WO2022017130A1 - 一种波束信息指示方法及装置 - Google Patents

一种波束信息指示方法及装置 Download PDF

Info

Publication number
WO2022017130A1
WO2022017130A1 PCT/CN2021/102702 CN2021102702W WO2022017130A1 WO 2022017130 A1 WO2022017130 A1 WO 2022017130A1 CN 2021102702 W CN2021102702 W CN 2021102702W WO 2022017130 A1 WO2022017130 A1 WO 2022017130A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain information
offset
information
beams
current cycle
Prior art date
Application number
PCT/CN2021/102702
Other languages
English (en)
French (fr)
Inventor
汪宇
乔云飞
施学良
罗禾佳
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2021312759A priority Critical patent/AU2021312759B2/en
Priority to CA3190023A priority patent/CA3190023A1/en
Priority to EP21846419.6A priority patent/EP4185045A4/en
Publication of WO2022017130A1 publication Critical patent/WO2022017130A1/zh
Priority to US18/158,298 priority patent/US20230163836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to the field of wireless communication, and in particular, to a beam information indication method and related apparatus in wireless communication.
  • Satellite communication has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions. It has been widely used in maritime communication, positioning and navigation, disaster relief, scientific experiments, video broadcasting and earth observation. and many other fields.
  • the future terrestrial fifth-generation mobile network (5G) will have a complete industrial chain, a huge user group, and a flexible and efficient application service model.
  • the satellite communication system and 5G are integrated with each other, learning from each other's strengths and complementing each other's shortcomings, and together they form a sea, land, air, and sky integrated communication network with seamless global coverage.
  • the next-generation satellite network presents ultra-dense networking characteristics.
  • the scale of the satellite network has grown from 66 in the Iridium constellation to 720 in the Oneweb constellation, and finally extended to more than 12,000 Starlinks.
  • Multicolor multiplexing refers to the use of colors to indicate the corresponding frequency or polarization of the beam, where one color can represent one frequency or one polarization, such as Left Hand Circular Polarization (LHCP) or Right Hand Circular Polarization (RHCP).
  • LHCP Left Hand Circular Polarization
  • RHCP Right Hand Circular Polarization
  • the color multiplexing information of the beam needs to be dynamically adjusted.
  • the color multiplexing information of the beam refers to the information such as the frequency and polarization mode corresponding to all the beams of the satellite.
  • the satellite can dynamically adjust and broadcast its own information at regular intervals. Color multiplexing information or color multiplexing information issued in advance for a period of time will introduce the problem of excessive signaling overhead, which is not desirable for large-scale beam systems (hundreds or even thousands of beams).
  • the present application provides a beam information indication method and device, which can be applied to the field of wireless communication, and can effectively save signaling overhead especially in the interference management of satellite communication.
  • the present application provides a beam information indication method, the method comprising: acquiring a first offset by a first communication device, where the first offset is used to indicate that the domain information of multiple beams is relative to the offset values of reference domain information of multiple beams, the domain information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information;
  • the first communication apparatus updates the domain information of the plurality of beams based on the reference domain information of the plurality of beams and the first offset.
  • This embodiment of the present application implements the update of the multiple beam domain information at each moment by acquiring the reference domain information of the multiple beams and the first offset corresponding to each moment, because the indicated offset is compared with the domain information itself. , the required indication overhead is smaller, therefore, compared to directly delivering the domain information of all beams at each moment or delivering the domain information of all beams within a period of time at a certain moment, signaling overhead is saved.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information of each beam corresponds to a mark
  • the first offset is used to offset the mark of the reference domain information of each beam to obtain a new domain information mark corresponding to each beam.
  • the identifier obtains the domain information indicated by the identifier, and the specific setting and interpretation of the identifier will be described in the following specific embodiments, which will not be repeated here.
  • the first offset may also directly offset the reference domain information of the beam to reduce computational complexity.
  • the first offset is an offset relative to the reference domain information identifier, then the first offset corresponds to the first offset identifier or the first offset index; if the first offset is an offset relative to the reference domain information, then the first offset corresponds to a specific offset value.
  • the reference domain information is domain information obtained at a reference time or domain information determined before the current time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the first communication apparatus acquires a second offset, where the second offset is different from the first offset, and the second offset is The shift amount is used to indicate an offset value of the domain information of at least one beam other than the plurality of beams relative to the reference domain information of the at least one beam.
  • the first communication device can update the beam domain information by acquiring the first offset and the second offset, which can be applied to the beam-hopping satellite system.
  • Different cluster beams correspond to their respective offsets, which is beneficial to reduce the Beam interference between cluster beams, and signaling overhead can be saved in the process of updating beam domain information.
  • the time domain information includes a frame or a subframe or a time slot or a mini-slot (mini-slot) or a symbol.
  • the frequency domain information includes frequencies or frequency points.
  • the polarization domain information includes at least one of left-hand circularly polarized LHCP and right-handed circularly polarized RHCP.
  • the beam information is updated periodically, and the beam information includes at least one of the reference domain information, the first offset, and the number of beams.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle; or the current cycle
  • the value range of the first offsets of the plurality of beams in a period is different from that in the period before the current period; or the number of beams in the current period is different from the number of beams in the period before the current period .
  • the value range of the first offsets of the multiple beams refers to the value range of the first offsets corresponding to the reference domain information of the multiple beams.
  • the periodic update of beam information can realize flexible configuration of beam information and achieve efficient beam interference management.
  • the first communication device does not obtain the reference domain information within a preset time period, and the first communication device requests the reference domain from the second communication device information.
  • the content of the reference domain information acquired by the first communication device is incorrect, and the first communication device requests the reference domain information from the second communication device.
  • the reference domain information timer times out, and the first communication apparatus requests the reference domain information from the second communication apparatus.
  • the first communication device requests reference domain information from the second communication device as needed, so as to ensure that the first communication device obtains accurate reference domain information in a timely manner, thereby achieving effective beam interference management.
  • the first offset is carried in a system message block SIB.
  • the present application provides a beam information indication method, the method comprising: a second communication device determining a first offset, where the first offset is used to indicate that the domain information of multiple beams is relative to the offset values of reference domain information of multiple beams, the domain information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information;
  • the second communication device sends the first offset.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information of each beam corresponds to a mark
  • the first offset is used to offset the mark of the reference domain information of each beam to obtain a new domain information mark corresponding to each beam.
  • the identifier obtains the domain information indicated by the identifier, and the specific setting and interpretation of the identifier will be described in the following specific embodiments, which will not be repeated here.
  • the first offset may also directly offset the reference domain information of the beam to reduce computational complexity.
  • the first offset is an offset relative to the reference domain information identifier, then the first offset corresponds to the first offset identifier or the first offset index; if the first offset is an offset relative to the reference domain information, then the first offset corresponds to a specific offset value.
  • the reference domain information is domain information sent at a reference time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the second communication apparatus sends a second offset, the second offset is different from the first offset, and the second offset is The shift amount is used to indicate an offset value of the domain information of at least one beam other than the plurality of beams relative to the reference domain information of the at least one beam.
  • the second communication device sends the first offset and the second offset, which can be applied to a beam-hopping satellite system.
  • Different cluster beams correspond to their respective offsets, which is beneficial to reduce beam interference between different cluster beams.
  • signaling overhead can be saved in the process of updating beam domain information.
  • the second communication apparatus sends the domain information identifier, where the domain information identifier is used to indicate domain information of the multiple beams.
  • the second communication device sends a reference multiplexing information identifier and a reference multiplexing information identifier change value, and the reference multiplexing information identifier change value is used to indicate the reference multiplexing information. Identifies the changed value with information.
  • the time domain information includes a frame or a subframe or a time slot or a mini-slot (mini-slot) or a symbol.
  • the frequency domain information includes frequencies or frequency points.
  • the polarization domain information includes at least one of left-hand circularly polarized LHCP and right-handed circularly polarized RHCP.
  • the beam information is updated periodically, and the beam information includes at least one of the reference domain information, the first offset, and the number of beams. .
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle; or the current cycle
  • the value range of the first offsets of the plurality of beams is different from that of the period before the current period; or the number of beams in the current period is different from the number of beams in the period before the current period.
  • the periodic update of beam information can realize flexible configuration of beam information and achieve efficient beam interference management.
  • the second communication apparatus sends the reference domain information of the multiple beams to the first communication apparatus.
  • the second communication device responds to the first communication device's request for reference domain information, so as to ensure that the first communication device obtains accurate reference domain information in a timely manner, thereby achieving effective beam interference management.
  • the first offset is carried in a system message block SIB and sent in the form of broadcast.
  • the first offset is sent in the form of broadcast, which effectively saves signaling overhead.
  • the present application provides a beam switching method, the method comprising:
  • the third communication device obtains the location information of other communication devices
  • the third communication device determines the coverage area of the third communication device according to the location information of the third communication device and the location information of the other communication devices;
  • the third communication device determines whether the beam is turned on or off according to whether the center point of the beam is within the coverage area of the third communication device.
  • the other communication device is a communication device other than the third communication device.
  • the third communication device and the other communication devices are satellites.
  • the communication device determines whether the beam is turned on or off according to its own coverage area, which can effectively reduce the inter-satellite interference.
  • the coverage area is determined based on a Voronoi diagram.
  • the Voronoi diagram is two-dimensional or three-dimensional.
  • the Vorionoi diagram is used to determine the coverage area of the communication device, and then it is judged whether the center point of the beam is in the Vorionoi diagram corresponding to the communication device to turn on or off the beam, the implementation is simple, and the full coverage of the beam of the communication device can be guaranteed, At the same time, inter-satellite interference is minimized.
  • the first Three communication devices update the Voronoi diagram.
  • the dynamic update of the Voronoi diagram of the communication device can be realized.
  • the opening or closing of the beam is adjusted by the dynamically updated Voronoi diagram, thereby achieving optimal beam interference management.
  • the third communication device sends beam switch information to the other communication devices, where the beam switch information is the position of the end point after the Voronoi diagram is expanded or contracted or an offset value, the offset value is used to indicate the offset of the Voronoi diagram after expansion or contraction relative to the Voronoi diagram before expansion or contraction.
  • the third communication device expands or contracts the Voronoi diagram according to its own load capacity, and transmits the information of the expanded or contracted Voronoi diagram between the communication devices, which is beneficial to reduce the interference between the communication devices at the same time. Further achieve load balancing.
  • the beam switch information is carried in an XnAP message.
  • the beam switch information is carried in the CoveragePattern information element in the XnAP message.
  • the present application provides yet another beam information indication method, the method includes: a first communication device acquires domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams , the domain information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information; the first communication device respectively updates the domain information of the multiple beams according to the domain information identifier .
  • the present application provides yet another beam information indication method, the method comprising: a second communication device determining domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams , the domain information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information; the second communication apparatus sends domain information identifiers of the multiple beams.
  • the present application provides yet another beam information indication method, the method comprising: a first communication device acquiring a reference multiplexing information identifier and a reference multiplexing information identifier hopping value, the reference multiplexing information identifier being used for Reference multiplexing information indicating multiple beams, where the reference multiplexing information identifies a hopping value for indicating a value after the reference multiplexing information identifies a changed value; the first communication device identifies the hopping value based on the reference multiplexing information The reference multiplexing information of the plurality of beams is updated.
  • the present application provides yet another beam information indication method, the method comprising: a second communication device determining a reference multiplexing information identifier and a reference multiplexing information identifier hopping value, the reference multiplexing information identifier being used for Indicating reference multiplexing information of multiple beams, the reference multiplexing information identification jump value is used to indicate a value after the reference multiplexing information identification is changed; the second communication device sends the reference multiplexing information identification and the The reference multiplexing information identifies the hopping value.
  • the present application provides a terminal device configured to execute the method in any possible implementation manner of the foregoing first aspect.
  • the terminal device may be the first communication apparatus in any possible implementation manner of the foregoing first aspect, or a module applied in the terminal device, such as a chip or a chip system.
  • the terminal device includes modules, units, or means corresponding to the method executed by the first communication apparatus in any possible implementation manner of the above-mentioned first aspect, and the modules, units, or means can be implemented by Hardware implementation, software implementation, or corresponding software implementation through hardware execution.
  • the hardware or software includes one or more modules or units corresponding to the functions performed by the terminal device in any possible implementation manner of the above-mentioned first aspect.
  • the terminal device includes: a transceiving unit, configured to acquire a first offset, where the first offset is used to indicate an offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams, where
  • the prescriptive domain information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information;
  • a processing unit configured to update the domain information of the multiple beams based on the reference domain information of the multiple beams and the first offset.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information is domain information obtained at a reference time or domain information determined before the current time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the transceiver unit is further configured to acquire a second offset, where the second offset is different from the first offset, and the second offset is different from the first offset.
  • the offset is used to indicate an offset value of the domain information of at least one beam out of the plurality of beams relative to the reference domain information of the at least one beam.
  • the transceiver unit is further configured to acquire the domain information identifier, where the domain information identifier is used to indicate the domain information of the multiple beams.
  • the transceiver unit is further configured to obtain a reference multiplexing information identifier and a reference multiplexing information identifier change value, and the reference multiplexing information identifier change value is used to indicate the reference multiplexing information.
  • the multiplexing information identifies the changed value.
  • the time domain information includes a frame or a subframe or a time slot or a mini-slot (mini-slot) or a symbol.
  • the frequency domain information includes frequencies or frequency points.
  • the polarization domain information includes at least one of left-hand circularly polarized LHCP and right-handed circularly polarized RHCP.
  • the beam information is updated periodically, and the beam information includes at least one of the reference domain information, the first offset, and the number of beams.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle; or the current cycle
  • the value range of the first offset of the period is different from that of the period before the current period; or the number of beams in the current period is different from the number of beams in the period before the current period.
  • the transceiver unit does not obtain the reference domain information within a preset time period, and the transceiver unit is further configured to request the reference domain information from a network device .
  • the content of the reference domain information acquired by the transceiver unit is incorrect, and the transceiver unit is further configured to re-request the reference domain information from the network device.
  • the reference domain information timer times out
  • the transceiver unit is further configured to re-request the reference domain information from the network device.
  • the first offset is carried in a system message block SIB.
  • the terminal device provided in the present application is further configured to execute the above-mentioned method for executing any one of the possible implementation manners of the above-mentioned fourth aspect.
  • a transceiver unit configured to acquire domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams, and the domain information includes one or more of the following information: time domain information , frequency domain information, and polarization domain information; and a processing unit, configured to update the domain information of the multiple beams respectively based on the domain information identifier.
  • the terminal device provided by the present application is further configured to execute the above-mentioned method for executing any one of the possible implementation manners of the above-mentioned sixth aspect.
  • a transceiver unit configured to obtain a reference multiplexing information identifier and a hopping value of the reference multiplexing information identifier, the reference multiplexing information identifier is used to indicate the reference multiplexing information of multiple beams, and the reference multiplexing information identifies the hopping
  • the variable value is used to indicate the changed value of the reference multiplexing information identifier;
  • the processing unit is configured to update the reference multiplexing information of the multiple beams based on the jump value of the reference multiplexing information identifier.
  • the present application provides a network device configured to execute the method in any possible implementation manner of the second aspect above.
  • the network device may be the second communication apparatus in any possible implementation manner of the foregoing second aspect, or a module applied in the network device, such as a chip or a chip system.
  • the network device includes modules, units, or means (means), etc. that implement the method executed by the second communication apparatus in any possible implementation manner of the above-mentioned second aspect, and the modules, units, or means can be implemented by Hardware implementation, software implementation, or corresponding software implementation through hardware execution.
  • the hardware or software includes one or more modules or units corresponding to the functions performed by the network device in any possible implementation manner of the second aspect above.
  • the network equipment including:
  • a processing unit configured to determine a first offset, where the first offset is used to indicate an offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams, and the domain information includes the following One or more of the information: time domain information, frequency domain information, polarization domain information;
  • a transceiver unit configured to send the first offset.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information is domain information sent by the transceiver unit at a reference time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the transceiver unit sends a second offset, where the second offset is different from the first offset, and the second offset is It is used to indicate an offset value of the domain information of at least one beam out of the plurality of beams relative to the reference domain information of the at least one beam.
  • the transceiver unit is further configured to send the domain information identifier, where the domain information identifier is used to indicate domain information of the multiple beams.
  • the transceiver unit is further configured to send a reference multiplexing information identifier and a reference multiplexing information identifier change value, and the reference multiplexing information identifier change value is used to indicate the reference multiplexing information.
  • the multiplexing information identifies the changed value.
  • the time domain information includes a frame or a subframe or a time slot or a mini-slot (mini-slot) or a symbol.
  • the frequency domain information includes frequencies or frequency points.
  • the polarization domain information includes at least one of left-hand circularly polarized LHCP and right-handed circularly polarized RHCP.
  • the processing unit is further configured to periodically update beam information, where the beam information includes the reference domain information, the first offset, and the number of beams at least one of the.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle; or the current cycle
  • the value range of the first offsets of the plurality of beams in a period is different from that in the period before the current period; or the number of beams in the current period is different from the number of beams in the period before the current period .
  • the transceiver unit is further configured to receive a request from a terminal device, and send the reference domain information to the terminal device.
  • the first offset is carried in a system message block SIB, and the transceiver unit is further configured to send the SIB in a broadcast form.
  • the network device provided in the present application is further configured to execute the method in any possible implementation manner of the third aspect above. For example:
  • a transceiver unit used to obtain location information of other communication devices
  • a processing unit configured to determine the coverage area of the third communication device according to the location information of the third communication device and the location information of the other communication devices;
  • the processing unit is further configured to determine whether the beam is turned on or off according to whether the center point of the beam is within the coverage area of the third communication device.
  • the coverage area is determined based on a Voronoi diagram.
  • the Voronoi diagram is two-dimensional or three-dimensional.
  • the processing The unit updates the Voronoi diagram if the duration is greater than a preset value, or the position change between the third communication device and the other communication devices is greater than a preset value.
  • the transceiver unit sends beam switch information to the other communication device, where the beam switch information is the end point position or offset of the Voronoi diagram after expansion or contraction.
  • the offset value is used to indicate the offset of the Voronoi diagram after expansion or contraction relative to the Voronoi diagram before expansion or contraction.
  • the beam switch information is carried in an XnAP message.
  • the beam switch information is carried in the CoveragePattern information element in the XnAP message.
  • the network device provided in the present application is further configured to execute the method in any possible implementation manner of the fifth aspect.
  • a processing unit configured to determine domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams, and the domain information includes one or more of the following information: time domain information , frequency domain information, and polarization domain information; and a transceiver unit, configured to send domain information identifiers of the multiple beams.
  • the network device provided by the present application is further configured to execute the method in any possible implementation manner of the seventh aspect.
  • the transceiver unit is configured to acquire domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams, and the domain information includes one or more of the following information: time domain information , frequency domain information, and polarization domain information; and a processing unit, configured to respectively update the domain information of the multiple beams based on the domain information identifier.
  • the present application provides a communication device, the communication device includes a logic circuit and an input-output interface, the input-output interface is used for input or output of signals or data, and the logic circuit is used to perform the above-mentioned first aspect and A method in any of its possible implementations, the fourth aspect and any of its possible implementations, and the sixth aspect and any of its possible implementations.
  • the present application provides a communication device, which includes a logic circuit and an input-output interface, where the input-output interface is used for input or output of signals or data; the logic circuit is used to perform the above-mentioned second aspect and any possible implementation thereof, the third aspect and any possible implementation thereof, the fifth aspect and any possible implementation thereof, and the seventh aspect and any possible implementation thereof.
  • the present application provides a communication device, the communication device comprising a processor for executing a computer program, when the computer program is executed, the communication device is caused to perform the first aspect and any one of its possibilities
  • the communication device comprising a processor for executing a computer program, when the computer program is executed, the communication device is caused to perform the first aspect and any one of its possibilities
  • the communication apparatus further includes a memory, where the memory is used to store the computer program.
  • the processor and the memory are integrated together.
  • the memory is located outside the device.
  • the communication apparatus further includes a transceiver, and the transceiver is used for data and/or signal transmission or reception.
  • the present application provides a communication device, the communication device comprising a processor for executing a computer program, and when the computer program is executed, causes the device to perform the second aspect and any possible possibilities thereof Implementation, the third aspect and any possible implementation thereof, the fifth aspect and any possible implementation thereof, and the seventh aspect and any possible implementation method thereof.
  • the communication apparatus further includes a memory, where the memory is used to store the computer program.
  • the processor and the memory are integrated together.
  • the memory is located outside the device.
  • the communication device further includes a transceiver, and the transceiver is used for data and/or signal transmission or reception.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, wherein the computer program is executed by a processor, so that the above-mentioned first to seventh aspects and their Some or all of the steps of the method described in any possible implementation are performed.
  • the present application provides a computer program product including executable instructions, when the computer program product runs on a terminal device, the above-mentioned first to seventh aspects and any possible implementations thereof are implemented. Some or all of the steps of the method are performed.
  • the present application further provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the foregoing first to seventh aspects and any possible implementation thereof.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the present application further provides a communication system, where the communication system includes a terminal device and a network device, and the terminal device is configured to execute the first aspect and any possible implementation method thereof, the fourth aspect, and Any of its possible implementation methods and the sixth aspect and any of its possible implementation methods, the network device is used to execute the above-mentioned second aspect and any of its possible implementation methods, the third aspect and any of its possible implementation methods.
  • FIG. 1 is a schematic diagram of the architecture of a satellite communication system provided by an embodiment of the present invention.
  • Fig. 2 is the schematic diagram of the multiplexing scheme commonly used in a kind of satellite communication in the prior art
  • 3A is a schematic diagram of a method for indicating beam information in satellite communication according to an embodiment of the present invention.
  • 3B is a schematic diagram of yet another method for indicating beam information in satellite communication provided by an embodiment of the present invention.
  • 3C is a schematic diagram of yet another beam information indication method in satellite communication provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a beam switch in a satellite communication in the prior art
  • 5A is a schematic diagram of a beam switching method in satellite communication according to an embodiment of the present invention.
  • 5B is an interactive schematic diagram of a beam switching method in satellite communication provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for managing beam interference in satellite communication according to an embodiment of the present invention.
