WO2022062823A1 - 波束管理方法、装置及系统 - Google Patents

波束管理方法、装置及系统 Download PDF

Info

Publication number
WO2022062823A1
WO2022062823A1 PCT/CN2021/114709 CN2021114709W WO2022062823A1 WO 2022062823 A1 WO2022062823 A1 WO 2022062823A1 CN 2021114709 W CN2021114709 W CN 2021114709W WO 2022062823 A1 WO2022062823 A1 WO 2022062823A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission configuration
tci
configuration indication
information
list
Prior art date
Application number
PCT/CN2021/114709
Other languages
English (en)
French (fr)
Inventor
周建伟
罗禾佳
徐晨蕾
王晓鲁
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871196.8A priority Critical patent/EP4207904A4/en
Publication of WO2022062823A1 publication Critical patent/WO2022062823A1/zh
Priority to US18/187,223 priority patent/US20230232391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beam management method, apparatus, and system.
  • high-frequency communication adopts analog beam technology, which is weighted by a large-scale antenna array to concentrate the signal energy in a small range to form a beam-like signal (called analog beam, or simply beam for short). ), thereby increasing the transmission distance.
  • beam information can be indicated by the quasi colocation (quasi colocation, QCL) relationship of the antenna ports.
  • the QCL relationship is used to indicate that beams corresponding to multiple antenna ports have one or more identical or similar spatial features.
  • the QCL information of the physical downlink shared channel (PDSCH) can be configured by the transmission configuration indicator state (TCI). Specifically, it can be indicated by the TCI state (TCI-state) and the PDSCH demodulation reference signal. (demodulation reference signal, DMRS) A reference signal that satisfies the QCL relationship.
  • the network device sends downlink control information (DCI) to the terminal device to indicate a beam for receiving PDSCH.
  • DCI downlink control information
  • NTN non-terrestrial network
  • the beam size is large and the beam switching is frequent, and the existing beam management methods may no longer be applicable. Therefore, it is necessary to design a reasonable scheme to realize the NTN scenario. beam management.
  • the present application provides a beam management method, device and system, which can be applied to NTN, realize beam management in NTN communication, and save signaling overhead.
  • a beam management method is provided, which can be applied to NTN scenarios, such as satellite communication systems.
  • the method may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the terminal device receives indication information from the network device, and when the indication information is the first indication information, the terminal device performs beam switching according to the arrangement order of the transmission configuration indication state TCI-state in the second transmission configuration indication list; the indication When the information is the second indication information, the terminal device performs beam switching according to the first TCI-state in the first transmission configuration indication list, where the first transmission configuration indication list includes multiple TCI-states including the first TCI-state, In the first transmission configuration indication list, the beams corresponding to the TCI-states starting from the first TCI-state are the beams to be sequentially provided with services for the terminal device.
  • one or more beams to be served for terminal equipment are configured through the transmission configuration instruction list, and the terminal equipment can perform beam switching according to the order of the TCI-state in the transmission configuration instruction list according to the instructions of the network equipment, thereby Implement beam management.
  • the transmission configuration indication list can configure multiple TCI-states for the terminal device, so that it can be applied to the configuration of large-scale beams in the NTN scenario.
  • the network device does not need to send the TCI-state to indicate the beam to be switched every time the terminal device performs beam switching, which can save signaling overhead and improve beam switching efficiency.
  • the first indication information is used to instruct the terminal device to perform beam switching according to the arrangement order of the TCI-states in the second transmission configuration indication list;
  • the second indication information is used to indicate the first TCI-state and the first transmission Configure a list of instructions.
  • the terminal device can perform beam switching according to the first indication information according to the order of TCI-states in the second transmission configuration indication list, or perform beam switching according to the first TCI-state according to the second indication information.
  • the beam management method before the terminal device receives the indication information from the network device, the beam management method further includes: the terminal device receives one or more transmission configuration indication lists, where the one or more transmission configuration indication lists include the first The transmission configuration indication list and/or the second transmission configuration indication list. Based on this solution, after receiving one or more transmission configuration indication lists, the terminal device may store the one or more transmission configuration indication lists, so that the first one in the one or more transmission configuration indication lists can be subsequently followed according to the instructions of the network device. The transmission configuration indication list or the second transmission configuration indication list performs beam switching.
  • the beam management method further includes: the terminal device receives request information from the network device through message 2 in the random access process, where the request information is used to request the location of the terminal device; Message 3 in the incoming process sends location information to the network device, where the location information is used to indicate the location of the terminal device.
  • the location of the terminal device can be obtained during the random access process, and there is no need for the terminal device to access the network device and then send a message to request the terminal device to report its location, which can save signaling overhead and quickly obtain the location of the terminal device.
  • the beam management method before receiving the indication information, further includes: the terminal device receives third indication information from the network device, where the third indication information is used to indicate the initial TCI-state and the initial transmission configuration indication list , the initial transmission configuration indication list includes multiple TCI-states including the initial TCI-state.
  • the beams corresponding to the TCI-state after the initial TCI-state are to be provided to the terminal equipment in turn The serving beam; the terminal equipment accesses the beam corresponding to the initial TCI-state.
  • a beam management method is provided, which can be applied to NTN scenarios, such as satellite communication systems.
  • the method may be executed by a network device, or may be executed by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • the method includes: the network device determines a first transmission configuration indication state TCI-state and a first transmission configuration indication list, where in the first transmission configuration indication list, a beam corresponding to a TCI-state after the first TCI-state is pending Beams that provide services for terminal equipment in sequence; when the first transmission configuration indication list is the same as the second transmission configuration indication list, first indication information is sent to the terminal equipment, and the first indication information is used to instruct the terminal equipment to indicate according to the second transmission configuration. Beam switching is performed in the order of the TCI-state in the list, and the second transmission configuration indication list is the transmission configuration indication list determined last time by the network device; when the first transmission configuration indication list is different from the second transmission configuration indication list, it is sent to the terminal device. Send second indication information, where the second indication information is used to indicate the first TCI-state and the first transmission configuration indication list.
  • one or more beams to be served for the terminal equipment are configured through the transmission configuration indication list, and when the transmission configuration indication list changes, the updated first transmission configuration indication list and the first TCI are indicated to the terminal equipment.
  • the transmission configuration indication list can configure multiple TCI-states for the terminal device, so that it can be applied to the configuration of large-scale beams in the NTN scenario.
  • the network device does not need to send a TCI-state to indicate the beam to be switched every time the terminal device performs beam switching, which can save signaling overhead and improve beam switching efficiency.
  • the beam management method before the network device sends the first indication information or the second indication information to the terminal device, the beam management method further includes: sending one or more transmission configuration indication lists, where the one or more transmission configuration indication lists include The first transmission configuration indication list and/or the second transmission configuration indication list. Based on this solution, the network device sends the one or more transmission configuration indication lists, so as to subsequently instruct the terminal device to perform beaming according to the first transmission configuration indication list or the second transmission configuration indication list in the one or more transmission configuration indication lists switch.
  • the network device determining the first TCI-state and the first transmission configuration indication list includes: the network device determining the first TCI-state and the first transmission configuration indication list according to the location of the terminal device.
  • the beam management method further includes: the network device sends request information to the terminal device through message 2 in the random access process, where the request information is used to request the location of the terminal device; Message 3 in the process receives location information from the terminal device, which is used to indicate the location of the terminal device. Based on this solution, the location of the terminal device can be obtained during the random access process, and there is no need for the terminal device to access the network device and then send a message to request the terminal device to report its location, which can save signaling overhead and quickly obtain the location of the terminal device. .
  • the beam management method before the network device determines the first TCI-state and the first transmission configuration indication list, the beam management method further includes: the network device determines the initial TCI-state and the initial transmission configuration indication list, the initial transmission configuration indication The list includes multiple TCI-states including the initial TCI-state.
  • the beams corresponding to the TCI-states after the initial TCI-state are the beams that are to serve the terminal equipment in turn; network equipment Send third indication information to the terminal device, where the third indication information is used to indicate the initial TCI-state and the initial transmission configuration indication list.
  • each transmission configuration indication list in the above one or more transmission configuration indication lists includes multiple TCI-states, and TCI-states included in different transmission configuration indication lists
  • the states are not identical, and the multiple beams corresponding to multiple TCI-states included in the same transmission configuration indication list are arranged according to the movement direction of the network device.
  • the one or more transmission configuration indication lists are included in system information, or included in radio resource control RRC signaling. Based on this solution, when the one or more transmission configuration indication lists are sent in the system information, the network device does not need to send the one or more transmission configuration indication lists to each terminal device through dedicated signaling of the terminal device, so that it can be Save signaling overhead. When the one or more transmission configuration indication lists are sent in RRC signaling, the network device can configure different transmission configuration indication lists for different terminal devices, thereby improving configuration flexibility.
  • the above-mentioned first indication information or second indication information is included in any one of the following: downlink control information DCI, medium access control control element MAC CE, wireless Resource control RRC signaling.
  • a location acquisition method is provided, which can be applied to NTN scenarios, such as satellite communication systems.
  • the method may be executed by a terminal device, or may be executed by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device.
  • the method includes: the terminal device receives request information from the network device through message 2 in the random access process, where the request information is used to request the location of the terminal device; the terminal device sends the location to the network device through the message 3 in the random access process information, the location information is used to indicate the location of the terminal device.
  • the location of the terminal device can be obtained during the random access process, and there is no need for the terminal device to access the network device and then send a message to request the terminal device to report its location, which can save signaling overhead and quickly obtain the location of the terminal device.
  • a location acquisition method is provided, which can be applied to NTN scenarios, such as satellite communication systems.
  • the method may be executed by a network device, or may be executed by a component of the network device, such as a processor, a chip, or a chip system of the network device.
  • the method includes: the network device sends request information to the terminal device through message 2 in the random access process, where the request information is used to request the location of the terminal device; the network device receives the location from the terminal device through message 3 in the random access process information, the location information is used to indicate the location of the terminal device.
  • a communication apparatus for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • a communication device comprising: an interface circuit and a logic circuit, the interface circuit can be a code/data read/write interface circuit, the interface circuit is used for acquiring input information and/or outputting output information; the logic circuit For performing the method according to any of the above aspects, processing and/or generating the output data according to the input information.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • a communication device comprising: at least one processor; the processor is configured to execute a computer program or instruction stored in a memory, so that the communication device executes the method described in any one of the above aspects.
  • the memory may be coupled to the processor, or it may be independent of the processor.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, which, when executed on a communication device, enable the communication device to perform the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • a computer program product comprising instructions which, when run on a communication device, enable the communication device to perform the method of any of the preceding aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the second aspect or The network device in the fourth aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device.
  • a communication apparatus for example, the communication apparatus may be a chip or a chip system
  • the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • the technical effect brought by any one of the design methods in the fifth aspect to the eleventh aspect can refer to the technical effect brought by the different design methods in the first aspect or the second aspect or the third aspect or the fourth aspect , and will not be repeated here.
  • a twelfth aspect provides a communication system, where the communication system includes the terminal device described in the foregoing aspect and the network device described in the foregoing aspect.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a terminal device and a network device according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a beam management method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a beam distribution provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a beam grouping provided by an embodiment of the present application.
  • FIG. 7a is a schematic flowchart of another beam management method provided by an embodiment of the present application.
  • FIG. 7b is a schematic flowchart of another beam management method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another terminal network device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • Antenna port 1. Antenna port:
  • An antenna port is a logical concept.
  • An antenna port can correspond to one physical transmit antenna, or can correspond to multiple physical transmit antennas. In both cases, the receiver of the terminal will not decompose the signal from the same antenna port. Because from the perspective of the terminal, regardless of whether the channel is formed by a single physical transmit antenna or by combining multiple physical transmit antennas, the reference signal (RS) corresponding to this antenna port defines this antenna port.
  • the terminal can obtain the channel estimation of the antenna port according to the reference signal.
  • Each antenna port corresponds to a time/frequency resource grid and has its own reference signal.
  • An antenna port is a channel, and the terminal can perform channel estimation and data demodulation according to the reference signal corresponding to the antenna port.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may be specifically a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • a beam can be formed by one or more antenna ports for the transmission of data channels, control channels and sounding signals, etc.
  • One or more antenna ports forming a beam can be viewed as a set of antenna ports.
  • Beams include transmit beams and receive beams. Transmitting beams may refer to the distribution of signal strengths formed in different directions in space after signals are transmitted by antennas, and receiving beams may refer to the distribution of antenna arrays that enhance or weaken the reception of wireless signals in different spatial directions.
  • beam information can be indicated by the quasi colocation (QCL) relationship of the antenna ports.
  • the indication information for example, downlink control information (DCI)
  • DCI downlink control information
  • one resource (or antenna port) has a quasi-co-location relationship with another resource (or antenna port) to indicate that the two
  • the beams corresponding to the resources (or antenna ports) have one or more identical or similar spatial characteristics (or parameters), and can be received by using the same receive beam.
  • the beam can be specifically represented by various signal identifiers in the protocol, such as the resource index of the channel state information reference signal (CSI-RS), the synchronous signal/physical broadcast channel block (synchronous signal/physical broadcast channel block) , SSB) index, sounding reference signal (sounding reference signal, SRS) resource index, tracking reference signal (tracking reference signal, TRS) resource index.
  • CSI-RS channel state information reference signal
  • SSB synchronous signal/physical broadcast channel block index
  • SRS sounding reference signal
  • TRS tracking reference signal
  • a beam corresponds to a DMRS port or a transmission configuration indicator (TCI) or a sounding reference signal resource indicator (SRS resource indicator, SRI) (for uplink data transmission), therefore, different
  • TCI transmission configuration indicator
  • SRS resource indicator, SRI sounding reference signal resource indicator
  • the beams can also be represented by different DMRS ports or TCI or SRI.
  • the QCL relationship is used to indicate that beams (or resources) corresponding to multiple antenna ports have one or more identical or similar communication characteristics. For multiple resources with a QCL relationship, the same or similar communication configuration may be adopted.
  • the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port (which may also be referred to as QCL parameters) can be used to determine the parameters of another antenna port with the QCL relationship with the antenna port, or, two The two antenna ports have the same parameters, or the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average delay Gain, spatial Rx parameters.
  • the spatial reception parameters may include one or more of the following: angle of arrival (AOA), average AOA, AOA extension, angle of departure (AOD), average AOD, AOD extension, receiving antenna space Correlation parameters, transmit antenna spatial correlation parameters, transmit beams, receive beams, and resource identifiers.
