WO2023185686A1 - 卫星通信方法和装置 - Google Patents

卫星通信方法和装置 Download PDF

Info

Publication number
WO2023185686A1
WO2023185686A1 PCT/CN2023/083770 CN2023083770W WO2023185686A1 WO 2023185686 A1 WO2023185686 A1 WO 2023185686A1 CN 2023083770 W CN2023083770 W CN 2023083770W WO 2023185686 A1 WO2023185686 A1 WO 2023185686A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
satellite
management network
identification list
session management
Prior art date
Application number
PCT/CN2023/083770
Other languages
English (en)
French (fr)
Inventor
李永翠
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185686A1 publication Critical patent/WO2023185686A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • H04W28/0975Quality of Service [QoS] parameters for reducing delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a satellite communication method and device.
  • Satellite backhaul that is, the satellite link serves as a satellite backhaul link.
  • Access network equipment communicates with core network equipment through satellite backhaul links.
  • the delay is often relatively large, resulting in poor user experience. How to reduce the end-to-end transmission delay in satellite communication scenarios is an issue that needs to be considered.
  • This application provides a satellite communication method and device, which can reduce the transmission delay between terminal devices in a satellite communication scenario.
  • the first aspect provides a satellite communication method, which can be executed by a session management network element, or can also be executed by a component (such as a chip or circuit) of the session management network element, which is not limited.
  • a component such as a chip or circuit
  • the following description takes the execution by the session management network element as an example.
  • the communication method includes: the session management network element obtains an identification list, the identification list includes identification information of one or more terminal devices that access the satellite through satellite backhaul; the session management network element transmits the information to the user plane network on the satellite Meta-configuration forwarding rules are used to distribute data packets whose destination address is included in the address of the terminal device corresponding to the identification list to the access network device corresponding to the terminal device.
  • the session management network element can configure forwarding rules to the user plane network element on the satellite, so that the user plane network element sends the data packet whose destination address is the address of the terminal device corresponding to the identification list to the corresponding terminal device.
  • access network equipment that is to say, for the terminal equipment in the identification list, the data packets sent to them can be sent directly from the user plane network element on the satellite to the corresponding access network equipment without going through the ground anchor point Access network equipment, thus shortening the data transmission path and reducing transmission delay.
  • the session management network element obtains the identification list, including: the session management network element receives the identification list from the data management network element or the mobility management network element.
  • the session management network element can obtain the identification list through the data management network element or the mobility management network element, so as to configure forwarding rules to the user plane network element on the satellite based on the identification list.
  • the method before the session management network element receives the identification list from the data management network element, the method further includes: the session management network element sends a message to the data management network element.
  • Request message The request message includes the relevant information of the satellite, and is used to request to obtain the identification list.
  • the session management network element can send a request message carrying satellite-related information to the data management network element, so that the data management network element sends the identification list corresponding to the satellite-related information to the session management network element.
  • the method further includes: the session management network element receiving a session context establishment request message from the mobility management network element, the session context establishment request message including the first terminal device identification information, the first terminal device accesses the satellite through satellite backhaul; the session management network element obtains the relevant information of the satellite; the session management network element sends a registration message to the data management network element, and the registration message It includes identification information of the first terminal device and related information of the satellite.
  • the session management network element when the first terminal device establishes a session through the session management network element, if the session management network element determines that the first terminal device has accessed the satellite through satellite backhaul, the session management network element can The identification information of the first terminal device and the related information of the satellite are registered in the data management network element, so that the data management network element can save the above identification list.
  • the method further includes: the session management network element determining to allow the first terminal device to perform local data exchange under the satellite.
  • the session management network element can register the identification information of the first terminal device and the related information of the satellite with the data management network element in order to identify
  • the list may include the identification information of one or more terminal devices that are allowed to perform local data exchange under the satellite, so that the session management network element can configure forwarding rules to the user plane network element on the satellite to realize the satellite-download operation of these terminal devices. local data exchange.
  • the session management network element obtains satellite-related information, including: the session management network element receives the satellite-related information from the mobility management network element.
  • the session management network element obtains the relevant information of the satellite, including: the session management network element determines the relevant information of the satellite based on the location information of the terminal device.
  • the session management network element can obtain the identification information of the satellite through the mobility management network element, or can determine the relevant information of the satellite by itself based on the identification information of the terminal device, so as to obtain the identification list corresponding to the relevant information of the satellite.
  • the method further includes: the session management network element sending a subscription message to the data management network element, the subscription message including the relevant information of the satellite, the subscription message using To subscribe to change notifications for this identifier list.
  • the session management network element can subscribe to the data management network element for notification of changes in the identification list. That is to say, when a new terminal device is registered to the identification list, or the original terminal device is deregistered from the identification list, the group management network element needs to notify the session management network element. Based on this, the session management network element can update the forwarding rules to the user plane network element on the satellite according to the updated session identification list, so that the terminal device can access the satellite through satellite backhaul and support local data exchange under the satellite. , communication can be carried out through local data exchange under the satellite, which can reduce transmission delay and improve user experience.
  • the relevant information of the satellite may be any of the following information: the data network access identifier corresponding to the satellite, the identifier of the satellite, the Internet of the satellite protocol address.
  • the second aspect provides a satellite communication method, which can be executed by a mobility management network element, or can also be executed by a component (such as a chip or circuit) of the mobility management network element, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the mobility management network element as an example.
  • the communication method includes: the mobility management network element receives an identification list from the data management network element, the identification list includes identification information of one or more terminal devices that access the satellite through satellite backhaul; the mobility management network element sends a message to the session The management network element sends the identification list.
  • the mobility management network element can provide the session management network element with an identification list corresponding to the relevant information of the satellite, so that the session management network element can configure forwarding rules to the user plane network element on the satellite according to the identification list, so that the The user plane network element sends the data packet whose destination address is the address of the terminal device corresponding to the identification list to the access network device corresponding to the terminal device, thereby shortening the data transmission path and reducing transmission delay.
  • the method before the mobility management network element receives the identification list from the data management network element, the method further includes: the mobility management network element sends a message to the data management network element.
  • the request message includes the relevant information of the satellite and is used to request to obtain the identification list.
  • the mobility management network element can request the data management network element for an identification list corresponding to the relevant information of the satellite, so that the identification list can be provided to the session management network element.
  • the method further includes: the mobility management network element receiving a session establishment request message from the first terminal device, the session establishment request message including the first terminal device.
  • the identification information of the first terminal device has accessed the satellite through satellite backhaul; the mobility management network element determines the relevant information of the satellite based on the location information of the first terminal device; the mobility management network element transmits the data to the The management network element sends a registration message, where the registration message includes identification information of the first terminal device and related information of the satellite.
  • the mobility management network element can register the identification information of the first terminal device and the related information of the satellite to the data management network element during the session establishment process of the first terminal device, so that the data management network element can generate and save the information related to the first terminal device.
  • a list of identifiers corresponding to the satellite s relevant information.
  • the method further includes: the session management network element determining to allow the first terminal device to perform local data exchange under the satellite.
  • the mobility management network element can, when determining that the first terminal device is allowed to perform local data exchange under the satellite, register the identification information of the first terminal device to the data management network element, so that the identification list corresponds to The terminal equipment itself supports local data exchange under the satellite.
  • the method further includes: the mobility management network element sends a subscription message to the data management network element, the subscription message includes the relevant information of the satellite, and the subscription message is To subscribe to change notifications for this identifier list.
  • the mobility management network element can subscribe to the data management network element for notification of changes in the identification list. That is to say, when a new terminal device is registered to the identification list, or the original terminal device is deregistered from the identification list, the group management network element needs to notify the mobility management network element. Based on this, the mobility management network element can send the updated identification list to the session management network element, so that the session management network element can update the forwarding rules to the user plane network element on the satellite according to the updated session identification list, so that the user plane network element on the satellite can return the message through the satellite. Terminal equipment that accesses the satellite via transmission and supports local data exchange under the satellite can communicate through local data exchange under the satellite, thereby reducing transmission delay and improving user experience.
  • a satellite communication method which can be executed by a data management network element, or can also be executed by a component (such as a chip or circuit) of the data management network element, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the data management network element as an example.
  • the satellite communication method includes: the data management network element receives a request message from the first network element, the request message includes relevant information of the satellite; the data management network element determines the identification information of the satellite based on the relevant information of the satellite A corresponding identification list, which includes identification information of one or more terminal devices that access the satellite through satellite backhaul; in response to the request message, the data management network element sends the identification list to the first network element .
  • the data management network element can send the identification list corresponding to the satellite to the first network element according to the request of the first network element, so that the session management network element can configure forwarding to the user plane network element on the satellite according to the identification list. rules, so that the user plane network element sends the data packet whose destination address is the address of the terminal device corresponding to the identification list to the access network device corresponding to the terminal device, thereby shortening the data transmission path and reducing transmission delay.
  • the first network element here may be a session management network element or a mobility management network element.
  • the method further includes: the data management network element receiving a registration message from the first network element, the registration message including the identification information of the first terminal device and the Satellite related information; the data management network element saves the identification information of the first terminal device in the identification list.
  • the first session management network element can register the identification information of the first terminal device and the related information of the satellite to the data management network element, so that the data management network element updates the identification list, so that the first terminal device can Perform local data exchange under satellite to reduce transmission delay.
  • the method further includes: the data management network element receives a subscription message from the first network element, the subscription message includes relevant information of the satellite, and the subscription message is Subscribe to notifications of changes in relevant information about this satellite.
  • the first network element can subscribe to the data management network element for a change notification of the identification list.
  • the data management network element can send the updated identification list to the first network element, so that the session management network element can send information to the user plane network on the satellite according to the updated identification list. Meta-configure new forwarding rules.
  • the first network element is a session management network element or a mobility management network element.
  • a fourth aspect provides a communication device, which is used to perform any of the methods provided in the above first to third aspects.
  • the device may include units and/or modules for executing the methods provided in the first to third aspects, such as a processing module and/or a transceiver module (which may also be referred to as a communication module).
  • the device is a network device, for example, the device is a session management network element, a mobility management network element, or a data management network element.
  • the communication module may be a transceiver, or an input/output interface; the processing module may be a processor.
  • the device is a chip, chip system or circuit used in network equipment.
  • the communication module may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit etc.
  • the processing module may be a processor, a processing circuit or a logic circuit, etc.
  • the device is a session management network element, or a chip, chip system or circuit in the session management network element.
  • the apparatus may comprise units and/or modules for performing the method provided in the first aspect, such as a processing unit and/or a communication unit.
  • the device is a mobility management network element, or a chip, chip system or circuit in the mobility management network element.
  • the device may include units and/or modules for performing the method provided in the second aspect, such as a processing module and/or a transceiver module.
  • the device is a data management network element, or a chip, chip system, or chip in the data management network element. circuit.
  • the device may include units and/or modules for performing the method provided in the third aspect, such as a processing module and/or a transceiver module.
  • a communication device in a fifth aspect, includes: a memory for storing a program; a processor for executing the program stored in the memory.
  • the processor When the program stored in the memory is executed, the processor is configured to execute the above-mentioned first aspect to Any method provided by the third party.
  • this application provides a processor for executing the methods provided in the above aspects.
  • the process of sending the above information and obtaining/receiving the above information in the above method can be understood as the process of the processor outputting the above information, and the process of the processor receiving the input above information.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the transceiver obtains/receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • the receiving request message mentioned in the foregoing method can be understood as the processor receiving input information.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • a seventh aspect provides a computer-readable storage medium that stores program code for device execution, where the program code includes execution of any of the methods provided in the above-mentioned first to third aspects.
  • An eighth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute any of the methods provided in the first to third aspects.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes any one of the methods provided in the first to third aspects.
  • the chip may also include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory.
  • the processor is used to execute the above-mentioned first step. Any method provided by the first aspect to the third aspect.
  • a tenth aspect provides a communication system, including one or more of the aforementioned session management network elements, mobility management network elements, and data management network elements.
  • Figure 1 is a schematic diagram of a network architecture suitable for embodiments of the present application.
  • Figure 2 is a schematic diagram of the communication architecture of a satellite backhaul link
  • Figure 3 is a schematic diagram of a communication architecture for satellite local data exchange
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • Figure 9 is a schematic block diagram of a communication device provided by yet another embodiment of the present application.
  • the technical solutions provided by this application can be applied to various communication systems, such as fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (LTE) systems, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution provided by this application can also be applied to device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of Things (Internet of things, IoT) communication systems or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • Internet of Things Internet of things, IoT
  • 5G system can use service-based interfaces or point-to-point interfaces to communicate.
  • the following describes the 5G system framework based on point-to-point interfaces in conjunction with Figure 1 (a) and Figure 1 (b). , and a 5G system framework based on service-oriented interfaces.
  • FIG. 1 shows a schematic architectural diagram of the 5G system 100 applicable to the embodiment of the present application.
  • Figure 1 is a schematic diagram of the 5G network architecture based on point-to-point interfaces.
  • the network architecture may include But not limited to the following network elements (also known as functional network elements, functional entities, nodes, equipment, etc.):
  • Wired wireless
  • R radio access network
  • AMF access and mobility management function
  • SMF session management function
  • UPF User plane function
  • PCF policy control function
  • UDM unified data management
  • AF AF network element
  • DN data network
  • NSSF network slice selection function
  • AUSF authentication server function
  • UDM unified data management
  • BSF BSF network element
  • UDR unified data repository
  • User equipment can be called terminal equipment (terminal equipment), terminal device, access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (mobile terminal, MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • terminals can be: mobile phones, tablets, computers with wireless transceiver functions (such as laptops, handheld computers, etc.), mobile Internet devices (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical Terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or connection Other processing equipment to wireless modems, vehicle-mounted equipment, wearable devices, terminal equipment in the 5G network or terminal equipment in the future evolved public land mobile communication network (public land mobile network, PLMN), etc.
  • mobile Internet devices mobile internet device, MID
  • virtual reality virtual reality
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driv
  • the terminal device can also be a terminal device in an Internet of things (IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-computer interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • terminal equipment can also include smart printers, train detectors, etc. Its main functions include collecting data (some terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment.
  • the user equipment can be any device that can access the network. Terminal equipment and access network equipment can communicate with each other using some air interface technology.
  • the user equipment can be used to act as a base station.
  • user equipment may act as a scheduling entity that provides sidelink signals between user equipments in V2X or D2D, etc.