  • FIG. 7A is a flow chart of a network side of beam interference management in satellite communication according to an embodiment of the present invention.
  • FIG. 7B is a flowchart of a terminal side of beam interference management in satellite communication according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another device provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another apparatus provided by an embodiment of the present invention.
  • FIG. 1 is a satellite communication system according to an embodiment of the present invention.
  • the satellite communication system includes user equipment (UE) and network equipment, wherein the network equipment may include one or more satellite nodes (for example, NGEO satellites) and a core network equipment, the UE can wirelessly communicate with the satellite node, and the satellite node can wirelessly communicate with the core network equipment, wherein:
  • UE user equipment
  • network equipment may include one or more satellite nodes (for example, NGEO satellites) and a core network equipment
  • the UE can wirelessly communicate with the satellite node
  • the satellite node can wirelessly communicate with the core network equipment, wherein:
  • the satellite nodes may include orbit receivers or repeaters for relaying information, and the satellite nodes may communicate and interact with core network equipment to provide communication services to the UE.
  • the core network device is, for example, a device in a core network (core network, CN) of an existing mobile communication architecture (such as a 3GPP access architecture of a 5G network) or a device in a core network in a future mobile communication architecture.
  • the core network provides an interface to the data network, and provides user equipment (UE) with communication connection, authentication, management, policy control, and complete bearer of data services.
  • UE user equipment
  • CN may further include: access and mobility management network element (Access and Mobility Management Function, AMF), session management network element (Session Management Function, SMF), authentication server network element (Authentication Server Function, AUSF), policy Control node (Policy control Function, PCF), user plane function network element (User Plane Function, UPF) and other network elements.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • AUSF authentication Server Function
  • Policy control Function Policy control Function
  • PCF policy control Function
  • UPF User Plane Function
  • UPF User Plane Function
  • the UE may be any one of a terminal device (Terminal Equipment), a communication device (Communication Device), and an Internet of Things (Internet of Things, IoT) device.
  • the terminal device can be a smart phone, a cellular phone, a smart watch, a smart tablet, a personal digital assistant computer, a laptop computer, etc.
  • the communication device can be a server, a gateway (Gateway, GW), a controller, a wireless modem, etc.
  • IoT devices can be sensors, mobility devices (such as bicycles/cars/vehicles), and so on.
  • the embodiments of the present invention may also be applied to a terrestrial communication system
  • the communication system may be a 3rd generation partnership project (3GPP) communication system, for example, a long term evolution (LTE)
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • the system can also be a 5G mobile communication system or a new radio (NR) system or a future communication system, which is not limited in this application.
  • the network equipment may include, but is not limited to: an evolved node B (evolved node B, eNB), a baseband unit (baseband unit, BBU), an access point (access point, AP) in a wireless fidelity (wireless fidelity, WIFI) system , wireless relay node, wireless backhaul node, transmission point (TP) or transmission reception point (TRP), etc.
  • eNB evolved node B
  • BBU baseband unit
  • WIFI wireless fidelity
  • WIFI wireless fidelity
  • TP transmission point
  • TRP transmission reception point
  • the network device may also be a gNB or TRP or TP in a 5G system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system.
  • the network device may also be a network node constituting a gNB or TP, such as a BBU, or a distributed unit (distributed unit, DU).
  • the network device may also be a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an Internet of Things (IoT), an Internet of Vehicles communication system Or a device that undertakes network-side functions in other communication systems.
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of Things
  • this article mainly describes the technical solution based on the satellite communication system shown in FIG. 1 .
  • the satellite In the satellite communication system, in order to increase the system capacity, the satellite is usually equipped with a large-scale antenna array system, and forms multiple beams at the same time to provide transmission for different users.
  • a multi-beam satellite communication system because the near-far effect is not obvious, the signal strength of users in the center of the cell and the edge of the cell is not much different.
  • Interference and inter-satellite interference satellite networks use frequency and polarization reuse to reduce interference.
  • Figure 2 illustrates a multi-color multiplexing scheme commonly used in satellite communications (multiple colors are shown as a, b, c, d in the figure).
  • a color represents a combination of frequency and polarization.
  • beam 1 and beam 5 both use frequency f1 and RHCP polarization, and the combination of f1 and RHCP corresponds to color a; beam 2 and beam 6 both use frequency f1 and LHCP polarization, and the combination of f1 and LHCP corresponds to color c; beam Both beam 3 and beam 7 use frequency f2 and RHCP polarization, and the combination of f2 and RHCP corresponds to color b; beam 4 and beam 8 both use frequency f2 and LHCP polarization, and the combination of f2 and LHCP corresponds to color d.
  • Table 1 shows the color information corresponding to each beam at each moment, and the color information indicates the frequency and polarization mode.
  • the satellite delivers the frequencies and/or polarization schemes of all beams at each moment according to the information in Table 1, or delivers the frequencies and polarisation schemes of all beams for a period of time at a certain moment, resulting in high signaling overhead.
  • the present application provides a beam information indication method, which can realize beam color multiplexing while saving signaling overhead.
  • the beam information indication method provided by the present application indicates the offset value of the domain information of multiple beams relative to the reference domain information of the multiple beams by introducing a first offset, and the reference domain information of the multiple beams is determined by the reference domain information of the multiple beams. and the first offset may update the domain information of the plurality of beams.
  • the domain information of the beam involved in the embodiments of the present application can be correspondingly understood as the color information of the color multiplexing scheme in satellite communication, and the reference domain information of the beam can be understood as the reference color information, In the following description, the two can be interchanged, and a unified description is made here, which will not be repeated below.
  • the beam information indication method provided by this application includes:
  • the first communication apparatus acquires a first offset.
  • the first communication device receives a first offset sent by the second communication device, where the first offset is used to indicate an offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams.
  • the domain information of the beam includes one or more of the following information: time domain information, frequency domain information, and polarization domain information.
  • the first communication device may be a terminal device or a chip
  • the second communication device may be a network device or a chip
  • the network device is, for example, a satellite.
  • the first communication device is a terminal device and the second communication device is a satellite as an example. Be explained.
  • the satellite sends the reference domain information and the first offset corresponding to each time in the following period of time at the initial moment or a certain reference moment.
  • the terminal device receives the reference domain information delivered by the satellite and the first offset corresponding to each moment in the following period of time.
  • the satellite sends the reference domain information at the initial moment or a certain reference moment, and sends the first offset corresponding to the current moment at each moment after the initial moment or a certain reference moment.
  • the terminal device receives the reference domain information at the initial moment or a certain reference moment, and receives the first offset sent by the satellite at each moment after the initial moment or a certain reference moment.
  • the reference domain information of the beam can be regarded as the domain information acquired by the terminal device at the initial moment or the reference moment, or the domain information determined before the current moment.
  • the reference domain information and the first offset are obtained according to the initial moment or the reference moment to determine the domain information at a certain moment, and the domain information may be regarded as the reference domain information corresponding to the next moment at the certain moment.
  • the initial time may be the time when the satellite starts communication
  • the reference time may be a certain designated time. Before the current time, it may be the previous time of the current time, or any time before the current time.
  • the terminal device can also obtain the reference domain information and/or the first offset from other terminal devices, for example, in a device-to-device (Device to Device, D2D) scenario, the information is implemented through a side link (Sidelink, SL) Transmission, which is not limited in this application.
  • a device-to-device Device to Device, D2D
  • the information is implemented through a side link (Sidelink, SL) Transmission, which is not limited in this application.
  • the time domain information includes frames or subframes or time slots or mini-slots (mini-slots) or symbols
  • the frequency domain information includes frequencies or frequency points
  • the polarization domain information includes at least one of LHCP and RHCP.
  • time domain information refers to information related to time domain resources, such as frame or subframe Frame or slot or mini-slot or symbol information.
  • the first offset is an offset value identified by the reference domain information.
  • the first offset is a first offset identifier.
  • the value range of the reference domain information identifier is the same as the value range of the first offset.
  • the range of values identified by the reference domain information can be correspondingly understood as the color order in the color multiplexing scheme.
  • the color level corresponding to four-color multiplexing is 4, that is to say, the value range of the reference domain information identifier/first offset identifier is 4, which can be represented by 2 bits, such as 00, 01, 10, 11.
  • the reference domain information identifier may also be referred to as a reference domain information index
  • the first offset identifier may also be referred to as a first offset index.
  • Table 2 shows the identifier corresponding to each color multiplexing information in the four-color multiplexing scheme.
  • the color multiplexing information is a combination of frequency and polarization.
  • the symbol 00 represents the combination of the frequency point f1 and the LHCP polarization mode
  • the symbol 01 represents the combination of the frequency point f1 and the RHCP polarization mode
  • the symbol 10 represents the combination of the frequency point f2 and the LHCP polarization mode
  • the symbol 11 represents the f2 and A combination of RHCP polarization modes.
  • Four-color multiplexing is the combination of the four frequency points and polarization modes of multiple beam multiplexing.
  • the color multiplexing information given in Table 3 is a frequency point, and the polarization mode is not distinguished at this time.
  • the identifiers 00, 01, 10, and 11 correspond to different frequency points f1, f2, f3, and f4, respectively.
  • the color multiplexing information given in Table 4 is time slot and frequency point, and the identifiers 00, 01, 10, and 11 correspond to different time slot and frequency point combinations t1 and f1, t2 and f2, t3 and f3, and t4 respectively. and f4.
  • Table 2 and Table 4 are only exemplary descriptions, and do not constitute a limitation to the solution of the present application.
  • Table 2, Table 3 and Table 4 are only exemplary descriptions, and do not constitute a limitation to the solution of the present application.
  • multi-color multiplexing that is, frequency and polarization
  • the color multiplexing information may also be frequencies.
  • the color multiplexing information refers to the color information of satellite beam multiplexing, that is, the domain information of beam multiplexing in this application.
  • the 61-beam satellite system Take the 61-beam satellite system as an example, such as the 61-beam multiplexing shown in Table 2.
  • the reference color information refers to the beam color information corresponding to the color multiplexing information of all beams, for example, as shown in Table 5.
  • the mapping relationship table between the color multiplexing information and the identifier may be included in the beam reference domain information, and delivered together with the beam reference domain information or delivered separately. Specifically, when the color multiplexing scheme changes, for example, the color multiplexing information changes or the color multiplexing order changes, the mapping relationship table between the color multiplexing information and the logo is updated.
  • the color multiplexing information and the identification mapping relationship table can also be preconfigured for the terminal device, and the specific information corresponding to the beam reference domain information identification can be obtained from the preconfigured color multiplexing information and identification mapping relationship table.
  • the first offset offsets the reference domain information identifier.
  • the reference domain information identifier is shifted based on the first offset to obtain a new domain information identifier, and the value of the new domain information identifier is within the value range of the identifier corresponding to the color multiplexing information, thereby realizing the color information reuse.
  • a method of adding the first offset to the reference domain information identifier and then taking the remainder of the color order may be used to obtain the new domain information identifier.
  • the four-color multiplexing scheme of the 61-beam satellite system given in Table 5 is taken as an example for description.
  • the reference domain information is given in the form of its identification, and the color multiplexing information corresponding to each identification is shown in Table 2, for example.
  • time 1 corresponds to the reference domain information of 61 beams
  • time 2 corresponds to offset 01
  • the offset 01 indicates that at time 2
  • the identifier of the reference domain information of 61 beams is shifted by 01
  • the domain information identifiers of the 61 beams at time 2 are obtained.
  • the color multiplexing information corresponding to each logo in Table 5 is the time slot and frequency point information shown in Table 4, similarly, time 2 corresponds to offset 01, then the new beam 1 obtained after offset
  • the domain information is identified as 01, that is, the beam 1 corresponds to the time slot t2 at time 2, and the frequency point f2 transmits.
  • Another possible implementation manner may perform the following steps to update the beam domain information:
  • the satellite can directly send the domain information identifiers corresponding to multiple beams, that is, the satellite notifies the terminal equipment of the domain information identifiers corresponding to all beams, instead of sending the domain information identifiers corresponding to all beams at the reference time described in the preceding embodiment, other The method of sending the offset relative to the reference domain information at time.
  • the last moment of the current moment corresponds to several beams with the same domain information identifier, and the several beams still have the same domain information identifier at the current moment.
  • the domain information identifiers of the several beams at the current moment are the same as or different from the domain information identifiers corresponding to the several beams at the current moment.
  • the terminal device receives the domain information identifiers corresponding to the multiple beams sent by the satellite.
  • the satellite sends the domain information identifiers corresponding to the beams at each moment, or delivers the domain information identifiers of all beams within a certain period of time at a certain moment.
  • the terminal device updates the beam domain information based on the domain information identifiers of the multiple beams.
  • the satellite delivers domain information identifiers corresponding to 61 beams, wherein the domain information identifiers corresponding to beam 1 and beam 58 are the same. Similarly, the domain information identifiers corresponding to beams 2-4 and 59-61 are also the same respectively; at time 2, the satellite delivers the domain information identifiers corresponding to the updated 61 beams, among which, beams 1-4 and beams 58-61
  • the corresponding beam domain information identifiers are respectively the same, but different from the corresponding domain information identifiers at time 1.
  • the domain information corresponding to the domain information identifier can be obtained, for example, from the mapping relationship table between the color multiplexing information and the identifier in Table 2.
  • the satellite issues the updated beam domain information identifier at each moment or the identifier of the beam domain information within a certain period of time at a certain reference moment, which saves signaling compared to directly issuing the beam domain information. overhead.
  • Another possible implementation manner may perform the following steps to update the beam domain information:
  • the satellite sends the reference multiplexing information identifier hopping value, and the reference multiplexing information identifier hopping value is used to indicate the changed reference multiplexing information identifier.
  • the terminal device receives the reference multiplexing information identifier hopping value.
  • the reference multiplexing information can be understood as, for example, the color multiplexing information shown in Table 2-Table 4.
  • the reference multiplexing information identifier may be the multiplexing information identifier corresponding to the reference time or the initial time, or may be the multiplexing information identifier corresponding to the current time.
  • the initial time may be the time when the satellite starts communication, and the reference time may be a certain designated time. Before the current time, it may be the previous time of the current time, or any time before the current time.
  • S3C02 The terminal device updates the beam domain information at each moment based on the reference multiplexing information identifier hopping value.
  • the four-color multiplexing scheme is taken as an example for description, wherein the specific color multiplexing information indicated by the flags in Table 7 is taken as an example in Table 2.
  • the corresponding identifier changes at each time, thereby realizing the update of the beam domain information.
  • the satellite transmits a changed value of the flag relative to the reference time, such as flag 00 at time 1 becomes flag 01 at time 2, and flag 01 at time 1 becomes flag 10 at time 2 etc.
  • the color multiplexing information indicated by the logo itself may not change.
  • the 61-beam system as an example, that is, at time 1, the beam of the color information corresponding to the logo 00 is multiplexed, and at time 2, the color information corresponding to the logo 01 is multiplexed.
  • Time 1 (reference time) moment 2 ... time t 00 01 ... 11 01 10 ... 10 10 11 ... 00 11 00 ... 01
  • the satellite can directly issue the identification corresponding to each beam when issuing the beam domain information, and the specific corresponding color multiplexing information is indicated by the identification.
  • the color multiplexing information is directly delivered to save a certain amount of signaling overhead.
  • Table 1, Table 6, and Table 7 are used as examples to illustrate.
  • Table 1 shows the delivery method of beam domain information in the prior art solution, and specific beam domain information is delivered at each moment.
  • the frequency information is 2 bits.
  • the polarization information can represent 3 or 4 different frequency points
  • the polarization information is 1 bit, for example, it can represent the polarization mode such as LHCP or RHCP
  • the domain information saves signaling overhead to a certain extent, and can also realize the multiplexing of color information
  • Table 7 the value after each time reference multiplexing information identification is sent, so that before the current time The beams with the same reference multiplexing information identifier have a unified reference multiplexing information identifier change at the current moment, so as to realize the update of the beam domain information.
  • the overhead required to update the reference multiplexing information identification change at each moment is 16 bits, which further saves signaling overhead; further, the update of the beam domain information is indicated by the first offset, which can realize the multiplexing of color information.
  • the signaling overhead is greatly saved.
  • Table 5 after the satellite delivers the reference domain information (delivered with the identifier corresponding to the reference domain information), the first offset corresponding to each moment within a period of time or the current moment at each moment can be delivered. For the corresponding first offset, the first offset is used to perform an overall offset on the reference domain information identifier.
  • the first offset may also be an offset value relative to the reference domain information.
  • the first offset is specifically an offset value, such as an offset value relative to a frequency or a frequency point, or an offset relative to a frame or subframe or time slot or mini-slot (mini-slot) or symbol value, which is not limited in this application.
  • the first offset directly offsets the reference domain information to reduce the computational complexity.
  • the terminal device obtains a second offset, the second offset is different from the first offset, and the second offset is used to indicate domain information of at least one beam other than the multiple beams An offset relative to the reference domain information of the at least one beam. That is, the terminal device can receive the first offset and the second offset, wherein the first offset corresponds to a part of beams among all beams it supports, and the second offset corresponds to a portion of all beams it supports another part of the beam.
  • the first offset corresponding to beams 1-40 at time 2 is 01
  • the second offset corresponding to beams 41-61 at time 2 is 10
  • the corresponding beams 1-40 at time t The first offset is 11, and the second offset corresponding to the beams 41-61 at time t is 00.
  • the above embodiment uses the first offset and the second offset to indicate the offset value of all beam domain information, which can be applied to the beam-hopping satellite system.
  • Different cluster beams correspond to their respective offsets, which is beneficial to reduce the number of different cluster beams.
  • the beam interference between them can be avoided, and the signaling overhead can be saved in the process of updating the beam domain information.
  • first offset and the second offset may be offset identifiers or specific offset values.
  • first offset and the second offset are only examples, and more offsets may be set for the number of beams supported by the terminal device.
  • the domain information of the beam is carried in partial bandwidth BWP cells.
  • the BWP configuration information carries the domain information of the beam.
  • each type of domain information corresponds to one BWP configuration.
  • the four types of color multiplexing information correspond to the configuration information of BWP0, BWP1, BWP2, and BWP3, respectively.
  • the identifier of the beam domain information carried in the BWP information element may be the identifier contained in the BWP configuration information, or may be an identifier reset for each beam area information. This will not be repeated here.
  • the information element carried in the BWP may carry specific beam domain information, for example, a combination of one or more of the time domain information, frequency domain information, and polarization domain information of the bearer beam.
  • each group of beams multiplexes one BWP configuration information.
  • beams 1-10 use the configuration information of BWP0
  • beams 53-61 use the configuration information of BWP3,
  • BWP0 to BWP3 correspond to the same one at each moment.
  • Offset For example, the offset at time 2 is 01, and beams 1-10 get a new identifier of 01 after being offset by 01, that is, at time 2, beams 1-10 multiplex the configuration information of BWP1.
  • each BWP configuration corresponds to the same offset, or each BWP configuration corresponds to one offset, or at least one BWP other than the multiple BWP configurations corresponds to the second offset.
  • BWP0 and BWP1 correspond to a first offset
  • BWP2 and BWP3 correspond to a second offset. As shown in Table 11.
  • the 61-beam system in the above embodiment is only an example, and the method provided in this application can be applied to any beam system, such as a 16-beam system, a 32-beam system, a 48-beam system, etc., which is not limited in this application.
  • the beam information is updated periodically, and the beam information includes at least one of the reference domain information, the first offset, and the number of beams.
  • the reference domain information of the multiple beams in the current cycle is the same as the reference domain information of the multiple beams in the cycle before the current cycle.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle.
  • the value of the first offset of the multiple beams in the current cycle is different from the value of the first offset of the multiple beams in the cycle before the current cycle.
  • the value of the first offset of the multiple beams in the current cycle is the same as the value of the first offset of the multiple beams in the cycle before the current cycle.
  • the value range of the first offset of the current cycle is different from the value range of the offset of the cycle before the current cycle.
  • different value ranges of the first offset may be correspondingly understood as a change in the order of color multiplexing.
  • the previous cycle of the current cycle is the previous cycle of the current cycle
  • the previous cycle of the current cycle adopts four-color multiplexing
  • the current cycle adopts three-color multiplexing, that is, the value range of the first offset of the current cycle It is 3, which can be represented by 2 bits, such as 00, 01, 10, 11.
  • 11 can be reserved, and 00, 01, and 10 are used to indicate three color multiplexing information.
  • the identifiers may be set and used according to specific applications, which are not limited in this application.
  • T is a period.
  • the reference domain information of the beam corresponds to 4 kinds of BWP configuration information, which is a four-color multiplexing scheme; in the period of t21-t2T, the reference domain information of the beam corresponds to 3 kinds of BWP configuration information are three-color multiplexing scheme.
  • the beam color multiplexing scheme can be dynamically adjusted according to specific interference status or terminal equipment requirements, thereby achieving effective beam interference management.
  • mapping relationship between the reference domain information, offset, color multiplexing information (frequency and/or polarization, BWP, etc.) and identifiers and the domain information used by the beams in the above table are only examples. This is not limited.
  • the value range of the first offsets of the multiple beams in the current cycle is the same as the value range of the first offsets of the multiple beams in the cycle before the current cycle.
  • the number of beams in the current cycle is different from the number of beams in the cycle before the current cycle.
  • the satellite closes the edge beam, and the number of beams changes; or, when the satellite performs dynamic beam adjustment, the number of beams changes.
  • the number of beams in the current cycle is the same as the number of beams in the cycle before the current cycle.
  • the reference domain information of the multiple beams in the current cycle is the same as the reference domain information of the multiple beams in the cycle before the current cycle, and the first offset corresponding to the reference domain information of the multiple beams in the current cycle is equal to The value is the same as the value of the first offset corresponding to the multiple beams in the period before the current period.
  • the terminal device that has just accessed the satellite network it is beneficial for the terminal device that has just accessed the satellite network to obtain the reference domain information and offset of the beam consistent with the terminal device that has already accessed the satellite network, thereby reducing beam interference.
  • the first offsets of the multiple beams refer to the first offsets corresponding to the reference domain information of the multiple beams.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the previous cycle of the current cycle, and the first offset corresponding to the reference domain information of the multiple beams in the current cycle is different.
  • the value is the same as the value of the first offset corresponding to the multiple beams in the period before the current period.
  • the reference domain information of the multiple beams in the current cycle is the same as the reference domain information of the multiple beams in the cycle before the current cycle, and the first offset corresponding to the reference domain information of the multiple beams in the current cycle is equal to The value is different from the value of the first offset corresponding to the multiple beams in the period before the current period.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the previous cycle of the current cycle, and the first offset corresponding to the reference domain information of the multiple beams in the current cycle is different.
  • the value is different from the value of the first offset corresponding to the multiple beams in the period before the current period.
  • the color multiplexing information and the offset can be adjusted in time according to the interference state in the process of satellite interference monitoring and management, so as to achieve better interference management.
  • the reference domain information of the multiple beams in the current cycle is the same as the reference domain information of the multiple beams in the cycle before the current cycle, and the number of beams in the current cycle is the same as the number of beams in the cycle before the current cycle.
  • the inter-satellite interference between satellites in the current cycle and the cycle before the current cycle is small, the beams overlap less, the edge beams are not turned off, the number of beams in the current cycle and the previous cycle remains unchanged, and when the interference When the monitoring requirements are met, the reference domain information of the multiple beams in the current cycle and the reference domain information of the multiple beams in the cycle before the current cycle may not change.
  • the reference domain information of the multiple beams in the current cycle is the same as the reference domain information of the multiple beams in the cycle before the current cycle, and the number of beams in the current cycle is different from the number of beams in the cycle before the current cycle.
  • the inter-satellite interference between the satellites in the current period and the period before the current period is relatively large, the beams overlap more, some edge beams are turned off, and the number of beams in the current period and the period before the current period changes.
  • the reference domain information of the multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle, and the number of beams in the current cycle is the same as the number of beams in the cycle before the current cycle.
  • the reference domain information of multiple beams in the current cycle may be adjusted, which is different from the reference domain information of the multiple beams in the cycle before the current cycle.
  • the reference domain information of multiple beams in the current cycle is different from the reference domain information of the multiple beams in the cycle before the current cycle, and the number of beams in the current cycle is different from the number of beams in the cycle before the current cycle.
  • the reference domain information of multiple beams in the current cycle can be adjusted, which is different from the reference domain information of the multiple beams in the cycle before the current cycle, and at the same time considering the inter-satellite interference, the edge part is adjusted.
  • the beam is turned off, and the number of beams changes.
  • the number of beams that may be specifically included in the current period of the satellite and the period before the current period are different.
  • period before the current period may be a period before the current period or any period before the current period.