  • TCI can be used to indicate QCL information of physical downlink control channel (physical downlink control channel, PDCCH)/physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a maximum of M TCI-state reference signals that satisfy the QCL relationship with the DMRS of the PDCCH/PDSCH may be configured by the high layer signaling parameter PDSCH-config, and the value of M depends on the terminal capability.
  • Each TCI-state defines one or more reference signals that satisfy the QCL relationship with the DMRS of the PDSCH.
  • the reference signal that satisfies the QCL relationship with the DMRS of the PDCCH/PDSCH may be specifically indicated by the reference signal index.
  • NTN Non-terrestrial network
  • NTN communication may include satellite communication, which may refer to deploying base stations or part of base station functions on satellites to provide coverage for terminal devices. Satellite communication has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical location restrictions. It has been widely used in maritime communications, positioning and navigation, disaster relief, scientific experiments, video broadcasting, and earth observation. and many other fields.
  • the satellite system can be divided into highly elliptical orbit (HEO), high orbit (geostationary earth orbit, GEO) satellite, medium orbit (medium earth orbit, MEO) satellite and low orbit Orbit (low-earth orbit, LEO) satellite.
  • GEO geostationary earth orbit
  • MEO medium orbit
  • LEO low orbit Orbit
  • the GEO satellite is also called a stationary satellite, and its motion speed is the same as the rotation speed of the earth, so the GEO satellite remains stationary relative to the ground, and correspondingly, the cell of the GEO satellite is also stationary.
  • the coverage of the GEO satellite cell is relatively large, and the diameter of the cell is generally 500 kilometers (kilometre, Km).
  • the LEO satellite moves relatively fast relative to the ground, about 7Km per second, so the service coverage area provided by the LEO satellite also moves accordingly.
  • the higher the orbit of the satellite the larger the coverage area, but the longer the communication delay.
  • NTN communication can also include high-altitude platform station (HAPS) communication, which refers to the deployment of base stations or part of base station functions on high-altitude platforms to provide coverage for terminal equipment.
  • HAPS high-altitude platform station
  • the network device usually configures TCIs for each terminal device with the terminal device as the granularity.
  • the network device first sends the media access control control element (media access control control element, MAC CE) to activate up to 8 TCIs, and then use the "TCI-PresentInDCI" field (or cell) in the DCI to indicate the final TCI used in the activated multiple TCIs.
  • the TCI used determines the beam in which the PDSCH is received.
  • the network device When the number of TCIs configured by the network device for the terminal device is less than or equal to 8, the network device directly indicates the used TCI through the "TCI-PresentInDCI" field in the DCI, and the terminal device can determine the beam that receives the PDSCH according to the final used TCI Or, when the "TCI-PresentInDCI" field is not carried in the DCI, the terminal device assumes that the PDSCH and the PDCCH satisfy the QCL relationship, and at this time, the beam for receiving the PDSCH can be determined according to the beam for receiving the PDCCH.
  • the network device needs to deliver the MAC CE or DCI to the terminal device, and the TCI-PresentInDCI field is carried in the DCI to indicate the TCI.
  • the beam size is large and beam switching is frequent, and the above methods may not be applicable.
  • the present application provides a beam management method to realize beam management in an NTN scenario.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where "-" indicates that the associated object is a kind of "and" relationship, a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA Orthogonal Frequency-division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Satellite Communication System NTN System
  • IoT Internet of Things
  • system is interchangeable with "network”.
  • the communication system may also be applicable to future-oriented communication technologies, and the technical solutions provided by the embodiments of the present application are all applicable.
  • the communication system 10 includes a network device 30 and one or more terminal devices 40 connected to the network device 30 .
  • different terminal devices 40 may communicate with each other.
  • the network device determines the first transmission configuration indication state TCI-state and the first transmission configuration indication list, the first transmission configuration indication list. For multiple TCI-states including the first TCI-state, in the first transmission configuration indication list, the beams corresponding to the TCI-states starting from the first TCI-state are the beams to be sequentially provided with services for the terminal device.
  • the network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device according to the TCI-state in the second transmission configuration indication list. Beam switching is performed in order.
  • the terminal device after receiving the first indication information, performs beam switching according to the arrangement order of the TCI-states in the second transmission configuration indication list.
  • the second transmission configuration indication list is the transmission configuration indication list determined last time by the network device.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate the first TCI-state and the first transmission configuration indication list.
  • the terminal device after receiving the second indication information, performs beam switching according to the first transmission configuration indication list and the first TCI-state.
  • the present application configures one or more beams to be sequentially provided services for terminal equipment through the transmission configuration indication list, and indicates to the terminal equipment the updated first transmission configuration indication list and the first transmission configuration indication list when the transmission configuration indication list changes.
  • a TCI-state so that the terminal device performs beam switching according to the first transmission configuration indication list and the first TCI-state; when the transmission configuration indication list does not change, instructs the terminal device to perform beam switching according to the original second transmission configuration indication list TCI-state
  • the arrangement order of the states performs beam switching, thereby realizing beam switching.
  • the transmission configuration indication list can configure multiple TCI-states for the terminal device, so that it can be applied to the configuration of large-scale beams in the NTN scenario.
  • the network device does not need to send a TCI-state to indicate the beam to be switched every time the terminal device performs beam switching, which can save signaling overhead and improve beam switching efficiency.
  • the network device 30 in this embodiment of the present application may be deployed on a high-altitude platform or a satellite 20 .
  • the communication system 10 may further include a measurement and control station and a core network gateway, and the network device 30 may be connected to the core network gateway, and through the core network gateway, data interaction with a terrestrial data network (DN) is completed.
  • the measurement and control station is used to complete the measurement, telemetry, etc. of the high-altitude platform or the satellite 20, for example, to control the flight attitude of the high-altitude platform or the satellite 20, to control the switch of the load equipment, and the like.
  • the network device 30 in this embodiment of the present application is a device that accesses the terminal device 40 to a wireless network
  • the network device 30 may be a node in the wireless access network, and may also be referred to as a base station, It may also be referred to as a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as Traditional macro base station eNB and micro base station eNB in heterogeneous network scenarios; or may also include next generation node B (gNB) in 5G new radio (NR) system, or may also include transmission Reception point (transmission reception point, TRP), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), baseband pool BBU pool, or WiFi access point (access point , AP), etc.; alternatively, it may also include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (CloudRAN) system; or it may include non- A base station in a non-terrestrial network (NTN), that is, can be deployed on high-al
  • a network device can act as a layer 1 (L1) relay, or can act as a base station, or can act as a DU, or it can be used as an integrated access and backhual (IAB) node; or, the network device can be a device that implements base station functions in IoT, such as vehicle-to-everything (V2X), equipment
  • V2X vehicle-to-everything
  • the embodiment of the present application is not limited to a device that implements a base station function in a device to device (D2D) or a machine to machine (M2M).
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a family Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.,
  • gNodeB next-generation base station
  • BBU baseband unit
  • TRP transmitting and receiving point
  • TP transmitting point
  • mobile switching center etc.
  • the terminal device 40 in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that can be used in the terminal, and the like.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device in a 5G network or a future evolved PLMN. equipment, terminal agent or terminal device, etc.
  • the access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a wireless communication Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal
  • the terminal may be a terminal with a communication function in IoT, such as a terminal in V2X (eg, a vehicle networking device), a terminal in D2D communication, or a terminal in M2M communication, and the like.
  • Terminals can be mobile or stationary.
  • the network device 30 and the terminal device 40 in this embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in this embodiment of the present application.
  • FIG. 2 it is a schematic structural diagram of a network device 30 and a terminal device 40 provided in this embodiment of the present application.
  • the terminal device 40 includes at least one processor (in FIG. 2 , it is exemplified by including one processor 401 ) and at least one transceiver (in FIG. 2 , it is exemplified by including one transceiver 403 for illustration). ).
  • the terminal device 40 may further include at least one memory (in FIG. 2 , an example of including a memory 402 is used for illustration), at least one output device (in FIG. 2 , an example of including an output device 404 is used as an example for illustration). for illustration) and at least one input device (in FIG. 2 , one input device 405 is used as an example for illustration).
  • the processor 401, the memory 402 and the transceiver 403 are connected by a communication line.
  • the communication link may include a path to communicate information between the components described above.
  • the processor 401 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of programs in the present application. circuit.
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory 402 may exist independently and be connected to the processor 401 through a communication line.
  • the memory 402 may also be integrated with the processor 401 .
  • the memory 402 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 401 .
  • the processor 401 is configured to execute the computer-executed instructions stored in the memory 402, thereby implementing the beam management method described in the embodiments of the present application.
  • the computer-executed instructions in this embodiment of the present application may also be referred to as application program code or computer program code, which is not specifically limited in this embodiment of the present application.
  • the transceiver 403 may use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, RAN, or wireless local area networks (WLAN) and the like.
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 is in communication with the processor 401 and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) or the like.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • Input device 405 is in communication with processor 401 and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device 30 includes at least one processor (in FIG. 2 , it is exemplified by including one processor 301 ) and at least one transceiver (in FIG. 2 , it is exemplified by including one transceiver 303 ).
  • the network device 30 may further include at least one memory (in FIG. 2 , it is exemplified that one memory 302 is included) and at least one network interface (in FIG. 2 , one network interface 304 is used as an example for illustration). Be explained).
  • the processor 301, the memory 302, the transceiver 303 and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in FIG. 2 ).
  • a link such as the S1 interface
  • a wired or wireless link such as the X2 interface
  • the structure shown in FIG. 2 does not constitute a specific limitation on the network device 30 or the terminal device 40 .
  • the network device 30 or the terminal device 40 may include more or less components than those shown in FIG. 2 , or combine some components, or split some components, or different components layout.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 3 is a specific structural form of the terminal device 40 provided by the embodiment of the present application.
  • the functions of the processor 401 in FIG. 2 may be implemented by the processor 110 in FIG. 3 .
  • the functions of the transceiver 403 in FIG. 2 may be implemented by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 and the like in FIG. 3 .
  • the antenna 1 and the antenna 2 are used for transmitting and receiving electromagnetic wave signals.
  • Each antenna in terminal device 40 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 4G/5G and the like applied on the terminal device 40 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 160 can provide applications on the terminal device 40 including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue tooth, BT
  • global navigation satellite system global navigation satellite system
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include LTE, BT, GNSS, WLAN, NFC, FM, or IR technology, among others.
  • the function of the memory 402 in FIG. 2 may be implemented by the internal memory 121 in FIG. 3 or an external memory (eg, a Micro SD card) connected to the external memory interface 120, and the like.
  • an external memory eg, a Micro SD card
  • the functionality of output device 404 in FIG. 2 may be implemented by display screen 194 in FIG. 3 .
  • the display screen 194 is used for displaying images, videos and the like.
  • Display screen 194 includes a display panel.
  • the functionality of input device 405 in FIG. 2 may be implemented by a mouse, keyboard, touch screen device, or sensor module 180 in FIG. 3 .
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • the temperature sensor 180J, the touch sensor 180K, the ambient light sensor 180L, and the bone conduction sensor 180M which are not specifically limited in this embodiment of the present application.
  • the terminal device 40 may further include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, wherein the audio module 170 can be connected with the speaker 170A (also called “speaker”), the receiver 170B (also called “earpiece”), the microphone 170C (also called “microphone”, “microphone”) or the headphone jack 170D, etc., which are not specifically limited in this embodiment of the present application.
  • the audio module 170 can be connected with the speaker 170A (also called “speaker"), the receiver 170B (also called “earpiece"), the microphone 170C (also called “microphone”, “microphone”) or the headphone jack 170D, etc., which are not specifically limited in this embodiment of the present application.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 40 .
  • the terminal device 40 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or various Variation of operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the present application provides a beam management method, which can be applied to NTN scenarios.
  • this method can also be applied to other scenarios, for example, a scenario in which the network device is movable and moves relatively fast.
  • This application does not specifically limit the applicable scenarios of the method, and the above exemplary scenarios do not constitute any limitations on the method.
  • the beam management method provided by this application includes the following steps:
  • the network device determines one or more transmission configuration indication lists (TCI Lists).
  • the network device may divide the TCI-states corresponding to the multiple beams respectively into one or more transmission configuration indication lists. It can be understood that there is a one-to-one correspondence between beams and TCI-states, that is, one beam corresponds to one TCI-state, and different beams correspond to different TCI-states.
  • each transmission configuration indication list in the one or more transmission configuration indication lists includes multiple TCI-states
  • the TCI-states included in different transmission configuration indication lists are not exactly the same
  • the same transmission configuration indication list includes multiple TCI-states.
  • Multiple beams corresponding to each TCI-state are arranged in sequence.
  • the same TCI-state may be included in different TCI lists.
  • TCI-states included in different transmission configuration indication lists may be the same or different, which is not specifically limited in this application.
  • the n+1 transmission configuration indication lists may be as shown in Table 1 below.
  • the ID is an identifier (ID).
  • the TCI List ID is used to identify the transmission configuration indication list, and the TCI-state ID is used to identify the TCI-state.
  • the beam corresponding to the TCI-state can be identified by the Beam ID.
  • the Beam ID of the same beam is the same as the TCI-state ID. Take an example to illustrate. Different TCI List IDs identify different transmission configuration indication lists, and similarly, different TCI-state IDs identify different TCI-states.
  • the arrangement order of multiple beams corresponding to the TCI-state included in the same transmission configuration indication list may be determined according to the movement direction of the network device.
  • the multiple beams corresponding to the TCI-states are arranged according to the movement direction of the network device, or in other words, the multiple beams corresponding to the multiple TCI-states are arranged along the movement direction of the network device.
  • each hexagon represents a beam of the network device
  • each beam corresponds to a TCI-state
  • the number in the hexagon represents the TCI-state ID
  • the movement direction of the network device is shown by the black arrow in Figure 5.
  • the multiple TCI-states in the transmission configuration indication list can be arranged according to the movement direction of the network device.
  • one or more transmission configuration indication lists determined by the network device may be as shown in Table 2 below.
  • TCI List 0 TCI List 1 TCI List 2 TCI List 3 TCI List 4
  • TCI-state 18 TCI-state 19 TCI-state 19
  • TCI-state 2 TCI-state 9
  • TCI-state 9 TCI-state 16
  • TCI-state 1 TCI-state 3
  • 10 TCI-state 15 TCI-state 5 TCI-state 5 TCI-state 4 TCI-state 11 TCI-state 14 TCI-state 13 TCI-state 12 TCI-state 12
  • the network device sends one or more transmission configuration indication lists.