  • V2X or D2D a scheduling entity that provides sidelink signals between user equipments in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • Radio access network (R)AN) equipment used to provide network access functions for authorized user equipment in a specific area, and can use different services according to the level of user equipment, business needs, etc. quality transmission tunnel.
  • (R)AN can manage wireless resources, provide access services to user equipment, and then complete the forwarding of control signals and user equipment data between user equipment and the core network.
  • (R)AN can also be understood as a base station in a traditional network.
  • the access network device in the embodiment of the present application may be any communication device with wireless transceiver functions used to communicate with user equipment.
  • the access network equipment includes but is not limited to evolved Node B (eNB) or 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one of the base stations in the 5G system Or a group (including multiple antenna panels) of antenna panels, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc.
  • eNB evolved Node B
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP)
  • TRP or TP transmission point
  • BBU baseband unit
  • DU distributed unit
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make limitations.
  • wireless access network equipment can also be called wireless satellite access network site (or wireless satellite access network equipment, wireless satellite access network), satellite access network site (or satellite access network equipment, Satellite access network) or satellite network site (or satellite network equipment, satellite network), which is not limited in the embodiments of the present application.
  • Satellite access networks can be deployed in a variety of ways. For example, the same PLMN has both a terrestrial 3GPP access network and a satellite 3GPP access network, and the two access networks have independent interfaces with the core network.
  • satellite access can also be called satellite backhaul.
  • the satellite may include all or part of the network access function, which is not limited in this application.
  • the satellite access network equipment can be understood as the equipment with partial functions of the base station on the satellite, and all relevant signaling and data processing of the access network are performed on the satellite.
  • the satellite access network equipment can be understood as equipment with partial functions of the base station on the satellite and equipment with partial functions of the base station on the ground.
  • Related signaling and data of the access network Processing occurs partly on the satellite and partly on the ground.
  • the satellite access network equipment can be understood as a base station on the ground. All relevant signaling and data processing of the access network are performed on the ground.
  • the satellite transparently transmits signaling and data between the terminal equipment and the satellite access network. .
  • UPF User plane function
  • QoS quality of service
  • the user plane network element may be a user plane function (UPF) network element.
  • UPF user plane function
  • user plane network elements can still be UPF network elements, or they can have other names, which are not limited in this application.
  • Access and mobility management function (AMF) network element The access and mobility management function network element is mainly used for mobility management and access management, etc., and can be used to implement MME functions in addition to session management. Other functions, such as access authorization/authentication and other functions.
  • the access and mobility management equipment may still be an AMF, or may have other names, which are not limited in this application.
  • Session management function (SMF) network element mainly used for session management, Internet protocol (IP) address allocation and management of user equipment, selection of manageable user plane functions, policy control and charging The endpoint of the functional interface and downstream data notification, etc.
  • IP Internet protocol
  • the session management network element can still be an SMF network element, or it can also have other names, which is not limited in this application.
  • PCF Policy control function
  • the policy control network element can still be a PCF network element, or it can also have other names, which is not limited in this application.
  • Application function used for data routing affected by applications, wireless access network open function network elements, interaction with the policy framework for policy control, etc.
  • application network elements can still be AF network elements, or they can have other names, which are not limited in this application.
  • Unified data management (UDM) network element used to process UE identification, access authentication, registration and mobility management, etc.
  • unified data management can still be a UDM network element, or it can also have other names, which is not limited in this application.
  • AUSF Authentication server function
  • the authentication server functional network element can still be an AUSF network element, or it can also have other names, which is not limited in this application.
  • Network data analytics function network element: used to identify network slicing instances and load load level information of network slicing instances.
  • the network data analysis function enables NF consumers to subscribe or unsubscribe to periodic notifications and notify consumers when thresholds are exceeded.
  • network data analysis function network elements can still be NWDAF network elements, or they can have other names, which are not limited in this application.
  • DN Data network
  • DN is a network located outside the operator's network.
  • the operator's network can access multiple DNs.
  • a variety of services can be deployed on the DN, which can provide data and/or voice for terminal devices. Waiting for service.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is the internal office network of a company.
  • the mobile phones or computers of employees of the company can be terminal devices.
  • a computer or computer can access information, data resources, etc. on the company's internal office network.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • the meaning of these interface serial numbers can be found in the meaning defined in the 3GPP standard protocol, and is not limited here.
  • network elements can communicate with each other through the interfaces shown in the figure.
  • the UE and the AMF can interact through the N1 interface, and the interaction message can be called an N1 message (N1Message), for example.
  • N1Message N1 message
  • RAN and AMF can interact through the N2 interface, which can be used for sending non-access stratum (NAS) messages.
  • NAS non-access stratum
  • RAN and UPF can interact through the N3 interface, which can be used to transmit user plane data, etc.
  • SMF and UPF can interact through the N4 interface.
  • the N4 interface can be used to transmit information such as tunnel identification information of the N3 connection, data cache indication information, and downlink data notification messages.
  • UPF and DN can interact through the N6 interface, which can transmit user plane data, etc.
  • the relationship between other interfaces and each network element is shown in (a) of Figure 1. For the sake of simplicity, they will not be described in detail here.
  • FIG. 1 it is a schematic diagram of the 5G network architecture based on point-to-point interfaces.
  • the functions of the network elements please refer to the introduction of the functions of the corresponding network elements in (a) of Figure 1, and will not be described again.
  • the main difference between Figure 1(b) and Figure 1(a) is that the interfaces between the network elements in Figure 1(b) are point-to-point interfaces, not service-oriented interfaces.
  • N7 The interface between PCF and SMF, used to deliver protocol data unit (PDU) session granularity and business data flow granularity control policy.
  • PDU protocol data unit
  • N15 The interface between PCF and AMF, used to deliver UE policies and access control related policies.
  • N5 The interface between AF and PCF, used for issuing application service requests and reporting network events.
  • N4 The interface between SMF and UPF, used to transfer information between the control plane and the user plane, including controlling the delivery of forwarding rules for the user plane, QoS control rules, traffic statistics rules, etc., and reporting of user plane information. .
  • N11 The interface between SMF and AMF, used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to UE, transfer radio resource control information sent to RAN, etc.
  • N2 The interface between AMF and RAN, used to transmit wireless bearer control information from the core network side to the RAN.
  • N1 The interface between AMF and UE, independent of access, used to deliver QoS control rules to UE, etc.
  • N8 The interface between AMF and UDM, used for AMF to obtain access and mobility management-related subscription data and authentication data from UDM, and for AMF to register UE's current mobility management-related information with UDM.
  • N10 The interface between SMF and UDM, used for SMF to obtain session management-related subscription data from UDM, and for SMF to register UE current session-related information with UDM.
  • N35 The interface between UDM and UDR, used by UDM to obtain user subscription data information from UDR.
  • N36 The interface between PCF and UDR, used for PCF to obtain policy-related contract data and application data-related information from UDR.
  • N12 The interface between AMF and AUSF, used for AMF to initiate the authentication process to AUSF, which can carry SUCI as the contract identification;
  • N13 The interface between UDM and AUSF, used by AUSF to obtain the user authentication vector from UDM to perform the authentication process.
  • the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the network device is the access and mobility management network element AMF
  • the base station is the wireless access network RAN as an example.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, tapes, etc.
  • optical disks e.g., compact discs (CD), digital versatile discs (DVD)
  • smart cards and flash memory devices e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Satellite communication technology refers to the technology in which wireless communication devices on the ground access the network through satellites, or the technology in which wireless communication devices on the ground communicate through satellites as relays. Compared with traditional mobile communication systems, satellite communications have wider coverage and can overcome natural geographical obstacles such as oceans, deserts, and mountains.
  • satellite communication and 5G communication system (the 5th-generation mobile communications system, 5GS) can be integrated.
  • 5G communication system the 5th-generation mobile communications system, 5GS
  • the integration of satellite communications and 5GS can be divided into two scenarios.
  • the first scenario is: the satellite is accessed as 3GPP, and the UE accesses 5GS through the satellite;
  • the second scenario is: the satellite link is used as the backhaul link, and the RAN Communicates with the 5G core network (5G core, 5GC) through the backhaul link (for example, the backhaul link provides bearer for N3 or N9).
  • 5G core network 5G core, 5GC
  • FIG. 2 is a satellite communication Schematic diagram of the integration of Xinxin and 5GS. It can be seen from Figure 2 that the satellite link serves as the 5G backhaul link, and the RAN is connected to the 5GC through the 5G backhaul link.
  • 5GC can include core network elements such as AMF, AF, and UPF as shown in Figure 1.
  • satellites may have different coverage areas, motion characteristics, propagation delays, jitter, etc. due to different orbital heights.
  • satellites can be divided into geosynchronous satellites (geostationary equatorial orbit, GEO), low orbit satellites (low earth orbit, LEO) polar orbit constellations, medium orbit satellites (mid earth orbit, MEO) and other satellites ( Other SAT) etc.
  • a satellite constellation is a collection of satellites that are launched into orbit and can work normally. It is usually a satellite network composed of some satellites configured in a certain way.
  • the main satellite constellations include the Global Positioning System (GPS) satellite constellation, the GLONASS satellite constellation, the Galileo satellite constellation and the Beidou satellite constellation.
  • the main constellation types involved in this application include:
  • Low Earth Orbit (LEO) Polar Orbit Constellation Medium Earth Orbit (MEO) Polar Orbit Constellation, LEO Inclined Orbit Constellation and MEO Inclined Orbit Constellation, etc.
  • LEO tilted orbit constellation and MEO tilted orbit constellation do not involve the concept of reverse seam. That is to say, when the constellation type is LEO tilted orbit constellation and MEO tilted orbit constellation, there is no need to consider whether to support reverse seam.
  • LEO polar orbit constellations and MEO polar orbit constellations involve the concept of reverse seams, which means that when the constellation type is LEO polar orbit constellations and MEO polar orbit constellations, you need to consider whether to support reverse seams.
  • Ephemeris also known as ephemeris, ephemeris, almanac, etc., is information used to locate the position of celestial bodies at any time. Terminal devices can search the network based on satellite ephemeris data, thereby improving user experience. Satellite ephemeris mainly includes orbital plane parameters and satellite level parameters.
  • satellite ephemeris may also be called ephemeris parameters, ephemeris parameters of satellites, ephemeris parameters of satellites in the satellite access network, ephemeris parameters of satellites in the satellite return journey, or other Possible names are not limited by this application.
  • FIG. 3 shows a schematic diagram of a satellite backhaul scenario.
  • UE1 establishes PDU session-1 through satellite backhaul, and the user plane path is UE, RAN1, GEO UPF-1, (optional) ground PSA-1 (as shown by the dotted line in the figure);
  • UE2 establishes PDU session-2 through satellite backhaul, and the user plane path is UE, RAN2, GEO UPF-2, (optional) ground PSA-2 (shown as a dotted line in the figure).
  • GEO UPF-1 and GEO UPF-2 can be the same or different.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run according to the embodiment of the present application. It suffices to communicate using the provided method.
  • the execution subject of the method provided by the embodiment of the present application may be the core network device and the terminal device, or a functional module in the core network device or the terminal device that can call the program and execute the program.
  • for indicating can be understood as “enabling”, and “enabling” can include direct enabling and indirect enabling.
  • enabling can include direct enabling and indirect enabling.
  • the information enabled by the information is called to-be-enabled information.
  • the to-be-enabled information can be directly enabled, such as to-be-enabled information.
  • the enabling information itself or the index of the information to be enabled, etc.
  • the information to be enabled can also be indirectly enabled by enabling other information, where there is an association relationship between the other information and the information to be enabled. It is also possible to enable only a part of the information to be enabled, while other parts of the information to be enabled are known or agreed in advance.
  • the enabling of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the enabling overhead to a certain extent.
  • the common parts of each information can also be identified and enabled uniformly to reduce the enabling overhead caused by enabling the same information individually.
  • preconfigured may include predefined, for example, protocol definitions.
  • pre-definition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including each network element). This application does not limit its specific implementation method.
  • the “save” involved in the embodiments of this application may refer to saving in one or more memories.
  • the one or more memories may be provided separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partially provided separately and partially integrated in the decoder, processor, or communication device.
  • the type of memory can be any form of storage medium, and this application is not limited thereto.
  • the "protocol” involved in the embodiments of this application may refer to standard protocols in the communication field, which may include, for example, 5G protocols, new radio (NR) protocols, and related protocols applied in future communication systems. There are no restrictions on this application.
  • Figure 4 shows an exemplary flow chart of the method 400 provided by the embodiment of the present application. The following is an exemplary description of the method 400 in combination with each step.
  • the session management network element obtains the identification list.
  • the identification list includes the identification of one or more terminal devices that access the satellite through satellite backhaul.
  • the identification list corresponds to the relevant information of the satellite.
  • the identification information of the terminal device may be the Internet protocol (IP) address of the terminal device, that is, the identification list may be an IP list of the terminal device, or the identification information of the terminal device may also be other types of identifications,
  • IP Internet protocol
  • the identification list may be an IP list of the terminal device, or the identification information of the terminal device may also be other types of identifications,
  • the user permanent identifier (SUPI) of the terminal device is not limited in this application.
  • the one or more terminal devices support local data exchange under satellites.
  • the identification list can also be described as: the identification list includes one or more supporting local data under satellites. Exchange and identify information of the terminal equipment that accesses the satellite through satellite backhaul.
  • the relevant information of the satellite may refer to any information associated with the satellite.
  • the relevant information of the satellite may be any of the following information: the data network access identification corresponding to the satellite, the identification of the satellite, the satellite
  • the Internet Protocol address is not limited by this application.
  • the following is an exemplary description of the specific implementation method for the session management network element to obtain the identification list.
  • the session management network element sends a request message to the data management network element.
  • the request message includes the relevant information of the satellite, and the request message is used to request to obtain the identification list.
  • the data management network element receives the request message from the session management network element, and then obtains the locally stored identification list corresponding to the relevant information of the satellite according to the relevant information of the satellite, and then the data management network element reports to the session management The network element sends the identification list.
  • the mobility management network element can also request the data management network element to obtain the identification list, and then send the obtained identification list to the session management network element.
  • the session management network element can determine the identification list by itself. In other words, the session management network element may also determine by itself the identification list of terminal devices that access the satellite through satellite backhaul.
  • the session management network element uses the identification list of the terminal equipment that needs to communicate (denoted as the first identification list) and the identification list of the terminal equipment that accesses the satellite through satellite backhaul (denoted as the second identification list). identification list), determine the identification list. For example, before S401, the session management network element receives a first identification list from the application function network element; wherein the first identification list includes identification information corresponding to the terminal device that needs to communicate.
  • a terminal device that needs to communicate is, for example, a terminal device that needs to participate in an online conference.
  • the session management network element can obtain the second identification list of terminal devices that access the satellite through the satellite backhaul mode from the mobility management network element or the data management network element, or the session management network element determines on its own that the terminal equipment accesses the satellite through the satellite backhaul mode.
  • the second identification list of the terminal equipment entering the satellite the specific implementation method may refer to the above example (that is, the identification list in the above example corresponds to the second identification list here).
  • the session management network element determines the identification list according to the first identification list and the second identification list.
  • the identification list includes identification information of terminal devices common to the first identification list and the second identification list, that is, the identification list includes one or more terminal devices that require communication and access satellites through satellite backhaul. identification information.
  • the session management network element SMF receives the first identification list ⁇ UE1 ⁇ UE10 ⁇ from the application function network element AF; the SMF obtains the second identification list ⁇ UE5 ⁇ UE100 ⁇ of the terminal devices that access the satellite through satellite backhaul. Then the SMF determines that the identification list is ⁇ UE5 ⁇ UE10 ⁇ according to the first identification list and the second identification list. That is to say, the communication of UE5 to UE10 can be realized through local data exchange under the satellite in this application, and the communication of UE1 to UE4 can be realized by using existing technology, which will not be described in detail in this application.
  • the data management network element has pre-stored the corresponding relationship between the relevant information of the satellite and the identification list, where the identification list
  • the terminal devices in the identification list may be registered (or saved) by the session management network element to the data management network element.
  • An exemplary description is given below in conjunction with S403-S405.
  • the session management network element receives the session context establishment request message from the mobility management network element.
  • the session context establishment request message includes identification information of the first terminal device, where the first terminal device accesses the satellite through satellite backhaul.
  • the identification information of the terminal device may be the IP of the terminal device or the SUPI of the terminal device, which is not limited in this application.
  • the first terminal device accesses the satellite through geostationary orbit satellite backhaul. That is to say, the satellite backhaul mode of the first terminal device is geostationary orbit satellite backhaul.
  • the identification list can also be described as: the identification list includes identification information of one or more terminal devices that access geostationary orbit satellites through geostationary orbit satellite backhaul.
  • the session management network element determines whether the first terminal device is allowed to perform local data exchange under the satellite.