  • the terminal device does not obtain the reference domain information of the beam within a preset time range, and/or, the content of the reference domain information of the beam is incorrect, and/or, the reference domain information timer of the beam times out, the terminal The device requests the reference domain information of the beam from the satellite.
  • the terminal device requests reference domain information from the satellite according to its own needs, ensuring that the terminal device obtains accurate reference domain information in a timely manner, and further implements satellite beam interference management according to the obtained reference domain information.
  • the reference domain information of the beam is delivered together with the first offset.
  • the reference domain information and the first offset of the beam are delivered in a system information block (System Information Block, SIB) message or a radio resource control (Radio Resource Control, RRC) message.
  • SIB System Information Block
  • RRC Radio Resource Control
  • the reference domain information of the beam and the first offset are delivered separately.
  • the reference domain information of the beam is sent in the RRC message, and the unicast method is used to ensure the accuracy of the information; the first offset is sent in the SIB message, and the broadcast method is used to effectively save information. make overhead.
  • the first offset is carried in an existing cell in the protocol.
  • the first offset is carried in a BWP information element (BWP information element) information element:
  • the offset factor (ShiftFactor) is the first offset, which is used to indicate the offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams;
  • the time instant (TimeInstant) is the moment or time period, used for Instruct the satellite to deliver the specific offset at each moment or the satellite to deliver the offset within a certain period of time in advance.
  • the first offset may also be carried in other information elements such as serving cell common configuration (servingCellConfigCommon).
  • servingCellConfigCommon serving cell common configuration
  • the first offset is carried in a newly added information element in the SIB message.
  • the first offset is carried in a color shift pattern (ColorShiftPattern) cell in the SIB message:
  • ShiftFactor is the first offset, which is used to indicate the offset of the domain information of multiple beams relative to the reference domain information of multiple beams;
  • TimeInstant is the time or time period, used to instruct the satellite to issue a specific offset at each time. The offset or the offset within a certain period of time in the future delivered in advance by the satellite.
  • the terminal device updates the domain information of the multiple beams based on the multiple beam reference domain information and the first offset.
  • the terminal device obtains the reference domain information of the beam and the first offset corresponding to each moment in a period of time or after the terminal device obtains the reference domain information of the beam, obtains the first offset of the current moment at each moment, and then according to the beam
  • the reference domain information of , and the first offset corresponding to each moment are used to update the beam domain information.
  • the signaling overhead caused by the updated beam domain information issued by the satellite can be effectively saved, and the offset of all beam domain information can be obtained from the first offset to realize the update of the beam domain information.
  • the above embodiment provides a beam information indication method provided by the present application.
  • the method provided by the present application realizes the multiplexing of beam color information, and there is a certain distance between beams multiplexing the same color information, which effectively reduces beam interference, thereby realizing satellite beam interference management.
  • the beam information indication method provided by this application can be applied to various scenarios to realize beam interference management.
  • the method provided by this application is used to reduce the interference between inter-satellite beams.
  • the color information obtained by offsetting the reference color information based on the first offset is used, so that there is a certain distance between the beams multiplexing the same color information between the two satellites, thereby reducing the beam interference between the two satellites; for another example,
  • the satellite adopts the reference color information at a certain reference time t1, and uses the offset to offset the reference color information at time 2 to obtain new color information, thereby reducing the interference between the same satellite beams.
  • the present application also provides an embodiment that combines the beam information indication method with the beam switch, wherein the beam switch refers to deciding whether to turn off part of the beam at the edge of the satellite according to whether the overlapping coverage area between the satellites becomes larger. This reduces the interference between different beams of the satellite.
  • FIG. 4 is a schematic diagram of a beam switch.
  • the overlapping coverage area between satellite 1, satellite 2 and satellite 3 is large.
  • satellite 2 needs to close the outer beam (numbers 1-6 in the figure indicate the beam to be closed), so that Reduce interference between satellites.
  • the beam information indication method is combined with the beam switch, on the one hand, it can reduce the inter-satellite interference in the satellite dynamic motion scenario; on the other hand, after the satellite detects the interference, the beam color multiplexing information needs to be updated.
  • the beam information indication method can further reduce the signaling overhead caused by updating the beam information, and at the same time realize the interference management of the beam.
  • the present application provides a beam switching method, which includes:
  • S5B01 The third communication device acquires location information of other communication devices.
  • the other communication device refers to a communication device other than the third communication device.
  • the above-mentioned communication device may be a satellite
  • the third communication device is a first satellite and the other communication devices are other satellites other than the first satellite as an example for description below.
  • the first satellite and other satellites are shown in FIG. 5B , wherein the other satellites include multiple satellites.
  • the first satellite determines the coverage area of the first satellite according to the position information of the first satellite and the position information of other satellites.
  • the coverage area of the satellite is determined based on a Voronoi diagram.
  • the Voronoi diagram is two-dimensional or three-dimensional.
  • satellites 1 to 10 determine a two-dimensional Voronoi diagram based on the position information, as shown by the solid line in FIG. 5A .
  • satellite 1 taking satellite 1 as the first satellite as an example, satellite 1 contains 61 beams, and the beam center point is located in the Voronoi diagram corresponding to satellite 1.
  • the beam is turned on, as shown by the "*" point in Figure 5A; the beam center point Beams located outside the Voronoi diagram corresponding to satellite 1 are turned off, as indicated by the "+” point in Figure 5A.
  • the beam switching rules of other satellites are the same as those of satellite 1, and are not repeated here.
  • the Vorionoi diagram is used to determine the coverage area of the satellite, and then it is determined whether the beam center point is in the Vorionoi diagram corresponding to the satellite to open or close the beam. Inter-satellite interference can be eliminated, and full coverage of satellite beams can also be guaranteed.
  • the coverage area of the satellite is determined based on a shape such as a rectangle or an ellipse.
  • the rectangle or ellipse corresponds to the coverage/service area of the satellite in the geodetic coordinate system (ie, the two-dimensional latitude and longitude plane).
  • the first satellite updates the Voronoi diagram if the time change is greater than the preset value, or the position change between the first satellite and other satellites is greater than the preset value, the first satellite updates the Voronoi diagram.
  • the dynamic update of the satellite Voronoi diagram can be realized.
  • the opening or closing of the beam is adjusted by the dynamically updated Voronoi diagram, thereby achieving optimal beam interference management.
  • the first satellite sends beam switch information to other satellites, where the beam switch information is the end point position or offset value after the expansion or contraction of the Voronoi diagram, and the offset value is used to indicate the expansion or contraction.
  • the offset of the Voronoi diagram relative to the Voronoi diagram before expansion or contraction.
  • the first satellite expands or contracts the Voronoi diagram according to its own load capacity, and transmits the information of the expanded or contracted Voronoi diagram between satellites, which is conducive to further realizing the load while reducing the inter-satellite interference. balanced.
  • the beam switch information is carried in a coverage pattern (CoveragePattern) information element in the XnAP message.
  • CoveragePattern coverage pattern
  • the CoveragePattern cell format is as follows:
  • Pattern_location represents the endpoint position of the Voronoi diagram after satellite expansion or contraction
  • Offset represents the offset value of the Voronoi diagram after satellite expansion or contraction relative to the Voronoi diagram before satellite expansion or contraction.
  • the endpoint location information may be expressed in the form of (x, y, z) under the latitude and longitude or the Earth Centered Earth Fixed coordinate system (Earth Centered Earth Fixed, ECEF).
  • the first satellite determines whether the beam is turned on or off according to whether the center point of the beam is within the coverage area of the first satellite.
  • the above-mentioned embodiment is the beam switching method provided by the application, utilizes the Voronoi diagram to determine the satellite coverage, and then determines whether the beam is turned on or off according to whether the center point of the beam is in the Voronoi diagram, the beam switching method can not only guarantee the coverage of the satellite beam, Avoid a certain gap between adjacent beams after the beam is turned off, resulting in insufficient beam coverage, and can reduce inter-satellite interference.
  • the present application provides another embodiment, combining the beam switching method provided by the present application with the existing multi-color multiplexing method in satellite communication, and using the beam switching method provided by the present application can reduce beam interference between satellites.
  • the beam switching method of the Voronoi diagram can ensure the full coverage of the beam when the beam is turned on and off, and avoid the excessive distance between the opened beams, resulting in insufficient coverage.
  • beam interference can be further reduced by multiplexing color information.
  • the present application further provides a method for implementing beam interference management by combining a beam information indication method with a beam switching method.
  • the embodiment of the present application is not limited to a scenario of two satellites, and can be applied to multiple satellites. Satellite.
  • FIG. 6 only takes two satellites as an example for illustration, and does not limit the embodiment of the present application.
  • the beam interference management method includes:
  • S601 The second satellite sends beam switch information to the first satellite.
  • the first satellite is a serving satellite
  • the second satellite is a neighboring satellite
  • the coverage area of the satellite needs to be determined, for example, the Voronoi map of each satellite is determined by using the position information of all satellites.
  • the first satellite adjusts the Voronoi diagram (that is, the coverage area of the satellite) according to the beam switching information of the second satellite.
  • the Voronoi map endpoint position or offset value is sent to the first satellite as beam switch information, and the first satellite re-determines the Voronoi map and determines whether the beam center point is in its own Voronoi map to turn on or off the beam.
  • the first satellite may expand and contract the Voronoi diagram according to its own load capacity, and send the expanded or contracted Voronoi diagram endpoint position or offset value as beam switch information to other satellites.
  • the first satellite sends the first offset and the reference domain information of the beam to the terminal device.
  • the terminal device updates the domain information of the beam according to the first offset and the beam reference domain information.
  • steps S602 and S603 may refer to the foregoing embodiments, and details are not described herein again.
  • step S601 may be omitted.
  • the above embodiment can be applied to scenarios where satellites move from low latitudes to high latitudes or where the number of satellites is large and dense. While reducing inter-satellite interference, the full coverage of the satellite beam range can be guaranteed, and the beam color information can also be multiplexed. In the process of beam color information multiplexing, signaling overhead is further saved, and the multiplexing of color information reduces the interference between beams and realizes efficient beam interference management.
  • the present application provides an implementation method for satellite network interference management, in which the beam information indication method and/or the beam switching method provided by the present application can be applied.
  • the implementation method of satellite network interference management includes:
  • Step 1 The satellite periodically monitors the interference state or monitors the interference state according to its own needs
  • Step 2 After the satellite monitors the interference status, if the interference reaches the preset threshold, adjust and update the beam color multiplexing scheme and/or switch beams according to the interference situation, and use the updated beam color multiplexing scheme and/or Or the switching beam information is sent; if the interference is within the range of the preset threshold, the satellite maintains the current beam color multiplexing scheme and/or the state of switching beams.
  • the satellite adjusts the beam color multiplexing scheme according to the interference state, and uses the beam information indication method provided in this application to update the beam color multiplexing scheme.
  • the updated reference color multiplexing information and The first offset or re-delivery of the first offset, etc. can further save signaling overhead while implementing beam interference management.
  • the beam switching method can be further combined to reduce inter-satellite interference, so as to achieve more adequate beam interference management while ensuring full coverage of satellite beams.
  • Step 1 The terminal device periodically receives messages from the satellite, or according to its own needs, such as the beam reference color information is not received within the preset time range or the beam reference color information is incorrect, resulting in greater beam interference, etc., the terminal device A message requesting reference color information is sent to the satellite, and correspondingly, the terminal device receives the message sent by the satellite.
  • the message is a SIB message.
  • Step 2 The terminal device determines whether the color multiplexing scheme has changed according to the message sent by the satellite. If the color multiplexing scheme changes, the terminal device updates according to the changed color multiplexing scheme; if the color multiplexing scheme does not change, then The terminal device maintains the current color multiplexing scheme and does not update it.
  • the terminal device determines and updates the color multiplexing information according to the message sent by the satellite, so that the color multiplexing information is consistent with the information on the satellite side, and beam interference management is implemented.
  • This embodiment of the present application also provides an apparatus 800, which may be a terminal device or a network device, or a device in a terminal device or a network device, or a device that can be matched with a terminal device or a network device.
  • the communication apparatus 800 may include modules or units corresponding to one-to-one execution of the methods/operations/steps/actions performed by the terminal device in the above method embodiments, and the units may be hardware circuits or software. It can also be implemented by a hardware circuit combined with software.
  • the apparatus 800 may include a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 can communicate with the outside, and the processing unit 820 is used for data processing.
  • Transceiver unit 810 may also be referred to as a communication interface or a communication unit.
  • the transceiver unit 810 and the processing unit 820 may also be used to perform the following steps in the above method, for example:
  • the transceiver unit 810 is configured to acquire a first offset, where the first offset is used to indicate an offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams, the
  • the domain information includes one or more of the following information: time domain information, frequency domain information, polarization domain information;
  • the processing unit 820 is configured to update the domain information of the multiple beams based on the reference domain information and the first offset of the multiple beams.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information is domain information obtained at a reference time or domain information determined before the current time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the transceiver unit 810 is further configured to request reference domain information from the satellite.
  • the transceiver unit 810 is configured to acquire domain information identifiers of multiple beams, where the domain information identifiers are used to indicate the domain information of the multiple beams, and the domain information includes one of the following information or Multiple: time domain information, frequency domain information, polarization domain information;
  • the processing unit 820 is configured to respectively update the domain information of the multiple beams according to the domain information identifier.
  • the transceiver unit 810 is configured to obtain a reference multiplexing information identifier and a reference multiplexing information identifier hopping value, where the reference multiplexing information identifier is used to indicate reference multiplexing information of multiple beams, the The reference multiplexing information identifier hopping value is used to indicate the changed value of the reference multiplexing information identifier, and the reference multiplexing information includes one or more of the following information: time domain information, frequency domain information, and polarization domain information;
  • the processing unit 820 is configured to update the reference multiplexing information of the multiple beams according to the reference multiplexing information identification hopping value.
  • the transceiver unit 810 and the processing unit 820 may be used to perform the following steps in the above method, for example:
  • the processing unit 820 is configured to determine a first offset, where the first offset is used to indicate an offset value of the domain information of the multiple beams relative to the reference domain information of the multiple beams, where the domain information includes the following information: One or more of: time domain information, frequency domain information, polarization domain information;
  • the transceiver unit 810 is configured to send the first offset.
  • the first offset is an offset value identified by the reference domain information or an offset value of the reference domain information.
  • the reference domain information is domain information sent at the reference time.
  • the domain information is carried in a partial bandwidth BWP cell.
  • the transceiver unit 810 is further configured to receive a request message sent by the terminal device, where the request message is used to request reference domain information. Correspondingly, the transceiver unit 810 sends the reference domain information to the terminal device.
  • the processing unit 820 is configured to determine a domain information identifier of the beams, where the domain information identifier is used to indicate the domain information of the multiple beams, and the domain information includes one or more of the following information A: time domain information, frequency domain information, polarization domain information;
  • the transceiver unit 810 is configured to send the domain information identifiers of the multiple beams.
  • the processing unit 820 is configured to determine a reference multiplexing information identifier and a reference multiplexing information identifier hopping value, where the reference multiplexing information identifier is used to indicate the reference multiplexing information of multiple beams, the The reference multiplexing information identification hopping value is used to indicate the value after the reference multiplexing information identification is changed;
  • the transceiver unit 810 is configured to send the reference multiplexing information identifier and the reference multiplexing information identifier hopping value.
  • transceiver unit 810 and the processing unit 820 can also be used to perform the following steps in the above method, for example:
  • the transceiver unit 810 is used to obtain the position information of other satellites.
  • a processing unit 820 configured to determine the coverage area of the first satellite according to the position information of the first satellite and the position information of other satellites;
  • the processing unit 820 is further configured to determine whether the beam is turned on or off according to whether the center point of the beam is within the coverage area of the first satellite.
  • transceiver unit 810 is further configured to perform other receiving or sending steps or operations performed by the terminal and the network device in the foregoing method embodiments.
  • the processing unit 820 may also be configured to perform other corresponding steps or operations other than sending and receiving performed by the terminal and network device in the foregoing method embodiments, which will not be repeated here.
  • the above-mentioned apparatus 800 may be a terminal device or a network device in the above-mentioned method embodiments, that is to say, in a specific implementation, the functions of each module of the apparatus 800 are realized and beneficial.
  • FIG. 8 is only an example and not a limitation, and the above-mentioned terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 8 .
  • the chip When the device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the apparatus 800 is presented in the form of dividing each functional unit in an integrated manner.
  • a "unit” herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • FIG. 9 shows a schematic structural diagram 900 of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminals, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9 . In an actual end product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the receiving unit and the transmitting unit of the terminal (also collectively referred to as transceiving units), and the processor with processing functions can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 910 and a processing unit 920 .
  • the transceiving unit 910 may also be referred to as a receiver/transmitter (transmitter), a receiver/transmitter, a receiver/transmitter circuit, or the like.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the transceiver unit 910 and the processing unit 920 may be configured to perform the actions of the terminal in the foregoing method embodiments, for example:
  • the transceiving unit 910 may be configured to acquire the first offset; the processing unit 920 may be configured to update the domain information of the multiple beams based on the reference domain information and the first offset of the multiple beams.
  • the transceiver unit 910 may be configured to acquire domain information identifiers of multiple beams, where the domain information identifiers are used to indicate domain information of multiple beams, where the domain information includes one or more of the following information: domain information, frequency domain information, and polarization domain information; the processing unit 920 is configured to respectively update the domain information of the multiple beams according to the domain information identifier.
  • the transceiver unit 910 may be configured to acquire the reference multiplexing information identifier and the reference multiplexing information identifier hopping value; the processing unit 920 may be configured to update the reference multiplexing information of the multiple beams according to the reference multiplexing information identifier hopping value use information.
  • an embodiment of the present application further provides an apparatus 1000, where the apparatus 1000 is configured to implement the function of the network device in the foregoing method.
  • the device may be a network device, or a device in a network device, or a device that can be matched and used with the network device.
  • the apparatus 1000 may be a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1000 includes at least one processor 1010, configured to implement the function of the network device in the method provided by the embodiment of the present application.
  • the apparatus 1000 may also include a transceiver 1020 .
  • the apparatus 1000 can be specifically configured to execute the related methods executed by the network device in the above method embodiments, and the network device is, for example, a satellite.
  • the transceiver 1020 is configured to send data (such as the reference domain information of multiple beams, the first offset, etc.) to the terminal device, or receive a request from the terminal device (such as requesting the reference domain information, etc.) ); the processor 1010 is configured to determine the first offset.
  • the transceiver 1020 is configured to send data (such as domain information identifiers of multiple beams, etc.) to the terminal device, or receive a request from the terminal device (eg, request domain information identifiers, etc.); the processor 1010 is configured to The domain information identification of the plurality of beams is determined.
  • the transceiver 1020 is configured to send data (such as the reference multiplexing information identifier and the reference multiplexing information identifier hopping value, etc.) to the terminal device, and the processor 1010 is configured to determine the reference multiplexing information identifier and the reference The multiplexing information identifies the hopping value.
  • the transceiver 1020 is configured to acquire position information of other satellites, and the processor 1010 is configured to determine the coverage area of the first satellite according to the position information of the first satellite and the position information of other satellites; the processor 1010 further It is used to determine whether the beam is turned on or off according to whether the center point of the beam is within the coverage area of the first satellite.
  • each module of the apparatus 1000 may refer to the description of the relevant method steps in the above method embodiments, which will not be repeated here for the sake of brevity of the description.
  • the apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1010 .
  • the coupling in the embodiments of the present application refers to indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1010 may cooperate with the memory 1030 .
  • Processor 1010 may execute program instructions stored in memory 1030 .
  • at least one of the at least one memory may be integrated with the processor.
  • the memory 1030 is located outside the apparatus 1000 .
  • connection medium between the transceiver 1020, the processor 1010, and the memory 1030 is not limited in the embodiments of the present application.
  • the memory 1030, the processor 1010, and the transceiver 1020 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1010 may be one or more central processing units (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • the processor 1010 may be a single-core CPU or a multi-core CPU .
  • the processor 1010 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1030 may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM) , Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the memory 1030 is used for related instructions and data.
  • an embodiment of the present application further provides an apparatus 1100 that can be used to implement the functions of terminal equipment and network equipment in the above method, and the apparatus 1100 may be a communication apparatus or a chip in the communication apparatus.
  • the device includes:
  • the input-output interface 1110 may be an input-output circuit.
  • the logic circuit 1120 can be a signal processor, a chip, or other integrated circuits that can implement the method of the present application.
  • the apparatus 1100 may also include at least one memory 1130 for storing program instructions and/or data.
  • Memory 1130 and logic circuit 1120 are coupled.
  • the coupling in the embodiments of the present application refers to indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Logic circuit 1120 may cooperate with memory 1130 .
  • Logic circuit 1120 may execute program instructions stored in memory 1130 .
  • at least one of the at least one memory may be integrated with a logic circuit.
  • the memory 1130 is located outside the device 1100 .
  • At least one input and output interface 1110 is used for input or output of signals or data.
  • the input/output interface 1110 is used to input beam reference domain information and a first offset, where the first offset is used to indicate a beam The offset value of the domain information relative to the beam reference domain information; the input and output interface 1110 is also used for outputting a request message to the satellite for requesting the reference domain information.
  • the input and output interface 1110 is used for inputting beam domain information identification.
  • the input and output interface 1110 is used for inputting the reference multiplexing information identifier and the reference multiplexing information identifier hopping value.
  • the input/output interface 1110 is used for outputting beam reference domain information and a first offset, where the first offset is used to indicate that the beam domain information is relatively The offset value of the beam reference domain information; the input and output interface 1110 is also used to output the reference domain information to the terminal device.
  • the input and output interface 1110 is used for outputting the beam domain information identifier.
  • the input and output interface 1110 is used for outputting the reference multiplexing information identifier and the reference multiplexing information identifier hopping value.
  • the input/output interface 1110 is used for inputting position information of other satellites.
  • the logic circuit 1120 is configured to execute part or all of the steps of any one of the methods provided in the embodiments of the present application.
  • the logic circuit may implement the functions implemented by the processing unit 820 in the above apparatus 800 and the processor 1010 in the apparatus 1000 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is executed by hardware (for example, a processor, etc.) to Part or all of the steps of any method executed by any device in the embodiments of the present application are implemented.
  • hardware for example, a processor, etc.
  • the embodiments of the present application also provide a computer program product including instructions, when the computer program product runs on a computer, the computer is made to perform any one of the above aspects. some or all of the steps of the method.
  • the present application further provides a chip or a chip system, where the chip may include a processor.
  • the chip may also include a memory (or a storage module) and/or a transceiver (or a communication module), or the chip may be coupled with a memory (or a storage module) and/or a transceiver (or a communication module), wherein the transceiver (or or communication module) can be used to support the chip to perform wired and/or wireless communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement any one of the above method embodiments and method embodiments.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as memories (or storage modules) and/or transceivers (or communication modules).
  • the present application further provides a communication system, which may include the above terminals and/or network devices.
  • the communication system can be used to implement the operations performed by the terminal or the network device in the foregoing method embodiments and any possible implementation manners of the method embodiments.
  • the communication system may have the structure shown in FIG. 1 .
  • the above-described embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, optical disks), or semiconductor media (eg, solid state drives), and the like.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, optical disks
  • semiconductor media eg, solid state drives
  • the disclosed apparatus may also be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored or not implemented.
  • the indirect coupling or direct coupling or communication connection shown or discussed with each other may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本申请提供了一种波束信息指示方法及装置。终端设备通过获取多个波束的基准域信息和每个时刻分别对应的第一偏移量来实现波束域信息的更新,其中,该第一偏移量用于指示多个波束的域信息相对于该多个波束的基准域信息的偏移值。本申请提供的技术方案可以在信令开销较小的情况下更新多个波束的域信息,可应用于卫星通信系统,实现卫星波束的干扰管理。