  • the network device may send system information, where the system information includes the one or more transmission configuration indication lists. That is, the one or more transmission configuration indication lists are contained in the system information.
  • the system information may be, for example, a synchronization signal/physical broadcast channel block (synchronization signal/PBCH block, SSB), a master information block (master information block, MIB), or a system information block (system information block, SIB), etc.
  • PBCH refers to the physical broadcast channel (physical broadcast channel).
  • the one or more transmission configuration indication lists are sent in the system information, and the network device does not need to send the one or more transmission configuration indication lists to each terminal device through dedicated signaling of the terminal device, thereby saving Signaling overhead.
  • the network device may send radio resource control (radio resource control, RRC) signaling, and the RRC signaling includes the one or more transmission configuration indication lists. That is, the one or more transmission configuration indication lists are included in the RRC signaling.
  • RRC radio resource control
  • the one or more transmission configuration indication lists may be included in the "tci-StatesToAddModListCommon" information element in the "PDSCH-ConfigCommon" configuration of the RRC signaling.
  • it may also be included in other configurations or information elements of the RRC signaling, which is not specifically limited in this application.
  • the one or more transmission configuration indication lists are sent in RRC signaling, and the network device can configure different transmission configuration indication lists for different terminal devices, thereby improving configuration flexibility.
  • the network device may re-execute the above steps S401 and S402 to update the transmission configuration indication list.
  • the above steps S401 and S402 are not necessarily performed, that is, the above steps S401 and S402 may not be performed.
  • the above-mentioned one or more transmission configuration indication lists are predefined by the protocol, the above-mentioned steps S401 and S402 may not be performed.
  • the network device determines the first TCI-state and the first transmission configuration indication list.
  • the first transmission configuration indication list is a transmission configuration indication list among the one or more transmission configuration indication lists described in step S401 above.
  • the first transmission configuration indication list includes multiple TCI-states including the first TCI-state, and in the first transmission configuration indication list, the beam corresponding to the TCI-state after the first TCI-state is to be Beams that serve terminal equipment in turn. That is to say, in this step S403, the network device may determine (or estimate) one or more beams to provide services for the terminal device in sequence. Among the one or more beams, the beam corresponding to the first TCI-state is The first beam to serve the terminal device.
  • the manner in which the network device determines the first TCI-state and the first transmission configuration indication list may be different.
  • the network device may determine the first TCI-state and the first transmission configuration indication list according to the location of the terminal device.
  • the beam management method may further include: the network device obtains the location of the terminal device.
  • the location of the terminal device may be reported by the network device requesting the terminal device, or may be determined by the network device using a function of assisted positioning, which is not specifically limited in this application.
  • the network device requests the terminal device to report the location of the terminal device, Can include:
  • the network device sends the request information to the terminal device through the message 2 (message 2, Msg2) in the random access process.
  • the terminal device receives the request information from the network device through the message 2 in the random access process. to the location of the requesting end device.
  • the terminal device sends location information to the network device through message 3 (message 3, Msg3) in the random access process, where the location information is used to indicate the location of the terminal device.
  • the network device receives the message 3 to obtain the location of the terminal device.
  • sending the request information to the terminal device through the message 2 in the random access process can be understood as sending the message 2 in the random access process to the terminal device, where the message 2 includes the request information.
  • sending the location information to the network device through the message 3 in the random access process can be understood as sending the message 3 in the random access process to the network device, where the message 3 includes the location information.
  • the network device can request its location from the terminal device during the random access process to acquire the location of the terminal device, thereby realizing the rapid acquisition of the location of the terminal device.
  • the network device may save the location of the terminal device, and subsequently read the stored location of the terminal device when step S403 is performed, and based on the location of the terminal device.
  • the location determines the first TCI-state and the first transmission configuration indication list.
  • the network device may determine the TCI-state with the corresponding beam range including the location of the terminal device as the first TCI-state, and then determine the first TCI-state according to the movement direction and movement trajectory of the network device. After the TCI-state, the beams to be served for the terminal equipment in turn, so as to determine the first transmission configuration indication list.
  • the network device may determine that the first TCI-state is TCI-state3. Since the movement direction and movement trajectory of the network device are known, the network device can estimate that the TCI-states corresponding to the beams that provide services to the terminal device in turn after TCI-state3 are TCI-state4 and TCI-state12. Based on the above Table 2 , and the first transmission configuration indication list is TCI List 3.
  • the network device may determine the first TCI-state and the first transmission configuration indication list based on the SSB Index reported by the terminal device.
  • the terminal device can determine the SSB Index through downlink synchronization, that is, SSB search, and then the terminal device can indicate to the network device the SSB Index.
  • SSB Index since the SSB Index corresponds to the Beam ID one-to-one, the network device can determine the Beam ID and TCI-state ID corresponding to the SSB Index, so as to determine the beam where the terminal device is located, and then the SSB Index reported by the terminal device corresponds to The TCI-state identified by the TCI-state ID is determined as the first TCI-state. Afterwards, according to the movement direction and movement track of the network device, the beams to be served to the terminal device in sequence after the first TCI-state are determined, so as to determine the first transmission configuration indication list.
  • the network device may send information to the terminal device to request the terminal device to report the SSB Index.
  • the network device determines whether the first transmission configuration indication list is the same as the second transmission configuration indication list.
  • the network device may compare the first transmission configuration indication list with the second transmission configuration indication list, and when the first transmission configuration indication list is the same as the second transmission configuration indication list, execute The following steps S405a and S406a are performed; when the first transmission configuration indication list is different from the second transmission configuration indication list, the following steps S405b and S406b are performed.
  • the second transmission configuration indication list is the transmission configuration indication list determined last time by the network device.
  • the second transmission configuration indication list is the transmission configuration indication list determined by the network device for the last time before determining the first transmission configuration indication list.
  • the network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information is used to instruct the terminal device to perform beam switching according to the arrangement order of the TCI-states in the second transmission configuration indication list.
  • the first indication information is used to instruct the terminal device to perform beam switching according to the arrangement order of the TCI-states in the first transmission configuration indication list.
  • the beam serving the terminal device may be the beam corresponding to the previous TCI-state of the first TCI-state in the second transmission configuration indication list. Therefore, when the first indication information instructs the terminal device to perform beam switching according to the order of the TCI-states in the second transmission configuration indication list, the beam to be served for the terminal device is the beam corresponding to the first TCI-state.
  • the first transmission configuration indication list and the second transmission configuration indication list are the same, which is TCI List 3.
  • the beam serving the terminal device is provided. is beam 9 corresponding to TCI-state9, then the first TCI-state is TCI-state3, and the next beam serving the terminal device is beam 3 corresponding to TCI-state3.
  • the beam serving the terminal device before the network device sends the first indication information, is not the beam corresponding to the previous TCI-state of the first TCI-state in the second transmission configuration indication list, That is, one or more TCI-states are spaced between the TCI-state corresponding to the beam and the first TCI-state.
  • the first indication information can be used to indicate the first TCI-state, for example, including the identifier of the first TCI-state.
  • the terminal device can determine the next TCI-state.
  • the beam serving the terminal device is the beam corresponding to the first TCI-state.
  • the first transmission configuration indication list and the second transmission configuration indication list are the same, which is TCI List 3.
  • the beam serving the terminal device is provided. is beam 8 corresponding to TCI-state8, and the first TCI-state is TCI-state3, then the first information can be used to indicate TCI-state3, and the next beam serving the terminal device is beam 3 corresponding to TCI-state3.
  • the first indication information may be included in the first information, and the first information may be any one of DCI, RRC signaling, or MAC CE.
  • the network device may represent the first indication information through the first field in the first information.
  • the size of the first field may be 1 bit.
  • the first indication information instructs the terminal device to perform beam switching according to the arrangement order of the TCI-states in the second transmission configuration indication list.
  • the value of 1 bit of the first field is "1" it indicates the first indication information; or, when the value of the 1 bit is "0", it indicates the first indication information.
  • the terminal device performs beam switching according to the arrangement order of the TCI-states in the second transmission configuration indication list.
  • the terminal device may determine, according to the order of the TCI-states in the second transmission configuration indication list, that the next beam serving the terminal device is the beam corresponding to the first TCI-state. After that, the terminal device can switch to the beam corresponding to the first TCI-state.
  • the network device may send the first indication information immediately after determining that the first transmission configuration indication information and the second transmission configuration indication information are the same. At this time, the network device may also send the first duration to the terminal device, instructing the terminal device to perform beam switching after receiving the first duration starting from the first indication information. Alternatively, after determining that the first transmission configuration indication information and the second transmission configuration indication information are the same, the network device sends the first indication information when it further determines that the terminal device needs to perform beam switching. At this time, after receiving the first indication information, the terminal device can immediately perform beam switching.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate the first TCI-state and the first transmission configuration indication list.
  • the second indication information includes an identifier of the first TCI-state and an identifier of the first transmission configuration indication list.
  • the TCI-state corresponding to the beam serving the terminal device does not belong to the first transmission configuration indication list.
  • the beam serving the terminal device is the beam 2 corresponding to TCI-state2
  • the second transmission configuration indication list is TCI List 2
  • the first TCI determined by the network device in step S403 is TCI-state3
  • the first transmission configuration indication list is TCI List 3
  • the first transmission configuration indication list is different from the second transmission configuration indication list
  • TCI-state2 does not belong to TCI List 3.
  • the network device sends the second indication information to the terminal device.
  • the second indication information may be included in the second information, and the second information may be any one of DCI, RRC signaling, or MAC CE.
  • the types of the second information and the first information may be the same, for example, both the second information and the first information are RRC signaling; the types of the second information and the first information may also be different, for example, the second information is In the RRC signaling, the first information is DCI, which is not specifically limited in this application.
  • the RRC signaling structure when the second information and the first information are both RRC signaling, the RRC signaling structure includes a first field, the size of the first field is 1 bit, and the value of the 1 bit is the first value. (for example, "0"), it indicates that the transmission configuration indication list is not updated. At this time, other fields may not be included in the RRC signaling structure, or other fields may be filled with 0; the value of this 1 bit is the second value (for example, "1"), it indicates that the transmission configuration indication list has been updated.
  • the RRC signaling structure includes a second field, and the second field is used to indicate the transmission configuration indication list and TCI-state.
  • the second field The first subfield is included to indicate the transmission configuration indication list, and the second subfield is included to indicate the TCI-state.
  • the RRC signaling structure may be called TCI-State-Update
  • the first field may be called TCI-State-List-Update
  • the second field may be called TCI-State-Info
  • the first subfield may be Called TCI-State-List-Id
  • the second subfield may be called TCI-State-Id.
  • the RRC signaling structure may be as follows:
  • the terminal device performs beam switching according to the first TCI-state in the first transmission configuration indication list.
  • the terminal device may switch to the beam corresponding to the first TCI-state. Subsequently, if the transmission configuration indication list is not updated, beam switching is performed according to the arrangement order of the TCI-states in the first transmission configuration indication list.
  • the network device may send the second indication information immediately after determining that the first transmission configuration indication information and the second transmission configuration indication information are different. At this time, the network device may also send the second duration to the terminal device, instructing the terminal device to perform beam switching after receiving the second duration starting from the second indication information. Alternatively, after determining that the first transmission configuration indication information and the second transmission configuration indication information are the same, the network device sends the second indication information when it is further determined that the terminal device needs to perform beam switching. At this time, after receiving the second indication information, the terminal device can immediately perform beam switching.
  • the terminal device when performing the above step S405a or S405b, it cannot be determined in advance that the network device will send the first indication information or the second indication information. Therefore, the above step S405a or S405b can be understood by the terminal device.
  • the terminal device receives the indication information from the network device. After receiving the indication information, the terminal device can further confirm that the indication information is the first indication information or the second indication information.
  • the indication information is the first indication information
  • the above step S406a is performed
  • the indication information is the second indication information
  • the above step S406b is performed.
  • the terminal device may confirm that the indication information is the first indication information or the second indication information according to the location where the indication information is located. For example, it is assumed that the first indication information is included in the DCI and the second indication information is included in the RRC signaling, If the terminal device detects the indication information in the DCI, it is the first indication information, and if the terminal device detects the indication information in the RRC signaling, it is the second indication information. Alternatively, the terminal device may determine whether the indication information is the first indication information or the second indication information according to the number of bits occupied by the indication information. For example, when the number of bits occupied by the indication information is small, it is the first indication information, and the indication information is the first indication information. When the number of occupied bits is large, it is the second indication information.
  • step S403 and subsequent steps may be performed multiple times to confirm whether the beam corresponding to the TCI-state included in the transmission configuration indication list previously determined by the network device can continue to serve as the service to be provided for the terminal device.
  • the foregoing step S403 and subsequent steps may be performed periodically or aperiodically, which is not specifically limited in this application.
  • one or more beams to be sequentially provided with services for the terminal device are configured through the transmission configuration indication list, and when the transmission configuration indication list changes, the updated first transmission configuration indication list and the first transmission configuration indication list are indicated to the terminal device.
  • a TCI-state so that the terminal device performs beam switching according to the first transmission configuration indication list and the first TCI-state; when the transmission configuration indication list does not change, instructs the terminal device to perform beam switching according to the original second transmission configuration indication list TCI-state
  • the arrangement order of the states performs beam switching, thereby realizing beam switching.
  • the transmission configuration indication list can configure multiple TCI-states for the terminal device, so that it can be applied to the configuration of large-scale beams in the NTN scenario.
  • the network device does not need to send a TCI-state to indicate the to-be-switched beam to the terminal device every time the terminal device performs beam switching, which can save signaling overhead and improve beam switching efficiency.
  • the network device may group beams according to the movement direction of the network device, and multiple beams corresponding to multiple TCI-states included in each transmission configuration indication list above belong to the same group.
  • Each group of beams may correspond to one or more transmission configuration indication lists. After beam grouping, each group of beams can be regarded as beams in the same cell.
  • the transmission configuration indication list corresponding to the first group of beams may be TCI List 0; the transmission configuration indication list corresponding to the second group of beams may be TCI List 1 and TCI List 2; the transmission configuration indication list corresponding to the third group of beams Can be TCI List 3 and TCI List 4.