  • the session management network element may determine whether to allow the first terminal device to perform local data exchange under the satellite according to the subscription information or policy information of the first terminal device. For example, the subscription information or policy information indicates that the terminal can perform local data exchange. , this application does not limit this. If the session management network element determines that the first terminal device is allowed to perform local data exchange under the satellite, the session management network element executes S404.
  • the session management network element sends a registration message to the data management network element.
  • the data management network element receives the registration message from the session management network element.
  • the registration message includes identification information of the first terminal device and related information of the satellite.
  • the data management network element saves the identification information of the first terminal device and the related information of the satellite, or in other words, the data management network element saves the identification information of the first terminal device in the same location as the satellite. in the identification list corresponding to the relevant information.
  • the session management network element obtains relevant information of the satellite.
  • the session management network element can obtain the relevant information of the satellite from the mobility management network element, or can determine the relevant information of the satellite by itself.
  • the mobility management network element may carry the relevant information of the satellite in the session context establishment request message, and the session management network element obtains the relevant information of the satellite from the session context establishment request message.
  • the session management network element determines the relevant information of the satellite according to the location information of the terminal device.
  • the session management network element can also determine the relevant information of the satellite in combination with other information.
  • the session management network element determines the relevant information of the satellite based on the location information of the terminal device and the satellite return type information.
  • the session management network element may determine the relevant information of the satellite based on the location information of the terminal device, the satellite backhaul type information, and the constellation information of the satellite.
  • the session management network element will establish a session through the session management network element.
  • the identification information of the second terminal device and the relevant information of the satellite are registered in the data management network element, and the data management network element receives and saves the correspondence between the location information of the second terminal device and the relevant information of the satellite, or in other words, The data management network element saves the location information of the second terminal device into an identification list corresponding to the related information of the satellite. In this way, an identification list including the identification of one or more terminal devices that access the satellite through satellite backhaul and support local data exchange under the satellite can be maintained on the data management network element side.
  • the session management network element sends a subscription message to the data management network element.
  • the subscription message includes the satellite Related information, this subscription message is used to subscribe to change notifications of this identification list. That is to say, when the identification list corresponding to the relevant information of the satellite is updated, the data management network element sends a notification message to the session management network element.
  • the data management network element sends a notification message to the session management network element, and the notification message carries the updated identification list.
  • S405 is explained by taking explicit subscription as an example, but the session management network element can also subscribe to the data management network element through implicit subscription, that is, step 405 is not performed, and this application does not limit it. It should be understood that the identification list may also be registered by the session management network element to the data management network element.
  • the specific implementation method is similar to S402-S405, which will be briefly described below.
  • the mobility management network element receives a message including a session establishment request message from a first terminal device.
  • the message also includes identification information of the first terminal device.
  • the first terminal device accesses the session through satellite backhaul. satellite.
  • the mobility management network element determines whether the first terminal device is allowed to perform local data exchange under the satellite (similar to S403). If it is allowed, the mobility management network element sends a registration message to the data management network element.
  • the message includes identification information of the first terminal device and related information of the satellite (similar to S404).
  • the data management network element receives and stores the correspondence between the identification information of the first terminal device and the related information of the satellite.
  • the mobility management network element can also send a subscription message to the data management network element to subscribe to the change notification of the identity list (similar to S405), which will not be described again here.
  • the session management network element configures forwarding rules to the user plane network element on the satellite.
  • the forwarding rule is used to shunt (or forward) the data packet whose destination address is included in the address of the terminal device corresponding to the identification list to the access network device corresponding to the terminal device, or can also be described as,
  • the forwarding rule is used to divert data packets to be sent to the terminal device corresponding to the identification list to the access network device corresponding to the terminal device, or it can also be described as: the forwarding rule is used to point the destination address to the identification list.
  • the data packets of the terminal device are shunted to the access network device corresponding to the terminal device, or it can also be described as, the forwarding rule is used to shunt the data packets of the address of the terminal device whose destination address is included in the identification list to the internal interface. .
  • UE1 accesses the network through satellite backhaul. It is assumed that the identification list corresponding to the relevant information of the satellite at this time includes UE2 and UE3. UE1 sends a data packet to UE2, and the destination address of the data packet is UE2IP. When the user plane network element on the satellite receives the data packet, it determines according to the forwarding rules that the destination address of the data packet is included in the address of the terminal device corresponding to UE2 or UE3, and then the user plane network element on the satellite forwards the data The packet is sent to the access network device corresponding to UE2.
  • the forwarding rule is also used to offload the data packet sent to the terminal device to the access network device corresponding to the terminal device.
  • UE3 sends a data packet to UE1
  • the destination address of the data packet is UE1 IP.
  • the user plane network element on the satellite receives the data packet, it determines that the destination address of the data packet is UE1 according to the forwarding rules, and then the user plane network element on the satellite sends the data packet to the access network equipment corresponding to UE1. .
  • the specific embodiment of the forwarding rules may include two parts: a detection rule part and a forwarding rule part.
  • the detection rules part is used to detect qualified data packets, that is, the data packets whose destination address is the address of the terminal device in the identification list;
  • the forwarding rule part is used to forward the qualified data packets to the internal interface or Forward to the access network device corresponding to the terminal device corresponding to the destination address.
  • the session management network element can configure forwarding rules to the user plane network element on the satellite, so that the user plane network element sends the data packet whose destination address is the address of the terminal device corresponding to the identification list to the corresponding terminal device.
  • access network equipment that is to say, for the terminal equipment in the identification list, the data packets sent to them can be directly
  • the user plane network elements on the satellite are sent to the corresponding access network equipment without passing through the ground anchor access network equipment. Therefore, the data transmission path can be shortened and the transmission delay can be reduced.
  • SMF1 in method 500 and method 600 may correspond to the session management network element in method 400
  • AMF1 in method 500 and method 600 may correspond to the mobility management network element in method 400
  • UDM/NRF may correspond to the data management network element in method 400
  • the UE ID list in method 500 and method 600 may correspond to the identification list in method 400. Therefore, the descriptions between different embodiments can refer to and supplement each other.
  • Figure 5 shows an exemplary flowchart of the method 500 provided by the embodiment of the present application.
  • the method 500 is exemplarily described below in conjunction with each step.
  • S501 UE1 sends a PDU session establishment request message to AMF1.
  • AMF1 receives the PDU session establishment request message from UE1.
  • UE1 sends a PDU session establishment request message to AMF1 through a NAS message.
  • UE1 sends an AN message (AN message) to gNB1.
  • the AN message carries a NAS message (NAS message).
  • the NAS message includes a PDU session ID and a PDU session establishment request.
  • gNB sends an N2 message (N2 message) to AMF1.
  • the N2 message includes PDU session ID, UE location information (UE location information, ULI) and PDU session establishment request.
  • the location information of the UE is used to identify the current location of UE1.
  • the location information of the UE may be a tracking area identity (TAI), a cell identity or a geographical location identity, etc.
  • TAI tracking area identity
  • S502 determines the GEO SAT ID based on the location information of the UE.
  • AMF1 determines the GEO SAT ID based on the location information of the UE.
  • the GEO SAT ID is used to identify the GEO satellite that UE1 accesses.
  • the GEO SAT ID It can be the identification information of the GEO satellite itself, or it can be the identification information of the UPF on the GEO satellite (ie, GEO UPF ID), which is not limited by this application. It can be understood that, as described in method 400, the GEO SAT ID can also be represented by DNAI, that is, represented by the DNAI corresponding to the GEO satellite.
  • DNAI can also be described as the identification corresponding to the user plane functional network element on the GEO satellite, or the identification corresponding to the user plane connection where the GEO UPF is located.
  • GEO SAT ID can also be represented by GEO SAT IP, which can be understood as the IP address of GEO SAT.
  • AMF1 can also determine the satellite backhaul type of UE1. For example, AMF1 determines that U1E accesses the network through GEO satellite based on gNB1 ID, then AMF1 determines that the satellite return type of UE1 is GEO SATB. In another implementation manner, AMF1 can obtain the satellite backhaul type corresponding to the UE from gNB1. For example, gNB1 sends satellite backhaul type information to AMF1, and the satellite backhaul type information instructs UE1 to access the network through GEO satellite backhaul.
  • AMF1 can also determine the constellation information of the satellite. For example, in one implementation, when gNB uses different gNB ID/gNB IP when accessing different constellations, AMF1 can determine the constellation information of UE1 based on gNB1 ID/gNB1 IP; in another implementation, when different constellations When the frequency bands used are different, AMF1 can determine the constellation information of UE1 based on the frequency used by the satellite.
  • S503 AMF1 sends a create session management context request message to SMF1.
  • SMF1 receives the create session management context request message from AMF1.
  • AMF1 After receiving the PDU session establishment request from UEl, AMF1 sends a session creation request to SMF1. Management context request (Nsmf_PDUSession_CreateSMContext request) message.
  • the create session management context request message includes parameters such as SUPI, PDU session ID, and UE location information.
  • AMF1 may carry the GEO SAT ID in the create session management context request message.
  • S504, SMF1 selects ground PSA.
  • SMF1 may select a terrestrial PSA for UEl's session.
  • SMF1 can also allocate an IP address to UE1 (denoted as UE1 IP).
  • SMF1 may not select ground PSA, that is, SMF1 may not execute S504. In this case, SMF1 can still assign UE1 IP to UE1, but at this time UE1 IP is not anchored at UPF.
  • S505 determines whether the UE is allowed to perform local data exchange under the satellite.
  • SMF1 obtains the subscription data of UE1 through UDM, and determines whether to allow UE1 to perform local data exchange (local switch) under the satellite based on the subscription data.
  • local data exchange local switch
  • SMF1 obtains the policy information for the UE through the PCF, and determines whether to allow the UE to perform local data exchange under the satellite based on the policy information.
  • SMF1 sends a query request message to UDM/NRF.
  • UDM/NRF receives the query request message from SMF1.
  • SMF1 when SMF1 determines that UE1 is allowed to perform local data exchange under the satellite, SMF1 sends a query request message to UDM/NRF.
  • the query request message includes the GEO SAT ID.
  • the query request message is used to request the query with the GEO.
  • the UE identification list corresponding to the SAT ID or in other words, the query request message is used to request to query the UE identification list of the UE connected to the GEO satellite corresponding to the GEO SAT ID, or in other words, the query request message is used to request the query to query the UE identification list connected to the GEO satellite corresponding to the GEO SAT ID.
  • the identification list of UEs on the GEO satellite corresponding to the SAT ID and capable of performing local switch under the satellite is used to request to query the identification list of UEs corresponding to the GEO SAT ID stored by UDM/NRF.
  • the UE ID list includes the identification of one or more UEs connected to the GEO satellite and capable of performing local switch under the satellite.
  • the identification of the UE here may refer to the ID of the UE, the IP of the UE, or other types of identification, which is not limited in this application. That is to say, the identification list of the UE can be a UE ID list, a UE IP list, or other types of lists, which are not limited in this application.
  • the identification list of UE can be a UE ID list, a UE IP list, or other types of lists, which are not limited in this application.
  • the following description will take the identification list of UE as UE ID list as an example.
  • SMF1 can receive the GEO SAT ID from AMF1, or can determine the GEO SAT ID by itself. For example, SMF1 determines the GEO SAT ID based on the location information of UE1, which is not limited by this application.
  • UDM/NRF sends a query response message to SMF1.
  • SMF1 receives the query response message from UDM/NRF.
  • UDM/NRF After UDM/NRF receives the query request message from SMF1, it determines the UE ID list corresponding to the GEO SAT ID based on the GEO SAT ID, and then UDM/NRF sends a query response message to SMF1.
  • the query response message includes The UE ID list. It should be understood that UDM/NRF pre-stores the correspondence between GEO SAT ID and UE ID list.
  • UDM/NRF determines whether the query request message is the first query request. That is to say, UDM/NRF determines whether there are other SMFs querying it before S506.
  • UE ID list corresponding to GEO SAT ID;
  • the query response message (ie S507) returned by UDM/NRF to SMF does not include the UE ID list corresponding to the GEO SAT ID. Further, the query response message includes an indication information for indicating to SMF1 that the query request is not the first query request. That is, UDM/NRF does not return the UE ID list corresponding to the GEO SAT ID to SMF1 at this time.
  • SMF1 sends a registration request message to UDM/NRF.
  • UDM/NRF receives the registration request message from SMF1.
  • SMF1 determines that the UE is allowed to perform local data exchange under the satellite
  • SMF1 sends a registration request message to UDM/NRF
  • the registration request message includes the GEO SAT ID and UE1 ID. That is to say, if a certain UE can perform local data exchange under the satellite, SMF1 will send the identification of the UE and the identification of the satellite corresponding to the UE to UDM/NRF.
  • the registration request message may also have other names.
  • the registration request message may also be called a storage request message, which is not limited in this application.
  • S508 can be executed before S506 or after S506, which is not limited in this application.
  • S508 and S506 can also be executed simultaneously.
  • S508 and S506 can be combined into one message.
  • SMF1 sends a registration and query request message to UDM/NRF.
  • the registration and query request message includes GEO SAT ID and UE1 ID.
  • the UDM/NRF After receiving the registration and query request message, the UDM/NRF sends a registration and query response message to SMF1.
  • the registration and query response message includes the UE ID list.
  • UDM/NRF saves GEO SAT ID and UE1 ID.
  • UDM/NRF saves the GEO SAT ID and UE1 ID, or in other words, saves the correspondence between the GEO SAT ID and UE1 ID, or in other words, saves the UE1 ID to In the UE ID list corresponding to the GEO SAT ID.
  • SMF1 sends a subscription message to UDM/NRF.
  • UDM/NRF receives the subscription message from SMF1.
  • SMF1 can also send a subscription message to UDM/NRF.
  • the subscription message includes the GEO SAT ID.
  • the subscription message is used to subscribe to the change notification of the UE ID list corresponding to the GEO SAT ID. That is to say, when the UE ID list corresponding to the GEO SAT ID is updated, UDM/NRF sends a notification message to SMF1. For example, when a UE registers with the GEO SAT, or a UE logs out from the GEO SAT, UDM/NRF sends a notification message to SMF1, and carries the updated UE ID list in the notification message.
  • S510 is explained using explicit subscription as an example, but SMF1 can also subscribe to UDM/NRF through implicit subscription. For example, if S510 is not executed, implicit subscription is indicated through S506 or S508, which is not limited in this application.
  • SMF1 sends an N4 session establishment request message to GEO UPF.
  • GEO UPF receives the N4 session establishment request message from SMF.
  • the SMF selects the GEO UPF, or in other words, the SMF inserts the GEO UPF as the I-UPF/distribution point.
  • the GEO UPF corresponds to the GEO SAT ID.
  • the N4 session establishment request message may include the UE ID list corresponding to the GEO SAT ID to instruct GEO UPF to perform local switch on the packets matching the UE ID list, or That is, instruct GEO UPF to perform local switch on the packet whose destination address indicates the UE in the UE ID list.
  • GEO UPF sends an N4 session establishment response message to SMF1.
  • SMF1 receives the N4 session establishment response message from GEO UPF.
  • GEO UPF After GEO UPF receives the N4 session establishment request message from SMF1, it returns an N4 session establishment response message.
  • the N4 session establishment response message carries GEO UPF tunnel info for N3 (that is, GEO UPF's N3 tunnel information), using To establish the N3 connection between gNB1 and GEO UPF.
  • GEO UPF tunnel info for N9 (that is, GEO UPF's N9 tunnel information) can be carried to establish an N9 tunnel between GEO UPF and ground PSA.
  • SMF1 sends an N1N2 message transmission request message to AMF1.
  • AMF1 receives the N1N2 message transmission request message from SMF1.
  • the N1N2 message transfer (N1N2 messageTransfer) request message includes PDU session ID, N2SM info sent to the gNB, and N1SM container sent to the UE.
  • AMF1 sends an N2 PDU session request message to gNB1.
  • gNB1 receives the N2 PDU session request message from AMF1.
  • the N2 PDU session request (N2 PDU session request) message includes N2SM info and N1 SM container.
  • S515 gNB1 initiates air interface configuration to the UE.
  • gNB1 sends an N2 PDU session confirmation message to AMF1.
  • AMF1 receives the N2 PDU session confirmation message from gNB1.
  • the N2 PDU session acknowledgment (N2 PDU session ACK) message includes gNB tunnel info (ie, gNB tunnel information). Further, AMF sends the gNB tunnel info to SMF.
  • gNB tunnel info ie, gNB tunnel information
  • SMF1 sends an N4 session modification request message to GEO UPF.
  • GEO UPF receives the N4 session modification request message from SMF.
  • SMF1 after receiving gNB tunnel info, SMF1 sends an N4 session modification request message to GEO UPF.
  • the N4 session modification request message includes configuration information.
  • the configuration information is used to instruct GEO UPF to send the received information to the UE ID.
  • the message of the UE corresponding to the list is sent to the gNB corresponding to the UE.
  • the configuration information is used to instruct GEO UPF to send the message whose destination address points to the UE in the UE ID list to the gNB corresponding to the UE.
  • GEO UPF can determine the gNB corresponding to the UE according to the saved context. For example, GEO UPF saves the information shown in Table 1. Among them, N4session ID corresponds to PDU session ID.
  • the UE ID list includes the identity of UE1 and the identity of UE2.
  • UE1 sends a message to GEO UPF through gNB1, and the destination address is UE2IP.
  • GEO UPF determines that the tunnel information of gNB2 corresponding to UE2 is gNB2 tunnel info based on the saved context. Then, GEO UPF sends the message to gNB2 based on the gNB2 tunnel info.
  • GEO UPF can be configured with data forwarding rules for UEs in the UE ID list, so that data packets with destination addresses pointing to any UE in the UE ID list can be sent directly to the corresponding gNB, thereby realizing the UE ID list
  • the UE in the satellite exchanges local data under the satellite, which can reduce the delay and improve the user experience.
  • the UE ID list can also be updated. The following is explained with examples.
  • UE2 After the above process, UE2 also initiates the PDU session establishment process. The specific process is similar to the session establishment process of UE1. For non-exhaustive parts, please refer to the description of the above S501-S517 section. It should be noted that the network elements that provide services for UE2 are gNB2, AMF2, and SMF2.
  • UE2 sends a PDU session establishment request message to AMF2. Then, after receiving the PDU session establishment request message, AMF2 sends a session management context establishment request message to SMF2.
  • SMF2 determines that UE2 accesses the network through GEO SAT backhaul, SMF2 requests UDM/NRF to obtain the UE ID list corresponding to the GEO SAT ID based on the GEO SAT ID (similar to S506).
  • UDM/NRF returns the UE ID list to SMF2 according to SMF2's request.
  • the UE ID list includes the identity of UE1. It should be understood that the identity of UE1 is saved by UDM/NRF in S509.
  • SMF2 registers GEO SAT ID and UE2ID to UDM/NRF (similar to S508), and subscribes to UDM/NRF for change notifications of the UE ID list (similar to S510).