Description

一种波束信息指示方法及装置 技术领域
本发明涉及无线通信领域,尤其涉及无线通信中的波束信息指示方法及相关装置。
背景技术
卫星通信具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。同时,未来地面第五代移动网络(5G)将具备完善的产业链、巨大的用户群体、灵活高效的应用服务模式等。卫星通信系统与5G相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,满足用户无处不在的多种业务需求,是未来通信发展的重要方向。特别地,下一代卫星网络呈现超密组网特性,卫星网络的规模从铱星星座的66颗发展到一网(Oneweb)星座的720颗,并最终延展到超过12000颗的星链(Starlink)超密低轨卫星星座。
在卫星通信系统中,高效的干扰管理是提升系统吞吐的核心技术。为了减少干扰,卫星通信中采用频率和极化复用,常用的方案为多色复用。多色复用是指用颜色来指示波束对应的频率或极化方式,其中,一种颜色可以代表一种频率或一种极化方式,例如左旋圆极化(Left Hand Circular Polarization,LHCP)或右旋圆极化(Right Hand Circular Polarization,RHCP)。在卫星动态场景下,波束的颜色复用信息需要动态调整,波束的颜色复用信息是指卫星的所有波束对应的频率和极化方式等信息,卫星可以每隔一定时间动态调整并广播自身的颜色复用信息或提前下发后面一段时间内颜色复用信息,在这个过程中会引入信令开销过大的问题,对于大规模波束系统(几百甚至几千波束)不可取。
发明内容
本申请提供一种波束信息指示方法及装置,可以应用于无线通信领域,尤其在卫星通信的干扰管理中能够有效地节省信令开销。
第一方面,本申请提供一种波束信息指示方法,所述方法包括:第一通信装置获取第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
所述第一通信装置基于所述多个波束的基准域信息和所述第一偏移量更新所述多个波束的域信息。
本申请实施例通过获取多个波束的基准域信息和每个时刻对应的第一偏移量实现多个波束域信息在每个时刻的更新,由于指示偏移量相比于域信息本身而言,所需的指示开销更小,因此,相比于每个时刻直接下发所有波束的域信息或某一时刻下发一段时间内的所有波束的域信息节省了信令开销。
结合上述第一方面,在一种可能的实现方式中,所述第一偏移量是相对于基准域信息标识的偏移值或所述基准域信息的偏移值。
上述方案中,每个波束的基准域信息对应一个标识,利用第一偏移量对每个波束基准域 信息的标识进行偏移得到每个波束对应的新的域信息标识,通过新的域信息标识得到该标识指示的域信息,对于标识的具体设置和解释将在下面具体实施例中进行描述,在此不再赘述。
可选的,第一偏移量也可以直接对波束的基准域信息进行偏移,降低计算复杂度。
需要说明的是,如果第一偏移量是相对于基准域信息标识的偏移,那么第一偏移量对应为第一偏移量标识或第一偏移量索引;如果第一偏移量是相对于基准域信息的偏移,那么第一偏移量对应为具体的偏移值。
结合上述第一方面,在一种可能的实现方式中,所述基准域信息为基准时刻获取的域信息或当前时刻之前确定的域信息。
结合上述第一方面,在一种可能的实现方式中,所述域信息承载在部分带宽BWP信元中。
结合上述第一方面,在一种可能的实现方式中,所述第一通信装置获取第二偏移量,所述第二偏移量与所述第一偏移量不同,所述第二偏移量用于指示所述多个波束之外的至少一个波束的域信息相对于所述至少一个波束的基准域信息的偏移值。
基于该方案,第一通信装置通过获取第一偏移量和第二偏移量实现波束域信息的更新,可以适用于跳波束卫星系统,不同簇波束对应各自的偏移量,有利于减少不同簇波束之间的波束干扰,同时在波束域信息更新的过程中可以节省信令开销。
结合上述第一方面,在一种可能的实现方式中,所述时域信息包括帧或子帧或时隙或微时隙(mini-slot)或符号。
结合上述第一方面,在一种可能的实现方式中,所述频域信息包括频率或频点。
结合上述第一方面,在一种可能的实现方式中,所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
结合上述第一方面,在一种可能的实现方式中,波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
结合上述第一方面,在一种可能的实现方式中,当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
需要理解的是,所述多个波束的第一偏移量的取值范围是指所述多个波束的基准域信息对应的第一偏移量的取值范围。
基于该方案,波束信息按周期进行更新可以实现波束信息的灵活配置,实现高效的波束干扰管理。
结合上述第一方面,在一种可能的实现方式中,所述第一通信装置在预设时长内未获得所述基准域信息,所述第一通信装置向第二通信装置请求所述基准域信息。
结合上述第一方面,在一种可能的实现方式中,所述第一通信装置获取的所述基准域信息内容有误,所述第一通信装置向第二通信装置请求所述基准域信息。
结合上述第一方面,在一种可能的实现方式中,所述基准域信息计时器超时,所述第一通信装置向第二通信装置请求所述基准域信息。
基于上述方案,第一通信装置按需向第二通信装置请求基准域信息,保证第一通信装置及时获取准确的基准域信息,进而实现有效的波束干扰管理。
结合上述第一方面,在一种可能的实现方式中,所述第一偏移量承载在系统消息块SIB 中。
第二方面,本申请提供一种波束信息指示方法,所述方法包括:第二通信装置确定第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
所述第二通信装置发送所述第一偏移量。
结合上述第二方面,一种可能的实现方式中,所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
上述方案中,每个波束的基准域信息对应一个标识,利用第一偏移量对每个波束基准域信息的标识进行偏移得到每个波束对应的新的域信息标识,通过新的域信息标识得到该标识指示的域信息,对于标识的具体设置和解释将在下面具体实施例中进行描述,在此不再赘述。
可选的,第一偏移量也可以直接对波束的基准域信息进行偏移,降低计算复杂度。
需要说明的是,如果第一偏移量是相对于基准域信息标识的偏移,那么第一偏移量对应为第一偏移量标识或第一偏移量索引;如果第一偏移量是相对于基准域信息的偏移,那么第一偏移量对应为具体的偏移值。
结合上述第二方面,一种可能的实现方式中,所述基准域信息为基准时刻发送的域信息。
结合上述第二方面,在一种可能的实现方式中,所述域信息承载在部分带宽BWP信元中。
结合上述第二方面,在一种可能的实现方式中,所述第二通信装置发送第二偏移量,所述第二偏移量与所述第一偏移量不同,所述第二偏移量用于指示所述多个波束之外的至少一个波束的域信息相对于所述至少一个波束的基准域信息的偏移值。
基于该方案,第二通信装置发送第一偏移量和第二偏移量,可以适用于跳波束卫星系统,不同簇波束对应各自的偏移量,有利于减少不同簇波束之间的波束干扰,同时在波束域信息更新的过程中可以节省信令开销。
结合上述第二方面,在一种可能的实现方式中,所述第二通信装置发送所述域信息标识,所述域信息标识用于指示所述多个波束的域信息。
结合上述第二方面,在一种可能的实现方式中,所述第二通信装置发送基准复用信息标识和基准复用信息标识变化值,所述基准复用信息标识变化值用于指示基准复用信息标识变化后的值。
结合上述第二方面,在一种可能的实现方式中,所述时域信息包括帧或子帧或时隙或微时隙(mini-slot)或符号。
结合上述第二方面,在一种可能的实现方式中,所述频域信息包括频率或频点。
结合上述第二方面,在一种可能的实现方式中,所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
结合上述第二方面,在一种可能的实现方式中,波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。。
结合上述第二方面,在一种可能的实现方式中,当前周期的所述多个波束基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
基于该方案,波束信息按周期进行更新可以实现波束信息的灵活配置,实现高效的波束 干扰管理。
结合上述第二方面,在一种可能的实现方式中,所述第二通信装置向第一通信装置发送所述多个波束的基准域信息。
基于该方案,第二通信装置响应第一通信装置请求基准域信息,保证第一通信装置及时获取准确的基准域信息,进而实现有效的波束干扰管理。
结合上述第二方面,在一种可能的实现方式中,所述第一偏移量承载在系统消息块SIB中,以广播的形式发送。
基于该方案,第一偏移量以广播的形式发送,有效的节省信令开销。
第三方面,本申请提供一种波束开关方法,所述方法包括:
第三通信装置获取其他通信装置的位置信息;
所述第三通信装置根据所述第三通信装置的位置信息和所述其他通信装置的位置信息确定所述第三通信装置的覆盖区域;
所述第三通信装置根据波束中心点是否在所述第三通信装置的所述覆盖区域内确定所述波束的开启或关闭。
需要理解的是,所述其他通信装置为所述第三通信装置之外的通信装置。示例性的,所述第三通信装置和所述其他通信装置为卫星。
基于上述方案,当通信装置之间位置较近时,不同通信装置之间的波束干扰增大,通信装置根据自身的覆盖区域确定波束的开启或者关闭,可以有效地减少星间干扰。
结合上述第三方面,在一种可能的实现方式中,所述覆盖区域基于冯洛诺伊(Voronoi)图确定。可选的,所述Voronoi图为二维或三维。
基于上述方案,利用Vorionoi图确定通信装置的覆盖区域,进而判断波束中心点是否在通信装置对应的Vorionoi图内来进行波束的开启或关闭,实现方式简单,并且可以保障通信装置波束的全覆盖,同时最小化星间干扰。
结合上述第三方面,在一种可能的实现方式中,若时长大于预设值,或,所述第三通信装置和所述其他通信装置之间的位置变化大于预设值,则所述第三通信装置更新所述Voronoi图。
基于上述方案,可以实现通信装置Voronoi图的动态更新,在通信装置动态变化时,由动态更新的Voronoi图来调整波束的开启或者关闭,进而达到最优的波束干扰管理。
结合上述第三方面,在一种可能的实现方式中,所述第三通信装置将波束开关信息发送给所述其他通信装置,所述波束开关信息为所述Voronoi图扩张或收缩后的端点位置或偏移值,所述偏移值用于指示扩张或收缩后的所述Voronoi图相对于扩张或收缩前的所述Voronoi图的偏移量。
基于上述方案,第三通信装置根据自身的负载能力对Voronoi图进行扩张或收缩,并将扩张或收缩后的Voronoi图的信息在通信装置之间进行传输,有利于在减少通信装置间干扰的同时进一步实现负载均衡。
结合上述第三方面,在一种可能的实现方式中,所述波束开关信息承载在XnAP消息中。
示例性的,所述波束开关信息承载在XnAP消息中的CoveragePattern信元中。
第四方面,本申请提供又一种波束信息指示的方法,所述方法包括:第一通信装置获取多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;所述第一通信装置根据所述 域信息标识分别更新所述多个波束的域信息。
基于上述方案,利用域信息标识来指示域信息,可以在一定程度上节省信令开销。
第五方面,本申请提供又一种波束信息指示的方法,所述方法包括:第二通信装置确定多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;所述第二通信装置发送所述多个波束的域信息标识。
第六方面,本申请提供又一种波束信息指示的方法,所述方法包括:第一通信装置获取基准复用信息标识和基准复用信息标识跳变值,所述基准复用信息标识用于指示多个波束的基准复用信息,所述基准复用信息标识跳变值用于指示基准复用信息标识变化后的值;所述第一通信装置基于所述基准复用信息标识跳变值更新所述多个波束的基准复用信息。
第七方面,本申请提供又一种波束信息指示的方法,所述方法包括:第二通信装置确定基准复用信息标识和基准复用信息标识跳变值,所述基准复用信息标识用于指示多个波束的基准复用信息,所述基准复用信息标识跳变值用于指示基准复用信息标识变化后的值;所述第二通信装置发送所述基准复用信息标识和所述基准复用信息标识跳变值。
第八方面,本申请提供一种终端设备,用于执行上述第一方面的任一种可能的实现方式中的方法。该终端设备可以为上述第一方面的任一种可能的实现方式中的第一通信装置,或者应用于终端设备中的模块,例如芯片或芯片系统等。其中,该终端设备包括实现上述第一方面的任一种可能的实现方式中第一通信装置所执行的方法相应的模块、单元、或手段(means)等,该模块、单元、或手段可以通过硬件实现、软件实现、或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述第一方面的任一种可能的实现方式中与终端设备执行的功能相对应的模块或单元。
该终端设备包括:收发单元,用于获取第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
处理单元,用于基于所述多个波束的基准域信息和所述第一偏移量更新所述多个波束的域信息。
结合上述第八方面,在一种可能的实现方式中,所述所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
结合上述第八方面,在一种可能的实现方式中,所述基准域信息为基准时刻获取的域信息或当前时刻之前确定的域信息。
结合上述第八方面,在一种可能的实现方式中,所述域信息承载在部分带宽BWP信元中。
结合上述第八方面,在一种可能的实现方式中,所述收发单元还用于获取第二偏移量,所述第二偏移量与所述第一偏移量不同,所述第二偏移量用于指示所述多个波束之外的至少一个波束的域信息相对于所述至少一个波束的基准域信息的偏移值。
结合上述第八方面,在一种可能的实现方式中,所述收发单元还用于获取所述域信息标识,所述域信息标识用于指示所述多个波束的域信息。
结合上述第八方面,在一种可能的实现方式中,所述收发单元还用于获取基准复用信息标识和基准复用信息标识变化值,所述基准复用信息标识变化值用于指示基准复用信息标识变化后的值。
结合上述第八方面,在一种可能的实现方式中,所述时域信息包括帧或子帧或时隙或微时隙(mini-slot)或符号。
结合上述第八方面,在一种可能的实现方式中,所述频域信息包括频率或频点。
结合上述第八方面,在一种可能的实现方式中,所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
结合上述第八方面,在一种可能的实现方式中,波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
结合上述第八方面,在一种可能的实现方式中,当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或所述当前周期的所述第一偏移量的取值范围与所述当前周期之前周期的不同;或当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
结合上述第八方面,在一种可能的实现方式中,所述收发单元在预设时长内未获得所述基准域信息,所述所述收发单元还用于向网络设备请求所述基准域信息。
结合上述第八方面,在一种可能的实现方式中,所述收发单元获取的基准域信息内容有误,所述收发单元还用于向网络设备重新请求所述基准域信息。
结合上述第八方面,在一种可能的实现方式中,所述基准域信息计时器超时,所述收发单元还用于向网络设备重新请求所述基准域信息。
结合上述第八方面,在一种可能的实现方式中,所述第一偏移量承载在系统消息块SIB中。
本申请提供的终端设备还用于执行上述用于执行上述第四方面的任一种可能的实现方式中的方法。例如:收发单元,用于获取多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;处理单元,用于基于所述域信息标识分别更新所述多个波束的域信息。
本申请提供的终端设备还用于执行上述用于执行上述第六方面的任一种可能的实现方式中的方法。例如:收发单元,用于获取基准复用信息标识和基准复用信息标识跳变值,所述基准复用信息标识用于指示多个波束的基准复用信息,所述基准复用信息标识跳变值用于指示基准复用信息标识变化后的值;处理单元,用于基于所述基准复用信息标识跳变值更新所述多个波束的基准复用信息。
需要说明的是,本申请实施例第八方面提供的终端设备的各个实现方式的有益效果请参考第一方面、第四方面和第六方面及其上述方面任一种可能的实现方法的有益效果,此处不再赘述。
第九方面,本申请提供一种网络设备,用于执行上述第二方面的任一种可能的实现方式中的方法。该网络设备可以为上述第二方面的任一种可能的实现方式中的第二通信装置,或者应用于网络设备中的模块,例如芯片或芯片系统等。其中,该网络设备包括实现上述第二方面的任一种可能的实现方式中第二通信装置所执行的方法相应的模块、单元、或手段(means)等,该模块、单元、或手段可以通过硬件实现、软件实现、或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述第二方面的任一种可能的实现方式中与网络设备执行的功能相对应的模块或单元。
该网络设备,包括:
处理单元,用于确定第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所 述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
收发单元,用于发送所述第一偏移量。
结合上述第九方面,一种可能的实现方式中,所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
结合上述第九方面,一种可能的实现方式中,所述基准域信息为所述收发单元在基准时刻发送的域信息。
结合上述第九方面,在一种可能的实现方式中,所述域信息承载在部分带宽BWP信元中。
结合上述第九方面,在一种可能的实现方式中,所述收发单元发送第二偏移量,所述第二偏移量与所述第一偏移量不同,所述第二偏移量用于指示所述多个波束之外的至少一个波束的域信息相对于所述至少一个波束的基准域信息的偏移值。
结合上述第九方面,在一种可能的实现方式中,所述收发单元还用于发送所述域信息标识,所述域信息标识用于指示所述多个波束的域信息。
结合上述第九方面,在一种可能的实现方式中,所述收发单元还用于发送基准复用信息标识和基准复用信息标识变化值,所述基准复用信息标识变化值用于指示基准复用信息标识变化后的值。
结合上述第九方面,在一种可能的实现方式中,所述时域信息包括帧或子帧或时隙或微时隙(mini-slot)或符号。
结合上述第九方面,在一种可能的实现方式中,所述频域信息包括频率或频点。
结合上述第九方面,在一种可能的实现方式中,所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
结合上述第九方面,在一种可能的实现方式中,所述处理单元还用于按周期更新波束信息,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
结合上述第九方面,在一种可能的实现方式中,当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
结合上述第九方面,在一种可能的实现方式中,所述收发单元还用于接收终端设备的请求,以及向所述终端设备发送所述基准域信息。
结合上述第九方面,在一种可能的实现方式中,所述第一偏移量承载在系统消息块SIB中,所述收发单元还用于以广播的形式发送所述SIB。
本申请提供的网络设备还用于执行上述第三方面的任一种可能的实现方式中的方法。例如:
收发单元,用于获取其他通信装置的位置信息;
处理单元,用于根据第三通信装置的位置信息和所述其他通信装置的位置信息确定所述第三通信装置的覆盖区域;
所述处理单元,还用于根据波束中心点是否在所述第三通信装置的所述覆盖区域内确定所述波束的开启或关闭。
结合上述第三方面,在一种可能的实现方式中,所述覆盖区域基于冯洛诺伊(Voronoi) 图确定。可选的,所述Voronoi图为二维或三维。
结合上述第三方面,在一种可能的实现方式中,若时长大于预设值,或,所述第三通信装置和所述其他通信装置之间的位置变化大于预设值,则所述处理单元更新所述Voronoi图。
结合上述第三方面,在一种可能的实现方式中,所述收发单元将波束开关信息发送给所述其他通信装置,所述波束开关信息为所述Voronoi图扩张或收缩后的端点位置或偏移值,所述偏移值用于指示扩张或收缩后的所述Voronoi图相对于扩张或收缩前的所述Voronoi图的偏移量。
结合上述第三方面,在一种可能的实现方式中,所述波束开关信息承载在XnAP消息中。
示例性的,所述波束开关信息承载在XnAP消息中的CoveragePattern信元中。
本申请提供的网络设备还用于执行上述第五方面的任一种可能的实现方式中的方法。例如:处理单元,用于确定多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;收发单元,用于发送所述多个波束的域信息标识。
本申请提供的网络设备还用于执行上述第七方面的任一种可能的实现方式中的方法。例如:收发单元,用于获取多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;处理单元,用于基于所述域信息标识分别更新所述多个波束的域信息。
需要说明的是,本申请实施例第九方面提供的网络设备的各个实现方式的有益效果请参考第二方面、第三方面、第五方面和第七方面及其上述方面任一种可能的实现方法的有益效果,此处不再赘述。
第十方面,本申请提供一种通信装置,该通信装置包括逻辑电路和输入输出接口,所述输入输出接口用于信号或数据的输入或输出,所述逻辑电路用于执行上述第一方面及其任一种可能的实现、第四方面及其任一种可能的实现和第六方面及其任一种可能的实现中的方法。
第十一方面,本申请提供一种通信装置,该通信装置包括逻辑电路和输入输出接口,所述输入输出接口用于信号或数据的输入或输出;所述逻辑电路用于执行上述第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第五方面及其任一种可能的实现和第七方面及其任一种可能的实现的方法。