  • step S403 shown in FIG. 4 when the terminal device initially accesses the network device, the method shown in FIG. 7a or 7b may also be performed, and the method includes:
  • the network device determines an initial transmission configuration indication list and an initial TCI-state.
  • the initial transmission configuration indication list includes multiple TCI-states including the initial TCI-state.
  • the beams corresponding to the TCI-states after the initial TCI-state are to be used for the terminal equipment in sequence.
  • the beam that provides the service is to be used for the terminal equipment in sequence.
  • the initial transmission configuration indication list is a transmission configuration indication list in one or more transmission configuration indication lists in the foregoing step S401.
  • the network device may determine the initial transmission configuration indication list and the initial TCI-state in the following two implementation manners.
  • the network device may determine the initial transmission configuration indication list and the initial TCI-state according to the location where the terminal device accesses the network device.
  • the location where the terminal device accesses the network device is reported by the terminal device in a random access (random access, RA) process.
  • the random access procedure may be a four-step random access procedure or a two-step random access procedure.
  • the four-step random access process includes steps S700a-S700d, wherein the steps S700a-S700d are four-step random access process:
  • the terminal device sends a message 1 (message 1, Msg1) to the network device.
  • the network device receives the message 1 from the terminal device.
  • the network device sends message 2 to the terminal device.
  • the terminal device receives the message 2 from the network device.
  • the message 2 may include request information, and the request information is used to request the location of the terminal device, and the location is the location where the terminal device is located when accessing the network device.
  • the network device may represent the request information through 1 bit in message 2. For example, when the value of this 1 bit is "1", it indicates that the request information, that is, the network device requests the terminal device for the location of the terminal device. When the value of this 1 bit is "0", it indicates that the terminal device does not need to report its location. information.
  • the terminal device sends message 3 to the network device.
  • the network device receives the message 3 from the terminal device.
  • the message 3 includes location information, and the location information is used to indicate the location of the terminal device.
  • the network device sends message 4 to the terminal device.
  • the terminal device receives the message 4 from the network device.
  • steps S700a-S700c are executed before step S701.
  • S700d and S701 do not have a certain sequence, and step S700d may be performed first and then step S701, or, step S701 may be performed first, and then step S700d, or steps S700d and S701 may be performed simultaneously.
  • the two-step random access process includes steps S700x and S700y, wherein the steps S700x and S700y are a two-step random access process:
  • the terminal device sends message 1 to the network device.
  • the network device receives the message 1 from the terminal device.
  • the message 1 includes location information, and the location information is used to indicate the location of the terminal device.
  • the terminal device when the terminal device sends the preamble through message 1, it has physical uplink shared channel (physical uplink shared channel, PUSCH) resources, so it can be reported in the message 1. location information.
  • physical uplink shared channel physical uplink shared channel, PUSCH
  • the network device sends message 2 to the terminal device.
  • the terminal device receives the message 2 from the network device.
  • the related description of the message 2 may refer to the existing standard, and will not be repeated here.
  • the message 1 and the message 2 are the message 1 and the message 2 in the two-step random access process.
  • step S700x is executed before step S701.
  • S700y and S701 do not have a necessary sequence, and step S700y may be performed first and then step S701, or step S701 may be performed first, and then step S700y may be performed, or step S700y and step S701 may be performed simultaneously.
  • the network device determines the initial TCI-state and the initial transmission configuration indication list according to the location of the terminal device. Reference may be made to the relevant description in the above step S403, which will not be repeated here.
  • the network device may determine the initial TCI-state and the initial transmission configuration indication list through the random access channel opportunity (RACH occasion, RO) at which the terminal device initiates random access.
  • RACH occasion, RO random access channel opportunity
  • the terminal device can determine the initial SSB Index through downlink synchronization, that is, SSB search. After that, the terminal device initiates random access based on the RO corresponding to the initial SSB Index, and the network device can determine the initial SSB Index for downlink synchronization of the terminal device according to the RO, so that the TCI identified by the TCI-state ID corresponding to the initial SSB Index -state is determined as the initial TCI-state. Afterwards, according to the movement direction and movement track of the network device, the beams to be served for the terminal device in turn after the initial TCI-state are determined, so as to determine the initial transmission configuration indication list.
  • the above-mentioned method for the network device to obtain the location of the terminal device or the SSB Index of the downlink synchronization of the terminal device through the random access process can also be performed independently, that is, it is performed independently of other steps of the present application.
  • the network device sends third indication information to the terminal device.
  • the terminal device receives the third indication information from the network device.
  • the third indication information is used to indicate the initial TCI-state and the initial transmission configuration indication list.
  • the terminal device can access the beam corresponding to the initial TCI-state to communicate with the network device.
  • the third indication information may be included in message 4 of S700d. At this time, S702 and S700d are combined into one step.
  • the third indication information may be included in message 2 of S700y. At this time, S702 and S700y are combined into one step.
  • the initial access beam can be configured for the terminal device, and subsequently, step S403 and subsequent steps in the above-mentioned FIG. 4 can be performed to determine whether the transmission configuration indication list and the TCI-state need to be changed.
  • the action of the network device may be performed by the processor 301 in the network device 30 shown in FIG. 2 calling the application code stored in the memory 302 to instruct the network device.
  • Device execution in the above-mentioned embodiment shown in FIG. 4 or FIG. 7a or FIG. 7b, the action of the terminal device can be performed by the processor 401 in the terminal device 40 shown in FIG. 2 calling the application program code stored in the memory 402 to instruct the It is executed by the terminal device, which is not limited in this embodiment.
  • the methods and/or steps implemented by terminal equipment may also be implemented by components (such as chips or circuits) that can be used in terminal equipment, and the methods and/or steps implemented by network equipment, It can also be implemented by components (eg, chips or circuits) that can be used in network equipment.
  • an embodiment of the present application further provides a communication device, where the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component usable for the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or including the foregoing A device of a network device, or a component that can be used in a network device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the communication device may be divided into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 8 shows a schematic structural diagram of a terminal device 80 .
  • the terminal device 80 includes a processing module 801 and a transceiver module 802 .
  • the transceiver module 802 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 802 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the terminal device in the foregoing method embodiments.
  • the processing module 801 may be configured to perform processing steps (eg, determination, acquisition, etc.) performed by the terminal device in the above method embodiments.
  • the transceiver module 802 is used to receive the indication information from the network device; the processing module 801 is used to perform beam switching according to the arrangement order of the TCI-state in the second transmission configuration indication list when the indication information is the first indication information , or, the processing module 801, configured to perform beam switching according to the first TCI-state in the first transmission configuration indication list when the indication information is the second indication information, where the first transmission configuration indication list includes the first TCI-state For multiple TCI-states including the state, in the first transmission configuration indication list, the beams corresponding to the TCI-states starting from the first TCI-state are the beams to be sequentially provided with services for the terminal device.
  • the transceiver module 802 is further configured to receive one or more transmission configuration indication lists, where the one or more transmission configuration indication lists include a first transmission configuration indication list and/or a second transmission configuration indication list.
  • the transceiver module 802 is further configured to receive request information from the network device through the message 2 in the random access process, where the request information is used to request the location of the terminal device; the transceiver module 802 is further configured to use the random access Message 3 in the process sends location information to the network device, where the location information is used to indicate the location of the terminal device.
  • the terminal device 80 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the terminal device 80 may take the form of the terminal device 40 shown in FIG. 2 .
  • the processor 401 in the terminal device 40 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 402 to cause the terminal device 40 to execute the beam management method in the above method embodiment.
  • the functions/implementation process of the processing module 801 and the transceiver module 802 in FIG. 8 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 2 calling the computer execution instructions stored in the memory 402 .
  • the function/implementation process of the processing module 801 in FIG. 8 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 2 calling the computer execution instructions stored in the memory 402, and the function of the transceiver module 802 in FIG. /
  • the realization process can be realized by the transceiver 403 in the terminal device 40 shown in FIG. 2 .
  • the terminal device 80 provided in this embodiment can execute the above beam management method, reference can be made to the above method embodiments for technical effects that can be obtained, and details are not described herein again.
  • FIG. 9 shows a schematic structural diagram of a network device 90 .
  • the network device 90 includes a processing module 901 and a transceiver module 902 .
  • the transceiver module 902 which can also be called a transceiver unit, is used to implement sending and/or receiving functions, for example, it can be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 902 may include a receiving module and a sending module, which are respectively configured to perform the steps of receiving and sending performed by the network device in the foregoing method embodiments.
  • the processing module 901 may be configured to perform processing steps (eg, determination, acquisition, etc.) performed by the network device in the foregoing method embodiments.
  • the processing module 901 is configured to determine a first TCI-state and a first transmission configuration indication list, the first transmission configuration indication list includes multiple TCI-states including the first TCI-state, the first transmission configuration indication In the list, the beam corresponding to the TCI-state after the first TCI-state is the beam to provide services for the terminal equipment in turn; when the first transmission configuration indication list is the same as the second transmission configuration indication list, the transceiver module 902, is used to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to perform beam switching according to the arrangement order of the TCI-state in the second transmission configuration indication list, where the second transmission configuration indication list is on the network device A transmission configuration indication list determined once; when the first transmission configuration indication list is different from the second transmission configuration indication list, the transceiver module 902 is used to send second indication information to the terminal device, where the second indication information is used to indicate the first transmission configuration indication list. TCI-state and first transmission configuration indication list.
  • the transceiver module 902 is further configured to send one or more transmission configuration indication lists, where the one or more transmission configuration indication lists include a first transmission configuration indication list and/or a second transmission configuration indication list.
  • the processing module 901 is specifically configured to determine the first TCI-state and the first transmission configuration indication list according to the location of the terminal device.
  • the transceiver module 902 is further configured to send request information to the terminal device through message 2 in the random access process, where the request information is used to request the location of the terminal device; the transceiver module 902 is further configured to send request information to the terminal device through the random access process Message 2 in Receives location information from the terminal device, which is used to indicate the location of the terminal device.
  • the network device 90 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the network device 90 may take the form of the network device 30 shown in FIG. 2 .
  • the processor 301 in the network device 30 shown in FIG. 2 may call the computer stored in the memory 302 to execute instructions, so that the network device 30 executes the beam management method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 901 and the transceiver module 902 in FIG. 9 can be implemented by the processor 301 in the network device 30 shown in FIG. 2 calling the computer execution instructions stored in the memory 302 .
  • the function/implementation process of the processing module 901 in FIG. 9 can be implemented by the processor 301 in the network device 30 shown in FIG. 2 calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 902 in FIG. 9 is implemented.
  • the implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 2 .
  • the network device 90 provided in this embodiment can execute the above beam management method, reference can be made to the above method embodiments for the technical effects that can be obtained, and details are not repeated here.
  • an embodiment of the present application further provides a communication apparatus, where the communication apparatus includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device may be a chip or a chip system, and when the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), the communication device includes an interface circuit and a logic circuit, and the interface circuit is used to obtain input information and/or Outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes an interface circuit and a logic circuit, and the interface circuit is used to obtain input information and/or Outputting output information; the logic circuit is configured to execute the method in any of the above method embodiments, and process and/or generate output information according to the input information.
  • the input information may be one of the foregoing first indication information, second indication information, one or more transmission configuration indication lists, request information, or multiple.
  • the output information may be the above-mentioned location information.
  • the output information may be one of the foregoing first indication information, second indication information, one or more transmission configuration indication lists, request information, or multiple.
