WO2022095046A1 - 确定上行传输时域资源的方法、终端设备及网络设备 - Google Patents

确定上行传输时域资源的方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2022095046A1
WO2022095046A1 PCT/CN2020/127589 CN2020127589W WO2022095046A1 WO 2022095046 A1 WO2022095046 A1 WO 2022095046A1 CN 2020127589 W CN2020127589 W CN 2020127589W WO 2022095046 A1 WO2022095046 A1 WO 2022095046A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time slot
slot offset
message
network device
Prior art date
Application number
PCT/CN2020/127589
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/127589 priority Critical patent/WO2022095046A1/zh
Priority to CN202080104365.2A priority patent/CN116097899A/zh
Priority to EP20960503.9A priority patent/EP4240101A4/en
Publication of WO2022095046A1 publication Critical patent/WO2022095046A1/zh
Priority to US18/090,737 priority patent/US20230224840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for determining uplink transmission time domain resources, a terminal device and a network device, and a computer-readable storage medium.
  • NR New radio
  • the cell coverage is small, and the signal transmission delay between the UE and the network equipment is small, so the Timing Advance (TA) value of the UE is also small. , which is smaller than the currently supported maximum values of k2 and k1.
  • TA Timing Advance
  • the signal propagation delay between the UE and the satellite in the non-terrestrial communication network equipment is greatly increased.
  • NTN Non Terrestrial Network
  • the maximum round-trip time of signal transmission between the UE and the network device is 25.77ms.
  • the signal transmission between the UE and the network device The round-trip time is a maximum of 541.46ms. This means that the maximum TA of UE in NTN is 541.46ms. The TA value is much larger than the maximum values of k2 and k1 that can be supported in the current standard.
  • Radio Access Network (RAN) 1 has agreed to introduce a k offset (offset) for k2 and k1, and the k offset is used to compensate for the larger TA used by the UE in NTN. There is no conclusion as to how k offset is determined.
  • Embodiments of the present invention provide a method for determining uplink transmission time domain resources, a terminal device and a network device, and a computer-readable storage medium, which are used to avoid adding more signaling overhead, and can realize the time slot for uplink transmission.
  • the offset is precisely controlled.
  • a first aspect of the embodiments of the present invention provides a method for determining uplink transmission time domain resources, which may include: a terminal device determining a target time slot offset used for uplink scheduling according to whether the terminal device has a timing advance TA pre-compensation capability quantity.
  • a second aspect of the embodiments of the present invention provides a method for determining uplink transmission time domain resources, which may include: a terminal device determining a timing advance TA of the terminal device, which is a target time slot offset used for uplink scheduling.
  • a third aspect of the embodiments of the present invention provides a method for determining uplink transmission time domain resources, which may include: acquiring, by the network device, a target time slot offset used for uplink scheduling, where the target time slot offset is the terminal The device is determined according to whether it has the timing advance TA precompensation capability.
  • a fourth aspect of the embodiments of the present invention provides a method for determining uplink transmission time domain resources, which may include: acquiring, by the network device, a target time slot offset used for uplink scheduling, where the target time slot offset is the The terminal device determines the timing advance TA of the terminal device.
  • a terminal device which has the function of avoiding the increase of more signaling overhead, and can also realize the function of accurately controlling the time slot offset of uplink transmission.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a network device which has the function of avoiding the increase of more signaling overhead, and can also realize the function of accurately controlling the time slot offset of uplink transmission.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a terminal device including: a memory storing executable program codes; a processor and a transceiver coupled with the memory; the processor and the transceiver are used for corresponding execution The method described in the first aspect or the second aspect of the embodiments of the present invention.
  • a network device including: a memory storing executable program codes; a transceiver coupled to the memory; the transceiver is configured to execute the third aspect or the fourth aspect of the embodiments of the present invention method described in.
  • Still another aspect of the embodiments of the present invention provides a computer-readable storage medium, comprising instructions, which, when executed on a computer, cause the computer to perform as described in the first aspect or the second aspect or the third aspect or the fourth aspect of the present invention method described.
  • a computer program product comprising instructions, which, when run on a computer, causes the computer to execute the first aspect or the second aspect or the third aspect or the fourth aspect of the present invention. method.
  • Another aspect of the embodiments of the present invention provides a chip, where the chip is coupled to a memory in the terminal device, so that the chip invokes program instructions stored in the memory when running, so that the terminal device executes the program as described above A method as described in the first or second aspect of the invention.
  • Another aspect of the embodiments of the present invention provides a chip, where the chip is coupled to a memory in the network device, so that the chip invokes program instructions stored in the memory when running, so that the network device executes the program as described herein.
  • the terminal device determines the target time slot offset used for uplink scheduling according to whether the terminal device has the timing advance TA pre-compensation capability. It can avoid adding more signaling overhead, and can accurately control the time slot offset of uplink transmission.
  • 1A is a schematic diagram of time synchronization on the gNB side in the prior art
  • FIG. 1B is another schematic diagram of time synchronization on the gNB side in the prior art
  • 1C is a schematic diagram of a public TA and a UE-specific TA
  • 1D is a schematic diagram of a random access process of a terminal with an initial TA compensation capability
  • FIG. 2 is a system architecture diagram of a communication system to which an embodiment of the present invention is applied;
  • 3A is a schematic diagram of an embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention
  • 3B is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention
  • 5A is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • 5B is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • 6A is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • 6B is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a network device in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a terminal device in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a network device in an embodiment of the present invention.
  • Non-terrestrial communication network equipment Non Terrestrial Network, NTN
  • Non Terrestrial Network generally uses satellite communication to provide communication services to terrestrial users.
  • satellite communication Compared with terrestrial cellular network communication, satellite communication has many unique advantages.
  • satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites are classified into LEO (Low-Earth Orbit, low earth orbit) satellites, MEO (Medium-Earth Orbit, medium earth orbit) satellites, GEO (Geostationary Earth Orbit, geosynchronous orbit) satellites, HEO (High Earth orbit) satellites according to the different orbital altitudes. Elliptical Orbit, high elliptical orbit) satellites, etc.
  • LEO Low-Earth Orbit, low earth orbit
  • MEO Medium-Earth Orbit, medium earth orbit
  • GEO Global-Earth Orbit, geosynchronous orbit
  • HEO High Earth orbit
  • the orbital altitude ranges from 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between terminals is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is low, and the transmit power requirements of the terminal are not high.
  • the orbital altitude is 35786km
  • the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover a diameter of tens to hundreds of kilometers ground area.
  • Uplink transmission An important feature of uplink transmission is that different user equipments (User Equipment, UE) have orthogonal multiple access in time and frequency, that is, uplink transmissions of different UEs from the same cell do not interfere with each other.
  • UE User Equipment
  • the new generation Node B requires that the signals from different UEs at the same time but with different frequency domain resources arrive at the gNB. are aligned.
  • NR supports the mechanism of uplink timing advance.
  • the uplink clock and downlink clock on the gNB side are the same, but there is an offset between the uplink clock and the downlink clock on the UE side, and different UEs have their own different uplink timing advance.
  • the gNB can control the time when the uplink signals from different UEs arrive at the gNB. For UEs farther from the gNB, due to larger transmission delay, it is necessary to send uplink data earlier than UEs closer to the gNB.
  • FIG. 1A it is a schematic diagram of time synchronization on the gNB side in the prior art.
  • FIG. 1B it is another schematic diagram of time synchronization at the gNB side in the prior art.
  • the gNB determines the TA value for each UE based on measuring the UE's uplink transmission.
  • the gNB sends the TA command to the UE in two ways.
  • Timing Advance (TA): During the random access process, the gNB determines the TA value by measuring the received random access preamble (preamble), and responds to the random access response (Random Access) to determine the TA value. Response, RAR) uplink Timing Advance Command (Timing Advance Command) field is sent to the UE.
  • RAR random access response
  • RRC Radio Resource Control
  • NTN NTN will support two types of UEs.
  • One is UEs without initial TA compensation capability, that is, UEs use when sending Msg1 during random access.
  • the public TA broadcasted by the network device performs TA compensation; the other is the UE with the initial TA compensation capability, that is, the UE uses the TA estimated by itself to send Msg1 in the random access process.
  • the methods of determining the initial TA are different.
  • the network device will broadcast a common TA based on the signal transmission delay between the perigee and the base station.
  • the UE uses the public TA broadcast by the network device for TA compensation, and then the network device indicates a UE-specific TA value to the UE in the RAR, so that the initial TA of the UE is the broadcast public TA and the UE-specific TA indicated in the RAR.
  • the cumulative result of the two is the cumulative result of the two.
  • Step 1 The UE estimates its own TA based on the positioning capability, and sends msg1 using the TA estimated by itself.
  • Step 2 After receiving msg1, the network device determines the TA adjustment value of the UE, and indicates it to the UE through msg2. Since the network device does not know the exact TA value of the UE at this time, the network device can schedule the resources of the UE's msg3 according to the maximum uplink scheduling delay.
  • Step 3 The UE adjusts the TA based on the received RAR indication, and sends msg3 on the uplink resource scheduled by the network device.
  • Step 4 After the network device receives the msg3 of the UE, it can know the initial TA used by the UE. Since then, the network device side and the UE side have the same understanding of the TA value of the UE.
  • the RAR sent by the network device will include an uplink grant (UL grant) field for scheduling the uplink resource indication of Msg3.
  • the UE sends Msg3 on the PUSCH resource indicated by the UL grant of the RAR. If the UE receives the RAR in time slot n, the time slot number when the UE sends Msg3 is n+k 2 + ⁇ , where k2 is indicated by the UL grant, and the value of ⁇ is related to the uplink subcarrier spacing.
  • the UE determines the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) time domain resources
  • the uplink scheduler on the gNB side After the uplink scheduler on the gNB side completes the PUSCH resource allocation, it informs the UE of scheduling information through the Physical Downlink Control Channel (PDCCH), including the time-domain resource allocation information for PUSCH transmission, frequency-domain resource allocation information, modulation and coding strategy (Modulation and Coding Scheme, MCS), used uplink hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) process number and so on.
  • PDCCH Physical Downlink Control Channel
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat Request
  • the slot number for the UE to send the PUSCH is wherein, K2 is indicated by PDCCH, and ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing of PUSCH and PDCCH, respectively.
  • the UE determines the PUCCH time-domain resources fed back by Acknowledge (ACK)/Non-Acknowledge (NACK)
  • the UE For Physical Downlink Shared Channel (PDSCH) transmission, the UE needs to detect PDSCH reception and notify the gNB of the detection result, that is, send ACK/NACK feedback to the gNB.
  • the physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource used by the UE to send ACK/NACK feedback is indicated to the UE by the gNB through the PDCCH.
  • PUCCH Physical Uplink Control Channel
  • the UE If the UE receives the PDSCH at slot n, the UE sends ACK/NACK feedback on the PUCCH at slot n+ k1 , where k1 is indicated by the PDCCH.
  • the dynamically scheduled PUSCH transmission of the UE and the resource allocation information for the ACK/NACK feedback received for PDSCH are both notified to the UE through the downlink scheduling signaling PDCCH/or downlink shared channel transmission RAR.
  • the TA mechanism is used in NR, the uplink clock and downlink clock on the UE side are not aligned, and the advance of the uplink clock relative to the downlink clock is TA. Therefore, the time slot offset k2 or k1 of the uplink transmission indicated in the PDCCH or RAR must be It is greater than the TA of the UE, so as to ensure that the UE can perform uplink transmission after receiving the PDCCH or PDSCH.
  • the maximum value that k2 can support is 32 time slots
  • the maximum value that k1 can support is 15 time slots.
  • the cell coverage is small, and the signal transmission delay between the UE and the network equipment is small, so the TA value of the UE is also small, smaller than the currently supported maximum values of k2 and k1.
  • the signal propagation delay between UE and satellite in NTN is greatly increased.
  • the maximum round-trip time of signal transmission between the UE and the network device is 25.77ms
  • the maximum round-trip time of the signal transmission between the UE and the network device is 541.46ms.
  • the maximum TA of UE in NTN is 541.46ms.
  • the TA value is much larger than the maximum values of k2 and k1 that can be supported in the current standard.
  • Radio Access Network (RAN) 1 has agreed to introduce a k offset for k2 and k1, and the k offset is used to make up for the larger TA used by the UE in NTN. There is no conclusion as to how k offset is determined.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system may include a network device, and the network device may be a device that communicates with a terminal device (or referred to as a communication terminal, a terminal).
  • a network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • FIG. 2 exemplarily shows one network device and two terminal devices.
  • the communication system may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application implements The example does not limit this.
  • the communication system may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices described in the embodiments of the present invention, which will not be repeated here;
  • the device may also include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • preset may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • preset may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, such as LTE protocol, NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • Embodiment 1 In a scenario where the terminal device is applied to four-step random access, as shown in FIG. 3A , it is a schematic diagram of an embodiment of a method for determining uplink transmission time domain resources in this embodiment of the present invention, which may include:
  • the terminal device receives the first common time slot offset, the first common TA and the first TA adjustment amount sent by the network device.
  • the first common time slot offset and the first common TA are configured by the network device.
  • the first common time slot offset may be a timing advance TA value determined by the network device based on ground reference point 1; the first common TA may be determined by the network device based on ground reference point 2
  • the first TA adjustment amount is the TA adjustment amount determined by the network device based on the reception of the message 1 sent by the terminal device.
  • the network device may broadcast a first common timeslot offset (also called common k2 offset), and the first common timeslot offset is scheduled for msg3 in the four-step random access process.
  • PUSCH common slot offset value may be based on a TA value corresponding to a certain ground reference point.
  • the common k2 offset may be determined based on the ground position farthest from the satellite within the coverage of the cell as the ground reference point.
  • the terminal device can determine the target time slot offset (also referred to as k2offset) used for determining the Msg3 time domain resource according to whether it has the TA precompensation capability.
  • the first common time slot offset and the first common TA are carried in a system message.
  • the system message may be a system message block x (System Information Block x, SIB x), where x is greater than or equal to 1.
  • the first public time slot offset and the first public TA may be configured by the network device and delivered to the terminal device together, or may be delivered to the terminal device separately, which are not specifically limited here.
  • the first common time slot offset and the first common TA are configured by the network device to the terminal device in a broadcast or multicast manner.
  • the first TA adjustment amount may be carried in msg2 (for example, RAR) and sent to the terminal device.
  • the terminal device receives the first random access channel RACH resource set and the second RACH resource set sent by the network device, where the first RACH resource set is used for the terminal device with TA pre-compensation capability to send message 1, the The second RACH resource set is used for the terminal device without the TA precompensation capability to send message 1 .
  • the first RACH resource set and the second RACH resource set are RACH resources respectively configured by the network device for the terminal devices with the TA pre-compensation capability and the terminal devices without the TA pre-compensation capability.
  • the sequence of steps 301 and 302 is not limited, and is the configuration information sent by the network device to the terminal device to configure four-step random access related parameters.
  • the terminal device sends message 1 to the network device according to whether the terminal device has the TA pre-compensation capability, the first RACH resource set or the second RACH resource set.
  • the terminal device sends message 1 to the network device according to whether the terminal device has the TA pre-compensation capability, the first RACH resource set or the second RACH resource set, which may include but not limited to The following implementations:
  • Manner 1 When the terminal device has the TA pre-compensation capability, the terminal device selects one RACH resource from the first RACH resource set, and sends message 1 to the network device.
  • the terminal device uses the first estimated TA to perform TA compensation, selects one RACH resource from the first RACH resource set, and reports to the network device.
  • GNSS Global Navigation Satellite System
  • Manner 2 In the case that the terminal device does not have the TA pre-compensation capability, the terminal device selects one RACH resource from the second RACH resource set, and sends message 1 to the network device.
  • the terminal device uses the first common TA to perform TA compensation, selects one RACH resource from the second RACH resource set, and sends it to the The network device sends message 1. That is, for a UE without TA pre-compensation capability, the UE uses the first public TA broadcast by the network device to perform TA compensation when sending Msg1.
  • the network device configures RACH resources respectively. That is, the UE selects one RACH resource from the corresponding RACH resource set to send msg1 according to whether TA compensation is performed when sending Msg1.
  • the terminal device receives the first time slot offset sent by the network device, where the first time slot offset is determined by the network device according to the target time slot offset used by the terminal device .
  • the first time slot offset is an increment determined by the network device relative to the first common time slot offset.
  • the first time slot offset is determined by the network device relative to the increase in the TA actually used when the terminal device sends message 3 quantity.
  • the network device can know whether the terminal device has the TA pre-compensation capability from the RACH resource used by the terminal device to send the msg1.
  • the PUSCH first slot offset of Msg3 (which may also be referred to as a slot offset value k2) indicated in the RAR) can only be an increment relative to the first common slot offset (common k2 offset).
  • the slot offset (which may also be referred to as slot offset k2) is an increment relative to the UE's actual TA.
  • the UE after sending msg1, the UE receives msg2 sent from the network device, and the msg2 may be RAR.
  • the RAR indicates the UL grant information transmitted by the msg3 of the terminal equipment, including the PUSCH time slot offset value k2 of the Msg3, and the time slot offset value k2 is used to determine the time slot offset value of the PUSCH of the Msg3 relative to the PDSCH of the RAR,
  • the k2 is a relative slot offset value.
  • the terminal device determines a target time slot offset used for uplink scheduling according to whether the terminal device has a timing advance TA pre-compensation capability.
  • the terminal device determines the target time slot offset used for uplink scheduling according to whether the terminal device has the TA pre-compensation capability, which may include but is not limited to the following implementations:
  • Manner 1 In the case that the terminal device has the TA pre-compensation capability, the terminal device determines the first common timeslot offset, which is the target timeslot offset used for uplink scheduling. Exemplarily, if the UE has the TA pre-compensation capability (that is, the UE sends msg1 using the first estimated TA estimated by itself, the UE uses the common k2 offset broadcast by the network device as the k2 offset scheduled by msg3.
  • Mode 2 In the case where the terminal device does not have the TA pre-compensation capability, the terminal device determines the sum of the first common TA and the first TA adjustment amount as the target time slot offset used for uplink scheduling. shift. If the UE does not have the TA pre-compensation capability (that is, the UE uses the first public TA broadcasted by the network to send msg1), the UE uses its own TA (that is, the first public TA + the first TA adjustment indicated in the RAR) as the msg3 scheduled k2 offset.
  • the terminal device determines the sum of the first common TA and the first TA adjustment amount as the target time slot offset used for uplink scheduling. shift. If the UE does not have the TA pre-compensation capability (that is, the UE uses the first public TA broadcasted by the network to send msg1), the UE uses its own TA (that is, the first public TA + the first TA adjustment indicated in the RAR) as the ms
  • the terminal device determines a first time-domain resource location for uplink scheduling.
  • the terminal device determines the location of the first time domain resource for uplink scheduling, which may include, but is not limited to, the following implementations:
  • Mode 1 In the case that the terminal device has the TA pre-compensation capability, the terminal device can determine the first time slot number, the first time slot offset, the first common time slot offset, and ⁇ 1. Determine the location of the first time domain resource for uplink scheduling, wherein the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2 ; the value of ⁇ 1 is the same as that of the uplink Subcarrier spacing is related.
  • the terminal device determines the first time slot number, the first time slot offset, the first common time slot offset, and the sum of ⁇ 1, which is the physical uplink sharing of uplink scheduling.
  • the UE determines that the PUSCH time slot number of Msg3 is n1+k2+common k2 offset+ ⁇ 1 , where n1 is the downlink time slot number corresponding to the PDSCH of the RAR received by the UE, and k2+common k2 offset+ ⁇ 1 is The time slot offset of the PUSCH transmission of Msg3 relative to the PDSCH reception of the RAR, and the value of ⁇ 1 is related to the uplink subcarrier spacing.
  • the terminal device may, according to the first time slot number, the first time slot offset, and the first common TA, the first time slot TA adjustment amount and ⁇ 1 , determine the first time-domain resource position of uplink scheduling, wherein the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2; ⁇ 1 The value of is related to the uplink subcarrier spacing.
  • the terminal device determines the first time slot number, the first time slot offset, the first common TA, the first TA adjustment amount, and the sum of ⁇ 1, which is uplink scheduling.
  • the UE determines that the PUSCH time slot number of Msg3 is n1+k2+TA+ ⁇ 1 , where n1 is the downlink time slot number corresponding to the PDSCH of the RAR received by the UE, and k2+TA+ ⁇ 1 is the PUSCH transmission of Msg3 Relative to the time slot offset received by the RAR's PDSCH, the value of ⁇ 1 is related to the uplink subcarrier interval, and the TA is the sum of the first common TA and the first TA adjustment amount.
  • the terminal device sends message 3 according to the first time domain resource location corresponding to the PUSCH scheduled in the uplink.
  • the network device receives the message 3 sent by the terminal device on the first time domain resource position of the uplink scheduling; the first time domain resource position of the uplink scheduling is the first time domain resource position corresponding to the PUSCH of the uplink scheduling.
  • FIG. 3B it is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • UE1 is a UE with TA pre-compensation capability
  • UE2 is a UE without TA pre-compensation capability.
  • the network device broadcasts one common k2 offset, where the common k2 offset is the PUSCH common time slot offset scheduled for msg3 in the four-step random access process.
  • the UE determines the k2 offset used for determining the Msg3 time domain resources according to whether it has the TA pre-compensation capability. That is, an embodiment of the present invention discloses a method for a terminal device in an NTN to determine a relative time slot offset value (k offset) of uplink transmission resources relative to downlink reception. Using this method can not only avoid adding more signaling overhead, but also realize accurate control of the time slot offset of uplink transmission.
  • Embodiment 2 In the scenario where the terminal device is applied to two-step random access, as shown in FIG. 4, it is a schematic diagram of another embodiment of the method for determining uplink transmission time domain resources in the embodiment of the present invention, which may include:
  • the terminal device receives the second common time slot offset, the second common TA and the second TA adjustment amount sent by the network device.
  • the second common time slot offset and the second common TA are configured by the network device.
  • the second common time slot offset may be a timing advance TA value determined by the network device based on the ground reference point 3; the second common TA may be determined by the network device based on the ground reference point 4
  • the second TA adjustment amount is the TA adjustment amount determined by the network device based on the reception of the message A sent by the terminal device.
  • the network device can broadcast a second common time slot offset (also called common k2 offset), and the second common time slot offset is for the PUSCH indicated by msgB in the two-step random access process.
  • Common slot offset value may be based on a TA value corresponding to a certain ground reference point.
  • the common k2 offset may be determined based on the ground position farthest from the satellite within the coverage of the cell as the ground reference point.
  • the terminal device can determine the PUSCH time domain resource indicated by MsgB according to whether it has the TA pre-compensation capability, and whether the terminal device with the TA pre-compensation capability performs TA reporting through msgA
  • the target slot offset used may also be called k2 offset.
  • the second common time slot offset and the second common TA are carried in a system message.
  • the system message may be a system message block x (System Information Block x, SIB x), where x is greater than or equal to 1.
  • the second public time slot offset and the second public TA may be configured by the network device and delivered to the terminal device together, or may be delivered to the terminal device separately, which is not specifically limited here.
  • the first common time slot offset and the first common TA are configured by the network device to the terminal device in a broadcast or multicast manner.
  • the second TA adjustment amount may be carried in msgB and sent to the terminal device.
  • the terminal device receives a third RACH resource set and a fourth RACH resource set sent by the network device, where the third RACH resource set is used for the terminal device with the TA pre-compensation capability to send message A, and the fourth RACH resource set The set is used for terminal equipment without TA pre-compensation capability to send message A.
  • the third RACH resource set and the fourth RACH resource set are RACH resources respectively configured by the network device for the terminal devices with the TA pre-compensation capability and the terminal devices without the TA pre-compensation capability.
  • the time sequence of steps 401 and 402 is not limited, and is the configuration information sent by the network device to the terminal device to configure two-step random access related parameters.
  • the terminal device sends a message A to the network device according to whether the terminal device has the TA pre-compensation capability, the third RACH resource set or the fourth RACH resource set.
  • the terminal device sends the message A to the network device according to whether the terminal device has the TA pre-compensation capability, the third RACH resource set or the fourth RACH resource set, which may include but is not limited to: The following implementations:
  • Mode 1 In the case that the terminal device has the TA pre-compensation capability, the terminal device uses the second estimated TA to perform TA compensation, and the terminal device selects one RACH resource from the third RACH resource set, Send a message A to the network device, where the message A carries the second estimated TA.
  • the UE uses the second estimated TA estimated by itself based on the GNSS capability to perform TA compensation when sending MsgA, and the UE performs TA reporting through MsgA.
  • Mode 2 In the case that the terminal device has the TA pre-compensation capability, the terminal device uses the second estimated TA to perform TA compensation, and the terminal device selects one RACH resource from the third RACH resource set, Send a message A to the network device, where the message A does not carry the second estimated TA.
  • the UE uses the second estimated TA estimated by itself based on the GNSS capability to perform TA compensation when sending MsgA, and the UE does not perform TA reporting through MsgA.
  • Mode 3 In the case that the terminal device does not have the TA pre-compensation capability, the terminal device uses the second common TA to perform TA compensation, and the terminal device selects one RACH resource from the fourth RACH resource set , and send message A to the network device. Exemplarily, for a UE without TA pre-compensation capability, the UE uses the second public TA broadcasted by the network device to perform TA compensation when sending the MsgA.
  • the network device configures 2-step RACH resources respectively. That is, the UE selects one RACH resource from the corresponding RACH resource set to send the MsgA according to whether to perform TA compensation when sending the MsgA.
  • the terminal device receives the second time slot offset sent by the network device, where the second time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the second time slot offset is determined by the network device relative to the terminal The increment of the TA actually used when the device sends the uplink transmission scheduled by message B.
  • the second time slot offset is determined by the network device relative to the Increment of the second common slot offset.
  • the second time slot offset is determined by the network device and is actually used when the terminal device sends the message B scheduled for uplink transmission The increment of TA.
  • the network device can know whether the UE has the TA compensation capability from the RACH resource used by the terminal device to send the msgA.
  • the network device can know the TA value of the UE at this time. In this case, the network device indicates in MsgB.
  • the PUSCH second slot offset (also referred to as slot offset k2) is an increment relative to the actual TA of the UE.
  • the PUSCH second slot offset (also referred to as the slot offset value k2) indicated in can only be an increment relative to the common k2 offset.
  • the network device can know the TA value of the UE at this time. In this case, the network device indicates the offset of the second PUSCH slot in MsgB.
  • the amount (also called slot offset k2) is an increment relative to the UE's actual TA.
  • the UE receives msgB sent from the network device.
  • the UL grant information in the msgB includes the PUSCH time slot offset value k2 of the UE, the time slot offset value k2 is used to determine the time slot offset value of the PUSCH relative to the PDSCH of the MsgB, and the k2 is the relative time slot offset value value.
  • the terminal device determines a target time slot offset used for uplink scheduling according to whether the terminal device has a timing advance TA pre-compensation capability.
  • the terminal device determines the target time slot offset used for uplink scheduling according to whether the terminal device has the TA pre-compensation capability, which may include but is not limited to the following implementations:
  • Mode 1 When the terminal device has the TA pre-compensation capability and reports the second estimated TA in message A, the terminal device determines the sum of the second estimated TA and the second TA adjustment amount as Target slot offset used for uplink scheduling. Exemplarily, if the UE has the TA pre-compensation capability (that is, the UE uses the second estimated TA estimated by itself to send msgA), and the UE performs TA reporting through MsgA, the UE uses its own TA (that is, the first TA used by the UE when sending msgA). 2. Estimate the second TA adjustment amount indicated in TA+msgB) as the k2 offset of the PUSCH scheduling indicated by msgB.
  • Mode 2 In the case that the terminal device has the TA pre-compensation capability and the second estimated TA is not reported in the message A, the terminal device determines the second common time slot offset, which is used for uplink scheduling. Target slot offset.
  • the terminal device determines the second common time slot offset, which is used for uplink scheduling.
  • Target slot offset Exemplarily, if the UE has the TA pre-compensation capability (that is, the UE uses the second estimated TA estimated by itself to send msg1), and the UE does not perform TA reporting through MsgA, the UE uses the common k2 offset broadcast by the network device as the msgB indication The k2 offset of the PUSCH scheduling.
  • Mode 3 In the case that the terminal device does not have the TA pre-compensation capability, the terminal device determines the sum of the second common TA and the second TA adjustment amount as the target time slot offset used for uplink scheduling. shift. Exemplarily, if the UE does not have the TA pre-compensation capability (that is, the UE sends msgA using the second common TA broadcast by the network device), the UE uses its own TA (that is, the second TA adjustment amount indicated in the second common TA+msgB) As the k2 offset of the PUSCH schedule indicated by msgB.
  • the terminal device determines a second time-domain resource location for uplink scheduling.
  • the terminal device determines the location of the second time domain resource for uplink scheduling, which may include, but is not limited to, the following implementations:
  • Mode 1 In the case that the terminal device has the compensation capability and reports the second estimated TA in message A, the Estimate TA, the second TA adjustment amount and ⁇ 2 , and determine the second time-domain resource position for uplink scheduling; wherein, the second time slot number is the downlink time slot number corresponding to the PDSCH of the terminal device receiving message B ; The value of ⁇ 2 is related to the uplink subcarrier spacing.
  • the terminal device determines the second time slot number, the second time slot offset, the second estimated TA, the second TA adjustment amount, and the sum of ⁇ 2 , which is uplink scheduling.
  • the UE determines that the PUSCH time slot number of message B is n2+k2+TA+ ⁇ 2 , where n2 is the downlink time slot number corresponding to the PDSCH received by the UE of msgB, and k2+TA+ ⁇ 2 is the PUSCH of Msg3
  • the time slot offset of sending relative to PDSCH reception of message B, the value of ⁇ 2 is related to the uplink subcarrier interval, and the TA is the sum of the second estimated TA and the second TA adjustment amount.
  • Manner 2 In the case that the terminal device has the compensation capability and the second estimated TA is not reported in the message A, the terminal device according to the second time slot number, the second time slot offset, the first Two common time slot offsets and ⁇ 2 , determine the second time domain resource position of uplink scheduling; wherein, the second time slot number is the downlink time slot number corresponding to the PDSCH of the terminal device receiving message B; ⁇ 2 The value of is related to the uplink subcarrier spacing.
  • the terminal device determines the second time slot number, the second time slot offset, the second common time slot offset, and the sum of ⁇ 2 , which is the sum corresponding to the PUSCH scheduled for uplink.
  • the second time domain resource location is the second time domain resource location.
  • the UE determines that the PUSCH time slot number is n2+k2+common k2 offset+ ⁇ 2 , where n2 is the downlink time slot number corresponding to the PDSCH in which the UE receives msgB, and k2+common k2 offset+ ⁇ 2 is the relative PUSCH transmission relative to Msg3.
  • the value of ⁇ 2 is related to the uplink subcarrier spacing.
  • Mode 3 In the case that the terminal device does not have the compensation capability, the terminal device adjusts the second TA according to the second time slot number, the second time slot offset, and the second common TA. and ⁇ 2 to determine the second time-domain resource position for uplink scheduling; wherein, the second time slot number is the downlink time slot number corresponding to the PDSCH of the terminal device receiving message B; the value of ⁇ 2 is the same as that of the uplink sub- carrier spacing.
  • the terminal device determines that the second time slot number, the second time slot offset, the second common TA, the two TA adjustment amounts, and the sum of ⁇ 2 are uplink scheduled.
  • the UE determines that the PUSCH time slot number is n2+k2+TA+ ⁇ 2 , where n2 is the downlink time slot number corresponding to the PDSCH in which the UE receives msgB, and k2+TA+ ⁇ 2 is the relative value of the PUSCH transmission of Msg3.
  • n2 is the downlink time slot number corresponding to the PDSCH in which the UE receives msgB
  • k2+TA+ ⁇ 2 is the relative value of the PUSCH transmission of Msg3.
  • the value of ⁇ 2 is related to the uplink subcarrier spacing
  • the TA is the sum of the second common TA and the second TA adjustment amount.
  • the terminal device sends a message B according to the second time domain resource location corresponding to the PUSCH scheduled in the uplink.
  • the network device receives the message B sent by the terminal device at the first time-domain resource location of the uplink scheduling; the first time-domain resource location of the uplink scheduling is the first time-domain resource location corresponding to the PUSCH of the uplink scheduling.
  • the UE determines the PUSCH indicated by MsgB according to whether it has the TA pre-compensation capability, and whether the UE with the TA pre-compensation capability performs TA reporting through msgA
  • the k2 offset used by the time domain resource discloses a method for a terminal device in an NTN to determine a relative time slot offset value (k offset) of uplink transmission resources relative to downlink reception. Using this method can not only avoid adding more signaling overhead, but also realize accurate control of the time slot offset of uplink transmission.
  • Embodiment 3 For the scenario where the PDCCH indicates the PUSCH time slot offset value k2 for uplink scheduling, as shown in FIG. 5A , it is a schematic diagram of another embodiment of the method for determining uplink transmission time domain resources in the embodiment of the present invention, which may include:
  • the terminal device in the RRC connection state maintains uplink synchronization with the network device, and the terminal device maintains a TA value.
  • the terminal device receives a third time slot offset sent by the network device, where the third time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the UE receives a PDCCH indicating uplink scheduling, where the PDCCH indicates the time-frequency resource used for PUSCH transmission, and adjusts the coding mode and other information.
  • the PUSCH time domain resource allocation information may specifically include: a PUSCH time slot offset value k2, the time slot offset value k2 is used to determine the relative time slot offset of the PUSCH relative to the PDCCH, the relative time slot offset
  • the meaning of the quantity is: the k2 indicated by the network device is an increment relative to the current TA of the UE.
  • the terminal device determines the timing advance TA of the terminal device, which is the target time slot offset used for uplink scheduling.
  • the target time slot offset is an offset used for uplink scheduling of PUSCH time domain resources.
  • the UE uses its own TA as the target time slot offset (also referred to as k2 offset) used by the PUSCH time domain resource indicated by the PDCCH.
  • k2 offset the target time slot offset
  • the terminal device determines a third time-domain resource location scheduled for uplink.
  • the terminal device determines the location of the third time domain resource scheduled for uplink, which may include:
  • the third time slot number n 3 is the downlink time slot number corresponding to the PDCCH indicating the uplink scheduling received by the terminal device
  • k 2 is the third time slot offset, which is the relative PUSCH indicated in the PDCCH.
  • ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing configuration of PUSCH and PDCCH, respectively
  • k2+TA is the time slot offset of PUSCH transmission relative to PDCCH reception.
  • FIG. 5B it is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • the UE uses its own TA as the k2 offset used by the PUSCH time domain resource indicated by the PDCCH. That is, an embodiment of the present invention discloses a method for a terminal device in an NTN to determine a relative time slot offset value (k offset) of uplink transmission resources relative to downlink reception. Using this method can not only avoid adding more signaling overhead, but also realize accurate control of the time slot offset of uplink transmission.
  • Embodiment 4 For the scenario where the PDCCH indicates the PUCCH time slot offset value k fed back by the ACK/NACK of the PDSCH, as shown in FIG. 6A , it is a schematic diagram of another embodiment of the method for determining uplink transmission time domain resources in the embodiment of the present invention , which can include:
  • a terminal device receives a fourth time slot offset sent by a network device, where the fourth time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the UE receives the PDCCH indicating downlink scheduling, the PDCCH indicates the time-frequency resources used for PDSCH transmission, and the coding method is adjusted. .
  • PUCCH time domain resource allocation information used for ACK/NACK feedback it may specifically include: PUCCH time slot offset value k1, where the time slot offset value k1 is used to determine the relative time slot offset of PUCCH relative to PDSCH, so The meaning of the relative time slot offset value is that the k1 indicated by the network is an increment relative to the current TA of the UE.
  • the terminal device determines the timing advance TA of the terminal device, which is the target time slot offset used for uplink scheduling.
  • the target slot offset is the offset used for the PUCCH for feeding back ACK/NACK.
  • the UE uses its own TA as the target slot offset (may also be referred to as k1 offset) corresponding to the PUCCH indicated by the PDCCH and used for feeding back ACK/NACK.
  • the target slot offset may also be referred to as k1 offset
  • the terminal device determines a fourth time-domain resource location scheduled for uplink.
  • the terminal device determines the location of the fourth time domain resource scheduled for uplink, which may include:
  • the terminal device determines, according to the fourth time slot number, the fourth time slot offset, and the sum of the TA, the fourth time domain resource position corresponding to the PUCCH of the feedback ACK/NACK, the fourth time slot
  • the number is the downlink time slot number corresponding to the PDSCH received by the terminal device.
  • the UE uses its own TA as the k1 offset corresponding to the PUCCH indicated by the PDCCH for feeding back ACK/NACK, then the UE determines that the number of the PUCCH time slot for feeding back the ACK/NACK is n4+k1+TA, where k1 is the fourth time slot offset, n4 is the downlink time slot number corresponding to the PDSCH received by the UE, and k1+TA is the time slot offset of the PUCCH transmission relative to the PDSCH reception.
  • FIG. 6B it is a schematic diagram of another embodiment of a method for determining uplink transmission time domain resources in an embodiment of the present invention.
  • an embodiment of the present invention discloses a method for a terminal device in an NTN to determine a relative time slot offset value (k offset) of uplink transmission resources relative to downlink reception. Using this method can not only avoid adding more signaling overhead, but also realize accurate control of the time slot offset of uplink transmission.
  • FIG. 7 it is a schematic diagram of an embodiment of a terminal device in an embodiment of the present invention, which may include:
  • the processing module 701 is configured to determine the target time slot offset used for uplink scheduling according to whether the terminal device has the timing advance TA precompensation capability.
  • the transceiver module 702 is configured to receive the first common time slot offset sent by the network device, the first common TA and the first TA adjustment amount, where the first TA adjustment amount is based on the network device receiving the message 1 sent by the terminal device, Determined TA adjustment amount;
  • the processing module 701 is specifically configured to determine the first common time slot offset, which is the target time slot offset used for uplink scheduling, when the terminal device has the TA pre-compensation capability;
  • the processing module 701 is specifically configured to determine the sum of the first common TA and the first TA adjustment amount as the target time slot offset used for uplink scheduling when the terminal device does not have the TA pre-compensation capability.
  • the first common time slot offset may be a timing advance TA value determined by the network device based on ground reference point 1; the first common TA is a timing advance TA value determined by the network device based on ground reference point 2.
  • the first common time slot offset and the first common TA are carried in the system message.
  • the transceiver module 702 is further configured to receive the first random access channel RACH resource set and the second RACH resource set sent by the network device, and the first RACH resource set is used for the terminal device with the TA pre-compensation capability to send the message 1.
  • the second RACH resource set is used for terminal equipment without TA pre-compensation capability to send message 1;
  • the transceiver module 702 is further configured to send message 1 to the network device according to whether the terminal device has the TA pre-compensation capability, the first RACH resource set or the second RACH resource set.
  • the transceiver module 702 is specifically configured to, when the terminal device has the TA pre-compensation capability, select a RACH resource from the first RACH resource set, and send the message 1 to the network device;
  • the transceiver module 702 is specifically configured to select a RACH resource from the second RACH resource set and send the message 1 to the network device when the terminal device does not have the TA pre-compensation capability.
  • the transceiver module 702 is specifically configured to, when the terminal device has the TA pre-compensation capability, the terminal device uses the first estimated TA to perform TA compensation, selects a RACH resource from the first RACH resource set, and sends the data to the network device.
  • the transceiver module 702 is specifically configured to use the first common TA to perform TA compensation when the terminal device does not have the TA pre-compensation capability, select a RACH resource from the second RACH resource set, and send message 1 to the network device.
  • the transceiver module 702 is further configured to receive a first time slot offset sent by the network device, where the first time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the first time slot offset is an increment determined by the network device relative to the first common time slot offset
  • the first time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the message 3 .
  • processing module 701 is further configured to determine the first time-domain resource location for uplink scheduling.
  • the processing module 701 is specifically configured to, in the case that the terminal device has the TA pre-compensation capability, according to the first time slot number, the first time slot offset, the first common time slot offset and ⁇ 1 , determining the location of the first time domain resource for uplink scheduling;
  • the processing module 701 is specifically configured to determine, according to the first time slot number, the first time slot offset, the first common TA, the first TA adjustment amount and ⁇ 1 , when the terminal device does not have the TA pre-compensation capability. the first time-domain resource location for uplink scheduling;
  • the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2; the value of ⁇ 1 is related to the uplink subcarrier interval.
  • the processing module 701 is specifically configured to determine the first time slot number, the first time slot offset, the first common time slot offset, and the sum of ⁇ 1, which corresponds to the physical uplink shared channel PUSCH scheduled for uplink.
  • the processing module 701 is specifically configured to determine the first time slot number, the first time slot offset, the first common TA, the first TA adjustment amount and the sum of ⁇ 1, which is the first time domain resource corresponding to the PUSCH scheduled for uplink Location.
  • the transceiver module 702 is further configured to send message 3 according to the first time domain resource position corresponding to the PUSCH scheduled in the uplink.
  • the transceiver module 702 is configured to receive the second public time slot offset sent by the network device, the second public TA and the second TA adjustment amount, the second TA adjustment amount is the network device based on the reception of the message A sent by the terminal device, Determined TA adjustment amount;
  • the processing module 701 is specifically configured to determine the sum of the second estimated TA and the second TA adjustment amount as the target used for uplink scheduling when the terminal device has the TA pre-compensation capability and reports the second estimated TA in message A slot offset;
  • the processing module 701 is specifically configured to determine the second common timeslot offset, which is the target timeslot offset used for uplink scheduling, when the terminal equipment has the TA pre-compensation capability and the second estimated TA is not reported in the message A. shift;
  • the processing module 701 is specifically configured to determine the sum of the second common TA and the second TA adjustment amount as the target time slot offset used for uplink scheduling when the terminal device does not have the TA pre-compensation capability.
  • the second common time slot offset may be the timing advance TA value determined by the network device based on the ground reference point 3 ; the second common TA is the timing advance TA value determined by the network device based on the ground reference point 4 .
  • the second common time slot offset and the second common TA are carried in the system message.
  • the transceiver module 702 is further configured for the terminal device to receive the third RACH resource set and the fourth RACH resource set sent by the network device, the third RACH resource set is used for the terminal device with the TA pre-compensation capability to send the message A, Four RACH resource sets are used for terminal equipment without TA pre-compensation capability to send message A;
  • the transceiver module 702 is further configured to send the message A to the network device according to whether the terminal device has the TA pre-compensation capability, the third RACH resource set or the fourth RACH resource set.
  • the transceiver module 702 is specifically configured to use the second estimated TA to perform TA compensation when the terminal device has the TA pre-compensation capability, select a RACH resource from the third RACH resource set, and send it to the network device.
  • message A the message A carries the second estimated TA;
  • the transceiver module 702 is specifically configured to use the second estimated TA to perform TA compensation when the terminal device has the TA pre-compensation capability, select a RACH resource from the third RACH resource set, and send a message A, a message to the network device. A does not carry the second estimated TA;
  • the transceiver module 702 is specifically configured to use the second public TA for TA compensation when the terminal device does not have the TA pre-compensation capability, select a RACH resource from the fourth RACH resource set, and send message A to the network device.
  • the transceiver module 702 is further configured to receive a second time slot offset sent by the network device, where the second time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the second time slot offset is determined by the network device relative to the uplink transmission scheduled by the terminal device when sending message B. Increment of TA actually used;
  • the second time slot offset is an increment determined by the network device relative to the second common time slot offset
  • the second time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the uplink transmission scheduled by the message B.
  • the processing module 701 is further configured to determine a second time-domain resource location for uplink scheduling.
  • the processing module 701 is specifically configured to, in the case that the terminal device has the compensation capability and reports the second estimated TA in message A, according to the second time slot number, the second time slot offset, the second estimated TA , the second TA adjustment amount and ⁇ 2 , determine the second time-domain resource location for uplink scheduling;
  • the processing module 701 is specifically configured to, in the case that the terminal device has the compensation capability and the second estimated TA is not reported in the message A, according to the second time slot number, the second time slot offset, and the second common time slot offset and ⁇ 2 to determine the second time-domain resource location for uplink scheduling;
  • the processing module 701 is specifically configured to determine the uplink scheduling according to the second time slot number, the second time slot offset, the second common TA, the second TA adjustment amount and ⁇ 2 when the terminal device does not have the compensation capability
  • the second time slot number is the downlink time slot number corresponding to the PDSCH in which the terminal device receives the message B; the value of ⁇ 2 is related to the uplink subcarrier interval.
  • the processing module 701 is specifically configured to determine the second time slot number, the second time slot offset, the second estimated TA, the second TA adjustment amount and the sum of ⁇ 2 , which is the first time slot corresponding to the PUSCH scheduled in the uplink.
  • the processing module 701 is specifically configured to determine the second time slot number, the second time slot offset, the second public time slot offset and the sum of ⁇ 2 , which is the second time domain resource position corresponding to the PUSCH scheduled for uplink;
  • the processing module 701 is specifically configured to determine the second time slot number, the second time slot offset, the second common TA, the sum of the two TA adjustment amounts and ⁇ 2 , which is the second time domain resource position corresponding to the PUSCH scheduled for uplink .
  • the transceiver module 702 is further configured to send the message B according to the second time domain resource position corresponding to the PUSCH scheduled in the uplink.
  • the processing module 701 is configured to determine the timing advance TA of the terminal equipment, which is the target time slot offset used for uplink scheduling.
  • the transceiver module 702 is configured to receive a third time slot offset sent by the network device, where the third time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the target time slot offset is the offset used for uplink scheduling of PUSCH time domain resources.
  • processing module 701 is further configured to determining the third time-domain resource location for uplink scheduling
  • the third time slot number n 3 is the downlink time slot number corresponding to the terminal equipment receiving the PDCCH indicating the uplink scheduling
  • k 3 is the third time slot offset
  • ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing configurations of PUSCH and PDCCH, respectively.
  • the target slot offset is the offset used by the PUCCH for feeding back ACK/NACK.
  • the processing module 701 is further configured to determine, according to the third time slot number, the third time slot offset, and the sum of the TA, the fourth time domain resource position corresponding to the PUCCH that feeds back the ACK/NACK;
  • the slot number is the downlink time slot number corresponding to the terminal equipment receiving the PDSCH.
  • FIG. 8 it is a schematic diagram of an embodiment of a network device in an embodiment of the present invention, which may include:
  • the processing module 801 is configured to obtain a target time slot offset used for uplink scheduling, where the target time slot offset is determined by the terminal device according to whether it has the timing advance TA precompensation capability.
  • the transceiver module 802 is configured to send the first common time slot offset, the first common TA and the first TA adjustment amount to the terminal device, and the first TA adjustment amount is determined by the network device based on the reception of the message 1 sent by the terminal device.
  • the target time slot offset is the first common time slot offset determined by the terminal device
  • the target time slot offset is the sum of the first common TA determined by the terminal device and the first TA adjustment amount.
  • the first common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 1; the first common TA is the timing advance TA value determined by the network device based on the ground reference point 2.
  • the first common time slot offset and the first common TA are carried in the system message.
  • the transceiver module 802 is further configured to send the first random access channel RACH resource set and the second RACH resource set to the terminal device, and the first RACH resource set is used for the terminal device with the TA pre-compensation capability to send message 1,
  • the second RACH resource set is used for terminal equipment without TA pre-compensation capability to send message 1;
  • the transceiver module 802 is further configured to receive the message 1 sent by the terminal device.
  • message 1 is sent to the network device by the terminal device selecting a RACH resource from the first RACH resource set;
  • message 1 is sent to the network device by the terminal device selecting one RACH resource from the second RACH resource set.
  • message 1 is for the terminal device to use the first estimated TA to perform TA compensation, select a RACH resource from the first RACH resource set, and send it to the network device;
  • message 1 is sent to the network device by selecting one RACH resource from the second RACH resource set for the terminal device to perform TA compensation using the first common TA.
  • the transceiver module 802 is further configured to send a first time slot offset to the terminal device, where the first time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the first time slot offset is an increment determined by the network device relative to the first common time slot offset
  • the first time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the message 3 .
  • the transceiver module 802 is further configured to receive message 3 sent by the terminal device at the first time domain resource position scheduled in the uplink.
  • the first time-domain resource location for uplink scheduling is, determined by the displacement and ⁇ 1 ;
  • the first time-domain resource location for uplink scheduling is: amount and ⁇ 1 determined;
  • the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2; the value of ⁇ 1 is related to the uplink subcarrier interval.
  • the location of the first time domain resource for uplink scheduling is determined by the terminal device according to the first time slot number, the first time slot offset, the first common time slot offset and the sum of ⁇ 1;
  • the first time-domain resource location for uplink scheduling is: The sum of the amount and ⁇ 1 is determined.
  • the first time-domain resource position of the uplink scheduling is the first time-domain resource position corresponding to the PUSCH of the uplink scheduling.
  • the transceiver module 802 is configured to send the second public time slot offset, the second public TA and the second TA adjustment amount to the terminal device, and the second TA adjustment amount is determined by the network device based on the reception of the message A sent by the terminal device.
  • the target time slot offset is the sum of the second estimated TA determined by the terminal device and the second TA adjustment amount
  • the target time slot offset is the second common time slot offset determined by the terminal device
  • the target time slot offset is the sum of the second common TA and the second TA adjustment amount determined by the terminal device.
  • the second common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 3 ; the second common TA is the timing advance TA value determined by the network device based on the ground reference point 4 .
  • the second common time slot offset and the second common TA are carried in the system message.
  • the transceiver module 802 is further configured to send the third RACH resource set and the fourth RACH resource set to the terminal device, the third RACH resource set is used for the terminal device with TA pre-compensation capability to send message A, and the fourth RACH resource The set is used for terminal equipment without TA pre-compensation capability to send message A;
  • the transceiver module 802 is further configured to receive the message A sent by the terminal device.
  • the message A indicates that the terminal device uses the second estimated TA to perform TA compensation, selects a RACH resource from the third RACH resource set, and sends the message A to the network device. Carry the second estimated TA;
  • message A is for the terminal device to use the second estimated TA to perform TA compensation, select a RACH resource from the third RACH resource set, and send it to the network device.
  • Message A does not carry the second estimated TA.
  • message A is sent to the network device by selecting a RACH resource from the fourth RACH resource set for the terminal device to perform TA compensation using the second common TA.
  • the transceiver module 802 is further configured to send a second time slot offset to the terminal device, where the second time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the second time slot offset is determined by the network device relative to the uplink transmission scheduled by the terminal device when sending message B. Increment of TA actually used;
  • the second time slot offset is an increment determined by the network device relative to the second common time slot offset
  • the second time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the uplink transmission scheduled by the message B.
  • the transceiver module 802 is further configured to receive the message B sent by the terminal device at the second time domain resource location scheduled in the uplink.
  • the second time-domain resource position of the uplink scheduling is, the terminal device according to the second slot number, the second slot offset amount, the second estimated TA, the second TA adjustment amount and ⁇ 2 ;
  • the second time domain resource position of the uplink scheduling is, the terminal device according to the second slot number, the second slot offset, the first Two common time slot offsets and ⁇ 2 determined;
  • the second time domain resource position of the uplink scheduling is, the terminal device according to the second time slot number, the second time slot offset, the second common TA, the second TA adjustment amount and ⁇ 2 is determined;
  • the second time slot number is the downlink time slot number corresponding to the PDSCH in which the terminal device receives the message B; the value of ⁇ 2 is related to the uplink subcarrier interval.
  • the second time domain resource location of the uplink scheduling is the second time slot number, the second time slot offset, the second estimated TA, the second TA adjustment amount, and the sum of ⁇ 2 determined by the terminal device;
  • the second time-domain resource location for uplink scheduling is the sum of the second time slot number, the second time slot offset, the second common time slot offset, and ⁇ 2 determined by the terminal device;
  • the second time domain resource location for uplink scheduling is the second time slot number, the second time slot offset, the second common TA, the two TA adjustment amounts and the sum of ⁇ 2 determined by the terminal device.
  • the second time-domain resource position of the uplink scheduling is the second time-domain resource position corresponding to the PUSCH of the uplink scheduling.
  • the processing module 801 is configured to acquire a target time slot offset used for uplink scheduling, where the target time slot offset is a timing advance TA for the terminal device to determine the terminal device.
  • the transceiver module 802 is configured to send a third time slot offset to the terminal device, where the third time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the target time slot offset is the offset used for uplink scheduling of PUSCH time domain resources.
  • the third time slot offset is used by the terminal device according to the determining the third time-domain resource location for uplink scheduling
  • the third time slot number n 3 is the downlink time slot number corresponding to the terminal equipment receiving the PDCCH indicating the uplink scheduling
  • k 2 is the third time slot offset
  • ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing configurations of PUSCH and PDCCH, respectively.
  • the target slot offset is the offset used by the PUCCH for feeding back ACK/NACK.
  • the third time slot offset is used by the terminal device to determine the fourth time domain resource position corresponding to the PUCCH for which the ACK/NACK is fed back according to the third time slot number, the third time slot offset, and the sum of the TA.
  • the third time slot number is the downlink time slot number corresponding to the terminal equipment receiving the PDSCH.
  • the embodiment of the present application further provides one or more terminal devices.
  • the terminal device in this embodiment of the present application may implement any one of the foregoing methods.
  • FIG. 9 which is a schematic diagram of another embodiment of the terminal device in the embodiment of the present invention, the terminal device is described by taking a mobile phone as an example, and may include: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, A display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980, a power supply 990 and other components.
  • RF radio frequency
  • the radio frequency circuit 910 includes a receiver 914 and a transmitter 912 .
  • Those skilled in the art can understand that the structure of the mobile phone shown in FIG. 9 does not constitute a limitation on the mobile phone, and may include more or less components than shown, or combine some components, or arrange different components.
  • the RF circuit 910 can be used for receiving and sending signals during sending and receiving of information or during a call. In particular, after receiving the downlink information of the base station, it is processed by the processor 980; in addition, the designed uplink data is sent to the base station.
  • RF circuitry 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 910 may communicate with networks and other devices via wireless communications.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to the global system of mobile communication (global system of mobile communication, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access) multiple access, CDMA), wideband code division multiple access (wideband code division multiple access, WCDMA), long term evolution (long term evolution, LTE), email, short message service (short messaging service, SMS) and so on.
  • GSM global system of mobile communication
  • general packet radio service general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • long term evolution long term evolution
  • email short message service
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920 .
  • the memory 920 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc. Additionally, memory 920 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 may be used to receive inputted numerical or character information, and generate key signal input related to user setting and function control of the mobile phone.
  • the input unit 930 may include a touch panel 931 and other input devices 932 .
  • the touch panel 931 also referred to as a touch screen, can collect touch operations made by the user on or near it (such as the user's finger, stylus, etc., any suitable object or accessory on or near the touch panel 931). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 931 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may further include other input devices 932 .
  • other input devices 932 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 931 can cover the display panel 941. When the touch panel 931 detects a touch operation on or near it, it transmits it to the processor 980 to determine the type of the touch event, and then the processor 980 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 941 .
  • the touch panel 931 and the display panel 941 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 931 and the display panel 941 can be integrated to form Realize the input and output functions of the mobile phone.
  • the cell phone may also include at least one sensor 950, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 941 and/or when the mobile phone is moved to the ear. or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary. games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. Repeat.
  • the audio circuit 960, the speaker 961, and the microphone 962 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 960 can convert the received audio data into an electrical signal, and transmit it to the speaker 961, and the speaker 961 converts it into a sound signal for output; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 960 After receiving, it is converted into audio data, and then the audio data is output to the processor 980 for processing, and then sent to, for example, another mobile phone through the RF circuit 910, or the audio data is output to the memory 920 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it is not a necessary component of the mobile phone, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the mobile phone, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 920, and calling the data stored in the memory 920.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc. , the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 980.
  • the mobile phone also includes a power supply 990 (such as a battery) for supplying power to various components.
  • a power supply 990 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 980 through a power management system, so as to manage charging, discharging, and power consumption management functions through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, and the like, which will not be repeated here.
  • the processor 980 is configured to determine the target time slot offset used for uplink scheduling according to whether the terminal device has the timing advance TA precompensation capability.
  • the RF circuit 910 is configured to receive the first common time slot offset sent by the network device, the first common TA and the first TA adjustment amount, where the first TA adjustment amount is based on the network device receiving the message 1 sent by the terminal device, Determined TA adjustment amount;
  • the processor 980 is specifically configured to determine the first common time slot offset, which is the target time slot offset used for uplink scheduling, when the terminal device has the TA pre-compensation capability;
  • the processor 980 is specifically configured to determine the sum of the first common TA and the first TA adjustment amount as the target time slot offset used for uplink scheduling when the terminal device does not have the TA pre-compensation capability.
  • the first common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 1; the first common TA is the timing advance TA value determined by the network device based on the ground reference point 2.
  • the first common time slot offset and the first common TA are carried in the system message.
  • the RF circuit 910 is further configured to receive the first random access channel RACH resource set and the second RACH resource set sent by the network device, and the first RACH resource set is used for the terminal device with the TA pre-compensation capability to send message 1.
  • the second RACH resource set is used for terminal equipment without TA pre-compensation capability to send message 1;
  • the RF circuit 910 is further configured to send message 1 to the network device according to whether the terminal device has the TA pre-compensation capability, the first RACH resource set or the second RACH resource set.
  • the RF circuit 910 is specifically configured to, in the case that the terminal device has the TA pre-compensation capability, the terminal device selects a RACH resource from the first RACH resource set, and sends message 1 to the network device;
  • the RF circuit 910 is specifically configured to select a RACH resource from the second RACH resource set and send the message 1 to the network device when the terminal device does not have the TA pre-compensation capability.
  • the RF circuit 910 is specifically configured to, when the terminal device has the TA pre-compensation capability, the terminal device uses the first estimated TA to perform TA compensation, selects a RACH resource from the first RACH resource set, and sends the data to the network device.
  • the RF circuit 910 is specifically configured to use the first common TA for TA compensation when the terminal device does not have the TA pre-compensation capability, select one RACH resource from the second RACH resource set, and send message 1 to the network device.
  • the RF circuit 910 is further configured to receive a first time slot offset sent by the network device, where the first time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the first time slot offset is an increment determined by the network device relative to the first common time slot offset
  • the first time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the message 3 .
  • the processor 980 is further configured to determine the first time-domain resource location for uplink scheduling.
  • the processor 980 is specifically configured to, in the case that the terminal device has the TA pre-compensation capability, according to the first time slot number, the first time slot offset, the first common time slot offset and ⁇ 1 , determining the location of the first time domain resource for uplink scheduling;
  • the processor 980 is specifically configured to determine, according to the first time slot number, the first time slot offset, the first common TA, the first TA adjustment amount and ⁇ 1 , when the terminal device does not have the TA pre-compensation capability. the first time-domain resource location for uplink scheduling;
  • the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2; the value of ⁇ 1 is related to the uplink subcarrier interval.
  • the processor 980 is specifically configured to determine the first time slot number, the first time slot offset, the first common time slot offset, and the sum of ⁇ 1, which corresponds to the physical uplink shared channel PUSCH scheduled for uplink.
  • the processor 980 is specifically configured to determine the first time slot number, the first time slot offset, the first common TA, the first TA adjustment amount and the sum of ⁇ 1, which is the first time domain resource corresponding to the PUSCH scheduled for uplink Location.
  • the RF circuit 910 is further configured to send message 3 according to the first time domain resource position corresponding to the PUSCH scheduled in the uplink.
  • the RF circuit 910 is configured to receive the second common time slot offset sent by the network device, the second common TA and the second TA adjustment amount, where the second TA adjustment amount is the network device based on the reception of the message A sent by the terminal device, Determined TA adjustment amount;
  • the processor 980 is specifically configured to determine the sum of the second estimated TA and the second TA adjustment amount as the target used for uplink scheduling when the terminal device has the TA pre-compensation capability and reports the second estimated TA in message A slot offset;
  • the processor 980 is specifically configured to determine the second common timeslot offset, which is the target timeslot offset used for uplink scheduling, when the terminal equipment has the TA pre-compensation capability and the second estimated TA is not reported in the message A. shift;
  • the processor 980 is specifically configured to determine the sum of the second common TA and the second TA adjustment amount as the target time slot offset used for uplink scheduling when the terminal device does not have the TA pre-compensation capability.
  • the second common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 3 ; the second common TA is the timing advance TA value determined by the network device based on the ground reference point 4 .
  • the second common time slot offset and the second common TA are carried in the system message.
  • the RF circuit 910 is further configured for the terminal device to receive the third RACH resource set and the fourth RACH resource set sent by the network device, the third RACH resource set is used for the terminal device with the TA pre-compensation capability to send the message A, Four RACH resource sets are used for terminal equipment without TA pre-compensation capability to send message A;
  • the RF circuit 910 is further configured to send the message A to the network device according to whether the terminal device has the TA pre-compensation capability, the third RACH resource set or the fourth RACH resource set.
  • the RF circuit 910 is specifically configured to, when the terminal device has the TA pre-compensation capability, the terminal device uses the second estimated TA to perform TA compensation, selects a RACH resource from the third RACH resource set, and sends it to the network device.
  • message A the message A carries the second estimated TA;
  • the RF circuit 910 is specifically configured to, when the terminal device has the TA pre-compensation capability, the terminal device uses the second estimated TA to perform TA compensation, selects one RACH resource from the third RACH resource set, and sends the message A, the message to the network device. A does not carry the second estimated TA;
  • the RF circuit 910 is specifically configured to use the second common TA to perform TA compensation when the terminal device does not have the TA pre-compensation capability, select a RACH resource from the fourth RACH resource set, and send message A to the network device.
  • the RF circuit 910 is further configured to receive a second time slot offset sent by the network device, where the second time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the second time slot offset is determined by the network device relative to the uplink transmission scheduled by the terminal device when sending message B. Increment of TA actually used;
  • the second time slot offset is an increment determined by the network device relative to the second common time slot offset
  • the second time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the uplink transmission scheduled by the message B.
  • the processor 980 is further configured to determine a second time-domain resource location for uplink scheduling.
  • the processor 980 is specifically configured to, in the case that the terminal device has the compensation capability and reports the second estimated TA in the message A, according to the second time slot number, the second time slot offset, the second estimated TA , the second TA adjustment amount and ⁇ 2 , determine the second time-domain resource location for uplink scheduling;
  • the processor 980 is specifically configured to, in the case that the terminal device has the compensation capability and the second estimated TA is not reported in the message A, according to the second time slot number, the second time slot offset, and the second common time slot offset and ⁇ 2 to determine the second time-domain resource location for uplink scheduling;
  • the processor 980 is specifically configured to determine the uplink scheduling according to the second time slot number, the second time slot offset, the second common TA, the second TA adjustment amount and ⁇ 2 when the terminal device does not have the compensation capability
  • the second time slot number is the downlink time slot number corresponding to the PDSCH in which the terminal device receives the message B; the value of ⁇ 2 is related to the uplink subcarrier interval.
  • the processor 980 is specifically configured to determine the second time slot number, the second time slot offset, the second estimated TA, the second TA adjustment amount and the sum of ⁇ 2 , which is the first time slot corresponding to the PUSCH scheduled in the uplink.
  • the processor 980 is specifically configured to determine the second time slot number, the second time slot offset, the second public time slot offset and the sum of ⁇ 2 , which is the second time domain resource position corresponding to the PUSCH scheduled for uplink;
  • the processor 980 is specifically configured to determine the second time slot number, the second time slot offset, the second common TA, the sum of the two TA adjustment amounts and ⁇ 2 , which is the second time domain resource position corresponding to the PUSCH scheduled for uplink .
  • the RF circuit 910 is further configured to send the message B according to the second time domain resource position corresponding to the PUSCH scheduled in the uplink.
  • the processor 980 is configured to determine the timing advance TA of the terminal device, which is the target time slot offset used for uplink scheduling.
  • the RF circuit 910 is configured to receive a third time slot offset sent by the network device, where the third time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the target time slot offset is the offset used for uplink scheduling of PUSCH time domain resources.
  • the processor 980 is further configured to determining the third time-domain resource location for uplink scheduling
  • the third time slot number n 3 is the downlink time slot number corresponding to the terminal equipment receiving the PDCCH indicating the uplink scheduling
  • k 2 is the third time slot offset
  • ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing configurations of PUSCH and PDCCH, respectively.
  • the target slot offset is the offset used by the PUCCH for feeding back ACK/NACK.
  • the processor 980 is further configured to determine, according to the third time slot number, the third time slot offset, and the sum of the TA, the fourth time domain resource position corresponding to the PUCCH for which the ACK/NACK is fed back;
  • the slot number is the downlink time slot number corresponding to the terminal equipment receiving the PDSCH.
  • FIG. 10 it is a schematic diagram of another embodiment of a network device in an embodiment of the present invention, which may include:
  • the processor 1001 is configured to acquire a target time slot offset used for uplink scheduling, and the target time slot offset is determined by the terminal device according to whether it has the timing advance TA precompensation capability. .
  • the transceiver 1002 is configured to send the first common time slot offset, the first common TA and the first TA adjustment amount to the terminal device, and the first TA adjustment amount is determined by the network device based on the reception of the message 1 sent by the terminal device.
  • the target time slot offset is the first common time slot offset determined by the terminal device
  • the target time slot offset is the sum of the first common TA determined by the terminal device and the first TA adjustment amount.
  • the first common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 1; the first common TA is the timing advance TA value determined by the network device based on the ground reference point 2.
  • the first common time slot offset and the first common TA are carried in the system message.
  • the transceiver 1002 is further configured to send the first random access channel RACH resource set and the second RACH resource set to the terminal device, and the first RACH resource set is used for the terminal device with the TA pre-compensation capability to send message 1,
  • the second RACH resource set is used for terminal equipment without TA pre-compensation capability to send message 1;
  • the transceiver 1002 is further configured to receive the message 1 sent by the terminal device.
  • message 1 is sent to the network device by the terminal device selecting a RACH resource from the first RACH resource set;
  • message 1 is sent to the network device by the terminal device selecting one RACH resource from the second RACH resource set.
  • message 1 is for the terminal device to use the first estimated TA to perform TA compensation, select a RACH resource from the first RACH resource set, and send it to the network device;
  • message 1 is sent to the network device by selecting one RACH resource from the second RACH resource set for the terminal device to perform TA compensation using the first common TA.
  • the transceiver 1002 is further configured to send a first time slot offset to the terminal device, where the first time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the first time slot offset is an increment determined by the network device relative to the first common time slot offset
  • the first time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the message 3 .
  • the transceiver 1002 is further configured to receive message 3 sent by the terminal device at the first time domain resource position scheduled in the uplink.
  • the first time-domain resource location for uplink scheduling is, determined by the displacement and ⁇ 1 ;
  • the first time-domain resource location for uplink scheduling is: amount and ⁇ 1 determined;
  • the first time slot number is the downlink time slot number corresponding to the physical downlink shared channel PDSCH on which the terminal device receives message 2; the value of ⁇ 1 is related to the uplink subcarrier interval.
  • the location of the first time domain resource for uplink scheduling is determined by the terminal device according to the first time slot number, the first time slot offset, the first common time slot offset and the sum of ⁇ 1;
  • the first time-domain resource location for uplink scheduling is: The sum of the amount and ⁇ 1 is determined.
  • the first time-domain resource position of the uplink scheduling is the first time-domain resource position corresponding to the PUSCH of the uplink scheduling.
  • the network device further includes:
  • the transceiver 1002 is configured to send the second common time slot offset, the second common TA and the second TA adjustment amount to the terminal device, and the second TA adjustment amount is determined by the network device based on the reception of the message A sent by the terminal device.
  • the target time slot offset is the sum of the second estimated TA determined by the terminal device and the second TA adjustment amount
  • the target time slot offset is the second common time slot offset determined by the terminal device
  • the target time slot offset is the sum of the second common TA and the second TA adjustment amount determined by the terminal device.
  • the second common time slot offset is the timing advance TA value determined by the network device based on the ground reference point 3 ; the second common TA is the timing advance TA value determined by the network device based on the ground reference point 4 .
  • the second common time slot offset and the second common TA are carried in the system message.
  • the transceiver 1002 is further configured to send a third RACH resource set and a fourth RACH resource set to the terminal device, the third RACH resource set is used for the terminal device with TA pre-compensation capability to send message A, and the fourth RACH resource The set is used for terminal equipment without TA pre-compensation capability to send message A;
  • the transceiver 1002 is further configured to receive the message A sent by the terminal device.
  • the message A indicates that the terminal device uses the second estimated TA to perform TA compensation, selects a RACH resource from the third RACH resource set, and sends the message A to the network device. Carry the second estimated TA;
  • message A is for the terminal device to use the second estimated TA to perform TA compensation, select a RACH resource from the third RACH resource set, and send it to the network device.
  • Message A does not carry the second estimated TA.
  • message A is sent to the network device by selecting a RACH resource from the fourth RACH resource set for the terminal device to perform TA compensation using the second common TA.
  • the transceiver 1002 is further configured to send a second time slot offset to the terminal device, where the second time slot offset is determined by the network device according to the target time slot offset used by the terminal device.
  • the second time slot offset is determined by the network device relative to the uplink transmission scheduled by the terminal device when sending message B. Increment of TA actually used;
  • the second time slot offset is an increment determined by the network device relative to the second common time slot offset
  • the second time slot offset is an increment determined by the network device relative to the TA actually used when the terminal device sends the uplink transmission scheduled by the message B.
  • the transceiver 1002 is further configured to receive the message B sent by the terminal device at the second time domain resource location scheduled in the uplink.
  • the second time-domain resource position of the uplink scheduling is, the terminal device according to the second time slot number, the second time slot offset amount, the second estimated TA, the second TA adjustment amount and ⁇ 2 ;
  • the second time domain resource position of the uplink scheduling is, the terminal device according to the second slot number, the second slot offset, the first Two common time slot offsets and ⁇ 2 determined;
  • the second time domain resource position of the uplink scheduling is, the terminal device according to the second time slot number, the second time slot offset, the second common TA, the second TA adjustment amount and ⁇ 2 is determined;
  • the second time slot number is the downlink time slot number corresponding to the PDSCH in which the terminal device receives the message B; the value of ⁇ 2 is related to the uplink subcarrier interval.
  • the second time domain resource location of the uplink scheduling is the second time slot number, the second time slot offset, the second estimated TA, the second TA adjustment amount, and the sum of ⁇ 2 determined by the terminal device;
  • the second time-domain resource location for uplink scheduling is the sum of the second time slot number, the second time slot offset, the second common time slot offset, and ⁇ 2 determined by the terminal device;
  • the second time domain resource location for uplink scheduling is the second time slot number, the second time slot offset, the second common TA, the two TA adjustment amounts and the sum of ⁇ 2 determined by the terminal device.
  • the second time-domain resource position of the uplink scheduling is the second time-domain resource position corresponding to the PUSCH of the uplink scheduling.
  • the processor 1001 is configured to acquire a target time slot offset used for uplink scheduling, where the target time slot offset is a timing advance TA for the terminal device to determine the terminal device.
  • the transceiver 1002 is configured to send a third time slot offset to the terminal device, where the third time slot offset is an increment determined by the network device relative to the TA of the terminal device.
  • the target time slot offset is the offset used for uplink scheduling of PUSCH time domain resources.
  • the third time slot offset is used by the terminal device according to the determining the third time-domain resource location for uplink scheduling
  • the third time slot number n 3 is the downlink time slot number corresponding to the terminal equipment receiving the PDCCH indicating the uplink scheduling
  • k 2 is the third time slot offset
  • ⁇ PUSCH and ⁇ PDCCH are the subcarrier spacing configurations of PUSCH and PDCCH, respectively.
  • the target slot offset is the offset used by the PUCCH for feeding back ACK/NACK.
  • the third time slot offset is used by the terminal device to determine the fourth time domain resource position corresponding to the PUCCH for which the ACK/NACK is fed back according to the third time slot number, the third time slot offset, and the sum of the TA.
  • the third time slot number is the downlink time slot number corresponding to the terminal equipment receiving the PDSCH.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, data center, etc., which includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

Abstract

本发明实施例提供了一种确定上行传输时域资源的方法、终端设备及网络设备,以及计算机可读存储介质,用于避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。本发明实施例可以包括:终端设备根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。

Description

确定上行传输时域资源的方法、终端设备及网络设备 技术领域
本发明涉及通信领域,尤其涉及一种确定上行传输时域资源的方法、终端设备及网络设备,以及计算机可读存储介质。
背景技术
在传统新无线(New radio,NR)陆地蜂窝网络中,小区覆盖范围较小,UE与网络设备之间的信号传输时延很小,因此UE的定时提前(Timing Advance,TA)值也较小,小于目前支持的k2和k1的最大取值。与传统NR采用的蜂窝网络相比,非地面通信网络设备(Non Terrestrial Network,NTN)中UE与卫星之间的信号传播时延大幅增加。对于LEO(Low-Earth Orbit,低地球轨道)场景,UE和网络设备之间信号传输往返时间最大为25.77ms,对于GEO(Geostationary Earth Orbit,地球同步轨道)场景,UE和网络设备之间信号传输往返时间最大为541.46ms。这就意味着NTN中UE的TA最大为541.46ms。该TA值远远大于目前标准中可支持的k2和k1的最大取值。
针对上述问题,无线接入网(Radio Access Network,RAN)1已经同意针对k2和k1引入一个k offset(偏移量),该k offset用于弥补NTN中UE使用的较大的TA。对于如何确定k offset,目前还没有结论。
发明内容
本发明实施例提供了一种确定上行传输时域资源的方法、终端设备及网络设备,以及计算机可读存储介质,用于避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
本发明实施例的第一方面提供一种确定上行传输时域资源的方法,可以包括:终端设备根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
本发明实施例的第二方面提供一种确定上行传输时域资源的方法,可以包括:终端设备确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
本发明实施例的第三方面提供一种确定上行传输时域资源的方法,可以包括:所述网络设备获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
本发明实施例的第四方面提供一种确定上行传输时域资源的方法,可以包括:所述网络设备获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为所述终端设备确定所述终端设备的定时提前TA。
本发明实施例又一方面提供了一种终端设备,具有避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例又一方面提供了一种网络设备,具有避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例又一方面提供一种终端设备,包括:存储有可执行程序代码的存储器;与所述存储器耦合的处理器和收发器;所述处理器和所述收发器,用于对应执行本发明实施例第一方面或第二方面中所述的方法。
本发明实施例又一方面提供一种网络设备,包括:存储有可执行程序代码的存储器;与所述存储器耦合的收发器;所述收发器用于执行本发明实施例第三方面或第四方面中所述的方法。
本发明实施例又一方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如本发明第一方面或第二方面或第三方面或第四方面中所述的方法。
本发明实施例又一方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如本发明第一方面或第二方面或第三方面或第四方面中所述的方法。
本发明实施例又一方面提供一种芯片,所述芯片与所述终端设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,使得所述终端设备执行如本发明第一方面或第二方面中所述的方法。
本发明实施例又一方面提供一种芯片,所述芯片与所述网络设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,使得所述网络设备执行如本发明第三方面或第四方面中所述的方法。
本发明实施例提供的技术方案中,终端设备根据所述终端设备是否具备定时提前TA预补偿能力, 确定上行调度所使用的目标时隙偏移量。可以避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
附图说明
图1A为现有技术中gNB侧的时间同步的一个示意图;
图1B为现有技术中gNB侧的时间同步的另一个示意图;
图1C为公共TA和UE专属TA的一个示意图;
图1D为具有初始TA补偿能力的终端的随机接入过程示意图;
图2为本发明实施例所应用的通信系统的系统架构图;
图3A为本发明实施例中确定上行传输时域资源的方法的一个实施例示意图;
图3B为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图4为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图5A为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图5B为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图6A为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图6B为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图;
图7为本发明实施例中终端设备的一个实施例示意图;
图8为本发明实施例中网络设备的一个实施例示意图;
图9为本发明实施例中终端设备的另一个实施例示意图;
图10为本发明实施例中网络设备的另一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面先对本申请中涉及到的一些术语做一个简要的说明,如下所示:
1、非地面通信网络设备(Non Terrestrial Network,NTN)相关背景
NR系统的研究中包括非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。目前阶段主要研究的是LEO和GEO。
对于LEO卫星,轨道高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。终端间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对终端的发射功率要求不高。
对于GEO卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一颗卫星波束可以覆盖直径几十至上百公里的地面区域。
2、新无线(New radio,NR)上行定时提前
上行传输的一个重要特征是不同用户设备(User Equipment,UE)在时频上正交多址接入,即来自同一小区的不同UE的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,新一代基站(new generation Node B,gNB)要求来自同一时刻但不同频域资源的不同UE的信号到达gNB的时间基本上是对齐的。为了保证gNB侧的时间同步,NR支持上行定时提前的机制。
gNB侧的上行时钟和下行时钟是相同的,而UE侧的上行时钟和下行时钟之间有偏移,并且不同UE 有各自不同的上行定时提前量。gNB通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达gNB的时间。对于离gNB较远的UE,由于有较大的传输时延,就要比离gNB较近的UE提前发送上行数据。如图1A所示,为现有技术中gNB侧的时间同步的一个示意图。如图1B所示,为现有技术中gNB侧的时间同步的另一个示意图。
gNB基于测量UE的上行传输来确定每个UE的TA值。gNB通过两种方式给UE发送TA命令。
(1)初始定时提前(Timing Advance,TA)的获取:在随机接入过程中,gNB通过测量接收到的随机接入前导码(preamble)来确定TA值,并通过随机接入响应(Random Access Response,RAR)的上行定时提前量(Timing Advance Command)字段发送给UE。
(2)无线资源控制(Radio Resource Control,RRC)连接态TA的调整:虽然在随机接入过程中,UE与gNB取得了上行同步,但上行信号到达gNB的定时可能会随着时间发生变化,因此,UE需要不断地更新其上行定时提前量,以保持上行同步。如果某个UE的TA需要校正,则gNB会发送一个Timing Advance Command给该UE,要求其调整上行定时。该Timing Advance Command是通过Timing Advance Command媒体接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)发送给UE的。
3、NTN四步随机接入过程
基于目前NTN标准化讨论,NTN中的UE都应该具备定位能力,并且NTN中将支持两种类型的UE,一种是没有初始TA补偿能力的UE,即UE在随机接入过程中发送Msg1时使用网络设备广播的公共TA进行TA补偿;另一种是有初始TA补偿能力的UE,即UE在随机接入过程中使用自己估算的TA发送Msg1。对于这两种类型的UE,初始TA的确定方法有所不同。
对于不具有初始TA补偿能力的UE,网络设备会基于近地点与基站之间的信号传输时延广播1个公共的TA。如下图1C所示,对于再生网络架构,UE自己的TA(specific TA)=2*(d1-d0)/c公共TA(common reference TA)=2*d0/c;对于弯管转发网络架构,UE自己的TA=2*(d1-d0)/c,公共TA(common reference TA)=2*(d0+d0_F)/c;其中,d1是卫星到UE的距离,d0是卫星到地面参考点的距离,df是卫星到地面基站的距离。UE发送preamble时使用网络设备广播的公共TA进行TA补偿,然后网络设备在RAR中向UE指示一个UE专属的TA值,这样UE的初始TA就是广播的公共TA与RAR中指示的UE专属的TA两者累加的结果。
对于具有初始TA补偿能力的终端,其随机接入过程如下图1D所示。
步骤1:UE基于定位能力估算自己的TA,并使用自己估算的该TA发送msg1。
步骤2:网络设备在收到msg1后确定UE的TA调整值,并通过msg2指示给UE。由于此时网络设备并不知道UE确切的TA值,此时网络设备可以按照最大上行调度时延调度该UE的msg3的资源。
步骤3:UE基于接收到的RAR的指示对TA进行调整,并在网络设备调度的上行资源上发送msg3。
步骤4:网络设备接收到UE的msg3后就可以知道该UE使用的初始TA了,自此网络设备侧和UE侧对于该UE的TA值理解就一致了。
在四步随机接入过程中,无论UE是否具有初始TA补偿能力,网络设备发送的RAR中都会包含一个上行授权(Uplink grant,UL grant)域,用于调度Msg3的上行资源指示。UE在RAR的UL grant指示的PUSCH资源上发送Msg3。如果UE在时隙n收到RAR,则UE发送Msg3的时隙号为n+k 2+Δ,其中k2通过UL grant中指示,Δ的取值与上行子载波间隔相关。
4、UE确定物理上行共享信道(Physical Uplink Shared Channel,PUSCH)时域资源
位于gNB侧的上行调度器在完成PUSCH资源分配后,通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)告知UE调度信息,其中包括PUSCH传输的时域资源分配信息,频域资源分配信息,调制与编码策略(Modulation and Coding Scheme,MCS),所使用的上行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程号等等。
如果UE在子帧n收到PDCCH,则UE发送PUSCH的时隙号为
Figure PCTCN2020127589-appb-000001
其中,K2通过PDCCH指示,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔。
5、UE确定应答(Acknowledge,ACK)/非应答(Not Acknowledge,NACK)反馈的PUCCH时域资源
对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,UE需要针对PDSCH接收进行检测,并将检测结果告知gNB,即向gNB发送ACK/NACK反馈。UE发送ACK/NACK反馈所使用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源由gNB通过PDCCH指示给UE。
如果UE在时隙n接收到PDSCH,则UE在时隙n+k 1的PUCCH上发送ACK/NACK反馈,其中,k1通过PDCCH指示。
NR中,UE的动态调度的PUSCH传输和针对PDSCH接收的ACK/NACK反馈的资源分配信息都是通过下行调度信令PDCCH/或者下行共享信道传输RAR通知给UE的。由于NR中使用TA机制,UE侧的上行时钟和下行时钟不对齐,上行时钟相对于下行时钟的提前量为TA,因此PDCCH或者RAR中指示的上行传输的时隙偏移量k2或者k1都必须大于UE的TA,这样才能保证UE能够在接收PDCCH或者PDSCH之后进行上行传输。基于目前标准规定,k2可以支持的最大取值为32个时隙,k1可以支持的最大取值为15个时隙。
在传统NR陆地蜂窝网络中,小区覆盖范围较小,UE与网络设备之间的信号传输时延很小,因此UE的TA值也较小,小于目前支持的k2和k1的最大取值。
与传统NR采用的蜂窝网络相比,NTN中UE与卫星之间的信号传播时延大幅增加。对于LEO场景,UE和网络设备之间信号传输往返时间最大为25.77ms,对于GEO场景,UE和网络设备之间信号传输往返时间最大为541.46ms。这就意味着NTN中UE的TA最大为541.46ms。该TA值远远大于目前标准中可支持的k2和k1的最大取值。
针对上述问题,无线接入网(Radio Access Network,RAN)1已经同意针对k2和k1引入一个k offset,该k offset用于弥补NTN中UE使用的较大的TA。对于如何确定k offset,目前还没有结论。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安 全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
如图2所示,为本发明实施例所应用的通信系统的系统架构图。该通信系统可以包括网络设备,网络设备可以是与终端设备(或称为通信终端、终端)通信的设备。网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。图2示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图2示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本发明实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
应理解,本申请实施例中,"预设的"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预设的可以是指协议中定义的。
应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR 协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面以实施例的方式,对本发明技术方案做进一步的说明,如下所示:
实施例一、在所述终端设备应用于四步随机接入的场景下,如图3A所示,为本发明实施例中确定上行传输时域资源的方法的一个实施例示意图,可以包括:
301、终端设备接收所述网络设备发送的第一公共时隙偏移量,第一公共TA和第一TA调整量。
其中,第一公共时隙偏移量和第一公共TA是网络设备配置的。可选的,所述第一公共时隙偏移量可以为所述网络设备基于地面参考点1确定的定时提前TA值;所述第一公共TA可以为所述网络设备基于地面参考点2确定的定时提前TA值;所述第一TA调整量为所述网络设备基于对所述终端设备发送的消息1的接收,确定的TA调整量。
可以理解的是,网络设备可以广播1个第一公共时隙偏移量(也可以称为common k2 offset),该第一公共时隙偏移量为针对四步随机接入过程中msg3调度的PUSCH公共时隙偏移值。第一公共时隙偏移量可以是基于某个地面参考点对应的TA值。例如:可以是基于与小区覆盖范围内距离卫星最远的地面位置作为所述地面参考点确定common k2 offset。在四步随机接入过程中,终端设备可以根据自己是否具有TA预补偿能力,确定用于确定Msg3时域资源所使用的目标时隙偏移量(也可以称为k2offset)。
可选的,所述第一公共时隙偏移量和所述第一公共TA承载在系统消息中。例如:该系统消息可以是系统消息块x(System Information Block x,SIB x),其中,x大于等于1。
需要说明的是,第一公共时隙偏移量和第一公共TA,可以是网络设备配置好,一起下发给终端设备,也可以分开下发给终端设备,具体此处不做限定。可选的,第一公共时隙偏移量和第一公共TA是网络设备通过广播或组播方式配置给终端设备的。其中,第一TA调整量可以参考前文中关于TA的调整的描述,此处不再赘述。可选的,第一TA调整量可以携带在msg2(例如RAR)中发送给终端设备。
302、终端设备接收所述网络设备发送的第一随机接入信道RACH资源集合和第二RACH资源集合,所述第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,所述第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1。
可以理解的是,第一RACH资源集合和第二RACH资源集合,是网络设备针对具有TA预补偿能力和不具有TA预补偿能力的终端设备分别配置的RACH资源。需要说明的是,步骤301和302的时序不做限定,是网络设备为终端设备发送的配置信息,配置四步随机接入相关参数。
303、终端设备根据所述终端设备是否具备TA预补偿能力,所述第一RACH资源集合或所述第二RACH资源集合,向所述网络设备发送消息1。
可选的,所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第一RACH资源集合或所述第二RACH资源集合,向所述网络设备发送消息1,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备TA预补偿能力的情况下,所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
可选的,在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用第一估算TA进行TA补偿,从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。即对于有TA预补偿能力的UE,UE在发送Msg1时可以使用自己基于全球导航卫星系统(Global Navigation Satellite System,GNSS)能力估算的第一估算TA进行TA补偿。
方式2:在所述终端设备不具备TA预补偿能力的情况下,所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
可选的,在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第一公共TA进行TA补偿,从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。即对于没有TA预补偿能力的UE,UE在发送Msg1时使用网络设备广播的第一公共TA进行TA补偿。
可以理解的是,针对具有TA预补偿能力的UE和不具有TA预补偿能力的UE,网络设备分别配置RACH资源。即UE根据发送Msg1时是否进行TA补偿,从对应的RACH资源集合中选择一个RACH资源发送msg1。
304、所述终端设备接收所述网络设备发送的第一时隙偏移量,所述第一时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
(1)在所述终端设备具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述第一公共时隙偏移量的增量。
(2)在所述终端设备不具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的 相对于所述终端设备发送消息3时实际使用的TA的增量。
可以理解的是,网络设备在收到来自终端设备的msg1之后,就可以从终端设备发送msg1所使用的RACH资源知道终端设备在是否具有TA预补偿能力。
如果终端设备在发送Msg1时使用自己估算的第一估算TA进行TA补偿,网络设备此时并不能获知终端设备使用的TA值,对于这种情况,网络设备在随机接入响应(Random Access Response,RAR)中指示的Msg3的PUSCH第一时隙偏移量(也可以称为时隙偏移值k2)只能是相对于第一公共时隙偏移量(common k2 offset)的增量。
如果终端设备在发送Msg1时使用网络设备广播的第一公共TA进行TA补偿,此时网络设备可以获知终端设备的TA值,对于这种情况,网络设备在RAR中指示的Msg3的PUSCH第一时隙偏移量(也可以称为时隙偏移值k2)为相对于UE的实际TA的增量。
示例性的,UE在发送msg1之后,收到来自网络设备发送的msg2,该msg2可以是RAR。所述RAR指示终端设备的msg3传输的UL grant信息,包括Msg3的PUSCH时隙偏移值k2,该时隙偏移值k2用于确定Msg3的PUSCH相对于RAR的PDSCH的时隙偏移值,所述k2为相对时隙偏移值。
305、终端设备根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
可选的,所述终端设备根据所述终端设备是否具备TA预补偿能力,确定上行调度所使用的目标时隙偏移量,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备TA预补偿能力的情况下,所述终端设备确定所述第一公共时隙偏移量,为上行调度所使用的目标时隙偏移量。示例性的,如果UE具有TA预补偿能力(即UE使用自己估算的第一估算TA发送msg1,则UE使用所述网络设备广播的common k2 offset作为msg3调度的k2offset。
方式2:在所述终端设备不具备TA预补偿能力的情况下,所述终端设备确定所述第一公共TA与所述第一TA调整量之和,为上行调度所使用的目标时隙偏移量。如果UE不具有TA预补偿能力(即UE使用网络广播的第一公共TA发送msg1),则UE使用自己的TA(即第一公共TA+RAR中指示的第一TA调整量)作为msg3调度的k2 offset。
306、所述终端设备确定上行调度的第一时域资源位置。
可选的,终端设备确定上行调度的第一时域资源位置,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备TA预补偿能力的情况下,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置,其中,所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,所述终端设备确定所述第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量以及Δ 1之和,为上行调度的物理上行共享信道PUSCH对应的第一时域资源位置。
示例性的,UE确定Msg3的PUSCH时隙号为n1+k2+common k2 offset+Δ 1,其中,n1为UE接收到RAR的PDSCH对应的下行时隙号,k2+common k2 offset+Δ 1为Msg3的PUSCH发送相对于RAR的PDSCH接收的时隙偏移,Δ 1取值与上行子载波间隔相关。
方式2:在所述终端设备不具备TA预补偿能力的情况下,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1,确定上行调度的第一时域资源位置,其中,所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,所述终端设备确定所述第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量以及Δ 1之和,为上行调度的PUSCH对应的第一时域资源位置。
示例性的,UE确定Msg3的PUSCH时隙号为n1+k2+TA+Δ 1,其中,n1为UE接收到RAR的PDSCH对应的下行时隙号,k2+TA+Δ 1为Msg3的PUSCH发送相对于RAR的PDSCH接收的时隙偏移,Δ 1取值与上行子载波间隔相关,该TA为第一公共TA和第一TA调整量之和。
307、所述终端设备根据所述上行调度的PUSCH对应的第一时域资源位置,发送消息3。
网络设备接收终端设备在上行调度的第一时域资源位置上发送的消息3;该上行调度的第一时域资 源位置为所述上行调度的PUSCH对应的第一时域资源位置。
示例性的,如图3B所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图。在图3B所示中,假设UE1为具有TA预补偿能力的UE,UE2为没有TA预补偿能力的UE。
在本发明实施例中,网络设备广播1个common k2 offset,所述common k2 offset为针对四步随机接入过程中msg3调度的PUSCH公共时隙偏移量。四步随机接入过程中,UE根据自己是否具有TA预补偿能力确定用于确定Msg3时域资源所使用的k2 offset。即本发明实施例公布一种NTN中终端设备确定上行传输资源相对于下行接收的相对时隙偏移值(k offset)的方法。使用该方法,既可以避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
实施例二、在所述终端设备应用于两步随机接入的场景下,如图4所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图,可以包括:
401、终端设备接收所述网络设备发送的第二公共时隙偏移量,第二公共TA和第二TA调整量。
其中,第二公共时隙偏移量和第二公共TA是网络设备配置的。可选的,所述第二公共时隙偏移量可以为所述网络设备基于地面参考点3确定的定时提前TA值;所述第二公共TA可以为所述网络设备基于地面参考点4确定的定时提前TA值;所述第二TA调整量为所述网络设备基于针对所述终端设备发送的消息A的接收,确定的TA调整量。
可以理解的是,网络设备可以广播1个第二公共时隙偏移量(也可以称为common k2 offset),第二公共时隙偏移量为针对两步随机接入过程中msgB指示的PUSCH公共时隙偏移值。第二公共时隙偏移量可以是基于某个地面参考点对应的TA值。例如:可以是基于与小区覆盖范围内距离卫星最远的地面位置作为所述地面参考点确定common k2 offset。在两步随机接入过程中,终端设备可以根据自己是否具有TA预补偿能力,以及对于具有TA预补偿能力的终端设备是否通过msgA进行了TA上报,确定用于确定MsgB指示的PUSCH时域资源所使用的目标时隙偏移量(也可以称为k2 offset)。
可选的,所述第二公共时隙偏移量和所述第二公共TA承载在系统消息中。例如:该系统消息可以是系统消息块x(System Information Block x,SIB x),其中,x大于等于1。
需要说明的是,第二公共时隙偏移量和第二公共TA,可以是网络设备配置好,一起下发给终端设备,也可以分开下发给终端设备,具体此处不做限定。可选的,第一公共时隙偏移量和第一公共TA是网络设备通过广播或组播方式配置给终端设备的。其中,第二TA调整量可以参考前文中关于TA的调整的描述,此处不再赘述。可选的,第二TA调整量可以携带在msgB中发送给终端设备。
402、终端设备接收所述网络设备发送的第三RACH资源集合和第四RACH资源集合,所述第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,所述第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A。
可以理解的是,第三RACH资源集合和第四RACH资源集合,是网络设备针对具有TA预补偿能力和不具有TA预补偿能力的终端设备分别配置的RACH资源。需要说明的是,步骤401和402的时序不做限定,是网络设备为终端设备发送的配置信息,配置两步随机接入相关参数。
403、终端设备根据所述终端设备是否具备TA预补偿能力,所述第三RACH资源集合或所述第四RACH资源集合,向所述网络设备发送消息A。
可选的,所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第三RACH资源集合或所述第四RACH资源集合,向所述网络设备发送消息A,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,所述终端设备从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A携带所述第二估算TA。示例性的,对于有TA预补偿能力的UE,UE在发送MsgA时使用自己基于GNSS能力估算的第二估算TA进行TA补偿,并且UE通过MsgA进行了TA上报。
方式2:在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,所述终端设备从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A未携带所述第二估算TA。示例性的,对于有TA预补偿能力的UE,UE在发送MsgA时使用自己基于GNSS能力估算的第二估算TA进行TA补偿,并且UE没有通过MsgA进行TA上报。
方式3:在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第二公共TA进行TA补偿,所述终端设备从所述第四RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A。示例性的,对于没有TA预补偿能力的UE,UE在发送MsgA时使用网络设备广播的第二公共TA进行TA补偿。
可以理解的是,针对具有TA预补偿能力的UE和不具有TA预补偿能力的UE,网络设备分别配置2-step RACH资源。即UE根据发送MsgA时是否进行TA补偿,从对应的RACH资源集合中选择一个RACH 资源发送MsgA。
404、终端设备接收所述网络设备发送的第二时隙偏移量,所述第二时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
(1)在所述终端设备具备TA预补偿能力且在消息A中上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
(2)在所述终端设备具备TA预补偿能力且在消息A中未上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述第二公共时隙偏移量的增量。
(3)在所述终端设备不具备TA预补偿能力的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
可以理解的是,网络设备在收到来自终端设备的msgA之后,就可以从终端设备发送msgA所使用的RACH资源知道UE在是否具有TA补偿能力。
如果终端设备在发送MsgA时使用自己估算的第二估算TA进行TA补偿,并且UE通过MsgA进行了TA上报,此时网络设备可以获知UE的TA值,对于这种情况,网络设备在MsgB中指示的PUSCH第二时隙偏移量(也称为时隙偏移值k2)为相对于UE的实际TA的增量。
如果终端设备在发送MsgA时使用自己估算的第二估算TA进行TA补偿,并且UE没有通过MsgA进行TA上报,网络设备此时并不能获知UE使用的TA值,对于这种情况,网络设备在MsgB中指示的PUSCH第二时隙偏移量(也称为时隙偏移值k2)只能是相对于common k2 offset的增量。
如果终端设备在发送MsgA时使用网络设备广播的第二公共TA进行TA补偿,此时网络设备可以获知UE的TA值,对于这种情况,网络设备在MsgB中指示的PUSCH第二时隙偏移量(也称为时隙偏移值k2)为相对于UE的实际TA的增量。
示例性的,UE在发送msgA之后,收到来自网络设备发送的msgB。该msgB中的UL grant信息包括UE的PUSCH时隙偏移值k2,该时隙偏移值k2用于确定PUSCH相对于MsgB的PDSCH的时隙偏移值,所述k2为相对时隙偏移值。
405、终端设备根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
可选的,所述终端设备根据所述终端设备是否具备TA预补偿能力,确定上行调度所使用的目标时隙偏移量,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,所述终端设备确定所述第二估算TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量。示例性的,如果UE具有TA预补偿能力(即UE使用自己估算的第二估算TA发送msgA),并且UE通过MsgA进行了TA上报,则UE使用自己的TA(即UE发送msgA时使用的第二估算TA+msgB中指示的第二TA调整量)作为msgB指示的PUSCH调度的k2 offset。
方式2:在所述终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,所述终端设备确定所述第二公共时隙偏移量,为上行调度所使用的目标时隙偏移量。示例性的,如果UE具有TA预补偿能力(即UE使用自己估算的第二估算TA发送msg1),并且UE没有通过MsgA进行TA上报,则UE使用所述网络设备广播的common k2 offset作为msgB指示的PUSCH调度的k2 offset。
方式3:在所述终端设备不具备TA预补偿能力的情况下,所述终端设备确定所述第二公共TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量。示例性的,如果UE不具有TA预补偿能力(即UE使用网络设备广播的第二公共TA发送msgA)则UE使用自己的TA(即第二公共TA+msgB中指示的第二TA调整量)作为msgB指示的PUSCH调度的k2 offset。
406、终端设备确定上行调度的第二时域资源位置。
可选的,所述终端设备确定上行调度的第二时域资源位置,可以包括但不限于以下的实现方式:
方式1:在所述终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;其中,所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
示例性的,UE确定消息B的PUSCH时隙号为n2+k2+TA+Δ 2,其中,n2为UE接收到msgB的PDSCH 对应的下行时隙号,k2+TA+Δ 2为Msg3的PUSCH发送相对于消息B的PDSCH接收的时隙偏移,Δ 2取值与上行子载波间隔相关,该TA为第二估算TA与第二TA调整量之和。
方式2:在所述终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置;其中,所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
UE确定该PUSCH时隙号为n2+k2+common k2 offset+Δ 2,其中,n2为UE接收到msgB的PDSCH对应的下行时隙号,k2+common k2 offset+Δ 2为Msg3的PUSCH发送相对于消息B的PDSCH接收的时隙偏移,Δ 2取值与上行子载波间隔相关。
方式3:在所述终端设备不具备补偿能力的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;其中,所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
示例性的,UE确定该PUSCH时隙号为n2+k2+TA+Δ 2,其中,n2为UE接收到msgB的PDSCH对应的下行时隙号,k2+TA+Δ 2为Msg3的PUSCH发送相对于msgB的PDSCH接收的时隙偏移,Δ 2取值与上行子载波间隔相关,该TA为第二公共TA与第二TA调整量之和。
407、终端设备根据所述上行调度的PUSCH对应的第二时域资源位置,发送消息B。
网络设备接收终端设备在上行调度的第一时域资源位置上发送的消息B;该上行调度的第一时域资源位置为所述上行调度的PUSCH对应的第一时域资源位置。
在本发明实施例中,两步随机接入过程中,UE根据自己是否具有TA预补偿能力,以及对于具有TA预补偿能力的UE是否通过msgA进行了TA上报,确定用于确定MsgB指示的PUSCH时域资源所使用的k2 offset。即本发明实施例公布一种NTN中终端设备确定上行传输资源相对于下行接收的相对时隙偏移值(k offset)的方法。使用该方法,既可以避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
实施例三、针对PDCCH指示上行调度的PUSCH时隙偏移值k2的场景,如图5A所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图,可以包括:
501、处于RRC连接态的终端设备,与网络设备保持上行同步,终端设备维护一个TA值。
502、终端设备接收网络设备发送的第三时隙偏移量,所述第三时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
示例性的,UE接收指示上行调度的PDCCH,所述PDCCH指示PUSCH传输所使用的时频资源,调整编码方式等信息。
对于PUSCH时域资源分配信息,具体可以包括:PUSCH时隙偏移值k2,所述时隙偏移值k2用于确定PUSCH相对于PDCCH的相对时隙偏移量,所述相对时隙偏移量的含义是:网络设备指示的k2是相对于UE当前TA的增量。
503、终端设备确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
可选的,在所述终端设备处于连接态的情况下,所述目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
示例性的,即针对上行动态调度,UE使用自己的TA作为所述PDCCH指示的PUSCH时域资源所使用的目标时隙偏移量(也可以称为k2 offset)。
504、终端设备确定上行调度的的第三时域资源位置。
可选的,终端设备确定上行调度的的第三时域资源位置,可以包括:
终端设备根据
Figure PCTCN2020127589-appb-000002
确定上行调度的第三时域资源位置;
其中,所述第三时隙号n 3为所述终端设备接收指示所述上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,即为PDCCH中指示的PUSCH相对于PDCCH的相对时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置,k2+TA为PUSCH发送相对于PDCCH接收的时隙偏移。
示例性的,如图5B所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图。
在本发明实施例中,针对上行动态调度,UE使用自己的TA作为PDCCH指示的PUSCH时域资源所使用的k2 offset。即本发明实施例公布一种NTN中终端设备确定上行传输资源相对于下行接收的相对时隙偏移值(k offset)的方法。使用该方法,既可以避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
实施例四、针对PDCCH指示PDSCH的ACK/NACK反馈的PUCCH时隙偏移值k的场景,如图6A所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图,可以包括:
601、终端设备接收网络设备发送的第四时隙偏移量,所述第四时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
示例性的,UE接收指示下行调度的PDCCH,所述PDCCH指示PDSCH传输所使用的时频资源,调整编码方式等信息,同时PDCCH还指示UE针对PDSCH接收的ACK/NACK反馈的PUCCH时域资源信息。
对于用于ACK/NACK反馈的PUCCH时域资源分配信息,具体可以包括:PUCCH时隙偏移值k1,所述时隙偏移值k1用于确定PUCCH相对于PDSCH的相对时隙偏移,所述相对时隙偏移值的含义是网络指示的k1是相对于UE当前TA的增量。
602、终端设备确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
可选的,所述目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
示例性的,UE使用自己的TA作为所述PDCCH指示的用于反馈ACK/NACK的PUCCH对应的目标时隙偏移量(也可以称为k1 offset)。
603、终端设备确定上行调度的的第四时域资源位置。
可选的,终端设备确定上行调度的的第四时域资源位置,可以包括:
所述终端设备根据第四时隙号、第四时隙偏移量,以及所述TA之和,确定所述反馈ACK/NACK的PUCCH对应的第四时域资源位置,所述第四时隙号为所述终端设备接收PDSCH对应的下行时隙号。
示例性的,UE使用自己的TA作为所述PDCCH指示的用于反馈ACK/NACK的PUCCH对应的k1 offset,则UE确定反馈ACK/NACK的PUCCH时隙号为n4+k1+TA,其中,k1为第四时隙偏移量,n4为UE接收到PDSCH对应的下行时隙号,k1+TA为PUCCH发送相对于PDSCH接收的时隙偏移。
如图6B所示,为本发明实施例中确定上行传输时域资源的方法的另一个实施例示意图。
在本发明实施例中,针对PDSCH传输,UE使用自己的TA作为PDCCH指示的用于ACK/NACK反馈的PUCCH时域资源所使用的k1 offset。即本发明实施例公布一种NTN中终端设备确定上行传输资源相对于下行接收的相对时隙偏移值(k offset)的方法。使用该方法,既可以避免增加较多的信令开销,又可以实现对上行传输的时隙偏移量进行准确地控制。
如图7所示,为本发明实施例中终端设备的一个实施例示意图,可以包括:
处理模块701和收发模块702。
可选的,在其中的一种实现方式下:
处理模块701,用于根据终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
可选的,在终端设备应用于四步随机接入的场景下,
收发模块702,用于接收网络设备发送的第一公共时隙偏移量,第一公共TA和第一TA调整量,第一TA调整量为网络设备基于对终端设备发送的消息1的接收,确定的TA调整量;
处理模块701,具体用于在终端设备具备TA预补偿能力的情况下,确定第一公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
处理模块701,具体用于在终端设备不具备TA预补偿能力的情况下,确定第一公共TA与第一TA调整量之和,为上行调度所使用的目标时隙偏移量。
可选的,第一公共时隙偏移量可以为网络设备基于地面参考点1确定的定时提前TA值;第一公共TA是为网络设备基于地面参考点2确定的定时提前TA值。
可选的,第一公共时隙偏移量和第一公共TA承载在系统消息中。
可选的,收发模块702,还用于接收网络设备发送的第一随机接入信道RACH资源集合和第二RACH资源集合,第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
收发模块702,还用于根据终端设备是否具备TA预补偿能力,第一RACH资源集合或第二RACH资源集合,向网络设备发送消息1。
可选的,收发模块702,具体用于在终端设备具备TA预补偿能力的情况下,终端设备从第一RACH资源集合中选择一个RACH资源,向网络设备发送消息1;
收发模块702,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备从第二RACH资源集合中选择一个RACH资源,向网络设备发送消息1。
可选的,收发模块702,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第一估算TA进行TA补偿,从第一RACH资源集合中选择一个RACH资源,向网络设备发送消息1;
收发模块702,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备使用第一公共TA进行TA补偿,从第二RACH资源集合中选择一个RACH资源,向网络设备发送消息1。
可选的,收发模块702,还用于接收网络设备发送的第一时隙偏移量,第一时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于第一公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于终端设备发送消息3时实际使用的TA的增量。
可选的,处理模块701,还用于确定上行调度的第一时域资源位置。
可选的,处理模块701,具体用于在终端设备具备TA预补偿能力的情况下,根据第一时隙号、第一时隙偏移量、第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置;
处理模块701,具体用于在终端设备不具备TA预补偿能力的情况下,根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1,确定上行调度的第一时域资源位置;
第一时隙号为终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,处理模块701,具体用于确定第一时隙号、第一时隙偏移量、第一公共时隙偏移量以及Δ 1之和,为上行调度的物理上行共享信道PUSCH对应的第一时域资源位置;
处理模块701,具体用于确定第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量以及Δ 1之和,为上行调度的PUSCH对应的第一时域资源位置。
可选的,收发模块702,还用于根据上行调度的PUSCH对应的第一时域资源位置,发送消息3。
可选的,在终端设备应用于两步随机接入的场景下,
收发模块702,用于接收网络设备发送的第二公共时隙偏移量,第二公共TA和第二TA调整量,第二TA调整量为网络设备基于针对终端设备发送的消息A的接收,确定的TA调整量;
处理模块701,具体用于在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,确定第二估算TA与第二TA调整量之和,为上行调度所使用的目标时隙偏移量;
处理模块701,具体用于在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,确定第二公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
处理模块701,具体用于在终端设备不具备TA预补偿能力的情况下,确定第二公共TA与第二TA调整量之和,为上行调度所使用的目标时隙偏移量。
可选的,第二公共时隙偏移量可以为网络设备基于地面参考点3确定的定时提前TA值;第二公共TA为网络设备基于地面参考点4确定的定时提前TA值。
可选的,第二公共时隙偏移量和第二公共TA承载在系统消息中。
可选的,收发模块702,还用于终端设备接收网络设备发送的第三RACH资源集合和第四RACH资源集合,第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
收发模块702,还用于根据终端设备是否具备TA预补偿能力,第三RACH资源集合或第四RACH资源集合,向网络设备发送消息A。
可选的,收发模块702,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送消息A,消息A携带第二估算TA;
收发模块702,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送消息A,消息A未携带第二估算TA;
收发模块702,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备使用第二公共TA进行TA补偿,从第四RACH资源集合中选择一个RACH资源,向网络设备发送消息A。
可选的,收发模块702,还用于接收网络设备发送的第二时隙偏移量,第二时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于第二公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量。
可选的,处理模块701,还用于确定上行调度的第二时域资源位置。
可选的,处理模块701,具体用于在终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,根据第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
处理模块701,具体用于在终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,根据第二时隙号、第二时隙偏移量、第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置;
处理模块701,具体用于在终端设备不具备补偿能力的情况下,根据第二时隙号、第二时隙偏移量、第二公共TA,第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
第二时隙号为终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,处理模块701,具体用于确定第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
处理模块701,具体用于确定第二时隙号、第二时隙偏移量、第二公共时隙偏移量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
处理模块701,具体用于确定第二时隙号、第二时隙偏移量、第二公共TA,二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
可选的,收发模块702,还用于根据上行调度的PUSCH对应的第二时域资源位置,发送消息B。
可选的,在其中的另一种实现方式下:
处理模块701,用于确定终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
可选的,收发模块702,用于接收网络设备发送的第三时隙偏移量,第三时隙偏移量为网络设备确定的相对于终端设备的TA的增量。
可选的,在终端设备处于连接态的情况下,目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
可选的,处理模块701,还用于根据
Figure PCTCN2020127589-appb-000003
确定上行调度的第三时域资源位置;
第三时隙号n 3为终端设备接收指示上行调度的PDCCH对应的下行时隙号,k 3为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
可选的,目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
可选的,处理模块701,还用于根据第三时隙号、第三时隙偏移量,以及TA之和,确定反馈ACK/NACK的PUCCH对应的第四时域资源位置;第三时隙号为终端设备接收PDSCH对应的下行时隙号。
如图8所示,为本发明实施例中网络设备的一个实施例示意图,可以包括:
处理模块801和收发模块802。
可选的,在其中的一种实现方式下:
处理模块801,用于获取上行调度所使用的目标时隙偏移量,目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
可选的,在终端设备应用于四步随机接入的场景下,
收发模块802,用于向终端设备发送第一公共时隙偏移量,第一公共TA和第一TA调整量,第一TA调整量为网络设备基于对终端设备发送的消息1的接收,确定的TA调整量;
在终端设备具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第一公共时隙偏移量;
在终端设备不具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第一公共TA与第一TA调整量之和。
可选的,第一公共时隙偏移量为网络设备基于地面参考点1确定的定时提前TA值;第一公共TA是为网络设备基于地面参考点2确定的定时提前TA值。
可选的,第一公共时隙偏移量和第一公共TA承载在系统消息中。
可选的,收发模块802,还用于向终端设备发送第一随机接入信道RACH资源集合和第二RACH资源集合,第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
收发模块802,还用于接收终端设备发送的消息1。
可选的,在终端设备具备TA预补偿能力的情况下,消息1为终端设备从第一RACH资源集合中选择一个RACH资源,向网络设备发送的;
在终端设备不具备TA预补偿能力的情况下,消息1为终端设备从第二RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,在终端设备具备TA预补偿能力的情况下,消息1为终端设备使用第一估算TA进行TA补偿,从第一RACH资源集合中选择一个RACH资源,向网络设备发送的;
在终端设备不具备TA预补偿能力的情况下,消息1为终端设备使用第一公共TA进行TA补偿,从第二RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,收发模块802,还用于向终端设备发送第一时隙偏移量,第一时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于第一公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于终端设备发送消息3时实际使用的TA的增量。
可选的,收发模块802,还用于接收终端设备在上行调度的第一时域资源位置上发送的消息3。
可选的,在终端设备具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共时隙偏移量和Δ 1确定的;
在终端设备不具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1确定的;
第一时隙号为终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共时隙偏移量和Δ 1之和确定的;
在终端设备不具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1之和确定的。
可选的,上行调度的第一时域资源位置为上行调度的PUSCH对应的第一时域资源位置。
可选的,在终端设备应用于两步随机接入的场景下,
收发模块802,用于向终端设备发送第二公共时隙偏移量,第二公共TA和第二TA调整量,第二TA调整量为网络设备基于针对终端设备发送的消息A的接收,确定的TA调整量;
在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,目标时隙偏移量为终端设备确定的第二估算TA与第二TA调整量之和;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,目标时隙偏移量为终端设备确定的第二公共时隙偏移量;
在终端设备不具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第二公共TA与第二TA调整量之和。
可选的,第二公共时隙偏移量为网络设备基于地面参考点3确定的定时提前TA值;第二公共TA为网络设备基于地面参考点4确定的定时提前TA值。
可选的,第二公共时隙偏移量和第二公共TA承载在系统消息中。
可选的,收发模块802,还用于向终端设备发送第三RACH资源集合和第四RACH资源集合,第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
收发模块802,还用于接收终端设备发送的消息A。
可选的,在终端设备具备TA预补偿能力的情况下,消息A为终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送的,消息A携带第二估算TA;
在终端设备具备TA预补偿能力的情况下,消息A为终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送的,消息A未携带第二估算TA;
在终端设备不具备TA预补偿能力的情况下,消息A为终端设备使用第二公共TA进行TA补偿,从第四RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,收发模块802,还用于向终端设备发送第二时隙偏移量,第二时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于第二公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量。
可选的,收发模块802,还用于接收终端设备在上行调度的第二时域资源位置上发送的消息B。
可选的,在终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量和Δ 2确定的;
在终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二公共时隙偏移量和Δ 2确定的;
在终端设备不具备补偿能力的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二公共TA,第二TA调整量和Δ 2确定的;
第二时隙号为终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量以及Δ 2之和;
上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二公共时隙偏移量以及Δ 2之和;
上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二公共TA,二TA调整量以及Δ 2之和。
可选的,上行调度的第二时域资源位置为上行调度的PUSCH对应的第二时域资源位置。
可选的,在其中的另一种实现方式下:
处理模块801,用于获取上行调度所使用的目标时隙偏移量,目标时隙偏移量为终端设备确定终端设备的定时提前TA。
可选的,收发模块802,用于向终端设备发送第三时隙偏移量,第三时隙偏移量为网络设备确定的相对于终端设备的TA的增量。
可选的,在终端设备处于连接态的情况下,目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
可选的,第三时隙偏移量用于终端设备根据
Figure PCTCN2020127589-appb-000004
确定上行调度的第三时域资源位置;
第三时隙号n 3为终端设备接收指示上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
可选的,目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
可选的,第三时隙偏移量用于终端设备根据第三时隙号、第三时隙偏移量,以及TA之和,确定反馈ACK/NACK的PUCCH对应的第四时域资源位置;第三时隙号为终端设备接收PDSCH对应的下行时隙号。
与上述至少一个应用于终端设备的实施例的方法相对应地,本申请实施例还提供一种或多种终端设备。本申请实施例的终端设备可以实施上述方法中的任意一种实现方式。如图9所示,为本发明实施例中终端设备的另一个实施例示意图,终端设备以手机为例进行说明,可以包括:射频(radio frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。其中,射频电路910包括接收器914和发送器912。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图9对手机的各个构成部件进行具体的介绍:
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图9中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感 器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,处理器980,用于根据终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
可选的,在终端设备应用于四步随机接入的场景下,
RF电路910,用于接收网络设备发送的第一公共时隙偏移量,第一公共TA和第一TA调整量,第一TA调整量为网络设备基于对终端设备发送的消息1的接收,确定的TA调整量;
处理器980,具体用于在终端设备具备TA预补偿能力的情况下,确定第一公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
处理器980,具体用于在终端设备不具备TA预补偿能力的情况下,确定第一公共TA与第一TA调整量之和,为上行调度所使用的目标时隙偏移量。
可选的,第一公共时隙偏移量为网络设备基于地面参考点1确定的定时提前TA值;第一公共TA是为网络设备基于地面参考点2确定的定时提前TA值。
可选的,第一公共时隙偏移量和第一公共TA承载在系统消息中。
可选的,RF电路910,还用于接收网络设备发送的第一随机接入信道RACH资源集合和第二RACH资源集合,第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
RF电路910,还用于根据终端设备是否具备TA预补偿能力,第一RACH资源集合或第二RACH资源集合,向网络设备发送消息1。
可选的,RF电路910,具体用于在终端设备具备TA预补偿能力的情况下,终端设备从第一RACH资源集合中选择一个RACH资源,向网络设备发送消息1;
RF电路910,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备从第二RACH资源集合中选择一个RACH资源,向网络设备发送消息1。
可选的,RF电路910,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第一估算TA进行TA补偿,从第一RACH资源集合中选择一个RACH资源,向网络设备发送消息1;
RF电路910,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备使用第一公共TA进行TA补偿,从第二RACH资源集合中选择一个RACH资源,向网络设备发送消息1。
可选的,RF电路910,还用于接收网络设备发送的第一时隙偏移量,第一时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于第一公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于终端设备发送消息3时实际使用的TA的增量。
可选的,处理器980,还用于确定上行调度的第一时域资源位置。
可选的,处理器980,具体用于在终端设备具备TA预补偿能力的情况下,根据第一时隙号、第一 时隙偏移量、第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置;
处理器980,具体用于在终端设备不具备TA预补偿能力的情况下,根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1,确定上行调度的第一时域资源位置;
第一时隙号为终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,处理器980,具体用于确定第一时隙号、第一时隙偏移量、第一公共时隙偏移量以及Δ 1之和,为上行调度的物理上行共享信道PUSCH对应的第一时域资源位置;
处理器980,具体用于确定第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量以及Δ 1之和,为上行调度的PUSCH对应的第一时域资源位置。
可选的,RF电路910,还用于根据上行调度的PUSCH对应的第一时域资源位置,发送消息3。
可选的,在终端设备应用于两步随机接入的场景下,
RF电路910,用于接收网络设备发送的第二公共时隙偏移量,第二公共TA和第二TA调整量,第二TA调整量为网络设备基于针对终端设备发送的消息A的接收,确定的TA调整量;
处理器980,具体用于在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,确定第二估算TA与第二TA调整量之和,为上行调度所使用的目标时隙偏移量;
处理器980,具体用于在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,确定第二公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
处理器980,具体用于在终端设备不具备TA预补偿能力的情况下,确定第二公共TA与第二TA调整量之和,为上行调度所使用的目标时隙偏移量。
可选的,第二公共时隙偏移量为网络设备基于地面参考点3确定的定时提前TA值;第二公共TA为网络设备基于地面参考点4确定的定时提前TA值。
可选的,第二公共时隙偏移量和第二公共TA承载在系统消息中。
可选的,RF电路910,还用于终端设备接收网络设备发送的第三RACH资源集合和第四RACH资源集合,第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
RF电路910,还用于根据终端设备是否具备TA预补偿能力,第三RACH资源集合或第四RACH资源集合,向网络设备发送消息A。
可选的,RF电路910,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送消息A,消息A携带第二估算TA;
RF电路910,具体用于在终端设备具备TA预补偿能力的情况下,终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送消息A,消息A未携带第二估算TA;
RF电路910,具体用于在终端设备不具备TA预补偿能力的情况下,终端设备使用第二公共TA进行TA补偿,从第四RACH资源集合中选择一个RACH资源,向网络设备发送消息A。
可选的,RF电路910,还用于接收网络设备发送的第二时隙偏移量,第二时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于第二公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量。
可选的,处理器980,还用于确定上行调度的第二时域资源位置。
可选的,处理器980,具体用于在终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,根据第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
处理器980,具体用于在终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,根据第二时隙号、第二时隙偏移量、第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置;
处理器980,具体用于在终端设备不具备补偿能力的情况下,根据第二时隙号、第二时隙偏移量、第二公共TA,第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
第二时隙号为终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,处理器980,具体用于确定第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
处理器980,具体用于确定第二时隙号、第二时隙偏移量、第二公共时隙偏移量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
处理器980,具体用于确定第二时隙号、第二时隙偏移量、第二公共TA,二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
可选的,RF电路910,还用于根据上行调度的PUSCH对应的第二时域资源位置,发送消息B。
在本发明的一些实施例中,处理器980,用于确定终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
可选的,RF电路910,用于接收网络设备发送的第三时隙偏移量,第三时隙偏移量为网络设备确定的相对于终端设备的TA的增量。
可选的,在终端设备处于连接态的情况下,目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
可选的,处理器980,还用于根据
Figure PCTCN2020127589-appb-000005
确定上行调度的第三时域资源位置;
第三时隙号n 3为终端设备接收指示上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
可选的,目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
可选的,处理器980,还用于根据第三时隙号、第三时隙偏移量,以及TA之和,确定反馈ACK/NACK的PUCCH对应的第四时域资源位置;第三时隙号为终端设备接收PDSCH对应的下行时隙号。
如图10所示,为本发明实施例中网络设备的另一个实施例示意图,可以包括:
处理器1001和收发器1002。
可选的,在本发明实施例中,处理器1001,用于获取上行调度所使用的目标时隙偏移量,目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
可选的,在终端设备应用于四步随机接入的场景下,
收发器1002,用于向终端设备发送第一公共时隙偏移量,第一公共TA和第一TA调整量,第一TA调整量为网络设备基于对终端设备发送的消息1的接收,确定的TA调整量;
在终端设备具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第一公共时隙偏移量;
在终端设备不具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第一公共TA与第一TA调整量之和。
可选的,第一公共时隙偏移量为网络设备基于地面参考点1确定的定时提前TA值;第一公共TA是为网络设备基于地面参考点2确定的定时提前TA值。
可选的,第一公共时隙偏移量和第一公共TA承载在系统消息中。
可选的,收发器1002,还用于向终端设备发送第一随机接入信道RACH资源集合和第二RACH资源集合,第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
收发器1002,还用于接收终端设备发送的消息1。
可选的,在终端设备具备TA预补偿能力的情况下,消息1为终端设备从第一RACH资源集合中选择一个RACH资源,向网络设备发送的;
在终端设备不具备TA预补偿能力的情况下,消息1为终端设备从第二RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,在终端设备具备TA预补偿能力的情况下,消息1为终端设备使用第一估算TA进行TA补偿,从第一RACH资源集合中选择一个RACH资源,向网络设备发送的;
在终端设备不具备TA预补偿能力的情况下,消息1为终端设备使用第一公共TA进行TA补偿,从第二RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,收发器1002,还用于向终端设备发送第一时隙偏移量,第一时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于第一公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第一时隙偏移量为网络设备确定的相对于终端设备发送消息3时实际使用的TA的增量。
可选的,收发器1002,还用于接收终端设备在上行调度的第一时域资源位置上发送的消息3。
可选的,在终端设备具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共时隙偏移量和Δ 1确定的;
在终端设备不具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1确定的;
第一时隙号为终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
可选的,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共时隙偏移量和Δ 1之和确定的;
在终端设备不具备TA预补偿能力的情况下,上行调度的第一时域资源位置为,终端设备根据第一时隙号、第一时隙偏移量、第一公共TA,第一TA调整量和Δ 1之和确定的。
可选的,上行调度的第一时域资源位置为上行调度的PUSCH对应的第一时域资源位置。
可选的,在终端设备应用于两步随机接入的场景下,网络设备还包括:
收发器1002,用于向终端设备发送第二公共时隙偏移量,第二公共TA和第二TA调整量,第二TA调整量为网络设备基于针对终端设备发送的消息A的接收,确定的TA调整量;
在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,目标时隙偏移量为终端设备确定的第二估算TA与第二TA调整量之和;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,目标时隙偏移量为终端设备确定的第二公共时隙偏移量;
在终端设备不具备TA预补偿能力的情况下,目标时隙偏移量为终端设备确定的第二公共TA与第二TA调整量之和。
可选的,第二公共时隙偏移量为网络设备基于地面参考点3确定的定时提前TA值;第二公共TA为网络设备基于地面参考点4确定的定时提前TA值。
可选的,第二公共时隙偏移量和第二公共TA承载在系统消息中。
可选的,收发器1002,还用于向终端设备发送第三RACH资源集合和第四RACH资源集合,第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
收发器1002,还用于接收终端设备发送的消息A。
可选的,在终端设备具备TA预补偿能力的情况下,消息A为终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送的,消息A携带第二估算TA;
在终端设备具备TA预补偿能力的情况下,消息A为终端设备使用第二估算TA进行TA补偿,从第三RACH资源集合中选择一个RACH资源,向网络设备发送的,消息A未携带第二估算TA;
在终端设备不具备TA预补偿能力的情况下,消息A为终端设备使用第二公共TA进行TA补偿,从第四RACH资源集合中选择一个RACH资源,向网络设备发送的。
可选的,收发器1002,还用于向终端设备发送第二时隙偏移量,第二时隙偏移量为网络设备根据终端设备使用的目标时隙偏移量确定的。
可选的,在终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量;
在终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,第二时隙偏移量为网络设备确定的相对于第二公共时隙偏移量的增量;
在终端设备不具备TA预补偿能力的情况下,第二时隙偏移量为网络设备确定的相对于终端设备发送消息B调度的上行传输时实际使用的TA的增量。
可选的,收发器1002,还用于接收终端设备在上行调度的第二时域资源位置上发送的消息B。
可选的,在终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量和Δ 2确定的;
在终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二公共时隙偏移量和Δ 2确定的;
在终端设备不具备补偿能力的情况下,上行调度的第二时域资源位置为,终端设备根据第二时隙号、第二时隙偏移量、第二公共TA,第二TA调整量和Δ 2确定的;
第二时隙号为终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
可选的,上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二估算TA,第二TA调整量以及Δ 2之和;
上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二公共时隙偏移量以及Δ 2之和;
上行调度的第二时域资源位置为,终端设备确定的第二时隙号、第二时隙偏移量、第二公共TA,二TA调整量以及Δ 2之和。
可选的,上行调度的第二时域资源位置为上行调度的PUSCH对应的第二时域资源位置。
可选的,在本发明实施例中,处理器1001,用于获取上行调度所使用的目标时隙偏移量,目标时隙偏移量为终端设备确定终端设备的定时提前TA。
可选的,收发器1002,用于向终端设备发送第三时隙偏移量,第三时隙偏移量为网络设备确定的相对于终端设备的TA的增量。
可选的,在终端设备处于连接态的情况下,目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
可选的,第三时隙偏移量用于终端设备根据
Figure PCTCN2020127589-appb-000006
确定上行调度的第三时域资源位置;
第三时隙号n 3为终端设备接收指示上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
可选的,目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
可选的,第三时隙偏移量用于终端设备根据第三时隙号、第三时隙偏移量,以及TA之和,确定反馈ACK/NACK的PUCCH对应的第四时域资源位置;第三时隙号为终端设备接收PDSCH对应的下行时隙号。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (125)

  1. 一种确定上行传输时域资源的方法,其特征在于,包括:
    终端设备根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备应用于四步随机接入的场景下,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一公共时隙偏移量,第一公共TA和第一TA调整量,所述第一TA调整量为所述网络设备基于对所述终端设备发送的消息1的接收,确定的TA调整量;
    所述终端设备根据所述终端设备是否具备TA预补偿能力,确定上行调度所使用的目标时隙偏移量,包括:
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备确定所述第一公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备确定所述第一公共TA与所述第一TA调整量之和,为上行调度所使用的目标时隙偏移量。
  3. 根据权利要求2所述的方法,其特征在于,所述第一公共时隙偏移量为所述网络设备基于地面参考点1确定的定时提前TA值;所述第一公共TA是为所述网络设备基于地面参考点2确定的定时提前TA值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一公共时隙偏移量和所述第一公共TA承载在系统消息中。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一随机接入信道RACH资源集合和第二RACH资源集合,所述第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,所述第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
    所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第一RACH资源集合或所述第二RACH资源集合,向所述网络设备发送消息1。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第一RACH资源集合或所述第二RACH资源集合,向所述网络设备发送消息1,包括:
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1;
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
  7. 根据权利要求6所述的方法,其特征在于,所述在所述终端设备具备TA预补偿能力的情况下,所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1,包括:
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用第一估算TA进行TA补偿,从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1;
    所述在所述终端设备不具备TA预补偿能力的情况下,所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1,包括:
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第一公共TA进行TA补偿,从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一时隙偏移量,所述第一时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述第一公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息3时实际使用的TA的增量。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定上行调度的第一时域资源位置。
  11. 根据权利要去10所述的方法,其特征在于,所述终端设备确定上行调度的第一时域资源位置,包括:
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置;
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1,确定上行调度的第一时域资源位置;
    所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
  12. 根据权利要求11所述的方法,其特征在于,
    所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置,包括:
    所述终端设备确定所述第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量以及Δ 1之和,为上行调度的物理上行共享信道PUSCH对应的第一时域资源位置;
    所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1,确定上行调度的第一时域资源位置,包括:
    所述终端设备确定所述第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量以及Δ 1之和,为上行调度的PUSCH对应的第一时域资源位置。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行调度的PUSCH对应的第一时域资源位置,发送消息3。
  14. 根据权利要求1所述的方法,其特征在于,在所述终端设备应用于两步随机接入的场景下,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二公共时隙偏移量,第二公共TA和第二TA调整量,所述第二TA调整量为所述网络设备基于针对所述终端设备发送的消息A的接收,确定的TA调整量;
    所述终端设备根据所述终端设备是否具备TA预补偿能力,确定上行调度所使用的目标时隙偏移量,包括:
    在所述终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,所述终端设备确定所述第二估算TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量;
    在所述终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,所述终端设备确定所述第二公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备确定所述第二公共TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量。
  15. 根据权利要求14所述的方法,其特征在于,所述第二公共时隙偏移量为所述网络设备基于地面参考点3确定的定时提前TA值;所述第二公共TA为所述网络设备基于地面参考点4确定的定时提前TA值。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二公共时隙偏移量和所述第二公共TA承载在系统消息中。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三RACH资源集合和第四RACH资源集合,所述第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,所述第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
    所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第三RACH资源集合或所述第四RACH资源集合,向所述网络设备发送消息A。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备根据所述终端设备是否具备TA预补偿能力,所述第三RACH资源集合或所述第四RACH资源集合,向所述网络设备发送消息A,包括:
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,所述终端设备从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A携带所述第二估算TA;
    在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,所述终端设备从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A未携带所述第二估算TA;
    在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第二公共TA进行TA补偿, 所述终端设备从所述第四RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二时隙偏移量,所述第二时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  20. 根据权利要求19所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力且在消息A中上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量;
    在所述终端设备具备TA预补偿能力且在消息A中未上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述第二公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定上行调度的第二时域资源位置。
  22. 根据权利要去21所述的方法,其特征在于,所述终端设备确定上行调度的第二时域资源位置,包括:
    在所述终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
    在所述终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置;
    在所述终端设备不具备补偿能力的情况下,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
    所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
  23. 根据权利要求22所述的方法,其特征在于,
    所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置,包括:
    所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
    所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置,包括:
    所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
    所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置,包括:
    所述终端设备确定所述第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述上行调度的PUSCH对应的第二时域资源位置,发送消息B。
  25. 一种确定上行传输时域资源的方法,其特征在于,包括:
    终端设备确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第三时隙偏移量,所述第三时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
  27. 根据权利要求25或26所述的方法,其特征在于,在所述终端设备处于连接态的情况下,所述目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据
    Figure PCTCN2020127589-appb-100001
    确定上行调度的第三时域资源位置;
    所述第三时隙号n 3为所述终端设备接收指示所述上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
  29. 根据权利要求25或26所述的方法,其特征在于,所述目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第三时隙号、第三时隙偏移量,以及所述TA之和,确定所述反馈ACK/NACK的PUCCH对应的第四时域资源位置;
    所述第三时隙号为所述终端设备接收PDSCH对应的下行时隙号。
  31. 一种确定上行传输时域资源的方法,其特征在于,包括:
    所述网络设备获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
  32. 根据权利要求31所述的方法,其特征在于,在所述终端设备应用于四步随机接入的场景下,所述方法还包括:
    所述网络设备向所述终端设备发送第一公共时隙偏移量,第一公共TA和第一TA调整量,所述第一TA调整量为所述网络设备基于对所述终端设备发送的消息1的接收,确定的TA调整量;
    在所述终端设备具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第一公共时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第一公共TA与所述第一TA调整量之和。
  33. 根据权利要求32所述的方法,其特征在于,所述第一公共时隙偏移量为所述网络设备基于地面参考点1确定的定时提前TA值;所述第一公共TA是为所述网络设备基于地面参考点2确定的定时提前TA值。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第一公共时隙偏移量和所述第一公共TA承载在系统消息中。
  35. 根据权利要求32-34中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一随机接入信道RACH资源集合和第二RACH资源集合,所述第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,所述第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
    所述网络设备接收所述终端设备发送的消息1。
  36. 根据权利要求35所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息1为所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送的;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息1为所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  37. 根据权利要求36所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息1为所述终端设备使用第一估算TA进行TA补偿,从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送的;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息1为所述终端设备使用所述第一公共TA进行TA补偿,从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  38. 根据权利要求36或37所述的方法,其特征在于,
    所述网络设备向所述终端设备发送第一时隙偏移量,所述第一时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  39. 根据权利要求38所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述第一公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息3时实际使用的TA的增量。
  40. 根据权利要求38或39所述的方法,其特征在于,
    所述网络设备接收终端设备在上行调度的第一时域资源位置上发送的消息3。
  41. 根据权利要求40所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1确定的;
    在所述终端设备不具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1确定的;
    所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
  42. 根据权利要求41所述的方法,其特征在于,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1之和确定的;
    在所述终端设备不具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1之和确定的。
  43. 根据权利要求42所述的方法,其特征在于,所述上行调度的第一时域资源位置为所述上行调度的PUSCH对应的第一时域资源位置。
  44. 根据权利要求31所述的方法,其特征在于,在所述终端设备应用于两步随机接入的场景下,所述方法还包括:
    所述网络设备向所述终端设备发送第二公共时隙偏移量,第二公共TA和第二TA调整量,所述第二TA调整量为所述网络设备基于针对所述终端设备发送的消息A的接收,确定的TA调整量;
    在所述终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,所述目标时隙偏移量为所述终端设备确定的所述第二估算TA与所述第二TA调整量之和;
    在所述终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,所述目标时隙偏移量为所述终端设备确定的所述第二公共时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第二公共TA与所述第二TA调整量之和。
  45. 根据权利要求44所述的方法,其特征在于,所述第二公共时隙偏移量为所述网络设备基于地面参考点3确定的定时提前TA值;所述第二公共TA为所述网络设备基于地面参考点4确定的定时提前TA值。
  46. 根据权利要求44或45所述的方法,其特征在于,所述第二公共时隙偏移量和所述第二公共TA承载在系统消息中。
  47. 根据权利要求44-46中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三RACH资源集合和第四RACH资源集合,所述第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,所述第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
    所述网络设备接收所述终端设备发送的消息A。
  48. 根据权利要求47所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送的,所述消息A携带所述第二估算TA;
    在所述终端设备具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送的,所述消息A未携带所述第二估算TA;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二公共TA进行TA补偿,从所述第四RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  49. 根据权利要求48所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二时隙偏移量,所述第二时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  50. 根据权利要求49所述的方法,其特征在于,
    在所述终端设备具备TA预补偿能力且在消息A中上报所述第二估算TA的情况下,所述第二时隙偏 移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量;
    在所述终端设备具备TA预补偿能力且在消息A中未上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述第二公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
  51. 根据权利要求49或50所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备在上行调度的第二时域资源位置上发送的消息B。
  52. 根据权利要去51所述的方法,其特征在于,
    在所述终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2确定的;
    在所述终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2确定的;
    在所述终端设备不具备补偿能力的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2确定的;
    所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
  53. 根据权利要求52所述的方法,其特征在于,
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量以及Δ 2之和;
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量以及Δ 2之和;
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述二TA调整量以及Δ 2之和。
  54. 根据权利要求53所述的方法,其特征在于,
    所述上行调度的第二时域资源位置为所述上行调度的PUSCH对应的第二时域资源位置。
  55. 一种确定上行传输时域资源的方法,其特征在于,包括:
    所述网络设备获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为所述终端设备确定所述终端设备的定时提前TA。
  56. 根据权利要求55所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三时隙偏移量,所述第三时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
  57. 根据权利要求55或56所述的方法,其特征在于,在所述终端设备处于连接态的情况下,所述目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
  58. 根据权利要求57所述的方法,其特征在于,所述第三时隙偏移量用于所述终端设备根据
    Figure PCTCN2020127589-appb-100002
    确定上行调度的第三时域资源位置;
    所述第三时隙号n 3为所述终端设备接收指示所述上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
  59. 根据权利要求55或56所述的方法,其特征在于,所述目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
  60. 根据权利要求69所述的方法,其特征在于,所述第三时隙偏移量用于所述终端设备根据第三时隙号、所述第三时隙偏移量,以及所述TA之和,确定所述反馈ACK/NACK的PUCCH对应的第四时域资源位置;
    所述第三时隙号为所述终端设备接收PDSCH对应的下行时隙号。
  61. 一种终端设备,其特征在于,包括:
    处理器,用于根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
  62. 根据权利要求61所述的终端设备,其特征在于,在所述终端设备应用于四步随机接入的场景下,所述终端设备还包括:
    收发器,用于接收所述网络设备发送的第一公共时隙偏移量,第一公共TA和第一TA调整量,所述第一TA调整量为所述网络设备基于对所述终端设备发送的消息1的接收,确定的TA调整量;
    所述处理器,具体用于在所述终端设备具备TA预补偿能力的情况下,确定所述第一公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
    所述处理器,具体用于在所述终端设备不具备TA预补偿能力的情况下,确定所述第一公共TA与所述第一TA调整量之和,为上行调度所使用的目标时隙偏移量。
  63. 根据权利要求62所述的终端设备,其特征在于,所述第一公共时隙偏移量为所述网络设备基于地面参考点1确定的定时提前TA值;所述第一公共TA是为所述网络设备基于地面参考点2确定的定时提前TA值。
  64. 根据权利要求62或63所述的终端设备,其特征在于,所述第一公共时隙偏移量和所述第一公共TA承载在系统消息中。
  65. 根据权利要求62-64中任一项所述的终端设备,其特征在于,
    所述收发器,还用于接收所述网络设备发送的第一随机接入信道RACH资源集合和第二RACH资源集合,所述第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,所述第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
    所述收发器,还用于根据所述终端设备是否具备TA预补偿能力,所述第一RACH资源集合或所述第二RACH资源集合,向所述网络设备发送消息1。
  66. 根据权利要求65所述的终端设备,其特征在于,
    所述收发器,具体用于在所述终端设备具备TA预补偿能力的情况下,所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1;
    所述收发器,具体用于在所述终端设备不具备TA预补偿能力的情况下,所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
  67. 根据权利要求66所述的终端设备,其特征在于,
    所述收发器,具体用于在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用第一估算TA进行TA补偿,从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1;
    所述收发器,具体用于在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第一公共TA进行TA补偿,从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送消息1。
  68. 根据权利要求66或67所述的终端设备,其特征在于,
    所述收发器,还用于接收所述网络设备发送的第一时隙偏移量,所述第一时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  69. 根据权利要求68所述的终端设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述第一公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息3时实际使用的TA的增量。
  70. 根据权利要求68或69所述的终端设备,其特征在于,
    所述处理器,还用于确定上行调度的第一时域资源位置。
  71. 根据权利要去70所述的终端设备,其特征在于,
    所述处理器,具体用于在所述终端设备具备TA预补偿能力的情况下,根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1,确定上行调度的第一时域资源位置;
    所述处理器,具体用于在所述终端设备不具备TA预补偿能力的情况下,根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1,确定上行调度的第一时域资源位置;
    所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
  72. 根据权利要求71所述的终端设备,其特征在于,
    所述处理器,具体用于确定所述第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量以及 Δ 1之和,为上行调度的物理上行共享信道PUSCH对应的第一时域资源位置;
    所述处理器,具体用于确定所述第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量以及Δ 1之和,为上行调度的PUSCH对应的第一时域资源位置。
  73. 根据权利要求72所述的终端设备,其特征在于,所述终端设备还包括:
    所述收发器,还用于根据所述上行调度的PUSCH对应的第一时域资源位置,发送消息3。
  74. 根据权利要求61所述的终端设备,其特征在于,在所述终端设备应用于两步随机接入的场景下,所述终端设备还包括:
    收发器,用于接收所述网络设备发送的第二公共时隙偏移量,第二公共TA和第二TA调整量,所述第二TA调整量为所述网络设备基于针对所述终端设备发送的消息A的接收,确定的TA调整量;
    所述处理器,具体用于在所述终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,确定所述第二估算TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量;
    所述处理器,具体用于在所述终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,确定所述第二公共时隙偏移量,为上行调度所使用的目标时隙偏移量;
    所述处理器,具体用于在所述终端设备不具备TA预补偿能力的情况下,确定所述第二公共TA与所述第二TA调整量之和,为上行调度所使用的目标时隙偏移量。
  75. 根据权利要求74所述的终端设备,其特征在于,所述第二公共时隙偏移量为所述网络设备基于地面参考点3确定的定时提前TA值;所述第二公共TA为所述网络设备基于地面参考点4确定的定时提前TA值。
  76. 根据权利要求74或75所述的终端设备,其特征在于,所述第二公共时隙偏移量和所述第二公共TA承载在系统消息中。
  77. 根据权利要求74-76中任一项所述的终端设备,其特征在于,
    所述收发器,还用于所述终端设备接收所述网络设备发送的第三RACH资源集合和第四RACH资源集合,所述第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,所述第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
    所述收发器,还用于根据所述终端设备是否具备TA预补偿能力,所述第三RACH资源集合或所述第四RACH资源集合,向所述网络设备发送消息A。
  78. 根据权利要求77所述的终端设备,其特征在于,
    所述收发器,具体用于在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A携带所述第二估算TA;
    所述收发器,具体用于在所述终端设备具备TA预补偿能力的情况下,所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A,所述消息A未携带所述第二估算TA;
    所述收发器,具体用于在所述终端设备不具备TA预补偿能力的情况下,所述终端设备使用所述第二公共TA进行TA补偿,从所述第四RACH资源集合中选择一个RACH资源,向所述网络设备发送消息A。
  79. 根据权利要求78所述的终端设备,其特征在于,所述终端设备还包括:
    所述收发器,还用于接收所述网络设备发送的第二时隙偏移量,所述第二时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  80. 根据权利要求79所述的终端设备,其特征在于,
    在所述终端设备具备TA预补偿能力且在消息A中上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量;
    在所述终端设备具备TA预补偿能力且在消息A中未上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述第二公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
  81. 根据权利要求79或80所述的终端设备,其特征在于,所述终端设备还包括:
    所述处理器,还用于确定上行调度的第二时域资源位置。
  82. 根据权利要去81所述的终端设备,其特征在于,
    所述处理器,具体用于在所述终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2,确定上行调度的 第二时域资源位置;
    所述处理器,具体用于在所述终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2,确定上行调度的第二时域资源位置;
    所述处理器,具体用于在所述终端设备不具备补偿能力的情况下,根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2,确定上行调度的第二时域资源位置;
    所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
  83. 根据权利要求82所述的终端设备,其特征在于,
    所述处理器,具体用于确定所述第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
    所述处理器,具体用于确定所述第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置;
    所述处理器,具体用于确定所述第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述二TA调整量以及Δ 2之和,为上行调度的PUSCH对应的第二时域资源位置。
  84. 根据权利要求83所述的终端设备,其特征在于,所述终端设备还包括:
    所述收发器,还用于根据所述上行调度的PUSCH对应的第二时域资源位置,发送消息B。
  85. 一种终端设备,其特征在于,包括:
    处理器,用于确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
  86. 根据权利要求85所述的终端设备,其特征在于,所述终端设备还包括:
    收发器,用于接收网络设备发送的第三时隙偏移量,所述第三时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
  87. 根据权利要求85或86所述的终端设备,其特征在于,在所述终端设备处于连接态的情况下,所述目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
  88. 根据权利要求87所述的终端设备,其特征在于,
    所述处理器,还用于根据
    Figure PCTCN2020127589-appb-100003
    确定上行调度的第三时域资源位置;
    所述第三时隙号n 3为所述终端设备接收指示所述上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
  89. 根据权利要求85或86所述的终端设备,其特征在于,所述目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
  90. 根据权利要求89所述的终端设备,其特征在于,
    所述处理器,还用于根据第三时隙号、第三时隙偏移量,以及所述TA之和,确定所述反馈ACK/NACK的PUCCH对应的第四时域资源位置;
    所述第三时隙号为所述终端设备接收PDSCH对应的下行时隙号。
  91. 一种网络设备,其特征在于,包括:
    处理器,用于获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
  92. 根据权利要求91所述的网络设备,其特征在于,在所述终端设备应用于四步随机接入的场景下,所述网络设备还包括:
    收发器,用于向所述终端设备发送第一公共时隙偏移量,第一公共TA和第一TA调整量,所述第一TA调整量为所述网络设备基于对所述终端设备发送的消息1的接收,确定的TA调整量;
    在所述终端设备具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第一公共时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第一公共TA与所述第一TA调整量之和。
  93. 根据权利要求92所述的网络设备,其特征在于,所述第一公共时隙偏移量为所述网络设备基 于地面参考点1确定的定时提前TA值;所述第一公共TA是为所述网络设备基于地面参考点2确定的定时提前TA值。
  94. 根据权利要求92或93所述的网络设备,其特征在于,所述第一公共时隙偏移量和所述第一公共TA承载在系统消息中。
  95. 根据权利要求92-94中任一项所述的网络设备,其特征在于,
    所述收发器,还用于向所述终端设备发送第一随机接入信道RACH资源集合和第二RACH资源集合,所述第一RACH资源集合用于具备TA预补偿能力的终端设备发送消息1,所述第二RACH资源集合用于不具备TA预补偿能力的终端设备发送消息1;
    所述收发器,还用于接收所述终端设备发送的消息1。
  96. 根据权利要求95所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息1为所述终端设备从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送的;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息1为所述终端设备从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  97. 根据权利要求96所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息1为所述终端设备使用第一估算TA进行TA补偿,从所述第一RACH资源集合中选择一个RACH资源,向所述网络设备发送的;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息1为所述终端设备使用所述第一公共TA进行TA补偿,从所述第二RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  98. 根据权利要求96或97所述的网络设备,其特征在于,
    所述收发器,还用于向所述终端设备发送第一时隙偏移量,所述第一时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  99. 根据权利要求98所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述第一公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第一时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息3时实际使用的TA的增量。
  100. 根据权利要求98或99所述的网络设备,其特征在于,
    所述收发器,还用于接收终端设备在上行调度的第一时域资源位置上发送的消息3。
  101. 根据权利要求100所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1确定的;
    在所述终端设备不具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1确定的;
    所述第一时隙号为所述终端设备接收消息2的物理下行共享信道PDSCH对应的下行时隙号;Δ 1的取值与上行子载波间隔有关。
  102. 根据权利要求101所述的网络设备,其特征在于,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共时隙偏移量和Δ 1之和确定的;
    在所述终端设备不具备TA预补偿能力的情况下,所述上行调度的第一时域资源位置为,所述终端设备根据第一时隙号、所述第一时隙偏移量、所述第一公共TA,所述第一TA调整量和Δ 1之和确定的。
  103. 根据权利要求102所述的网络设备,其特征在于,所述上行调度的第一时域资源位置为所述上行调度的PUSCH对应的第一时域资源位置。
  104. 根据权利要求101所述的网络设备,其特征在于,在所述终端设备应用于两步随机接入的场景下,所述网络设备还包括:
    收发器,用于向所述终端设备发送第二公共时隙偏移量,第二公共TA和第二TA调整量,所述第二TA调整量为所述网络设备基于针对所述终端设备发送的消息A的接收,确定的TA调整量;
    在所述终端设备具备TA预补偿能力且在消息A中上报第二估算TA的情况下,所述目标时隙偏移量为所述终端设备确定的所述第二估算TA与所述第二TA调整量之和;
    在所述终端设备具备TA预补偿能力且在消息A中未上报第二估算TA的情况下,所述目标时隙偏移 量为所述终端设备确定的所述第二公共时隙偏移量;
    在所述终端设备不具备TA预补偿能力的情况下,所述目标时隙偏移量为所述终端设备确定的所述第二公共TA与所述第二TA调整量之和。
  105. 根据权利要求104所述的网络设备,其特征在于,所述第二公共时隙偏移量为所述网络设备基于地面参考点3确定的定时提前TA值;所述第二公共TA为所述网络设备基于地面参考点4确定的定时提前TA值。
  106. 根据权利要求104或105所述的网络设备,其特征在于,所述第二公共时隙偏移量和所述第二公共TA承载在系统消息中。
  107. 根据权利要求104-106中任一项所述的网络设备,其特征在于,
    所述收发器,还用于向所述终端设备发送第三RACH资源集合和第四RACH资源集合,所述第三RACH资源集合用于具备TA预补偿能力的终端设备发送消息A,所述第四RACH资源集合用于不具备TA预补偿能力的终端设备发送消息A;
    所述收发器,还用于接收所述终端设备发送的消息A。
  108. 根据权利要求107所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送的,所述消息A携带所述第二估算TA;
    在所述终端设备具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二估算TA进行TA补偿,从所述第三RACH资源集合中选择一个RACH资源,向所述网络设备发送的,所述消息A未携带所述第二估算TA;
    在所述终端设备不具备TA预补偿能力的情况下,所述消息A为所述终端设备使用所述第二公共TA进行TA补偿,从所述第四RACH资源集合中选择一个RACH资源,向所述网络设备发送的。
  109. 根据权利要求108所述的网络设备,其特征在于,所述网络设备还包括:
    所述收发器,还用于向所述终端设备发送第二时隙偏移量,所述第二时隙偏移量为所述网络设备根据所述终端设备使用的目标时隙偏移量确定的。
  110. 根据权利要求109所述的网络设备,其特征在于,
    在所述终端设备具备TA预补偿能力且在消息A中上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量;
    在所述终端设备具备TA预补偿能力且在消息A中未上报所述第二估算TA的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述第二公共时隙偏移量的增量;
    在所述终端设备不具备TA预补偿能力的情况下,所述第二时隙偏移量为所述网络设备确定的相对于所述终端设备发送消息B调度的上行传输时实际使用的TA的增量。
  111. 根据权利要求109或110所述的网络设备,其特征在于,所述网络设备还包括:
    所述收发器,还用于接收终端设备在上行调度的第二时域资源位置上发送的消息B。
  112. 根据权利要去111所述的网络设备,其特征在于,
    在所述终端设备具备补偿能力且在消息A中上报第二估算TA的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量和Δ 2确定的;
    在所述终端设备具备补偿能力且在消息A中未上报第二估算TA的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共时隙偏移量和Δ 2确定的;
    在所述终端设备不具备补偿能力的情况下,所述上行调度的第二时域资源位置为,所述终端设备根据第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述第二TA调整量和Δ 2确定的;
    所述第二时隙号为所述终端设备接收消息B的PDSCH对应的下行时隙号;Δ 2的取值与上行子载波间隔有关。
  113. 根据权利要求112所述的网络设备,其特征在于,
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、所述第二估算TA,所述第二TA调整量以及Δ 2之和;
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、 所述第二公共时隙偏移量以及Δ 2之和;
    所述上行调度的第二时域资源位置为,所述终端设备确定的所述第二时隙号、所述第二时隙偏移量、所述第二公共TA,所述二TA调整量以及Δ 2之和。
  114. 根据权利要求113所述的网络设备,其特征在于,
    所述上行调度的第二时域资源位置为所述上行调度的PUSCH对应的第二时域资源位置。
  115. 一种网络设备,其特征在于,包括:
    处理器,用于获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为所述终端设备确定所述终端设备的定时提前TA。
  116. 根据权利要求115所述的网络设备,其特征在于,所述网络设备还包括:
    收发器,用于向所述终端设备发送第三时隙偏移量,所述第三时隙偏移量为所述网络设备确定的相对于所述终端设备的所述TA的增量。
  117. 根据权利要求115或116所述的网络设备,其特征在于,在所述终端设备处于连接态的情况下,所述目标时隙偏移量为上行调度PUSCH时域资源所使用的偏移量。
  118. 根据权利要求117所述的网络设备,其特征在于,所述第三时隙偏移量用于所述终端设备根据
    Figure PCTCN2020127589-appb-100004
    确定上行调度的第三时域资源位置;
    所述第三时隙号n 3为所述终端设备接收指示所述上行调度的PDCCH对应的下行时隙号,k 2为第三时隙偏移量,μ PUSCH和μ PDCCH分别为PUSCH和PDCCH的子载波间隔配置。
  119. 根据权利要求115或116所述的网络设备,其特征在于,所述目标时隙偏移量为反馈ACK/NACK的PUCCH所使用的偏移量。
  120. 根据权利要求119所述的网络设备,其特征在于,所述第三时隙偏移量用于所述终端设备根据第三时隙号、所述第三时隙偏移量,以及所述TA之和,确定所述反馈ACK/NACK的PUCCH对应的第四时域资源位置;
    所述第三时隙号为所述终端设备接收PDSCH对应的下行时隙号。
  121. 一种终端设备,其特征在于,包括:
    处理模块,用于根据所述终端设备是否具备定时提前TA预补偿能力,确定上行调度所使用的目标时隙偏移量。
  122. 一种终端设备,其特征在于,包括:
    处理模块,用于确定所述终端设备的定时提前TA,为上行调度所使用的目标时隙偏移量。
  123. 一种网络设备,其特征在于,包括:
    处理模块,用于获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为终端设备根据是否具备定时提前TA预补偿能力确定的。
  124. 一种网络设备,其特征在于,包括:
    处理模块,用于获取上行调度所使用的目标时隙偏移量,所述目标时隙偏移量为所述终端设备确定所述终端设备的定时提前TA。
  125. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-24中任意一项,或25-30中任意一项,或31-54中任意一项,或55-60中任意一项所述的方法。
PCT/CN2020/127589 2020-11-09 2020-11-09 确定上行传输时域资源的方法、终端设备及网络设备 WO2022095046A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/127589 WO2022095046A1 (zh) 2020-11-09 2020-11-09 确定上行传输时域资源的方法、终端设备及网络设备
CN202080104365.2A CN116097899A (zh) 2020-11-09 2020-11-09 确定上行传输时域资源的方法、终端设备及网络设备
EP20960503.9A EP4240101A4 (en) 2020-11-09 2020-11-09 METHOD FOR DETERMINING RESOURCE IN UPLINK TRANSMISSION TIME DOMAIN, AND TERMINAL DEVICE AND NETWORK DEVICE
US18/090,737 US20230224840A1 (en) 2020-11-09 2022-12-29 Method for Determining Time-Domain Resource of Uplink Transmission, and Terminal Device and Network Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127589 WO2022095046A1 (zh) 2020-11-09 2020-11-09 确定上行传输时域资源的方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/090,737 Continuation US20230224840A1 (en) 2020-11-09 2022-12-29 Method for Determining Time-Domain Resource of Uplink Transmission, and Terminal Device and Network Device

Publications (1)

Publication Number Publication Date
WO2022095046A1 true WO2022095046A1 (zh) 2022-05-12

Family

ID=81458553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127589 WO2022095046A1 (zh) 2020-11-09 2020-11-09 确定上行传输时域资源的方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US20230224840A1 (zh)
EP (1) EP4240101A4 (zh)
CN (1) CN116097899A (zh)
WO (1) WO2022095046A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110495130B (zh) * 2019-04-16 2022-06-03 北京小米移动软件有限公司 控制信息的传输方法、重传方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289325A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
WO2020182006A1 (en) * 2019-03-11 2020-09-17 Mediatek Inc. Uplink transmission timing for non-terrestrial networks
CN111757435A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种无线通信的方法、终端设备及网络设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3834514A2 (en) * 2018-08-10 2021-06-16 Telefonaktiebolaget LM Ericsson (publ) Random access procedures for satellite communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289325A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
WO2020182006A1 (en) * 2019-03-11 2020-09-17 Mediatek Inc. Uplink transmission timing for non-terrestrial networks
CN111757435A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种无线通信的方法、终端设备及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Timing Advance, Random Access and DRX aspects in NTN", 3GPP DRAFT; R2-2007590, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912263 *
See also references of EP4240101A4 *

Also Published As

Publication number Publication date
US20230224840A1 (en) 2023-07-13
EP4240101A4 (en) 2024-01-03
CN116097899A (zh) 2023-05-09
EP4240101A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US20230232457A1 (en) Channel Occupancy Time Sharing Method and Device Node
US20230353234A1 (en) Transmission latency compensation method, apparatus, communication device and storage medium
US20230156599A1 (en) Method for controlling terminal device, terminal device and network device
US20230224840A1 (en) Method for Determining Time-Domain Resource of Uplink Transmission, and Terminal Device and Network Device
US20230353307A1 (en) Method for srs transmission resource configuration, terminal device, and network device
WO2021168702A1 (zh) 一种随机接入的方法、网络设备及终端设备
WO2022133727A1 (zh) Pusch重复传输方法及终端设备
WO2023077328A1 (zh) Ntn中终端设备上报定时提前的方法、终端设备及存储介质
US20230179345A1 (en) Wireless communication method, terminal device, and network device
EP4192159A1 (en) Data communication method, terminal device and network device
EP4266761A1 (en) Drx method, terminal device, and network device
WO2023130365A1 (zh) 恢复上行同步的方法、终端设备及存储介质
WO2023123178A1 (zh) 传输上行信号的方法、终端设备、网络设备及存储介质
WO2022087849A1 (zh) 一种无线通信方法、终端设备及网络设备
WO2022188111A1 (zh) Csi上报方法、终端设备、网络设备及存储介质
WO2022183347A1 (zh) 一种pusch重复传输方法、终端设备及网络设备
WO2022022349A1 (zh) 一种通信方法、装置及系统
WO2022062823A1 (zh) 波束管理方法、装置及系统
WO2023102717A1 (zh) 通信方法及通信装置
EP4307766A1 (en) Beam configuration information method, terminal device, network device, and storage medium
US20240163832A1 (en) Positioning method, and terminal, and medium
WO2023000268A1 (zh) 非地面通信网络中获取时间的方法、终端设备及存储介质
EP4243524A1 (en) Method for determining paging cycle, and terminal device
WO2021227052A1 (zh) 一种信息传输方法、通信设备以及计算机可读存储介质
WO2021248376A1 (zh) 一种监听物理下行控制信道pdcch的方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020960503

Country of ref document: EP

Effective date: 20230601

NENP Non-entry into the national phase

Ref country code: DE