第十二方面,本申请提供一种通信装置,该通信装置包括处理器,用于执行计算机程序,当所述计算机程序被执行时,使得所述通信装置执行第一方面及其任一种可能的实现、第四方面及其任一种可能的实现和第六方面及其任一种可能的实现方法。
结合第十二方面,一种可能的实现方式,所述通信装置还包括存储器,所述存储器用于保存计算机程序。
结合第十二方面,一种可能的实现方式,所述处理器和存储器集成在一起。
结合第十二方面,一种可能的实现方式,所述存储器位于该装置之外。
结合第十二方面,一种可能的实现方式,所述通信装置还包括收发器,所述收发器用于数据和/或信号的发送或接收。
第十三方面,本申请提供一种通信装置,该通信装置包括处理器,用于执行计算机程序,当所述计算机程序被执行时,使得所述装置执行第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第五方面及其任一种可能的实现和第七方面及其任一种可能的实现方法。
结合第十三方面,一种可能的实现方式,所述通信装置还包括存储器,所述存储器用于保存计算机程序。
结合第十三方面,一种可能的实现方式,所述处理器和存储器集成在一起。
结合第十三方面,一种可能的实现方式,所述存储器位于该装置之外。
结合第十三方面,一种可能的实现方式,所述通信装置还包括收发器,所述收发器用于数据和/或信号的发送或接收。
第十四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行,使得上述第一方面至第七方面及其任一种可能的实现中所述方法的部分或全部步骤被执行。
第十五方面,本申请提供一种包括可执行指令的计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得上述第一方面至第七方面及其任一种可能的实现中所述方法的部分或全部步骤被执行。
第十六方面,本申请还提供一种芯片系统,所述芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第七方面及其任一种可能的实现中所述的方法。所述芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请还提供一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备用于执行上述第一方面及其任一种可能的实现方法、第四方面及其任一种可能的实现方法和第六方面及其任一种可能的实现方法,所述网络设备用于执行上述第二方面及其任一种可能的实现方法、第三方面及其任一种可能的实现方法、第五方面及其任一种可能的实现方法和第七方面及其任一种可能的实现方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种卫星通信系统的架构示意图;
图2是现有技术中一种卫星通信中常用的复用方案的示意图;
图3A是本发明实施例提供的一种卫星通信中波束信息指示方法的示意图;
图3B是本发明实施例提供的又一种卫星通信中波束信息指示方法的示意图;
图3C是本发明实施例提供的又一种卫星通信中波束信息指示方法的示意图;
图4是现有技术中一种卫星通信中波束开关的示意图;
图5A是本发明实施例提供的一种卫星通信中波束开关方法的示意图;
图5B是本发明实施例提供的一种卫星通信中波束开关方法的交互示意图;
图6是本发明实施例提供的一种卫星通信中波束干扰管理方法的示意图;
图7A是本发明实施例提供的一种卫星通信中波束干扰管理网络侧的流程图;
图7B是本发明实施例提供的一种卫星通信中波束干扰管理终端侧的流程图;
图8是本发明实施例提供的一种装置的结构示意图;
图9是本发明实施例提供的另一种装置的结构示意图;
图10是本发明实施例提供的另一种装置的结构示意图;
图11是本发明实施例提供的另一种装置的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
图1为本发明实施例涉及的一种卫星通信系统,该卫星通信系统包括用户设备(UE)和网络设备,其中,网络设备可包括一个或多个卫星节点(例如可为NGEO卫星)和核心网设备,UE可与卫星节点进行无线通信,卫星节点可与核心网设备进行无线通信,其中:
卫星节点可包括用于对信息进行中继的轨道接收机或中继器,卫星节点可与核心网设备进行通信交互,向UE提供通信服务。
核心网设备例如为现有的移动通信架构(如5G网络的3GPP接入架构)的核心网(core network,CN)中的设备或未来移动通信架构中的核心网中的设备。核心网作为承载网络提供到数据网络的接口,为用户设备(UE)提供通信连接、认证、管理、策略控制以及对数据业务完成承载等。其中,CN又进一步可包括:接入和移动管理网元(Access and Mobility Management Function,AMF)、会话管理网元(Session Management Function,SMF),认证服务器网元(Authentication Server Function,AUSF)、策略控制节点(Policy control Function,PCF)、用户面功能网元(User Plane Function,UPF)等等网元。其中,AMF网元用于管理UE的接入和移动性,主要负责UE的认证、UE移动性管理,UE的寻呼等功能。
UE可以是终端设备(Terminal Equipment)、通信设备(Communication Device)、物联网(Internet of Things,IoT)设备中的任意一种。其中终端设备可以是智能手机、蜂窝电话、智能手表、智能平板、个人数字助理电脑、膝上型电脑等等;通信设备可以是服务器、网关(Gateway,GW)、控制器、无线调制解调器等等;物联网设备可以是传感器、可移动性装置(如自行车/汽车/载具)等等。
同样的,本发明实施例也可以应用于地面通信系统,例如,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,长期演进(long term evolution,LTE)系统,又可以为5G移动通信系统或者新空口(new radio,NR)系统或者未来通信系统,本申请不予限制。网络设备可以包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该网络设备还可以为5G系统中的gNB或TRP或TP,或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板。此外,该网络设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。或者,该网络设备还可以是设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)、车联网通信系统或者其他通信系统中承担网络侧功能的设备。
还需要说明的是,为了说明书的简洁,本文主要以图1所示的卫星通信系统为基础进行技术方案的描述。
下面对本申请涉及的卫星波束干扰管理进行简要说明。
卫星通信系统中,为了提升系统容量,卫星通常配备大规模天线阵列系统,并同时形成多个波束,为不同的用户提供传输。在多波束卫星通信系统中,由于远近效应不明显,小区中心和小区边缘的用户信号强度差别不大,若采用现有地面LTE或5G系统的全频复用方式,会产生很强的波束间干扰和星间干扰,卫星网络采用频率和极化复用的方式来减少干扰。
图2示意了卫星通信中常用的多色复用方案(多种颜色在图中示意为a、b、c、d)。一种颜色代表一种频率和极化方式的组合。其中,多色复用方案中的颜色复用阶数N=i 2+j 2+i*j,i和j取正整数。图2为四色复用,即N=4,对应4种频率和极化方式的组合。具体地,波束1和波束5都采用频率f1和RHCP极化方式,f1和RHCP组合对应颜色a;波束2和波束6都采用频率f1和LHCP极化方式,f1和LHCP组合对应颜色c;波束3和波束7都采用频率f2和RHCP极化方式,f2和RHCP组合对应颜色b;波束4和波束8都采用频率f2和LHCP极化方式,f2和LHCP组合对应颜色d。
以61波束卫星系统下发的颜色复用方案信息为例,对颜色复用方案做进一步说明。表1示出了每个时刻下每个波束对应的颜色信息,颜色信息表示频率和极化方式。
表1
Figure PCTCN2021102702-appb-000001
卫星每个时刻按照表1中的信息下发所有波束的频率和/或极化方案,或在某一时刻下发后面一段时间所有波束的频率和极化方案,信令开销大。
针对现有技术中卫星通信颜色复用方案存在的问题,本申请提供一种波束信息指示方法,该方法可以在实现波束颜色复用的同时节省信令开销。具体的,本申请提供的波束信息指示方法通过引入第一偏移量来指示多个波束的域信息相对于该多个波束的基准域信息的偏移值,由该多个波束的基准域信息和第一偏移量可以更新该多个波束的域信息。
需要说明的是,在应用到卫星通信领域时,本申请实施例涉及的波束的域信息可以对应理解为卫星通信中颜色复用方案的颜色信息,波束的基准域信息可以理解为基准颜色信息,后面在描述时两者可以互换,在此做统一说明,下面不再赘述。
具体的,下面将结合附图对本申请的实施例进行描述。
如图3A所示,本申请提供的波束信息指示方法包括:
S3A01、第一通信装置获取第一偏移量。
第一通信装置接收第二通信装置发送的第一偏移量,该第一偏移量用于指示多个波束的域信息相对于该多个波束的基准域信息的偏移值。波束的域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息。
应理解,本申请实施例提供的方法可以应用于无线通信系统和卫星通信系统中。
示例性的,第一通信装置可以为终端设备或芯片,第二通信装置可以为网络设备或芯片,网络设备例如为卫星,下面以第一通信装置为终端设备,第二通信装置为卫星为例进行说明。
一种实现方式中,卫星在初始时刻或某一基准时刻发送基准域信息和后面一段时长内每个时刻分别对应的第一偏移量。相应的,终端设备接收卫星下发的基准域信息和后面一段时长内每个时刻分别对应的第一偏移量。
又一种实现方式中,卫星在初始时刻或某一基准时刻发送基准域信息,在初始时刻或某一基准时刻之后的每个时刻发送当前时刻对应的第一偏移量。相应的,终端设备在初始时刻或某一基准时刻接收基准域信息,在初始时刻或某一基准时刻之后的每个时刻对应接收卫星发送的第一偏移量。
需要理解的是,波束的基准域信息可以看作是终端设备在初始时刻或基准时刻获取的域信息,也可以是在当前时刻之前确定的域信息。示例性的,根据初始时刻或基准时刻获取基准域信息和第一偏移量确定某一时刻的域信息,该域信息可以看作是该某一时刻的下一时刻对应的基准域信息。其中,初始时刻可以为卫星开始通信时的时刻,基准时刻可以为某一个指定时刻。当前时刻之前,可以是当前时刻的上一个时刻,或者当前时刻之前的任一时刻。
可选的,终端设备也可以从其他终端设备获取基准域信息和/或第一偏移量,例如设备到设备(Device to Device,D2D)场景,通过侧行链路(Sidelink,SL)实现信息传输,本申请对此不做限定。
一种可能的实现方式,时域信息包括帧或子帧或时隙或微时隙(mini-slot)或符号,频域信息包括频率或频点,极化域信息包括LHCP和RHCP中的至少一种。
需要说明的是,本申请中提到的“时刻”是时间概念,具体指某一个时间点t1或某一时间段Δt,而时域信息是指与时域资源有关的信息,例如帧或子帧或时隙或微时隙或符号信息。
一种实现方式中,第一偏移量是相对于基准域信息标识的偏移值。具体的,第一偏移量为第一偏移量标识。基准域信息标识的取值范围与第一偏移量的取值范围相同。其中,基准域信息标识的取值范围可以对应理解为颜色复用方案中的颜色阶数。例如,四色复用对应的颜色阶数为4,也就是说基准域信息标识/第一偏移量标识的取值范围为4,可以用2个比特来表示,如00,01,10,11。本实施例中,基准域信息标识还可以称为基准域信息索引,第一偏移量标识也可以称为第一偏移量索引。
示例性的,表2给出四色复用方案中每种颜色复用信息对应的标识。其中,在该示例中颜色复用信息为频点和极化方式的组合。具体的,标识00表示频点f1和LHCP极化方式的组合,标识01表示频点f1和RHCP极化方式的组合,标识10表示频点f2和LHCP极化方式的组合,标识11表示f2和RHCP极化方式的组合。四色复用就是多个波束复用这四种频点和极化方式的组合。
又例如,表3给出的颜色复用信息为频点,此时不区分极化方式。其中,标识00,01,10,11分别对应不同的频点f1,f2,f3,f4。
又例如,表4给出的颜色复用信息为时隙和频点,标识00,01,10,11分别对应不同的时隙和频点组合t1和f1,t2和f2,t3和f3,t4和f4。
需要说明的是,表2、表3和表4仅是示例性说明,不对本申请方案构成限定,例如,不仅是四色复用,也可以是多色复用,也就是频点和极化方式的组合不仅只有四种,可以为多种,颜色复用信息也可以为频率等。
表2
标识 颜色复用信息
00 频点f1,LHCP
01 频点f1,RHCP
10 频点f2,LHCP
11 频点f2,RHCP
表3
标识 颜色复用信息
00 频点f1
01 频点f2
10 频点f3
11 频点f4
表4
标识 颜色复用信息
00 时隙t1,频点f1
01 时隙t2,频点f2
10 时隙t3,频点f3
11 时隙t4,频点f4
需要理解的是,颜色复用信息是指卫星波束复用的颜色信息,也就是本申请中波束复用的域信息,以61波束卫星系统为例,例如61个波束复用表2所示的4种颜色信息;基准颜色信息是指所有波束复用颜色复用信息后对应的波束颜色信息,例如表5所示。
一种可能的实现方式,颜色复用信息和标识的映射关系表可以包含在波束基准域信息中,与波束基准域信息一同下发或分别下发。具体的,当颜色复用方案发生变化时,例如颜色复用信息变化或颜色复用阶数发生变化,颜色复用信息和标识的映射关系表进行更新。
可选的,颜色复用信息和标识的映射关系表也可以预先配置给终端设备,波束基准域信息标识对应的具体信息可以由预先配置的颜色复用信息和标识映射关系表得到。
示例性的,第一偏移量对基准域信息标识进行偏移。其中,基准域信息标识基于第一偏移量进行偏移后得到新的域信息标识,该新的域信息标识的取值在颜色复用信息对应的标识的取值范围内,从而实现颜色信息复用。
可选的,可以采用第一偏移量与基准域信息标识相加后再对颜色阶数取余的方法得到新的域信息标识。
具体的,以表5给出的61波束卫星系统四色复用方案为例进行说明。其中,基准域信息 以其标识的形式给出,每个标识对应的颜色复用信息例如为表2所示。如表5所示,时刻1对应61个波束的基准域信息,时刻2对应偏移量01,偏移量01指示了在时刻2时61个波束的基准域信息的标识进行01的偏移,进而得到时刻2下61个波束的域信息标识。例如,波束2的基准域信息标识为11,时刻2对应的偏移量为01,则时刻2下波束1对应的域信息标识为mod(11+01,4)=00,其中,mod()表示取余运算,4表示颜色复用方案中的颜色阶数。也就是说,在时刻2时,波束2对应的域信息为标识00对应的颜色复用信息,例如为表2中的频点f1和LHCP极化方式的组合。类似的,在时刻t时波束2对应的域信息标识为mod(11+11,4)=10,则时刻t时波束2对应的域信息为频点f2和LHCP极化方式的组合。又例如,如果表5中每个标识对应的颜色复用信息为表4所示的时隙和频点信息,类似的,时刻2对应偏移量01,则波束1偏移后得到的新的域信息标识为01,也就是说,波束1在时刻2时对应在时隙t2,频点f2进行传输。
表5
Figure PCTCN2021102702-appb-000002
又一种可能的实现方式,如图3B所示,可以执行以下步骤实现波束域信息的更新:
S3B01:卫星可以直接发送多个波束对应的域信息标识,即卫星通知终端设备所有波束对应的域信息标识,不是采用前述实施例中所述的除基准时刻发送所有波束对应的域信息标识,其他时刻发送相对于基准域信息的偏移量的方式。其中,当前时刻的上一时刻对应域信息标识相同的几个波束,在当前时刻该几个波束仍具有相同的域信息标识。可选的,当前时刻该几个波束具有的域信息标识与当前时刻该几个波束对应的域信息标识相同或不同。
相应的,终端设备接收卫星发送的多个波束对应的域信息标识。
可选的,卫星在每个时刻分别发送波束对应的域信息标识,或在某一时刻下发后面一段时长内的所有波束的域信息标识。
S3B02:终端设备基于多个波束的域信息标识实现波束域信息的更新。
示例性的,如表6所示,时刻1,卫星下发61个波束对应的域信息标识,其中,波束1和波束58对应的域信息标识相同。类似的,波束2-4和波束59-61对应的域信息标识也分别相同;时刻2,卫星下发更新后的61个波束对应的域信息标识,其中,波束1-4和波束58-61对应的波束域信息标识分别相同,但与时刻1时对应的域信息标识不同。具体的,域信息标识对应的域信息例如可以从表2中颜色复用信息和标识的映射关系表中得到。
基于上述实施例,卫星通过每个时刻下发更新后的波束域信息标识或某一基准时刻下发后面一段时长内的波束域信息的标识,相比于直接下发波束域信息节省了信令开销。
表6
Figure PCTCN2021102702-appb-000003
Figure PCTCN2021102702-appb-000004
又一种可能的实现方式,如图3C所示,可以执行以下步骤实现波束域信息的更新:
S3C01:卫星发送基准复用信息标识跳变值,该基准复用信息标识跳变值用于指示变化后的基准复用信息标识。
相应的,终端设备接收基准复用信息标识跳变值。
需要说明的是,基准复用信息可以理解为例如表2-表4所示的颜色复用信息。基准复用 信息标识可以为基准时刻或初始时刻对应的复用信息标识,也可以为当前时刻之前对应的复用信息标识。其中,初始时刻可以为卫星开始通信时的时刻,基准时刻可以为某一个指定时刻。当前时刻之前,可以是当前时刻的上一个时刻,或者当前时刻之前的任一时刻。
S3C02:终端设备基于基准复用信息标识跳变值更新每个时刻的波束域信息。
示例性的,以四色复用方案为例进行说明,其中,表7中的标识指示的具体颜色复用信息以表2为例。卫星发送基准时刻后每个时刻对应的标识变化,进而实现波束域信息的更新。例如,在时刻2时,卫星发送相对于基准时刻的标识变化后的值,如时刻1时的标识00在时刻2时变为标识01,时刻1时的标识01在时刻2时变为标识10等,需要说明的是,标识本身指示的颜色复用信息可以不发生变化。以61波束系统为例,也就是说,在时刻1时复用标识00对应的颜色信息的波束,在时刻2时复用标识01对应的颜色信息。
表7
时刻1(基准时刻) 时刻2 …… 时刻t
00 01 …… 11
01 10 …… 10
10 11 …… 00
11 00 …… 01
上述实施例中,通过对颜色复用信息进行标识设置,卫星在下发波束域信息时可以直接下发每个波束对应的标识,由标识来指示具体对应的颜色复用信息,相比于现有技术中直接下发颜色复用信息节省了一定的信令开销。具体的,以表1、表6和表7为例来说明,表1为现有技术方案中波束域信息的下发方式,每个时刻下发具体的波束域信息,例如频率信息为2比特(bit),可以表示3种或4种不同的频点,极化信息为1比特,例如可以表示如LHCP或RHCP的极化方式,每个时刻更新61个波束域信息需要的开销为61*(2+1)=183bit;表6为以波束域信息标识的形式更新每个时刻对应的域信息,需要的开销为61*2=122bit,以波束域信息标识的形式更新每个时刻对应的域信息相比于现有技术方案在一定程度上节省了信令开销,并且也可以实现颜色信息的复用;表7中发送每个时刻基准复用信息标识变化后的值,使当前时刻之前具有相同基准复用信息标识的波束在当前时刻具有统一的基准复用信息标识变化,从而实现波束域信息的更新。其中,每个时刻更新基准复用信息标识变化所需要的开销为16bit,进一步节省信令开销;更进一步的,通过第一偏移量来指示波束域信息的更新能够在实现颜色信息复用的基础上极大地节省信令开销。以表5为例,卫星下发基准域信息后(以基准域信息对应的标识进行下发),可以下发一段时长内每个时刻对应的第一偏移量或每个时刻下发当前时刻对应的第一偏移量,利用第一偏移量对基准域信息标识进行整体的偏移。基准时刻后的每个时刻仅需2bit的开销就可以实现所有波束域信息的更新,尤其对于大规模波束系统(几百甚至几千波束),极大的节省了信令开销。另外,相同颜色复用信息对应的几个波束进行同样的偏移,可以保证偏移后该几个波束仍具有相同的颜色复用信息,并且该几个波束与偏移之前间隔相同的距离,有效的解决卫星通信中小区中心和小区边缘用户信号强度差别不大带来的波束干扰。
另一种可能的实现方式中,第一偏移量也可以是相对于基准域信息的偏移值。其中,第一偏移量具体为一个偏移值,例如相对于频率或频点的偏移值,或者相对于帧或子帧或时隙或微时隙(mini-slot)或符号的偏移值,本申请在此不做限定。第一偏移量直接对基准域信息 进行偏移降低了计算复杂度。
一种可能的实现方式中,终端设备获取第二偏移量,第二偏移量与第一偏移量不同,第二偏移量用于指示多个波束之外的至少一个波束的域信息相对于该至少一个波束的基准域信息的偏移。也即,终端设备可以接收第一偏移量和第二偏移量,其中,第一偏移量对应其支持的所有波束中的一部分波束,第二偏移量对应其支持的所有波束中的另一部分波束。
示例性的,表8中波束1-40在时刻2对应的第一偏移量为01,波束41-61在时刻2对应的第二偏移量为10,波束1-40在时刻t对应的第一偏移量为11,波束41-61在时刻t对应的第二偏移量为00。
表8
Figure PCTCN2021102702-appb-000005
上述实施例用第一偏移量和第二偏移量来指示所有波束域信息的偏移值,可以适用于跳波束卫星系统,不同簇波束对应各自的偏移量,有利于减少不同簇波束之间的波束干扰,同时在波束域信息更新的过程中可以节省信令开销。
同样的,第一偏移量和第二偏移量可以为偏移量标识或具体的偏移值。
需要说明的是,上述实施例仅是示例而非限定,第一偏移量和第二偏移量对应的波束组合有多种形式,本申请在此不再赘述。
此外,第一偏移量和第二偏移量仅为举例,针对终端设备所支持的波束数量,还可以设置更多的偏移量。
一种可能的实现方式中,波束的域信息承载在部分带宽BWP信元中。也可以理解为,BWP配置信息中携带了波束的域信息。可选的,每种域信息对应一个BWP配置,例如四色复用方案中,四种颜色复用信息分别对应BWP0、BWP1、BWP2、BWP3的配置信息。
可选的,承载在BWP信元中的波束域信息的标识可以为BWP配置信息中包含的标识,也可以是为每个波束域信息重新设置的标识,标识的设置可以参考前述实施例,在此不再赘述。
可选的,承载在BWP信元可以承载具体的波束域信息,例如承载波束的时域信息、频域信息、极化域信息中的一种或多种的组合。
示例性的,如表9所示,四色复用方案中,00,01,10,11分别为BWP0,BWP1,BWP2,BWP3对应的标识。如表10所示,其中,每组波束复用一个BWP配置信息,例如,波束1-10采用BWP0的配置信息,波束53-61采用BWP3的配置信息,BWP0~BWP3在每个时刻对应 同一个偏移量。例如,时刻2时的偏移量为01,对于波束1-10经过01偏移后得到新的标识为01,也就是说,在时刻2,波束1-10复用BWP1的配置信息。
表9
标识 颜色复用信息
00 BWP0
01 BWP1
10 BWP2
11 BWP3
表10
Figure PCTCN2021102702-appb-000006
可选的,每个BWP配置对应同一个偏移量或每个BWP配置分别对应一个偏移量或多个BWP配置之外的至少一个BWP对应第二偏移量。
示例性的,BWP0和BWP1对应第一偏移量,BWP2和BWP3对应第二偏移量。如表11所示。
表11
Figure PCTCN2021102702-appb-000007
需要说明是,上述实施例中的61波束系统仅为示例,本申请提供的方法可以应用于任意波束系统,例如16波束系统、32波束系统、48波束系统等,本申请在此不做限定。
一种可能的实现方式,波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。一种可能的实现方式,当前周期的多个波束的基准域信息与当前周期之前周期的该多个波束的基准域信息相同。
一种可能的实现方式,当前周期的多个波束的基准域信息与当前周期之前周期的该多个波束的基准域信息不同。
一种可能的实现方式,当前周期的多个波束的第一偏移量的取值与当前周期之前周期的该多个波束的第一偏移量的取值不同。
一种可能的实现方式,当前周期的多个波束的第一偏移量的取值与当前周期之前周期的该多个波束的第一偏移量的取值相同。
一种可能的实现方式,当前周期第一偏移量的取值范围与当前周期之前周期的偏移量的取值范围不同。
示例性的,第一偏移量的取值范围不同可以对应理解为颜色复用阶数发生变化。例如,当前周期之前周期为当前周期的前一个周期,当前周期的前一个周期采用四色复用,当前周期采用三色复用,也就是说,当前周期的第一偏移量的取值范围为3,可以用2个bit来表示,例如为00,01,10,11。示例性的,11可以保留,使用00,01,10来指示三种颜色复用信息。需要说明的是,上述仅是示例,可以按照具体应用对标识进行设置和使用,本申请对此不进行限定。当前周期的前一个周期的第一偏移量的取值范围为4,例如为00,01,10,11。如表12所示,T为一个周期,在t11-t1T周期内,波束的基准域信息对应4种BWP配置信息,为四色复用方案;在t21-t2T周期内,波束的基准域信息对应3种BWP配置信息,为三色复用方案。
表12
Figure PCTCN2021102702-appb-000008
基于上述实施例,通过对波束信息的周期性更新,可以根据具体的干扰状态或终端设备需求实现波束颜色复用方案的动态调整,进而达到有效的进行波束干扰管理。
需要说明的是,以上表格在实际应用中可以使用其中部分行。另外,上述表格中的基准 域信息、偏移量、颜色复用信息(频率和/或极化方式、BWP等)和标识之间的映射关系以及波束采用的域信息仅仅是示例,本申请在此不做限定。一种可能的实现方式,当前周期的多个波束的第一偏移量的取值范围与当前周期之前周期的该多个波束的第一偏移量的取值范围相同。
一种可能的实现方式,当前周期的波束个数与当前周期之前周期的波束个数不同。
示例性的,卫星间干扰较大时,卫星对边缘波束进行关闭,波束个数发生变化;或者,卫星进行波束动态调整时,波束个数发生变化。
一种可能的实现方式,当前周期的波束个数与当前周期之前周期的波束个数相同。
一种可能的实现方式,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息相同,当前周期的多个波束的基准域信息对应的第一偏移量的取值与当前周期之前周期的该多个波束对应的第一偏移量的取值相同。
基于上述实施例,有利于刚接入卫星网络的终端设备获得与已接入卫星网络的终端设备一致的波束的基准域信息和偏移量,减少波束干扰。
需要说明的是,多个波束的第一偏移量是指多个波束的基准域信息对应的第一偏移量。
一种可能的实现方式,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息不同,当前周期的多个波束的基准域信息对应的第一偏移量的取值与当前周期之前周期的该多个波束对应的第一偏移量的取值相同。
一种可能的实现方式,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息相同,当前周期的多个波束的基准域信息对应的第一偏移量的取值与当前周期之前周期的该多个波束对应的第一偏移量的取值不同。
一种可能的实现方式,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息不同,当前周期的多个波束的基准域信息对应的第一偏移量的取值与当前周期之前周期的该多个波束对应的第一偏移量的取值不同。
基于上述实施例,可以在卫星干扰监测管理的过程中根据干扰状态及时进行颜色复用信息和偏移量的调整,从而实现更好的干扰管理。
一种可能的实现方式中,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息相同,当前周期波束的个数与当前周期之前周期的波束个数相同。
示例性的,当前周期与当前周期之前周期卫星之间的星间干扰较小,波束重叠较少,未对边缘波束进行关闭,当前周期与之前周期的波束个数保持不变,并且,当干扰监测满足要求时,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息可以不发生变化。
一种可能的实现方式中,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息相同,当前周期波束的个数与当前周期之前周期的波束个数不同。
示例性的,当前周期与当前周期之前周期卫星之间的星间干扰较大,波束重叠较多,对部分边缘波束进行关闭,当前周期与当前周期之前周期的波束个数发生改变。
一种可能的实现方式中,当前周期的多个波束基准域信息与当前周期之前周期的该多个波束的基准域信息不同,当前周期波束的个数与当前周期之前周期的波束个数相同。
示例性的,由于波束干扰的影响,可以对当前周期的多个波束基准域信息进行调整,与当前周期之前周期的该多个波束的基准域信息不同。
一种可能的实现方式中,当前周期的多个波束基准域信息与当前周期之前周期的该多个 波束的基准域信息不同,当前周期波束的个数与当前周期之前周期的波束个数不同。
示例性的,由于波束干扰的影响,可以对当前周期的多个波束基准域信息进行调整,与当前周期之前周期的该多个波束的基准域信息不同,同时考虑到星间干扰,对边缘部分波束进行关闭,波束个数发生变化。或者,卫星当前周期与当前周期之前周期具体可以包含的波束个数不同。
需要理解的是,当前周期之前周期可以为当前周期的前一个周期或当前周期之前的任一个周期。
一种可能的实现方式,终端设备在预设时间范围内未获得波束的基准域信息,和/或,波束的基准域信息内容有误,和/或,波束的基准域信息计时器超时,终端设备向卫星请求波束的基准域信息。
基于该方案,终端设备按照自身需求向卫星请求基准域信息,保证终端设备及时获取准确的基准域信息,进一步根据获得的基准域信息实现卫星波束的干扰管理。
一种可能的实现方式,波束的基准域信息和第一偏移量一起下发。
示例性的,在系统信息块(System Information Block,SIB)消息中或无线资源控制(Radio Resource Control,RRC)消息中下发波束的基准域信息和第一偏移量。
一种可能的实现方式,波束的基准域信息和第一偏移量分开下发。
示例性的,波束的基准域信息在RRC消息中下发,采用单播的方式,保证了信息的准确性;第一偏移量在SIB消息中下发,采用广播的方式,有效的节省信令开销。
一种可能的实现方式,第一偏移量承载在协议中现有的信元中。
示例性的,第一偏移量承载在BWP信息元素(BWP information element)信元中:
Figure PCTCN2021102702-appb-000009
其中,偏移因子(ShiftFactor)为第一偏移量,用于指示多个波束的域信息相对于多个波束基准域信息的偏移值;时间瞬时(TimeInstant)为时刻或时间段,用于指示卫星每个时刻下发具体的偏移量或卫星提前下发未来一段时长内的偏移量。
可选的,第一偏移量也可以承载在服务小区公共配置(servingCellConfigCommon)等其它信元。
另一种可能的实现方式,第一偏移量承载在SIB消息中新增的信元中。
示例性的,第一偏移量承载在SIB消息中的颜色偏移图案(ColorShiftPattern)信元中:
Figure PCTCN2021102702-appb-000010
Figure PCTCN2021102702-appb-000011
其中,ShiftFactor为第一偏移量,用于指示多个波束的域信息相对于多个波束基准域信息的偏移;TimeInstant为时刻或时间段,用于指示卫星每个时刻下发具体的偏移量或卫星提前下发未来一段时长内的偏移量。
S3A02、终端设备基于多个的波束基准域信息和第一偏移量更新多个波束的域信息。
终端设备获取波束的基准域信息和一段时长内每个时刻对应的第一偏移量或终端设备获取波束的基准域信息后,在每个时刻获取当前时刻的第一偏移量,进而根据波束的基准域信息和每个时刻对应的第一偏移量进行波束域信息的更新。在卫星波束干扰管理的过程中,有效的节省卫星下发更新的波束域信息带来的信令开销,由第一偏移量可以得到所有波束域信息的偏移,实现波束域信息的更新。
上述实施例为本申请提供的一种波束信息指示方法,在卫星动态变化的场景下,当卫星运动在赤道附近或者相邻卫星之间的星间距较大时,卫星之间的波束重叠比较少,因此带来的星间波束干扰也较少,利用本申请提供的波束信息指示方法,可以有效地节省波束信息更新带来的信令开销。根据上述实施例的描述,本申请提供的方法实现了波束颜色信息的复用,复用相同颜色信息的波束间存在一定的距离,有效的减少波束干扰,进而实现卫星的波束干扰管理。
另外,本申请提供的波束信息指示方法可以应用到多种场景实现波束干扰管理,示例性的,利用本申请提供的方法减少星间波束之间的干扰,例如服务卫星采用基准颜色信息,邻卫星采用基于第一偏移量对基准颜色信息偏移后的颜色信息,这样两个卫星之间复用相同颜色信息的波束之间存在一定距离,减少两个卫星之间的波束干扰;又例如,卫星在某一基准时刻t1采用基准颜色信息,在时刻2利用偏移量对基准颜色信息进行偏移得到新的颜色信息,减少同一卫星波束之间的干扰。
当卫星从低纬度区域运动到高纬度区域时,或者当卫星数量较多,相邻卫星之间的星间间距较小,不同卫星之间的重叠区域显著增加,星间干扰也随之大幅增加,极大地限制了网络性能。
基于此,本申请还提供一实施例,将波束信息指示方法与波束开关相结合,其中,波束开关是指根据卫星之间的重叠覆盖区域是否变大,决策是否关闭卫星边缘的部分波束,以此来减少卫星不同波束间的干扰。
示例性的,图4为波束开关的示意图。如图4所示,卫星1、卫星2和卫星3之间的重叠覆盖区域较大,此时卫星2需要关闭外侧的波束(图中以数字1-6来示意要关闭的波束),这样可以减少卫星之间的干扰。波束信息指示方法与波束开关相结合,一方面,可以减少卫星动态运动场景下的星间干扰;另一方面,卫星检测到干扰后,需要对波束颜色复用信息进行更新,根据本申请提供的波束信息指示方法,可以进一步减少更新波束信息带来的信令开销,同时实现波束的干扰管理。
具体的,如图5B所示,本申请提供一种波束开关方法,该方法包括:
S5B01:第三通信装置获取其他通信装置的位置信息。
需要说明的是,其他通信装置是指第三通信装置之外的通信装置。
示例性的,上述通信装置可以为卫星,下面以第三通信装置为第一卫星,其他通信装置为第一卫星之外的其他卫星为例进行说明。其中,图5B中以第一卫星和其他卫星示意,其中,其他卫星包含多个卫星。
S5B02:第一卫星根据该第一卫星的位置信息和其他卫星的位置信息确定该第一卫星的覆盖区域。
一种可能的实现方式,卫星的覆盖区域基于冯洛诺伊(Voronoi)图确定。
可选的,Voronoi图为二维或三维。示例性的,如图5A所示,卫星1-卫星10基于位置信息确定二维Voronoi图,如图5A中实线所示。其中,以卫星1为第一卫星为例,卫星1包含61个波束,其中波束中心点位于卫星1对应的Voronoi图内的波束开启,如图5A中的“*”点所示;波束中心点位于卫星1对应的Voronoi图之外的波束关闭,如图5A中的“+”点所示。其他卫星的波束开关规则与卫星1相同,在此不再赘述。
基于上述方案,利用Vorionoi图确定卫星的覆盖区域,进而判断波束中心点是否在卫星对应的Vorionoi图内来进行波束的开启或关闭,实现方式简单,并且基于Vorionoi图的方法实现波束开关不但可以最小化星间干扰,还可以保障卫星波束的全覆盖。
一种可能的实现方式,卫星的覆盖区域基于矩形或椭圆形等形状确定。
可选的,矩形或椭圆形对应大地坐标系(即二维经纬度平面)下卫星的覆盖/服务区域。
一种可能的实现方式,若时间变化大于预设值,或,第一卫星和其他卫星之间的位置变化大于预设值,则第一卫星更新Voronoi图。
基于上述方案,可以实现卫星Voronoi图的动态更新,在卫星动态变化时,由动态更新的Voronoi图来调整波束的开启或者关闭,进而达到最优的波束干扰管理。
一种可能的实现方式,第一卫星将波束开关信息发送给其他卫星,该波束开关信息为Voronoi图扩张或收缩后的端点位置或偏移值,该偏移值用于指示扩张或收缩后的Voronoi图相对于扩张或收缩前的Voronoi图的偏移量。
基于上述方案,第一卫星根据自身的负载能力对Voronoi图进行扩张或收缩,并将扩张或收缩后的Voronoi图的信息在卫星之间进行传输,有利于在减少星间干扰的同时进一步实现负载均衡。
一种可能的实现方式,该波束开关信息承载在XnAP消息中的覆盖模式(CoveragePattern)信元中。
示例性的,CoveragePattern信元格式如下:
Figure PCTCN2021102702-appb-000012
Figure PCTCN2021102702-appb-000013
其中,Pattern_location表示卫星扩张或收缩后的Voronoi图的端点位置,Offset表示卫星扩张或收缩后的Voronoi图相对于卫星扩张或收缩前的Voronoi图的偏移值。其中,端点位置信息可以表示为经纬度或地心地固坐标系(Earth Centered Earth Fixed,ECEF)下的(x,y,z)等形式。
S5B03:第一卫星根据波束中心点是否在该第一卫星的覆盖区域内确定波束的开启或关闭。
上述实施例为本申请提供的波束开关方法,利用Voronoi图确定卫星覆盖范围,进而根据波束中心点是否在Voronoi图内决定波束的开启或关闭,该波束开关方法不仅可以保障卫星波束的覆盖范围,避免关闭波束后相邻波束之间存在一定间隙,导致波束覆盖不足,而且可以减少卫星间干扰。
本申请提供又一实施例,将本申请提供的波束开关方法与现有卫星通信中多色复用方法相结合,利用本申请提供的波束开关方法可以减少卫星之间的波束干扰,另外,基于Voronoi图的波束开关方法在实现波束开启和关闭时可以保障波束的全覆盖,避免开启的波束之间存在距离过大,导致覆盖范围不足。进一步的,与多色复用方法相结合,可以通过对颜色信息的复用,进一步减少波束干扰。
如图6所示,本申请又提供一种将波束信息指示方法与波束开关方法相结合,以实现波束干扰管理的方法,其中,本申请实施例不限于两个卫星的场景,可以应用于多个卫星。为了便于描述,图6仅以两个卫星为例进行示意,并不对本申请实施例构成限定。
具体的,该波束干扰管理方法包括:
S601:第二卫星向第一卫星发送波束开关信息。
示例性的,第一卫星为服务卫星,第二卫星为邻卫星。
需要说明的是,第二卫星向第一卫星发送波束开关信息之前需要确定卫星的覆盖区域,例如,利用所有卫星的位置信息确定各个卫星的Voronoi图。
第一卫星根据第二卫星的波束开关信息进行Voronoi图(也就是卫星的覆盖区域)的调整,例如,第二卫星根据自身的负载能力进行Voronoi图的扩张或收缩,并将扩张或收缩后的Voronoi图端点位置或偏移值作为波束开关信息发送给第一卫星,第一卫星重新确定Voronoi图,并判断波束中心点是否在自己的Vorinoi图内从而进行波束的开启或关闭。
其中,具体确定卫星覆盖区域的实现方式可以参考前述波束开关方法的描述,在此不再赘述。
可选的,也可以是第一卫星根据自身的负载能力进行Voronoi图扩张和收缩,并将扩张或收缩后的Voronoi图端点位置或偏移值作为波束开关信息发送给其他卫星。
S602:第一卫星向终端设备发送第一偏移量和波束的基准域信息。
S603:终端设备根据第一偏移量和波束基准域信息更新波束的域信息。
其中,步骤S602和S603的具体实现方式可以参考前述实施例,在此不再赘述。
需要说明的是,当卫星没有根据自身负载能力对已经确定的覆盖范围进行调整时,直接根据已经确定的覆盖范围进行波束开启或关闭,在这种情况下可以省略步骤S601。
上述实施例可以适用于卫星从低纬度运动到高纬度区域或者卫星数量多而密集的场景,在减少星间干扰的同时可以保障卫星波束范围的全覆盖,还可以对波束颜色信息进行复用, 在波束颜色信息复用的过程中进一步节省信令开销,并且颜色信息的复用减少了波束之间的干扰,实现高效的波束干扰管理。
本申请提供一种卫星网络干扰管理的实现方法,在该方法中可以应用本申请提供的波束信息指示方法和/或波束开关方法。具体的,卫星网络干扰管理的实现方法包括:
如图7A所示,对于网络侧,以卫星为例,可以包括以下步骤:
步骤1:卫星周期性的监测干扰状态或按照自身的需求进行干扰状态监测;
步骤2:卫星进行干扰状态监测后,如果干扰达到预先设定的门限值,则根据干扰情况调整和更新波束颜色复用方案和/或开关波束,并将更新的波束颜色复用方案和/或开关波束信息进行下发;如果干扰在预先设定的门限值的范围内,则卫星维持当前的波束颜色复用方案和/或开关波束的状态。
基于上述实施例,卫星根据干扰状态进行波束颜色复用方案的调整,利用本申请提供的波束信息指示方法实现波束颜色复用方案的更新,例如,重新下发更新后的基准颜色复用信息和第一偏移量或重新下发第一偏移量等,在实现波束干扰管理的同时还可以进一步节省信令开销。可选的,还可以进一步结合波束开关方法来减少星间干扰,在保障卫星波束全覆盖的情况下实现更充分的波束干扰管理。
如图7B所示,对应终端侧,可以包括以下步骤:
步骤1:终端设备周期性的从卫星接收消息,或按照自身的需求,如在预设时间范围内未收到波束基准颜色信息或波束基准颜色信息有误,导致波束干扰较大等,终端设备向卫星发送请求基准颜色信息的消息,相应的,终端设备接收卫星发送的消息。示例性的,该消息为SIB消息。
步骤2:终端设备根据卫星发送的消息判断颜色复用方案是否改变,如果颜色复用方案发生改变,则终端设备根据改变后的颜色复用方案进行更新;如果颜色复用方案未发生改变,则终端设备维持当前的颜色复用方案,不进行更新。
基于上述实施例,终端设备根据卫星下发的消息判断和更新颜色复用信息,实现颜色复用信息与卫星侧信息一致,实现波束干扰管理。
本申请实施例还提供一种装置800,该装置800可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置,或者是能够和终端设备、网络设备匹配使用的装置。。一种可能的实现中,该通信装置800可以包括执行上述方法实施例中终端设备执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可能的实现中,装置800可以包括收发单元810和处理单元820。收发单元810可以与外部进行通信,处理单元820用于进行数据处理。收发单元810还可以称为通信接口或通信单元。
当装置800用于执行终端所执行的操作时,一种可能的实现中,收发单元810和处理单元820还可以用于执行上文方法中的以下步骤,例如:
在一个实施例中,收发单元810,用于获取第一偏移量,该第一偏移量用于指示多个波束的域信息相对于该多个波束的基准域信息的偏移值,该域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
处理单元820,用于基于该多个波束的基准域信息和第一偏移量更新该多个波束的域信息。
一种可能的实现方式中,该第一偏移量是相对于基准域信息标识的偏移值或基准域信息 的偏移值。
一种可能的实现方式中,该基准域信息为基准时刻获取的域信息或当前时刻之前确定的域信息。
一种可能的实现方式中,该域信息承载在部分带宽BWP信元中。
一种可能的实现方式中,收发单元810还用于向卫星请求基准域信息。
在又一实施例中,收发单元810,用于获取多个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
处理单元820,用于根据所述域信息标识分别更新所述多个波束的域信息。
在又一实施例中,收发单元810,用于获取基准复用信息标识和基准复用信息标识跳变值,所述基准复用信息标识用于指示多个波束的基准复用信息,所述基准复用信息标识跳变值用于指示基准复用信息标识变化后的值,所述基准复用信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
处理单元820,用于根据所述基准复用信息标识跳变值更新所述多个波束的基准复用信息。
当通信装置800用于执行网络设备所执行的操作时,在一实施例中,收发单元810和处理单元820可以用于执行上文方法中的以下步骤,例如:
处理单元820,用于确定第一偏移量,该第一偏移量用于指示多个波束的域信息相对于该多个波束的基准域信息的偏移值,该域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
收发单元810,用于发送所述第一偏移量。
一种可能的实现方式中,该第一偏移量是相对于基准域信息标识的偏移值或基准域信息的偏移值。
一种可能的实现方式中,该基准域信息为基准时刻发送的域信息。
一种可能的实现方式中,该域信息承载在部分带宽BWP信元中。
一种可能的实现方式中,收发单元810还用于接收终端设备发送的请求消息,该请求消息用于请求基准域信息。相应的,收发单元810向终端设备发送基准域信息。
在又一实施例中,处理单元820,用于确定个波束的域信息标识,所述域信息标识用于指示所述多个波束的域信息,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
收发单元810,用于发送所述多个波束的域信息标识。
在又一实施例中,处理单元820,用于确定基准复用信息标识和基准复用信息标识跳变值,所述基准复用信息标识用于指示多个波束的基准复用信息,所述基准复用信息标识跳变值用于指示基准复用信息标识变化后的值;
收发单元810,用于发送基准复用信息标识和基准复用信息标识跳变值。
在又一实施例中,收发单元810和处理单元820还可以用于执行上文方法中的以下步骤,例如:
收发单元810,用于获取其他卫星的位置信息。
处理单元820,用于根据第一卫星的位置信息和其他卫星的位置信息确定第一卫星的覆盖区域;
处理单元820,还用于根据波束中心点是否在第一卫星的覆盖区域内确定波束的开启或关闭。
需要说明的是,收发单元810还用于执行上述方法实施例中终端、网络设备执行的其它接收或发送的步骤或操作。处理单元820还可以用于执行上述方法实施例终端、网络设备执行的除收发之外的其它对应的步骤或操作,在此不再一一赘述。
需要说明的是,在本发明的具体实施例中,上述装置800可以是上述方法实施例中的终端设备、网络设备,也就是说,在具体实现中,装置800的各个模块的功能实现和有益效果可参考上述方法实施例的相关方法步骤的描述,为了说明书的简洁,这里不再赘述。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图8所示的结构。
当装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
在本实施例中,该装置800以采用集成的方式划分各个功能单元的形式来呈现。这里的“单元”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
图9示出了一种简化的终端的结构示意图900。便于理解和图示方便,图9中,终端以手机作为例子。如图9所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端的处理单元。如图9所示,终端包括收发单元910和处理单元920。收发单元910也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。收发单元910和处理单元920可以用于执行上述方法实施例中终端的动作,例如:
在一个实施例中,收发单元910可以用于获取第一偏移量;处理单元920用于基于该多个波束的基准域信息和第一偏移量更新该多个波束的域信息。
在又一个实施例中,收发单元910可以用于获取多个波束的域信息标识,该域信息标识用于指示多个波束的域信息,该域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;处理单元920用于根据域信息标识分别更新所述多个波束的域信息。
在又一个实施例中,收发单元910可以用于获取基准复用信息标识和基准复用信息标识 跳变值;处理单元920用于根据基准复用信息标识跳变值更新多个波束的基准复用信息。
其中,上述方法实施例涉及的各步骤的所有相关内容和有益效果均可以援引到对应功能器件的功能描述,在此不再赘述。
如图10所示,本申请实施例又提供一种装置1000,装置1000用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,装置1000可以为芯片系统。在本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1000包括至少一个处理器1010,用于实现本申请实施例提供的方法中网络设备的功能。装置1000还可以包括收发器1020。
装置1000具体可用于执行上述方法实施例中网络设备所执行的相关方法,网络设备例如为卫星。
例如,在一个实施例中,收发器1020,用于向终端设备发送数据(如多个波束的基准域信息、第一偏移量等),或者接收终端设备的请求(如请求基准域信息等);处理器1010用于确定第一偏移量。
在又一个实施例中,收发器1020,用于向终端设备发送数据(如多个波束的域信息标识等),或者接收终端设备的请求(如请求域信息标识等);处理器1010用于确定多个波束的域信息标识。
在又一个实施例中,收发器1020,用于向终端设备发送数据(如基准复用信息标识和基准复用信息标识跳变值等),处理器1010用于确定基准复用信息标识和基准复用信息标识跳变值。
在又一个实施例中,收发器1020,用于获取其他卫星的位置信息,处理器1010用于根据第一卫星的位置信息和其他卫星的位置信息确定第一卫星的覆盖区域;处理器1010还用于根据波束中心点是否在第一卫星的覆盖区域内确定波束的开启或关闭。
需要说明的是,在具体实现中,装置1000的各个模块的功能实现可参考上述方法实施例的相关方法步骤的描述,为了说明书的简洁,这里不再赘述。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1010耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械或其他形式,用于装置、单元或模块之间的信息交互。处理器1010可能和存储器1030协同操作。处理器1010可能执行存储器1030中存储的程序指令。在一种可能的实现方式中,至少一个存储器中的至少一个可以与处理器集成在一起。在另一种可能的实现方式中,存储器1030位于装置1000之外。
本申请实施例中不限定上述收发器1020、处理器1010以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1010以及收发器1020之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中,处理器1010可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器1010是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器1010可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处 理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中,存储器1030可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。该存储器1030用于相关指令及数据。
如图11所示,本申请实施例还提供了一种装置1100,可用于实现上述方法中终端设备、网络设备的功能,该装置1100可以是通信装置或者通信装置中的芯片。该装置包括:
至少一个输入输出接口1110和逻辑电路1120。输入输出接口1110可以是输入输出电路。逻辑电路1120可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
装置1100还可以包括至少一个存储器1130,用于存储程序指令和/或数据。存储器1130和逻辑电路1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械或其他形式,用于装置、单元或模块之间的信息交互。逻辑电路1120可能和存储器1130协同操作。逻辑电路1120可能执行存储器1130中存储的程序指令。在一种可能的实现方式中,至少一个存储器中的至少一个可以与逻辑电路集成在一起。在另一种可能的实现方式中,存储器1130位于装置1100之外。
其中,至少一个输入输出接口1110用于信号或数据的输入或输出。
举例来说,当该装置为终端或者用于终端时,在一个实施例中,该输入输出接口1110用于输入波束基准域信息和第一偏移量,该第一偏移量用于指示波束域信息相对于波束基准域信息的偏移值;输入输出接口1110还用于向卫星输出请求消息,用于请求基准域信息。
在又一实施例中,该输入输出接口1110用于输入波束域信息标识。
在又一实施例中,该输入输出接口1110用于输入基准复用信息标识和基准复用信息标识跳变值。
举例来说,当该装置为网络设备时,在一个实施例中,该输入输出接口1110用于输出波束基准域信息和第一偏移量,该第一偏移量用于指示波束域信息相对于波束基准域信息的偏移值;输入输出接口1110还用于向终端设备输出基准域信息。
在又一实施例中,该输入输出接口1110用于输出波束域信息标识。
在又一实施例中,该输入输出接口1110用于输出基准复用信息标识和基准复用信息标识跳变值。
在又一实施例中,该输入输出接口1110用于输入其他卫星的位置信息。
其中,逻辑电路1120用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述装置800中的处理单元820、装置1000中的处理器1010所实现的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
基于与上述方法实施例相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以实现本申请实施例中由任意装置执行的任意一种方法的部分或全部步骤。
基于与上述方法实施例相同构思,本申请实施例还提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述这个计算机执行以上各方面的任意一种方法的部分或者全部步骤。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上终端和/或网络设备。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。示例性的,该通信系统可具有如图1所示结构。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以 是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的一些具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可对这些实施例做出另外的变更和修改。因此,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的说是有变更和修改。因此,本申请保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种波束信息指示方法,其特征在于,所述方法包括:
    第一通信装置获取第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
    所述第一通信装置基于所述多个波束的基准域信息和所述第一偏移量更新所述多个波束的域信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基准域信息为基准时刻获取的域信息或当前时刻之前确定的域信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述域信息承载在部分带宽BWP信元中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述时域信息包括帧或子帧或时隙或微时隙或符号;
    所述频域信息包括频率或频点;
    所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述多个波束的波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
  7. 根据权利要求6所述的方法,其特征在于,
    当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或
    所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或
    所述当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一通信装置在预设时长内未获得所述基准域信息,所述第一通信装置向第二通信装置请求所述基准域信息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一偏移量承载在系统消息块SIB中。
  10. 一种波束信息指示方法,其特征在于,所述方法包括:
    第二通信装置确定第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
    所述第二通信装置发送所述第一偏移量。
  11. 根据权利要求10所述的方法,其特征在于,所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述基准域信息为基准时刻发送的域信息。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述域信息承载在部分带宽 BWP信元中。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,
    所述时域信息包括帧或子帧或时隙或微时隙或符号;
    所述频域信息包括频率或频点;
    所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种;
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述多个波束的波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或
    所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或
    所述当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
  17. 根据权利要求16所述的方法,其特征在于,所述第二通信装置接收第一通信装置的请求,向所述第一通信装置发送所述基准域信息。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第一偏移量承载在系统消息块SIB中,以广播的形式发送。
  19. 一种终端设备,其特征在于,包括:
    收发单元,用于获取第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
    处理单元,用于基于所述多个波束的基准域信息和所述第一偏移量更新所述多个波束的域信息。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一偏移量是相对于所述基准域信息标识的偏移值或所述基准域信息的偏移值。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述基准域信息为基准时刻获取的域信息或当前时刻之前确定的域信息。
  22. 根据权利要求19-21任一项所述的终端设备,其特征在于,所述域信息承载在部分带宽BWP信元中。
  23. 根据权利要求19-22任一项所述的终端设备,其特征在于,
    所述时域信息包括帧或子帧或时隙或微时隙或符号;
    所述频域信息包括频率或频点;
    所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
  24. 根据权利要求19-23任一项所述的终端设备,其特征在于,所述多个波束的波束信息按周期更新,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
  25. 根据权利要求24所述的终端设备,其特征在于,
    当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或
    所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同; 或
    所述当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
  26. 根据权利要求19-25任一项所述的终端设备,其特征在于,所述收发单元在预设时长内未获得所述基准域信息,所述收发单元还用于向网络设备请求所述基准域信息。
  27. 根据权利要求19-26任一项所述的终端设备,其特征在于,所述第一偏移量承载在系统消息块SIB中。
  28. 一种网络设备,其特征在于,包括:
    处理单元,用于确定第一偏移量,所述第一偏移量用于指示多个波束的域信息相对于所述多个波束的基准域信息的偏移值,所述域信息包括以下信息中的一个或多个:时域信息、频域信息、极化域信息;
    收发单元,用于发送所述第一偏移量。
  29. 根据权利要求28所述的网络设备,其特征在于,所述第一偏移量是相对于基准域信息标识的偏移值或所述基准域信息的偏移值。
  30. 根据权利要求28或29所述的网络设备,其特征在于,所述基准域信息为基准时刻发送的域信息。
  31. 根据权利要求28-30任一项所述的网络设备,其特征在于,所述域信息承载在部分带宽BWP信元中。
  32. 根据权利要求28-31任一项所述的网络设备,其特征在于,
    所述时域信息包括帧或子帧或时隙或微时隙或符号;
    所述频域信息包括频率或频点;
    所述极化域信息包括左旋圆极化LHCP和右旋圆极化RHCP中的至少一种。
  33. 根据权利要求28-32任一项所述的网络设备,其特征在于,所述处理单元还用于按周期更新所述多个波束的波束信息,所述波束信息包括所述基准域信息、所述第一偏移量、波束个数中的至少一个。
  34. 根据权利要求33所述的网络设备,其特征在于,
    当前周期的所述多个波束的基准域信息与所述当前周期之前周期的所述多个波束的基准域信息不同;或
    所述当前周期的所述多个波束的第一偏移量的取值范围与所述当前周期之前周期的不同;或
    所述当前周期的所述波束个数与所述当前周期之前周期的所述波束个数不同。
  35. 根据权利要求28-34任一项所述的网络设备,其特征在于,所述收发单元还用于向终端设备主动发送或根据所述终端设备的请求向所述终端设备发送所述基准域信息。
  36. 根据权利要求28-35任一项所述的网络设备,其特征在于,所述收发单元还用于以广播的形式发送系统消息块SIB,所述第一偏移量承载在所述SIB中。
  37. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口,所述输入输出接口用于输入第一偏移量,所述逻辑电路用于执行如权利要求1-9中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口,所述输入输出接口用于输出第一偏移量,所述逻辑电路用于执行如权利要求10-18中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括:至少一个处理器和收发器,所述收发器用于接收或发送数据或信号;所述至少一个处理器用于执行动作以使得所述通信装置执行如权利要 求1-9或10-18中任一项所述的方法。
  40. 如权利要求39所述的通信装置,其特征在于,所述装置还包括存储器,所述存储器与所述处理器耦合,所述存储器用于存储计算机程序,当所述计算机程序被所述处理器执行时,使得权利要求1-9或10-18中任一项所述的方法被执行。
  41. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于保存计算机程序或指令,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得权利要求1-9或10-18中任一项所述的方法被执行。
  42. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时,使得权利要求1-9或10-18中任一项所述的方法被执行。
  43. 一种包括可执行指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得权利要求1-9或10-18中任一项所述的方法被执行。
  44. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1-9中任一项所述的方法,所述网络设备用于执行如权利要求10-18中任一项所述的方法。
PCT/CN2021/102702 2020-07-24 2021-06-28 一种波束信息指示方法及装置 WO2022017130A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2021312759A AU2021312759B2 (en) 2020-07-24 2021-06-28 Beam information indication method and apparatus
CA3190023A CA3190023A1 (en) 2020-07-24 2021-06-28 Beam information indication method and apparatus
EP21846419.6A EP4185045A4 (en) 2020-07-24 2021-06-28 METHOD AND APPARATUS FOR INDICATING BEAM INFORMATION
US18/158,298 US20230163836A1 (en) 2020-07-24 2023-01-23 Beam information indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010724641.7 2020-07-24
CN202010724641.7A CN113973373A (zh) 2020-07-24 2020-07-24 一种波束信息指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,298 Continuation US20230163836A1 (en) 2020-07-24 2023-01-23 Beam information indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022017130A1 true WO2022017130A1 (zh) 2022-01-27

Family

ID=79585654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102702 WO2022017130A1 (zh) 2020-07-24 2021-06-28 一种波束信息指示方法及装置

Country Status (6)

Country Link
US (1) US20230163836A1 (zh)
EP (1) EP4185045A4 (zh)
CN (1) CN113973373A (zh)
AU (1) AU2021312759B2 (zh)
CA (1) CA3190023A1 (zh)
WO (1) WO2022017130A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749257B (zh) * 2024-02-20 2024-05-17 成都星联芯通科技有限公司 终端搜索高轨多波束的工程实现方法、装置和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009667A (zh) * 2013-12-30 2015-10-28 华为技术有限公司 一种干扰协调方法、装置及系统
WO2018000421A1 (zh) * 2016-07-01 2018-01-04 广东欧珀移动通信有限公司 传输信号的方法、网络设备和终端设备
CN107734663A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 系统信息传输方法及装置
WO2019202106A1 (en) * 2018-04-19 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for beam sweep

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009667A (zh) * 2013-12-30 2015-10-28 华为技术有限公司 一种干扰协调方法、装置及系统
WO2018000421A1 (zh) * 2016-07-01 2018-01-04 广东欧珀移动通信有限公司 传输信号的方法、网络设备和终端设备
CN107734663A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 系统信息传输方法及装置
WO2019202106A1 (en) * 2018-04-19 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for beam sweep

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4185045A4 *

Also Published As

Publication number Publication date
AU2021312759B2 (en) 2024-06-13
US20230163836A1 (en) 2023-05-25
EP4185045A4 (en) 2024-02-21
CA3190023A1 (en) 2022-01-27
AU2021312759A1 (en) 2023-03-02
CN113973373A (zh) 2022-01-25
EP4185045A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
CN109392173B (zh) 一种系统信息的发送方法、获取方法及相关设备
WO2019029466A1 (zh) 一种时间配置的方法、网络设备及ue
US20210058147A1 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
US20230156489A1 (en) Wireless communication method and apparatus
WO2021016940A1 (zh) V2x通信的同步信号配置方法、装置及存储介质
CN113099556A (zh) 在蜂窝节点和核心网之间建立连接的装置、系统和方法
EP4307767A1 (en) Wireless communication method, apparatus and system
WO2021249530A1 (zh) 一种用于非地面通信网络的信息指示方法及装置
WO2022017130A1 (zh) 一种波束信息指示方法及装置
WO2021159976A1 (zh) 一种用于非地面通信网络的信息指示方法及装置
JP2023536968A (ja) ユーザ機器が登録エリア内に位置しているか否かを判定するための装置および方法
WO2023116335A1 (zh) 一种通信方法及装置
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2019095396A1 (zh) 一种数据传输节点确定方法和装置
WO2022062823A1 (zh) 波束管理方法、装置及系统
WO2022184121A1 (zh) 通信方法和通信装置
WO2024114794A1 (zh) 一种随机接入资源的确定方法及通信装置
WO2023078186A1 (zh) 一种无线通信的方法和装置
US11924893B2 (en) Method for establishing connection, and terminal device
US20240155528A1 (en) Communication method and apparatus
US20230292275A1 (en) Transceiver device, network entity and base station
WO2023241671A1 (zh) 定位广播的配置方法及通信装置
CN117956526A (zh) 服务小区更新方法及通信装置、存储介质、终端设备
WO2023152368A1 (en) Non-terrestrial network epoch time indication considering sfn cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3190023

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846419

Country of ref document: EP

Effective date: 20230215

ENP Entry into the national phase

Ref document number: 2021312759

Country of ref document: AU

Date of ref document: 20210628

Kind code of ref document: A