  • the input information may be the above-mentioned location information.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供波束管理方法、装置及系统,可以适用于非陆地网络NTN,实现NTN通信中的波束管理,节省信令开销。该方法中,网络设备可以确定第一传输配置指示列表以及该第一传输配置指示列表中待为终端设备依次提供服务的一个或多个波束,在该第一传输配置指示列表与网络设备上一次确定的传输配置指示列表相同时,网络设备指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换即可;在该第一传输配置指示列表与网络设备上一次确定的传输配置指示列表不同时,向终端设备指示第一传输配置指示列表以及第一TCI-state,使得终端设备可以根据第一传输配置指示列表中TCI-state的排列顺序从第一TCI-state开始执行波束切换。

Description

波束管理方法、装置及系统
本申请要求于2020年09月23日提交国家知识产权局、申请号为202011006619.5、申请名称为“波束管理方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及波束管理方法、装置及系统。
背景技术
高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
在目前的新空口(new radio,NR)协议中,波束信息可通过天线端口的准共址(quasi colocation,QCL)关系进行指示。QCL关系用于表示多个天线端口对应的波束具有一个或多个相同或者类似的空间特征。物理下行共享信道(physical downlink shared channel,PDSCH)的QCL信息可以由传输配置指示(transmission configuration indicator state,TCI)配置,具体的,可以由TCI状态(TCI-state)指示与PDSCH的解调参考信号(demodulation reference signal,DMRS)满足QCL关系的参考信号。
现有的NR波束管理流程中,在波束切换时,网络设备向终端设备发送下行控制信息(downlink control information,DCI)以指示用于接收PDSCH的波束。
然而,在非陆地网络(non-terrestrial network,NTN)中,波束规模较大,波束切换频繁,现有的波束管理方法可能不再适用,因此,有必要设计合理的方案,以实现NTN场景下的波束管理。
发明内容
本申请提供一种波束管理方法、装置及系统,可以适用于NTN,实现NTN通信中的波束管理,节省信令开销。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供了一种波束管理方法,该方法可以应用于NTN场景,例如卫星通信系统。该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备接收来自网络设备的指示信息,该指示信息为第一指示信息时,终端设备根据第二传输配置指示列表中传输配置指示状态TCI-state的排列顺序执行波束切换;该指示信息为第二指示信息时,终端设备根据第一传输配置指示列表中的第一TCI-state执行波束切换,该第一传输配置指示列表包括第一TCI-state在内的多个TCI-state,第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。
基于该方案,通过传输配置指示列表配置待为终端设备依次提供服务的一个或多个波束,终端设备可以根据网络设备的指示按照该传输配置指示列表中TCI-state的排列顺序执行波束切换,从而实现波束管理。此外,传输配置指示列表可以向终端设备配置多个TCI-state,从而可以适用于NTN场景下的大规模波束的配置。再者,网络设备无需在终端设备每次进行波 束切换时都发送TCI-state以指示待切换的波束,可以节省信令开销,提高波束切换效率。
在一些可能的设计中,第一指示信息用于指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换;第二指示信息用于指示第一TCI-state和第一传输配置指示列表。基于该方案,终端设备可以根据第一指示信息按照第二传输配置指示列表中TCI-state的排列顺序执行波束切换,或者,根据第二指示信息按照第一TCI-state执行波束切换。
在一些可能的设计中,终端设备在接收来自网络设备的指示信息之前,该波束管理方法还包括:终端设备接收一个或多个传输配置指示列表,该一个或多个传输配置指示列表包括第一传输配置指示列表和/或第二传输配置指示列表。基于该方案,终端设备接收一个或多个传输配置指示列表后,可以存储该一个或多个传输配置指示列表,以便后续根据网络设备的指示按照该一个或多个传输配置指示列表中的第一传输配置指示列表或第二传输配置指示列表进行波束切换。
在一些可能的设计中,该波束管理方法还包括:终端设备通过随机接入过程中的消息2接收来自网络设备的请求信息,该请求信息用于请求终端设备的位置;终端设备还通过随机接入过程中的消息3向网络设备发送位置信息,该位置信息用于指示终端设备的位置。基于该方案,可以在随机接入过程中获取终端设备的位置,无需再终端设备接入网络设备后再发送消息以请求终端设备上报其位置,可以节省信令开销,并快速获取终端设备的位置。
在一些可能的设计中,在接收指示信息之前,该波束管理方法还包括:终端设备接收来自网络设备的第三指示信息,该第三指示信息用于指示初始TCI-state和初始传输配置指示列表,该初始传输配置指示列表包括初始TCI-state在内的多个TCI-state,该初始传输配置指示列表中,从初始TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;终端设备接入该初始TCI-state对应的波束。
第二方面,提供一种波束管理方法,该方法可以应用于NTN场景,例如卫星通信系统。该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,本申请以网络设备执行该方法为例进行说明。
该方法包括:网络设备确定第一传输配置指示状态TCI-state和第一传输配置指示列表,该第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;在第一传输配置指示列表与第二传输配置指示列表相同时,向终端设备发送第一指示信息,第一指示信息用于指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换,第二传输配置指示列表为网络设备上一次确定的传输配置指示列表;在第一传输配置指示列表与第二传输配置指示列表不同时,向终端设备发送第二指示信息,该第二指示信息用于指示第一TCI-state和第一传输配置指示列表。
基于该方案,通过传输配置指示列表配置待为终端设备依次提供服务的一个或多个波束,在传输配置指示列表发生变化时,向终端设备指示更新后的第一传输配置指示列表和第一TCI-state,使得终端设备根据第一传输配置指示列表和第一TCI-state执行波束切换;在传输配置指示列表未发生变化时,指示终端设备根据原来的第二传输配置指示列表中TCI-state的排列顺序执行波束切换,从而实现波束管理。此外,传输配置指示列表可以向终端设备配置多个TCI-state,从而可以适用于NTN场景下的大规模波束的配置。再者,网络设备无需在终端设备每次进行波束切换时都发送TCI-state以指示待切换的波束,可以节省信令开销,提高波束切换效率。
在一些可能的设计中,网络设备向终端设备发送第指示信息或第二指示信息之前,该波束管理方法还包括:发送一个或多个传输配置指示列表,该一个或多个传输配置指示列表包 括第一传输配置指示列表和/或第二传输配置指示列表。基于该方案,网络设备发送该一个或多个传输配置指示列表,以便后续向终端设备指示按照该一个或多个传输配置指示列表中的第一传输配置指示列表或第二传输配置指示列表进行波束切换。
在一些可能的设计中,网络设备确定第一TCI-state和第一传输配置指示列表,包括:网络设备根据终端设备的位置确定第一TCI-state和第一传输配置指示列表。
在一些可能的设计中,该波束管理方法还包括:网络设备通过随机接入过程中的消息2向终端设备发送请求信息,该请求信息用于请求终端设备的位置;网络设备还通过随机接入过程中的消息3接收来自终端设备的位置信息,该位置信息用于指示终端设备的位置。基于该方案,可以在随机接入过程中获取终端设备的位置,无需再终端设备接入网络设备后再发送消息以请求终端设备上报其位置,可以节省信令开销,并快速获取终端设备的位置。
在一些可能的设计中,网络设备确定第一TCI-state和第一传输配置指示列表之前,该波束管理方法还包括:网络设备确定初始TCI-state和初始传输配置指示列表,该初始传输配置指示列表包括初始TCI-state在内的多个TCI-state,该初始传输配置指示列表中,从初始TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;网络设备向终端设备发送第三指示信息,该第三指示信息用于指示初始TCI-state和初始传输配置指示列表。
结合上述第一方面和第二方面,在一些可能的设计中,上述一个或多个传输配置指示列表中的每个传输配置指示列表包括多个TCI-state,不同传输配置指示列表包括的TCI-state不完全相同,同一传输配置指示列表包括的多个TCI-state对应的多个波束根据所述网络设备的运动方向排列。
结合上述第一方面和第二方面,在一些可能的设计中,该一个或多个传输配置指示列表包含于系统信息中,或者,包含于无线资源控制RRC信令中。基于该方案,该一个或多个传输配置指示列表在系统信息中发送时,网络设备无需通过终端设备的专有信令向每个终端设备分别发送该一个或多个传输配置指示列表,从而可以节省信令开销。该一个或多个传输配置指示列表在RRC信令中发送时,网络设备可以为不同终端设备配置不同的传输配置指示列表,从而可以提高配置灵活性。
结合上述第一方面和第二方面,在一些可能的设计中,上述第一指示信息或第二指示信息包含于以下任意一项中:下行控制信息DCI、媒体接入控制控制元素MAC CE、无线资源控制RRC信令。
第三方面,提供了一种位置获取方法,该方法可以应用于NTN场景,例如卫星通信系统。该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,本申请以终端设备执行该方法为例进行说明。该方法包括:终端设备通过随机接入过程中的消息2接收来自网络设备的请求信息,该请求信息用于请求终端设备的位置;终端设备通过随机接入过程中的消息3向网络设备发送位置信息,该位置信息用于指示终端设备的位置。基于该方案,可以在随机接入过程中获取终端设备的位置,无需再终端设备接入网络设备后再发送消息以请求终端设备上报其位置,可以节省信令开销,并快速获取终端设备的位置。
第四方面,提供了一种位置获取方法,该方法可以应用于NTN场景,例如卫星通信系统。该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,本申请以网络设备执行该方法为例进行说明。该方法包括:网络设备通过随机接入过程中的消息2向终端设备发送请求信息,该请求信息用于请求终端设备的位置;网络设备通过随机接入过程中的消息3接收来自终端设备的位置信息,该位置信息用于指示 终端设备的位置。其中,第四方面所带来的技术效果可参见上述第三方面所带来的技术效果,在此不予赘述。
第五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第七方面,提供了一种通信装置,包括:接口电路和逻辑电路,该接口电路可以为代码/数据读写接口电路,该接口电路用于获取输入信息和/或输出输出信息;该逻辑电路用于执行上述任一方面所述的方法,根据该输入信息进行处理和/或生成该输出数据。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第八方面,提供了一种通信装置,包括:至少一个处理器;该处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第十一方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至第十一方面中任一种设计方式所带来的技术效果可参见上述第一方面 或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,提供一种通信系统,该通信系统包括上述方面所述的终端设备和上述方面所述的网络设备。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图3为本申请实施例提供的另一种终端设备的结构示意图;
图4为本申请实施例提供的一种波束管理方法的流程示意图;
图5为本申请实施例提供的一种波束分布示意图;
图6为本申请实施例提供的一种波束分组示意图;
图7a为本申请实施例提供的另一种波束管理方法的流程示意图;
图7b为本申请实施例提供的又一种波束管理方法的流程示意图;
图8为本申请实施例提供的又一种终端网设备的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、天线端口:
天线端口是逻辑上的概念,一个天线端口可以对应一个物理发射天线,也可以对应多个物理发射天线。在这两种情况下,终端的接收机(receiver)都不会去分解来自同一个天线端口的信号。因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口,例如,对应解调参考信号(de-modulation reference signal,DMRS)的天线端口即DMRS端口,终端都可以根据这个参考信号得到这个天线端口的信道估计。每个天线端口对应一个时频资源网格(time/frequency resource grid),有其独自的参考信号。一个天线端口就是一个信道,终端可以根据这个天线端口对应的参考信号进行信道估计和数据解调。
2、波束:
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以由一个或多个天线端口所形成,用于传输数据信道,控制信道和探测信号等。形成一个波束的一个或多个天线端口可以看作是一个天线端口集。
波束包括发射波束和接收波束。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。
在目前的NR协议中,波束信息可通过天线端口准共址(quasi colocation,QCL)关系来进行指示。具体地,可以在指示信息(例如,下行控制信息(downlink control information,DCI))中指示一个资源(或天线端口)与另一个资源(或天线端口)具有准共址关系,来表示这两个资源(或天线端口)对应的波束具有一个或多个相同或类似的空间特征(或参数),可以采用同一个接收波束来接收。
波束在协议中具体地可以通过各种信号的标识来表示,例如信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源索引,同步信号广播信道块(synchronous signal/physical broadcast channel block,SSB)的索引,探测参考信号(sounding reference signal,SRS)的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引。
另外,一般情况下,一个波束与一个DMRS端口或一个传输配置指示(transmission configuration indicator,TCI)或一个探测参考信号资源指示(SRS resource indicator,SRI)(用于上行数据传输)对应,因此,不同的波束也可以通过不同的DMRS端口或TCI或SRI表示。
3、QCL:
QCL关系用于表示多个天线端口对应的波束(或资源)之间具有一个或多个相同或者相类似的通信特征。对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。
具体的,具有QCL关系的天线端口具有相同的参数,或者,一个天线端口的参数(也可以称为QCL参数)可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
4、TCI:
TCI可以用于指示物理下行控制信道(physical downlink control channel,PDCCH)/物理下行共享信道(physical downlink shared channel,PDSCH)的QCL信息。具体可以由高层信令参数PDSCH-config配置最多M个TCI-state指示与PDCCH/PDSCH的DMRS满足QCL关系的参考信号,M的取值取决于终端能力。每个TCI-state定义了与PDSCH的DMRS满足QCL关系的一个或者多个参考信号。
TCI-state中具体可以通过参考信号索引来指示与PDCCH/PDSCH的DMRS满足QCL关系的参考信号。
5、非地面网络(non-terrestrial network,NTN):
NTN通信可以包括卫星通信,其可以指将基站或者部分基站功能部署在卫星上为终端设备提供覆盖。卫星通信具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理位置限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播、对地观测等多个领域。
按照卫星高度,即卫星轨位高度,可以将卫星系统分为高椭圆轨道(highly elliptical orbiting,HEO)、高轨(geostationary earth orbit,GEO)卫星、中轨(medium earth orbit,MEO)卫星和低轨(low-earth orbit,LEO)卫星。其中,GEO卫星又称静止卫星,其运动速度与地球自转速度相同,因此GEO卫星相对地面保持静止状态,对应的,GEO卫星的小区也是静止的。GEO卫星小区的覆盖较大,一般情况下小区的直径为500千米(kilometre,Km)。LEO卫星相对地面移动较快,大约7Km每秒,因此LEO卫星提供的服务覆盖区域也随之移动。通常来说,卫星的轨道越高其覆盖面积越大,但是其通信时延也越长。
此外,NTN通信还可以包括高空平台(high altitude platform station,HAPS)通信,指将 基站或者部分基站功能部署在高空平台上为终端设备提供覆盖。
目前,网络设备通常以终端设备为粒度为每个终端设备配置TCI,后续通信过程中,在网络设备为终端设配置的TCI的个数大于8时,网络设备首先发送媒体接入控制控制元素(media access control control element,MAC CE)激活最多8个TCI,再通过DCI中的“TCI-PresentInDCI”字段(或信元)指示激活的多个TCI中最终所使用的TCI,终端设备可以根据该最终使用的TCI确定接收PDSCH的波束。在网络设备为终端设备配置的TCI的个数小于或等于8时,网络设备通过DCI中的“TCI-PresentInDCI”字段直接指示使用的TCI,终端设备可以根据该最终使用的TCI确定接收PDSCH的波束;或者,在DCI中不携带“TCI-PresentInDCI”字段时,终端设备假设PDSCH与PDCCH满足QCL关系,此时,接收PDSCH的波束可以根据接收PDCCH的波束确定。
