WO2022133727A1 - Pusch重复传输方法及终端设备 - Google Patents

Pusch重复传输方法及终端设备 Download PDF

Info

Publication number
WO2022133727A1
WO2022133727A1 PCT/CN2020/138307 CN2020138307W WO2022133727A1 WO 2022133727 A1 WO2022133727 A1 WO 2022133727A1 CN 2020138307 W CN2020138307 W CN 2020138307W WO 2022133727 A1 WO2022133727 A1 WO 2022133727A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pusch
terminal device
sri
precoding matrix
Prior art date
Application number
PCT/CN2020/138307
Other languages
English (en)
French (fr)
Inventor
陈文洪
方昀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/138307 priority Critical patent/WO2022133727A1/zh
Priority to CN202080105057.1A priority patent/CN116134922A/zh
Publication of WO2022133727A1 publication Critical patent/WO2022133727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a PUSCH repeated transmission method, a terminal device, and a computer-readable storage medium.
  • the Downlink Control Information (DCI) for scheduling the Physical Uplink Shared Channel (PUSCH) includes a Sounding Reference Signal (Sounding Reference Signal, SRS) resource indication (Sounding Reference Signal Resource) Indicator, SRS Resource Indicator, SRI) field and Transmit Precoding Matrix Indicator (TPMI) field, the terminal device obtains a single beam and precoding matrix based on the indicated SRI and TPMI, so as to be used for PUSCH transmission. If the PUSCH is configured for repeated transmission, the transmit beams and precoding matrices used for different repeated transmissions are the same, and both come from the SRI field and the TPMI field.
  • SRS Sounding Reference Signal
  • SRS Resource Indicator Sounding Reference Signal Resource
  • SRI Precoding Matrix Indicator
  • New Radio introduces uplink repeated transmissions based on multiple TRPs, that is, different repeated transmissions can be sent to Different TRPs, as shown in FIG. 1 , are a schematic diagram of PUSCH repeated transmission based on multiple TRPs in an implementation manner. Since the channels corresponding to different TRPs are different, different repeated transmissions need to adopt transmission parameters (such as transmit beams and/or precoding matrices) corresponding to the channels to obtain the best transmission performance. However, in the existing protocol, only a single beam and a precoding matrix can be obtained in the SRI domain and the TPMI domain, and cannot match the respective channels of the two TRPs at the same time, thus affecting the performance of uplink transmission.
  • transmission parameters such as transmit beams and/or precoding matrices
  • Embodiments of the present invention provide a PUSCH repeated transmission method, a terminal device, and a computer-readable storage medium, which are used to redefine the existing SRI domain or TPMI domain without increasing the DCI signaling overhead.
  • the transmission parameters used for multiple repeated transmissions of the PUSCH are respectively indicated. Different repeated transmissions can adopt different transmission parameters, so as to ensure that the transmission parameters of each repeated transmission are matched with the corresponding channels and achieve better transmission performance.
  • a first aspect of the embodiments of the present invention provides a method for repeated PUSCH transmission, which may include: a terminal device indicates different parts of the first information indicated by a SRI field or a transmission precoding matrix to indicate a TPMI field according to a sounding reference signal resource, respectively.
  • Another aspect of the embodiments of the present invention provides a terminal device, which has the ability to respectively indicate the data used for multiple repeated transmissions of the PUSCH by redefining the existing SRI field or TPMI field without increasing the DCI signaling overhead.
  • Transmission parameters different repeated transmissions can use different transmission parameters, so as to ensure that the transmission parameters of each repeated transmission are matched with the corresponding channels, so as to achieve better transmission performance.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a terminal device including: a memory storing executable program codes; a processor and a transceiver coupled with the memory; the processor and the transceiver are used for corresponding execution The method described in the first aspect of the embodiment of the present invention.
  • Yet another aspect of the embodiments of the present invention provides a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to perform the method described in the first aspect of the present invention.
  • Yet another aspect of the embodiments of the present invention provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the method as described in the first aspect of the present invention.
  • Another aspect of the embodiments of the present invention provides a chip, where the chip is coupled to a memory in the terminal device, so that the chip invokes program instructions stored in the memory when running, so that the terminal device executes the program as described above The method described in the first aspect of the invention.
  • the terminal device determines, according to a sounding reference signal resource indication SRI field or a different part of the first information indicated by a transmission precoding matrix indication TPMI field, which is used for different repeated transmissions of the physical uplink shared channel PUSCH respectively.
  • the transmission parameters of the PUSCH wherein the one SRI field and the one TPMI field are included in the scheduling information of the PUSCH, and the transmission parameters include the number of transmission layers, the precoding matrix, the antenna port, the transmission beam, and the transmission power. at least one.
  • the transmission parameters used for multiple repeated transmissions of the PUSCH are respectively indicated, and different repeated transmissions can use different transmission parameters, thereby It is ensured that the transmission parameters of each repeated transmission are matched with the corresponding channels to achieve better transmission performance.
  • 1 is a schematic diagram of PUSCH repeated transmission based on multiple TRPs in an implementation
  • FIG. 2 is a schematic diagram of codebook-based PUSCH transmission in an implementation
  • 3 is a schematic diagram of non-codebook-based PUSCH transmission in an implementation
  • 5 is a schematic diagram of OFDM symbol-based PUSCH repeated transmission in an implementation manner
  • Fig. 6 is a schematic diagram of repeated transmission of PUSCH based on multiple TRP/Panel in an implementation manner
  • FIG. 7 is a system architecture diagram of a communication system to which an embodiment of the present invention is applied.
  • FIG. 8 is a schematic diagram of an embodiment of a method for repeated PUSCH transmission in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a terminal device in an embodiment of the present invention.
  • PUSCH Physical Uplink Shared Channel
  • the precoding process is generally divided into two parts: analog domain processing and digital domain processing.
  • Analog domain processing For the transmitted analog signal, beamforming is generally used to map the RF signal to the physical antenna.
  • Digital domain processing is for digital signals, generally performed at the baseband, using a precoding matrix to precode the digital signal, and map the data of the transmission layer to the radio frequency port. Due to the limited number of radio frequency channels of terminal equipment, two processing methods are generally used at the same time, that is, precoding for digital signals, and then beamforming for analog signals.
  • PUSCH transmission is divided into codebook-based transmission and non-codebook-based transmission.
  • the network side configures a sounding reference signal (Sounding Reference Signal, SRS) resource set dedicated to codebook transmission for the terminal device.
  • the terminal device will send SRS on multiple SRS resources in the set, and the SRS on each SRS resource uses a different beam, and the network side selects the best SRS resource from it to obtain the uplink channel state indication (Channel State Information, CSI)
  • the resource index is indicated to the terminal device through the SRS resource indicator (Sounding Reference Signal Resource Indicator, SRS Resource Indicator, SRI), so that the terminal device uses the beam corresponding to the SRS resource to perform analog beamforming on the data.
  • SRS Sounding Reference Signal
  • the network side will indicate the Rank Indicator (RI) and the Transmit Precoding Matrix Indicator (TPMI, also known as PMI) through the Downlink Control Information (DCI), and the terminal device will use the RI and
  • the TPMI determines the uplink precoding matrix corresponding to the TPMI from the codebook.
  • FIG. 2 it is a schematic diagram of codebook-based PUSCH transmission in an implementation manner.
  • non-codebook-based precoding methods can also be supported.
  • the terminal device can use the downlink channel information to obtain the uplink channel information, so as to perform uplink analog beamforming and/or digital precoding.
  • the network side does not need to indicate the relevant information of the precoding matrix, thereby reducing the DCI overhead.
  • the network side first sends a channel state information reference signal (Channel State Information Reference Signal, CSI Reference Signal, CSI-RS), so that the terminal device determines the beam and precoding matrix of N layers based on the CSI-RS.
  • CSI-RS Channel State Information Reference Signal
  • the terminal device uses the beams of the N layers and the precoding matrix to send N single-port SRS resources (ie, N SRS ports), and the N SRS resources are configured as a set of SRS resources for non-codebook transmission.
  • the network side After receiving the SRS resources, the network side performs measurement, selects the best K SRS resources and indicates the corresponding SRI to the terminal equipment.
  • the terminal equipment determines the number of transmission layers, precoding matrix and analog beam to be used according to the SRI.
  • the number of indicated SRS resources is the number of transmission layers, and the precoding matrix and analog beam used by the corresponding SRS resource are the precoding matrix and beam used by the corresponding layer of the data.
  • RI and PMI need not be indicated in DCI.
  • FIG. 3 it is a schematic diagram of non-codebook-based PUSCH transmission in an implementation manner.
  • New Radio introduces repeated transmission of PUSCH, that is, the PUSCH carrying the same data is transmitted multiple times through different time-frequency resources/antennas/redundancy versions, etc., so as to obtain diversity gain , to reduce the probability of false detection (BLER).
  • the repeated transmission may be performed in different time slots, as shown in FIG. 4 , which is a schematic diagram of the time slot-based repeated transmission of the PUSCH in an implementation manner.
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols, as shown in Figure 5, which is a schematic diagram of PUSCH repeated transmission based on OFDM symbols in one implementation (in a time slot or across a time slot). time slot). It can also be performed on multiple Panels (antenna panels), as shown in FIG. 6 , which is a schematic diagram of PUSCH repeated transmission based on multiple TRP/Panels in an implementation manner. For repeated transmission of multiple time slots or multiple symbols, one DCI can schedule multiple PUSCHs to be transmitted on multiple consecutive time slots or multiple OFDM symbols, carrying the same data but using different redundancy versions.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the receiving ends of different repeated transmissions may be the same transmission receiving point (Transmission and Reception Point, TRP) or different TRPs.
  • TRP Transmission and Reception Point
  • PUSCHs carrying the same data are transmitted on different Panels at the same time, and the receiving end can be the same TRP or different TRPs.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system may include a network device, and the network device may be a device that communicates with a terminal device (or referred to as a communication terminal, a terminal).
  • a network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • FIG. 7 exemplarily shows one network device and two terminal devices.
  • the communication system may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application implements The example does not limit this.
  • the communication system may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices described in the embodiments of the present invention, which will not be repeated here;
  • the device may also include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • FIG. 8 it is a schematic diagram of an embodiment of the PUSCH repeated transmission method in the embodiment of the present invention, which may include:
  • the terminal device respectively determines transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the first information indicated by an SRI field or a TPMI field, wherein the one SRI field and the one TPMI field are included in the In the scheduling information of the PUSCH, the transmission parameter includes at least one of the number of transmission layers, a precoding matrix, an antenna port, a transmission beam, and a transmission power.
  • the terminal device performs multiple repeated transmissions of the PUSCH respectively according to the transmission parameter.
  • the scheduling information of the PUSCH includes the DCI for scheduling the PUSCH.
  • the terminal device respectively determines transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the first information indicated by an SRI field or a TPMI field. It can include but is not limited to the following implementations:
  • the first information is two TPMIs indicated by the one TPMI field, each TPMI indicates a precoding matrix, and the terminal device determines, according to the two TPMIs, which are used for different repeated transmissions of the PUSCH.
  • a first transmission parameter where the first transmission parameter includes at least one of the number of transmission layers, the precoding matrix and the transmission power.
  • the two precoding matrices indicated by the two TPMIs belong to the same codebook subset.
  • the codebook subset is a fully correlated codebook subset, a partially correlated codebook subset or a non-correlated codebook subset.
  • the codebook subset may be indicated to the terminal through higher layer signaling.
  • the fully correlated codebook subset may include a partially correlated codebook subset and a non-correlated codebook subset, and the partially correlated codebook subset may include a non-correlated codebook subset.
  • the indication content of the one TPMI field can be limited, thereby reducing the indication signaling overhead of the TPMI field.
  • the number of transmission layers ie, the number of columns of the matrix
  • the number of transmission layers ie, the number of columns of the matrix
  • the one TPMI field indicates the number of transport layers and TPMI at the same time. That is, the one TPMI field can indicate the number of transport layers and TPMI at the same time. At this time, the one TPMI field may also be referred to as precoding information and transmission layer number indication field.
  • two TPMIs corresponding to different values of the one TPMI field are notified to the terminal device through high-layer signaling, or pre-agreed by the terminal device and the network device. For example, it is pre-agreed by the terminal and the base station.
  • each value of the one TPMI field may correspond to one or two TPMIs.
  • a part of the value of the one TPMI field corresponds to one TPMI (0-7 in the following table 1), and the other part of the value corresponds to two TPMIs (8-15 in the following table).
  • the precoding matrix indicated by the one TPMI is applied to all repeated transmissions of the PUSCH; when the one TPMI field indicates two TPMIs, the precoding matrix indicated by the two TPMI
  • the coding matrix is applied to different repeated transmissions of the PUSCH, for example, the odd-numbered repeated transmission and the even-numbered repeated transmission use different precoding matrices therein.
  • the present invention is mainly aimed at the case where the values correspond to two TPMIs.
  • the high layer signaling may be RRC signaling or MAC layer signaling.
  • the TPMI corresponding to different values may be as shown in Table 1 below:
  • TPMI 0 0 the number of transport layers is 1 1 (the number of transport layers is 1) 2 2 (the number of transport layers is 1) 3 3 (the number of transport layers is 1) 4 4 (the number of transport layers is 1) 5 5 (the number of transport layers is 1) 6 0 (the number of transport layers is 2) 7 1 (the number of transport layers is 2) 8 ⁇ 0,1 ⁇ (the number of transport layers is 1) 9 ⁇ 0,2 ⁇ (the number of transport layers is 1) 10 ⁇ 0,3 ⁇ (the number of transport layers is 1) 11 ⁇ 1,2 ⁇ (the number of transport layers is 1) 12 ⁇ 1,3 ⁇ (the number of transport layers is 1) 13 ⁇ 2,3 ⁇ (the number of transport layers is 1) 14 ⁇ 4,5 ⁇ (the number of transport layers is 1) 15 ⁇ 0,1 ⁇ (the number of transport layers is 2)
  • the precoding matrix indicated by TPMI ⁇ 0, 1, 2, 3 ⁇ and the precoding matrix indicated by TPMI ⁇ 4, 5 ⁇ belong to Different codebook subsets.
  • the first transmission parameter may further include other parameters such as transmission power.
  • different values of the two TPMIs may correspond to different PUSCH transmit powers or transmit power scaling coefficients.
  • the terminal device determines, respectively, third transmission parameters used for different repeated transmissions of the PUSCH, which may include:
  • the terminal device determines, according to the TPMI corresponding to one repeated transmission of the PUSCH, the transmission power or the transmission power scaling factor of the one repeated transmission.
  • the correspondence between different TPMIs and transmission powers (or transmission power scaling coefficients) may be pre-agreed by the terminal and the network device, or the network device may notify the terminal device in advance.
  • the terminal device performs multiple repeated transmissions of the PUSCH according to the transmission parameter, which may include: the terminal device according to the first transmission parameter, where the first transmission parameter includes the number of transmission layers, and or, for the precoding matrix, multiple repeated transmissions of the PUSCH are respectively performed.
  • the two precoding matrices indicated by the two TPMIs are respectively used for different repeated transmissions of the PUSCH.
  • the odd-numbered repeated transmissions and the even-numbered repeated transmissions use different precoding matrices; or, the first two repeated transmissions and the last two repeated transmissions use different precoding matrices, and so on.
  • the terminal device can determine two precoding matrices according to one TPMI field for repeated transmission of different PUSCHs, so as to respectively match channels with different TRPs and improve the performance of uplink multi-TRP diversity transmission.
  • the first information is a precoding matrix indicated by the one TPMI field
  • the terminal device determines the second transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the one precoding matrix.
  • the second transmission parameter includes at least one of the precoding matrix, the number of transmission layers and the transmission power.
  • the terminal device respectively determining the second transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the one precoding matrix may include: the terminal device assigning the one precoding matrix to the second transmission parameter.
  • Different parts hereinafter referred to as the first precoding matrix
  • the precoding matrix hereinafter referred to as the second precoding matrix
  • the terminal device may use different parts of the first precoding matrix as the second precoding matrix used for different repeated transmissions of the PUSCH.
  • the terminal uses the number of columns of the second precoding matrix as the number of transmission layers of the PUSCH.
  • the first part of the first precoding matrix is used as the precoding matrix used for the odd-numbered repeated transmission of the PUSCH; the second part (different from the first part) of the first precoding matrix is used as the The precoding matrix used for the even repeated transmission of the PUSCH.
  • the number of columns in the first part and the second part is the same, indicating the number of transmission layers of the PUSCH. Specifically, at least the following three methods can be adopted:
  • the one precoding matrix has N columns, and the terminal device uses the first N/2 columns and the last N/2 columns of the one precoding matrix as the precoding used for different repeated transmissions of the PUSCH. matrix.
  • the first N/2 columns of the first precoding matrix are used as precoding matrices for partial repeated transmission, and the last N/2 columns are used as precoding matrices for other repeated transmissions.
  • the number of transmission layers of the PUSCH is N/2.
  • each column of the precoding matrix corresponds to one transmission layer.
  • the one TPMI field may indicate a codeword from a codebook of double-layer transmission with 2 antenna ports, and the codeword has 2 columns of precoding vectors.
  • the first and second columns of precoding vectors are respectively used for different repeated transmissions.
  • This method can also be used for 4-port PUSCH transmission.
  • the precoding matrix indicated by a TPMI field is Then the terminal device can and for different repeat transmissions.
  • the one precoding matrix has M rows, and the terminal device uses the first M/2 rows and the last M/2 rows of the one precoding matrix as the precoding used for different repeated transmissions of the PUSCH respectively. matrix.
  • the first M/2 rows of the first precoding matrix are used as precoding matrices for partial repeated transmission, and the last M/2 rows and columns are used as precoding matrices for other repeated transmissions.
  • the number of transmission layers of the PUSCH is equal to the number of columns of the one precoding matrix.
  • each row of the precoding matrix corresponds to one antenna port.
  • the one TPMI field may indicate a codeword from the codebook of single-layer transmission with 4 antenna ports, and the codeword is precoding with 4 rows and 1 column. matrix.
  • the precoding vectors obtained in the first two lines and the last two lines are respectively used for different repeated transmissions.
  • This method can also be used for 4-port 2-layer PUSCH transmission.
  • the precoding matrix indicated by a TPMI field is Then the terminal device can and for different repeat transmissions.
  • the one precoding matrix is M rows and N columns, and the terminal device converts the first N/2 columns in the first M/2 rows of the one precoding matrix, and the last M/2 columns of the one precoding matrix.
  • N/2 columns of 2 rows are respectively used as precoding matrices used for different repeated transmissions of the PUSCH.
  • the number of transmission layers of the PUSCH is N/2.
  • the PUSCH is single-layer transmission with 2 antenna ports
  • the one TPMI field may indicate a codeword from the codebook of double-layer transmission with 4 antenna ports
  • the codeword is precoding with 4 rows and 2 columns. matrix.
  • the precoding matrices obtained by the first column in the first two rows and the last column in the second two rows are respectively used for different repeated transmissions.
  • the precoding matrix indicated by a TPMI field is Then the terminal device can and for different repeat transmissions.
  • the second transmission parameter may further include other parameters such as transmission power.
  • different parts of the one precoding matrix may correspond to different PUSCH transmit powers or transmit power scaling coefficients.
  • the terminal device determines, according to different parts of the one precoding matrix, respectively, third transmission parameters used for different repeated transmissions of the PUSCH, which may include:
  • the terminal device determines, according to the partial precoding matrix of the one precoding matrix corresponding to the one repeated transmission of the PUSCH, the transmission power or the transmission power scaling factor of the one repeated transmission.
  • the correspondence between the different parts of the one precoding matrix and the transmission power (or the transmission power scaling factor) may be pre-agreed by the terminal and the network device, or the network device may notify the terminal device in advance.
  • the terminal device performs multiple repeated transmissions of the PUSCH according to the transmission parameter, which may include: the terminal device according to the second transmission parameter, where the second transmission parameter includes the number of transmission layers , and/or, the precoding matrix, respectively, performs multiple repeated transmissions of the PUSCH.
  • the transmission parameter may include: the terminal device according to the second transmission parameter, where the second transmission parameter includes the number of transmission layers , and/or, the precoding matrix, respectively, performs multiple repeated transmissions of the PUSCH.
  • odd-numbered repeated transmissions and even-numbered repeated transmissions use different parts of the first precoding matrix for precoding; or, the first two repeated transmissions and the last two repeated transmissions use different parts of the first precoding matrix. Different parts are precoded, and so on.
  • the terminal device can obtain two precoding matrices according to one precoding matrix indicated by one TPMI field, which are used for repeated transmission of different PUSCHs, so as to respectively match the channels with different TRPs and improve the uplink performance. Performance of multi-TRP diversity transmission.
  • the first information is two SRIs indicated by one SRI field, each SRI indicates one SRS resource in a different SRS resource set, and the terminal device respectively determines, according to the two SRIs, used for different repeated transmissions of the PUSCH
  • the third transmission parameter includes at least one of the transmit beam, the antenna port, and the transmit power.
  • each SRI indicates one SRS resource in different SRS resource sets, that is, the first SRI in the two SRIs is used to indicate one SRS resource (referred to as the first SRS resource) in the first SRS resource set,
  • the second SRI is used to indicate one SRS resource (called the second SRS resource) in the second SRS resource set.
  • the first SRS resource set and the second SRS resource set may be pre-configured for the terminal device.
  • one of the SRIs may not indicate any SRS resources, indicating that the corresponding SRS resource set is not used. In this case, all repeated transmissions are Another SRI is used to determine the transmit beam, and/or the antenna port, so as to achieve the effect of dynamically switching between the two SRIs. Since different SRIs correspond to different TRP receptions, dynamic switching between two TRP reception points can be supported, and the current best TRP can be flexibly selected as the reception point to achieve better transmission performance.
  • this embodiment of the present invention may be used for codebook-based PUSCH transmission, that is, the aforementioned first SRS resource set and second SRS resource set are SRS resource sets used for uplink codebook transmission (ie, the usage parameter of the SRS resource set). Configured as Codebook).
  • the terminal device may use the following method to determine the transmit beam, antenna port or transmit power used for different repeated transmissions of the PUSCH:
  • the terminal device uses the sending beam used by the SRS resource indicated by the SRI corresponding to the one-time repeated transmission of the PUSCH as the sending beam of the one-time repeated transmission.
  • each repeated transmission of the PUSCH uses the same transmission beam as the SRS resource indicated by the SRI corresponding to the repeated transmission.
  • some repeated transmissions of the PUSCH correspond to the first SRI, then these repeated transmissions use the same transmission beam as the first SRS resource indicated by the first SRI; other repeated transmissions correspond to the second SRI, then these repeated transmissions are the same as those of the second SRI.
  • the indicated second SRS resource uses the same transmit beam.
  • the transmit beam may also be referred to as a spatial domain transmission filter or a spatial filter.
  • the terminal device takes the number of ports of the SRS resource indicated by the SRI corresponding to one repeated transmission of the PUSCH as the number of ports of the one repeated transmission.
  • the number of antenna ports used for each repeated transmission of the PUSCH is equal to the number of ports of the SRS resource indicated by the SRI corresponding to the repeated transmission. For example, if some repeated transmissions of PUSCH correspond to the first SRI, the number of antenna ports used for these repeated transmissions is equal to the number of ports of the first SRS resource; other repeated transmissions correspond to the second SRI, then the number of antenna ports used for these repeated transmissions is equal to the number of ports of the first SRS resource. The number of ports of the second SRS resource.
  • the terminal may further determine the used codebook according to the number of antenna ports.
  • At least one value of the one SRI field corresponds to two sets of PUSCH power control parameters, which are respectively used to determine the transmit power of different repeated transmissions of the PUSCH.
  • at least one value of the one SRI field corresponds to two sets of PUSCH power control parameters, and the terminal device determines the SRI from the two sets of PUSCH power control parameters according to the SRI corresponding to one repeated transmission of the PUSCH.
  • the PUSCH power control parameter used for the one-time repeated transmission; and the transmit power of the one-time repeated transmission is determined according to the PUSCH power control parameter. That is, the two sets of PUSCH power control parameters are respectively used to determine the transmit power used for different repeated transmissions of the PUSCH.
  • Some values of an SRI field may indicate one SRI, and other values may indicate two SRIs.
  • the value corresponds to two sets of PUSCH power control parameters, which are respectively used to determine the transmit power of different repeated transmissions. If a certain value of an SRI field indicates an SRI, the value corresponds to a group of PUSCH power control parameters, and all repeated transmissions use this group of power control parameters to determine the transmit power.
  • each value of an SRI field corresponds to two sets of PUSCH power control parameters
  • the two sets of PUSCH power control parameters are respectively used to determine Transmission power of different repeated transmissions
  • the terminal uses one of the two sets of PUSCH power control parameters to determine the transmission power of all repeated transmissions, such as the first group of power control parameters.
  • the terminal device uses the PUSCH power control parameter corresponding to the other SRI to determine the transmit power of all repeated transmissions.
  • the value range of the one SRI field is 0-7, where the value of 4-7 indicates two SRIs, then each of these values corresponds to two sets of PUSCH power control parameters, and the terminal device transmits the The corresponding SRI is used to determine the power control parameter used for the repeated transmission. If the partial repeated transmission of PUSCH corresponds to the first SRI, the transmit power of these repeated transmissions is determined according to the first group of power control parameters; if the partial repeated transmission of PUSCH corresponds to the second SRI, the transmit power of these repeated transmissions is determined according to A second set of power control parameters is determined.
  • All values of an SRI field may indicate one SRI, or both indicate two SRIs, which one is adopted depends on the configuration of the higher layer signaling. If the high-layer signaling configures one SRI field to indicate only one SRI, each value of the SRI field corresponds to a set of PUSCH power control parameters; if the high-layer signaling configures one SRI field to indicate two SRIs, the SRI field Each value of can correspond to two sets of PUSCH power control parameters.
  • the terminal device determines, according to the SRI corresponding to the repeated transmission, which group of power control parameters the power control parameter used in the repeated transmission is.
  • two sets of PUSCH power control parameters corresponding to different values of one SRI field may be configured to the terminal device through high-layer signaling.
  • the terminal device performing multiple repeated transmissions of the PUSCH respectively according to the transmission parameter may include: the terminal device performing multiple repeated transmissions of the PUSCH respectively according to the third transmission parameter.
  • odd-numbered repeat transmissions and even-numbered repeat transmissions use different transmit beams and/or antenna ports; or, the first two repeat transmissions and the last two repeat transmissions use different transmit beams and/or antenna ports, thereby analogy.
  • the terminal device obtains two sets of transmit beams and/or antenna ports according to two SRIs indicated by one SRI field, which are used for repeated transmission of different PUSCHs, so as to match the channels with different TRPs respectively, and improve the The performance of uplink multi-TRP diversity transmission.
  • the terminal device respectively determines, according to the two SRI sets, third transmission parameters used for different repeated transmissions of the PUSCH, where the third transmission parameters include the transmission beam, the antenna port, the number of transmission layers, and the number of transmission layers. at least one of the transmit powers.
  • the two SRI sets include a first SRI set and a second SRI set
  • the first SRI set indicates one or more single-port SRS resources in a third SRS resource set
  • the second SRI set Indicates one or more single-port SRS resources in the fourth set of SRS resources. That is, the first SRI set of the two SRI sets indicates one or more single-port SRS resources in the third SRS resource set
  • the second SRI set indicates one or more single-port SRS resources in the fourth SRS resource set.
  • the third SRS resource set and the fourth SRS resource set may be pre-configured for the terminal device.
  • an SRI set may not contain any SRI, that is, it does not indicate any SRS resource, indicating that the corresponding SRS resource set is not used. In this case, all repeated transmissions use another SRI set to determine the transmission parameters, so as to achieve the effect of dynamically switching between the two SRI sets. Since different SRI sets correspond to different TRP receptions, dynamic switching between two TRP reception points can be supported, and the current best TRP can be flexibly selected as the reception point to achieve better transmission performance.
  • each SRI set may include one or more SRIs, and the number of SRIs included in the two SRI sets is the same.
  • this embodiment of the present invention can be used for codebook-based PUSCH transmission, that is, the aforementioned third SRS resource set and fourth SRS resource set are SRS resource sets used for uplink non-codebook transmission (the usage parameter of this set is configured for NonCodebook).
  • each SRI set may include one or more SRIs, and the number of SRIs included in the two SRI sets is the same.
  • two SRI sets respectively corresponding to at least one value of the one SRI field are notified to the terminal device through high-layer signaling, or pre-agreed by the terminal device and the network device.
  • the two SRI sets corresponding to different values of the one SRI field may be notified to the terminal device through MAC layer signaling, or pre-agreed by the terminal device and the network device (eg, base station).
  • the network device can notify the terminal of the SRI set corresponding to each value of the SRI field through the following table, or the terminal and the network device pre-agreed the corresponding relationship in the following table (wherein a curly bracket is an SRI set).
  • different values may correspond to different numbers of SRI sets; in other embodiments, all values correspond to the same number of SRI sets, and whether the number of SRI sets is 1 or 2 is determined by high-level signaling pre-configured.
  • the terminal device may determine the transmit beam, antenna port, number of transmission layers or transmit power used for different repeated transmissions of the PUSCH, and may use one of the following methods:
  • the terminal device uses the number of SRIs included in each SRI set as the number of transmission layers used for different repeated transmissions of the PUSCH. That is, the number of SRIs included in each SRI set is the number of transmission layers of the PUSCH. Further, the number of SRIs does not exceed 2.
  • the terminal device sets the SRI set corresponding to the repeated transmission of the PUSCH, and the transmission beams used by the indicated SRS resources respectively are used as the transmission beams used by the transmission layers of the repeated transmission. .
  • each transmission layer of each repeated transmission of the PUSCH and each SRS resource indicated by the SRI set corresponding to the repeated transmission respectively use the same transmission beam.
  • each repeated transmission of PUSCH includes two transmission layers, and some of the repeated transmissions correspond to the first SRI set, and the first SRI set indicates two single-port SRS resources, then the first transmission layer of these repeated transmissions is the same as The first SRS resource uses the same transmit beam, and the second transmission layer uses the same transmit beam as the second SRS resource. The same method is used for repeated transmissions corresponding to the second SRI set.
  • the terminal device uses the SRI set corresponding to one repeated transmission of the PUSCH, and the indicated antenna ports of one or more SRS resources as the antenna ports of each transmission layer for transmitting the one repeated transmission .
  • each repeated transmission of the PUSCH uses the same antenna port as the SRS resource indicated by the SRI set corresponding to the repeated transmission.
  • each repeated transmission of PUSCH includes two transmission layers, and some of the repeated transmissions correspond to the first SRI set, and the first SRI set indicates two single-port SRS resources, then each repeated transmission in these repeated transmissions
  • the same antenna port is used as the two SRS resources (ie, the first transmission layer uses the same antenna port as the first SRS resource, and the second transmission layer uses the same antenna port as the second SRS resource).
  • the same method is used for repeated transmissions corresponding to the second SRI set.
  • At least one value of the one SRI field corresponds to two sets of PUSCH power control parameters, and the terminal device determines the set of SRIs corresponding to one repeated transmission of the PUSCH from the two sets of PUSCH power control parameters.
  • the PUSCH power control parameter used for the one-time repeated transmission; and the transmit power of the one-time repeated transmission is determined according to the PUSCH power control parameter. That is, the two sets of PUSCH power control parameters are respectively used to determine the transmit power of different repeated transmissions of the PUSCH. Specifically, the following implementations can be adopted:
  • the value corresponds to two sets of PUSCH power control parameters, which are respectively used to determine the transmit power of different repeated transmissions. If a certain value of an SRI field indicates an SRI set, the value corresponds to a group of PUSCH power control parameters, and all repeated transmissions use this group of power control parameters to determine the transmit power. For example, the value range of the one SRI field is 0-7, where the value 4-7 indicates two SRI sets, then each of these values corresponds to two sets of PUSCH power control parameters, and the terminal device according to the repetition The corresponding SRI set is transmitted to determine the power control parameters used for the repeated transmission.
  • the transmission power of these repeated transmissions is determined according to the first group of power control parameters; if the partial repeated transmission of PUSCH corresponds to the second SRI set, the transmission power of these repeated transmissions The power is determined according to a second set of power control parameters.
  • each value of one SRI field corresponds to two sets of PUSCH power control parameters
  • the two sets of PUSCH power control parameters are respectively Used to determine the transmit power of different repeated transmissions
  • the terminal device uses one of the two sets of PUSCH power control parameters to determine the transmit power of all repeated transmissions, for example, the first among them.
  • Group power control parameters Under some special configurations, for example, when a certain value indicates two SRI sets but one of the SRI sets does not indicate any SRI, the terminal device uses the PUSCH power control parameters corresponding to the other SRI set to determine the transmit power of all repeated transmissions .
  • all the values of one SRI field may indicate one SRI set, or both indicate two SRI sets, which one is adopted depends on the configuration of high-layer signaling. If the high-layer signaling configures the SRI field to indicate only one SRI set, then each value of the one SRI field corresponds to a set of PUSCH power control parameters; if the high-layer signaling configures the SRI field to indicate two SRI sets, the one Each value of the SRI field may correspond to two sets of PUSCH power control parameters.
  • the terminal device determines, according to the SRI set corresponding to the repeated transmission, which group of power control parameters the power control parameter used for the repeated transmission is.
  • two sets of PUSCH power control parameters corresponding to different values of one SRI field may be configured to the terminal device through high-layer signaling.
  • the terminal device performing multiple repeated transmissions of the PUSCH respectively according to the transmission parameter may include: the terminal device performing multiple repeated transmissions of the PUSCH respectively according to the fourth transmission parameter.
  • the odd-numbered repeated transmissions and the even-numbered repeated transmissions use different transmission parameters; or, the first two repeated transmissions and the last two repeated transmissions use different transmission parameters, and so on.
  • the terminal device can obtain two sets of transmission parameters according to the two SRI sets indicated by one SRI field, which are used for repeated transmission of different PUSCHs, so as to match the channels with different TRPs respectively, and improve the uplink multi-TRP Diversity transmission performance.
  • the transmission parameters used for multiple repeated transmissions of the PUSCH can be respectively indicated. Different transmission parameters can be used for repeated transmission, so as to ensure that the transmission parameters of each repeated transmission are matched with the corresponding channel, so as to achieve better transmission performance.
  • the terminal device can obtain two sets of transmission parameters according to one SRI field or TPMI field, which are used for different repeated transmissions, so as to match the channels with different TRPs respectively, and improve the performance of uplink multi-TRP diversity transmission.
  • the embodiment of the present application further provides one or more terminal devices.
  • the terminal device in this embodiment of the present application may implement any one of the foregoing methods.
  • FIG. 9 it is a schematic diagram of an embodiment of a terminal device in an embodiment of the present invention.
  • the terminal device is illustrated by taking a mobile phone as an example, and may include: a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display Unit 940, sensor 950, audio circuit 960, wireless fidelity (WiFi) module 970, processor 980, power supply 990 and other components.
  • the radio frequency circuit 910 includes a receiver 914 and a transmitter 912 .
  • the RF circuit 910 can be used for receiving and sending signals during sending and receiving of information or during a call. In particular, after receiving the downlink information of the base station, it is processed by the processor 980; in addition, the designed uplink data is sent to the base station.
  • RF circuitry 910 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 910 may communicate with networks and other devices via wireless communications.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to the global system of mobile communication (global system of mobile communication, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access) multiple access, CDMA), wideband code division multiple access (wideband code division multiple access, WCDMA), long term evolution (long term evolution, LTE), email, short message service (short messaging service, SMS) and so on.
  • GSM global system of mobile communication
  • general packet radio service general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • long term evolution long term evolution
  • email short message service
  • the memory 920 can be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920 .
  • the memory 920 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc. Additionally, memory 920 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 930 may be used to receive inputted numerical or character information, and generate key signal input related to user setting and function control of the mobile phone.
  • the input unit 930 may include a touch panel 931 and other input devices 932 .
  • the touch panel 931 also referred to as a touch screen, can collect touch operations made by the user on or near it (such as the user's finger, stylus, etc., any suitable object or accessory on or near the touch panel 931). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 931 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may further include other input devices 932 .
  • other input devices 932 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 931 can cover the display panel 941. When the touch panel 931 detects a touch operation on or near it, it transmits it to the processor 980 to determine the type of the touch event, and then the processor 980 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 941 .
  • the touch panel 931 and the display panel 941 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 931 and the display panel 941 can be integrated to form Realize the input and output functions of the mobile phone.
  • the cell phone may also include at least one sensor 950, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 941 and/or when the mobile phone is moved to the ear. or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary. games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. Repeat.
  • the audio circuit 960, the speaker 961, and the microphone 962 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 960 can convert the received audio data into an electrical signal, and transmit it to the speaker 961, and the speaker 961 converts it into a sound signal for output; on the other hand, the microphone 962 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 960 After receiving, it is converted into audio data, and then the audio data is output to the processor 980 for processing, and then sent to, for example, another mobile phone through the RF circuit 910, or the audio data is output to the memory 920 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it is not a necessary component of the mobile phone, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 980 is the control center of the mobile phone, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 920, and calling the data stored in the memory 920.
  • the processor 980 may include one or more processing units; preferably, the processor 980 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc. , the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 980.
  • the mobile phone also includes a power supply 990 (such as a battery) for supplying power to various components.
  • a power supply 990 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 980 through a power management system, so as to manage charging, discharging, and power consumption management functions through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, and the like, which will not be repeated here.
  • the processor 980 is configured to respectively determine different parts of the physical uplink shared channel PUSCH according to a sounding reference signal resource indicating the SRI field or a transmission precoding matrix indicating different parts of the first information indicated by the TPMI field Transmission parameters used for repeated transmission, wherein the one SRI field and the one TPMI field are included in the scheduling information of the PUSCH, and the transmission parameters include the number of transmission layers, the precoding matrix, the antenna port, the transmission beam, and the at least one of transmit power.
  • the first information is two TPMIs indicated by the one TPMI field, and each TPMI indicates a precoding matrix
  • the processor 980 is specifically configured to respectively determine, according to the two TPMIs, first transmission parameters used for different repeated transmissions of the PUSCH, where the first transmission parameters include the number of transmission layers, and/or the precoding matrix.
  • the two precoding matrices indicated by the two TPMIs belong to the same codebook subset, and the codebook subset is a fully correlated codebook subset, a partially correlated codebook subset, or a non-correlated codebook subset set.
  • two TPMIs corresponding to different values of the one TPMI field are notified to the terminal device through high-layer signaling, or pre-agreed by the terminal device and the network device.
  • the number of transmission layers corresponding to the precoding matrices indicated by the two TPMIs is the same.
  • the first information is a precoding matrix indicated by the one TPMI field
  • the processor 980 is specifically configured to respectively determine second transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the one precoding matrix, where the second transmission parameters include the precoding matrix, and/ Or, the number of transport layers.
  • the processor 980 is specifically configured to use different parts of the one precoding matrix as precoding matrices used for different repeated transmissions of the PUSCH.
  • processor 980 is specifically used for:
  • the terminal device uses the first N/2 columns and the last N/2 columns of the one precoding matrix as the data used for different repeated transmissions of the PUSCH, respectively. precoding matrix; or,
  • the terminal device converts the first N/2 columns in the first M/2 rows of the one precoding matrix with the last N/2 columns of the one precoding matrix
  • the N/2 columns of the M/2 row are respectively used as precoding matrices used for different repeated transmissions of the PUSCH.
  • the number of transmission layers of the PUSCH is N/2.
  • the one precoding matrix is M rows,
  • the processor 980 is specifically configured to use the first M/2 rows and the last M/2 rows of the one precoding matrix as precoding matrices used for different repeated transmissions of the PUSCH, respectively.
  • the number of transmission layers of the PUSCH is equal to the number of columns of the one precoding matrix.
  • the first information is two SRIs indicated by one SRI field, and each SRI indicates one SRS resource in different sounding reference signal SRS resource sets,
  • the processor 980 is specifically configured to respectively determine, according to the two SRIs, third transmission parameters used for different repeated transmissions of the PUSCH, where the third transmission parameters include the transmission beam, the antenna port, and the transmission power at least one of the.
  • the processor 980 is specifically configured to use the sending beam used by the SRS resource indicated by the SRI corresponding to the one-time repeated transmission of the PUSCH as the sending beam of the one-time repeated transmission; and/or, the The number of ports of the SRS resource indicated by the SRI corresponding to one repeated transmission of the PUSCH is taken as the number of ports of the one repeated transmission.
  • At least one value of the one SRI field corresponds to two groups of PUSCH power control parameters
  • the processor 980 is specifically configured to, according to the SRI corresponding to one repeated transmission of the PUSCH, determine the PUSCH power control parameter used for the one repeated transmission from the two sets of PUSCH power control parameters; according to the PUSCH power control parameter , and determine the transmit power of the one repeated transmission.
  • the first information is two SRI sets indicated by one SRI field,
  • the processor 980 is specifically configured to respectively determine, according to the two SRI sets, fourth transmission parameters used for different repeated transmissions of the PUSCH, where the fourth transmission parameters include the transmission beam, the antenna port, the transmission at least one of the number of layers and the transmit power.
  • the two SRI sets include a first SRI set and a second SRI set
  • the first SRI set indicates one or more single-port SRS resources in a third SRS resource set
  • the second SRI set Indicates one or more single-port SRS resources in the fourth set of SRS resources.
  • each SRI set may include one or more SRIs, and the number of SRIs included in the two SRI sets is the same.
  • processor 980 is specifically used in at least one of the following manners:
  • the SRI set corresponding to one repeated transmission of the PUSCH and the indicated antenna ports of one or more SRS resources are used as the antenna ports of each transmission layer for transmitting the one repeated transmission.
  • At least one value of the one SRI field corresponds to two groups of PUSCH power control parameters
  • the processor 980 is specifically configured to, according to the SRI set corresponding to one repeated transmission of the PUSCH, from the two sets of PUSCH power control parameters, determine the PUSCH power control parameter used for the one repeated transmission; according to the PUSCH power control parameter to determine the transmit power of the one repeated transmission.
  • the RF circuit 910 is configured to perform multiple repeated transmissions of the PUSCH respectively according to the transmission parameters.
  • FIG. 10 it is a schematic diagram of another embodiment of the terminal device in the embodiment of the present invention, which may include:
  • the processing module 1001 is configured to respectively determine transmission parameters used for different repeated transmissions of the physical uplink shared channel PUSCH according to different parts of the first information indicated by a sounding reference signal resource indication SRI field or a transmission precoding matrix indication TPMI field , wherein the one SRI field and the one TPMI field are included in the scheduling information of the PUSCH, and the transmission parameter includes at least one of the number of transmission layers, a precoding matrix, an antenna port, a transmission beam, and a transmission power.
  • the first information is two TPMIs indicated by the one TPMI field, and each TPMI indicates a precoding matrix
  • the processing module 1001 is specifically configured to respectively determine, according to the two TPMIs, first transmission parameters used for different repeated transmissions of the PUSCH, where the first transmission parameters include the number of transmission layers, and/or the precoding matrix.
  • the two precoding matrices indicated by the two TPMIs belong to the same codebook subset, and the codebook subset is a fully correlated codebook subset, a partially correlated codebook subset, or a non-correlated codebook subset set.
  • two TPMIs corresponding to different values of the one TPMI field are notified to the terminal device through high-layer signaling, or pre-agreed by the terminal device and the network device.
  • the number of transmission layers corresponding to the precoding matrices indicated by the two TPMIs is the same.
  • the first information is a precoding matrix indicated by the one TPMI field
  • the processing module 1001 is specifically configured to respectively determine second transmission parameters used for different repeated transmissions of the PUSCH according to different parts of the one precoding matrix, where the second transmission parameters include the precoding matrix, and/ Or, the number of transport layers.
  • the processing module 1001 is specifically configured to use different parts of the one precoding matrix as precoding matrices used for different repeated transmissions of the PUSCH.
  • processing module 1001 is specifically used for:
  • the terminal device uses the first N/2 columns and the last N/2 columns of the one precoding matrix as the data used for different repeated transmissions of the PUSCH, respectively. precoding matrix; or,
  • the terminal device converts the first N/2 columns in the first M/2 rows of the one precoding matrix with the last N/2 columns of the one precoding matrix
  • the N/2 columns of the M/2 row are respectively used as precoding matrices used for different repeated transmissions of the PUSCH.
  • the number of transmission layers of the PUSCH is N/2.
  • the one precoding matrix is M rows,
  • the processing module 1001 is specifically configured to use the first M/2 rows and the last M/2 rows of the one precoding matrix as precoding matrices used for different repeated transmissions of the PUSCH, respectively.
  • the number of transmission layers of the PUSCH is equal to the number of columns of the one precoding matrix.
  • the first information is two SRIs indicated by one SRI field, and each SRI indicates one SRS resource in different sounding reference signal SRS resource sets,
  • the processing module 1001 is specifically configured to respectively determine, according to the two SRIs, third transmission parameters used for different repeated transmissions of the PUSCH, where the third transmission parameters include the transmission beam, the antenna port, and the transmission power at least one of the.
  • the processing module 1001 is specifically configured to use the sending beam used by the SRS resource indicated by the SRI corresponding to the one-time repeated transmission of the PUSCH as the sending beam of the one-time repeated transmission; and/or, the The number of ports of the SRS resource indicated by the SRI corresponding to one repeated transmission of the PUSCH is taken as the number of ports of the one repeated transmission.
  • At least one value of the one SRI field corresponds to two groups of PUSCH power control parameters
  • the processing module 1001 is specifically configured to, according to the SRI corresponding to one repeated transmission of the PUSCH, determine the PUSCH power control parameter used for the one repeated transmission from the two sets of PUSCH power control parameters; according to the PUSCH power control parameter , and determine the transmit power of the one repeated transmission.
  • the first information is two SRI sets indicated by one SRI field,
  • the processing module 1001 is specifically configured to respectively determine, according to the two SRI sets, fourth transmission parameters used for different repeated transmissions of the PUSCH, where the fourth transmission parameters include the transmission beam, the antenna port, the transmission at least one of the number of layers and the transmit power.
  • the two SRI sets include a first SRI set and a second SRI set
  • the first SRI set indicates one or more single-port SRS resources in a third SRS resource set
  • the second SRI set Indicates one or more single-port SRS resources in the fourth set of SRS resources.
  • each SRI set may include one or more SRIs, and the number of SRIs included in the two SRI sets is the same.
  • processing module 1001 is specifically used in at least one of the following manners:
  • the SRI set corresponding to one repeated transmission of the PUSCH and the indicated antenna ports of one or more SRS resources are used as the antenna ports of each transmission layer for transmitting the one repeated transmission.
  • At least one value of the one SRI field corresponds to two groups of PUSCH power control parameters
  • the processing module 1001 is specifically configured to, according to the SRI set corresponding to one repeated transmission of the PUSCH, determine the PUSCH power control parameter used for the one repeated transmission from the two sets of PUSCH power control parameters; according to the PUSCH power control parameter to determine the transmit power of the one repeated transmission.
  • the transceiver module 1002 is configured to perform multiple repeated transmissions of the PUSCH respectively according to the transmission parameters.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, data center, etc., which includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

Abstract

本发明实施例提供了一种PUSCH重复传输方法及终端设备,以及计算机可读存储介质,用于通过对现有的SRI域或者TPMI域进行重新定义,在不增加DCI信令开销的前提下,分别指示PUSCH的多次重复传输所用的传输参数,不同的重复传输可以采用不同的传输参数,从而保证各个重复传输的传输参数都与相应的信道匹配,达到更好的传输性能。本发明实施例包括:终端设备根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。

Description

PUSCH重复传输方法及终端设备 技术领域
本发明涉及通信领域,尤其涉及一种PUSCH重复传输方法及终端设备,以及计算机可读存储介质。
背景技术
现有技术中,用于调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的下行控制信息(Downlink Control Information,DCI)中包含探测参考信号(Sounding Reference Signal,SRS)资源指示(Sounding Reference Signal Resource Indicator,SRS Resource Indicator,SRI)域和发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI)域,终端设备基于所指示的SRI和TPMI得到单个波束和预编码矩阵,从而用于PUSCH的传输。如果PUSCH被配置了重复传输,则不同的重复传输所用的发送波束和预编码矩阵是相同的,都是来自于所述SRI域和TPMI域。
为了利用多个传输接收点(Transmission and Reception Point,TRP)进一步提高上行传输的可靠性,新无线(New Radio,NR)引入了基于多个TRP的上行重复传输,即不同的重复传输可以发给不同的TRP,如图1所示,为一种实现方式中基于多TRP的PUSCH重复传输的一个示意图。由于不同TRP对应的信道是不同的,不同的重复传输需要采用与信道对应的传输参数(如发送波束和/或预编码矩阵),以得到最好的传输性能。但是现有协议中SRI域和TPMI域只能得到单个波束和预编码矩阵,无法同时匹配两个TRP各自的信道,从而影响了上行传输的性能。
发明内容
本发明实施例提供了一种PUSCH重复传输方法及终端设备,以及计算机可读存储介质,用于通过对现有的SRI域或者TPMI域进行重新定义,在不增加DCI信令开销的前提下,分别指示PUSCH的多次重复传输所用的传输参数,不同的重复传输可以采用不同的传输参数,从而保证各个重复传输的传输参数都与相应的信道匹配,达到更好的传输性能。
本发明实施例的第一方面提供一种PUSCH重复传输方法,可以包括:终端设备根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
本发明实施例又一方面提供了一种终端设备,具有通过对现有的SRI域或者TPMI域进行重新定义,在不增加DCI信令开销的前提下,分别指示PUSCH的多次重复传输所用的传输参数,不同的重复传输可以采用不同的传输参数,从而保证各个重复传输的传输参数都与相应的信道匹配,达到更好的传输性能。的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例又一方面提供一种终端设备,包括:存储有可执行程序代码的存储器;与所述存储器耦合的处理器和收发器;所述处理器和所述收发器,用于对应执行本发明实施例第一方面中所述的方法。
本发明实施例又一方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如本发明第一方面中所述的方法。
本发明实施例又一方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如本发明第一方面中所述的方法。
本发明实施例又一方面提供一种芯片,所述芯片与所述终端设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,使得所述终端设备执行如本发明第一方面中所述的方法。
本发明实施例提供的技术方案中,具有以下有益效果:
在本发明实施例中,终端设备根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。通过对现有的SRI域或者TPMI域进行重新定义,在不增加DCI信令开销的前提下,分别指示PUSCH的多次重复传输所用的传输参数, 不同的重复传输可以采用不同的传输参数,从而保证各个重复传输的传输参数都与相应的信道匹配,达到更好的传输性能。
附图说明
图1为一种实现方式中基于多TRP的PUSCH重复传输的一个示意图;
图2为一种实现方式中基于码本的PUSCH传输的一个示意图;
图3为一种实现方式中基于非码本的PUSCH传输的一个示意图;
图4为一种实现方式中基于时隙的PUSCH重复传输的一个示意图;
图5为一种实现方式中基于OFDM符号的PUSCH重复传输的一个示意图;
图6为一种实现方式中基于多TRP/Panel的PUSCH重复传输的一个示意图;
图7所示,为本发明实施例所应用的通信系统的系统架构图;
图8为本发明实施例中PUSCH重复传输方法的一个实施例示意图;
图9为本发明实施例中终端设备的一个实施例示意图;
图10为本发明实施例中终端设备的另一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面先对本申请实施例涉及的术语进行简要说明,如下所示:
1、上行码本传输和非码本传输
终端设备发送上行数据(物理上行共享信道(Physical Uplink Shared Channel,PUSCH))时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传输层的数据映射到射频端口上。由于终端设备的射频通道数量有限,一般要同时采用两种处理方式,即对数字信号进行预编码,再对模拟信号采用波束进行赋形。PUSCH传输根据预编码方式的不同,分为基于码本的传输和基于非码本的传输。
在上行基于码本的预编码方式中,网络侧会为终端设备配置一个专用于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集合。终端设备会在集合中的多个SRS资源上发送SRS,每个SRS资源上的SRS采用不同的波束,网络侧从中选择最好的SRS资源用于获得上行信道状态指示(Channel State Information,CSI),同时将资源索引通过SRS资源指示(Sounding Reference Signal Resource Indicator,SRS Resource Indicator,SRI)指示给终端设备,令终端设备采用SRS资源相应的波束对数据进行模拟波束赋形。同时,网络侧会通过下行控制信息(Downlink Control Information,DCI)指示秩指示(Rank Indicator,RI)和发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI,也称为PMI),终端设备根据RI和TPMI从码本中确定TPMI对应的上行的预编码矩阵。如图2所示,为一种实现方式中基于码本的PUSCH传输的一个示意图。
对于一些支持上下行信道互易性的终端设备,还可以支持基于非码本的预编码方式。终端设备可以利用下行信道信息来得到上行信道信息,从而进行上行的模拟波束赋形和/或数字预编码,此时网络侧不需要再指示预编码矩阵的相关信息,从而可以降低DCI的开销。具体的,网络侧先发送信道状态信息参考信号(Channel State Information Reference Signal,CSI Reference Signal,CSI-RS),令终端设备基于CSI-RS确定N个layer的波束和预编码矩阵。终端设备采用这N个layer的波束和预编码矩阵来发送N个单端口的SRS资源(即N个SRS ports),这N个SRS资源被配置为一个用于非码本传输的SRS资源集合。网络侧收到SRS资源后进行测量,选择其中最好的K个SRS资源并将相应的SRI指示给终端设备,终端设备根据SRI来确定所采用的传输层数、预编码矩阵和模拟波束。指示的SRS资源的数量即为传输层数,相应SRS资源采用的预编码矩阵和模拟波束即为数据相应layer采用的预编码矩阵 和波束。此时,DCI中不需要指示RI和PMI。如图3所示,为一种实现方式中基于非码本的PUSCH传输的一个示意图。
2、上行重复传输
为了提高PUSCH的传输可靠性,新无线(New Radio,NR)引入了PUSCH的重复传输,即携带相同数据的PUSCH通过不同的时频资源/天线/冗余版本等多次传输,从而获得分集增益,降低误检概率(BLER)。具体的,所述重复传输可以在不同时隙进行,如图4所示,为一种实现方式中基于时隙的PUSCH重复传输的一个示意图。可以在不同的正交频分复用(Orthogonal Frequency Division Multiple,OFDM)符号中进行,如图5所示,为一种实现方式中基于OFDM符号的PUSCH重复传输的一个示意图(时隙内或者跨时隙)。也可以在多个Panel(天线面板)上进行,如图6所示,为一种实现方式中基于多TRP/Panel的PUSCH重复传输的一个示意图。对于多时隙或者多符号的重复传输,一个DCI可以调度多个PUSCH在连续的多个时隙或者多个OFDM符号上传输,携带相同的数据但采用不同的冗余版本。此时,不同重复传输的接收端可以是相同的传输接收点(Transmission and Reception Point,TRP)或者不同的TRP。对于多Panel重复,携带相同数据的PUSCH同时在不同Panel上分别传输,接收端可以是同一个TRP也可以是不同的TRP。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安 全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
如图7所示,为本发明实施例所应用的通信系统的系统架构图。该通信系统可以包括网络设备,网络设备可以是与终端设备(或称为通信终端、终端)通信的设备。网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。图7示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图7示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本发明实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
下面以实施例的方式,对本发明技术方案做进一步的说明,如图8所示,为本发明实施例中PUSCH重复传输方法的一个实施例示意图,可以包括:
801、终端设备根据一个SRI域或者一个TPMI域指示的第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
802、所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输。
可选的,所述PUSCH的调度信息包括调度所述PUSCH的DCI。
可以理解的是,终端设备根据一个SRI域或者一个TPMI域指示的第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数。可以包括但不限于以下几种实现方式:
实现方式1:
所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,所述终端设备根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,所述预编码矩阵和所述发送功率中的至少一个。
1)可选的,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集。
可选的,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
可选的,所述码本子集可以通过高层信令指示给终端。
可选的,所述全相关码本子集可以包含部分相关码本子集和非相关码本子集,所述部分相关码本子集可以包含非相关码本子集。
在这种实现方式中,可以限制所述一个TPMI域的指示内容,从而降低TPMI域的指示信令开销。
2)可选的,所述两个TPMI指示的预编码矩阵对应的传输层数(即矩阵的列数)相同。
3)可选的,所述一个TPMI域同时指示传输层数和TPMI。即所述一个TPMI域可以同时指示传输层数和TPMI。此时所述一个TPMI域又可以称为预编码信息和传输层数指示域。
4)可选的,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。例如:由终端与基站预先约定好。
可选的,在一种实施方式中,所述一个TPMI域的每个取值可以对应一个或者两个TPMI。例如,所述一个TPMI域的一部分取值对应一个TPMI(如下表1中的0-7),另一部分取值对应两个TPMI(如下表中的8-15)。当所述一个TPMI域指示一个TPMI时,所述一个TPMI指示的预编码矩阵应用于所述PUSCH的所有重复传输;当所述一个TPMI域指示两个TPMI时,所述两个TPMI指示的预编码矩阵应用于所述PUSCH的不同重复传输,例如,奇数次的重复传输和偶数次的重复传输使用其中不同的预编码矩阵。本发明主要针对取值对应两个TPMI的情况。
可选的,所述高层信令可以是RRC信令或者MAC层信令。例如,假设所述一个TPMI域的可能取值为0-15,则不同取值分别对应的TPMI可以如下表1所示:
一个TPMI域的指示值 对应的TPMI
0 0(传输层数为1)
1 1(传输层数为1)
2 2(传输层数为1)
3 3(传输层数为1)
4 4(传输层数为1)
5 5(传输层数为1)
6 0(传输层数为2)
7 1(传输层数为2)
8 {0,1}(传输层数为1)
9 {0,2}(传输层数为1)
10 {0,3}(传输层数为1)
11 {1,2}(传输层数为1)
12 {1,3}(传输层数为1)
13 {2,3}(传输层数为1)
14 {4,5}(传输层数为1)
15 {0,1}(传输层数为2)
表1
其中,在表1所示中,对于传输层数为1的情况,TPMI为{0,1,2,3}所指示的预编码矩阵和TPMI为{4,5}所指示的预编码矩阵属于不同的码本子集。
可选的,第一传输参数还可以包括发送功率等其他参数。
可选的,所述两个TPMI的不同取值,可以对应不同的PUSCH发送功率或发送功率缩放系数。
可选的,所述终端设备根据所述两个TPMI,分别确定PUSCH的不同重复传输所使用的第三传输参数,可以包括:
所述终端设备根据所述PUSCH的一次重复传输对应的TPMI,确定所述一次重复传输的发送功率或发送功率缩放系数。不同TPMI和发送功率(或发送功率缩放系数)的对应关系可以由终端和网络设备预先约定好,或者由网络设备预先通知给终端设备。
可选的,所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输,可以包括:终端设备根据所述第一传输参数,第一传输参数包括所述传输层数,和/或,所述预编码矩阵,分别进行所述PUSCH的多次重复传输。
可选的,所述两个TPMI指示的两个预编码矩阵分别用于所述PUSCH的不同重复传输。例如,奇数次的重复传输和偶数次的重复传输使用其中不同的预编码矩阵;或者,前两次重复传输和后两次重复传输使用不同的预编码矩阵,以此类推。
在本发明实施例中,终端设备根据一个TPMI域就可以确定两个预编码矩阵,用于不同的PUSCH重复传输,从而分别匹配与不同TRP之间的信道,提高上行多TRP分集传输的性能。
实现方式2:
所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,所述终端设备根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,所述传输层数和所述发送功率中的至少一个。
可选的,所述终端设备根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,可以包括:所述终端设备将所述一个预编码矩阵(下面称为第一预编码矩阵)的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵(下面称为第二预编码矩阵)。
即终端设备可以将第一预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的第二预编码矩阵。可选的,终端将所述第二预编码矩阵的列数,作为所述PUSCH的传输层数。例如,将所述第一预编码矩阵的第一部分,作为所述PUSCH的奇数次重复传输所用的预编码矩阵;将所述第一预编码矩阵的第二部分(与第一部分不同),作为所述PUSCH的偶数次重复传输所用的预编码矩阵。其中,第一部分和第二部分的列数是相同的,表示所述PUSCH的传输层数。具体,至少可以采用如下三种方式:
1)所述一个预编码矩阵为N列,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。例如,第一预编码矩阵的前N/2列作为部分重复传输的预编码矩阵,后N/2列作为其他重复传输的预编码矩阵。
可选的,所述PUSCH的传输层数为N/2。
可选的,所述预编码矩阵的每一列对应的一个传输层。
示例性的,所述PUSCH为2天线端口的单层传输,则所述一个TPMI域可以从2天线端口双层传输的码本中指示一个码字,该码字有2列预编码向量。其中,第一和第二列预编码向量分别用于不同的重复传输。该方法同样可以用于4端口的PUSCH传输。例如,一个TPMI域指示的预编码矩阵为
Figure PCTCN2020138307-appb-000001
则终端设备可以将
Figure PCTCN2020138307-appb-000002
Figure PCTCN2020138307-appb-000003
用于不同的重复传输。
2)所述一个预编码矩阵为M行,所述终端设备将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。例如,第一预编码矩阵的前M/2行作为部分重复传输的预编码矩阵,后M/2行列作为其他重复传输的预编码矩阵。
可选的,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
可选的,所述预编码矩阵的每一行对应一个天线端口。
示例性的,所述PUSCH为2天线端口的单层传输,则所述一个TPMI域可以从4天线端口单层传输的码本中指示一个码字,该码字是4行1列的预编码矩阵。其中,前两行和后两行得到的预编码向量分别用于不同的重复传输。该方法同样可以用于4端口2层的PUSCH传输。例如,一个TPMI域指示的预 编码矩阵为
Figure PCTCN2020138307-appb-000004
则终端设备可以将
Figure PCTCN2020138307-appb-000005
Figure PCTCN2020138307-appb-000006
用于不同的重复传输。
3)所述一个预编码矩阵为M行N列,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,所述PUSCH的传输层数为N/2。
示例性的,所述PUSCH为2天线端口的单层传输,则所述一个TPMI域可以从4天线端口双层传输的码本中指示一个码字,该码字是4行2列的预编码矩阵。其中,前两行中的前1列和后两行中的后1列得到的预编码矩阵分别用于不同的重复传输。例如,一个TPMI域指示的预编码矩阵为
Figure PCTCN2020138307-appb-000007
则终端设备可以将
Figure PCTCN2020138307-appb-000008
Figure PCTCN2020138307-appb-000009
用于不同的重复传输。
可选的,第二传输参数还可以包括发送功率等其他参数。
可选的,所述一个预编码矩阵的不同部分,可以对应不同的PUSCH发送功率或发送功率缩放系数。
可选的,所述终端设备根据所述一个预编码矩阵的不同部分,分别确定PUSCH的不同重复传输所使用的第三传输参数,可以包括:
所述终端设备根据所述PUSCH的一次重复传输对应的所述一个预编码矩阵的部分预编码矩阵,确定所述一次重复传输的发送功率或发送功率缩放系数。所述一个预编码矩阵的不同部分和发送功率(或发送功率缩放系数)的对应关系可以由终端和网络设备预先约定好,或者由网络设备预先通知给终端设备。
可选的,所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输,可以包括:终端设备根据所述第二传输参数,所述第二传输参数包括所述传输层数,和/或,所述预编码矩阵,分别进行所述PUSCH的多次重复传输。
例如,奇数次的重复传输和偶数次的重复传输使用所述第一预编码矩阵的不同部分进行预编码;或者,前两次重复传输和后两次重复传输使用所述第一预编码矩阵的不同部分进行预编码,以此类推。
在本发明实施例中,终端设备根据一个TPMI域所指示的一个预编码矩阵就可以得到两个预编码矩阵,用于不同的PUSCH重复传输,从而分别匹配与不同TRP之间的信道,提高上行多TRP分集传输的性能。
实现方式3:
所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同SRS资源集合中的一个SRS资源,所述终端设备根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
可以理解的是,每个SRI指示不同SRS资源集合中的一个SRS资源,即两个SRI中的第一SRI用于指示第一SRS资源集合中的一个SRS资源(称为第一SRS资源),第二SRI用于指示第二SRS资源集合中的一个SRS资源(称为第二SRS资源)。所述第一SRS资源集合和第二SRS资源集合可以预先配置给终端设备。
在一种实施方式中,当一个SRI域的一个取值指示两个SRI时,其中某个SRI可以不指示任何SRS资源,表示对应的SRS资源集合不被使用,此时,所有的重复传输都采用另一个SRI来确定发送波束,和/或,天线端口,从而达到在两个SRI之间动态切换的效果。由于不同的SRI对应不同的TRP接收,这样就可以支持两个TRP接收点之间的动态切换,灵活选择当前最好的TRP作为接收点,达到更好的传输性能。
可选的,本发明实施例可以用于基于码本的PUSCH传输,即前述第一SRS资源集合和第二SRS资源集合为用于上行码本传输的SRS资源集合(即SRS资源集合的usage参数配置为Codebook)。
可选的,终端设备可以采用如下方法,确定PUSCH的不同重复传输所使用的发送波束、天线端口或发送功率:
1)所述终端设备将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束。
可以理解的是,所述PUSCH的每次重复传输与该重复传输对应的SRI所指示的SRS资源使用相同的发送波束。例如,PUSCH的部分重复传输对应第一SRI,则这些重复传输与第一SRI所指示的第一SRS资源使用相同的发送波束;其他重复传输对应第二SRI,则这些重复传输与第二SRI所指示的第二SRS资源使用相同的发送波束。本发明实施例中,发送波束也可以称为空间域传输滤波器或者空间滤波器。
2)所述终端设备将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次重复传输的端口数。
可以理解的是,所述PUSCH的每次重复传输所使用的天线端口数等于该重复传输对应的SRI所指示的SRS资源的端口数。例如,PUSCH的部分重复传输对应第一SRI,则这些重复传输所使用的天线端口数等于第一SRS资源的端口数;其他重复传输对应第二SRI,则这些重复传输所使用的天线端口数等于第二SRS资源的端口数。终端可以进一步根据天线端口数来确定所使用的码本。
3)所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,分别用于确定所述PUSCH的不同重复传输的发送功率。具体的,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,所述终端设备根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。即所述两组PUSCH功率控制参数分别用于确定所述PUSCH的不同重复传输所使用的发送功率。
下面考虑两种可能的配置情况:
i、一个SRI域的部分取值可以指示一个SRI,其他取值可以指示两个SRI。
在一种实施方式中,如果一个SRI域的某个取值指示两个SRI,则所述取值对应两组PUSCH功率控制参数,分别用于确定不同重复传输的发送功率。如果一个SRI域的某个取值指示一个SRI,则所述取值对应一组PUSCH功率控制参数,所有的重复传输都采用这组功率控制参数来确定发送功率。
在另一种实施方式中,如果一个SRI域的每个取值都对应两组PUSCH功率控制参数,则当某个取值指示两个SRI时,所述两组PUSCH功率控制参数分别用于确定不同重复传输的发送功率;当某个取值指示一个SRI时,终端采用所述两组PUSCH功率控制参数中的一组来确定所有重复传输的发送功率,例如其中的第一组功率控制参数。在一些特殊配置下,例如,当某个取值指示两个SRI但其中一个SRI不指示任何SRS资源时,终端设备采用另一个SRI对应的PUSCH功率控制参数来确定所有重复传输的发送功率。
例如,所述一个SRI域的取值范围是0-7,其中取值4-7指示两个SRI,则这些取值中每个取值都对应两组PUSCH功率控制参数,终端设备根据重复传输对应的SRI,来确定该重复传输所使用的功率控制参数。如果PUSCH的部分重复传输对应其中的第一SRI,则这些重复传输的发送功率根据第一组功率控制参数确定;如果PUSCH的部分重复传输对应其中的第二SRI,则这些重复传输的发送功率根据第二组功率控制参数确定。
ii、一个SRI域的所有取值可以都指示一个SRI,或者都指示两个SRI,采用哪种取决于高层信令的配置。如果高层信令配置一个SRI域只指示一个SRI,则所述SRI域的每个取值都对应一组PUSCH功率控制参数;如果高层信令配置一个SRI域指示两个SRI,则所述SRI域的每个取值都可以对应两组PUSCH功率控制参数。终端设备根据重复传输对应的SRI,来确定该重复传输所使用的功率控制参数为其中哪一组功率控制参数。
在一种实施方式中,一个SRI域的不同取值对应的两组PUSCH功率控制参数可以通过高层信令配置给终端设备。
可选的,所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输,可以包括:终端设备根据所述第三传输参数,分别进行所述PUSCH的多次重复传输。
例如,奇数次的重复传输和偶数次的重复传输使用不同的发送波束和/或天线端口;或者,前两次重复传输和后两次重复传输使用不同的发送波束和/或天线端口,以此类推。
在本发明实施例中,终端设备根据一个SRI域指示的两个SRI,得到两组发送波束和/或天线端口,用于不同的PUSCH重复传输,从而分别匹配与不同TRP之间的信道,提高上行多TRP分集传输的性能。
实现方式4:
所述终端设备根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第三传输参数,所 述第三传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
可选的,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。即两个SRI集合中的第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。所述第三SRS资源集合和第四SRS资源集合可以预先配置给终端设备。
在一些实施例方式中,一个SRI集合中可以不包含任何SRI,即不指示任何SRS资源,表示对应的SRS资源集合不被使用,此时,所有的重复传输都采用另一个SRI集合来确定传输参数,从而达到在两个SRI集合之间动态切换的效果。由于不同的SRI集合对应不同的TRP接收,这样就可以支持两个TRP接收点之间的动态切换,灵活选择当前最好的TRP作为接收点,达到更好的传输性能。
可选的,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
可选的,本发明实施例可以用于基于码本的PUSCH传输,即前述第三SRS资源集合和第四SRS资源集合为用于上行非码本传输的SRS资源集合(该集合的usage参数配置为NonCodebook)。
可选的,每个SRI集合中可以包含一个或多个SRI,且两个SRI集合中包含的SRI的数量是相同的。
可选的,所述一个SRI域的至少一个取值分别对应的两个SRI集合通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
可以理解的是,所述一个SRI域的不同取值对应的两个SRI集合可以通过MAC层信令通知给终端设备,或者由终端设备与网络设备(例如基站)预先约定好。例如,网络设备可以通过如下表格通知终端SRI域的每个取值对应的SRI集合,或者终端与网络设备预先约定好如下表的对应关系(其中一个大括号内为一个SRI集合)。在一些实施方式中,不同的取值可以对应不同数量的SRI集合;在另一些实施方式中,所有的取值都对应相同数量的SRI集合,且SRI集合的数量是1还是2由高层信令预先配置。
对应举例1:
一个SRI域的指示值 对应的SRI集合(假设传输层数为1)
0 {0}
1 {1}
2 {2}
3 {3}
4 {0}{0}
5 {0}{1}
6 {0}{2}
7 {0}{3}
8 {1}{0}
9 {1}{1}
10 {1}{2}
11 {1}{3}
12 {2}{0}
13 {2}{1}
14 {2}{2}
15 {2}{3}
16 {3}{0}
17 {3}{1}
18 {3}{2}
19 {3}{3}
20-31 预留
表2
对应举例2:(其中N/A表示SRI集合中不包含任何SRI)
一个SRI域的指示值 对应的SRI集合(假设传输层数为1)
0 {N/A}{0}
1 {N/A}{1}
2 {N/A}{2}
3 {N/A}{3}
4 {0}{0}
5 {0}{1}
6 {0}{2}
7 {0}{3}
8 {0}{N/A}
9 {1}{0}
10 {1}{1}
11 {1}{2}
12 {1}{3}
13 {1}{N/A}
14 {2}{0}
15 {2}{1}
16 {2}{2}
17 {2}{3}
18 {2}{N/A}
19 {3}{0}
20 {3}{1}
21 {3}{2}
22 {3}{3}
23 {3}{N/A}
24-31 预留
表3
可选的,终端设备确定PUSCH的不同重复传输所使用的发送波束、天线端口、传输层数或发送功率,可以采用如下方式之一:
1)可选的,所述终端设备将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数。即每个SRI集合包含的SRI数量即为所述PUSCH的传输层数。进一步的,所述SRI数量不超过2。
2)可选的,所述终端设备将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束。
可以理解的是,所述PUSCH的每次重复传输的各个传输层与该重复传输对应的SRI集合所指示的各个SRS资源分别使用相同的发送波束。例如,PUSCH的每个重复传输包含两个传输层,其中部分重复传输对应第一SRI集合,该第一SRI集合指示了两个单端口的SRS资源,则这些重复传输的第一个传输层与其中第一个SRS资源使用相同的发送波束,第二个传输层与其中第二个SRS资源使用相同的发送波束。对应第二SRI集合的重复传输采用相同的方法。
3)可选的,所述终端设备将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传输所述一次重复传输的各个传输层的天线端口。
可以理解的是,所述PUSCH的各次重复传输与该重复传输对应的SRI集合所指示的SRS资源使用相同的天线端口。例如,PUSCH的每个重复传输包含两个传输层,其中部分重复传输对应第一SRI集合,该第一SRI集合指示了两个单端口的SRS资源,则这些重复传输中的每个重复传输都与所述两个SRS资源使用相同的天线端口(即第一个传输层与第一个SRS资源使用相同的天线端口,第二个传输层与第二个SRS资源使用相同的天线端口)。对应第二SRI集合的重复传输采用相同的方法。
4)所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,所述终端设备根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的 PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。即所述两组PUSCH功率控制参数分别用于确定所述PUSCH的不同重复传输的发送功率。具体的,可以采用如下的实施方式:
i、在一种实施方式中,如果一个SRI域的某个取值指示两个SRI集合,则所述取值对应两组PUSCH功率控制参数,分别用于确定不同重复传输的发送功率。如果一个SRI域的某个取值指示一个SRI集合,则所述取值对应一组PUSCH功率控制参数,所有的重复传输都采用这组功率控制参数来确定发送功率。例如,所述一个SRI域的取值范围是0-7,其中取值4-7指示两个SRI集合,则这些取值中每个取值都对应两组PUSCH功率控制参数,终端设备根据重复传输对应的SRI集合,来确定该重复传输所使用的功率控制参数。如果PUSCH的部分重复传输对应其中的第一SRI集合,则这些重复传输的发送功率根据第一组功率控制参数确定;如果PUSCH的部分重复传输对应其中的第二SRI集合,则这些重复传输的发送功率根据第二组功率控制参数确定。
ii、在另一种实施方式中,如果一个SRI域的每个取值都对应两组PUSCH功率控制参数,则当某个取值指示两个SRI集合时,所述两组PUSCH功率控制参数分别用于确定不同重复传输的发送功率;当某个取值指示一个SRI集合时,终端设备采用所述两组PUSCH功率控制参数中的一组来确定所有重复传输的发送功率,例如其中的第一组功率控制参数。在一些特殊配置下,例如,当某个取值指示两个SRI集合但其中一个SRI集合不指示任何SRI时,终端设备采用另一个SRI集合对应的PUSCH功率控制参数来确定所有重复传输的发送功率。
iii、在另一种实施方式中,一个SRI域的所有取值可以都指示一个SRI集合,或者都指示两个SRI集合,采用哪种取决于高层信令的配置。如果高层信令配置SRI域只指示一个SRI集合,则所述一个SRI域的每个取值都对应一组PUSCH功率控制参数;如果高层信令配置SRI域指示两个SRI集合,则所述一个SRI域的每个取值都可以对应两组PUSCH功率控制参数。终端设备根据重复传输对应的SRI集合,来确定该重复传输所使用的功率控制参数为其中哪一组功率控制参数。
可选的,一个SRI域的不同取值对应的两组PUSCH功率控制参数可以通过高层信令配置给终端设备。
可选的,所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输,可以包括:终端设备根据所述第四传输参数,分别进行所述PUSCH的多次重复传输。
例如,奇数次的重复传输和偶数次的重复传输使用不同的传输参数;或者,前两次重复传输和后两次重复传输使用不同的传输参数,以此类推。
在本发明实施例中,终端设备根据一个SRI域指示的两个SRI集合,可以得到两组传输参数,用于不同的PUSCH重复传输,从而分别匹配与不同TRP之间的信道,提高上行多TRP分集传输的性能。
在上述整个本发明实施例中,可以通过对现有的SRI域或者TPMI域进行重新定义,在不增加DCI信令开销的前提下,分别指示PUSCH的多次重复传输所用的传输参数,不同的重复传输可以采用不同的传输参数,从而保证各个重复传输的传输参数都与相应的信道匹配,达到更好的传输性能。终端设备根据一个SRI域或TPMI域就可以得到两组传输参数,用于不同的重复传输,从而分别匹配与不同TRP之间的信道,提高上行多TRP分集传输的性能。
与上述至少一个应用于终端设备的实施例的方法相对应地,本申请实施例还提供一种或多种终端设备。本申请实施例的终端设备可以实施上述方法中的任意一种实现方式。如图9所示,为本发明实施例中终端设备的一个实施例示意图,终端设备以手机为例进行说明,可以包括:射频(radio frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。其中,射频电路910包括接收器914和发送器912。本领域技术人员可以理解,图9中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图9对手机的各个构成部件进行具体的介绍:
RF电路910可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器980处理;另外,将设计上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板941。进一步的,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图9中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号输出;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910以发送给比如另一手机,或者将音频数据输出至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器980可包括一个或多个处理单元;优选的,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本发明实施例中,处理器980,用于根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传 输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
可选的,所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,
处理器980,具体用于根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,和/或,所述预编码矩阵。
可选的,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
可选的,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
可选的,所述两个TPMI指示的预编码矩阵对应的传输层数相同。
可选的,所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,
处理器980,具体用于根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,和/或,所述传输层数。
可选的,处理器980,具体用于将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,处理器980,具体用于:
在所述一个预编码矩阵为N列的情况下,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵;或者,
在所述一个预编码矩阵为M行N列的情况下,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,所述PUSCH的传输层数为N/2。
可选的,所述一个预编码矩阵为M行,
处理器980,具体用于将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
可选的,所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同探测参考信号SRS资源集合中的一个SRS资源,
处理器980,具体用于根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
可选的,处理器980,具体用于将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束;和/或,将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次重复传输的端口数。
可选的,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
处理器980,具体用于根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
可选的,所述第一信息为通过一个SRI域指示的两个SRI集合,
处理器980,具体用于根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,所述第四传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
可选的,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。
可选的,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
可选的,处理器980,具体用于如下方式中的至少一个:
将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数;
将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束;
将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传 输所述一次重复传输的各个传输层的天线端口。
可选的,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
处理器980,具体用于根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
可选的,RF电路910,用于根据所述传输参数,分别进行所述PUSCH的多次重复传输。
如图10所示,为本发明实施例中终端设备的另一个实施例示意图,可以包括:
处理模块1001,用于根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
可选的,所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,
处理模块1001,具体用于根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,和/或,所述预编码矩阵。
可选的,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
可选的,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
可选的,所述两个TPMI指示的预编码矩阵对应的传输层数相同。
可选的,所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,
处理模块1001,具体用于根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,和/或,所述传输层数。
可选的,处理模块1001,具体用于将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,处理模块1001,具体用于:
在所述一个预编码矩阵为N列的情况下,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵;或者,
在所述一个预编码矩阵为M行N列的情况下,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,所述PUSCH的传输层数为N/2。
可选的,所述一个预编码矩阵为M行,
处理模块1001,具体用于将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
可选的,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
可选的,所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同探测参考信号SRS资源集合中的一个SRS资源,
处理模块1001,具体用于根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
可选的,处理模块1001,具体用于将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束;和/或,将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次重复传输的端口数。
可选的,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
处理模块1001,具体用于根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
可选的,所述第一信息为通过一个SRI域指示的两个SRI集合,
处理模块1001,具体用于根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,所述第四传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
可选的,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。
可选的,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
可选的,处理模块1001,具体用于如下方式中的至少一个:
将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数;
将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束;
将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传输所述一次重复传输的各个传输层的天线端口。
可选的,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
处理模块1001,具体用于根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
可选的,收发模块1002,用于根据所述传输参数,分别进行所述PUSCH的多次重复传输。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。
在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (61)

  1. 一种PUSCH重复传输方法,其特征在于,包括:
    终端设备根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,则所述终端设备根据第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数,包括:
    所述终端设备根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,所述预编码矩阵和所述发送功率中的至少一个。
  3. 根据权利要求2所述的方法,其特征在于,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
  4. 根据权利要求2或3所述的方法,其特征在于,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述两个TPMI指示的预编码矩阵对应的传输层数相同。
  6. 根据权利要求1所述的方法,其特征在于,所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,则所述终端设备根据第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数,包括:
    所述终端设备根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,所述传输层数和所述发送功率中的至少一个。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,包括:
    所述终端设备将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵,包括:
    在所述一个预编码矩阵为N列的情况下,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵;或者,
    在所述一个预编码矩阵为M行N列的情况下,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述PUSCH的传输层数为N/2。
  10. 根据权利要求7所述的方法,其特征在于,所述一个预编码矩阵为M行,则所述终端设备将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵,包括:
    所述终端设备将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  11. 根据权利要求10所述的方法,其特征在于,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
  12. 根据权利要求1所述的方法,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同探测参考信号SRS资源集合中的一个SRS资源,则所述终端设备根据第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数,包括:
    所述终端设备根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,包括:
    所述终端设备将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束;和/或,
    所述终端设备将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次 重复传输的端口数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,所述终端设备根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,包括:
    所述终端设备根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;
    所述终端设备根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
  15. 根据权利要求1所述的方法,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI集合,则所述终端设备根据第一信息中的不同部分,分别确定PUSCH的不同重复传输所使用的传输参数,包括:
    所述终端设备根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,所述第四传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
  16. 根据权利要求15所述的方法,其特征在于,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。
  17. 根据权利要求15或16所述的方法,其特征在于,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
  18. 根据权利要求15-17中任一项所述的方法,其特征在于,所述终端设备根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,包括如下方式中的至少一个:
    所述终端设备将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数;
    所述终端设备将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束;
    所述终端设备将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传输所述一次重复传输的各个传输层的天线端口。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,所述终端设备根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,包括:
    所述终端设备根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;
    所述终端设备根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述传输参数,分别进行所述PUSCH的多次重复传输。
  21. 一种终端设备,其特征在于,包括:
    处理模块,用于根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,
    所述处理模块,具体用于根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,和/或,所述预编码矩阵。
  23. 根据权利要求22所述的终端设备,其特征在于,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
  25. 根据权利要求22-24中任一项所述的终端设备,其特征在于,所述两个TPMI指示的预编码矩阵对应的传输层数相同。
  26. 根据权利要求21所述的终端设备,其特征在于,所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,
    所述处理模块,具体用于根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传 输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,和/或,所述传输层数。
  27. 根据权利要求26所述的终端设备,其特征在于,
    所述处理模块,具体用于将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理模块,具体用于:
    在所述一个预编码矩阵为N列的情况下,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵;或者,
    在所述一个预编码矩阵为M行N列的情况下,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  29. 根据权利要求28所述的终端设备,其特征在于,所述PUSCH的传输层数为N/2。
  30. 根据权利要求27所述的终端设备,其特征在于,所述一个预编码矩阵为M行,
    所述处理模块,具体用于将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  31. 根据权利要求30所述的终端设备,其特征在于,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同探测参考信号SRS资源集合中的一个SRS资源,
    所述处理模块,具体用于根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
  33. 根据权利要求32所述的终端设备,其特征在于,
    所述处理模块,具体用于将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束;和/或,将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次重复传输的端口数。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
    所述处理模块,具体用于根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
  35. 根据权利要求31所述的终端设备,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI集合,
    所述处理模块,具体用于根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,所述第四传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
  36. 根据权利要求35所述的终端设备,其特征在于,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。
  37. 根据权利要求35或36所述的终端设备,其特征在于,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
  38. 根据权利要求35-37中任一项所述的终端设备,其特征在于,
    所述处理模块,具体用于如下方式中的至少一个:
    将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数;
    将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束;
    将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传输所述一次重复传输的各个传输层的天线端口。
  39. 根据权利要求35-38中任一项所述的终端设备,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
    所述处理模块,具体用于根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定 所述一次重复传输的发送功率。
  40. 根据权利要求21-39中任一项所述的终端设备,其特征在于,
    收发模块,用于根据所述传输参数,分别进行所述PUSCH的多次重复传输。
  41. 一种终端设备,其特征在于,包括:
    处理器,用于根据一个探测参考信号资源指示SRI域或者一个发送预编码矩阵指示TPMI域指示的第一信息中的不同部分,分别确定物理上行共享信道PUSCH的不同重复传输所使用的传输参数,其中,所述一个SRI域和所述一个TPMI域包含在所述PUSCH的调度信息中,所述传输参数包含传输层数、预编码矩阵、天线端口、发送波束和发送功率中的至少一个。
  42. 根据权利要求41所述的终端设备,其特征在于,所述第一信息为通过所述一个TPMI域指示的两个TPMI,每个TPMI指示一个预编码矩阵,
    所述处理器,具体用于根据所述两个TPMI,分别确定所述PUSCH的不同重复传输所使用的第一传输参数,所述第一传输参数包括所述传输层数,和/或,所述预编码矩阵。
  43. 根据权利要求42所述的终端设备,其特征在于,所述两个TPMI指示的两个预编码矩阵属于相同的码本子集,所述码本子集为全相关码本子集、部分相关码本子集或非相关码本子集。
  44. 根据权利要求42或43所述的终端设备,其特征在于,所述一个TPMI域的不同取值对应的两个TPMI通过高层信令通知给所述终端设备,或者,由所述终端设备与网络设备预先约定的。
  45. 根据权利要求42-44中任一项所述的终端设备,其特征在于,所述两个TPMI指示的预编码矩阵对应的传输层数相同。
  46. 根据权利要求41所述的终端设备,其特征在于,所述第一信息为通过所述一个TPMI域指示的一个预编码矩阵,
    所述处理器,具体用于根据所述一个预编码矩阵的不同部分,分别确定所述PUSCH的不同重复传输所使用的第二传输参数,所述第二传输参数包括所述预编码矩阵,和/或,所述传输层数。
  47. 根据权利要求46所述的终端设备,其特征在于,
    所述处理器,具体用于将所述一个预编码矩阵的不同部分,作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  48. 根据权利要求47所述的终端设备,其特征在于,所述处理器,具体用于:
    在所述一个预编码矩阵为N列的情况下,所述终端设备将所述一个预编码矩阵的前N/2列和后N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵;或者,
    在所述一个预编码矩阵为M行N列的情况下,所述终端设备将所述一个预编码矩阵的前M/2行中的前N/2列,和所述一个预编码矩阵的后M/2行的N/2列,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  49. 根据权利要求48所述的终端设备,其特征在于,所述PUSCH的传输层数为N/2。
  50. 根据权利要求47所述的终端设备,其特征在于,所述一个预编码矩阵为M行,
    所述处理器,具体用于将所述一个预编码矩阵的前M/2行和后M/2行,分别作为所述PUSCH的不同重复传输所使用的预编码矩阵。
  51. 根据权利要求50所述的终端设备,其特征在于,所述PUSCH的传输层数等于所述一个预编码矩阵的列数。
  52. 根据权利要求51所述的终端设备,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI,每个SRI指示不同探测参考信号SRS资源集合中的一个SRS资源,
    所述处理器,具体用于根据所述两个SRI,分别确定PUSCH的不同重复传输所使用的第三传输参数,所述第三传输参数包括所述发送波束、所述天线端口和所述发送功率中的至少一个。
  53. 根据权利要求52所述的终端设备,其特征在于,
    所述处理器,具体用于将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源所使用的发送波束,作为所述一次重复传输的发送波束;和/或,将所述PUSCH的一次重复传输对应的SRI所指示的SRS资源的端口数,作为所述一次重复传输的端口数。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
    所述处理器,具体用于根据所述PUSCH的一次重复传输对应的SRI,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
  55. 根据权利要求51所述的终端设备,其特征在于,所述第一信息为通过一个SRI域指示的两个SRI集合,
    所述处理器,具体用于根据所述两个SRI集合,分别确定PUSCH的不同重复传输所使用的第四传输参数,所述第四传输参数包括所述发送波束、所述天线端口、所述传输层数和所述发送功率中的至少一个。
  56. 根据权利要求55所述的终端设备,其特征在于,所述两个SRI集合包括第一SRI集合和第二SRI集合,所述第一SRI集合指示第三SRS资源集合中的一个或多个单端口SRS资源,所述第二SRI集合指示第四SRS资源集合中的一个或多个单端口SRS资源。
  57. 根据权利要求55或56所述的终端设备,其特征在于,每个SRI集合中可以包含一个或多个SRI,且所述两个SRI集合中包含的SRI的数量是相同的。
  58. 根据权利要求55-57中任一项所述的终端设备,其特征在于,
    所述处理器,具体用于如下方式中的至少一个:
    将每个SRI集合包含的SRI数量,作为所述PUSCH的不同重复传输所使用的传输层数;
    将所述PUSCH的一次重复传输对应的SRI集合,所指示的各个SRS资源分别使用的发送波束,分别作为所述一次重复传输的各个传输层使用的发送波束;
    将所述PUSCH的一次重复传输对应的SRI集合,所指示的一个或多个SRS资源的天线端口,作为传输所述一次重复传输的各个传输层的天线端口。
  59. 根据权利要求55-58中任一项所述的终端设备,其特征在于,所述一个SRI域的至少一个取值对应两组PUSCH功率控制参数,
    所述处理器,具体用于根据所述PUSCH的一次重复传输对应的SRI集合,从所述两组PUSCH功率控制参数中,确定所述一次重复传输所用的PUSCH功率控制参数;根据所述PUSCH功率控制参数,确定所述一次重复传输的发送功率。
  60. 根据权利要求41-59中任一项所述的终端设备,其特征在于,
    收发器,用于根据所述传输参数,分别进行所述PUSCH的多次重复传输。
  61. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-20中任意一项所述的方法。
PCT/CN2020/138307 2020-12-22 2020-12-22 Pusch重复传输方法及终端设备 WO2022133727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/138307 WO2022133727A1 (zh) 2020-12-22 2020-12-22 Pusch重复传输方法及终端设备
CN202080105057.1A CN116134922A (zh) 2020-12-22 2020-12-22 Pusch重复传输方法及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138307 WO2022133727A1 (zh) 2020-12-22 2020-12-22 Pusch重复传输方法及终端设备

Publications (1)

Publication Number Publication Date
WO2022133727A1 true WO2022133727A1 (zh) 2022-06-30

Family

ID=82157281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138307 WO2022133727A1 (zh) 2020-12-22 2020-12-22 Pusch重复传输方法及终端设备

Country Status (2)

Country Link
CN (1) CN116134922A (zh)
WO (1) WO2022133727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069043A1 (en) * 2022-09-30 2024-04-04 Nokia Technologies Oy Indication for uplink transmission using multiple antenna arrangements simultaneously

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190296809A1 (en) * 2018-03-21 2019-09-26 Qualcomm Incorporated Precoding patterns for shared channel transmission repetition
US20200119953A1 (en) * 2017-12-28 2020-04-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for Uplink Data Transmission, Terminal Device and Network Device
CN111278120A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 上行信道的配置方法、传输方法、网络侧设备及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200119953A1 (en) * 2017-12-28 2020-04-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for Uplink Data Transmission, Terminal Device and Network Device
US20190296809A1 (en) * 2018-03-21 2019-09-26 Qualcomm Incorporated Precoding patterns for shared channel transmission repetition
CN111278120A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 上行信道的配置方法、传输方法、网络侧设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2008911, vol. RAN WG1, 24 October 2020 (2020-10-24), pages 1 - 15, XP051946723 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069043A1 (en) * 2022-09-30 2024-04-04 Nokia Technologies Oy Indication for uplink transmission using multiple antenna arrangements simultaneously

Also Published As

Publication number Publication date
CN116134922A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7230217B2 (ja) 上りリンクチャネルの配置方法、伝送方法、ネットワーク側機器及び端末
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
CN103561434A (zh) 无线通信频带之间转移无线通信会话的装置、系统和方法
US20230350003A1 (en) Positioning measurement method, terminal device, network device
US20230232457A1 (en) Channel Occupancy Time Sharing Method and Device Node
US20230353307A1 (en) Method for srs transmission resource configuration, terminal device, and network device
WO2021147763A1 (zh) 确定波束信息的方法、终端及网络设备
WO2022133727A1 (zh) Pusch重复传输方法及终端设备
CN110022194B (zh) 资源映射方法、网络侧设备及终端
US20230224836A1 (en) Synchronization Signal Block (SSB) Transmission Method, Terminal Device and Network Device
CN108347768A (zh) 前导资源分组方法、前导选择方法,网络设备及终端设备
WO2022095046A1 (zh) 确定上行传输时域资源的方法、终端设备及网络设备
CN112600633B (zh) 一种切换bwp的方法及终端设备
WO2022183347A1 (zh) 一种pusch重复传输方法、终端设备及网络设备
EP4280513A1 (en) Pdcch configuration method, terminal device and storage medium
WO2023123178A1 (zh) 传输上行信号的方法、终端设备、网络设备及存储介质
CN114008931A (zh) 用于执行预编码的电子装置及其操作方法
WO2022141426A1 (zh) 一种切片信息的指示方法、终端设备及网络设备
WO2022188111A1 (zh) Csi上报方法、终端设备、网络设备及存储介质
WO2021248376A1 (zh) 一种监听物理下行控制信道pdcch的方法及终端设备
CN113316234B (zh) Srs的发送方法及终端设备
WO2022022349A1 (zh) 一种通信方法、装置及系统
WO2022126457A1 (zh) 一种寻呼方法、终端设备及网络设备
WO2022061672A1 (zh) 通信方法、终端设备及网络设备
CN116783952A (zh) 确定prs周期放大因子的方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966308

Country of ref document: EP

Kind code of ref document: A1