  • Communication apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1010 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • Processor 1010 may execute program instructions stored in memory 1030 .
  • at least one of the at least one memory may be integrated with the processor.
  • the memory 1030 is located outside the communication device 1000 .
  • the specific connection medium between the communication interface 1020 , the processor 1010 , and the memory 1030 is not limited in the embodiments of the present application.
  • the memory 1030, the processor 1010, and the communication interface 1020 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1010 may be one or more central processing units (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the processor 1010 may be a single-core CPU or a multi-core CPU .
  • the processor 1010 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1030 may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM) , Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • an embodiment of the present application further provides an apparatus 1100 that can be used to implement the functions of a terminal and a network device in the above method, and the apparatus 1100 may be a communication apparatus or a chip in the communication apparatus.
  • the communication device includes:
  • the input-output interface 1110 may be an input-output circuit.
  • the logic circuit 1120 can be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • At least one input and output interface 1110 is used for input or output of signals or data.
  • the input and output interface 1110 is used to obtain the first information.
  • the input and output interface 1110 is used for outputting the first information.
  • the logic circuit 1120 is configured to execute part or all of the steps of any one of the methods provided in the embodiments of the present application.
  • the logic circuit may implement the functions implemented by the processing unit 910 in the above-mentioned apparatus 900 and the processor 1010 in the apparatus 1000 .
  • the processing unit 910 in the above-mentioned apparatus 900 and the processor 1010 in the apparatus 1000 .
  • the logic circuit 1120 is used to perform the steps performed by the terminal (the first communication device) in various possible implementation manners in the above method embodiments, for example, the logic circuit 1120 is used to perform the steps according to the first communication device.
  • the information determines whether the access conditions are met.
  • the logic circuit 1120 is used to determine the first information .
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent to the terminal by a network device; or, the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), This information is sent by the terminal to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as radio frequency modules or antennas) in the network device, and the information is sent by the terminal to the network device; or, the network device chip sends information to other modules (such as radio frequency modules or antennas) in the network device ) to send information, the information is sent by the network device to the terminal.
  • modules such as radio frequency modules or antennas
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is executed by hardware (for example, a processor, etc.) to Part or all of the steps of any method executed by any device in the embodiments of the present application are implemented.
  • hardware for example, a processor, etc.
  • the embodiments of the present application also provide a computer program product including instructions, when the computer program product runs on a computer, the computer is made to perform any one of the above aspects. some or all of the steps of the method.
  • the present application further provides a chip or a chip system, where the chip may include a processor.
  • the chip may also include a memory (or a storage module) and/or a transceiver (or a communication module), or the chip may be coupled with a memory (or a storage module) and/or a transceiver (or a communication module), wherein the transceiver (or or communication module) can be used to support the chip to perform wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as memories (or storage modules) and/or transceivers (or communication modules).
  • the present application further provides a communication system, which may include the above terminals and/or network devices.
  • the communication system can be used to implement the operations performed by the terminal or the network device in the foregoing method embodiments and any possible implementation manners of the method embodiments.
  • the communication system may have the structure shown in FIG. 1A or FIG. 1B .
  • the above-described embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, optical disks), or semiconductor media (eg, solid state drives), and the like.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, optical disks
  • semiconductor media eg, solid state drives
  • the disclosed apparatus may also be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored or not implemented.
  • the indirect coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Abstract

本申请实施例提供一种无线通信的方法及装置。该方法包括:第一通信装置接收第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;根据第一信息判断是否满足接入条件,当满足所述接入条件时进行随机接入,避免在不满足条件时还进行随机接入导致在当前小区随机接入失败、需要在下一个小区重新接入。

Description

一种无线通信的方法及装置
本申请要求在2020年12月15日提交中国国家知识产权局、申请号为202011476990.8、申请名称为“一种无线通信的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信的方法及装置。
背景技术
卫星通信等具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点。由于传统地面网络不能提供无缝覆盖,特别是在大海、沙漠、空中等无法部署基站的地方,第三代合作伙伴项目(3rd generation partnership project,3GPP)将非地面网络引入第五代移动通信(fifth generation,5G)系统等地面网络中,力图将天、空、地通信构建成一个统一的通信网络。
随着无线通信的发展,未来将实现万物互联的世界。物联网具有延迟不敏感,海量连接,广覆盖的特点,网络连接将扩展到任何地方、任意物体之间。非地面通信网络(non-terrestrial networks,NTN)网络和物联网的融合是重要的发展方向。
物联网中物联网终端的数量多,且终端的成本较低,射频发射功率不大,为了增强覆盖,通常通过重复发送数据来提高覆盖范围。物联网终端通过随机接入与网络设备建立连接。出于成本、协议简化、省电的目的,物联网终端从一个小区覆盖范围进入另一个小区覆盖范围时,也需要通过随机接入实现小区切换。若重复发送次数较多,随机接入占用时间将变长。卫星融合物联网的场景中,由于卫星具有移动性,现有的随机接入过程将出现接入失败率较高的问题。
发明内容
本申请实施例提供一种无线通信的方法及装置,实现发送数据占用时间较长的情况下的随机接入,减少随机接入失败概率,提高通信效率。
第一方面,本申请实施例提供一种无线通信的方法,该方法包括:第一通信装置接收第二通信装置发送的第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;根据该第一信息判断是否满足接入条件,当满足该接入条件时进行随机接入。
该方法中第一通信装置在发起随机接入之前根据第二通信装置发送的第一信息判断是否满足接入条件,只有当满足条件时才进行随机接入,减少了随机接入失败的概率。该第一信息指示一个或多个参数的判断阈值,这些与时延、位置等相关的参数的判断阈值用来指示第二通信装置的小区/波束对该第一通信装置保持覆盖的剩余时间,避免了因小区/波束的覆盖时间少于随机接入过程的时间而造成的随机接入失败,避免在下一个小区/波束重新接入系统导致通信效率低下,浪费电量。
一种可能的实现中,该第一通信装置判断是否满足接入条件之前,获取该第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
覆盖等级和/或业务数据量不同的终端,接入系统或数据传输时的重复发送的次数不同,花费的时间也不同,从而所需的剩余覆盖时间也不同,根据不同的终端的覆盖等级和/或业务数据量定义不同的判断阈值能够提高判断的灵活性和精度,从而提升通信效率。
一种可能的实现中,根据上述第一信息判断是否满足接入条件,包括:根据该第一通信装置的位置信息和/或该第二通信装置的位置信息获得第一对比信息;根据该第一对比信息和该第一信息判断是否满足该接入条件。
第一通信装置根据自己的位置信息和/或第二通信装置的位置信息获得第一对比信息,该第一对比信息为第一参数集中的参数值,例如当前位置的经纬度值、当前位置与第二通信装置之间的单程/往返时延值、定时提前量变化率值,定时提前量变化率的变化率值,多普勒值,多普勒变化率值等。将该第一对比信息与第一信息指示的判断阈值进行对比判断是否满足接入条件,提供了一种判断接入条件的可实施的示例。
一种可能的实现中,当第一参数集中的第一参数具有多个判断阈值时,该第一通信装置获取自身覆盖等级和/或业务数据量,根据该自身覆盖等级和/或业务数据量从该多个判断阈值中选择一个相应的判断阈值;根据上述第一对比信息和该第一信息判断是否满足该接入条件,具体包括:根据该第一对比信息和该第一参数的相应的判断阈值判断是否满足该接入条件。
该第一参数可以是位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,和/或剩余覆盖时间。
根据一种或多种的覆盖等级和/或业务数据量定义一个或多个判断阈值,。终端根据自己的覆盖等级和/或业务数据量选择对应的判断阈值与上述第一对比信息进行对比得到判断结果,更灵活和高精度地判断是否满足接入条件。
一种可能的实现中,该多个判断阈值包括一个基准阈值和至少一个差值。
当存在多个判断阈值时,用一个基准阈值和至少一个差值进行表示,即用差分方法表示可以节省信令开销。
一种可能的实现中,该根据该第一对比信息和该第一信息判断是否满足接入条件,包括:根据判断条件对比该第一对比信息与该第一参数集中参数的判断阈值,判断是否满足该接入条件;其中该判断条件与该第一参数集中参数的判断阈值对应。
举例来说,针对该第一参数集中的第一参数的判断阈值,该判断条件为大于或等于这个判断阈值,大于这个阈值,小于这个判断阈值,小于或等于这个判断阈值,在某个判断阈值等高线的卫星运动方向的同侧或相反侧,在某个判断阈值等高线的东侧/西侧或南侧\北侧等等。需要指出的是,判断条件中是否包含等于这个判断阈值的情况或者位于这个判断阈值等高线上的情况,不影响本申请技术方案的实质。
一种可能的实现中,该第一信息还指示该第一参数集中参数的判断阈值对应的判断条件;第一通信装置直接根据第一信息获取判断条件,复杂度较低;或者,该判断条件为预配置的条件,例如通过通信协议约定默认的判断条件,可以节省第二通信装置向第一通信装置发送的信令开销;或者,该判断条件由该第一通信装置根据该第二通信装置的位置信息和/或运动方向确定,可以节省第二通信装置与第一通信装置之间的信令开销。
一种可能的实现中,该位置信息为经纬度信息或者至少两个位置点的信息,其中,该至少两个位置点用于确定位置阈值线,该第一对比信息包括该第一通信装置的位置;
一种可能的实现中,该时延信息为第一参考线与该第二通信装置之间的第一时延信息,该第一对比信息包括该第一通信装置和该第二通信装置之间的第二时延信息,其中该第二时延信息通过该第一通信装置的位置信息和该第二通信装置的位置信息得到;
一种可能的实现中,该定时提前量变化率为第二参考线与该第二通信装置之间的第一定时提前量变化率,该第一对比信息包括该第一通信装置与该第二通信装置之间的第二定时提前量变化率,其中该第二定时提前变化率根据该第一通信装置的位置信息和该第二通信装置的位置、速度信息得到;
一种可能的实现中,该多普勒值为第三参考线与第二通信装置之间的第一多普勒值,该第一对比信息包括该第一通信装置与第二通信装置之间的第二多普勒值,其中该第二多普勒值根据该第一通信装置的位置信息和该第二通信装置的位置、速度信息得到。
一种可能的实现中,该第一信息包括索引信息,该索引信息用于指示该第一通信装置所在小区对应的该第一参数集中的参数的判断阈值。
考虑到卫星轨道固定,每颗卫星的小区拓扑关系固定,可以将小区/波束与卫星的位置关系与判断阈值以及覆盖等级和/或业务数据量建立联系。第一通信装置和第二通信装置可以预配置一个映射关系表,用于表示小区/波束与判断阈值、覆盖等级和/或业务数据量之间的关系。第一通信装置可以根据第一信息中包括的索引信息从映射关系表中获取对应的判断阈值。该种方法可以节省信令开销。
第二方面,本申请实施例提供一种无线通信的方法,应用于第二通信装置。该方法包括:获取第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中该第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;向第一通信装置发送该第一信息,使得该第一通信装置根据该第一信息判断是否满足接入条件。
该方法中,向第一通信装置指示第一参数集中的参数的判断阈值,使得第一通信装置根据该判断阈值判断是否满足接入条件。在接入系统之前先判断是否满足条件,只有满足条件时进行接入。第一参数集中的位置信息、时延信息、定时提前量或多普勒值相关的信息用来指示第二通信装置的小区/波束对该该第一通信装置保持覆盖的剩余时间,避免了因小区/波束的覆盖时间少于随机接入过程的时间而造成的随机接入失败,避免在下一个小区/波束重新接入系统导致通信效率低下,浪费电量。
一种可能的实现中,该第一信息还指示第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
覆盖等级和/或业务数据量不同的终端,接入系统或数据传输时的重复发送的次数不同,花费的时间也不同,从而所需的剩余覆盖时间也不同,根据不同的终端的覆盖等级和/或业务数据量定义不同的判断阈值能够提高判断的灵活性和精度,从而提升通信效率。
一种可能的实现中,该第一参数集中的第一参数具有多个判断阈值,该多个判断阈值中的每个判断阈值与相应的覆盖等级和/或业务数据量对应。
该第一参数可以是位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,和/或剩余覆盖时间。
根据一种或多种的覆盖等级和/或业务数据量定义一个或多个判断阈值,使得第一通信装置根据自己的覆盖等级和/或业务数据量选择对应的判断阈值与上述第一对比信息进行对比得到判断结果,更灵活和高精度地判断是否满足接入条件。
一种可能的实现中,该多个判断阈值包括一个基准阈值和至少一个差值。
当存在多个判断阈值时,用一个基准阈值和至少一个差值进行表示,即用差分方法表示可以节省信令开销。
一种可能的实现中,该第一信息还指示该第一参数集中的参数的判断阈值对应的判断条件。
举例来说,针对该第一参数集中的第一参数的判断阈值,该判断条件为大于或等于这个判断阈值,大于这个阈值,小于这个判断阈值,小于或等于这个判断阈值,在某个判断阈值等高线的卫星运动方向的同侧或相反侧,在某个判断阈值等高线的东侧/西侧或南侧\北侧等等。需要指出的是,判断条件中是否包含等于这个判断阈值的情况或者位于这个判断阈值等高线上的情况,不影响本申请技术方案的实质。
第一信息指示该判断条件时,第一通信装置直接根据第一信息获取判断条件,复杂度较低。
一种可能的实现中,该位置信息为经纬度信息或者至少两个位置点的信息,该位置点用于确定位置阈值线;该时延信息为第一参考线与该第二通信装置之间的第一时延信息;该定时提前量变化率为第二参考线与该第二通信装置之间的第一定时提前量变化率;该多普勒值为第三参考线与第二通信装置之间的第一多普勒值。
一种可能的实现中,该第一信息为索引信息,该索引信息用于指示该第一通信装置所在小区对应的该第一参数的判断阈值。
考虑到卫星轨道固定,每颗卫星的小区拓扑关系固定,可以将小区/波束与卫星的位置关系与判断阈值以及覆盖等级和/或业务数据量建立联系。第一通信装置和第二通信装置可以预配置一个映射关系表,用于表示小区/波束与判断阈值、覆盖等级和/或业务数据量之间的关系。第一信息中包括的索引信息可用于从映射关系表中获取对应的判断阈值。该种方法可以节省信令开销。
第三方面,本申请实施例还提供一种通信装置,该通信装置可以用于第一方面所述的第一通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。示例性地:
收发单元,用于接收第二通信装置发送的第一信息;该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;
处理单元,用于根据该第一信息判断是否满足接入条件,当满足上述接入条件时进行随机接入。
一种可能的实现中,处理单元,在判断是否满足接入条件之前,还用于获取上述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
一种可能的实现中,处理单元用于根据第一信息判断是否满足上述接入条件,具体用于,根据第一通信装置的位置信息和/或第二通信装置的位置信息获得第一对比信息;根据该第一对比信息和第一信息判断是否满足上述接入条件。。
一种可能的实现中,处理单元还用于,在上述第一参数集中的第一参数具有多个判断阈值时,获取自身覆盖等级和/或业务数据量;根据自身覆盖等级和/或业务数据量和上述对应关系从多个判断阈值中选择一个相应的判断阈值;根据第一对比信息和第一参数的相应的判断阈值判断是否满足接入条件。
一种可能的实现中,上述多个判断阈值包括一个基准阈值和至少一个差值。
一种可能的实现中,根据第一对比信息和第一信息判断是否满足接入条件,包括:根据判断条件对比第一对比信息与第一参数的判断阈值,判断是否满足上述接入条件;其中该判断条件与第一参数的判断阈值对应。
一种可能的实现中,上述第一信息还指示第一参数的判断阈值对应的判断条件;或者,上述判断条件为预配置的条件;或者,上述判断条件由第一通信装置根据第二通信装置的位置信息和/或运动方向确定。
一种可能的实现中,上述位置信息为经纬度信息或者至少两个位置点的信息,其中,该至少两个位置点用于确定位置阈值线,上述第一对比信息包括第一通信装置的位置;
一种可能的实现中上述时延信息为第一参考线与第二通信装置之间的第一时延信息,上述第一对比信息包括第一通信装置和第二通信装置之间的第二时延信息,其中第二时延信息通过第一通信装置的位置信息和第二通信装置的位置信息得到;
一种可能的实现中,上述定时提前量变化率为第二参考线与第二通信装置之间的第一定时提前量变化率,上述第一对比信息包括第一通信装置与第二通信装置之间的第二定时提前量变化率,其中该第二定时提前变化率根据第一通信装置的位置信息和第二通信装置的位置、速度信息得到;
一种可能的实现中,上述多普勒值为第三参考线与第二通信装置之间的第一多普勒值,第一对比信息包括第一通信装置与第二通信装置之间的第二多普勒值,其中第二多普勒值根据第一通信装置的位置信息和第二通信装置的位置、速度信息得到。
一种可能的实现中,上述第一信息为索引信息,索引信息用于指示第一通信装置所在小区对应的第一参数的判断阈值。
需要说明的是,本申请实施例第三方面提供的通信装置的各个实现方式的有益效果请参考第一方面所述的无线通信的方法的有益效果,此处不再赘述。
第四方面,本申请实施例还提供一种通信装置,该通信装置可以用于第二方面所述的第二通信装置,该通信装置可以是网络设备(卫星),也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种可能的实现中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置可以包括处理单元和收发单元。处理单元用于调用收发单元执行接收和/或发送的功能。示例性地:
处理单元,用于获取第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中该第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;收发单元,用于向第一通信装置发送该第一信息,使得该第一通信装置根据该第一信息判断是否满足接入条件。
一种可能的实现中,上述第一信息还指示该第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
一种可能的实现中,上述第一参数集中的一项参数具有多个判断阈值,该多个判断阈值中的每个判断阈值与相应的覆盖等级和/或业务数据量对应。
一种可能的实现中,多个判断阈值包括一个基准阈值和至少一个差值。
一种可能的实现中,上述第一信息还指示第一参数集中的参数的判断阈值对应的判断条件。
一种可能的实现中,上述位置信息为经纬度信息或者至少两个位置点的信息,该位置点用于确定位置阈值线;
一种可能的实现中,上述时延信息为第一参考线与第二通信装置之间的第一时延信息;
一种可能的实现中,上述定时提前量变化率为第二参考线与第二通信装置之间的第一定时提前量变化率;
一种可能的实现中,上述多普勒值为第三参考线与第二通信装置之间的第一多普勒值。
一种可能的实现中,上述第一信息为索引信息,所述索引信息用于指示第一通信装置所在小区对应的第一参数的判断阈值。
需要说明的是,本申请实施例第四方面提供的通信装置的各个实现方式的有益效果请参考第二方面所述的无线通信的方法的有益效果,此处不再赘述。
第五方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第一方面及第一方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
该通信装置还包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序或可执行指令,当计算机程序或可执行指令被执行时,使得该装置执行如第二方面及第二方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,存储器位于该通信装置之外。
该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第七方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。输入输出接口用于信号或数据的输入或输出。输入输出接口具体用于第一信息;逻辑电路用于执行上述第一方面及其任意一种可能的实现中的方法根据该第一信息判断是否满足接入条件,以及当满足接入条件时进行随机接入。
第八方面,本申请实施例还提供一种通信装置,包括输入输出接口和逻辑电路。输入输出接口用于信号或数据的输入或输出。逻辑电路用于执行上述第二方面及其任意一种可能的实现中的方法以确定第一信息。输入输出接口具体用于输出该第一信息。
第九方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,其中,该计算机程序被处理器执行,使得上述第一方面及其任一种可能的实 现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十方面,本申请实施例还提供了一种包括可执行指令的计算机程序产品,当该计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十一方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例还提供一种通信系统,包括第三方面提供的第一通信装置和第四方面提供的第二通信装置。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1A是本申请实施例适用的一种通信系统的示意图。
图1B是本申请实施例适用的又一通信系统的示意图。
图2是本申请实施例的一种应用场景示意图。
图3是圆形轨道高度、距离小区边缘距离与剩余驻留时间的长度关系图。
图4是本申请实施例的又一种应用场景示意图。
图5是本申请实施例提供的一种无线通信方法的交互示意图。
图6是本申请实施例提供的位置信息作为判断阈值的示例性应用场景示意图。
图7是本申请实施例提供的位置信息作为判断阈值的又一示例性应用场景示意图。
图8是本申请实施例提供的判断阈值等高线的示例性应用场景示意图。
图9是本申请实施例提供的一种通信装置的示意图。
图10是本申请实施例提供的另一种通信装置的示意图。
图11是本申请实施例提供的又一种通信装置的示意图。
具体实施方式
本申请实施例提供一种无线通信的方法及装置,实现发送数据占用时间较长的情况下的随机接入,减少随机接入失败概率,提高通信效率。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请中“/”表示“或”。术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一通信装置和第二通信装置等是用于区别不同的通信装置,而不是用于描述目标对象的特定顺序。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请的技术方案可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统。以卫星通信系统为例,其可以融合到现有的的移动通信系统中,例如,长期演进(long term evolution,LTE)系统等第四代(4th generation,4G)通信系统,新无线(new radio,NR)系统等第五代(5th generation,5G)通信系统,以及其他未来的移动通信系统等。
参见图1A,图1A为适用于本申请实施例的通信系统的示例。如图1A所示,卫星和关口站(gateway)为网络设备,用于为终端提供通信服务。其中,关口站还可以称作信关站。卫星与终端之间的链路称为服务链路(service link),卫星与关口站之间的链路为馈电链路(feeder link)。
当卫星工作在透传(transparent)模式时,卫星具有中继转发的功能。关口站具有基站的功能或部分基站功能。可选的,可以将关口站看作地面基站;或者,地面基站可以与关口站分开部署,此时,馈电链路的时延包括卫星到关口站和关口站到地面基站的时延。本申请实施例中的透传模式,以关口站和地面基站设置在一起或位置相近的情况为例进行说明。对于关口站与地面基站相距较远的情况,馈电链路时延为卫星到关口站和关口站到基站的时延相加即可。
当卫星工作在再生(regenerative)模式时,卫星具有数据处理能力、具有基站的功能或部分基站功能,可以将卫星看作基站。
卫星可以工作在凝视模式或非凝视模式中。在凝视模式中,随着卫星移动,卫星对地面的覆盖区域不变,即在一段时间内卫星信号的覆盖区域不随着卫星移动而移动;在非凝视模式中,卫星信号对地面的覆盖区域随着卫星的移动而移动,也可以理解为卫星对地面发射信号的角度不变。
本申请实施例中提及的卫星,可以为卫星基站,或者为搭载在卫星上的网络侧设备。
卫星基站、关口站或地面基站可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信、物联网(Internet of Things)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
卫星基站、关口站或地面基站可以和核心网设备进行通信交互,向终端设备提供通信服务。核心网设备例如为5G网络核心网(core network,CN)中的设备。核心网作为承载网络提供到数据网络的接口,为用户设备(user equipment,UE)提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(Access and Mobility Management Function,AMF)、会话管理网元(Session Management Function,SMF),认证服务器网元(Authentication Server Function,AUSF)、策略控制节点(Policy control Function,PCF)、用户面功能网元(User Plane Function,UPF)等网元。
本申请实施例中提及的终端,可以为物联网终端,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、 远程终端、移动设备、用户终端(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络、6G网络或者未来通信网络中的终端设备等,本申请不作限制。
参见图1B,图1B为适用于本申请实施例的又一种通信系统的示例。如图1B所示为空地(air to ground,ATG)通信系统。其中网络设备包括地面基站,用户终端包括搭载在高空飞机的移动设备。该种场景中,网络设备一般是固定的,而终端具有高速移动性。
根据轨道高度的不同可以将卫星通信系统区分为如下三种:高轨(Geostationary Earth Orbit,GEO)卫星通信系统,也称同步轨道卫星系统;中轨(Medium Earth Orbit,MEO)卫星通信系统和低轨(Low Earth Orbit,LEO)卫星通信系统。GEO卫星一般又称为静止轨道卫星,轨道高度35786km,其主要的优点是相对地面静止并且提供很大的覆盖面积。然而由于GEO卫星轨道卫星缺点也相对突出:如距离地球距离过大,需要较大口径的天线;其传输时延较大,在0.5秒左右,无法满足实时业务的需求;同时其轨道资源相对紧张,发射成本高并且无法为两极地区提供覆盖。MEO卫星,轨道高度位于2000~35786km,拥有相对较少的卫星数目即可以实现全球覆盖,但是其传输时延相比LEO卫星较高,其主要用于定位导航。轨道高度在300~2000km称为低轨卫星(LEO),LEO卫星比MEO和GEO轨道高度低,数据传播时延小,功率损耗更小,发射成本相对更低。因此LEO卫星通信网络在近年来取得了长足进展,受到关注。
未来希望实现万物互联的世界,网络连接将扩展到任意地方、任意物体之间,例如电表、集装箱、货运等等。物联网具有延迟不敏感、海量连接、广覆盖的特点。NTN网络,尤其是发射成本低、时延较小的LEO卫星,与物联网的融合是重要的发展方向。
物联网中需要对物体实现联网通信,这对物联网设备的需求量很大,且要求物联网通信设备成本低。为降低成本,物联网设备使用价格低的中射频组件,射频发射功率不大。为了增强覆盖,通常使用重复发送的方法来提高覆盖范围。下文中对物联网设备也可以称作低成本终端或物联网终端。类似地,即使是高端设备,为了提高覆盖范围也可以使用重复发送数据的方法提高接收端的解码性能,达到提高覆盖范围的目的。举例来说,物联网终端所在位置的信道质量、覆盖条件可能很差,为了提高物联网终端的覆盖能力,在发送上行或下行信号时需要重复多次,以提高接收端的解码性能。进而提高了物联网终端的覆盖能力。
现有物联网通信协议支持上行发送时间间隔(Transmission Time Interval,TTI)大于4秒。同时,为了增强覆盖设定了3种不同的覆盖等级,分别对应发送信号时不同的重复次数。例如,可以分为正常覆盖、扩展覆盖、极限覆盖,分别对应0/1/2覆盖等级。当处于极限覆盖等级时,发送信号时可以使用128次重复数据发送。当处于扩展覆盖时,可以使用64次重复数据发送。当处于正常覆盖时,可以使用8次重复发送。此处,发送数据的重复次数只是举 例,具体通信时会根据具体的信道测量值选择不同的重复次数。
此外,物联网终端可能安装在没有电源的位置,需要使用电池进行供电。换电池的成本相对较高,在某些不方便更换电池的场景中电池的寿命会决定物联网终端的寿命,因此也要求物联网终端具有低功耗、省点的特点。出于成本、协议简化、省电的目的,物联网终端从一个小区覆盖范围进入另一个小区覆盖范围时,也需要通过随机接入实现小区切换。
根据不同的覆盖等级以及发送数据的重复次数,物联网终端在随机接入系统以及后续传输数据时占用的时间长度将会不同。一般来说,当处于正常覆盖等级时,随机接入时长大约为5秒。物联网终端在随机接入阶段消耗的电量大约占通信过程消耗总电量的15%。
在NTN的LEO场景中,由于卫星的快速运动(速度约7.8千米/秒)会发生小区/波束的覆盖范围的频繁切换。如图2所示,图2为本申请实施例的一种应用场景示意图。随着卫星的运动,小区1不再覆盖终端所在的位置,终端将从小区1切换到小区2中。终端能够驻留或在该小区/波束覆盖范围内的时间长度与轨道高度和与小区/波束边缘距离有关。当终端在距离小区的与卫星运动方向相反的边缘(例如,图2中的左侧边缘)距离越远时,能够在该小区驻留的时间越长;终端在距离小区的与卫星运动方向相反的边缘距离越近时,能够在该小区驻留的时间越短。如图3所示,图3为圆形轨道高度、距离小区边缘距离与剩余驻留时间的长度关系图。当轨道高度越高时,驻留时间越长,因为轨道高度越高卫星的角速度越小,卫星扫过相同距离的时间就越长。根据图3可以看出,当终端距离小区边缘大于30km以上时,终端可以有大于4秒时间驻留该小区。
综上,由于物联网终端使用不同覆盖等级发送数据的重复次数不同,接入系统和后续发送数据所需时间长度也会不同。当使用极限覆盖等级时所需时间最长。而由于NTN波束/小区的频繁切换,某一个小区/波束对申请接入该系统的终端覆盖时间可能较短,造成该小区/波束对该终端的覆盖时间/驻留时间不足以完成申请接入系统和数据传输。终端需要切换到空闲(idle)态,在另一个小区/波束重新申请接入系统,这会造成数据传输的中断以及电量的浪费。
如图4所示,图4为本申请实施例的又一种应用场景示意图。假设卫星向地面发射的波束为移动波束(moving beam)。当终端从小区1通过随机接入等方式申请接入系统时,小区1对该终端的覆盖时间不足以完成随机接入过程。当小区2覆盖终端所在位置时,只能重新在小区2再次请求随机接入,降低了通信效率、造成了电量的浪费。示例性的,终端在小区1的覆盖范围内剩余覆盖时间或驻留时间为3秒,在这三秒期间终端和网络设备之间完成了消息1(Msg1)、消息2(Msg2)、消息3(Msg3)的发送。当网络设备(卫星)要发送消息4(Msg4)时,由于卫星的移动,终端已经进入小区2的覆盖范围,终端已经无法在小区1中接收到网络设备发送的Msg4。终端随机接入失败,只能在小区2中重新申请接入系统。示例性的,如果终端能够从小区1顺利接入系统,但是在小区1的覆盖时间内未完成上行数据的完全发送。当终端进入到小区2后,需要继续发送上行数据,此时终端也需要在小区2重新发起随机接入。
针对上述物联网终端由于发送数据重复次数较多,随机接入以及数据传输占用时间较长,随机接入和后续发送数据时小区剩余覆盖时间不足,导致重新接入系统,从而降低通信效率、浪费电量的问题,本申请实施例提供了一种无线通信的方法以及相关通信装置。
本申请涉及的第一通信装置可以为终端,例如物联网终端,第二通信装置可以为网络设备,例如卫星基站、关口站、地面基站等。下面以第一通信装置为终端、第二通信装置为网 络设备进行说明。
参见图5,图5为本申请实施例提供的无线通信方法的交互示意图。图5所示的方法中,网络侧指示判断阈值,终端根据该判断阈值判断当前是否满足接入条件,只有当满足条件时进行随机接入,避免在不满足条件时还进行随机接入导致在当前小区随机接入失败、需要在下一个小区重新接入。
S501、网络设备获取第一信息,第一信息指示第一参数集中的参数的判断阈值。
第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间。
一种可能的实现中,第一参数集中的第一参数具有多个判断阈值,该第一参数的判断阈值与覆盖等级和/或业务数据量有对应关系。其中多个判断阈值可以包括一个基准阈值和至少一个差值。该第一参数可以是位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,和/或剩余覆盖时间。
一种可能的实现中,第一参数集中参数的判断阈值具有相应的判断条件。可选的,第一信息还指示第一参数集中参数的判断阈值对应的判断条件;或者该判断条件为预配置的条件,例如通过通信协议约定,该方法可以节省信令开销;或者该判断条件可以由终端根据卫星(网络设备)的位置信息和/或运动方向确定,进而可以节省信令开销。
举例来说,针对上述第一参数集中第一参数的判断阈值,该判断条件可以为大于或等于这个判断阈值,大于这个判断阈值,小于这个判断阈值,小于或等于这个判断阈值,在这个判断阈值等高线的卫星运动方向的同侧或相反侧,在这个判断阈值等高线的东侧/西侧或南侧\北侧等等。需要指出的是,判断条件中是否包含等于这个判断阈值的情况或者位于这个判断阈值线上的情况,不影响本申请技术方案的实质。
一种可能的实现中,第一信息包括索引信息,该索引信息用于指示终端所在小区对应的第一参数集中的参数的判断阈值。
下文中将详细说明第一参数集中不同参数的判断阈值、判断条件和覆盖等级和/或业务数据量之间的关系,此处不再赘述。
S502、网络设备发送第一信息,相应的,终端接收第一信息。
一种可能的实现中,网络设备向终端广播或组播该第一信息。该第一信息可以携带在系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)或主系统信息块(mater information block,MIB)中,还可以携带在其他广播信息中。向终端广播或组播发送以上信息可以避免为了发送上述信令而对不同终端调度不同资源,节省调度资源的信令开销以及降低系统调度复杂度。
另一种可能的实现中,当处于无线资源控制(radio resource control,RRC)建立连接以及后续的通信中,第一信息可以携带在RRC信息(例如,RRC建立(RRCSetup)消息RRC重配置消息(RRCReconfiguration)、RRC恢复消息(RRCResume))、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element)或定时提前命令(timing advance command,TAC)等信息中;向终端单独发送以上信息可以灵活控制每个终端的参数值,根据终端所在不同位置或不同区域向终端配置不同参数值达到优化系统参数、优化终端通信性能/系统通信性能的目的。
又一种可能的实现中,网络设备可以随数据传输发送第一信息;或者在单独分配的物理下行共享信道(physical downlink shared channel,PDSCH)中发送第一信息。
S503、终端根据第一信息判断是否满足接入条件。
具体地,判断是否满足接入条件是指,判断该小区/波束的覆盖时间是否能够满足完成随机接入和/或数据通信所需时间。
一种可能的实现中,终端根据自身的位置信息和/或网络设备的位置信息获得第一对比信息,根据该第一对比信息和第一信息判断是否满足随时接入条件。
具体地,终端可以根据全球导航卫星系统(Global Navigation Satellite System,GNSS)获得自己的位置信息;终端可以根据星历信息获取网络设备的位置信息。其中,星历信息可以是网络设备发送给终端的,也可以是终端预存在本地的信息,此处不做限定。
一种可能的实现中,终端在判断是否满足接入条件之前,获取第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
该对应关系可以是网络设备通过第一信息发送的;该对应关系可以是第一信息中的索引信息指示的,终端根据索引信息从预配置的映射关系表中确定该对应关系。
一种可能的实现中,当第一参数集中的第一参数具有多个判断阈值,且该多个判断阈值与覆盖等级和/或业务数据量有对应关系时,终端获取自身的覆盖等级和/或业务数据量,并根据自身覆盖等级和/或业务数据量和对应关系从多个判断阈值中选择一个相应的第一参数的判断阈值,进一步地,根据选择的第一参数的判断阈值和第一对比信息,判断是否满足接入条件。
具体地,终端可以根据参考信号接收功率(Reference Signal Receiving Power,RSRP)选择使用的覆盖等级。举例来说,终端通过下行参考信号检测到下行链路的信号与噪声功率比(SNR)为-10dB,那么终端选择覆盖等级2,若检测到SNR为-5db,则选择覆盖等级1;检测到2db,则选择覆盖等级0。
根据该第一对比信息和第一信息判断是否满足随时接入条件,具体地,根据判断条件对比第一对比信息和第一参数集中的参数的判断值,判断是否满足接入条件。其中,该判断条件与第一参数集中参数的判断阈值对应。
可选的,上述判断条件可以通过第一信息指示,终端根据第一信息获取判断条件;
或者,该判断条件为预配置的条件,终端根据预先存储的配置信息获取判断条件或者采用默认的判断条件,从而节省网络设备向终端发送的信令开销。
或者,该判断条件可以由终端根据卫星(网络设备)的位置信息和/或运动方向确定,从而节省网络设备向终端发送的信令开销。
S504、当满足接入条件时,终端发起随机接入请求。
终端在S503中判断接入条件,判断结果为满足接入条件时,说明当前小区/波束的覆盖时间满足条件,足够终端进行随机接入和/或数据传输,终端发起随机接入。
一种可能的实现中,终端发起随机接入时,通过发送前导码(preamble)告知网络自己的覆盖等级和/或业务数据量,供网络设备为其分配通信资源。示例性的,终端通过选择发送preamble所使用的资源告知网络设备自己的覆盖等级和/或业务数据量;还可以对preamble进行分组,终端通过选择不同怎组中的preamble告知自己的覆盖等级和/或业务数据量。
当判断结果为不满足接入条件时,说明当前小区/波束的覆盖时间不满足条件,终端无法在该小区/波束的剩余覆盖时间内完成随机接入和/或数据传输。一种可能的实现中,终端等待下一个小区/波束再进行判断,或者在下一个小区/波束进行随机接入。
下面详细说明第一参数集中不同参数的判断阈值、判断条件和覆盖等级和/或业务数据量 之间的关系。
(1)位置信息,即第一参数集中的参数包括位置信息。
终端根据网络侧发送的位置信息的指示(第一信息),判断出在该小区/波束覆盖的时间内终端是否能完成随机接入以及后续数据通信所需时间,避免申请接入系统的过程发生中断而重新申请随机接入。
网络设备根据终端接入系统所需的时间确定终端需要距离小区边缘的最小距离,再根据最小距离确定判断阈值。可选的,网络设备还可以使用终端接入系统和后续数据通信所需的时间判断终端需要距离小区边缘的最小距离。
一种可能的实现中,网络设备根据一个或多个覆盖等级和/或业务数据量终端接入系统所需的时间确定终端需要距离小区边缘的最小距离,根据该不同覆盖等级和/或业务数据量对应的最小距离确定一个或多个判断阈值。
可选的,位置信息可以为经纬度信息,例如经度信息、维度信息、或者经度和维度信息;判断阈值为经度值、维度值、或者经度和维度值。
如图6所示,图6为本申请实施例中位置信息作为判断阈值的示例性应用场景示意图。网络设备根据三种覆盖等级的终端接入系统的时间确定三条经度线。判断阈值、判断条件与覆盖等级的对应关系参见表1。覆盖等级0表示最低的覆盖等级,例如对应正常覆盖;覆盖等级2表示最高的覆盖等级,例如对应极限覆盖。判断阈值为西经20度、西经19.9度或19.8度,判断条件为小于或等于,也可以是小于。
可以理解的是,图6以及表1仅为本申请实施例中以位置信息判断接入条件的一种示例,不作为限定。例如,判断阈值与条件还可以为大于或等于东经8度,或者是大于或等于东经8度且小于或等于北纬10度等等。
表1
覆盖等级 0 1 2
判断阈值与条件 小于或等于西经20度 小于或等于西经19.9度 小于或等于西经19.8度
网络设备发送指示判断阈值、判断条件与覆盖等级的对应关系的信息(第一信息),终端收到后根据自己的位置作为对比信息判断是否满足上述接入条件,若满足则在当前的小区发起随机接入。举例来说,针对图6中的场景,若覆盖等级为1的终端位置为西经18度,则进行随机接入;若为覆盖等级为1的终端位置为西经20度,则等待下一个小区再进行判断或随机接入。
一种可能的实现中,判断条件可以隐式指示,终端可以根据卫星位置和卫星运动方向确定判断条件。或者预先配置判断条件,例如配置为小于或等于、大于或等于、大于、小于等等。或者网络设备在第一信息中指示判断条件。
一种可能的实现中,网络设备不发送判断阈值与覆盖等级的对应关系,只需发送一个判断阈值,所有覆盖等级的终端均采用同样的判断阈值进行判断。举例来说,网络设备只指示表1中覆盖等级2对应的判断阈值供该小区/波束覆盖范围内的所有终端使用。这样可以节省信令开销。
需要说明的是,可选的,网络设备发送的信息还可以指示不满足随机接入的条件,即不能进行随机接入的条件。终端根据自己的位置判断是否满足上述条件,若满足,则不进行随 机接入。举例来说,针对图6中的场景,网络设备发送指示如表2所示的对应关系的信息。当覆盖等级为0级的终端所在的位置大于西经20度则不进行随机接入。
表2
覆盖等级 0 1 2
判断阈值与条件 大于西经20度 大于西经19.9度 大于西经19.8度
一种可能的实现中,为了进一步节省信令开销,可以选择差分方法传输位置信息。举例来说,网络设备可以向终端发送经纬度信息1,经纬度差分信息2和经纬度差分信息3,终端可以根据经纬度信息1和经纬度差分信息2得到经纬度信息2(例如:经纬度信息2=经纬度信息1+经纬度差分信息2);根据经纬度信息1和经纬度差分信息3得到经纬度信息3(例如:经纬度信息3=经纬度信息1+经纬度差分信息3)。其中经纬度差分信息可以为正值,也可以为负值,本申请不做限定。
可选的,位置信息还可以为至少两个位置点的信息,该至少两个位置点用于确定位置阈值线。对应的判断阈值为位置点的坐标值,例如,地心地固坐标系(Earth-Centered,Earth-Fixed,ECEF)中的坐标值。具体地,网络设备可以使用两个位置点表示通过这两个位置点的一条位置阈值线作为判断阈值。
如图7所示,图7为本申请实施例中位置信息作为判断阈值的又一示例性应用场景示意图。网络设备根据三种覆盖等级的终端接入系统的时间确定三条位置阈值线,每条位置阈值线通过至少两个位置点确定,每条阈值线将覆盖区域分割成两个区域。即通过6个位置点信息指示三条位置阈值线:根据位置点L1和位置点L2确定位置阈值线1;根据位置点L3和位置点L4确定位置阈值线2;根据位置点L5和位置点L6确定位置阈值线3。
需要说明的是,还可以用三个或三个以上的位置点确定一个位置阈值线,本申请不做限制。
举例来说,判断阈值、判断条件与覆盖等级的对应关系参见表3。覆盖等级为0时,判断阈值为位置阈值线1,对应的判断条件为位于该位置阈值线1的卫星运动方向同侧;覆盖等级为1时,判断阈值为位置阈值线2,对应的判断条件为位于该位置阈值线2的卫星运动方向同侧;覆盖等级为2时,判断阈值为位置阈值线3,对应的判断条件为位于该位置阈值线3的卫星运动方向同侧。
表3
Figure PCTCN2021138217-appb-000001
网络设备发送指示判断阈值、判断条件与覆盖等级的对应关系的信息(第一信息),终端收到后根据自己的位置判断是否满足上述接入条件,若满足则在当前的小区发起随机接入。举例来说,针对图7中的场景,若覆盖等级为1的终端位于位置阈值线的东侧(图7中的右侧,即卫星运动方向的同侧),则在当前的小区进行随机接入;若为覆盖等级为1的终端位于位置阈值线的西侧(图7中的左侧),则等待下一个小区再进行判断或随机接入。
需要说明的是,可选的,网络设备发送的信息还可以指示不满足随机接入的条件,即不 能进行随机接入的条件。终端根据自己的位置判断是否满足上述条件,若满足,则不进行随机接入。举例来说,针对图7中的场景,表3中的判断条件改为位于位置阈值线的卫星运动方向的相反侧。若为覆盖等级为1的终端位于位置阈值线的西侧(图7中的左侧,即卫星运动方向的相反侧),则等待下一个小区再进行判断或随机接入。
还需要说明的是,判断条件可以包括位置阈值线上的值,也就是说,终端的位置在位置阈值线上时,可以判断为满足接入条件。判断条件还可以不包括位置阈值线上的值,也就是说,终端的位置在位置阈值线上时,可以判断为不满足接入条件。
一种可能的实现中,判断条件可以隐式指示,终端可以根据卫星位置和卫星运动方向确定判断条件。或者,预先配置判断条件,例如默认判断条件为位置阈值线的卫星运动方向的同一侧/相反侧,或东侧/西侧。或者网络设备在第一信息中指示判断条件,例如用1比特表示,0表示卫星运动方向的同一侧,1表示卫星运动方向的相反侧;;相似的,0可以表示位置阈值线的东侧,1可以表示位置阈值线的西侧;当然还可以是,1表示卫星运动方向的同一侧或东侧,0表示卫星运动方向的相反侧或西侧,此处不做限定。
一种可能的实现中,网络设备不发送判断阈值与覆盖等级的对应关系,只需发送一个判断阈值线,所有覆盖等级的终端均采用同样的判断阈值线进行判断。举例来说,网络设备只发送表3中覆盖等级2对应的位置阈值线3供该小区/波束覆盖范围内的所有终端使用。
一种可能的实现中,为了节省信令开销可以选择差分方法传输位置点的信息。举例来说,网络设备可以向终端发送位置点信息1(L1)、位置点差分信息2(ΔL2)、位置点差分信息3(ΔL3)、位置点差分信息4(ΔL4)、位置点差分信息5(ΔL5)和位置点差分信息6(ΔL6);终端收到后可以根据L1和ΔL2得到位置点信息2(例如L2=L1+ΔL2),根据L1和ΔL3得到位置点信息2(例如L3=L1+ΔL3),根据L1和ΔL4得到位置点信息4(例如L4=L1+ΔL4),根据L1和ΔL5得到位置点信息5(例如L2=L1+ΔL5),根据L1和ΔL6得到位置点信息6(例如L6=L1+ΔL6)。其中,位置点差分信息可以为正直,也可以为负值,本申请不做限定。
当各个位置点的位置满足等差关系,或者其他规律可寻的关系时,网络设备可以只发送一个基准值和一个差值。终端收到后根据该基准值和差值分别得到各个位置点的位置。举例来说,网络设备发送位置点信息1(L1)和步长(ΔL),终端收到后根据L1和ΔL分别得到位置点信息2、3、4、5和6的信息。例如,L2=L1+ΔL,L3=L1+2*ΔL,L4=L1+3*ΔL,L5=L1+4*ΔL,L6=L1+5*ΔL。
可以理解的是,图7以及表3仅为本申请实施例中以位置信息判断接入条件的一种示例,不作为限定。例如,根据卫星运动方向的不同,判断条件还可以是终端位置在位置阈值线的南侧或北侧,同样可以用1比特表示该判断条件,例如,0表示位置阈值线的南侧,1表示位置阈值线的北侧。
(2)时延信息,即第一参数集中的参数包括时延信息。
终端根据网络侧发送的时延信息的指示(第一信息),判断出在该小区/波束覆盖的时间内终端是否能完成随机接入以及后续数据通信所需时间,避免申请接入系统的过程发生中断而重新申请随机接入。
时延信息表示卫星(网络设备)与参考点之间的时延信息,具体可以为卫星与参考点之间的单程时延或往返时延。下面以单程时延为例进行说明。根据时延信息可以在终端所在的 小区/波束内确定第一参考线(也称为时延等高线),该第一参考线上的参考点与卫星之间的单程时延或往返时延相等,具体等于第一时延信息。该第一参考线将小区/波束分隔为两个区域。
网络设备根据终端接入系统所需的时间确定终端需要距离小区边缘的最小距离,再根据最小距离确定判断阈值,该判断阈值可以是第一参考线,进而确定第一参考线的时延信息,并向终端指示该第一参考线对应的时延信息。可选的,网络设备还可以使用终端接入系统和后续数据通信所需的时间判断终端需要距离小区边缘的最小距离。
如图8所示,图8为本申请实施例中判断阈值等高线的示例性应用场景示意图。网络设备根据三种覆盖等级的终端接入系统的时间确定三条判断阈值等高线,即3个时延值,针对时延信息,该判断阈值等高线可以称为第一参考线或时延等高线。每条判断阈值等高线将覆盖区域分割成两个区域。
以轨道高度为1200km的LEO卫星为例,判断阈值、判断条件与覆盖等级的对应关系如表4所示。覆盖等级0对应判断阈值等高线1,即7ms;覆盖等级1对应判断阈值等高线2,即6.8ms;覆盖等级2对应判断阈值等高线3,即6.6ms。示例性的,覆盖等级0对应正常覆盖,覆盖等级1对应扩展覆盖,覆盖等级2对应极限覆盖。
可以理解的是,图8以及表4仅为本申请实施例中以时延信息判断接入条件的一种示例,不作为限定。
表4
覆盖等级 0 1 2
判断阈值与条件 小于或等于7ms 小于或等于6.8ms 小于或等于6.6ms
网络设备发送指示判断阈值、判断条件与覆盖等级的对应关系的信息(第一信息)。终端接收该信息后,根据自己使用的覆盖等级确定相应的判断阈值与判断条件,然后根据自己的位置信息以及卫星位置信息确定该终端与卫星件的单程时延或往返时延作为对比信息判断是否满足上述接入条件,若满足则在当前的小区发起随机接入。举例来说,针对图8中的场景,终端使用覆盖等级0,终端使用的判断阈值与条件为:小于或等于7ms。终端根据GNSS等技术获得自己的位置,根据星历信息获得网络设备的位置,再根据终端位置和网络设备的位置计算出单程时延作为对比信息进行判断。若计算出的单程时延为6.88ms,满足小于或等于7ms的条件,则在当前小区进行随机接入;若计算出的单程时延为7.2ms,不满足小于或等于7ms的条件,则等待下一个小区再进行判断或随机接入。
表4中指示的判断阈值与条件也可以是时延等高线的卫星运动方向的同侧,也就是,终端在时延等高线隔开的卫星运动方向的同侧则表示满足接入条件,终端在时延等高线隔开的卫星运动方向的相反侧则表示不满足接入条件;或者是,判断阈值与条件也可以是时延等高线的卫星运动方向的相反侧,也就是,终端在时延等高线隔开的卫星运动方向的相反侧则表示满足接入条件,终端在时延等高线隔开的卫星运动方向的同侧则表示不满足接入条件。其中,时延等高线通过第一参考线上的时延值表示。需要说明的是,当终端位于时延阈值线上的位置时,可以判断为满足接入条件;当终端位于时延阈值线上的位置时,还可以判断为满足接入条件,根据实际情况而定。
一种可能的实现中,判断条件可以隐式指示,终端可以根据卫星位置和卫星运动方向确定判断条件。举例来说,终端根据卫星的星历信息或卫星的位置速度信息与自己的位置信息 判断卫星是远离自己还是靠近自己。假设卫星远离终端,即卫星与终端背向运动,那么当对比信息小于时延信息(判断阈值)时,终端可以选择从该小区/波束接入系统。否则终端可以不从该小区/波束接入系统。假设卫星靠近终端,即卫星与终端相向运动,当对比信息大于时延信息(判断阈值)时,终端可以选择从该小区/波束接入系统。否则终端可以不从该小区/波束接入系统。这样的隐式指示可以节省信令开销。
另一种可能的实现中,可以预先配置判断条件,例如通过通信协议将判断条件默认为小于或等于、大于或等于、大于、小于等等。或者网络设备在第一信息中指示判断条件。
在实际使用时,可以根据具体情况,约定不同条件下对比信息与判断阈值之间的判断条件。
一种可能的实现中,网络设备不发送判断阈值与覆盖等级的对应关系,只需发送一个判断阈值,所有覆盖等级的终端均采用同样的判断阈值进行判断。举例来说,网络设备只指示表1中覆盖等级2对应的时延值供该小区/波束覆盖范围内的所有终端使用。该方式可以节省信令开销。
一种可能的实现中,为了节省信令开销可以选择差分方法传输时延信息。举例来说,网络设备可以向终端发送时延信息1(t1),时延差分信息2(Δt2)和时延差分信息3(Δt3),终端可以根据t1和Δt2得到时延信息2(t2)(例如:t2=t1+Δt2);根据t1和Δt3得到时延信息3(t3)(例如:例如:t3=t1+Δt3)。其中时延差分信息可以为正值,也可以为负值,本申请不做限定。
当各个时延值的满足等差关系,或者其他规律可寻的关系时,网络设备可以只发送一个基准值和一个差值。终端收到后根据该基准值和差值分别得到各个位置点的位置。举例来说,网络设备发送时延信息1(t1)和一个时延差值(Δt),终端收到后根据t1和Δt分别得到时延信息2和3。例如,t2=t1+Δt,t3=t1+2*Δt。
(3)定时提前量变化率,定时提前量变化率的变化率,多普勒值,或多普勒变化率
第一参数集还可以包括定时提前量(Timing Advance,TA)变化率(TA rate)、定时提前量变化率(TA rate)的变化率、多普勒(Doppler)值或者多普勒变化率(Doppler rate)等参数。
定时提前量变化率表示终端使用的定时提前量的变化速率,其中定时提前量可以是终端发送上行数据使用的定时提前量。定时提前量变化率与卫星运动速度、卫星运动方向、卫星位置、UE位置或覆盖区域位置有关,或者说以上参数决定了定时提前量变化率的大小。
定时提前量变化率的变化率表示上述定时提前量变化率的变化速率。
多普勒值表示由于卫星运动造成终端接收卫星信号所产生的频率偏移。或者说终端接收到卫星发送的信号会由于卫星的运动而产生的频率偏移值,将其称作多普勒值。示例性的,Doppler值可以根据终端的位置、卫星的位置以及终端和卫星之间的相对速度得到。
多普勒变化率表示上述多普勒值的变化速率。多普勒变化率与卫星运动速度、卫星运动方向、卫星位置、UE位置或覆盖区域位置有关,或者说以上参数决定了多普勒变化率的大小。
与时延信息类似的,网络设备根据终端接入系统所需的时间确定终端需要距离小区边缘的最小距离,再根据最小距离确定判断阈值,该判断阈值可以是判断阈值等高线,进而确定该判断阈值等高线的TA rate值、TA rate的变化率值、Doppler值或Doppler rate值,并向终端指示该判断阈值等高线对应的TA rate值、TA rate的变化率值、Doppler值或Doppler rate 值。可选的,网络设备还可以使用终端接入系统和后续数据通信所需的时间判断终端需要距离小区边缘的最小距离。
TA rate对应的判断阈值等高线可以称为TA rate值等高线或者第二参考线;Doppler值对应的判断阈值等高线可以称为Doppler值等高线或者第三参考线;TA rate变化率对应的判断阈值等高线可以称为TA rate变化率值等高线或者第四参考线;Doppler rate对应的判断阈值等高线可以称为Doppler rate值等高线或者第五参考线。
网络设备可以确定不同覆盖等级的终端接入系统的确定不同的判断阈值等高线,例如,如图8所示,网络设备根据三种覆盖等级的终端接入系统的时间确定三条判断阈值等高线。
覆盖等级、判断阈值、判断条件之间的对应关系,以及可能的实现可以参考上述位置信息或时延信息相关的描述,此处不再赘述。
网络设备发送指示判断阈值、判断条件与覆盖等级的对应关系的信息(第一信息)。终端接收该信息后,根据自己的位置信息以及卫星位置信息确定对比信息。具体地如下:
针对第一参数集包括TA rate值的情况,TA rate可以根据终端和卫星之间的往返时延的变化率或单程时延的变化率确定得到。终端具体可以根据自身的位置、卫星的位置与速度计算TA rate作为对比信息判断是否满足接入条件。例如,当终端与卫星间的径向速度为V,那么TA rate=2V/c,其中c表示光在空气中的传播速度。
针对第一参数集包括TA rate的变化率值的情况,终端可以根据自身的位置、卫星位置、卫星速度与方向(根据星历信息预测卫星一段时间的位置信息和速度信息)计算得到TA rate值变化率作,为对比信息判断是否满足接入条件。
针对第一参数集包括Doppler值的情况,终端可以根据自身的位置、卫星的位置与速度计算Doppler值作为对比信息判断是否满足接入条件。例如,当终端与卫星间的径向速度为V,Doppler值=f·V/c。其中,f表示载波频率。
针对第一参数集包括Doppler rate值的情况,终端可以根据自身的位置、卫星位置、卫星速度与方向(根据星历信息预测卫星一段时间的位置信息和速度信息)计算得到Doppler rate值作为对比信息判断是否满足接入条件。
(4)剩余覆盖时间,即第一参数集中的参数包括小区/波束的剩余覆盖时间。
当NTN系统工作在凝视模式时,整个小区或波束内的终端会同时发生切换,意味着整个小区或波束中的终端在该小区或波束的剩余的覆盖时间或驻留时间相同。
在凝视模式中,网络设备可以向终端指示剩余覆盖时间,其中剩余覆盖时间表示:该小区/波束切换前的剩余时间,或者该小区/波束覆盖当前区域的剩余时间,或者剩余的驻留时间。终端收到指示信息后,根据自己即将使用的覆盖等级和/或业务数据量判断该小区/波束的剩余覆盖时间是否满足该终端的接入需求,即接入条件,如果满足则通过该小区/波束接入系统;如果不满足则,可选的,等待下一个小区或波束覆盖该区域时,再获取下一个小区/波束的网络设备发送的剩余覆盖时间,判断是否满足条件以及是否从该小区接入系统,或者,在下一个小区/波束发起随机接入。
一种可能的实现中,网络设备向终端指示剩余覆盖时间的判断阈值,供终端判断是否可以在该小区/波束接入系统。举例来说,如表5所示,覆盖等级0、1、2分别对应不同的剩余覆盖时间。终端根据自己使用的覆盖等级选择对应的剩余覆盖时间的判断阈值,并根据接收到的剩余覆盖时间判断是否满足条件,具体地,判断剩余覆盖时间是否大于或等于判断阈值, 或者判断剩余覆盖时间是否大于判断阈值。如果满足条件,则可以从该小区/波束申请接入系统。例如,当终端获取的剩余覆盖时间为7秒,且终端即将使用的覆盖等级为0时,剩余覆盖时间大于判断阈值,则终端可以在当前小区/波束接入系统;如果终端即将使用的覆盖等级为1或2则终端等待下一个小区/波束再判断或者发起随机接入。
表5
覆盖等级 0 1 2
判断阈值 5s 8s 10s
可选择的,为了进一步节省信令开销,可以选择差分方法传输剩余覆盖时延的判断阈值。差分传输方法可以参考上述经纬度信息、位置点信息、时延信息等其他参数的差分传输,此处不再赘述。
一种可能的实现中,网络设备可以以秒为单位广播该波束/小区覆盖该区域的剩余覆盖时间,例如,剩余5秒时可以广播参数x=5,单位为秒。可选的,表示剩余覆盖时间的时间单位可以为ms、10ms、500ms、一个时隙长度、一个子帧长度、一个帧长度等。举例来说,如果以500ms为单位,那么可以广播参数y=10表示剩余覆盖时间5秒。使用较大的时间单位,表示相同时间长度范围时,可以节省信令比特长度,节省信令开销。使用较小的时间单位,可以向终端指示精度更高的时间长度,供终端判断是否从该小区或波束接入系统,可以为终端提供更精确的指示。
可选择的,指示覆盖等级与判断阈值的对应关系时,不同覆盖等级可以使用不同的时间单位,例如等级0使用250ms时间单位,等级1使用500ms时间单位,等级2使用1秒时间单位。覆盖等级高(信道质量差)时,终端和网络设备发送信号重复次数多,发送信号占用时间长度大,需要覆盖时间长,此时对剩余覆盖时间的指示精度要求较低,可以使用较大的时间单位。这样可以节省发送不同覆盖等级对应的覆盖剩余时间的信令开销。
以上给出了不同判断阈值与覆盖等级的对应关系的示例,网络设备还可以判断阈值与业务数据量的对应关系。业务数据量也可以作为终端确定是否满足接入系统的条件。例如,如表6所示,以低、中、高定性表示业务数据量的多少,建立与判断阈值与条件的映射关系。终端根据自己的业务数据量的多少选择相应的判断阈值与条件进行对比。
也可以定量地表示业务数据量的范围,例如,使用小于5个时隙(slot)数据表示低业务数据量(即需要5个时隙长度发送数据),大于或等于5slot时隙且小于10slot数据表示中业务数据量(即需要5~10个时隙长度发送数据),大于或等于10slot数据表示高业务数据量(即需要大于10个时隙长度发送数据)。
需要说明的是,上述例子中业务数据量等于5slot时隙时也可以表示低业务数据量,等于10slot时隙时也可以表示中业务数据量。表6、表7中的判断条件小于或等于也可以是小于。
表6
业务数据量
判断阈值与条件 小于或等于7ms 小于或等于6.8ms 小于或等于6.6ms
如表7所示,网络设备还可以指示判断阈值、覆盖等级以及业务数据量的对应关系。终 端根据自己的业务数据量和覆盖等级选择相应的判断阈值及条件。
表7
Figure PCTCN2021138217-appb-000002
需要指出的是,表6和7中以时延信息为例描述了判断阈值与业务数据量、覆盖等级之间的对应关系,上文中的位置信息、TA rate、Doppler值等参数的判断阈值和条件也可以具有上述对应关系,此处不再赘述。
本申请提供的又一种可能的实施例中,考虑到卫星轨道固定,每颗卫星的小区拓扑关系固定,可以将小区/波束与卫星的位置关系与判断阈值以及覆盖等级建立联系。
网络设备和终端可以预配置一个映射关系表,用于表示小区/波束与判断阈值、覆盖等级之间的关系。该预配置的表可以是通过协议约定,也可是网络设备通过广播或单播传输的方式向终端发送。
表8为该映射关系表的一个示例。针对不同索引号分别定义了不同覆盖等级对应的判断阈值与条件。其中T1、T2等表示上述经纬度值、时延值、TA rate值等判断阈值。与上文类似的判断条件可以隐式表示、预先配置、标准约定等,此处不再赘述。
需要理解的是,映射关系表中还可以添加业务数据量的维度表示对应关系。例如,可以参考表7所示,此处不再赘述。
网络设备只需根据终端当前所在的小区覆盖范围,向终端指示索引号,终端根据索引号选择相应行的判断阈值与条件。该方法可以节省指示信令开销。一种可能的实现中,为进一步节省信令开销,终端可以根据自己所在小区的标识确定索引号。例如,可以约定或者由网络设备配置小区号和索引号之间满足:索引号=小区号mod N,表示小区号对N取余数得到索引号,N为大于1的整数。N的大小可以根据实际情况确定,此处不做限定。
需要指出的是,终端当前所在的小区覆盖范围是指,终端所在位置能够接收到相应小区信号,即表示终端在相应小区的覆盖范围。当终端能够同时接收到多个小区的信号(例如广播信号)时,每个小区只需要向该终端发送自己小区对应的索引号即可。
表8
Figure PCTCN2021138217-appb-000003
本申请提供的又一种实施例中,网络设备获取并发送第一信息,第一信息指示第一参数集中的参数的判断阈值,相应的,终端接收第一信息。终端根据第一信息判断是否满足接入条件。终端发起随机接入请求,该随机接入请求中指示上述判断的判断结果。当判断结果为满足接入条件时,终端在当前的小区/波束发起并完成随机接入;当判断结果为不满足接入条件时,网络设备接收随机接入请求后,向终端发送终端即将进入的小区/波束的通信资源,供终端完成后续的随机接入过程或后续业务数据传输,从而降低随机接入失败的概率。上述通信资源可以为定时信息、频率调整信息和/或传输上下行数据的时频资源。举例来说,终端通过小区1/波束1开始申请接入系统,但是该小区1/波束1对该终端的剩余覆盖时间不足以完成随机接入过程或者后续业务数据传输。终端通过上文各种可能实现的方法判断出小区1/波束1的剩余覆盖时间不足以完成随机接入过程或者后续业务数据传输时,在向小区1/波束1的网络设备发送Msg1时指示上述判断结果。例如,可以通过对随机接入前导进行分组并向终端指示该随机接入前导分组,一组随机接入前导指示满足接入条件,另一组随机接入前导指示不满足接入条件;终端根据判断是否满足接入条件的结果选择使用相应的随机接入前导组。又例如,可以将随机接入时机分组并向终端指示该随机接入时机分组,一组随机接入时机指示满足接入条件,另一组随机接入时机指示不满足接入条件;终端根据判断是否满足接入条件的结果选择使用相应的随机接入时机组。其中,随机接入时机表示终端发送随机接入前导时可以使用的时频资源。
一种可能的实现中,网络设备通过Msg2向终端指示终端在小区2/波束2中向网络设备发送Msg3和接收Msg4的相关资源信息,例如定时、频率调整信息和/或传输上下行数据的时频资源等。该种可能的实现中,Msg3和Msg4的发送和接收可能发生在另一个小区2/波束2的覆盖范围。
当小区2/波束2和小区1/波束1是同一个网络设备(卫星)下的小区/波束时,网络设备在小区1/波束1收到终端发送的Msg1后,在Msg2中向终端发送小区2/波束2的相关资源信息。该Msg2可以是通过小区2/波束2下发的,也可以是通过小区1/波束1下发的。
当小区2/波束2和小区1/波束1是不同的网络设备(卫星)下的小区/波束时,网络设备之间共享终端在小区2/波束2中向网络设备发送Msg3和接收Msg4的相关资源信息。网络设备之间还交互终端通过preamble指示的覆盖等级和/或业务数据量,以及该终端对应的临时小区无线网络临时标识TC-RNTI(temporary cell radio network temporary identifier,TC-RNTI)值。
另一种可能的实现中,终端在小区1/波束1完成Msg1、Msg2、Msg3以及Msg4的传输,其中网络侧发送的Msg4中指示终端后续在小区2/波束2的覆盖范围内发送上行数据和接收下行数据的相关资源信息。例如定时、频率调整信息和/或传输上下行数据的时频资源等。
又一种可能的实现中,终端通过小区1/波束1接入系统,在后续数据传输过程中,终端即将接入小区2/波束2的覆盖范围,小区1/波束1网络侧可以通过下行消息向终端发送在小区2/波束2后续发送上行数据和接收下行数据的相关资源信息。例如定时、频率调整信息和/或传输上下行数据的时频资源等。
当小区2/波束2和小区1/波束1是不同的网络设备(卫星)下的小区/波束时,小区1/波束1对应的网络设备从小区2/波束2对应的网络设备获取上述在小区2/波束2的覆盖范围内发送上行数据和接收下行数据的相关资源信息。网络设备之间还交互终端通过preamble指示的覆盖等级和/或业务数据量,以及该终端对应的临时小区无线网络临时标识TC-RNTI (temporary cell radio network temporary identifier,TC-RNTI)值。
这样可以保证终端既避免小区/波束切换流程,又保证了通信的连续性,同时避免了再次随机接入过程,避免浪费电量。
需要说明的是,本申请不限定只使用以上各种判断阈值或等高线的一种,可以联合使用位置相关信息、时延信息、TA rate值、TA rate的变化率值、Doppler值、Doppler rate值、剩余覆盖时间中的两个或更多个作为判断阈值。
还需要理解的是,本文中定义了三种覆盖等级和/或业务数据量对应的判断阈值,根据实际情况可以定义更多或更少的覆盖等级,本申请不做限制。
由于终端的移动速度相比卫星的速度低很多,因此本申请实施例中,判断小区/波束的覆盖时间是否能够满足终端完成随机接入和/或数据通信所需时间时,没有提及终端的自身的移动方向和速度。应理解的是,当终端在高速移动的车辆上时,终端根据自己的位置信息和卫星的位置信息获得对比信息时,应考虑终端移动方向和速度,此处不再赘述。
本申请实施例中,提供了一种无线通信的方法,网络设备向终端指示判断阈值(以及判断条件),终端根据该判断阈值和条件判断是否接入系统,只有当满足条件时进行随机接入,避免在不满足条件时随机接入失败,导致需要在下一个小区重新接入。进一步定义了终端的覆盖等级和/或业务数据量与第一参数集中的参数的判断阈值和条件之间的对应关系,使终端根据实际的覆盖等级和/或业务数据量选择判断阈值,判断是否接入系统,提升了判断的灵活度与准确度。
为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图9所示,基于同一技术构思,本申请实施例还提供了一种通信装置900。该通信装置900可以是终端或网络设备,即第一通信装置或第二通信装置,也可以是终端设备或网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。一种可能的实现中,该通信装置900可以包括执行上述方法实施例中终端执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,该通信装置900可以包括处理单元910和收发单元920。处理单元910可以用于调用收发单元920执行接收和/或发送的功能。
当通信装置900用于执行终端,即第一通信装置,所执行的操作时,收发单元920,用于接收第二通信装置发送的第一信息;该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;处理单元910,用于根据该第一信息判断是否满足接入条件,当满足该接入条件时进行随机接入。
一种可能的实现中,处理单元910,在判断是否满足接入条件之前,还用于获取上述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
一种可能的实现中,处理单元910用于根据第一信息判断是否满足该接入条件,具体用于,根据第一通信装置的位置信息和/或第二通信装置的位置信息获得第一对比信息;根据该第一对比信息和第一信息判断是否满足接入条件。。
一种可能的实现中,处理单元910还用于,在上述第一参数集中的第一参数具有多个判 断阈值时,获取自身覆盖等级和/或业务数据量;根据自身覆盖等级和/或业务数据量和上述对应关系从多个判断阈值中选择一个相应的判断阈值;根据第一对比信息和第一参数的相应的判断阈值判断是否满足接入条件。
一种可能的实现中,处理单元910,用于根据第一对比信息和第一信息判断是否满足接入条件,具体用于根据判断条件对比第一对比信息与第一参数的判断阈值,判断是否满足该接入条件;其中该判断条件与第一参数的判断阈值对应。
当通信装置900用于执行网络设备,即第二通信装置,所执行的操作时,处理单元910,用于获取第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;收发单元920,用于向第一通信装置发送该第一信息,使得该第一通信装置根据该第一信息判断是否满足接入条件。
收发单元920还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理单元910还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块或单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块或单元集成在一个模块或单元中。上述集成的模块或单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
参见图10,本申请实施例还提供了一种通信装置1000,用于实现上述方法中终端、网络设备的功能,即第一通信装置、第二通信装置的功能。该通信装置可以是终端、网络设备,也可以是终端、网络设备中的装置,或者是能够和终端、网络设备匹配使用的装置。其中,该通信装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1000包括至少一个处理器1010,用于实现本申请实施例提供的方法中终端、网络设备的功能。通信装置1000还可以包括通信接口1020。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1020用于通信装置1000中的装置可以和其它设备进行通信。
处理器1010可以执行通信装置600中处理单元610所执行的功能;通信接口1020可以用于执行通信装置600中收发单元620所执行的功能。
当通信装置1000用于执行终端所执行的操作时,通信接口1020,用于接收第二通信装置发送的第一信息;该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;处理器1010,用于根据该第一信息判断是否满足接入条件,当满足该接入条件时进行随机接入。
当通信装置1000用于执行网络设备所执行的操作时,处理器1010,用于获取第一信息,该第一信息指示第一参数集中的参数的判断阈值,其中第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;通信接口1020,用于向第一通信装置发送该第一信息,使得该第一通信装置根据第一信息判断是否满足接入条件。
通信接口1020还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步 骤或操作。处理器1010还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
通信装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1010耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1010可能执行存储器1030中存储的程序指令。在一种可能的实现中,至少一个存储器中的至少一个可以与处理器集成在一起。在另一种可能的实现中,存储器1030位于该通信装置1000之外。
本申请实施例中不限定上述通信接口1020、处理器1010以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1010以及通信接口1020之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中,处理器1010可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器1010是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器1010可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器1030可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
参加图11,本申请实施例还提供了一种装置1100,可用于实现上述方法中终端、网络设备的功能,该装置1100可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口1110和逻辑电路1120。输入输出接口1110可以是输入输出电路。逻辑电路1120可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口1110用于信号或数据的输入或输出。举例来说,当该装置为终端或者用于终端时,输入输出接口1110用于获取第一信息。举例来说,当该装置为网络设备或者用于网络设备时,输入输出接口1110用于输出第一信息。
其中,逻辑电路1120用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述装置900中的处理单元910、装置1000中的处理器1010所实现的功能。举例来说,当该装置为终端或者用于终端时,用于执行上述方法实施例中各种可能的实现方式中终端(第一通信装置)执行的步骤,例如逻辑电路1120用于根据第一信息判断是否满足接入条件。当该装置为网络设备或者用于网络设备时,用于执行上述方法实施例中各种可能的实现方法中网络设备(第二通信装置)执行的步骤,例如逻辑电路1120用于确定第一信息。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。
基于与上述方法实施例相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以实现本申请实施例中由任意装置执行的任意一种方法的部分或全部步骤。
基于与上述方法实施例相同构思,本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述这个计算机执行以上各方面的任意一种方法的部分或者全部步骤。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1A或图1B所示结构。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种无线通信的方法,其特征在于,包括:
    第一通信装置接收第一信息,
    所述第一信息指示第一参数集中的参数的判断阈值,其中所述第一参数集包括以下至少一项参数:
    位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;
    根据所述第一信息判断是否满足接入条件,当满足所述接入条件时进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一通信装置判断是否满足接入条件之前,所述第一通信装置获取所述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一信息判断是否满足所述接入条件,包括:
    根据所述第一通信装置的位置信息和/或所述第二通信装置的位置信息获得第一对比信息;
    根据所述第一对比信息和所述第一信息判断是否满足所述接入条件。
  4. 根据权利要求3所述的方法,其特征在于,包括:
    当第一参数集中的第一参数具有多个判断阈值时,所述第一通信装置获取自身覆盖等级和/或业务数据量,根据所述自身覆盖等级和/或业务数据量从所述多个判断阈值中选择一个相应的判断阈值;
    所述根据所述第一对比信息和所述第一信息判断是否满足所述接入条件,具体包括:
    根据所述第一对比信息和所述第一参数的相应的判断阈值判断是否满足所述接入条件。
  5. 根据权利要求4所述的方法,其特征在于,
    所述多个判断阈值包括一个基准阈值和至少一个差值。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述根据所述第一对比信息和所述第一信息判断是否满足接入条件,包括:
    根据判断条件对比所述第一对比信息与所述第一参数集中参数的判断阈值,判断是否满足所述接入条件;其中所述判断条件与所述第一参数集中参数的判断阈值对应。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一信息还指示所述第一参数集中参数的判断阈值对应的所述判断条件;或者
    所述判断条件为预配置的条件;或者
    所述判断条件由所述第一通信装置根据所述第二通信装置的位置信息和/或运动方向确定。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,
    所述位置信息为经纬度信息或者至少两个位置点的信息,其中,所述至少两个位置点用于确定位置阈值线,所述第一对比信息包括所述第一通信装置的位置。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,
    所述时延信息为第一参考线与所述第二通信装置之间的第一时延信息,所述第一对比信息包括所述第一通信装置和所述第二通信装置之间的第二时延信息,其中所述第二时延信息 通过所述第一通信装置的位置信息和所述第二通信装置的位置信息得到。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述定时提前量变化率为第二参考线与所述第二通信装置之间的第一定时提前量变化率,所述第一对比信息包括所述第一通信装置与所述第二通信装置之间的第二定时提前量变化率,其中所述第二定时提前变化率根据所述第一通信装置的位置信息和所述第二通信装置的位置、速度信息得到;
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    所述多普勒值为第三参考线与第二通信装置之间的第一多普勒值,所述第一对比信息包括所述第一通信装置与第二通信装置之间的第二多普勒值,其中所述第二多普勒值根据所述第一通信装置的位置信息和所述第二通信装置的位置、速度信息得到。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,
    所述第一信息为索引信息,所述索引信息用于指示所述第一通信装置所在小区对应的所述第一参数集中的参数的判断阈值。
  13. 一种无线通信的方法,其特征在于,
    获取第一信息,所述第一信息指示第一参数集中的参数的判断阈值,其中所述第一参数集包括以下至少一项参数:
    位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;
    向第一通信装置发送所述第一信息,使得所述第一通信装置根据所述第一信息判断是否满足接入条件。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一信息还指示所述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述第一参数集中的第一参数具有多个判断阈值,所述多个判断阈值中的每个判断阈值与相应的覆盖等级和/或业务数据量对应。
  16. 根据权利要求15所述的方法,其特征在于,
    所述多个判断阈值包括一个基准阈值和至少一个差值。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,
    所述第一信息还指示所述第一参数集中的参数的判断阈值对应的判断条件。
  18. 根据权利要求13至17任一项所述的方法,其特征在于,
    所述位置信息为经纬度信息或者至少两个位置点的信息,所述位置点用于确定位置阈值线。
  19. 根据权利要求13至18任一项所述的方法,其特征在于,
    所述时延信息为第一参考线与所述第二通信装置之间的第一时延信息。
  20. 根据权利要求13至19任一项所述的方法,其特征在于,
    所述定时提前量变化率为第二参考线与所述第二通信装置之间的第一定时提前量变化率。
  21. 根据权利要求13至20任一项所述的方法,其特征在于,
    所述多普勒值为第三参考线与第二通信装置之间的第一多普勒值。
  22. 根据权利要求13至21任一项所述的方法,其特征在于,
    所述第一信息为索引信息,所述索引信息用于指示所述第一通信装置所在小区对应的所述第一参数的判断阈值。
  23. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一信息;
    所述第一信息指示第一参数集中的参数的判断阈值,其中所述第一参数集包括以下至少一项参数:位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;
    处理单元,用于根据所述第一信息判断是否满足接入条件,当满足所述接入条件时进行随机接入。
  24. 根据权利要求23所述的装置,其特征在于,还包括:
    所述处理单元,在判断是否满足接入条件之前,还用于获取所述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
  25. 根据权利要求23或24所述的装置,其特征在于,所述处理单元用于根据所述第一信息判断是否满足所述接入条件,包括:
    所述处理单元具体用于,根据所述第一通信装置的位置信息和/或所述第二通信装置的位置信息获得第一对比信息;
    根据所述第一对比信息和所述第一信息判断是否满足所述接入条件。
  26. 根据权利要求25所述的装置,其特征在于,包括:
    所述处理单元还用于,在所述第一参数集中的第一参数具有多个判断阈值时,获取自身覆盖等级和/或业务数据量;
    根据所述自身覆盖等级和/或业务数据量从所述多个判断阈值中选择一个相应的判断阈值;
    根据所述第一对比信息和所述第一参数的所述相应的判断阈值判断是否满足所述接入条件。
  27. 根据权利要求26所述的装置,其特征在于,
    所述多个判断阈值包括一个基准阈值和至少一个差值。
  28. 根据权利要求23至27任一项所述的装置,其特征在于,所述根据所述第一对比信息和所述第一信息判断是否满足接入条件,包括:
    所述处理单元,根据判断条件对比所述第一对比信息与所述第一参数的判断阈值,判断是否满足所述接入条件;
    其中所述判断条件与所述第一参数的判断阈值对应。
  29. 根据权利要求28所述的装置,其特征在于,
    所述第一信息还指示所述第一参数的判断阈值对应的所述判断条件;或者
    所述判断条件为预配置的条件;或者
    所述判断条件由所述第一通信装置根据所述第二通信装置的位置信息和/或运动方向确定。
  30. 根据权利要求23至29任一项所述的装置,其特征在于,
    所述位置信息为经纬度信息或者至少两个位置点的信息,其中,所述至少两个位置点用于确定位置阈值线,所述第一对比信息包括所述第一通信装置的位置。
  31. 根据权利要求23至30任一项所述的装置,其特征在于,
    所述时延信息为第一参考线与所述第二通信装置之间的第一时延信息,所述第一对比信息包括所述第一通信装置和所述第二通信装置之间的第二时延信息,其中所述第二时延信息通过所述第一通信装置的位置信息和所述第二通信装置的位置信息得到。
  32. 根据权利要求23至31任一项所述的装置,其特征在于,
    所述定时提前量变化率为第二参考线与所述第二通信装置之间的第一定时提前量变化率,所述第一对比信息包括所述第一通信装置与所述第二通信装置之间的第二定时提前量变化率,其中所述第二定时提前变化率根据所述第一通信装置的位置信息和所述第二通信装置的位置、速度信息得到。
  33. 根据权利要求23至32任一项所述的装置,其特征在于,
    所述多普勒值为第三参考线与第二通信装置之间的第一多普勒值,所述第一对比信息包括所述第一通信装置与第二通信装置之间的第二多普勒值,其中所述第二多普勒值根据所述第一通信装置的位置信息和所述第二通信装置的位置、速度信息得到。
  34. 根据权利要求23至33任一项所述的装置,其特征在于,
    所述第一信息为索引信息,所述索引信息用于指示所述第一通信装置所在小区对应的所述第一参数的判断阈值。
  35. 一种通信装置,其特征在于,包括
    处理单元,用于获取第一信息,所述第一信息指示第一参数集中的参数的判断阈值,其中所述第一参数集包括以下至少一项参数:
    位置信息,时延信息,定时提前量变化率,定时提前量变化率的变化率,多普勒值,多普勒变化率,剩余覆盖时间;
    收发单元,用于向第一通信装置发送所述第一信息,使得所述第一通信装置根据所述第一信息判断是否满足接入条件。
  36. 根据权利要求35所述的装置,其特征在于,
    所述第一信息还指示所述第一参数集中的参数的判断阈值与覆盖等级和/或业务数据量的对应关系。
  37. 根据权利要求35或36所述的装置,其特征在于,
    所述第一参数集中的第一参数具有多个判断阈值,所述多个判断阈值中的每个判断阈值与相应的覆盖等级和/或业务数据量对应。
  38. 根据权利要求37所述的装置,其特征在于,
    所述多个判断阈值包括一个基准阈值和至少一个差值。
  39. 根据权利要求35至38任一项所述的装置,其特征在于,
    所述第一信息还指示所述第一参数集中的参数的判断阈值对应的判断条件。
  40. 根据权利要求35至39任一项所述的装置,其特征在于,
    所述位置信息为经纬度信息或者至少两个位置点的信息,所述位置点用于确定位置阈值线;
    所述时延信息为第一参考线与所述第二通信装置之间的第一时延信息;
    所述定时提前量变化率为第二参考线与所述第二通信装置之间的第一定时提前量变化率;
    所述多普勒值为第三参考线与第二通信装置之间的第一多普勒值。
  41. 根据权利要求35至31任一项所述的装置,其特征在于,
    所述第一信息为索引信息,所述索引信息用于指示所述第一通信装置所在小区对应的所 述第一参数的判断阈值。
  42. 一种通信装置,其特征在于,包括:处理器,用于执行计算机程序,当所述计算机程序被执行时,使得所述装置
    执行如权利要求1至12任一项所述的方法;或者
    执行如权利要求13至22任一项所述的方法。
  43. 根据权利要求42所述的通信装置,其特征在于,还包括存储器,用于存储所述计算机程序。
  44. 根据权利要求42或43所述的通信装置,其特征在于,还包括通信接口,用于收发数据和/或信号。
  45. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上执行时,使得
    权利要求1至12任一项所述的方法被执行;或者
    权利要求13至22任一项所述的方法被执行。
  46. 一种计算机程序产品,当其在计算机上执行时,使得
    权利要求1至12任一项所述的方法被执行;或者
    权利要求13至22任一项所述的方法被执行。
  47. 一种计算机程序,当其在计算机上运行时,使得
    权利要求1至12任一项所述的方法被执行;或者
    权利要求13至22任一项所述的方法被执行。
  48. 一种通信装置,包括输入输出接口和逻辑电路,所述输入输出接口用于接收第一信息,所述逻辑电路用于根据权利要求1至12任一项所述的方法基于所述第一信息判断是否满足接入条件,以及当满足所述接入条件时进行随机接入。
  49. 一种通信装置,包括输入输出接口和逻辑电路,所述逻辑电路用于根据权利要求13至22任一项所述的方法获取第一信息,所述输入输出接口用于输出所述第一信息。
  50. 一种通信系统,其特征在于,包括权利要求23至34任一项所述的装置,和权利要求35至41任一项所述的装置。
PCT/CN2021/138217 2020-12-15 2021-12-15 一种无线通信的方法及装置 WO2022127806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/331,950 US20230354438A1 (en) 2020-12-15 2023-06-09 Wireless communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011476990.8A CN114641081A (zh) 2020-12-15 2020-12-15 一种无线通信的方法及装置
CN202011476990.8 2020-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,950 Continuation US20230354438A1 (en) 2020-12-15 2023-06-09 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022127806A1 true WO2022127806A1 (zh) 2022-06-23

Family

ID=81944344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138217 WO2022127806A1 (zh) 2020-12-15 2021-12-15 一种无线通信的方法及装置

Country Status (3)

Country Link
US (1) US20230354438A1 (zh)
CN (1) CN114641081A (zh)
WO (1) WO2022127806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245665A1 (zh) * 2022-06-24 2023-12-28 北京小米移动软件有限公司 接入处理方法、装置、通信设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241464A1 (en) * 2015-10-30 2018-08-23 Paris Micheals Mobile satellite communication system
US20190075503A1 (en) * 2017-09-07 2019-03-07 Samsung Electronics Co., Ltd. Method for random access based on mobility and apparatus thereof
CN109874168A (zh) * 2019-03-07 2019-06-11 中山大学 移动通信系统随机接入前导序列检测与定时提前量确定的方法
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信系统的上行定时提前量终端预测方法
CN111405679A (zh) * 2020-03-19 2020-07-10 西安电子科技大学 基于时间提前量的物联网随机接入控制方法
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241464A1 (en) * 2015-10-30 2018-08-23 Paris Micheals Mobile satellite communication system
US20190075503A1 (en) * 2017-09-07 2019-03-07 Samsung Electronics Co., Ltd. Method for random access based on mobility and apparatus thereof
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备
CN109874168A (zh) * 2019-03-07 2019-06-11 中山大学 移动通信系统随机接入前导序列检测与定时提前量确定的方法
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信系统的上行定时提前量终端预测方法
CN111405679A (zh) * 2020-03-19 2020-07-10 西安电子科技大学 基于时间提前量的物联网随机接入控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245665A1 (zh) * 2022-06-24 2023-12-28 北京小米移动软件有限公司 接入处理方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
US20230354438A1 (en) 2023-11-02
CN114641081A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2021027346A1 (zh) 公共定时提前的指示方法、装置、设备及存储介质
US11956682B2 (en) Handover method and apparatus
US20240031965A1 (en) Information transmission method, terminal device, and network device
US20230254830A1 (en) Parameter Update Method and Related Apparatus
US20230354438A1 (en) Wireless communication method and apparatus
WO2022012446A1 (zh) 一种无线通信的方法及装置
WO2022052562A1 (zh) 定时偏移参数更新方法、设备及系统
CN111200486A (zh) 无线通信的方法和装置
CN117480815A (zh) 用于非地面网络卫星切换的方法、终端设备及网络设备
CN117397292A (zh) 用于非地面网络卫星切换的方法、终端设备及网络设备
EP4307767A1 (en) Wireless communication method, apparatus and system
CN116889027A (zh) 小区切换的方法、终端设备及网络设备
CN114679244A (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2023044712A1 (zh) 通信方法及装置
WO2022213925A1 (zh) 一种无线通信的方法及装置
WO2022156519A1 (zh) 一种无线通信的方法及装置
WO2023125176A1 (zh) 一种通信方法及通信装置
CN116033502B (zh) 用于无线通信的方法及装置
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
CN115362753B (zh) 发射信号的控制方法、网络设备、终端及存储介质
WO2023078186A1 (zh) 一种无线通信的方法和装置
CN113810095B (zh) 确定数字处理操作切分点的方法及装置
WO2023082920A1 (zh) 一种通信方法及通信装置
WO2022062823A1 (zh) 波束管理方法、装置及系统
WO2024021705A1 (zh) 一种定位方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905733

Country of ref document: EP

Kind code of ref document: A1