上述方案中,在每次进行波束切换时,网络设备需向终端设备下发MAC CE或DCI,并且在DCI中携带TCI-PresentInDCI字段来指示TCI。然而,在NTN场景下,波束规模较大,波束切换频繁,上述方法可能不再适用。基于此,本申请提供一种波束管理方法,以实现NTN场景下的波束管理。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或者多个,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中“-”表示前后关联的对象是一种“和”的关系,a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、卫星通信系统、NTN系统、物联网(internet of things,IoT)系统、或未来演进的通信系统等。术语“系统”可以和“网络”相互替换。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图1所示,为本申请提供的一种通信系统10。该通信系统10包括网络设备30,以及与该网络设备30连接的一个或多个终端设备40。可选的,不同的终端设备40之间可以相互通信。
以图1所示的网络设备30和任一终端设备40通信为例,本申请中,网络设备确定第一传输配置指示状态TCI-state和第一传输配置指示列表,该第一传输配置指示列表包括第一TCI-state在内的多个TCI-state,该第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。在第一传输配置指示列表与第二 传输配置指示列表相同时,网络设备向终端设备发送第一指示信息,该第一指示信息用于指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换。相应的,终端设备收到第一指示信息后,根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换。其中,第二传输配置指示列表为网络设备上一次确定的传输配置指示列表。在第一传输配置指示列表与第二传输配置指示列表不同时,网络设备向终端设备发送第二指示信息,该第二指示信息用于指示第一TCI-state和第一传输配置指示列表。相应的,终端设备收到第二指示信息后,根据第一传输配置指示列表和第一TCI-state执行波束切换。
基于该方案,本申请通过传输配置指示列表配置待为终端设备依次提供服务的一个或多个波束,在传输配置指示列表发生变化时,向终端设备指示更新后的第一传输配置指示列表和第一TCI-state,使得终端设备根据第一传输配置指示列表和第一TCI-state执行波束切换;在传输配置指示列表未发生变化时,指示终端设备根据原来的第二传输配置指示列表中TCI-state的排列顺序执行波束切换,从而实现波束切换。此外,传输配置指示列表可以向终端设备配置多个TCI-state,从而可以适用于NTN场景下的大规模波束的配置。再者,网络设备无需在终端设备每次进行波束切换时都发送TCI-state以指示待切换的波束,可以节省信令开销,提高波束切换效率。
可选的,本申请实施例中的网络设备30可以部署于高空平台或者卫星20。可选的,该通信系统10还可以包括测控站和核心网网关,网络设备30可以连接到核心网网关,通过该核心网网关与地面数据网络(data network,DN)完成数据交互。测控站用于完成对高空平台或卫星20的测量、遥测等,例如,控制高空平台或卫星20的飞行姿态,控制载荷设备的开关等。
可选的,本申请实施例中的网络设备30,是一种将终端设备40接入到无线网络的设备,所述网络设备30可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者也可以包括5G新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等;再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU);又或者可以包括非陆地网络(non-terrestrial network,NTN)中的基站,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhual,IAB)节点;又或者,网络设备可以是IoT中实现基站功能的设备,例如车联网(vehicle-to-everything,V2X)、设备到设备(device to device,D2D)、或者机器到机器(machine to machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是IoT中具有通信功能的终端,例如V2X中的终端(例如车联网设备)、D2D通信中的终端、或者M2M通信中的终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端设备40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图2所示,为本申请实施例提供的网络设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图2中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图2中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图2中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图2中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图2中示例性的以包括一个输入设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的波束管理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序 代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、RAN、或者无线局域网(wireless local area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备30包括至少一个处理器(图2中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图2中示例性的以包括一个收发器303为例进行说明)。可选的,网络设备30还可以包括至少一个存储器(图2中示例性的以包括一个存储器302为例进行说明)和至少一个网络接口(图2中示例性的以包括一个网络接口304为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图2中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
可以理解的是,图2所示的结构并不构成对网络设备30或终端设备40的具体限定。比如,在本申请另一些实施例中,网络设备30或终端设备40可以包括比图2所示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
结合图2所示的终端设备40的结构示意图,示例性的,图3为本申请实施例提供的终端设备40的一种具体结构形式。
其中,在一些实施例中,图2中的处理器401的功能可以通过图3中的处理器110实现。
在一些实施例中,图2中的收发器403的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可 以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括LTE,BT,GNSS,WLAN,NFC,FM,或IR技术等。
在一些实施例中,图2中的存储器402的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图2中的输出设备404的功能可以通过图3中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图2中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图3中的传感器模块180来实现。示例性的,如图3所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图3所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图3所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,以图1所示的网络设备30与任一终端设备40进行交互为例,对本申请实施例提供的波束管理方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本申请提供一种波束管理方法,该波束管理方法可以应用于NTN场景。当然,该方法还可以应用于其他场景,例如,网络设备可移动,且移动速度较快的场景。本申请对该方法的适用场景不做具体限定,上述示例性的场景也不对该方法构成任何限定。
如图4所示,为本申请提供的波束管理方法,该波束管理方法包括如下步骤:
S401、网络设备确定一个或多个传输配置指示列表(TCI List)。
可选的,网络设备可以将多个波束分别对应的TCI-state划分为一个或多个传输配置指示列表。可以理解的是,波束和TCI-state一一对应,即一个波束对应一个TCI-state,不同波束对应的TCI-state不同。
可选的,该一个或多个传输配置指示列表中的每个传输配置指示列表包括多个TCI-state,不同传输配置指示列表包括的TCI-state不完全相同,同一传输配置指示列表包括的多个TCI-state对应的多个波束按序排列。同一TCI-state可以包含于不同的传输配置指示列表中。
需要说明的是,不同传输配置指示列表中包括的TCI-state的个数可以相同也可以不同,本申请对此不做具体限定。
示例性的,以网络设备确定n+1个传输配置指示列表为例,该n+1个传输配置指示列表可以如下表1所示。
表1
Figure PCTCN2021114709-appb-000001
其中,ID为标识(identifier,ID)。TCI List ID用于标识传输配置指示列表,TCI-state ID用于标识TCI-state,该TCI-state对应的波束可以用Beam ID标识,本申请中以同一波束的Beam ID和TCI-state ID相同为例进行说明。不同TCI List ID标识不同传输配置指示列表,同样地,不同TCI-state ID标识不同TCI-state。
可选的,在网络设备的运动轨迹可预测的情况下,同一传输配置指示列表包括的TCI-state对应的多个波束的排列顺序可以是根据网络设备的运动方向确定的,例如,该多个TCI-state对应的多个波束按照网络设备的运动方向排列,或者说,该多个TCI-state对应的多个波束沿网络设备的运动方向排列。
示例性的,假设网络设备的波束分布如图5所示。其中,每个六边形表示网络设备的一个波束,每个波束对应一个TCI-state,六边形中的数字表示TCI-state ID,网络设备的运动方向如图5中的黑色箭头所示,那么该传输配置指示列表中的多个TCI-state可以根据网络设备的运动方向排列。
示例性的,基于图5所示的示例,网络设备确定的一个或多个传输配置指示列表可以如下表2所示。
表2
TCI List 0 TCI List 1 TCI List 2 TCI List 3 TCI List 4
TCI-state 18 TCI-state 19 TCI-state 19 TCI-state 8 TCI-state 8
TCI-state 17 TCI-state 7 TCI-state 2 TCI-state 9 TCI-state 9
TCI-state 16 TCI-state 6 TCI-state 1 TCI-state 3 TCI-state 10
TCI-state 15 TCI-state 5 TCI-state 5 TCI-state 4 TCI-state 11
  TCI-state 14 TCI-state 13 TCI-state 12 TCI-state 12
S402、网络设备发送一个或多个传输配置指示列表。
可选的,网络设备可以发送系统信息,在该系统信息中包括该一个或多个传输配置指示列表。也就是说,该一个或多个传输配置指示列表包含于系统信息中。该系统信息例如可以为同步信号/物理广播信道块(synchronization signal/PBCH block,SSB)、主信息块(master information block,MIB)或系统信息块(system information block,SIB)等。其中,PBCH指物理广播信道(physical broadcast channel)。
基于该方案,该一个或多个传输配置指示列表在系统信息中发送,网络设备无需通过终端设备的专有信令向每个终端设备分别发送该一个或多个传输配置指示列表,从而可以节省信令开销。
或者,网络设备可以发送无线资源控制(radio resource control,RRC)信令,在该RRC信令中包括该一个或多个传输配置指示列表。也就是说,该一个或多个传输配置指示列表包含于RRC信令中。
示例性的,该一个或多个传输配置指示列表可以包含于RRC信令的“PDSCH-ConfigCommon”配置中的“tci-StatesToAddModListCommon”信元中。当然,也可以包含于于RRC信令的其他配置或信元中,本申请对此不做具体限定。
基于该方案,该一个或多个传输配置指示列表在RRC信令中发送,网络设备可以为不同终端设备配置不同的传输配置指示列表,从而可以提高配置灵活性。
可选的,在网络设备的运动轨迹发生变化时,网络设备可以重新执行上述步骤S401和S402,以更新传输配置指示列表。
需要说明的是,上述步骤S401和S402并非必须要执行,即可以不执行上述步骤S401和S402。例如,在上述一个或多个传输配置指示列表由协议预定义的情况下,上述步骤S401和S402可以不执行。
S403、网络设备确定第一TCI-state和第一传输配置指示列表。
可以理解的是,该第一传输配置指示列表是上述步骤S401所述的一个或多个传输配置指示列表中的一个传输配置指示列表。
其中,该第一传输配置指示列表包括第一TCI-state在内的多个TCI-state,该第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。也就是说,在该步骤S403中,网络设备可以确定(或预估)待为终端设备依次提供服务的一个或多个波束,该一个或多个波束中,第一TCI-state对应的波束是待为终端设备提供服务的第一个波束。
可选的,在本申请的不同实施例中,网络设备确定第一TCI-state和第一传输配置指示列表的方式可能不同。
一种可能的实现方式中,网络设备可以根据终端设备的位置确定第一TCI-state和第一传输配置指示列表。
该实现方式中,在该步骤S403之前,该波束管理方法还可以包括:网络设备获取终端设备的位置。
可选的,该终端设备的位置可以是网络设备请求终端设备上报的,也可以是网络设备利用辅助定位的功能确定的,本申请对此不做具体限定。
可选的,在假设终端设备静止的情况下,例如,终端设备为物联网(Internet of Things,IoT)中的智能设备(如智能水表等)时,网络设备请求终端设备上报终端设备的位置,可以包括:
网络设备通过随机接入过程中的消息2(message 2,Msg2)向终端设备发送请求信息,相应的,终端设备通过随机接入过程中的消息2接收来自网络设备的请求信息,该请求信息用于请求终端设备的位置。
之后,终端设备通过随机接入过程中的消息3(message 3,Msg3)向网络设备发送位置信息,该位置信息用于指示终端设备的位置。相应的,网络设备接收该消息3以获取终端设备的位置。
需要说明的是,通过随机接入过程中的消息2向终端设备发送请求信息,可以理解为:向终端设备发送随机接入过程中的消息2,该消息2包括该请求信息。类似地,通过随机接入过程中的消息3向网络设备发送位置信息,可以理解为:向网络设备发送随机接入过程中的消息3,该消息3包括位置信息。
也就是说,网络设备在随机接入过程中即可以向终端设备请求其位置,以获取终端设备的位置,从而实现终端设备位置的快速获取。
可选的,网络设备在随机接入过程中通过上述方法获取到终端设备的位置后,可以保存该终端设备的位置,后续在执行步骤S403时读取其存储的终端设备的位置,并根据该位置确定第一TCI-state和第一传输配置指示列表。
可选的,获取终端设备的位置后,网络设备可以将对应的波束范围包括终端设备位置的TCI-state确定为第一TCI-state,之后,根据网络设备的运动方向和运动轨迹,确定第一TCI-state后待依次为终端设备提供服务的波束,从而确定第一传输配置指示列表。
示例性的,基于图5的示例,假设网络设备获取终端设备的位置后,确定终端设备位于TCI-state3对应的波束3的波束范围内,网络设备可以确定第一TCI-state为TCI-state3。又由于网络设备的运动方向和运动轨迹已知,网络设备可以预估在TCI-state3后依次为终端设备提供服务的波束对应的TCI-state为TCI-state4和TCI-state12,则基于上述表2,第一传输配置指示列表为TCI List 3。
另一种可能的实现方式中,网络设备可以基于终端设备上报的SSB Index确定第一TCI-state和第一传输配置指示列表。
可选的,在SSB与上述波束一一对应,即SSB Index和Beam ID一一对应的情况下,终端设备可以通过下行同步,即SSB搜索确定SSB Index,之后,终端设备可以向网络设备指示该SSB Index,由于SSB Index和Beam ID一一对应,因此网络设备可以确定该SSB Index对应的Beam ID和TCI-state ID,从而确定终端设备所处的波束,进而将终端设备上报的SSB Index对应的TCI-state ID所标识的TCI-state确定为第一TCI-state。之后,根据网络设备的运动方向和运动轨迹,确定第一TCI-state后待依次为终端设备提供服务的波束,从而确定第一传输配置指示列表。
可选的,该可能的实现方式中,在终端设备上报SSB Index之前,网络设备可以向终端设备发送信息以请求终端设备上报SSB Index。
S404、网络设备确定第一传输配置指示列表与第二传输配置指示列表是否相同。
其中,在确定第一传输配置指示列表后,网络设备可以将第一传输配置指示列表与第二传输配置指示列表进行比较,在第一传输配置指示列表与第二传输配置指示列表相同时,执行下述步骤S405a和S406a;在第一传输配置指示列表与第二传输配置指示列表不同时,执行下述步骤S405b和S406b。
其中,该第二传输配置指示列表是网络设备上一次确定的传输配置指示列表。或者说,第二传输配置指示列表是在确定第一传输配置指示列表之前,网络设备最后一次确定的传输配置指示列表。
下面首先对第一传输配置指示列表与第二传输配置指示列表相同时的方案进行说明。参见如下步骤S405a和S406a:
S405a、网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于指示终端设备根据第二传输配置指示列表中TCI-state的排列 顺序执行波束切换。或者说,第一指示信息用于指示终端设备根据第一传输配置指示列表中TCI-state的排列顺序执行波束切换。
可选的,在网络设备发送第一指示信息之前,为终端设备提供服务的波束可以是第二传输配置指示列表中第一TCI-state的前一个TCI-state对应的波束。因此,第一指示信息指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换时,待为终端设备提供服务的波束即为第一TCI-state对应的波束。
示例性的,基于图5所示的示例,假设第一传输配置指示列表和第二传输配置指示列表相同,为TCI List 3,在网络设备发生第一指示信息之前,为终端设备提供服务的波束是TCI-state9对应的波束9,则第一TCI-state为TCI-state3,下一个为终端设备提供服务的波束即为TCI-state3对应的波束3。
或者,本申请的一些实施例中,在网络设备发送第一指示信息之前,为终端设备提供服务的波束不是第二传输配置指示列表中第一TCI-state的前一个TCI-state对应的波束,即该波束对应的TCI-state与第一TCI-state之间间隔了一个或多个TCI-state。此时,可以理解为发生了波束跳变,该情况下,第一指示信息可以用于指示第一TCI-state,例如,包括第一TCI-state的标识,相应的,终端设备可以确定下一个为终端设备提供服务的波束为第一TCI-state对应的波束。