  • SMF2 sends an N4 session establishment request message to GEO UPF.
  • the N4 session establishment request message includes the UE ID list to instruct GEO UPF to send the message whose destination address points to the UE in the UE ID list to the UE.
  • Corresponding gNB Taking this UE ID list as an example, GEO UPF sends the data packet with the destination address of UE1 IP to gNB1.
  • UDM/NRF also sends a notification message to SMF1.
  • the notification message carries the updated UE ID list corresponding to GEO SAT, and the updated UE ID list includes UE2ID.
  • SMF-1 initiates an N4 session modification to GEO UPF, carrying the updated UE ID list.
  • SMF1 can configure forwarding rules to the GEO UPF so that the GEO UPF sends the data packet whose destination address is included in the address of the UE corresponding to the UE ID list to the gNB corresponding to the UE. That is to say, for the UE ID list For UEs in the UE, the data packets sent to them can be sent directly to the corresponding gNB by GEO UPF without going through the ground PSA, so the data transmission path can be shortened and the transmission delay can be reduced.
  • Figure 6 shows an exemplary flowchart of the method 600 provided by the embodiment of the present application. The following is an exemplary description of the method 600 in combination with each step.
  • S601-S602 are similar to S501-S502 in the method 500, and will not be described again here for the sake of brevity.
  • S603, AMF1 determines whether the UE is allowed to perform local data exchange under the satellite.
  • AMF1 obtains the subscription data of UE1 through UDM, and determines whether to allow UE1 to perform local data exchange (local switch) under the satellite based on the subscription data.
  • AMF1 obtains the policy information for the UE through the PCF, and determines whether to allow UE1 to perform local data exchange under the satellite based on the policy information.
  • AMF1 sends a query request message to UDM/NRF.
  • the query request message includes the GEO SAT ID.
  • UDM/NRF receives the query request message from AMF1.
  • UDM/NRF sends a query response message to AMF1, and the query response message includes UE ID list.
  • AMF1 receives the query response message from UDM/NRF.
  • AMF1 also performs S606-S608, described as follows:
  • AMF1 sends a registration request message to UDM/NRF.
  • the registration request message includes GEO SAT ID and UE1 ID.
  • UDM/NRF receives the registration request message from AMF1.
  • UDM/NRF saves the GEO SAT ID and UE1 ID.
  • AMF1 sends a subscription message to UDM/NRF, and the subscription message includes GEO SAT ID.
  • S604-S608 are similar to S506-S510 in the method 500, except that S506-S510 in the method 500 are executed by SMF1, and S604-S608 are executed by AMF1. For the sake of brevity, the detailed process will not be described again.
  • S609 AMF1 sends a create session management context request message to SMF1.
  • SMF1 receives the create session management context request message from AMF1.
  • the create session management context request message includes a UE ID list.
  • the registration process may also be performed by SMF. That is to say, S606-S607 does not need to be executed.
  • SMF1 will execute the registration process to UDM/NRF after S610, that is, register the corresponding relationship between GEO SAT ID and UE1 ID with UDM/NRF.
  • S508- S509 here is a brief description as follows:
  • SMF1 sends a registration request message to UDM/NRF.
  • UDM/NRF receives the registration request message from SMF1.
  • the registration request message contains GEO SAT ID and UE1 ID.
  • UDM/NRF After UDM/NRF receives the registration request message from SMF1, it saves the GEO SAT ID and UE1 ID.
  • S610-S617 are similar to S504 and S511-S517 in method 500, and will not be described again here for the sake of brevity.
  • embodiments of the present application also provide corresponding devices, which include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments. Therefore, content that is not described in detail can be referred to the above method embodiments. For the sake of brevity, they will not be described again here.
  • FIG. 7 is a schematic block diagram of the communication device 10 provided by the embodiment of the present application.
  • the device 10 includes a processing module 11 .
  • the device 10 may also include a transceiver module 11 .
  • the processing module 11 is used for data processing.
  • the transceiver module 12 can implement corresponding communication functions. In other words, the transceiver module 12 is used to perform operations related to receiving and sending.
  • the processing module 11 is used to perform other operations besides receiving and sending. .
  • the transceiver module 12 may also be called a communication interface or communication unit.
  • the device 10 may also include a storage module (not shown in the figure), which may be used to store instructions and/or data, and the processing module 11 may read the instructions and/or data in the storage module to The device is caused to implement the actions of the equipment or network element in each of the foregoing method embodiments.
  • a storage module not shown in the figure
  • the processing module 11 may read the instructions and/or data in the storage module to The device is caused to implement the actions of the equipment or network element in each of the foregoing method embodiments.
  • the device 10 may correspond to the network equipment in the above method embodiment, or a component of the network equipment (such as a chip), such as a session management network element (such as SMF), or a mobility management network element (such as AMF), or data management network element (such as DUM or NRF).
  • a session management network element such as SMF
  • a mobility management network element such as AMF
  • data management network element such as DUM or NRF
  • the device 10 can implement steps or processes corresponding to the execution of the session management network element (such as SMF) in the above method embodiment, wherein the processing module 11 can be used to execute the application session management network element (such as SMF) in the above method embodiment. ), the transceiver module 12 may be used to perform operations related to transceiver processing of the session management network element (such as SMF) in the above method embodiment.
  • the session management network element such as SMF
  • the processing module 11 can be used to execute the application session management network element (such as SMF) in the above method embodiment.
  • the transceiver module 12 may be used to perform operations related to transceiver processing of the session management network element (such as SMF) in the above method embodiment.
  • the device 10 may correspond to the session management network element in the method 400 in the embodiment of the present application, or the SMF in the methods 500 to 600.
  • the apparatus 10 may include modules for performing the methods performed by the session management network element (or SMF) in FIGS. 4 to 6 .
  • each module in the device 10 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the methods shown in FIGS. 4 to 6 .
  • the processing module 11 is used to obtain business information, and the business information is used to instruct the satellite to one or more services supported by the satellite; and, based on the service information, determine whether the terminal device is allowed to access the service supported by the satellite; and, after determining that the terminal device is allowed to access at least one of the services supported by the satellite
  • the user plane network element on the satellite is inserted into the user plane path of the terminal device.
  • the processing module 11 is used to obtain an identification list, which includes the identification information of one or more terminal devices that access the satellite through satellite backhaul; the processing module 11 is used to configure user plane network elements on the satellite Forwarding rule, the forwarding rule is used to distribute data packets whose destination address includes the address of the terminal device corresponding to the identification list to the access network device corresponding to the terminal device.
  • the transceiving module 12 is specifically configured to receive the identification list from the data management network element or the mobility management network element.
  • the transceiver module 12 is also configured to send a request message to the data management network element.
  • the request message includes the relevant information of the satellite, and the request message is used to request to obtain the identification list.
  • the transceiver module 12 is also configured to receive a session context establishment request message from the mobility management network element.
  • the session context establishment request message includes the identification information of the first terminal device, and the first terminal device receives the call via satellite backhaul. into the satellite;
  • the processing module 11 is also used to obtain relevant information of the satellite;
  • the transceiver module 12 is also used to send a registration message to the data management network element, the registration message includes the identification information of the first terminal device and the Satellite related information.
  • the processing module 11 is also used to determine whether the first terminal device is allowed to perform local data exchange under the satellite.
  • the processing module 11 is specifically configured to obtain satellite-related information, including: the session management network element receiving the satellite-related information from the mobility management network element.
  • the processing module 11 is specifically configured to determine relevant information of the satellite based on the location information of the terminal device.
  • the transceiver module 12 is also configured to send a subscription message to the data management network element, where the subscription message includes relevant information of the satellite, and the subscription message is used to subscribe to change notifications of the identification list.
  • the relevant information of the satellite may be any one of the following information: the data network access identifier corresponding to the satellite, the identifier of the satellite, and the Internet protocol address of the satellite.
  • the device 10 can implement steps or processes corresponding to the execution of the mobility management network element (or AMF) in the above method embodiment, wherein the transceiver module 12 can be used to execute the steps or processes of the mobility management network element (or AMF) in the above method embodiment.
  • the processing module 11 may be configured to perform processing-related operations of the application mobility management network element (or AMF) in the above method embodiment.
  • the device 10 may correspond to the mobility management network element in method 400 in the embodiment of the present application, or the AMF in methods 500 to 600.
  • the apparatus 10 may include modules for performing the methods performed by the mobility management network element (or AMF) in FIGS. 4 to 6 .
  • each module in the device 10 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the methods shown in FIGS. 4 to 6 .
  • the transceiver module 12 is configured to receive an identification list corresponding to satellite-related information from the data management network element.
  • the identification list includes one or more terminals that access the satellite through satellite backhaul. The identification information of the device; and sending the identification list to the session management network element.
  • the transceiver module 12 is also configured to send a request message to the data management network element.
  • the request message includes the relevant information of the satellite, and the request message is used to request to obtain the identification list.
  • the transceiver module 12 is also configured to receive a session establishment request message from the first terminal device.
  • the session establishment request message includes the identification information of the first terminal device.
  • the first terminal device transmits the session via satellite backhaul. catch into the satellite;
  • the processing module 11 is also used to determine the relevant information of the satellite according to the location information of the first terminal device;
  • the transceiver module 12 is also used to send a registration message to the data management network element, the registration message includes the The identification information of the first terminal device and the related information of the satellite.
  • the processing module 11 is also used to determine whether the first terminal device is allowed to perform local data exchange under the satellite.
  • the transceiver module 12 is also configured to send a subscription message to the data management network element, where the subscription message includes relevant information of the satellite, and the subscription message is used to subscribe to change notifications of the identification list.
  • the device 10 can implement steps or processes corresponding to the execution of the group management network element (or UDM/NRF) in the above method embodiment, wherein the transceiver module 12 can be used to execute the group management network element in the above method embodiment. (or UDM/NRF) transceiver-related operations, the processing module 11 may be used to perform operations related to the processing of the application group management network element (or UDM/NRF) in the above method embodiment.
  • the device 10 may correspond to the group management network element in method 400 in the embodiment of the present application, or the UDM/NRF in methods 500 to 600.
  • the apparatus 10 may include modules for performing the methods performed by the group management network element (or UDM/NRF) in FIGS. 4 to 6 .
  • each module in the device 10 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the methods shown in FIGS. 4 to 6 .
  • the transceiver module 12 is used to receive a request message from the first network element, where the request message includes the relevant information of the satellite; the processing module 11 is used to determine the relationship with the satellite based on the relevant information of the satellite.
  • An identification list corresponding to the relevant information, the identification list includes identification information of one or more terminal devices that access the satellite through satellite backhaul; the transceiver module 12 is also used to send the identification list to the first network element.
  • the transceiver module 12 is also configured to receive a registration message from the first network element, where the registration message includes the identification information of the first terminal device and related information of the satellite; the processing module 11 is also configured to convert the third The identification information of a terminal device is stored in the identification list.
  • the transceiver module 12 is also configured to receive a subscription message from the first network element, where the subscription message includes the relevant information of the satellite, and the subscription message is used to subscribe to change notifications of the relevant information of the satellite.
  • the first network element is a session management network element or a mobility management network element.
  • the device 10 here is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 10 can be specifically the mobility management network element in the above embodiments, and can be used to execute various processes and/or corresponding to the mobility management network element in the above method embodiments. or steps; alternatively, the apparatus 10 may be specifically a terminal device in the above embodiments, and may be used to execute various processes and/or steps corresponding to the terminal devices in the above method embodiments. To avoid duplication, they will not be described again here.
  • the device 10 of each of the above solutions has the function of realizing the corresponding steps performed by the network equipment (such as the session management network element, or the mobility management network element, or the data management network element) in the above method.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver module can be replaced by a transceiver (for example, the sending unit in the transceiver module can be replaced by a transmitter, and the receiving unit in the transceiver module can be replaced by a receiver. Replacement), other units, such as processing modules, etc. can be replaced by the processor, respectively
  • the sending and receiving operations and related processing operations in each method embodiment are respectively performed.
  • transceiver module 12 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing module may be a processing circuit.
  • the device in Figure 8 may be the network element or device in the aforementioned embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver module can be an input-output circuit or a communication interface; the processing module is a processor or microprocessor or integrated circuit integrated on the chip. No limitation is made here.
  • FIG. 8 is a schematic diagram of the communication device 20 provided by an embodiment of the present application.
  • the device 20 may correspond to the session management network element (or SMF) in the above method embodiment; in another possible design, the device 10 may correspond to the above method embodiment. Mobility Management Network Element (or AMF) in .
  • SMF session management network element
  • AMF Mobility Management Network Element
  • the device 20 may include a processor 21 (ie, an example of a processing module).
  • the processor 21 is used to execute the session management network element (such as SMF) in the corresponding method in Figures 4 to 6, or the mobility management network element ( Such as AMF).
  • the device 20 may include a memory 22, and the processor 21 may execute instructions stored in the memory 22, so that the device 20 implements the session management network element (such as SMF) in the corresponding methods as shown in Figures 4 to 6. , or operations performed by mobility management network elements (such as AMF).
  • the device 20 may also include a transceiver 23 (ie, an example of a transceiver module).
  • the processor 21, the memory 22, and the transceiver 23 can communicate with each other through internal connection channels to transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22 to control the transceiver 23 to receive signals, control the transceiver 23 to send signals, and complete the terminal device or the above method. Network equipment steps.
  • the memory 22 may be integrated into the processor 21 or may be provided separately from the processor 21 .
  • the transceiver 23 may include an input port and an output port, that is, the transceiver 23 may be divided into a receiver and a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively called transceivers.
  • the input port is an input interface
  • the output port is an output interface
  • the function of the transceiver 23 can be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be considered to implement the communication device provided by the embodiments of the present application.
  • the program codes that implement the functions of the processor 21 and the transceiver 23 are stored in the memory 22 , and the general-purpose processor implements the functions of the processor 21 and the transceiver 23 by executing the codes in the memory 22 .
  • Figure 9 shows a simplified structural diagram of the network device 30.
  • Network equipment includes Part 31 and Part 32.
  • Part 31 is mainly used for transmitting and receiving RF signals and converting RF signals to baseband signals;
  • Part 32 is mainly used for baseband processing, controlling network equipment, etc.
  • Part 31 can usually be called a transceiver module, transceiver, transceiver circuit, or transceiver, etc.
  • Part 32 is usually the control center of the network device, which can generally be called a processing module, and is used to control the network device to perform the processing operations on the network device side in the above method embodiment.
  • the transceiver module of Part 31 can also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, in which RF circuits are mainly used for radio frequency processing.
  • the device used to implement the receiving function in Part 31 can be regarded as a receiving module
  • the device used to implement the transmitting function can be regarded as a transmitting module, that is, Part 31 includes a receiving module and a transmitting module.
  • the receiving module may also be called a receiver, receiver, or receiving circuit, etc.
  • the sending module may be called a transmitter, transmitter, or transmitting circuit, etc.
  • Part 32 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control network devices. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time. device.
  • the network device shown in Figure 9 can be any network device shown in the methods shown in Figures 4 to 6, such as a mobility management network element, etc.
  • Part 31 of the transceiver module is used to perform steps related to the transceiver of any network device in the method shown in Figures 4 to 6; Part 32 is used to perform steps related to the processing of any network device in the method shown in Figures 4 to 6 step.
  • FIG. 9 is only an example and not a limitation.
  • the above-mentioned network device including a transceiver module and a processing module may not rely on the structure shown in FIG. 9 .
  • the chip When the device 30 is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module can be an input-output circuit or a communication interface;
  • the processing module is a processor or microprocessor or integrated circuit integrated on the chip.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the method executed by the third network device in the above method embodiment are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the network device in the above method embodiment.
  • Embodiments of the present application also provide a computer program product containing instructions. When executed by a computer, the instructions enable the computer to implement the method executed by the first device or the method executed by the second device in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which includes the network device in the above embodiment.
  • the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer can include hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of this application do not specifically limit the specific structure of the execution body of the method provided by the embodiments of this application, as long as the program recorded in the code of the method provided by the embodiments of this application can be used according to the method provided by the embodiments of this application.
  • the execution subject of the method provided by the embodiment of the present application may be a network device, or a functional module in the network device that can call a program and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, tapes, etc.), optical discs (eg, compact discs (CD), digital versatile discs (DVD), etc. ), smart cards, and flash memory devices (e.g., erasable programmable read-only memory (EPROM), cards, sticks, or key drives, etc.).
  • magnetic storage devices eg, hard disks, floppy disks, tapes, etc.
  • optical discs eg, compact discs (CD), digital versatile discs (DVD), etc.
  • smart cards e.g., erasable programmable read-only memory (EPROM), cards, sticks, or key drives, etc.
  • EPROM erasable programmable read-only memory
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided by this application.
  • each functional unit in each embodiment of the present application can be integrated into one unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the media can include but is not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种卫星通信方法和装置,该方法可以包括:会话管理网元获取标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;该会话管理网元向该卫星上的用户面网元配置转发规则,该转发规则用于将目的地址包含在该标识列表对应的终端设备的地址的数据包分流至该终端设备对应的接入网设备。通过上述方案,可以使得支持卫星下的本地数据交换的终端设备,通过卫星下的本地数据交换进行通信从而可以减少时延,提高用户体验。

Description

卫星通信方法和装置
本申请要求于2022年3月27日提交中国专利局、申请号为202210309468.3、申请名称为“卫星通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种卫星通信方法和装置。
背景技术
目前,卫星通信与5G通信系统(the 5th-generation mobile communications system,5GS)融合技术可应用的一种重要场景为卫星回传(satellite backbaul,SATB),即卫星链路作为卫星回传链路,接入网设备通过卫星回传链路与核心网设备通信。然而在这种场景中,两个通过卫星回传的方式接入网络的UE进行通信时,时延往往比较大,导致用户体验不佳。如何减少卫星通信场景下,端到端传输的时延,是需要考虑的问题。
发明内容
本申请提供了一种卫星通信方法和装置,可以在卫星通信场景下,减少终端设备之间的传输时延。
第一方面,提供了一种卫星通信方法,该方法可以由会话管理网元执行,或者,也可以由会话管理网元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由会话管理网元执行为例进行说明。
该通信方法包括:会话管理网元获取标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;该会话管理网元向该卫星上的用户面网元配置转发规则,该转发规则用于将目的地址包含在该标识列表对应的终端设备的地址的数据包分流至该终端设备对应的接入网设备。
基于上述方案,会话管理网元可以向卫星上的用户面网元配置转发规则,以便该用户面网元将目的地址包含在标识列表对应的终端设备的地址的数据包,发送给该终端设备对应的接入网设备,也就是说,对于标识列表中的终端设备,发送给它们的数据包可以直接由卫星上的用户面网元发送给对应的接入网设备,而不需要经过地面锚点接入网设备,因此可以缩短数据传输路径,减少传输时延。
结合第一方面,在第一方面的某些实现方式中,该会话管理网元获取标识列表,包括:该会话管理网元接收来自数据管理网元或者移动管理网元的该标识列表。
基于上述方案,会话管理网元可以通过数据管理网元或者移动管理网元获取标识列表,以便根据该标识列表向卫星上的用户面网元配置转发规则。
结合第一方面,在第一方面的某些实现方式中,在该会话管理网元接收来自数据管理网元的标识列表之前,该方法还包括:该会话管理网元向该数据管理网元发送请求消息, 该请求消息包括该卫星的相关信息,该请求消息用于请求获取该标识列表。
基于上述方案,会话管理网元可以向数据管理网元发送携带了卫星的相关信息的请求消息,以便数据管理网元将与该卫星的相关信息对应的标识列表发送给会话管理网元。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该会话管理网元接收来自移动管理网元的会话上下文建立请求消息,该会话上下文建立请求消息包括第一终端设备的标识信息,该第一终端设备通过卫星回传方式接入了该卫星;该会话管理网元获取该卫星的相关信息;该会话管理网元向该数据管理网元发送注册消息,该注册消息包括该第一终端设备的标识信息和该卫星的相关信息。
基于上述方案,当第一终端设备通过会话管理网元建立会话的时候,会话管理网元如果确定该第一终端设备通过卫星回传的方式接入了该卫星,则会话管理网元可以将该第一终端设备的标识信息和该卫星的相关信息注册到数据管理网元,以便数据管理网元可以保存有上述标识列表。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该会话管理网元确定允许该第一终端设备进行卫星下的本地数据交换。
基于上述方案,会话管理网元可以在确定第一终端设备支持进行卫星下的本地数据交换的情况下,向数据管理网元注册该第一终端设备的标识信息和该卫星的相关信息,以便标识列表中可以包括一个或多个允许进行卫星下的本地数据交换的终端设备的标识信息,从而使得会话管理网元可以向卫星上的用户面网元配置转发规则,以实现这些终端设备的卫星下的本地数据交换。
结合第一方面,在第一方面的某些实现方式中,该会话管理网元获取卫星的相关信息,包括:该会话管理网元接收来自移动管理网元的该卫星的相关信息。
结合第一方面,在第一方面的某些实现方式中,该会话管理网元获取该卫星的相关信息,包括:该会话管理网元根据该终端设备的位置信息确定该卫星的相关信息。
基于上述方案,会话管理网元可以通过移动管理网元获取卫星的标识信息,也可以根据终端设备的标识信息自行确定卫星的相关信息,以便获取与该卫星的相关信息对应的标识列表。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该会话管理网元向该数据管理网元发送订阅消息,该订阅消息包括该卫星的相关信息,该订阅消息用于订阅该标识列表的变动通知。
基于上述方案,会话管理网元可以向数据管理网元订阅标识列表的变动通知。也就是说,当有新的终端设备注册到该标识列表,或者原来的终端设备从该标识列表中注销,则群组管理网元需要通知该会话管理网元。基于此,会话管理网元可以根据更新后的会话标识列表向卫星上的用户面网元更新转发规则,以使得通过卫星回传方式接入该卫星,并且支持卫星下的本地数据交换的终端设备,可以通过卫星下的本地数据交换进行通信,从而可以降低传输时延,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,该卫星的相关信息可以是以下信息中的任意一种:该卫星对应的数据网络接入标识、该卫星的标识、该卫星的互联网协议地址。
第二方面,提供了一种卫星通信方法,该方法可以由移动管理网元执行,或者,也可以由移动管理网元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述, 下面以由移动管理网元执行为例进行说明。
该通信方法包括:移动管理网元接收来自数据管理网元的标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;该移动管理网元向会话管理网元发送该标识列表。
基于上述方案,移动管理网元可以向会话管理网元提供与卫星的相关信息对应的标识列表,以便会话管理网元可以根据该标识列表向卫星上的用户面网元配置转发规则,以使该用户面网元将目的地址包含在标识列表对应的终端设备的地址的数据包,发送给该终端设备对应的接入网设备,从而可以缩短数据传输路径,减少传输时延。
结合第二方面,在第二方面的某些实现方式中,在该移动管理网元接收来自数据管理网元的标识列表之前,该方法还包括:该移动管理网元向该数据管理网元发送请求消息,该请求消息包括该卫星的相关信息,该请求消息用于请求获取该标识列表。
基于上述方案,移动管理网元可以向数据管理网元请求与该卫星的相关信息对应的标识列表,以便可以向会话管理网元提供该标识列表。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该移动管理网元向接收来自第一终端设备的会话建立请求消息,该会话建立请求消息包括该第一终端设备的标识信息,该第一终端设备通过卫星回传的方式接入了该卫星;该移动管理网元根据该第一终端设备的位置信息确定该卫星的相关信息;该移动管理网元向该数据管理网元发送注册消息,该注册消息包括该第一终端设备的标识信息和该卫星的相关信息。
基于上述方案,移动管理网元可以在第一终端设备的会话建立过程,将第一终端设备的标识信息和该卫星的相关信息注册到数据管理网元,以便数据管理网元可以生成并保存与该卫星的相关信息对应的标识列表。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该会话管理网元确定允许该第一终端设备进行卫星下的本地数据交换。
基于上述方案,移动管理网元可以在确定允许第一终端设备进行卫星下的本地数据交换的情况下,将该第一终端设备的标识信息注册到数据管理网元,以使得该标识列表对应的终端设备本身就支持卫星下的本地数据交换。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该移动管理网元向该数据管理网元发送订阅消息,该订阅消息包括该卫星的相关信息,该订阅消息用于订阅该标识列表的变动通知。
基于上述方案,移动管理网元可以向数据管理网元订阅标识列表的变动通知。也就是说,当有新的终端设备注册到该标识列表,或者原来的终端设备从该标识列表中注销,则群组管理网元需要通知该移动管理网元。基于此,移动管理网元可以将更新后的标识列表发送给会话管理网元,以便会话管理网元可以根据更新后的会话标识列表向卫星上的用户面网元更新转发规则,使得通过卫星回传方式接入该卫星并且支持卫星下的本地数据交换的终端设备,可以通过卫星下的本地数据交换进行通信,从而可以降低传输时延,提高用户体验。
第三方面,提供了一种卫星通信方法,该方法可以由数据管理网元执行,或者,也可以由数据管理网元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由数据管理网元执行为例进行说明。
该卫星通信的方法包括:该数据管理网元接收来自第一网元的请求消息,该请求消息包括该卫星的相关信息;该数据管理网元根据该卫星的相关信息确定与该卫星的标识信息对应的标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;响应于该请求消息,该数据管理网元向该第一网元发送该标识列表。
基于上述方案,数据管理网元可以根据第一网元的请求,将卫星对应的标识列表发送给第一网元,以便会话管理网元可以根据该标识列表向卫星上的用户面网元配置转发规则,以使该用户面网元将目的地址包含在标识列表对应的终端设备的地址的数据包,发送给该终端设备对应的接入网设备,从而可以缩短数据传输路径,减少传输时延。
其中,这里的第一网元可以是会话管理网元,也可以是移动管理网元。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该数据管理网元接收来自该第一网元的注册消息,该注册消息包括第一终端设备的标识信息以及该卫星的相关信息;该数据管理网元将该第一终端设备的标识信息保存在该标识列表。
基于上述方案,第一会话管理网元可以将第一终端设备的标识信息和该卫星的相关信息注册到数据管理网元,以便数据管理网元更新该标识列表,从而可以使得第一终端设备可以进行卫星下的本地数据交换,以减少传输时延。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该数据管理网元接收来自该第一网元的订阅消息,该订阅消息包括该卫星的相关信息,订阅消息用于订阅该卫星的相关信息的变动通知。
基于上述方案,第一网元可以向数据管理网元订阅标识列表的变动通知。在这种情况下,当标识列表发生更新之后,数据管理网元可以将更新后的标识列表发送给第一网元,以便会话管理网元可以根据更新后的标识列表向卫星上的用户面网元配置新的转发规则。
结合第三方面,在第三方面的某些实现方式中,该第一网元为会话管理网元或者移动管理网元。
第四方面,提供通信装置,该装置用于执行上述第一方面至第三方面提供的任一方法。具体地,该装置可以包括用于执行第一方面至第三方面提供的方法的单元和/或模块,如处理模块和/或收发模块(也可以称为通信模块)。在一种实现方式中,该装置为网络设备,例如该装置为会话管理网元,或移动管理网元,或数据管理网元。当该装置为网络设备时,通信模块可以是收发器,或,输入/输出接口;处理模块可以是处理器。
在一种实现方式中,该装置为用于网络设备中的芯片、芯片系统或电路。当该装置为用于通信设备中的芯片、芯片系统或电路时,通信模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理模块可以是处理器、处理电路或逻辑电路等。
一种可能情况,该装置为会话管理网元,或者为会话管理网元中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第一方面提供的方法的单元和/或模块,如处理单元和/或通信单元。
另一种可能情况,该装置为移动管理网元,或者移动管理网元中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第二方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
又一种可能情况,该装置为数据管理网元,或者数据管理网元中的芯片、芯片系统或 电路。在该情况下,该装置可以包括用于执行第三方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
第五方面,提供一种通信装置,该装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当存储器存储的程序被执行时,处理器用于执行上述第一方面至第三方面提供的任一方法。
第六方面,本申请提供一种处理器,用于执行上述各方面提供的方法。在执行这些方法的过程中,上述方法中有关发送上述信息和获取/接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后再到达收发器。类似的,处理器接收输入的上述信息时,收发器获取/接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后再输入处理器。
基于上述原理,举例来说,前述方法中提及的接收请求消息可以理解为处理器接收输入的信息。
对于处理器所涉及的发射、发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第三方面提供的任一方法。
第八方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第三方面提供的任一方法。
第九方面,提供一种芯片,该芯片包括处理器与通信接口,该处理器通过该通信接口读取存储器上存储的指令,执行上述第一方面至第三方面提供的任一方法。
可选地,作为一种实现方式,该芯片还可以包括存储器,该存储器中存储有指令,该处理器用于执行该存储器上存储的指令,当该指令被执行时,该处理器用于执行上述第一方面至第三方面提供的任一方法。
第十方面,提供一种通信系统,包括前述的会话管理网元、移动管理网元、数据管理网元中的一个或多个。
附图说明
图1是适用于本申请实施例的一种网络架构的示意图;
图2是一种卫星回传链路的通信架构示意图;
图3是一种卫星本地数据交换的通信架构示意图;
图4是本申请实施例提供的一种通信方法的示意性流程图;
图5是本申请实施例提供的另一种通信方法的示意性流程图;
图6是本申请实施例提供的又一种通信方法的示意性流程图;
图7是本申请一个实施例提供的通信装置的示意性框图;
图8是本申请另一个实施例提供的通信装置的示意性框图;
图9是本申请又一个实施例提供的通信装置的示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”以及其他各种术语标号等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
下面将结合图1举例说明本申请实施例适用的5G系统。应理解,本文中描述的5G系统仅是示例,不应对本申请构成任何限定。
还应理解,5G系统中某些网元之间可以采用服务化接口,或点对点的接口进行通信,下面结合图1的(a)和图1的(b)分别介绍基于点对点接口的5G系统框架,以及基于服务化接口的5G系统框架。
作为示例性说明,图1的(a)示出了本申请实施例适用的5G系统100的架构示意图。图1为基于点对点接口的5G网络架构示意图。如图1的(a)所示,该网络架构可以包括 但不限于以下网元(或者称为功能网元、功能实体、节点、设备等):
(无线)接入网设备(radio access network,(R)AN)、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、AF网元、数据网络(data network,DN)、网络切片选择功能(network slice selection function,NSSF)、认证服务器功能(authentication server function,AUSF)、统一数据管理(unified data management,UDM)、BSF网元、统一数据存储(unified data repository,UDR)等。
下面对图1的(a)中示出的各网元进行简单介绍:
1、用户设备(user equipment,UE):可以称为终端设备(terminal equipment)、终端装置、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器等,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,用户设备可以是任何可以接入网络的设备。终端设备与接入网设备之间可以采用某种空口技术相互通信。
可选地,用户设备可以用于充当基站。例如,用户设备可以充当调度实体,其在V2X或D2D等中的用户设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
2、(无线)接入网((radio)access network,(R)AN)设备:用于为特定区域的授权用户设备提供入网功能,并能够根据用户设备的级别,业务的需求等使用不同服务质量的 传输隧道。
(R)AN能够管理无线资源,为用户设备提供接入服务,进而完成控制信号和用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为传统网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限为演进型节点B(evolved Node B,eNB)或5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
在卫星通信场景中,无线接入网设备还可以称为无线卫星接入网络站点(或者无线卫星接入网络设备、无线卫星接入网络)、卫星接入网络站点(或者卫星接入网络设备、卫星接入网络)或者称为卫星网络站点(或者称为卫星网络设备、卫星网络),本申请实施例对此不做限定。卫星接入网络可以有多种部署方式,例如:同一个PLMN同时拥有地面3GPP接入网路和卫星3GPP接入网络,两种接入网络分别与核心网之间有独立的接口;又例如:不同的核心网共享同一卫星接入网络,共享的卫星接入网络会在广播系统信息中包含可用的PLMN;又例如:地面接入网络和卫星接入网络是独立的,即地面接入网络和卫星接入网络对应独立的PLMN;又例如:天空中的卫星仅负责信号传递,不具有接入网络的功能,这种场景也中可以卫星接入称为卫星回程。在上述的非卫星回程的场景中,卫星可以包含全部或部分接入网络的功能,本申请对此不做限定。当基站的全部功能集成在卫星上时,卫星接入网络设备可理解为卫星上基站部分功能的设备,接入网络的相关信令和数据处理全部在卫星上进行。基站的部分功能集成在卫星上,部分功能位于地面时,卫星接入网络设备可理解为卫星上的基站部分功能的设备和地面上的基站部分功能的设备,接入网络的相关信令和数据处理部分在卫星上进行部分在地面上进行。卫星回程时,卫星接入网络设备可理解为地面上的基站,接入网络的相关信令和数据处理全部在地面上进行,卫星在终端设备和卫星接入网络之间透传信令和数据。
3、用户面功能(user plane function,UPF)网元:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。 在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、接入和移动管理功能(access and mobility management function,AMF)网元:接入和移动管理功能网元主要用于移动性管理和接入管理等,可以用于实现MME功能中除会话管理之外的其它功能,例如,接入授权/鉴权等功能。
在未来通信系统中,接入和移动管理设备仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
5、会话管理功能(session management function,SMF)网元:主要用于会话管理、用户设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
6、策略控制功能(policy control function,PCF)网元:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF等)提供策略规则信息等。
在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
7、应用功能(application function,AF):用于进行应用影响的数据路由,无线接入网络开放功能网元,与策略框架交互进行策略控制等。
在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
8、统一数据管理(unified data management,UDM)网元:用于处理UE标识,接入鉴权,注册以及移动性管理等。
在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
9、认证服务器(authentication server function,AUSF)网元:用于鉴权服务、产生密钥实现对用户设备的双向鉴权,支持统一的鉴权框架。
在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
10、网络数据分析功能(network data analytics function,NWDAF)网元:用于识别网络切片实例、加载网络切片实例的负载级别信息。网络数据分析功能可使NF消费者订阅或取消订阅定期通知,并在超过阈值的情况下,通知消费者。
在未来通信系统中,网络数据分析功能网元仍可以是NWDAF网元,或者,还可以有其它的名称,本申请不做限定。
11、数据网络(data network,DN):DN是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手 机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1的(a)中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
在图1的(a)所示的网络架构中,各网元之间可以通过图中所示的接口通信。如图所示,UE和AMF之间可以通过N1接口进行交互,交互消息例如可以称为N1消息(N1Message)。RAN和AMF之间可以通过N2接口进行交互,N2接口可以用于非接入层(non-access stratum,NAS)消息的发送等。RAN和UPF之间可以通过N3接口进行交互,N3接口可以用于传输用户面的数据等。SMF和UPF之间可以通过N4接口进行交互,N4接口可以用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息。UPF和DN之间可以通过N6接口进行交互,N6接口可以于传输用户面的数据等。其他接口与各网元之间的关系如图1的(a)中所示,为了简洁,这里不一一详述。
如图1的(b)所示,为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1的(a)中对应的网元的功能的介绍,不再赘述。图1的(b)与图1的(a)的主要区别在于:图1的(b)中的各个网元之间的接口是点对点的接口,而不是服务化的接口。
在图1的(b)所示的架构中,各个网元之间的接口名称及功能如下:
1)N7:PCF与SMF之间的接口,用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
2)N15:PCF与AMF之间的接口,用于下发UE策略及接入控制相关策略。
3)N5:AF与PCF之间的接口,用于应用业务请求下发以及网络事件上报。
4)N4:SMF与UPF之间的接口,用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N11:SMF与AMF之间的接口,用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给UE的控制消息、传递发送给RAN的无线资源控制信息等。
6)N2:AMF与RAN之间的接口,用于传递核心网侧至RAN的无线承载控制信息等。
7)N1:AMF与UE之间的接口,接入无关,用于向UE传递QoS控制规则等。
8)N8:AMF与UDM间的接口,用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册UE当前移动性管理相关信息等。
9)N10:SMF与UDM间的接口,用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册UE当前会话相关信息等。
10)N35:UDM与UDR间的接口,用于UDM从UDR中获取用户签约数据信息。
11)N36:PCF与UDR间的接口,用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
12)N12:AMF和AUSF间的接口,用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)N13:UDM与AUSF间的接口,用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1的(a)中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。为方便说明,本申请后续,以网络设备为接入和移动管理网元AMF,基站为无线接入网络RAN为例进行说明。
应理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的各个方面或特征可以用于实现成方法,或者通过装置或标准编程和/或工程技术的制品进行实现。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为了便于理解本申请实施例的技术方案,在以5G架构为基础介绍本申请实施例的方案之前,首先对本申请实施例可能涉及到的5G中的一些术语或概念,以及本申请可能涉及但上述网络架构未示出的网元进行简单描述。
1、卫星通信
卫星通信技术指的是地面上的无线通信设备通过卫星接入网络的技术,或者指的是地面上的无线通信设备之间通过卫星作为中继进行通信的技术。卫星通信相对于传统的移动通信系统,拥有更广的覆盖范围,可以克服海洋,沙漠,高山等自然地理障碍等优点。
基于图1所示的通信系统架构,可以将卫星通信与5G通信系统(the 5th-generation mobile communications system,5GS)进行融合。目前,卫星通信与5GS的融合可以分为两种场景,第一种场景为:卫星作为3GPP接入,UE通过卫星接入5GS;第二种场景为:卫星链路作为回传链路,RAN通过回传链路与5G核心网(5G core,5GC)通信(如,回传链路为N3或N9提供承载)。
本申请主要针对如图2所示的卫星链路作为5G回传链路的场景,图2是一种卫星通 信与5GS融合的场景示意图。从图2中可以看出卫星链路作为5G回传链路,RAN通过5G回传链路与5GC连接。其中,5GC可以包括如图1中所示的AMF、AF、UPF等核心网网元。
需要说明的是,图2中仅示出了一个卫星,在实际通信场景中,还可以有多个卫星,且该多个卫星的类型可以相同也可以不同,不同卫星之间存在无线链路,可以完成接入网设备之间的信令交互和用户数据传输。
不同类型的卫星由于轨道高度不同,卫星的覆盖面积、运动特征和带来的传播延时、抖动等也可能不同。示例性地,卫星按轨道类型可分为地球同步卫星(geostationary equatorial orbit,GEO)、低轨道卫星(low earth orbit,LEO)极地轨道星座、中轨道卫星(mid earth orbit,MEO)和其他卫星(Other SAT)等。
2、卫星星座。
卫星星座是发射入轨能正常工作的卫星的集合,通常是由一些卫星按一定的方式配置组成的一个卫星网。主要的卫星星座有全球定位系统(global position system,GPS)卫星星座、格洛纳斯(GLONASS)卫星星座、伽利略Galileo卫星星座和北斗卫星星座等。
本申请中主要涉及的星座类型包括:
低轨道卫星(low earth orbit,LEO)极地轨道星座、中轨道卫星(mid earth orbit,MEO)极地轨道星座、LEO倾斜轨道星座和MEO倾斜轨道星座等。
其中,LEO倾斜轨道星座和MEO倾斜轨道星座不涉及反向缝的概念,也就是说在星座类型为LEO倾斜轨道星座和MEO倾斜轨道星座的情况下,无需考虑是否支持反向缝。LEO极地轨道星座和MEO极地轨道星座涉及反向缝的概念,也就是说在星座类型为LEO极地轨道星座和MEO极地轨道星座的情况下,需要考虑是否支持反向缝。
3、星历
星历(Ephemeris),也可以称为星历表,历表,历书等,是用来定位任何时刻天体位置的信息。终端设备可以根据卫星星历数据来搜索网络,从而提高用户体验。卫星星历主要包括轨道平面参数(Orbital plane parameters)和卫星层参数(Satellite level parameterst)。
应理解,在本申请实施例中,卫星星历也可以称为星历参数,卫星的星历参数,卫星接入网络中的卫星的星历参数,卫星回程中的卫星的星历参数或其它可能的名称,本申请对此不做限定。
4、卫星回传
当图1所示的网络架构中的RAN和UPF之间采用卫星作为传输路径时,称之为卫星回传。图3示出了一种卫星回传的场景示意图。如图3所示,UE1通过卫星回传建立PDU会话-1,用户面路径为UE、RAN1、GEO UPF-1、(可选的)地面PSA-1(如图中点划线所示);UE2通过卫星回传建立PDU会话-2,用户面路径为UE、RAN2、GEO UPF-2、(可选的)地面PSA-2(如图中虚线所示)。其中GEO UPF-1和GEO UPF-2可以相同,也可以不同。
上文结合图1介绍了本申请实施例能够应用的场景,还简单介绍了本申请中涉及的基本概念,下文中将结合附图详细介绍本申请提供的通信方法和装置。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例 提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是核心网设备和终端设备,或者是核心网设备或者终端设备中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以理解为“使能”,“使能”可以包括直接使能和间接使能。当描述某一信息用于使能A时,可以包括该信息直接使能A或间接使能A,而并不代表该信息中一定携带有A。
将信息所使能的信息称为待使能信息,则具体实现过程中,对待使能信息进行使能的方式有很多种,例如但不限于,可以直接使能待使能信息,如待使能信息本身或者该待使能信息的索引等。也可以通过使能其他信息来间接使能待使能信息,其中该其他信息与待使能信息之间存在关联关系。还可以仅仅使能待使能信息的一部分,而待使能信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的使能,从而在一定程度上降低使能开销。同时,还可以识别各个信息的通用部分并统一使能,以降低单独使能同样的信息而带来的使能开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同消息等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
第四,在本申请中,“预配置”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括各个网元)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第五,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第六,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第七,本申请说明书附图部分的方法流程图中的虚线框表示可选的步骤。
以下,以网元之间的交互为例详细说明本申请实施例提供的通信方法。应理解,本申请中的各实施例中术语和步骤可以互相参考。
图4示出了本申请实施例提供的方法400的示例性流程图。下面结合各个步骤对方法400作示例性说明。
S401,会话管理网元获取标识列表。
示例性地,该标识列表包括一个或多个通过卫星回传方式接入卫星的终端设备的标识 信息,或者也可以说,该标识列表包括一个或多个通过卫星回传方式接入网络的终端设备的标识信息。该标识列表与该卫星的相关信息对应。该终端设备的标识信息可以是该终端设备的互联网协议(internet protocol,IP)地址,即该标识列表可以为终端设备的IP列表,或者,该终端设备的标识信息还可以是其他类型的标识,如终端设备的用户永久标识(subscription permanent identifier,SUPI),本申请不作限定。在一种实现方式中,该一个或多个终端设备支持卫星下的本地数据交换,在这种情况下,该标识列表还可以描述为:该标识列表包括一个或多个支持卫星下的本地数据交换,且通过卫星回传方式接入卫星的终端设备的标识信息。
该卫星的相关信息可以指的是与该卫星相关联的任意信息,例如该卫星的相关信息可以是以下信息中的任意一种:该卫星对应的数据网络接入标识、该卫星的标识、卫星的互联网协议地址,本申请不作限定。
下面对会话管理网元获取该标识列表的具体实现方式进行示例性说明。
作为一种可能的实现方式,会话管理网元向数据管理网元发送请求消息,该请求消息包括该卫星的相关信息,该请求消息用于请求获取该标识列表。对应地,数据管理网元接收来自会话管理网元的该请求消息,然后根据该卫星的相关信息,获取本地存储的与该卫星的相关信息对应的该标识列表,然后数据管理网元向会话管理网元发送该标识列表。
作为另一种可能的实现方式,还可以由移动管理网元向数据管理网元请求获取该标识列表,然后将获取到的该标识列表发送给会话管理网元。
作为又一种可能的实现方式,若该标识列表所对应的终端设备均是由该会话管理网元提供服务的,则会话管理网元可以自行确定该标识列表。也就是说,会话管理网元也可能自行确定通过卫星回传接入卫星的的终端设备的标识列表。
作为又一种可能的实现方式,会话管理网元根据需要通信的终端设备的标识列表(记为第一标识列表),以及通过卫星回传接入卫星的终端设备的标识列表(记为第二标识列表),确定该标识列表。例如,在S401之前,会话管理网元接收来自应用功能网元的第一标识列表;其中,该第一标识列表包括需要通信的终端设备对应的标识信息。需要通信的终端设备例如是需要参加在线会议的终端设备。
然后,会话管理网元可以从移动管理网元或数据管理网元获取通过卫星回传方式接入卫星的终端设备的第二标识列表,或者是会话管理网元自行确定的通过卫星回传方式接入卫星的终端设备的第二标识列表,具体实现方式可参考上述示例(即上述示例中的标识列表对应这里的第二标识列表)。
进一步地,会话管理网元根据第一标识列表和第二标识列表确定该标识列表。示例性地,该标识列表包括第一标识列表和第二标识列表中共有的终端设备的标识信息,即该标识列表包括一个或多个需要通信的、且通过卫星回传接入卫星的终端设备的标识信息。
例如,会话管理网元SMF从应用功能网元AF接收第一标识列表{UE1~UE10};SMF获取到通过卫星回传方式接入卫星的终端设备的第二标识列表为{UE5~UE100}。则SMF根据第一标识列表和第二标识列表确定该标识列表为{UE5~UE10}。也就是说,UE5~UE10的通信可以通过本申请中的卫星下的本地数据交换实现通信,UE1~UE4的通信可以采用现有技术实现通信,本申请不做赘述。
应理解,数据管理网元预先保存了卫星的相关信息和标识列表的对应关系,其中该标 识列表中的终端设备可以是会话管理网元注册(或者说保存)到该数据管理网元的。下面结合S403-S405进行示例性说明。
S402,会话管理网元接收来自移动管理网元的会话上下文建立请求消息。
示例性地,该会话上下文建立请求消息包括第一终端设备的标识信息,其中,该第一终端设备通过卫星回传的方式接入该卫星。其中,终端设备的标识信息可以为终端设备的IP,也可以是终端设备的SUPI,本申请不作限定。在一种实现方式中,该第一终端设备通过地球静止轨道卫星回传的方式接入该卫星,也就是说,第一终端设备的卫星回传方式为地球静止轨道卫星回传。在这种实现方式中,该标识列表还可以描述为:该标识列表包括一个或多个通过地球静止轨道卫星回传方式接入地球静止轨道卫星的终端设备的标识信息。
S403,会话管理网元确定是否允许第一终端设备进行卫星下的本地数据交换。
示例性地,会话管理网元可以根据第一终端设备的签约信息或者策略信息确定是否允许第一终端设备进行卫星下的本地数据交换,例如签约信息或者策略信息中指示该终端可以进行本地数据交换,本申请对此不作限定。若会话管理网元确定允许第一终端设备进行卫星下的本地数据交换,则会话管理网元执行S404。
S404,会话管理网元向数据管理网元发送注册消息。对应地,数据管理网元接收来自会话管理网元的该注册消息。
示例性地,该注册消息中包括该第一终端设备的标识信息和该卫星的相关信息。对应地,数据管理网元接收到该注册消息之后,保存该第一终端设备的标识信息和该卫星的相关信息,或者说,数据管理网元将第一终端设备的标识信息保存到与该卫星的相关信息对应的标识列表中。
可选地,S404之前,会话管理网元获取该卫星的相关信息。
示例性地,会话管理网元可以从移动管理网元获取该卫星的相关信息,也可以自行确定该卫星的相关信息。
作为一种示例,移动管理网元可以将该卫星的相关信息携带在该会话上下文建立请求消息,会话管理网元从该会话上下文建立请求消息中获取该卫星的相关信息。
作为另一种示例,该会话管理网元根据该终端设备的位置信息确定该卫星的相关信息。可选地,会话管理网元还可以结合其他信息确定该卫星的相关信息。例如,会话管理网元根据终端设备的位置信息和卫星回传类型信息确定该卫星的相关信息。又例如,会话管理网元可以根据终端设备的位置信息、卫星回传类型信息以及该卫星的星座信息确定该卫星的相关信息。
类似地,若有其他能够进行卫星下的本地数据交换,且通过卫星回传接入该卫星的终端设备(例如第二终端设备)通过该会话管理网元建立会话的话,会话管理网元将第二终端设备的标识信息和该卫星的相关信息注册到该数据管理网元,数据管理网元接收并保存该第二终端设备的位置信息和该卫星的相关信息之间的对应关系,或者说,该数据管理网元将该第二终端设备的位置信息保存到与该卫星的相关信息对应的标识列表中。通过这种方式,可以在数据管理网元侧维护一个包括一个或多个通过卫星回传方式接入该卫星,且支持卫星下的本地数据交换的终端设备的标识的标识列表。
可选地,S405,会话管理网元向数据管理网元发送订阅消息,该订阅消息包括该卫星 的相关信息,该订阅消息用于订阅该标识列表的变动通知。也就是说,当该卫星的相关信息对应的标识列表发生更新时,数据管理网元向会话管理网元发送通知消息。例如,当某个终端设备注册到该卫星(即某个终端设备通过该卫星回传接入网络),或者某个终端设备从该卫星上注销(即某个终端设备不再通过该卫星回传接入网络),则数据管理网元向会话管理网元发送通知消息,并在该通知消息中携带更新后的标识列表。
应理解,S405是以显性订阅为例进行说明的,但会话管理网元还可以通过隐性订阅的方式向数据管理网元订阅,即不执行步骤405,本申请不作限定。应理解,该标识列表还可能是会话管理网元注册到该数据管理网元的,具体实现方式与S402-S405类似,下面进行简要说明。
示例性地,移动管理网元接收来自第一终端设备的包括会话建立请求消息的消息,该消息还包括该第一终端设备的标识信息,该第一终端设备通过卫星回传的方式接入该卫星。然后可选地,移动管理网元判断是否允许该第一终端设备进行卫星下的本地数据交换(与S403类似),如果允许的话,则移动管理网元向数据管理网元发送注册消息,该注册消息中包括该第一终端设备的标识信息和该卫星的相关信息(与S404类似)。数据管理网元接收并保存该第一终端设备的标识信息和该卫星的相关信息之间的对应关系。可选地,移动管理网元还可以向数据管理网元发送订阅消息以订阅标识列表的变动通知(与S405类似),这里不再赘述。
S406,会话管理网元向卫星上的用户面网元配置转发规则。
示例性地,该转发规则用于将目的地址包含在该标识列表对应的终端设备的地址的数据包分流到(或者说转发到)该终端设备对应的接入网设备,或者还可以描述为,该转发规则用于将待发送给该标识列表对应的终端设备的数据包分流到该终端设备对应的接入网设备,或者还可以描述为,该转发规则用于将目的地址指向该标识列表内的终端设备的数据包分流到该终端设备对应的接入网设备,或者还可以描述为,该转发规则用于将目的地址包含在该标识列表中的终端设备的地址的数据包分流到内部接口。例如,UE1通过卫星回传接入网络,假设此时该卫星的相关信息对应的标识列表包括UE2和UE3。UE1向UE2发送数据包,该数据包的目的地址为UE2IP。当卫星上的用户面网元收到该数据包时,根据转发规则,确定该数据包的目的地址包含在UE2或UE3对应的终端设备的地址中,则卫星上的用户面网元将该数据包发送至UE2对应的接入网设备。
进一步地,该转发规则还用于将发送到该终端设备的数据包分流到该终端设备对应的接入网设备。以上面的例子进行说明,UE3向UE1发送数据包,该数据包的目的地址为UE1 IP。当卫星上的用户面网元收到该数据包时,根据转发规则,确定该数据包的目的地址为UE1,则卫星上的用户面网元将该数据包发送至UE1对应的接入网设备。
需要说明的是,转发规则的具体体现形式可以包括两部分:检测规则部分、转发规则部分。其中,检测规则部分用于检测符合条件的数据包,即检测数据包的目的地址在标识列表中的终端设备的地址的数据包;转发规则部分用于将符合条件的数据包转发至内部接口或转发至目的地址对应的终端设备对应的接入网设备。
基于上述方案,会话管理网元可以向卫星上的用户面网元配置转发规则,以便该用户面网元将目的地址包含在标识列表对应的终端设备的地址的数据包,发送给该终端设备对应的接入网设备,也就是说,对于标识列表中的终端设备,发送给它们的数据包可以直接 由卫星上的用户面网元发送给对应的接入网设备,而不需要经过地面锚点接入网设备,因此可以缩短数据传输路径,减少传输时延。
下面以5G系统为基础,介绍本申请实施例提供的通信方法。应理解,方法500和方法600中的SMF1可对应于方法400中的会话管理网元,方法500和方法600中的AMF1可对应于方法400中的移动管理网元,方法500和方法600中的UDM/NRF可对应与方法400中的数据管理网元,方法500和方法600中的UE ID list可对应于方法400中的标识列表,因此不同实施例之间的描述可以互相参考和补充。
图5示出了本申请实施例提供的方法500的示例性流程图。下面结合各个步骤对方法500作示例性说明。
S501,UE1向AMF1发送PDU会话建立请求消息。对应地,AMF1接收来自UE1的PDU会话建立请求消息。
示例性地,UE1通过NAS消息向AMF1发送PDU会话建立(PDU session establishment request)请求消息。具体例如,UE1向gNB1发送AN消息(AN message),该AN消息中携带NAS消息(NAS message),该NAS消息包括PDU session ID和PDU会话建立请求。gNB接收到来自UE1的该AN消息之后,向AMF1发送N2消息(N2 message),该N2消息中包括PDU session ID、UE的位置信息(UE location information,ULI)和PDU会话建立请求等。该UE的位置信息用于标识UE1当前所处的位置,例如该UE的位置信息可以是跟踪区标识(tracking area identity,TAI)、小区标识或者地理位置标识等。
可选地,S502,AMF1根据UE的位置信息确定GEO SAT ID。
示例性地,在AMF1确定UE1通过GEO卫星回传接入网络的情况下,AMF1根据UE的位置信息确定GEO SAT ID,该GEO SAT ID用于标识UE1所接入的GEO卫星,该GEO SAT ID可以是该GEO卫星自身的标识信息,也可以是该GEO卫星上的UPF的标识信息(即GEO UPF ID),本申请不作限定。可以理解的是,如方法400所描述的,GEO SAT ID还可以用DNAI表示,即用该GEO卫星对应的DNAI来表示。DNAI的具体含义还可以描述为该GEO卫星上的用户面功能网元对应的标识,或者该GEO UPF所在的用户面连接对应的标识。或者,GEO SAT ID还可以用GEO SAT IP表示,该GEO SAT IP可以理解为GEO SAT的IP地址。
在一种实现方式中,AMF1还可以确定UE1的卫星回传类型。例如,AMF1根据gNB1 ID确定U1E通过GEO卫星接入网络,则AMF1确定UE1的卫星回传类型为GEO SATB。在另一种实现方式中,AMF1可以从gNB1获取UE对应的卫星回传类型。例如,gNB1向AMF1发送卫星回传类型信息,该卫星回传类型信息指示UE1通过GEO卫星回传接入网络。
可选地,AMF1还可以确定卫星的星座信息。例如,在一种实现方式中,当gNB接入不同星座时采用不同gNB ID/gNB IP时,AMF1可以根据gNB1 ID/gNB1 IP确定UE1的星座信息;在另一种实现方式中,当不同星座采用的频段不同时,AMF1可以根据卫星使用的频率确定UE1的星座信息。
S503,AMF1向SMF1发送创建会话管理上下文请求消息。对应地,SMF1接收来自AMF1的创建会话管理上下文请求消息。
示例性地,AMF1接收来自UE1的PDU会话建立请求之后,向SMF1发送创建会话 管理上下文请求(Nsmf_PDUSession_CreateSMContext request)消息,该创建会话管理上下文请求消息中包括SUPI、PDU session ID、UE的位置信息等参数。
应理解,如果AMF执行了S502,则AMF1可以在该创建会话管理上下文请求消息中携带GEO SAT ID。
可选地,S504,SMF1选择地面PSA。
示例性地,SMF1可以为UE1的会话选择地面PSA。可选地,SMF1还可以为UE1分配IP地址(记为UE1 IP)。
应理解,SMF1也可以不选择地面PSA,即SMF1可以不执行S504。在这种情况下,SMF1依然可以为UE1分配UE1 IP,但此时UE1 IP不锚定在UPF处。
可选地,S505,SMF1判断是否允许UE进行卫星下的本地数据交换。
在一种实现方式中,SMF1通过UDM获取UE1的签约数据,根据该签约数据判断是否允许UE1进行卫星下的本地数据交换(local switch)。
在另一种实现方式中,SMF1通过PCF获取针对UE的策略信息,根据该策略信息判断是否允许UE进行卫星下的本地数据交换。
S506,SMF1向UDM/NRF发送查询请求消息。对应地,UDM/NRF接收来自SMF1的查询请求消息。
示例性地,在SMF1确定允许UE1进行卫星下的本地数据交换的情况下,SMF1向UDM/NRF发送查询请求消息,该查询请求消息包括GEO SAT ID,该查询请求消息用于请求查询与该GEO SAT ID对应的UE标识列表,或者说,该查询请求消息用于请求查询连接在GEO SAT ID对应的GEO卫星上的UE的UE标识列表,或者说,该查询请求消息用于请求查询连接在GEO SAT ID对应的GEO卫星上、且能够进行卫星下的local switch的UE的标识列表,或者说,该查询请求消息用于请求查询UDM/NRF保存的与该GEO SAT ID对应的UE的标识列表。该UE ID list包括一个或多个连接在该GEO卫星上、且能够进行卫星下的local switch的UE的标识。其中,这里的UE的标识可以指的是UE的ID,也可以指的是UE的IP,或者是其他类型的标识,本申请不作限定。也就是说,该UE的标识列表可以是UE ID list,也可以是UE IP list,或者是其他类型的列表,本申请不作限定。为了便于说明,后续以UE的标识列表为UE ID list为例进行说明。
应理解,SMF1可以从AMF1接收该GEO SAT ID,也可以自行确定该GEO SAT ID,例如,SMF1根据UE1的位置信息确定该GEO SAT ID,本申请不作限定。
S507,UDM/NRF向SMF1发送查询响应消息。对应地,SMF1接收来自UDM/NRF的查询响应消息。
示例性地,UDM/NRF接收来自SMF1的查询请求消息之后,根据该GEO SAT ID确定与该GEO SAT ID对应的UE ID list,然后UDM/NRF向SMF1发送查询响应消息,该查询响应消息中包括该UE ID list。应理解,UDM/NRF预先保存了GEO SAT ID与UE ID list之间的对应关系。
需要说明的是,上述查询过程,即S506-S507还可以做如下增强:
可选地,UDM/NRF接收到来自SMF1的查询请求消息之后,判断该查询请求消息是否是第一次查询请求,也就是说,UDM/NRF判断在S506之前是否有其他SMF向其查询与该GEO SAT ID对应的UE ID list;
当UDM/NRF判断该查询请求不是第一次查询时,UDM/NRF向SMF返回的查询响应消息(即S507)不包括GEO SAT ID对应的UE ID list。进一步地,该查询响应消息中包括一个指示信息,用于指示SMF1该查询请求不是第一次查询请求。即此时UDM/NRF不向SMF1返回GEO SAT ID对应的UE ID list。
S508,SMF1向UDM/NRF发送注册请求消息。对应地,UDM/NRF接收来自SMF1的注册请求消息。
示例性地,在SMF1确定允许UE进行卫星下的本地数据交换的情况下,SMF1向UDM/NRF发送注册请求消息,该注册请求消息包括GEO SAT ID和UE1 ID。也就是说,如果某个UE能够进行卫星下的本地数据交换,则SMF1将该UE的标识,以及该UE对应的卫星的标识发送给UDM/NRF。
应理解,该注册请求消息还可以有其他名称,例如,该注册请求消息还可以称作为存储请求消息,本申请不作限定。
还应理解,S508可以在S506之前执行,也可以在S506之后执行,本申请不作限定。
还应理解,S508还可以和S506同时执行,例如,S508和S506可以合并为一条消息。例如,SMF1向UDM/NRF发送注册与查询请求消息,该注册与查询请求消息中包括GEO SAT ID和UE1 ID。该UDM/NRF接收到该注册与查询请求消息之后,向SMF1发送注册与查询响应消息,该注册与查询响应消息中包括UE ID list。
S509,UDM/NRF保存GEO SAT ID和UE1 ID。
示例性地,UDM/NRF接收到来自SMF1的注册请求消息之后,保存GEO SAT ID和UE1 ID,或者说,保存GEO SAT ID和UE1 ID之间的对应关系,或者说,将UE1 ID保存到与GEO SAT ID对应的UE ID list中。
S510,SMF1向UDM/NRF发送订阅消息。对应地,UDM/NRF接收来自SMF1的该订阅消息。
示例性地,SMF1还可以向UDM/NRF发送订阅消息,该订阅消息中包括GEO SAT ID,该订阅消息用于订阅该GEO SAT ID对应的UE ID list的变动通知。也就是说,当该GEO SAT ID对应的UE ID list发生更新时,UDM/NRF向SMF1发送通知消息。例如,当某个UE注册到该GEO SAT,或者某个UE从该GEO SAT上注销,则UDM/NRF向SMF1发送通知消息,并在该通知消息中携带更新后的UE ID list。
应理解,S510是以显性订阅为例进行说明的,但SMF1还可以通过隐性订阅的方式向UDM/NRF订阅,例如S510不执行,通过S506或S508表明隐式订阅,本申请不作限定。
S511,SMF1向GEO UPF发送N4会话建立请求消息。对应地,GEO UPF接收来自SMF的N4会话建立请求消息。
示例性地,当允许UE进行卫星下的local switch时,SMF选择GEO UPF,或者说,SMF插入GEO UPF作为I-UPF/分流点。该GEO UPF与GEO SAT ID对应。
进一步地,SMF1向GEO UPF发送N4会话建立请求消息,该N4会话建立请求消息中可以包括GEO SAT ID对应的UE ID list,以指示GEO UPF将匹配到UE ID list的报文进行local switch,或者说,指示GEO UPF将目的地址指示UE ID list中的UE的报文进行local switch。
S512,GEO UPF向SMF1发送N4会话建立响应消息。对应地,SMF1接收来自GEO UPF的N4会话建立响应消息。
示例性地,GEO UPF接收到来自SMF1的N4会话建立请求消息之后,返回N4会话建立响应消息,该N4会话建立响应消息中携带GEO UPF tunnel info for N3(即GEO UPF的N3隧道信息),用于建立gNB1与GEO UPF之间的N3连接。可选地还可以携带GEO UPF tunnel info for N9(即GEO UPF的N9隧道信息),用于建立GEO UPF与地面PSA之间的N9隧道。
S513,SMF1向AMF1发送N1N2消息传输请求消息。对应地,AMF1接收来自SMF1的N1N2消息传输请求消息。
示例性地,该N1N2消息传输(N1N2messageTransfer)请求消息包括PDU session ID、发送至gNB的N2SM info以及发送至UE的N1SM container。
S514,AMF1向gNB1发送N2 PDU会话请求消息。对应地,gNB1接收来自AMF1的N2 PDU会话请求消息。
示例性地,该N2 PDU会话请求(N2 PDU session request)消息包括N2SM info、N1 SM container。
S515,gNB1对UE发起空口配置。
S516,gNB1向AMF1发送N2 PDU会话确认消息。对应地,AMF1接收来自gNB1的N2 PDU会话确认消息。
示例性地,该N2 PDU会话确认(N2 PDU session ACK)消息包括gNB tunnel info(即gNB隧道信息)。进一步地,AMF将该gNB tunnel info发送给SMF。
S517,SMF1向GEO UPF发送N4会话修改请求消息。对应地,GEO UPF接收来自SMF的N4会话修改请求消息。
示例性地,SMF1接收到gNB tunnel info之后,向GEO UPF发送N4会话修改请求消息,该N4会话修改请求消息包括配置信息,该配置信息用于指示GEO UPF将接收到的、需要发送至UE ID list对应的UE的报文,发送给该UE对应的gNB,或者说,该配置信息用于指示GEO UPF将目的地址指向该UE ID list中的UE的报文,发送给该UE对应的gNB。
应理解,GEO UPF可以根据保存的上下文确定UE对应的gNB。例如,GEO UPF保存了如表1所示的信息。其中,N4session ID与PDU session ID相对应。
表1
假设UE ID list包括UE1的标识和UE2的标识。UE1通过gNB1向GEO UPF发送报文,目的地址为UE2IP。GEO UPF根据保存的上下文,确定UE2对应的gNB2的隧道信息为gNB2 tunnel info。然后,GEO UPF根据该gNB2 tunnel info,将该报文发送给gNB2。
通过上述方案,可以向GEO UPF配置针对UE ID list内的UE的数据转发规则,从而可以将目的地址指向UE ID list内的任意UE的数据包,直接发送给对应的gNB,从而实现UE ID list内的UE进行卫星下的本地数据交换,可以减少时延,提高用户体验。
另一方面,当有新的UE接入GEO UPF时,还可以对该UE ID list进行更新。下面结合示例进行说明。
在上述流程之后,UE2也发起了PDU会话建立流程,具体流程与UE1的会话建立流程类似,未详尽的部分可参考上述S501-S517部分的描述。需要说明的是,为UE2提供服务的网元为gNB2、AMF2、SMF2。
UE2向AMF2发送PDU会话建立请求消息。然后AMF2接收到该PDU会话建立请求消息之后,向SMF2发送创建会话管理上下文建立请求消息。若SMF2确定UE2通过GEO SAT回传接入网络,则SMF2根据该GEO SAT ID向UDM/NRF请求获取该GEO SAT ID对应的UE ID list(与S506类似)。UDM/NRF根据SMF2的请求向SMF2返回UE ID list,该UE ID list中包括UE1的标识。应理解,该UE1的标识是UDM/NRF在S509保存下来的。另一方面,SMF2将GEO SAT ID和UE2ID注册到UDM/NRF(与S508类似),并向UDM/NRF订阅UE ID list的变动通知(与S510类似)。
进一步地,SMF2向GEO UPF发送N4会话建立请求消息,该N4会话建立请求消息中包括该UE ID list,以指示GEO UPF将目的地址指向该UE ID list中的UE的报文,发送给该UE对应的gNB。以该UE ID list为例,GEO UPF将目的地址为UE1 IP的数据包,发送给gNB1。
另一方面,UDM/NRF还向SMF1发送通知消息,该通知消息中携带GEO SAT对应的更新后的UE ID list,该更新后的UE ID list中包括UE2ID。然后,SMF-1向GEO UPF发起N4会话修改,携带更新的UE ID list。
基于上述方案,SMF1可以向GEO UPF配置转发规则,以便该GEO UPF将目的地址包含在UE ID list对应的UE的地址的数据包,发送给该UE对应的gNB,也就是说,对于UE ID list中的UE,发送给它们的数据包可以直接由GEO UPF发送给对应的gNB,而不需要经过地面PSA,因此可以缩短数据传输路径,减少传输时延。
图6示出了本申请实施例提供的方法600的示例性流程图。下面结合各个步骤对方法600作示例性说明。
应理解,S601-S602与方法500中的S501-S502类似,为了简洁,这里不再赘述。
可选地,S603,AMF1判断是否允许UE进行卫星下的本地数据交换。
在一种实现方式中,AMF1通过UDM获取UE1的签约数据,根据该签约数据判断是否允许UE1进行卫星下的本地数据交换(local switch)。
在另一种实现方式中,AMF1通过PCF获取针对UE的策略信息,根据该策略信息判断是否允许UE1进行卫星下的本地数据交换。
S604,AMF1向UDM/NRF发送查询请求消息,该查询请求消息包括GEO SAT ID。对应地,UDM/NRF接收来自AMF1的该查询请求消息。
S605,UDM/NRF向AMF1发送查询响应消息,该查询响应消息包括UE ID list。对应地,AMF1接收来自UDM/NRF的查询响应消息。
可选地,AMF1还执行S606-S608,描述如下:
S606,AMF1向UDM/NRF发送注册请求消息,该注册请求消息中包括GEO SAT ID以及UE1 ID。对应地,UDM/NRF接收来自AMF1的该注册请求消息。
S607,UDM/NRF保存GEO SAT ID和UE1 ID。
S608,AMF1向UDM/NRF发送订阅消息,该订阅消息中包括GEO SAT ID。
应理解,S604-S608与方法500中的S506-S510类似,区别在于方法500中的S506-S510由SMF1执行,S604-S608由AMF1执行。为了简洁,详细过程不再赘述。
S609,AMF1向SMF1发送创建会话管理上下文请求消息。对应地,SMF1接收来自AMF1的创建会话管理上下文请求消息。
示例性地,该创建会话管理上下文请求消息中包括UE ID list。
可以理解的是,在方法600中,也可以由SMF执行注册过程。也就是说,可以不执行S606-S607不执行时,由SMF1在S610之后执行到UDM/NRF的注册过程,即向UDM/NRF注册GEO SAT ID和UE1 ID的对应关系,具体描述可以参考S508-S509,此处简单描述如下:
SMF1向UDM/NRF发送注册请求消息。对应地,UDM/NRF接收来自SMF1的注册请求消息。其中,注册请求消息包含GEO SAT ID和UE1 ID。
UDM/NRF接收到来自SMF1的注册请求消息之后,保存GEO SAT ID和UE1 ID。
进一步地,S610-S617与方法500中的S504、S511-S517类似,为了简洁,这里不再赘述。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,该装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图7是本申请实施例提供的通信装置10的示意性框图。该装置10包括处理模块11。可选地,该装置10还可以包括收发模块11。处理模块11用于进行数据处理,收发模块12可以实现相应的通信功能,或者说该收发模块12用于执行接收和发送相关的操作,该处理模块11用于执行除了接收和发送以外的其他操作。收发模块12还可以称为通信接口或通信单元。
可选地,该装置10还可以包括存储模块(图中未示出),该存储模块可以用于存储指令和/或数据,处理模块11可以读取存储模块中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置10可对应于上文方法实施例中的网络设备,或者是网络设备的组成部件(如芯片),例如会话管理网元(如SMF),或者移动管理网元(如AMF),或者数据管理网元(如DUM或NRF)。
该装置10可实现对应于上文方法实施例中的会话管理网元(如SMF)执行的步骤或者流程,其中,处理模块11可用于执行上文方法实施例中应用会话管理网元(如SMF)的处理相关的操作,收发模块12可用于执行上文方法实施例中会话管理网元(如SMF)的收发相关的操作。
示例性地,该装置10可对应于本申请实施例的方法400中的会话管理网元,或者方法500至方法600中的SMF。该装置10可以包括用于执行图4至图6中的会话管理网元(或者SMF)所执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图4至图6所示方法的相应流程。
在一种可能的设计中,处理模块11,用于获取业务信息,所述业务信息用于指示卫 星所支持的一个或多个业务;以及,根据所述业务信息确定是否允许终端设备访问所述卫星支持的业务;以及,在确定允许所述终端设备访问所述卫星支持的业务中的至少一个的情况下,将所述卫星上的用户面网元插入所述终端设备的用户面路径。
处理模块11,用于获取标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;处理模块11,用于向该卫星上的用户面网元配置转发规则,该转发规则用于将目的地址包含在该标识列表对应的终端设备的地址的数据包分流至该终端设备对应的接入网设备。
可选地,收发模块12,具体用于接收来自数据管理网元或者移动管理网元的该标识列表。
可选地,收发模块12,还用于向该数据管理网元发送请求消息,该请求消息包括该卫星的相关信息,该请求消息用于请求获取该标识列表。
可选地,收发模块12,还用于接收来自移动管理网元的会话上下文建立请求消息,该会话上下文建立请求消息包括第一终端设备的标识信息,该第一终端设备通过卫星回传方式接入了该卫星;处理模块11,还用于获取该卫星的相关信息;收发模块12,还用于向该数据管理网元发送注册消息,该注册消息包括该第一终端设备的标识信息和该卫星的相关信息。
可选地,处理模块11,还用于确定允许该第一终端设备进行卫星下的本地数据交换。
可选地,处理模块11,具体用于获取卫星的相关信息,包括:该会话管理网元接收来自移动管理网元的该卫星的相关信息。
可选地,处理模块11,具体用于根据该终端设备的位置信息确定该卫星的相关信息。
可选地,收发模块12,还用于向该数据管理网元发送订阅消息,该订阅消息包括该卫星的相关信息,该订阅消息用于订阅该标识列表的变动通知。
可选地,该卫星的相关信息可以是以下信息中的任意一种:该卫星对应的数据网络接入标识、该卫星的标识、该卫星的互联网协议地址。
该装置10可实现对应于上文方法实施例中的移动管理网元(或AMF)执行的步骤或者流程,其中,收发模块12可用于执行上文方法实施例中移动管理网元(或AMF)的收发相关的操作,处理模块11可用于执行上文方法实施例中应用移动管理网元(或AMF)的处理相关的操作。
示例性地,该装置10可对应于本申请实施例的方法400中的移动管理网元,或者方法500至方法600中的AMF。该装置10可以包括用于执行图4至图6中的移动管理网元(或者AMF)所执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图4至图6所示方法的相应流程。
在一种可能的实现方式,收发模块12,用于接收来自数据管理网元的与卫星的相关信息对应的标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;以及向会话管理网元发送该标识列表。
可选地,收发模块12,还用于向该数据管理网元发送请求消息,该请求消息包括该卫星的相关信息,该请求消息用于请求获取该标识列表。
可选地,收发模块12,还用于向接收来自第一终端设备的会话建立请求消息,该会话建立请求消息包括该第一终端设备的标识信息,该第一终端设备通过卫星回传的方式接 入了该卫星;处理模块11,还用于根据该第一终端设备的位置信息确定该卫星的相关信息;收发模块12,还用于向该数据管理网元发送注册消息,该注册消息包括该第一终端设备的标识信息和该卫星的相关信息。
可选地,处理模块11,还用于确定允许该第一终端设备进行卫星下的本地数据交换。
可选地,收发模块12,还用于向该数据管理网元发送订阅消息,该订阅消息包括该卫星的相关信息,该订阅消息用于订阅该标识列表的变动通知。
该装置10可实现对应于上文方法实施例中的群组管理网元(或UDM/NRF)执行的步骤或者流程,其中,收发模块12可用于执行上文方法实施例中群组管理网元(或UDM/NRF)的收发相关的操作,处理模块11可用于执行上文方法实施例中应用群组管理网元(或UDM/NRF)的处理相关的操作。
示例性地,该装置10可对应于本申请实施例的方法400中的群组管理网元,或者方法500至方法600中的UDM/NRF。该装置10可以包括用于执行图4至图6中的群组管理网元(或UDM/NRF)所执行的方法的模块。并且,该装置10中的各模块和上述其他操作和/或功能分别为了实现图4至图6所示方法的相应流程。
在一种可能的实现方式,收发模块12,用于接收来自第一网元的请求消息,该请求消息包括该卫星的相关信息;处理模块11,用于根据该卫星的相关信息确定与该卫星的相关信息对应的标识列表,该标识列表包括一个或多个通过卫星回传方式接入该卫星的终端设备的标识信息;收发模块12,还用于向该第一网元发送该标识列表。
可选地,收发模块12,还用于接收来自该第一网元的注册消息,该注册消息包括第一终端设备的标识信息以及该卫星的相关信息;处理模块11,还用于将该第一终端设备的标识信息保存在该标识列表。
可选地,收发模块12,还用于接收来自该第一网元的订阅消息,该订阅消息包括该卫星的相关信息,订阅消息用于订阅该卫星的相关信息的变动通知。
可选地,该第一网元为会话管理网元或者移动管理网元。
应理解,各模块执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置10以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置10可以具体为上述实施例中的移动管理网元,可以用于执行上述各方法实施例中与移动管理网元对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置10具有实现上述方法中网络设备(如会话管理网元,或移动管理网元,或数据管理网元)所执行的相应步骤的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块;例如收发模块可以由收发机替代(例如,收发模块中的发送单元可以由发送机替代,收发模块中的接收单元可以由接收机替代),其它单元,如处理模块等可以由处理器替代,分 别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发模块12还可以是收发电路(例如可以包括接收电路和发送电路),处理模块可以是处理电路。
需要指出的是,图8中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
根据前述方法,图8为本申请实施例提供的通信装置20的示意图。在一种可能的设计中,该装置20可对应于上文方法实施例中的会话管理网元(或者SMF);在另一种可能的设计中,该装置10可对应于上文方法实施例中的移动管理网元(或者AMF)。
该装置20可以包括处理器21(即,处理模块的一例),该处理器21用于执行图4至图6中对应的方法中的会话管理网元(如SMF),或者移动管理网元(如AMF)执行的操作。可选地,该装置20可以包括存储器22,该处理器21可以执行存储器22存储的指令,以使该装置20实现如图4至图6中对应的方法中的会话管理网元(如SMF),或者移动管理网元(如AMF)执行的操作。
进一步地,该装置20还可以包括收发器23(即,收发模块的一例)。进一步地,该处理器21、存储器22、收发器23可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制收发器23接收信号,控制收发器23发送信号,完成上述方法中终端设备或网络设备的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该通信装置20为通信设备,收发器23可包括输入口和输出口,即收发器23可分为接收器和发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置20为芯片或电路,该输入口为输入接口,该输出口为输出接口。
作为一种实现方式,收发器23的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器21、收发器23功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、收发器23的功能。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图9示出了一种简化的网络设备30的结构示意图。网络设备包括31部分以及32部分。31部分主要用于射频信号的收发以及射频信号与基带信号的转换;32部分主要用于基带处理,对网络设备进行控制等。31部分通常可以称为收发模块、收发机、收发电路、或者收发器等。32部分通常是网络设备的控制中心,通常可以称为处理模块,用于控制网络设备执行上述方法实施例中网络设备侧的处理操作。
31部分的收发模块,也可以称为收发机或收发器等,其包括天线和射频电路,其中 射频电路主要用于进行射频处理。例如,可以将31部分中用于实现接收功能的器件视为接收模块,将用于实现发送功能的器件视为发送模块,即31部分包括接收模块和发送模块。接收模块也可以称为接收机、接收器、或接收电路等,发送模块可以称为发射机、发射器或者发射电路等。
32部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,图9所示的网络设备可以是图4至图6所示的方法中所示的任意网络设备,例如移动管理网元等。
31部分的收发模块用于执行图4至图6所示的方法中任意网络设备的收发相关的步骤;32部分用于执行图4至图6所示的方法中的任意网络设备的处理相关的步骤。
应理解,图9仅为示例而非限定,上述包括收发模块和处理模块的网络设备可以不依赖于图9所示的结构。
当该装置30为芯片时,该芯片包括收发模块和处理模块。其中,收发模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由第一设备执行的方法,或由第二设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是网络设备,或者,是网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计 算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的 相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,(SSD))等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求和说明书的保护范围为准。

Claims (27)

  1. 一种卫星通信的方法,其特征在于,包括:
    会话管理网元获取标识列表,所述标识列表包括一个或多个通过卫星回传方式接入网络的终端设备的标识信息;
    所述会话管理网元向所述卫星上的用户面网元配置转发规则,所述转发规则用于将目的地址包含在所述标识列表对应的终端设备的地址的数据包转发至内部接口。
  2. 根据权利要求1所述的方法,其特征在于,所述会话管理网元获取标识列表,包括:
    所述会话管理网元根据需要通信的终端设备的第一标识列表和通过卫星回传接入网络的终端设备的第二标识列表确定所述标识列表。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    所述会话管理网元接收来自应用功能网元的所述第一标识列表。
  4. 根据权利要求1所述的方法,其特征在于,所述会话管理网元获取标识列表,包括:
    所述会话管理网元接收来自数据管理网元的所述标识列表。
  5. 根据权利要求4所述的方法,其特征在于,在所述会话管理网元接收来自数据管理网元的标识列表之前,所述方法还包括:
    所述会话管理网元向所述数据管理网元发送请求消息,所述请求消息包括与所述卫星的相关信息,所述请求消息用于请求获取所述标识列表。
  6. 根据权利要求5所述的方法,其特征在于,所述标识列表中包括第一终端设备的标识信息,所述方法还包括:
    所述会话管理网元接收来自移动管理网元的会话上下文建立请求消息,所述会话上下文建立请求消息包括所述第一终端设备的标识信息,所述第一终端设备通过卫星回传方式接入了所述卫星;
    所述会话管理网元确定允许所述第一终端设备进行卫星下的本地数据交换;
    所述会话管理网元获取所述相关信息;
    所述会话管理网元向所述数据管理网元发送注册消息,所述注册消息包括所述第一终端设备的标识信息和所述第一终端设备接入的卫星的相关信息。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述数据管理网元发送订阅消息,所述订阅消息包括所述相关信息,所述订阅消息用于订阅所述标识列表的变动通知。
  8. 根据权利要求5-7任一所述的方法,其特征在于,所述卫星的相关信息为以下信息中的任意一种:
    所述卫星对应的数据网络接入标识、所述卫星的标识、所述卫星的互联网协议地址。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述终端设备为允许进行卫星下的本地数据交换的终端设备。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述卫星回传方式为地 球静止轨道卫星回传。
  11. 一种卫星通信的方法,其特征在于,包括:
    数据管理网元接收来自第一网元的请求消息,所述请求消息包括与卫星相关的信息;
    所述数据管理网元根据所述相关信息确定与所述相关信息对应的标识列表,所述标识列表包括一个或多个通过卫星回传方式接入所述卫星的终端设备的标识信息;
    所述数据管理网元向所述第一网元发送所述标识列表。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述数据管理网元接收来自所述第一网元的注册消息,所述注册消息包括第一终端设备的标识信息以及所述相关信息;
    所述数据管理网元将所述第一终端设备的标识信息保存在所述标识列表。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述数据管理网元接收来自所述第一网元的订阅消息,所述订阅消息包括所述相关信息,订阅消息用于订阅所述标识列表的变动通知。
  14. 根据11至13中任一项所述的方法,其特征在于,所述第一网元为会话管理网元或者移动管理网元。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述卫星回传方式为地球静止轨道卫星回传。
  16. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求1至10中任一项所述的方法的模块,或者用于执行如权利要求11至15中任一项所述的方法的模块。
  17. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法,或者以使得所述装置执行如权利要求11至15中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至10中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求11至15中任一项所述的方法的指令。
  19. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质存储有计算机程序;所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法,或者使得所述计算机执行如权利要求11至15中任一项所述的方法。
  20. 一种卫星通信的系统,其特征在于,包括会话管理网元和用户面网元,
    所述会话管理网元,用于获取标识列表,所述标识列表包括一个或多个通过卫星回传方式接入网络的终端设备的标识信息;向所述卫星上的用户面网元配置转发规则,所述转发规则用于将目的地址包含在所述标识列表对应的终端设备的地址的数据包转发至内部接口;
    所述用户面网元,用于接收来自所述说会话管理网元的转发规则。
  21. 根据权利要求20所述的系统,其特征在于,所述会话管理网元,用于获取标识列表,包括:
    所述会话管理网元根据需要通信的终端设备的第一标识列表和通过卫星回传接入网 络的终端设备的第二标识列表确定所述标识列表。
  22. 根据权利要求21所述的系统,其特征在于,
    所述会话管理网元,还用于接收来自应用功能网元的所述第一标识列表。
  23. 根据权利要求20-22任一所述的系统,其特征在于,所述卫星回传方式为地球静止轨道卫星回传。
  24. 一种卫星通信的方法,其特征在于,包括:
    会话管理网元获取标识列表,所述标识列表包括一个或多个通过卫星回传方式接入网络的终端设备的标识信息;
    所述会话管理网元向所述卫星上的用户面网元配置转发规则,所述转发规则用于将目的地址包含在所述标识列表对应的终端设备的地址的数据包分流至内部接口;
    所述用户面网元接收来自所述会话管理网元的转发规则。
  25. 根据权利要求24所述的方法,其特征在于,所述会话管理网元获取标识列表,包括:所述会话管理网元根据需要通信的终端设备的第一标识列表和通过卫星回传接入网络的终端设备的第二标识列表确定所述标识列表。
  26. 根据权利要求24或25所述的方法,其特征在于,还包括:
    所述会话管理网元为所述终端设备插入所述卫星上的用户面网元。
  27. 根据权利要求24-26任一所述的方法,其特征在于,所述卫星回传方式为地球静止轨道卫星回传。
PCT/CN2023/083770 2022-03-27 2023-03-24 卫星通信方法和装置 WO2023185686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210309468.3A CN116866940A (zh) 2022-03-27 2022-03-27 卫星通信方法和装置
CN202210309468.3 2022-03-27

Publications (1)

Publication Number Publication Date
WO2023185686A1 true WO2023185686A1 (zh) 2023-10-05

Family

ID=88199398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083770 WO2023185686A1 (zh) 2022-03-27 2023-03-24 卫星通信方法和装置

Country Status (2)

Country Link
CN (1) CN116866940A (zh)
WO (1) WO2023185686A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200170052A1 (en) * 2018-11-27 2020-05-28 Verizon Patent And Licensing Inc. Systems and methods for ran slicing in a wireless access network
CN111865633A (zh) * 2019-04-28 2020-10-30 华为技术有限公司 一种通信方法、装置及系统
CN111953576A (zh) * 2019-05-17 2020-11-17 华为技术有限公司 虚拟网络通信方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200170052A1 (en) * 2018-11-27 2020-05-28 Verizon Patent And Licensing Inc. Systems and methods for ran slicing in a wireless access network
CN111865633A (zh) * 2019-04-28 2020-10-30 华为技术有限公司 一种通信方法、装置及系统
CN111953576A (zh) * 2019-05-17 2020-11-17 华为技术有限公司 虚拟网络通信方法、设备及系统
CN114128223A (zh) * 2019-05-17 2022-03-01 华为技术有限公司 虚拟网络通信方法、设备及系统

Also Published As

Publication number Publication date
CN116866940A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2023185615A1 (zh) 通信方法和装置
WO2022012446A1 (zh) 一种无线通信的方法及装置
WO2021237525A1 (zh) 无线通信的方法和设备
WO2023185555A1 (zh) 群组通信的方法、装置和系统
WO2023160381A1 (zh) 通信方法和装置
US20230126999A1 (en) Method for wireless communication and network device
WO2023185173A1 (zh) 通信方法和装置
WO2023185686A1 (zh) 卫星通信方法和装置
WO2022104531A1 (zh) 连接方法及相关装置
CN113573248B (zh) 用于传输数据的方法与装置
WO2024022425A1 (zh) 通信方法、装置和系统
US11924893B2 (en) Method for establishing connection, and terminal device
WO2024032235A1 (zh) 通信方法和通信装置
WO2023011292A1 (zh) 一种移动性限制通信方法、装置及系统
WO2023070684A1 (zh) 无线通信的方法和设备
RU2810306C1 (ru) Способ и устройство ретрансляционной связи
WO2023082693A1 (zh) 一种保持会话连续性的方法及通信装置
US20230370922A1 (en) Method for entering connected mode, and terminal device
WO2022257103A1 (zh) 测量信息采集方法、第一接入网设备和终端设备
WO2023164838A1 (zh) 无线通信的方法及设备
WO2023236764A1 (zh) 一种分配互联网协议地址的方法及通信装置
WO2024037210A1 (zh) 广播安全通信的方法和装置
WO2022137473A1 (ja) ネットワークノード、基地局及び通信方法
US20230239780A1 (en) Wireless communication method, terminal device, and network device
CA3233839A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778054

Country of ref document: EP

Kind code of ref document: A1