示例性的,基于图5所示的示例,假设第一传输配置指示列表和第二传输配置指示列表相同,为TCI List 3,在网络设备发生第一指示信息之前,为终端设备提供服务的波束是TCI-state8对应的波束8,第一TCI-state为TCI-state3,则第一信息可以用于指示TCI-state3,下一个为终端设备提供服务的波束即为TCI-state3对应的波束3。
需要说明的是,上述发生波束跳变的方案仅是本申请提供的一种可能的方案,本申请下述实施例中,以未发生波束跳变为例进行说明。
可选的,第一指示信息可以包含于第一信息中,该第一信息可以是DCI、RRC信令、或MAC CE中的任意一项。
可选的,网络设备可以通过第一信息中的第一字段表示第一指示信息。该第一字段的大小可以为1比特(bit)。在第一信息包括该第一字段时,表示第一信息包括了第一指示信息,第一指示信息指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换。或者,在该第一字段的1比特的取值为“1”时,表示第一指示信息;或者,在该1比特的取值为“0”时,表示第一指示信息。
S406a、终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换。
可以理解的是,终端设备可以根据第二传输配置指示列表中TCI-state的排列顺序确定下一个为终端设备提供服务的波束为第一TCI-state对应的波束。之后,终端设备可以切换至第一TCI-state对应的波束。
可选的,网络设备可以在确定第一传输配置指示信息和第二传输配置指示信息相同后,立即发送第一指示信息。此时,网络设备还可以向终端设备发送第一时长,指示终端设备在收到第一指示信息开始的第一时长后执行波束切换。或者,网络设备确定第一传输配置指示信息和第二传输配置指示信息相同后,在进一步确定终端设备需执行波束切换时发送该第一指示信息。此时,终端设备收到该第一指示信息后,可以立即执行波束切换。
下面对第一传输配置指示列表与第二传输配置指示列表不同时的方案进行说明。参见如下步骤S405b和S406b:
S405b、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的 第二指示信息。
其中,该第二指示信息用于指示第一TCI-state和第一传输配置指示列表。示例性的,第二指示信息包括第一TCI-state的标识和第一传输配置指示列表的标识。
可选的,该场景下,在网络设备发送第二指示信息之前,为终端设备提供服务的波束对应的TCI-state不属于第一传输配置指示列表。
示例性的,基于图5所示的示例,假设在网络设备发送第二指示信息之前,为终端设备提供的服务的波束是TCI-state2对应的波束2,第二传输配置指示列表为TCI List 2,步骤S403中网络设备确定的第一TCI为TCI-state3,第一传输配置指示列表为TCI List 3,则第一传输配置指示列表与第二传输配置指示列表不同,TCI-state2不属于TCI List 3,网络设备向终端设备发送第二指示信息。
可选的,第二指示信息可以包含于第二信息中,该第二信息可以是DCI、RRC信令、或MAC CE中的任意一项。
可选的,第二信息和第一信息的类型可以相同,例如,第二信息和第一信息均为RRC信令;第二信息和第一信息的类型也可以不同,例如,第二信息是RRC信令,第一信息是DCI,本申请对此不做具体限定。
可选的,在第二信息和第一信息均为RRC信令时,该RRC信令结构体包括第一字段,该第一字段的大小为1比特,在该1比特取值为第一数值(例如“0”)时,表示传输配置指示列表未更新,此时,该RRC信令结构体中可以不包括其他字段,或其他字段用0填充;在该1比特的取值为第二数值(例如“1”)时,表示传输配置指示列表有更新,此时,该RRC信令结构中包括第二字段,第二字段用于指示传输配置指示列表和TCI-state,例如,第二字段包括第一子字段用于指示传输配置指示列表,包括第二子字段用于指示TCI-state。
可选的,该RRC信令结构体可以称为TCI-State-Update,第一字段可以称为TCI-State-List-Update,第二字段可以称为TCI-State-Info,第一子字段可以称为TCI-State-List-Id,第二子字段可以称为TCI-State-Id。示例性的,该RRC信令结构体可以如下所示:
Figure PCTCN2021114709-appb-000002
可以理解的是,上述结构体以及各个字段的名称仅是本申请示例性的说明,还可以有其他名称,本申请对此不做具体限定。
S406b、终端设备根据第一传输配置指示列表中的第一TCI-state执行波束切换。
可选的,终端设备可以切换至第一TCI-state对应的波束。后续在传输配置指示列表未更新的情况下,根据第一传输配置指示列表中TCI-state的排列顺序执行波束切换。
可选的,网络设备可以在确定第一传输配置指示信息和第二传输配置指示信息不同后,立即发送第二指示信息。此时,网络设备还可以向终端设备发送第二时长,指示终端设备在收到第二指示信息开始的第二时长后执行波束切换。或者,网络设备确定第一传输配置指示信息和第二传输配置指示信息相同后,在进一步确定终端设备需执行波束切换时发送该第二指示信息。此时,终端设备收到该第二指示信息后,可以立即执行波束切换。
可以理解的是,对于终端设备来说,在执行上述步骤S405a或S405b时,其不能预先确定网络设备会发送第一指示信息或第二指示信息,因此,上述步骤S405a或S405b对于终端设备可以理解为:终端设备接收来自网络设备的指示信息。在接收该指示信息后,终端设备可以进一步确认该指示信息是第一指示信息或第二指示信息,该指示信息是第一指示信息时执行上述步骤S406a,是第二指示信息时执行上述步骤S406b。
示例性的,终端设备可以根据该指示信息所在的位置确认其是第一指示信息或第二指示信息,例如,假设第一指示信息包含于DCI中,第二指示信息包含于RRC信令中,若终端设备在DCI中检测到该指示信息,则其为第一指示信息,若终端设备在RRC信令中检测到该指示信息,则其为第二指示信息。或者,终端设备可以根据该指示信息所占的比特数确定其是第一指示信息或第二指示信息,例如,该指示信息所占的比特数较少时,为第一指示信息,该指示信息所占的比特数较多时,为第二指示信息。
需要说明的是,上述步骤S403及其之后的步骤可以执行多次以确认网络设备之前确定的传输配置指示列表包括的TCI-state对应的波束是否能继续作为待为终端设备提供的服务。例如,上述步骤S403及其之后的步骤可以周期性执行,也可以非周期性执行,本申请对此不做具体限定。
基于本申请的方案,通过传输配置指示列表配置待为终端设备依次提供服务的一个或多个波束,在传输配置指示列表发生变化时,向终端设备指示更新后的第一传输配置指示列表和第一TCI-state,使得终端设备根据第一传输配置指示列表和第一TCI-state执行波束切换;在传输配置指示列表未发生变化时,指示终端设备根据原来的第二传输配置指示列表中TCI-state的排列顺序执行波束切换,从而实现波束切换。此外,传输配置指示列表可以向终端设备配置多个TCI-state,从而可以适用于NTN场景下的大规模波束的配置。再者,网络设备无需在终端设备每次进行波束切换时都发送TCI-state向终端设备指示待切换的波束,可以节省信令开销,提高波束切换效率。
可选的,在本申请的一些实施场景下,网络设备可以根据网络设备的运动方向将波束分组,上述每个传输配置指示列表包括的多个TCI-state对应的多个波束属于同一组。每组波束可以对应一个或多个传输配置指示列表。进行波束分组后,每组波束可以认为是同一小区中的波束。
示例性的,基于图5所示的示例,如图6所示,两条虚线沿网络设备的运动方向将波束分为3组。结合表2,第一组波束对应的传输配置指示列表可以为TCI List 0;第二组波束对应的传输配置指示列表可以为TCI List 1和TCI List 2;第三组波束对应的传输配置指示列表可以为TCI List 3和TCI List 4。
此外,本申请的一些实施场景下,在执行上述图4所示的步骤S403之前,终端设备初始接入网络设备时,还可以执行图7a或图7b所示的方法,该方法包括:
S701、网络设备确定初始传输配置指示列表和初始TCI-state。
其中,该初始传输配置指示列表包括初始TCI-state在内的多个TCI-state,该初始传输配置指示列表中,从初始TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。
可以理解的是,该初始传输配置指示列表是上述步骤S401中的一个或多个传输配置指示列表中的传输配置指示列表。
可选的,网络设备可能通过以下两种实现方式确定该初始传输配置指示列表和初始TCI-state。
一种可能的实现方式中,网络设备可以根据终端设备接入网络设备时所处的位置确定该初始传输配置指示列表和初始TCI-state。
可选的,终端设备接入网络设备时所处的位置是终端设备在随机接入(random access,RA)过程中上报的。该随机接入过程可以是四步随机接入过程,也可以是两步随机接入过程。
对于四步随机接入过程,如图7a所示,包括步骤S700a-S700d,其中,该步骤S700a-S700d为四步随机接入过程:
S700a、终端设备向网络设备发送消息1(message 1,Msg1)。相应的,网络设备接收来自终端设备的消息1。
其中,该消息1的相关说明可参考现有标准,在此不予赘述。
S700b、网络设备向终端设备发送消息2。相应的,终端设备接收来自网络设备的消息2。
其中,该消息2可以包括请求信息,该请求信息用于请求终端设备的位置,该位置即为终端设备接入网络设备时所处的位置。
可选的,网络设备可以通过消息2中的1比特表示该请求信息。例如,该1比特的取值为“1”时,表示该请求信息,即网络设备向终端设备请求终端设备的位置,该1比特的取值为“0”时,表示终端设备无需上报其位置信息。
S700c、终端设备向网络设备发送消息3。相应的,网络设备接收来自终端设备的消息3。
其中,该消息3中包括位置信息,该位置信息用于指示终端设备的位置。
S700d、网络设备向终端设备发送消息4。相应的,终端设备接收来自网络设备的消息4。
可以理解的是,上述消息1至消息4为四步随机接入过程中的消息1至消息4。
需要说明的是,上述步骤S700a-S700c在步骤S701之前执行。S700d与S701没有必然的先后顺序,可以先执行步骤S700d再执行步骤S701,或者,可以先执行步骤S701,再执行步骤S700d,或者,可以同时执行步骤S700d和步骤S701。
对于两步随机接入过程,如图7b所示,包括步骤S700x和步骤S700y,其中,该步骤S700x和步骤S700y为两步随机接入过程:
S700x、终端设备向网络设备发送消息1。相应的,网络设备接收来自终端设备的消息1。
其中,该消息1中包括位置信息,该位置信息用于指示终端设备的位置。
可以理解的,在两步随机接入过程中,终端设备通过消息1发送前导码(preamble)时即拥有物理上行共享信道(physical uplink shared channel,PUSCH)资源,从而,可以在该消息1中上报位置信息。
S700y、网络设备向终端设备发送消息2。相应的,终端设备接收来自网络设备的消息2。
其中,该消息2的相关说明可参考现有标准,在此不予赘述。
可以理解的是,该情况下,消息1和消息2为两步随机接入过程中的消息1和消息2。
需要说明的是,上述步骤S700x在步骤S701之前执行。S700y与S701没有必然的先后顺序,可以先执行步骤S700y再执行步骤S701,或者,可以先执行步骤S701,再执行步骤S700y,或者,可以同时执行步骤S700y和步骤S701。
该步骤S701中,网络设备根据终端设备的位置确定初始TCI-state和初始传输配置指示列表的实现可参考上述步骤S403中的相关描述,在此不再赘述。
另一种可能的实现方式中,网络设备可以通过终端设备发起随机接入的随机接入信道时机(RACH occasion,RO)确定初始TCI-state和初始传输配置指示列表。
可选的,在SSB与上述波束一一对应,即SSB Index和Beam ID一一对应的情况下,终端设备可以通过下行同步,即SSB搜索确定初始SSB Index。之后,终端设备基于该初始SSB  Index对应的RO发起随机接入,网络设备根据该RO即可确定终端设备下行同步的初始SSB Index,从而将该初始SSB Index对应的TCI-state ID所标识的TCI-state确定为初始TCI-state。之后,根据网络设备的运动方向和运动轨迹,确定初始TCI-state后待依次为终端设备提供服务的波束,从而确定初始传输配置指示列表。
需要说明的是,上述网络设备通过随机接入过程获取终端设备的位置或终端设备下行同步的SSB Index的方法也可以单独执行,即不依赖于本申请的其他步骤而单独执行。
S702、网络设备向终端设备发送第三指示信息。相应的,终端设备接收来自网络设备的第三指示信息。
其中,该第三指示信息用于指示初始TCI-state和初始传输配置指示列表。
可选的,终端设备收到该第三指示信息后,可以接入初始TCI-state对应的波束与网络设备进行通信。
可选的,对于四步随机接入过程,先执行步骤S701,再执行步骤S700d时,该第三指示信息可以包含于S700d的消息4中,此时,S702和S700d合并为一个步骤。对于两步随机接入过程,先执行步骤S701,再执行步骤S700y时,该第三指示信息可以包含于S700y的消息2中,此时,S702和S700y合并为一个步骤。
基于该方案,可以为终端设备配置初始接入的波束,后续,可以执行上述图4中的步骤S403及其之后的步骤,确定传输配置指示列表和TCI-state是否需要变更,在发生变更时,为终端设备指示更新后的传输配置指示列表和TCI-state,使得终端设备根据更新后的传输配置指示列表中的TCI-state执行波束切换,未发生变更时,指示终端设备按照初始传输配置指示列表执行波束切换,以实现波束管理。
其中,上述图4或图7a或图7b所示的实施例中,网络设备的动作可以由图2所示的网络设备30中的处理器301调用存储器302中存储的应用程序代码以指令该网络设备执行,上述图4或图7a或图7b所示的实施例中,终端设备的动作可以由图2所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该终端设备执行,本实施例对此不作任何限制。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图8示出了一种终端设备80的结构示意图。该终端设备80包括处理模块801和收发模块802。所述收发模块802,也可以称为收发单元用以实现发送和/或接收功能,例如可以其可以是收发电路,收发机,收发器或者通信接口。
可选的,收发模块802,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤。处理模块801,可以用于执行上述方法实施例中由终端设备执行的处理类步骤(例如确定、获取等)。
其中,收发模块802,用于接收来自网络设备的指示信息;处理模块801,用于在该指示信息为第一指示信息时,根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换,或者,处理模块801,用于在该指示信息为第二指示信息时,根据第一传输配置指示列表中的第一TCI-state执行波束切换,该第一传输配置指示列表包括第一TCI-state在内的多个TCI-state,该第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。
可选的,收发模块802,还用于接收一个或多个传输配置指示列表,该一个或多个传输配置指示列表包括第一传输配置指示列表和/或第二传输配置指示列表。
可选的,收发模块802,还用于通过随机接入过程中的消息2接收来自网络设备的请求信息,该请求信息用于请求终端设备的位置;收发模块802,还用于通过随机接入过程中的消息3向网络设备发送位置信息,该位置信息用于指示终端设备的位置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备80可以采用图2所示的终端设备40的形式。
比如,图2所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的波束管理方法。
具体的,图8中的处理模块801和收发模块802的功能/实现过程可以通过图2所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图8中的处理模块801的功能/实现过程可以通过图2所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图8中的收发模块802的功能/实现过程可以通过图2所示的终端设备40中的收发器403来实现。
由于本实施例提供的终端设备80可执行上述的波束管理方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以通信装置为上述方法实施例中的网络设备为例。图9示出了一种网络设备90的结构示意图。该网络设备90包括处理模块901和收发模块902。所述收发模块902,也可以称为收发单元用以实现发送和/或接收功能,例如可以其可以是收发电路,收发机,收发器或 者通信接口。
可选的,收发模块902,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤。处理模块901,可以用于执行上述方法实施例中由网络设备执行的处理类步骤(例如确定、获取等)。
其中,处理模块901,用于确定第一TCI-state和第一传输配置指示列表,该第一传输配置指示列表包括第一TCI-state在内的多个TCI-state,该第一传输配置指示列表中,从第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;在第一传输配置指示列表与第二传输配置指示列表相同时,收发模块902,用于向终端设备发送第一指示信息,该第一指示信息用于指示终端设备根据第二传输配置指示列表中TCI-state的排列顺序执行波束切换,该第二传输配置指示列表为网络设备上一次确定的传输配置指示列表;在第一传输配置指示列表与第二传输配置指示列表不同时,收发模块902,用于向终端设备发送第二指示信息,该第二指示信息用于指示第一TCI-state和第一传输配置指示列表。
可选的,收发模块902,还用于发送一个或多个传输配置指示列表,所述一个或多个传输配置指示列表包括第一传输配置指示列表和/或第二传输配置指示列表。
可选的,处理模块901,具体用于根据终端设备的位置确定第一TCI-state和第一传输配置指示列表。
可选的,收发模块902,还用于通过随机接入过程中的消息2向终端设备发送请求信息,该请求信息用于请求终端设备的位置;收发模块902,还用于通过随机接入过程中的消息2接收来自终端设备的位置信息,该位置信息用于指示终端设备的位置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备90可以采用图2所示的网络设备30的形式。
比如,图2所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的波束管理方法。
具体的,图9中的处理模块901和收发模块902的功能/实现过程可以通过图2所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图9中的处理模块901的功能/实现过程可以通过图2所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图9中的收发模块902的功能/实现过程可以通过图2所示的网络设备30中的收发器303来实现。
由于本实施例提供的网络设备90可执行上述的波束管理方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置可以是芯片或芯片系统,该通信装置是芯 片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括接口电路和逻辑电路,该接口电路用于获取输入信息和/或输出输出信息;该逻辑电路,用于执行上述任一方法实施例中的方法,根据输入信息进行处理和/或生成输出信息。
当该通信装置用于实现上述方法实施例中的终端设备的功能时,输入信息可以为前述第一指示信息、第二指示信息、一个或多个传输配置指示列表、请求信息中的一项或多项。输出信息可以为上述位置信息。
当该通信装置用于实现上述方法实施例中的网络设备的功能时,输出信息可以为前述第一指示信息、第二指示信息、一个或多个传输配置指示列表、请求信息中的一项或多项。输入信息可以为上述位置信息。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种波束管理方法,其特征在于,所述方法包括:
    接收来自网络设备的指示信息;
    所述指示信息为第一指示信息时,根据第二传输配置指示列表中传输配置指示状态TCI-state的排列顺序执行波束切换;
    所述指示信息为第二指示信息时,根据第一传输配置指示列表中的第一TCI-state执行波束切换,所述第一传输配置指示列表包括所述第一TCI-state在内的多个TCI-state,所述第一传输配置指示列表中,从所述第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示终端设备根据所述第二传输配置指示列表中TCI-state的排列顺序执行波束切换;
    所述第二指示信息用于指示所述第一TCI-state和所述第一传输配置指示列表。
  3. 根据权利要求1或2所述的方法,其特征在于,在接收来自网络设备的指示信息之前,所述方法还包括:
    接收一个或多个传输配置指示列表,所述一个或多个传输配置指示列表包括所述第一传输配置指示列表和/或所述第二传输配置指示列表。
  4. 根据权利要求3所述的方法,其特征在于,所述一个或多个传输配置指示列表包含于系统信息中,或者,包含于无线资源控制RRC信令中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    通过随机接入过程中的消息2接收来自所述网络设备的请求信息,所述请求信息用于请求所述终端设备的位置;
    通过所述随机接入过程中的消息3向所述网络设备发送位置信息,所述位置信息用于指示所述终端设备的位置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一指示信息或所述第二指示信息包含于以下任意一项中:
    下行控制信息DCI;
    媒体接入控制控制元素MAC CE;
    无线资源控制RRC信令。
  7. 一种波束管理方法,其特征在于,所述方法包括:
    确定第一传输配置指示状态TCI-state和第一传输配置指示列表,所述第一传输配置指示列表包括所述第一TCI-state在内的多个TCI-state,所述第一传输配置指示列表中,从所述第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;
    所述第一传输配置指示列表与第二传输配置指示列表相同时,向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备根据所述第二传输配置指示列表中TCI-state的排列顺序执行波束切换,所述第二传输配置指示列表为网络设备上一次确定的传输配置指示列表;
    所述第一传输配置指示列表与所述第二传输配置指示列表不同时,向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一TCI-state和所述第一传输配置指示列表。
  8. 根据权利要求7所述的方法,其特征在于,在向所述终端设备发送所述第一指示信息或所述第二指示信息之前,所述方法还包括:
    发送一个或多个传输配置指示列表,所述一个或多个传输配置指示列表包括所述第一传 输配置指示列表和/或所述第二传输配置指示列表。
  9. 根据权利要求8所述的方法,其特征在于,所述一个或多个传输配置指示列表包含于系统信息中,或者,包含于无线资源控制RRC信令中。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述确定第一TCI-state和第一传输配置指示列表,包括:
    根据所述终端设备的位置确定所述第一TCI-state和所述第一传输配置指示列表。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    通过随机接入过程中的消息2向所述终端设备发送请求信息,所述请求信息用于请求所述终端设备的位置;
    通过所述随机接入过程中的消息3接收来自所述终端设备的位置信息,所述位置信息用于指示所述终端设备的位置。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述第一指示信息或所述第二指示信息包含于以下任意一项中:
    下行控制信息DCI;
    媒体接入控制控制元素MAC CE;
    无线资源控制RRC信令。
  13. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自网络设备的指示信息;
    所述处理模块,用于在所述指示信息为第一指示信息时,根据第二传输配置指示列表中传输配置指示状态TCI-state的排列顺序执行波束切换;
    所述处理模块,用于在所述指示信息为第二指示信息时,根据第一传输配置指示列表中的第一TCI-state执行波束切换,所述第一传输配置指示列表包括所述第一TCI-state在内的多个TCI-state,所述第一传输配置指示列表中,从所述第一TCI-state开始之后的TCI-state对应的波束是待为所述通信装置依次提供服务的波束。
  14. 根据权利要求13所述的通信装置,其特征在于,所述第一指示信息用于指示所述通信装置根据所述第二传输配置指示列表中TCI-state的排列顺序执行波束切换;
    所述第二指示信息用于指示所述第一TCI-state和所述第一传输配置指示列表。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述收发模块,还用于接收一个或多个传输配置指示列表,所述一个或多个传输配置指示列表包括所述第一传输配置指示列表和/或所述第二传输配置指示列表。
  16. 根据权利要求15所述的通信装置,其特征在于,所述一个或多个传输配置指示列表包含于系统信息中,或者,包含于无线资源控制RRC信令中。
  17. 根据权利要求13-16任一项所述的通信装置,其特征在于,所述收发模块,还用于通过随机接入过程中的消息2接收来自所述网络设备的请求信息,所述请求信息用于请求所述通信装置的位置;
    所述收发模块,还用于通过所述随机接入过程中的消息3向所述网络设备发送位置信息,所述位置信息用于指示所述通信装置的位置。
  18. 根据权利要求13-17任一项所述的通信装置,其特征在于,所述第一指示信息或所述第二指示信息包含于以下任意一项中:
    下行控制信息DCI;
    媒体接入控制控制元素MAC CE;
    无线资源控制RRC信令。
  19. 一种通信装置,其特征在于,所述通信装置包括处理模块和收发模块;
    所述处理模块,用于确定第一传输配置指示状态TCI-state和第一传输配置指示列表,所述第一传输配置指示列表包括所述第一TCI-state在内的多个TCI-state,所述第一传输配置指示列表中,从所述第一TCI-state开始之后的TCI-state对应的波束是待为终端设备依次提供服务的波束;
    所述第一传输配置指示列表与第二传输配置指示列表相同时,所述收发模块,用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备根据所述第二传输配置指示列表中TCI-state的排列顺序执行波束切换,所述第二传输配置指示列表为所述通信装置上一次确定的传输配置指示列表;
    所述第一传输配置指示列表与所述第二传输配置指示列表不同时,所述收发模块,用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一TCI-state和所述第一传输配置指示列表。
  20. 根据权利要求19所述的通信装置,其特征在于,所述收发模块,还用于发送一个或多个传输配置指示列表,所述一个或多个传输配置指示列表包括所述第一传输配置指示列表和/或所述第二传输配置指示列表。
  21. 根据权利要求20所述的通信装置,其特征在于,所述一个或多个传输配置指示列表包含于系统信息中,或者,包含于无线资源控制RRC信令中。
  22. 根据权利要求19-21任一项所述的通信装置,其特征在于,所述处理模块,具体用于根据所述终端设备的位置确定所述第一TCI-state和所述第一传输配置指示列表。
  23. 根据权利要求22所述的通信装置,其特征在于,所述收发模块,还用于通过随机接入过程中的消息2向所述终端设备发送请求信息,所述请求信息用于请求所述终端设备的位置;
    所述收发模块,还用于通过所述随机接入过程中的消息3接收来自所述终端设备的位置信息,所述位置信息用于指示所述终端设备的位置。
  24. 根据权利要求19-23任一项所述的通信装置,其特征在于,所述第一指示信息或所述第二指示信息包含于以下任意一项中:
    下行控制信息DCI;
    媒体接入控制控制元素MAC CE;
    无线资源控制RRC信令。
  25. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-6中任一项所述的方法,或者,以使所述通信装置执行如权利要求7-12中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置包括:接口电路和逻辑电路;
    所述接口电路,用于获取输入信息和/或输出输出信息;
    所述逻辑电路用于执行权利要求1-6任一项所述的方法,或者执行权利要求7-12任一项所述的方法,根据所述输入信息进行处理和/或生成所述输出信息。
  27. 一种计算机可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求1-6中任一项所述的方法被实现,或者,使如权利要求7-12中任一项所述的方法被实现。
  28. 一种通信系统,其特征在于,所述通信系统包括如权利要求13-18中任一项所述的 通信装置,以及如权利要求19-24中任一项所述的通信装置。
  29. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于读取存储器中存储的计算机程序或指令,并执行所述计算机程序或指令,以使所述通信装置执行如权利要求1-6中任一项所述的方法,或者,以使所述通信装置执行如权利要求7-12中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,以使所述通信装置执行如权利要求1-6中任一项所述的方法,或者,以使所述通信装置执行如权利要求7-12中任一项所述的方法。
PCT/CN2021/114709 2020-09-23 2021-08-26 波束管理方法、装置及系统 WO2022062823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871196.8A EP4207904A4 (en) 2020-09-23 2021-08-26 JET MANAGEMENT METHOD, APPARATUS AND SYSTEM
US18/187,223 US20230232391A1 (en) 2020-09-23 2023-03-21 Beam management method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011006619.5 2020-09-23
CN202011006619.5A CN114258134A (zh) 2020-09-23 2020-09-23 波束管理方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,223 Continuation US20230232391A1 (en) 2020-09-23 2023-03-21 Beam management method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022062823A1 true WO2022062823A1 (zh) 2022-03-31

Family

ID=80788047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114709 WO2022062823A1 (zh) 2020-09-23 2021-08-26 波束管理方法、装置及系统

Country Status (4)

Country Link
US (1) US20230232391A1 (zh)
EP (1) EP4207904A4 (zh)
CN (1) CN114258134A (zh)
WO (1) WO2022062823A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024197765A1 (en) * 2023-03-31 2024-10-03 Qualcomm Incorporated Indication of predicted transmission configuration indicator states

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268053A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Beam tracking for periodic user equipment movement
CN111277391A (zh) * 2020-01-20 2020-06-12 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
CN113347714A (zh) * 2020-02-18 2021-09-03 索尼公司 电子设备、无线通信方法和计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12028161B2 (en) * 2019-01-18 2024-07-02 Apple Inc. Methods for data repetition transmission for high reliable communication
EP3925093A1 (en) * 2019-02-13 2021-12-22 Sony Group Corporation Network entity, user equipment, and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268053A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Beam tracking for periodic user equipment movement
CN111385824A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
CN111586858A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输方法和通信装置
CN111277391A (zh) * 2020-01-20 2020-06-12 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置
CN113347714A (zh) * 2020-02-18 2021-09-03 索尼公司 电子设备、无线通信方法和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207904A4

Also Published As

Publication number Publication date
CN114258134A (zh) 2022-03-29
US20230232391A1 (en) 2023-07-20
EP4207904A1 (en) 2023-07-05
EP4207904A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US11909688B2 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
US20220078845A1 (en) User equipment, network side device, wireless communication method and storage medium
US8849290B2 (en) Device-to-device discovery and operation
WO2022078176A1 (zh) 部分带宽切换方法、装置及系统
US10148558B2 (en) Apparatus, system and method of establishing a mesh data path between neighbor awareness networking (NAN) devices
CN114553269A (zh) 通信方法、装置及系统
US12120058B2 (en) Electronic device, user equipment, wireless communication method and storage medium
WO2022052562A1 (zh) 定时偏移参数更新方法、设备及系统
CN109803406A (zh) 一种中继网络中时域资源的指示方法,网络设备及用户设备
WO2022095046A1 (zh) 确定上行传输时域资源的方法、终端设备及网络设备
US20230057174A1 (en) Method and apparatus for beam-based transmission for sidelink
WO2022012446A1 (zh) 一种无线通信的方法及装置
US20230232391A1 (en) Beam management method, apparatus, and system
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
CN114600472B (zh) 通信方法及装置
WO2020125635A1 (zh) 一种通信方法及装置
WO2022017130A1 (zh) 一种波束信息指示方法及装置
US20240049219A1 (en) Cross-carrier data transmission method, terminal, and storage medium
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2019095396A1 (zh) 一种数据传输节点确定方法和装置
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
WO2024012298A1 (zh) 随机接入方法、装置及系统
WO2024125613A1 (zh) 一种定位方法及装置
WO2023236713A1 (zh) 一种通信方法及装置
WO2024051448A1 (zh) 一种切换方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871196

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE