WO2021208022A1 - 一种波束管理方法、电子设备及存储介质 - Google Patents

一种波束管理方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021208022A1
WO2021208022A1 PCT/CN2020/085150 CN2020085150W WO2021208022A1 WO 2021208022 A1 WO2021208022 A1 WO 2021208022A1 CN 2020085150 W CN2020085150 W CN 2020085150W WO 2021208022 A1 WO2021208022 A1 WO 2021208022A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
timer
drx
spatial relationship
csi measurement
Prior art date
Application number
PCT/CN2020/085150
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080097576.8A priority Critical patent/CN115176496A/zh
Priority to PCT/CN2020/085150 priority patent/WO2021208022A1/zh
Publication of WO2021208022A1 publication Critical patent/WO2021208022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • This application relates to the field of wireless communication technologies, and in particular to a beam management method, electronic equipment, and storage medium.
  • Non-terrestrial communication networks Non Terrestrial Network, NTN
  • Low-Earth Orbit Low-Earth Orbit
  • LEO Low-Earth Orbit
  • UE User Equipment
  • the embodiments of the present application provide a beam management method, an electronic device, and a storage medium, so that a terminal device can perform effective beam management.
  • an embodiment of the present application provides a beam management method, including: a terminal device performs channel state information (CSI) measurement and/or reporting at the first time; the first time does not include discontinuous reception During the activation period (Discontinuous Reception, DRX), the CSI measurement result is used by the terminal device to perform beam management.
  • CSI channel state information
  • embodiments of the present application provide a beam management method, including: a network device sends a physical uplink control channel (Physical Uplink Control Channel, PUCCH) spatial relationship activation and deactivation criterion, and the PUCCH spatial relationship activation and deactivation criterion is used for The terminal device activates or deactivates the PUCCH spatial relationship.
  • a network device sends a physical uplink control channel (Physical Uplink Control Channel, PUCCH) spatial relationship activation and deactivation criterion, and the PUCCH spatial relationship activation and deactivation criterion is used for
  • PUCCH Physical Uplink Control Channel
  • an embodiment of the present application provides a terminal device, the terminal device includes: a processing unit configured to perform CSI measurement and/or CSI reporting at the first time;
  • the first time does not include the DRX activation period, and the CSI measurement result is used by the terminal device to perform beam management.
  • an embodiment of the present application provides a network device, the network device includes: a sending unit configured to send a PUCCH spatial relationship activation and deactivation criterion, and the PUCCH spatial relationship activation and deactivation criterion is used by the terminal device for the PUCCH space Relationship activation or deactivation.
  • an embodiment of the present application provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal when the computer program is running. Steps of the beam management method performed by the device.
  • an embodiment of the present application provides a network device, including a processor and a memory configured to store a computer program that can run on the processor, wherein the processor is configured to execute the above-mentioned network when the computer program is running. Steps of the beam management method performed by the device.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the beam management method performed by the terminal device.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the beam management method performed by the network device.
  • an embodiment of the present application provides a storage medium that stores an executable program, and when the executable program is executed by a processor, the above-mentioned beam management method executed by the terminal device is implemented.
  • an embodiment of the present application provides a storage medium that stores an executable program, and when the executable program is executed by a processor, the above-mentioned beam management method executed by the network device is implemented.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the beam management method executed by the above-mentioned terminal device.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the beam management method performed by the above-mentioned network device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the beam management method executed by the above terminal device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the beam management method performed by the above-mentioned network device.
  • the beam management method, electronic device, and storage medium provided by the embodiments of the present application include: terminal equipment performs CSI measurement and/or CSI reporting during non-DRX active periods such as DRX inactive period or CSI measurement reporting active period; due to DRX inactive period Or the duration of the CSI measurement report activation period is longer than the DRX activation period, so the terminal device has more CSI measurement and/or CSI reporting opportunities; so that in scenarios where the terminal device has frequent beam switching requirements, such as the LEO scenario, The terminal device can report the channel status in different beam directions to the network device in time, and the network device can also have more opportunities to send beam-related instructions to the terminal device at times other than the DRX activation period for effective beam management .
  • FIG. 1 is an optional schematic diagram of a discontinuous reception period according to an embodiment of this application
  • Figure 2 is a schematic diagram of the format of PDCCH TCI state indicating MAC CE according to an embodiment of the application
  • Figure 3 is a schematic diagram of the format of PUCCH spatial relationship activation and deactivation MAC CE in an embodiment of this application
  • FIG. 4 is a schematic diagram of the composition structure of a communication system according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of an optional processing flow of a beam management method according to an embodiment of this application.
  • FIG. 6 is a schematic diagram of another optional processing flow of a beam management method according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of a detailed optional processing flow of a beam management method according to an embodiment of this application.
  • FIG. 8 is an optional schematic diagram of a terminal device monitoring PDCCH in an embodiment of this application.
  • FIG. 9 is a schematic diagram of another detailed optional processing flow of a beam management method according to an embodiment of this application.
  • FIG. 10 is another optional schematic diagram of terminal equipment monitoring PDCCH in an embodiment of this application.
  • FIG. 11 is a schematic diagram of an optional composition structure of a terminal device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of an optional composition structure of a network device according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of the hardware composition structure of an electronic device according to an embodiment of the application.
  • NTN uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user's area.
  • general terrestrial communication cannot cover areas where communication equipment cannot be installed, such as oceans, mountains, or deserts, or areas that cannot be covered by communication due to sparse population; while for satellite communication, due to a A satellite can cover a large area of the ground, and the satellite can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has high social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the increase of the communication distance will not significantly increase the cost of communication; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • LEO's orbital altitude ranges from 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between terminal devices is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the terminal equipment is not high.
  • the orbital height of GEO is 35786km, and the period of rotation around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between terminal devices is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • the network device can configure the DRX function for the terminal device.
  • the terminal device is allowed to monitor the physical downlink control channel (Physical Downlink Control Channel, PDCCH) non-continuously, so as to achieve the purpose of saving power for the terminal device.
  • PDCCH Physical Downlink Control Channel
  • Each Medium Access Control (MAC) entity has a DRX configuration; DRX configuration parameters include:
  • DRX-onDuration Timer the duration of the terminal device waking up at the beginning of a DRX cycle (Cycle).
  • DRX deactivation timer (DRX-InactivityTimer) when the terminal device receives a PDCCH indicating uplink initial transmission or downlink initial transmission, the terminal device continues to monitor the duration of the PDCCH.
  • DRX-RetransmissionTimerDL DRX downlink retransmission timer
  • the terminal device monitors the longest duration of the PDCCH indicating downlink retransmission scheduling. Except for the broadcast Hybrid Automatic Repeat reQuest (HARQ) process, each downlink HARQ process corresponds to a DRX-RetransmissionTimerDL.
  • HARQ Hybrid Automatic Repeat reQuest
  • DRX-RetransmissionTimerUL The terminal device monitors the longest duration of the PDCCH indicating uplink retransmission scheduling. Each uplink HARQ process corresponds to a DRX-RetransmissionTimerUL.
  • DRX-LongCycleStartOffset used to configure the long DTX cycle (Long DRX cycle), and the subframe offset at which the Long DRX cycle and the short DRX cycle (Short DRX cycle) start.
  • DRX-Short Cycle (DRX-ShortCycle): optional configuration.
  • DRX-Short Cycle Timer (DRX-ShortCycleTimer): The duration of the terminal device being in the Short DRX cycle (and not receiving any PDCCH) is an optional configuration.
  • DRX-HARQ-RTT-TimerDL The minimum waiting time required for the terminal device to expect to receive the PDCCH indicating the downlink scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to one DRX-HARQ-RTT-TimerDL;
  • DRX-HARQ-RTT-TimerUL The minimum waiting time required for the terminal device to expect to receive the PDCCH indicating the uplink scheduling.
  • Each uplink HARQ process corresponds to a drx-HARQ-RTT-TimerUL.
  • DRX Active Time includes the following situations:
  • DRX-onDurationTimer Any one of the following 5 timers is running: DRX-onDurationTimer, DRX-InactivityTimer, DRX-RetransmissionTimerDL, DRX-RetransmissionTimerUL, and ra-ContentionResolutionTimer.
  • a scheduling request (Scheduling Request, SR) is sent on the PUCCH and is in a pending state.
  • the terminal device has not received the PDCCH indication scrambled by the Cell Radio Network Temporary Identifier (C-RNTI) after successfully receiving the random access response. Initial transmission.
  • C-RNTI Cell Radio Network Temporary Identifier
  • a schematic diagram of the DRX cycle of the terminal device determines the time to start the drx-onDurationTimer according to the current short DRX cycle (Short DRX Cycle) or the long DRX cycle (Long DRX Cycle).
  • the specific regulations are as follows:
  • the drx-onDurationTimer is started at a time after drx-SlotOffset slots from the beginning of the current subframe.
  • the long DRX cycle is configured by default, and the short DRX cycle is an optional configuration; for terminal devices configured with a short DRX cycle, the following conversion methods exist between the long DRX cycle and the short DRX cycle:
  • the terminal device uses a short DRX cycle: drx-InactivityTimer expires and the terminal device receives a DRX Command MAC CE.
  • the terminal device uses the long DRX cycle: drx-ShortCycleTimer timeout and the terminal device receives a long DRX command MAC CE.
  • the NR system in order to support multi-beam operation, adopts a beam management mechanism for initial access, control channels, and data channels.
  • the network device can configure up to 12 control resource sets (Control Resource Set) for the terminal device in each serving cell, and at the same time configure a set of transmission configuration indicators (Transmission Configuration Indicator, TCI) state (state) for each Control Resource Set. ) Instructs the MAC CE to instruct the terminal device to activate a TCI state in a Control Resource Set.
  • TCI Transmission Configuration Indicator
  • FIG. 2 A schematic diagram of the format of the PDCCH TCI state indicating the MAC CE may be as shown in FIG. 2, which includes at least a serving cell (Serving Cell, SC) identifier (Identify, ID), a TCI state ID, and a CORESET ID.
  • the terminal device monitors the PDCCH on the PDCCH search space configured by the network device.
  • the network device can configure up to 10 PDCCH search spaces for each DownLink BandWidth Part (DL BWP) of the terminal device, and each PDCCH search space corresponds to a Control Resource Set.
  • the terminal device receives the PDCCH on the active TCI state of the Control Resource Set corresponding to the search space.
  • DL BWP DownLink BandWidth Part
  • the TCI state used by the PDSCH can be indicated by the PDCCH scheduling the PDSCH transmission.
  • the terminal device performs periodic CSI reporting through the PUCCH; the network device can configure a set of spatial relationships for the PUCCH through RRC signaling, and only one of the spatial relationships of the set of spatial relationships can be active at the same time.
  • the network device uses the PUCCH spatial relationship activation and deactivation MAC CE to instruct the terminal device to activate one of the spatial relationships of a PUCCH resource.
  • the schematic diagram of the format of PUCCH spatial relationship activation and deactivation MAC CE, as shown in Fig. 3, may include at least SC ID, BWP ID, and PUCCH resource ID.
  • the terminal device can only report periodic CSI at the DRX active time, and the network device can only send indication information related to beam management at the DRX active time.
  • terminal equipment For terrestrial cellular networks, terminal equipment has low mobility and slow beam changes; and for non-GEO scenarios in NTN, such as LEO scenarios, due to the high-speed movement of satellites relative to the ground, terminal equipment has the need to frequently switch beams. If the terminal device is in DRX inactive time for a period of time, on the one hand, the terminal device cannot report CSI, so that the network device cannot obtain the channel status of the terminal device in each beam direction; on the other hand, the network device is also in DRX inactive time. Unable to send beam update indication.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • evolution system of NR system LTE on unlicensed frequency bands (LTE-based access to unlicensed spectrum, LTE-U) system, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency bands, universal mobile telecommunication system (UMTS), global Connected microwave access (worldwide interoperability for microwave access, WiMAX) communication systems, wireless local area networks (WLAN), wireless fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • WiMAX wireless local area networks
  • WiFi wireless fidelity
  • next-generation communication systems or other communication systems etc.
  • the network equipment involved in the embodiments of this application may be a common base station (such as NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be a portable or pocket-sized , Handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be referred to as user equipment UE, mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal device can be accessed via a radio access network.
  • network, RAN
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and terminal equipment at the same time. Unlicensed spectrum for communication.
  • Between network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 7 gigahertz (gigahertz, GHz), can also communicate through the frequency spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz and Communication is performed in the frequency spectrum above 7GHz.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 4.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 4 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • An optional processing procedure of the beam management method provided by the embodiment of the present application, as shown in FIG. 5, includes the following steps:
  • Step S201 The terminal device performs CSI measurement and/or CSI reporting at the first time.
  • the first time does not include the DRX activation period.
  • the first time may include a DRX deactivation period and/or a CSI measurement report activation period.
  • the terminal device when the first time includes the DRX deactivation period, the terminal device performs CSI measurement and/or CSI reporting during the DRX deactivation period.
  • the terminal device when the first time includes the CSI measurement report activation period, the terminal device performs CSI measurement and/or CSI report during the CSI measurement report activation period.
  • the beam management method described in the embodiment of the present application may further include:
  • Step S200 The terminal device receives the first timer configured by the network device.
  • the network device configures the first timer to the terminal device through RRC signaling or system message.
  • the running time of the first timer is the active period of the CSI measurement report; it can also be understood that the running period of the first timer is the active period of the CSI measurement report.
  • the terminal device may perform CSI measurement and/or CSI report.
  • the start period of the first timer is a short DRX period, and the start time of the first timer is the same as the start time of the DRX duration timer.
  • the duration of the first timer may be equal to the duration of the DRX duration timer, or the duration of the first timer is configured by a network device.
  • the start state of the first timer may be independent of the start state of the DRX persistence timer, or the start state of the first timer may also be related to the start state of the DRX persistence timer.
  • the start state of the first timer is not related to the start state of the DRX persistence timer means that the first timer is periodically started with a short DRX cycle as a period.
  • the activation status of the first timer and the activation status of the DRX persistence timer may include: if the DRX persistence timer is activated, the first timer is not activated; or, if the DRX persistence timer is not If started, the first timer is started.
  • the terminal device starts the first timer; if the terminal device starts drx-onDurationTimer, the terminal device does not start the first timer.
  • the start of the first timer can be understood as the state of the first timer is the start state, and the first timer is started by the terminal device. If the first timer is not started, it can be understood that the state of the first timer is a non-starting state or a non-running state, and the terminal device does not start the first timer.
  • the start period of the first timer and/or the duration of the first timer may be configured by a network device.
  • the beam management method provided in the embodiments of the present application may further include:
  • Step S202 The terminal device receives the PUCCH spatial relationship activation and deactivation criterion.
  • the terminal device receives the PUCCH spatial relationship activation and deactivation criterion sent by the network device, and the PUCCH spatial relationship activation and deactivation criterion is used for the terminal device to activate and/or deactivate the PUCCH spatial relationship to implement beam management .
  • the PUCCH spatial relationship activation and deactivation criterion may be carried in RRC signaling or system message.
  • the PUCCH spatial relationship activation and deactivation criterion may also be embodied in the form of instruction information, for example, the terminal device receives instruction information sent by the network device, and the instruction information is used by the terminal device to determine the PUCCH spatial relationship activation and deactivation Guidelines.
  • the PUCCH spatial relationship activation and deactivation criterion may include: at the first time, if the CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than a first threshold and there is at least one spatial relationship corresponding The CSI measurement result is greater than the second threshold, and the spatial relationship corresponding to the maximum value in the CSI measurement result is the activated PUCCH spatial relationship.
  • the first threshold and the second threshold may both be configured by a network device or agreed by a protocol; the first threshold is less than the second threshold. Therefore, the first threshold and the second threshold may be used for the terminal device to determine the activated PUCCH spatial relationship for the CSI report during the CSI report during the DRX deactivation period.
  • the first threshold may be a first reference signal received power (Reference Signal Received Power, RSRP) threshold
  • the second threshold may be an RSRP threshold; correspondingly, the CSI measurement result may be RSRP .
  • RSRP Reference Signal Received Power
  • the beam management method provided in the embodiments of the present application may further include:
  • Step S203 The terminal device activates or deactivates the PUCCH spatial relationship based on the PUCCH spatial relationship activation and deactivation criterion at the first time according to the CSI measurement result.
  • the terminal device uses the spatial relationship corresponding to the maximum value in the CSI measurement result as the spatial relationship of the activated PUCCH, and deactivates the PUCCH spatial relationship that has been activated at the previous moment; otherwise, the terminal device maintains the current The activated PUCCH spatial relationship.
  • the terminal device if the terminal device is in the DRX activation period and the terminal device receives the PUCCH spatial relationship activation and deactivation MAC CE, the PUCCH spatial relationship activation and deactivation MAC CE is used to activate or deactivate the PUCCH spatial relationship.
  • Deactivation instruction the terminal device activates the deactivation MAC CE based on the PUCCH spatial relationship to determine the PUCCH spatial relationship of the book search
  • the beam management method provided in the embodiments of the present application may further include:
  • Step S204 When the terminal device switches from the DRX deactivation period to the DRX activation period, the terminal device monitors the PDCCH.
  • the terminal device uses the space relationship with the activated PUCCH in the first PDCCH search space.
  • the reference signal with the same or related PUCCH spatial relationship is used as the transmission configuration indicating the TCI state of the activation of the control resource set corresponding to the first PDCCH search space, and the PDCCH is monitored.
  • the first PDCCH search space may be configured by a network device, and the first PDCCH search space may be a default PDCCH search space.
  • the control resource set corresponding to the first PDCCH search space is not configured with a TCI state or is not configured with a TCI state list.
  • the reference signal may include an SSB reference signal and/or a CSI reference signal; the reference signal related to the activated PUCCH spatial relationship may be a reference signal that does not have the same reference signal as the activated PUCCH spatial relationship. In this case, the signal quality is good or the reference signal with the strongest signal strength.
  • the terminal device searches for the second PDCCH corresponding to the currently activated downlink BWP Spatially, all the TCI states of the control resource set corresponding to the second PDCCH search space are used to monitor the PDCCH.
  • the second PDCCH search space does not include the default PDCCH search space; that is, if the terminal device does not change the activated PUCCH spatial relationship used for CSI measurement reporting during the most recent DRX deactivation period, the terminal device is in On a second PDCCH search space other than the default PDCCH search space corresponding to the currently activated downlink BWP, all TCI states of the control resource set corresponding to the second PDCCH search space are used to monitor the PDCCH.
  • the terminal device monitors the PDCCH based on the above two methods, if the terminal device receives the PDCCH TCI status indication MAC CE for at least one control resource set of the serving cell, the terminal device is currently On the third PDCCH search space corresponding to the activated downlink bandwidth part, the PDCCH is monitored based on the activated TCI state of the control resource set corresponding to the third PDCCH search space.
  • the third PDCCH search space does not include the default PDCCH search space, that is, when the terminal device monitors the PDCCH based on the above two methods, if the terminal device receives the PDCCH TCI for at least one control resource set of the serving cell
  • the status indicates MAC CE
  • the terminal equipment is based on the activated TCI of the control resource set corresponding to the third PDCCH search space on the third PDCCH search space corresponding to the currently activated downlink bandwidth part other than the default PDCCH search space State monitoring PDCCH.
  • the terminal device monitors the PDCCH based on the above two methods, if the terminal device does not receive the PDCCH TCI status indication MAC CE for at least one control resource set of the serving cell within the first time period, Then, the terminal device monitors the PDCCH on the third PDCCH search space corresponding to the currently activated downlink bandwidth part based on the activated TCI state of the control resource set corresponding to the third PDCCH search space.
  • the first duration may be configured by a network device.
  • Another optional processing procedure of the beam management method provided in the embodiment of the present application, as shown in FIG. 6, includes the following steps:
  • Step S301 The network device sends a PUCCH spatial relationship activation and deactivation criterion, where the PUCCH spatial relationship activation and deactivation criterion is used by the terminal device to activate or deactivate the PUCCH spatial relationship.
  • the network device sends the PUCCH spatial relationship activation and deactivation criterion to the terminal device.
  • the PUCCH spatial relationship activation and deactivation criterion may be carried in RRC signaling or in system messages.
  • the PUCCH spatial relationship activation and deactivation criterion may also be embodied in the form of indication information, for example, the network device sends indication information to the terminal device, and the indication information is used by the terminal device to determine the PUCCH spatial relationship activation and deactivation criterion.
  • the PUCCH spatial relationship activation and deactivation criterion includes: at the first time, if the CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than a first threshold and there is at least one CSI measurement result corresponding to the spatial relationship If the value is greater than the second threshold, the spatial relationship corresponding to the maximum value in the CSI measurement result is the spatial relationship of the activated PUCCH; the first threshold is less than the second threshold.
  • the first threshold may be configured by a network device or agreed upon by a protocol
  • the second threshold may also be configured by a network device or agreed upon by a protocol.
  • the first time includes: a DRX deactivation period and/or a CSI measurement report activation period.
  • the beam management method may further include:
  • Step S302 The network device configures a first timer for the terminal device, and the first running time is the CSI measurement report activation period.
  • the start period of the first timer is a short DRX period
  • the start time of the first timer is the same as the start time of the DRX duration timer
  • the first timer The duration of the device is equal to the duration of the DRX duration timer.
  • the start state of the first timer may be independent of the start state of the DRX persistence timer, and the start state of the first timer may also be related to the start state of the DRX persistence timer.
  • the start state of the first timer and the start state of the DRX persistence timer may include: the DRX persistence timer is started, then the first timer is not started; or, if the DRX persistence timer is started If it is not started, the first timer is started.
  • the start state of the first timer is not related to the start state of the DRX persistence timer means that the first timer is periodically started with a short DRX cycle as a period.
  • the activation status of the first timer and the activation status of the DRX persistence timer may include: if the DRX persistence timer is activated, the first timer is not activated; or, if the DRX persistence timer is not If started, the first timer is started.
  • the terminal device starts the first timer; if the terminal device starts drx-onDurationTimer, the terminal device does not start the first timer.
  • the start of the first timer can be understood as the state of the first timer is the start state, and the first timer is started by the terminal device. If the first timer is not started, it can be understood that the state of the first timer is a non-starting state or a non-running state, and the terminal device does not start the first timer.
  • the network device may send configuration information to the terminal device, and the configuration information is used to determine the duration of the first timer and/or the first timer Start cycle.
  • a detailed processing flow of the beam management method in the embodiment of the present application, as shown in FIG. 7, includes the following steps:
  • Step S401 The terminal device receives the measurement configuration information sent by the network device.
  • the measurement configuration information is carried in RRC signaling.
  • the measurement configuration information may include at least one of the following parameters: DRX related parameters, CSI measurement report related parameters, and PDCCH search space related parameters; wherein,
  • DRX related parameters include at least one of the following: Long DRX cycle, short DRX cycle, drx-onDurationTimer;
  • the first-period CSI reporting configuration includes the measurement resources corresponding to the first-period CSI reporting, the CSI reporting period and time slot offset, and the CSI reporting used PUCCH resources, etc.
  • the first period CSI reporting configuration may have the following characteristics:
  • the terminal device can perform CSI measurement on the measurement resource corresponding to the first periodic CSI reporting configuration at the DRX inactive time;
  • the terminal device may perform the first periodic CSI report based on the first periodic CSI report configuration at DRX inactive time;
  • the terminal device can perform the first periodic CSI report based on the first periodic CSI reporting configuration at DRX inactive time, the terminal device can switch criteria based on the PUCCH spatial relationship configured by the network device and change the CSI measurement result for the first periodic CSI report.
  • the network device configures the first RSRP threshold and the second RSRP threshold.
  • the first RSRP threshold and the second RSRP threshold are used by the terminal device in the DRX active time, based on all
  • the first-period CSI reporting configuration changes the activated PUCCH spatial relationship used for the first-period CSI reporting when performing the first-period CSI reporting.
  • the first RSRP threshold is less than the second RSRP threshold.
  • At least one PDCCH search space is configured.
  • Step S402 During the DRX deactivation period, the terminal device reports and configures the corresponding CSI measurement occasion to perform CSI measurement in the first period of CSI reporting.
  • the terminal device may also perform CSI measurement during the DRX deactivation period and the DRX activation period, when the CSI measurement corresponding to the CSI report configuration is reported in the first period.
  • Step S403 Based on the first periodic CSI reporting configuration, the terminal device uses the PUCCH corresponding to the first periodic CSI reporting configuration to perform CSI reporting during the DRX activation period and the DRX deactivation period.
  • the terminal device For the PUCCH used by the terminal device for CSI reporting, in some embodiments, if the terminal device is in the DRX activation period and the terminal device receives the PUCCH spatial relationship activation and deactivation MAC CE, the terminal device activates and deactivates the PUCCH spatial relationship based on the PUCCH. Activate the MAC CE instruction to determine the spatial relationship corresponding to the PUCCH. Otherwise, the terminal device maintains the current PUCCH spatial relationship unchanged.
  • the terminal device For the PUCCH used by the terminal device for CSI reporting, in other embodiments, if the terminal device is in the DRX deactivation period, if the terminal device’s CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than the first RSRP threshold, And there is a CSI measurement result corresponding to at least one spatial relationship that is greater than the second RSRP threshold, the terminal device uses the spatial relationship corresponding to the maximum value in the CSI measurement result as the spatial relationship of the activated PUCCH; otherwise, the terminal device maintains The currently activated PUCCH spatial relationship.
  • the first RSRP threshold is less than the second RSRP threshold.
  • Step S404 When the terminal device enters the DRX activation period from the DRX deactivation period, the terminal device monitors the PDCCH.
  • the terminal device entering the DRX activation period from the DRX deactivation period may be that the terminal device sends a Scheduling Request (SR) during the DRX deactivation period and is in a pending state; the terminal device is deactivated by DRX Entering the DRX activation period can also be that the terminal device starts the DRX duration timer.
  • SR Scheduling Request
  • the terminal device For the terminal device to monitor the PDCCH, if the terminal device changes the activated PUCCH space relationship reported in the first periodic CSI in the last DRX inactive time, the terminal device uses the same space in a default PDCCH search space as the activated PUCCH space Or the related SSB or CSI-RS is used as the activated TCI state of the ControlResourceSet corresponding to the default PDCCH search space to monitor the PDCCH.
  • the default PDCCH search space may be configured by the network, and the ControlResourceSet corresponding to the default PDCCH search space is not configured with a TCI state list.
  • the terminal device For the terminal device to monitor the PDCCH, if the terminal device does not change the activated PUCCH spatial relationship reported in the first period of CSI in the last DRX inactive time, the terminal device will be in the downlink BWP corresponding to the currently activated downlink BWP other than the default PDCCH search space.
  • the PDCCH search space uses all the TCI states of the ControlResourceSet corresponding to the PDCCH search space to monitor the PDCCH.
  • the terminal device monitors the PDCCH based on the above two methods, if the terminal device receives the PDCCH TCI state indication MAC CE for at least one ControlResourceSet of the serving cell, the terminal device is in the currently activated downlink BWP
  • the corresponding PDCCH search space other than the default PDCCH search space uses the activated TCI state of the ControlResourceSet corresponding to the PDCCH search space to monitor the PDCCH.
  • the network device configures the terminal device with a first duration. If the terminal device does not receive at least one message for the serving cell within the first duration The PDCCH TCI state of the ControlResourceSet indicates the MAC CE, and after the first duration is reached, the terminal device uses the ControlResourceSet corresponding to the PDCCH search space on the PDCCH search space corresponding to the currently activated downlink BWP other than the default PDCCH search space. Activate TCI state to monitor PDCCH.
  • the following describes the beam management method shown in FIG. 7 in detail based on an optional schematic diagram of the terminal device shown in FIG. 8 for monitoring the PDCCH.
  • the spatial relationship lists corresponding to the PUCCH used in the first periodic CSI reporting configuration are SSB1, SSB2, SSB3, and SSB4.
  • the network device configures a PDCCH search space 1 on a DL BWP, and the TCI state lists corresponding to the ControlResourceSet of the PDCCH search space 1 are SSB1, SSB2, SSB3, and SSB4. Take the short DRX cycle as an example.
  • the terminal receives the PDCCH TCI state indication MAC CE indicates to activate SSB1, then the terminal device monitors the PDCCH on SSB1 during the DRX activation period, and the UE receives the PUCCH spatial relationship activation and deactivation MAC CE If the spatial relationship SSB1 is activated, the UE transmits PUCCH on SSB1. In addition, during the DRX deactivation period in the first DRX cycle, the terminal device still transmits the PUCCH on the SSB1.
  • the terminal device monitors the PDCCH on the SSB1, SSB2, SSB3, and SSB4 corresponding to the control resource set of the PDCCH search space 1; the terminal is receiving After the PDCCH TCI state indicates the MAC CE indicates to activate the SSB2, the terminal device monitors the PDCCH on the SSB2 corresponding to the control resource set of the PDCCH search space 1. If the terminal does not receive the PUCCH spatial relationship activation and deactivation MAC CE within the activation period, the terminal device transmits the PUCCH on the activated PUCCH spatial relationship SSB2.
  • the terminal device uses the spatial relationship SSB3 with the highest RSRP in the CSI measurement result as the activated PUCCH according to the CSI measurement result (for example, the measurement result is less than the first RSRP threshold and greater than the second RSRP threshold) Spatial relationship and PUCCH is transmitted on SSB3.
  • the terminal device changes the activated PUCCH spatial relationship, so in the DRX active period, the terminal device is on SSB3 corresponding to the spatial relationship corresponding to the control resource set of the default PDCCH search space Monitor the PDCCH and transmit the PUCCH; when the terminal receives the PDCCH TCI state indication MAC CE indication to activate the SSB3, the terminal device monitors the PDCCH on the SSB3 corresponding to the spatial relationship corresponding to the control resource set of the PDCCH search space 1. In the DRX deactivation period of the third DRX cycle, the terminal device transmits PUCCH on SSB3.
  • a detailed processing procedure of the beam management method in the embodiment of the present application includes the following steps:
  • Step S501 The terminal device receives the measurement configuration information sent by the network device.
  • the measurement configuration information is carried in RRC signaling.
  • the measurement configuration information may include at least one of the following parameters: DRX related parameters, CSI measurement report related parameters, and PDCCH search space related parameters; wherein,
  • DRX related parameters include at least one of the following: Long DRX cycle, short DRX cycle, drx-onDurationTimer;
  • the first-period CSI reporting configuration includes the measurement resources corresponding to the first-period CSI reporting, the CSI reporting period and time slot offset, and the CSI reporting used PUCCH resources, etc.
  • the first period CSI reporting configuration may have the following characteristics:
  • the terminal device can perform CSI measurement on the measurement resource corresponding to the first periodic CSI report configuration during the CSI measurement report activation period;
  • the terminal device may perform a first periodic CSI report based on the first periodic CSI report configuration during the CSI measurement report activation period;
  • the terminal device can perform the first periodic CSI report based on the first periodic CSI reporting configuration during the CSI measurement reporting activation period, the terminal device can switch criteria based on the PUCCH spatial relationship configured by the network device and change the CSI measurement result for the The spatial relationship of the activated PUCCH reported by the CSI in the first period.
  • the network device configures the first RSRP threshold and the second RSRP threshold.
  • the first RSRP threshold and the second RSRP threshold are used by the terminal device in the DRX active time, based on all
  • the first-period CSI reporting configuration changes the activated PUCCH spatial relationship used for the first-period CSI reporting when performing the first-period CSI reporting.
  • the first RSRP threshold is less than the second RSRP threshold.
  • At least one PDCCH search space is configured.
  • the start period of the first timer is a short DRX period, and the start time of the first timer is the same as the start time of the DRX duration timer.
  • the duration of the first timer may be equal to the duration of the DRX duration timer, or the duration of the first timer is configured by a network device.
  • the start state of the first timer may be independent of the start state of the DRX persistence timer, or the start state of the first timer may also be related to the start state of the DRX persistence timer.
  • the activation status of the first timer and the activation status of the DRX persistence timer may include: if the DRX persistence timer is activated, the first timer is not activated; or, if the DRX persistence timer is activated If the timer is not started, the first timer is started.
  • the start of the first timer can be understood as the state of the first timer is the start state, and the first timer is started by the terminal device. If the first timer is not started, it can be understood that the state of the first timer is a non-starting state or a non-running state, and the terminal device does not start the first timer.
  • the terminal device starts the first timer; if the terminal device starts drx-onDurationTimer, the terminal device does not start the first timer.
  • the start of the first timer can be understood as the state of the first timer is the start state, and the first timer is started by the terminal device. If the first timer is not started, it can be understood that the state of the first timer is a non-starting state or a non-running state, and the terminal device does not start the first timer.
  • the start period of the first timer and/or the duration of the first timer may be configured by a network device.
  • step S502 the terminal device performs CSI measurement during the CSI measurement report activation period, and configures the corresponding CSI measurement time in the first period of the CSI report period.
  • the terminal device may also perform CSI measurement during the CSI measurement report activation and DRX activation periods, and perform CSI measurement during the first period of the CSI report configuration corresponding to the CSI measurement.
  • Step S503 Based on the first periodic CSI reporting configuration, the terminal device uses the PUCCH corresponding to the first periodic CSI reporting configuration to perform CSI reporting during the DRX activation period and the CSI measurement reporting activation period.
  • the terminal device For the PUCCH used by the terminal device for CSI reporting, in some embodiments, if the terminal device is in the DRX activation period and the terminal device receives the PUCCH spatial relationship activation and deactivation MAC CE, the terminal device activates and deactivates the PUCCH spatial relationship based on the PUCCH. Activate the MAC CE instruction to determine the spatial relationship corresponding to the PUCCH. Otherwise, the terminal device maintains the current PUCCH spatial relationship unchanged.
  • the terminal device For the PUCCH used by the terminal device for CSI reporting, in other embodiments, if the terminal device is in the CSI measurement reporting active period, if the terminal device’s CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than the first RSRP threshold And the CSI measurement result corresponding to at least one spatial relationship is greater than the second RSRP threshold, the terminal device uses the spatial relationship corresponding to the maximum value in the CSI measurement result as the spatial relationship of the activated PUCCH; otherwise, the terminal device Maintain the currently activated PUCCH spatial relationship.
  • the first RSRP threshold is less than the second RSRP threshold.
  • Step S504 When the terminal device enters the DRX activation period from the DRX deactivation period, the terminal device monitors the PDCCH.
  • the terminal device entering the DRX activation period from the DRX deactivation period may be that the terminal device sends an SR during the DRX deactivation period and is in the pending state; the terminal device enters the DRX activation period from the DRX deactivation period or the terminal device Excited by the DRX continuous timer.
  • the terminal device For the terminal device to monitor the PDCCH, if the terminal device changes the activated PUCCH space relationship reported in the first periodic CSI in the last DRX inactive time, the terminal device uses the same space in a default PDCCH search space as the activated PUCCH space Or the related SSB or CSI-RS is used as the activated TCI state of the ControlResourceSet corresponding to the default PDCCH search space to monitor the PDCCH.
  • the default PDCCH search space may be configured by the network, and the ControlResourceSet corresponding to the default PDCCH search space is not configured with a TCI state list.
  • the terminal device For the terminal device to monitor the PDCCH, if the terminal device does not change the activated PUCCH spatial relationship reported in the first period of CSI in the last DRX inactive time, the terminal device will be in the downlink BWP corresponding to the currently activated downlink BWP other than the default PDCCH search space.
  • the PDCCH search space uses all the TCI states of the ControlResourceSet corresponding to the PDCCH search space to monitor the PDCCH.
  • the terminal device monitors the PDCCH based on the above two methods, if the terminal device receives the PDCCH TCI state indication MAC CE for at least one ControlResourceSet of the serving cell, the terminal device is in the currently activated downlink BWP
  • the corresponding PDCCH search space other than the default PDCCH search space uses the activated TCI state of the ControlResourceSet corresponding to the PDCCH search space to monitor the PDCCH.
  • the network device configures the terminal device with a first duration. If the terminal device does not receive at least one message for the serving cell within the first duration The PDCCH TCI state of the ControlResourceSet indicates the MAC CE, and after the first duration is reached, the terminal device uses the ControlResourceSet corresponding to the PDCCH search space on the PDCCH search space corresponding to the currently activated downlink BWP other than the default PDCCH search space. Activate TCI state to monitor PDCCH.
  • the beam management method shown in FIG. 9 will be described in detail below based on another optional schematic diagram of the terminal device shown in FIG. 10 for monitoring the PDCCH.
  • the spatial relationship lists corresponding to the PUCCH used in the first periodic CSI reporting configuration are SSB1, SSB2, SSB3, and SSB4.
  • the network device configures a PDCCH search space 1 on a DL BWP, and the TCI state lists corresponding to the ControlResourceSet of the PDCCH search space 1 are SSB1, SSB2, SSB3, and SSB4.
  • the PUCCH spatial relationship is activated and deactivated.
  • the MAC CE indicates that the spatial relationship SSB1 is activated, and the terminal device transmits the PUCCH on SSB1.
  • the terminal device still transmits the PUCCH on the SSB1.
  • the terminal device In the second DRX cycle, since in the last non-DRX activation period, the activated PUCCH spatial relationship was not changed, in the DRX activation period, the terminal device is on the SSB1, SSB2, SSB3, and SSB4 corresponding to the control resource set of PDCCH search space 1.
  • the terminal device transmits the PUCCH on the activated spatial relationship SSB2.
  • the terminal device transmits PUCCH on SSB1
  • the terminal device activates the PUCCH based on the SCI measurement result
  • the terminal device transmits PUCCH on SSB3
  • the terminal device transmits PUCCH on SSB3
  • the terminal device transmits PUCCH on SSB3.
  • the terminal device In the third DRX cycle, since the activated PUCCH spatial relationship was changed during the last non-DRX activation period, the terminal device will set the control resource set corresponding to the default PDCCH search space in the SSB3 (PDCCH search space 1) during the DRX activation period.
  • the PDCCH is monitored on the activated TCI state of the control resource set.
  • the terminal receives the PDCCH TCI state indication, the MAC CE indicates to activate the SSB3, the terminal device monitors the PDCCH on the SSB3 corresponding to the control resource set of the PDCCH search space 1.
  • the terminal device performs CSI measurement and/or CSI reporting during the non-DRX activation period such as the DRX inactive period or the CSI measurement report active period; because the DRX inactive period or the CSI measurement report active period lasts longer than DRX The activation period is longer, so the terminal device has more CSI measurement and/or CSI reporting opportunities; so that in scenarios where the terminal device has frequent beam switching requirements, such as the LEO scenario, the terminal device can report different beams to the network device in time For the channel state in the direction, the network device can also have more opportunities to send beam-related indication information to the terminal device at times other than the DRX activation period, so as to perform effective beam management.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • An optional structural schematic diagram of the terminal device 600 includes:
  • the processing unit 601 is configured to perform CSI measurement and/or CSI reporting at the first time;
  • the first time does not include the DRX activation period, and the CSI measurement result is used by the terminal device to perform beam management.
  • the terminal device 600 further includes:
  • the first receiving unit 602 is configured to receive the PUCCH spatial relationship activation and deactivation criterion.
  • the PUCCH spatial relationship activation and deactivation criterion includes:
  • the CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than the first threshold, and there is at least one CSI measurement result corresponding to the spatial relationship greater than the second threshold, then the space corresponding to the maximum value in the CSI measurement result
  • the relationship is the spatial relationship of the activated PUCCH; the first threshold is smaller than the second threshold.
  • the first threshold is agreed upon by a network device configuration or protocol; and/or, the second threshold is agreed upon by a network device configuration or protocol.
  • the processing unit 601 is further configured to activate or deactivate the PUCCH spatial relationship based on the PUCCH spatial relationship activation and deactivation criterion at the first time according to the CSI measurement result.
  • the processing unit 601 is configured to, at the first time, if the CSI measurement result corresponding to the currently activated PUCCH spatial relationship of the terminal device is less than a first threshold and there is at least one spatial relationship corresponding If the CSI measurement result is greater than the second threshold, the spatial relationship corresponding to the maximum value in the CSI measurement result is taken as the spatial relationship of the activated PUCCH; otherwise, the currently activated PUCCH spatial relationship is maintained.
  • the first time includes: a DRX deactivation period and/or a CSI measurement report activation period.
  • the processing unit 601 is configured to perform CSI measurement and/or CSI reporting during the DRX deactivation period.
  • the processing unit 601 is configured to perform CSI measurement and/or CSI reporting during the active period of CSI measurement reporting.
  • the terminal device 600 further includes:
  • the second receiving unit 603 is configured to receive a first timer configured by a network device, and the running time of the first timer is the active period of the CSI measurement report.
  • the start period of the first timer is a short DRX period.
  • the start time of the first timer is the same as the start time of the DRX persistence timer.
  • the start state of the first timer has nothing to do with the start state of the DRX persistence timer.
  • the start state of the first timer is related to the start state of the DRX persistence timer.
  • the start state of the first timer is related to the start state of the DRX persistence timer, including: if the DRX persistence timer is started, the first timer is not started; or, if the DRX persistence timer is started, the first timer is not started; If the DRX duration timer is not started, the first timer is started.
  • the duration of the first timer is equal to the duration of the DRX duration timer; or, the duration of the first timer is configured by a network device.
  • the start period of the first timer and/or the duration of the first timer are configured by a network device.
  • the processing unit 601 is further configured to monitor the physical downlink control channel PDCCH when the terminal device switches from the DRX deactivation period to the DRX activation period.
  • the processing unit 601 is configured to, if the terminal device changes the activated PUCCH spatial relationship used for CSI measurement and reporting during the most recent DRX deactivation period, use and The reference signal with the same or related spatial relationship of the activated PUCCH is used as the activated TCI state of the control resource set corresponding to the first PDCCH search space, and the PDCCH is monitored.
  • the first PDCCH search space is configured by a network device.
  • control resource set corresponding to the first PDCCH search space is not configured with a TCI state or a TCI state list is not configured.
  • the processing unit 601 is configured to, if the terminal device does not change the activated PUCCH spatial relationship used for CSI measurement reporting during the most recent DRX deactivation period, then the currently activated downlink bandwidth part corresponds to On the second PDCCH search space, all TCI states of the control resource set corresponding to the second PDCCH search space are used to monitor the PDCCH.
  • the second PDCCH search space does not include the default PDCCH search space.
  • the processing unit 601 is further configured to, if the terminal device receives the PDCCH and TCI status indication medium access control unit MAC CE for at least one control resource set of the serving cell, perform the current activation in the downlink On the third PDCCH search space corresponding to the bandwidth part, the PDCCH is monitored based on the activated TCI state of the control resource set corresponding to the third PDCCH search space.
  • the processing unit 601 is further configured to, if the terminal device does not receive the PDCCH TCI status indication MAC CE for at least one control resource set of the serving cell within the first time period, then the current activated On the third PDCCH search space corresponding to the downlink bandwidth part, the PDCCH is monitored based on the activated TCI state of the control resource set corresponding to the third PDCCH search space.
  • the first duration is configured by a network device.
  • the third PDCCH search space does not include the default PDCCH search space.
  • a schematic diagram of an optional composition structure of the network device 800, as shown in FIG. 12, includes:
  • the sending unit 801 is configured to send a PUCCH spatial relationship activation and deactivation criterion, where the PUCCH spatial relationship activation and deactivation criterion is used for the terminal device to activate or deactivate the PUCCH spatial relationship.
  • the PUCCH spatial relationship activation and deactivation criterion includes: at the first time, if the CSI measurement result corresponding to the currently activated PUCCH spatial relationship is less than a first threshold and there is at least one CSI measurement result corresponding to the spatial relationship If the value is greater than the second threshold, the spatial relationship corresponding to the maximum value in the CSI measurement result is the spatial relationship of the activated PUCCH; the first threshold is less than the second threshold.
  • the first threshold is configured by a network device or agreed upon by a protocol; and/or, the second threshold is configured by a network device or agreed upon by a protocol.
  • the first time includes: a DRX deactivation period and/or a CSI measurement report activation period.
  • the sending unit 801 is further configured to configure a first timer for the terminal device, and the first running time is a CSI measurement report activation period.
  • the start period of the first timer is a short DRX period.
  • the start time of the first timer is the same as the start time of the DRX persistence timer.
  • the start state of the first timer has nothing to do with the start state of the DRX persistence timer.
  • the start state of the first timer is related to the start state of the DRX persistence timer.
  • the start state of the first timer is related to the start state of the DRX persistence timer, including: if the DRX persistence timer is started, the first timer is not started; or, if the DRX persistence timer is started, the first timer is not started; If the DRX duration timer is not started, the first timer is started.
  • the duration of the first timer is equal to the duration of the DRX duration timer.
  • the sending unit 801 is further configured to send configuration information to the terminal device, where the configuration information is used to determine the duration of the first timer and/or the start of the first timer cycle.
  • An embodiment of the present application further provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of beam management method.
  • An embodiment of the present application also provides a network device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned network device when the computer program is running. Steps of beam management method.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the beam management method performed by the terminal device.
  • An embodiment of the present application further provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the beam management method performed by the network device.
  • An embodiment of the present application also provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned beam management method executed by the terminal device is implemented.
  • An embodiment of the present application further provides a storage medium storing an executable program, and the executable program is executed by a processor to implement the beam management method executed by the network device.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the beam management method executed by the above-mentioned terminal device.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the beam management method executed by the above-mentioned network device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the beam management method executed by the above terminal device.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the beam management method executed by the above-mentioned network device.
  • FIG. 13 is a schematic diagram of the hardware composition structure of an electronic device (terminal device or network device) according to an embodiment of the present application.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 13.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include: any computer program used to operate on the electronic device 700, such as the application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束管理方法,包括:终端设备在第一时间进行信道状态信息(CSI)测量和/或上报;所述第一时间不包括非连续接收激活期,CSI测量结果用于所述终端设备进行波束管理。本申请还公开了另一种波束管理方法、电子设备及存储介质。

Description

一种波束管理方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种波束管理方法、电子设备及存储介质。
背景技术
在非地面通信网络(Non Terrestrial Network,NTN)中,尤其在低地球轨道(Low-Earth Orbit,LEO)中,终端设备(User Equipment,UE)如何进行有效的波束管理尚未被明确。
发明内容
本申请实施例提供一种波束管理方法、电子设备及存储介质,使得终端设备能够进行有效的波束管理。
第一方面,本申请实施例提供一种波束管理方法,包括:终端设备在第一时间进行信道状态信息(Channel State Information,CSI)测量和/或上报;所述第一时间不包括非连续接收(Discontinuous Reception,DRX)激活期,CSI测量结果用于所述终端设备进行波束管理。
第二方面,本申请实施例提供一种波束管理方法,包括:网络设备发送物理上行控制信道(Physical Uplink Control Channel,PUCCH)空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
第三方面,本申请实施例提供一种终端设备,所述终端设备包括:处理单元,配置为在第一时间进行CSI测量和/或CSI上报;
所述第一时间不包括DRX激活期,CSI测量结果用于所述终端设备进行波束管理。
第四方面,本申请实施例提供一种网络设备,所述网络设备包括:发送单元,配置为发送PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
第五方面,本申请实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的波束管理方法的步骤。
第六方面,本申请实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的波束管理方法的步骤。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述终端设备执行的波束管理方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述网络设备执行的波束管理方法。
第九方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的波束管理方法。
第十方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的波束管理方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的波束管理方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的波束管理方法。
第十三方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的波束管理方法。
第十四方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述网络设 备执行的波束管理方法。
本申请实施例提供的波束管理方法、电子设备及存储介质,包括:终端设备在DRX非激活期或者CSI测量上报激活期等非DRX激活期进行CSI测量和/或CSI上报;由于DRX非激活期或CSI测量上报激活期持续额时间较DRX激活期的时间更长,因此终端设备具有更多的CSI测量和/或CSI上报机会;使得在终端设备具有频繁切换波束需求的场景,如LEO场景,终端设备能够及时的向网络设备上报不同波束方向上的信道状态,网络设备也能够在除DRX激活期以外的时间具有更多机会向终端设备发送与波束相关的指示信息,以便进行有效的波束管理。
附图说明
图1为本申请实施例非连续接收周期的一种可选示意图;
图2为本申请实施例PDCCH TCI state指示MAC CE的格式示意图;
图3为本申请实施例PUCCH空间关系激活去激活MAC CE的格式示意图
图4为本申请实施例通信系统的组成结构示意图;
图5为本申请实施例波束管理方法的一种可选处理流程示意图;
图6为本申请实施例波束管理方法的另一种可选处理流程示意图;
图7为本申请实施例波束管理方法的一种详细可选处理流程示意图;
图8为本申请实施例终端设备监听PDCCH的一种可选示意图;
图9为本申请实施例波束管理方法的另一种详细可选处理流程示意图;
图10为本申请实施例终端设备监听PDCCH的另一种可选示意图;
图11为本申请实施例终端设备的一种可选组成结构示意图;
图12为本申请实施例网络设备的一种可选组成结构示意图;
图13为本申请实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
NTN采用卫星通信的方式向地面用户提供通信服务。与地面蜂窝网通信相比,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、或沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域;而对于卫星通信来说,由于一颗卫星即可以覆盖较大面积的地面,并且卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较高的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大并不会明显增加通讯的成本;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、和高椭圆轨道(High Elliptical Orbit,HEO)卫星等。下面分别对LEO和GEO进行简要说明。
LEO的轨道高度范围为500km至1500km,相应轨道周期约为1.5小时至2小时。终端设备之间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。
GEO的轨道高度为35786km,围绕地球旋转周期为24小时。终端设备之间单跳通信的信号传播延迟一般为250ms。为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在新无线(New Radio,NR)系统中,网络设备可以为终端设备配置DRX功能。使终端设备非连续地监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),进而达到终端设备省电的目的。每个媒体接入控制(Medium Access Control,MAC)实体有一个DRX配置;DRX的配置参数包括:
1)DRX持续定时器(DRX-onDuration Timer),在一个DRX周期(Cycle)的开始终端设备醒 来的持续时间。
2)DRX时隙偏移(DRX-SlotOffset),终端设备启动DRX-onDuration Timer的时延。
3)DRX去激活定时器(DRX-InactivityTimer),当终端设备收到一个指示上行初传或者下行初传的PDCCH后,终端设备继续监听PDCCH的持续时间。
4)DRX下行重传定时器(DRX-RetransmissionTimerDL):终端设备监听指示下行重传调度的PDCCH的最长持续时间。除广播混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程之外的每个下行HARQ进程对应一个DRX–RetransmissionTimerDL。
5)DRX上行重传定时器(DRX-RetransmissionTimerUL):终端设备监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个DRX-RetransmissionTimerUL。
6)DRX长周期起始偏移(DRX-LongCycleStartOffset):用于配置长DTX周期(Long DRX cycle),以及Long DRX cycle和短DRX周期(Short DRX Cycle)开始的子帧偏移。
7)DRX短周期(DRX-ShortCycle):为可选配置。
8)DRX短周期定时器(DRX-ShortCycleTimer):终端设备处于Short DRX cycle(并且没有接收到任何PDCCH)的持续时间,为可选配置。
9)DRX-HARQ-RTT-TimerDL:终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间,除广播HARQ进程之外的每个下行HARQ进程对应一个DRX-HARQ-RTT-TimerDL;
10)DRX-HARQ-RTT-TimerUL:终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个drx-HARQ-RTT-TimerUL。
如果终端设备配置了DRX,则终端设备需要在DRX Active Time监听PDCCH。DRX Active Time包括如下几种情况:
1)下述5个定时器中的任何一个定时器正在运行:DRX-onDurationTimer、DRX-InactivityTimer、DRX–RetransmissionTimerDL、DRX-RetransmissionTimerUL以及ra-ContentionResolutionTimer。
2)在PUCCH上发送了调度请求(Scheduling Request,SR)并处于待处理(pending)状态。
3)在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰的PDCCH指示的一次初始传输。
终端设备的DRX周期示意图,如图1所示,终端设备根据当前处于短DRX周期(Short DRX Cycle)或长DRX周期(Long DRX Cycle),来决定启动drx-onDurationTimer的时间,具体规定如下:
1)如果终端设备当前处于Short DRX Cycle,并且当前子帧满足[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者
2)如果终端设备当前处于Long DRX Cycle,并且当前子帧满足[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset:
则在当前子帧开始的drx-SlotOffset个slot之后的时刻启动drx-onDurationTimer。
相关技术中,长DRX周期是默认配置的,短DRX周期是可选的配置;对于配置了短DRX周期的终端设备,长DRX周期与短DRX周期之间存在如下转换方式:
当满足以下任何一个条件时,终端设备使用短DRX周期:drx-InactivityTimer超时和终端设备接收到一个DRX Command MAC CE。
当满足以下任何一个条件时,终端设备使用长DRX周期:drx-ShortCycleTimer超时和终端设备接收到一个long DRX command MAC CE。
在NR系统中,为了支持多波束操作,NR系统采用了波束管理机制,用于初始接入、控制信道和数据信道等。
对于PDCCH,网络设备可以为终端设备在每个服务小区配置最多12个控制资源集(Control Resource Set),同时为每个Control Resource Set配置一组传输配置指示(Transmission Configuration Indicator,TCI)状态(state)指示MAC CE指示终端设备激活一个Control Resource Set中的一个TCI state。PDCCH TCI state指示MAC CE的格式示意图,可以如图2所示,至少包括服务小区(Serving Cell,SC)标识(Identify,ID)、TCI state ID和CORESET ID。
终端设备在网络设备配置的PDCCH搜索空间上监听PDCCH。网络设备可终端设备的每个下行带宽部分(DownLink BandWidth Part,DL BWP)配置最多10个PDCCH搜索空间,每个PDCCH搜索空间对应一个Control Resource Set。终端设备在搜索空间对应的Control Resource Set的激活TCI state上接收PDCCH。
对于PDSCH使用的TCI state,可以通过调度该PDSCH传输的PDCCH指示。
终端设备通过PUCCH进行周期CSI上报;网络设备可以通过RRC信令为PUCCH配置一组空间关系,一组空间关系在同一个时刻只能有其中的一个空间关系处于激活状态。网络设备使用PUCCH空间关系激活去激活MAC CE指示终端设备激活一个PUCCH资源的其中一个空间关系。PUCCH空间关系激活去激活MAC CE的格式示意图,如图3所示,至少可以包括SC ID、BWP ID以及PUCCH资源ID。
相关技术中,对于配置了DRX的终端设备,终端设备只能在DRX active time进行周期CSI上报,网络设备也只能在DRX active time发送与波束管理相关的指示信息。
对于地面蜂窝网络,终端设备的移动性不高、波束变化较慢;而对于NTN中的非GEO场景,如LEO场景,由于卫星相对于地面高速移动,使得终端设备具有频繁切换波束的需求。如果终端设备在一段时间内都处于DRX inactive time,一方面,终端设备无法上报CSI,从而使网络设备无法获取终端设备在各波束方向上的信道状态;另一方面,网络设备在DRX inactive time也无法发送波束更新指示。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备UE、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100,如图4所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图4示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图4示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例提供的波束管理方法的一种可选处理流程,如图5所示,包括以下步骤:
步骤S201,终端设备在第一时间进行CSI测量和/或CSI上报。
在一些实施例中,所述第一时间不包括DRX激活期。
在一些实施例中,所述第一时间可以包括:DRX去激活期和/或CSI测量上报激活期。
在一些实施例中,在所述第一时间包括所述DRX去激活期的情况下,所述终端设备在所述DRX去激活期进行CSI测量和/或CSI上报。
在另一些实施例中,在所述第一时间包括CSI测量上报激活期的情况下,所述终端设备在所述CSI测量上报激活期进行CSI测量和/或CSI上报。在该场景下,本申请实施例所述的波束管理方法还可以包括:
步骤S200,终端设备接收网络设备配置的第一定时器。
在一些实施例中,所述网络设备通过RRC信令或系统消息向所述终端设备配置第一定时器。
在一些实施例中,所述第一定时器运行的时间为所述CSI测量上报激活期;也可以理解为,所述第一定时器的运行期为所述CSI测量上报激活期。在所述CSI测量上报激活期,所述终端设备可以进行CSI测量和/或CSI上报。
针对第一定时器,在一些可选实施方式中,所述第一定时器的启动周期为短DRX周期,所述 第一定时器的启动时刻与DRX持续定时器的启动时刻相同。所述第一定时器的时长可以等于DRX持续定时器的时长,或者,所述第一定时器的时长由网络设备配置。所述第一定时器的启动状态可以与DRX持续定时器的启动状态无关,或者所述第一定时器的启动状态也可以与DRX持续定时器的启动状态相关。
其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关是指以short DRX cycle为周期,周期性的启动所述第一定时器。所述第一定时器的启动状态与DRX持续定时器的启动状态相关可以包括:若所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。举例来说,以短DRX周期为例,在每个短DRX周期对应的drx-onDurationTimer的启动时刻点(无论当前终端设备是处于short DRX cycle还是Long DRX cycle),如果终端设备不启动drx-onDurationTimer,则终端设备启动第一定时器;如果终端设备启动drx-onDurationTimer,则终端设备不启动第一定时器。
所述第一定时器启动,可以理解为所述第一定时器的状态为启动状态,且由终端设备启动所述第一定时器。所述第一定时器不启动,可以理解为所述第一定时器的状态为不启动状态或不运行状态,且终端设备不启动所述第一定时器。
针对第一定时器,在另一些可选实施方式中,所述第一定时器的启动周期和/或所述第一定时器的时长可以由网络设备配置。
在一些实施例中,本申请实施例提供的波束管理方法还可以包括:
步骤S202,终端设备接收PUCCH空间关系激活去激活准则。
在一些实施例中,所述终端设备接收网络设备发送的PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备激活和/或去激活PUCCH空间关系,以实现波束管理。可选地,所述PUCCH空间关系激活去激活准则可以携带于RRC信令中或系统消息中。
在一些实施例中,所述PUCCH空间关系激活去激活准则也可以以指示信息的形式体现,如终端设备接收网络设备发送的指示信息,所述指示信息用于终端设备确定PUCCH空间关系激活去激活准则。
在一些实施例中,所述PUCCH空间关系激活去激活准则可以包括:在所述第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH空间关系。其中,所述第一阈值和所述第二阈值均可以由网络设备配置,或者由协议约定;所述第一阈值小于所述第二阈值。因此,所述第一阈值和第二阈值可以用于终端设备在DRX去激活期,进行CSI上报时确定用于所述CSI上报的激活的PUCCH空间关系。
在一些实施例中,所述第一阈值可以为第一参考信号接收功率(Reference Signal Received Power,RSRP)阈值,所述第二阈值可以为RSRP阈值;相应的,所述CSI测量结果可以为RSRP。
在一些实施例中,本申请实施例提供的波束管理方法还可以包括:
步骤S203,终端设备基于PUCCH空间关系激活去激活准则,在所述第一时间根据所述CSI测量结果对PUCCH空间关系进行激活或去激活。
在一些实施例中,在所述第一时间,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则所述终端设备将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系,并去激活上一时刻已经激活的PUCCH空间关系;否则,所述终端设备保持所述当前激活的PUCCH空间关系。
在另一些实施例中,若终端设备处于DRX激活期,且终端设备接收到PUCCH空间关系激活去激活MAC CE,所述PUCCH空间关系激活去激活MAC CE用于针对所述PUCCH空间关系进行激活或去激活指示,则终端设备基于所述PUCCH空间关系激活去激活MAC CE确定搜书PUCCH空间关系
在一些实施例中,本申请实施例提供的波束管理方法还可以包括:
步骤S204,在所述终端设备从DRX去激活期切换为DRX激活期的情况下,所述终端设备监听PDCCH。
在一些实施方式中,若所述终端设备在最近的DRX去激活期改变了用于CSI测量上报的激活的PUCCH空间关系,则所述终端设备在第一PDCCH搜索空间,利用与所述激活的PUCCH空间关系相同或相关的参考信号作为所述第一PDCCH搜索空间对应的控制资源集激活的传输配置指示TCI状态,监听所述PDCCH。
其中,所述第一PDCCH搜索空间可以由网络设备配置,所述第一PDCCH搜索空间可以是默 认的PDCCH搜索空间。所述第一PDCCH搜索空间对应的控制资源集未配置TCI状态或未配置TCI状态列表。
可选地,所述参考信号可以包括SSB参考信号和/或CSI参考信号;与所述激活的PUCCH空间关系相关的参考信号,可以是在没有与所述激活的PUCCH空间关系相同的参考信号的情况下,信号质量做好或信号强度最大的参考信号。
在另一些实施方式中,若所述终端设备在最近的DRX去激活期未改变用于CSI测量上报的激活的PUCCH空间关系,则所述终端设备在当前激活的下行BWP对应的第二PDCCH搜索空间上,利用所述第二PDCCH搜索空间对应的控制资源集的全部TCI状态监听PDCCH。
其中,所述第二PDCCH搜索空间不包括默认的PDCCH搜索空间;即若所述终端设备在最近的DRX去激活期未改变用于CSI测量上报的激活的PUCCH空间关系,则所述终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的第二PDCCH搜索空间上,利用所述第二PDCCH搜索空间对应的控制资源集的全部TCI状态监听PDCCH。
在一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,若所述终端设备接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则所述终端设备在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
其中,所述第三PDCCH搜索空间不包括默认的PDCCH搜索空间,即终端设备基于上述两种方式监听PDCCH的过程中,若所述终端设备接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则所述终端设备在当前激活的下行带宽部分对应的除默认的PDCCH搜索空间以外的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
在另一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,若所述终端设备在第一时长内未接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则所述终端设备在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。其中,所述第一时长可以由网络设备配置。
本申请实施例提供的波束管理方法的另一种可选处理流程,如图6所示,包括以下步骤:
步骤S301,网络设备发送PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
在一些实施例中,网络设备向终端设备发送PUCCH空间关系激活去激活准则。在具体实施时,所述PUCCH空间关系激活去激活准则可以携带于RRC信令中,也可以携带于系统消息中。
所述PUCCH空间关系激活去激活准则也可以以指示信息的形式体现,如网络设备向终端设备发送指示信息,所述指示信息用于终端设备确定PUCCH空间关系激活去激活准则。
在一些实施例中,所述PUCCH空间关系激活去激活准则包括:在第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;所述第一阈值小于所述第二阈值。
其中,所述第一阈值可以由网络设备配置或协议约定,所述第二阈值也可以由网络设备配置或协议约定。
在一些实施例中,所述第一时间包括:DRX去激活期和/或CSI测量上报激活期。
在一些实施例中,所述波束管理方法还可以包括:
步骤S302,网络设备为所述终端设备配置第一定时器,所述第一运行的时间为CSI测量上报激活期。
针对第一定时器,在一些实施例中,所述第一定时器的启动周期为短DRX周期,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同,所述第一定时器的时长等于DRX持续定时器的时长。所述第一定时器的启动状态可以与DRX持续定时器的启动状态无关,所述第一定时器的启动状态也可以与DRX持续定时器的启动状态相关。其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关可以包括:所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关是指以short DRX cycle为周期,周期性的启动所述第一定时器。所述第一定时器的启动状态与DRX持续定时器的启动状态相关可以包括:若所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。举例来 说,以短DRX周期为例,在每个短DRX周期对应的drx-onDurationTimer的启动时刻点(无论当前终端设备是处于short DRX cycle还是Long DRX cycle),如果终端设备不启动drx-onDurationTimer,则终端设备启动第一定时器;如果终端设备启动drx-onDurationTimer,则终端设备不启动第一定时器。
所述第一定时器启动,可以理解为所述第一定时器的状态为启动状态,且由终端设备启动所述第一定时器。所述第一定时器不启动,可以理解为所述第一定时器的状态为不启动状态或不运行状态,且终端设备不启动所述第一定时器。
针对第一定时器,在另一些实施例中,可以由网络设备向所述终端设备发送配置信息,所述配置信息用于确定所述第一定时器的时长和/或所述第一定时器的启动周期。
下面针对第一时间为DRX去激活期的情况,本申请实施例中波束管理方法的一种详细处理流程,如图7所示,包括以下步骤:
步骤S401,终端设备接收网络设备发送的测量配置信息。
在一些实施例中,所述测量配置信息携带于RRC信令中。
在一些实施例中,所述测量配置信息可以包括下述中的至少一种参数:DRX相关参数、CSI测量上报相关参数和PDCCH搜索空间相关参数;其中,
1)DRX相关参数包括下述中的至少一种:Long DRX cycle,short DRX cycle,drx-onDurationTimer;
2)对于每个服务小区,配置至少一个第一周期CSI上报配置;第一周期CSI上报配置包括所述第一周期CSI上报对应的测量资源、CSI上报周期和时隙偏移、CSI上报所使用的PUCCH资源等。其中,所述第一周期CSI上报配置可以具有以下特性:
a.终端设备可以在DRX inactive time在所述第一周期CSI上报配置对应的测量资源上执行CSI测量;
b.终端设备可以在DRX inactive time基于所述第一周期CSI上报配置进行第一周期CSI上报;
c.终端设备可以在DRX inactive time基于所述第一周期CSI上报配置进行第一周期CSI上报时,终端设备可以基于网络设备配置的PUCCH空间关系切换准及CSI测量结果改变用于所述第一周期CSI上报的激活的PUCCH空间关系。
3)对于所述第一周期CSI上报配置对应的PUCCH资源,网络设备配置第一RSRP阈值和第二RSRP阈值,所述第一RSRP阈值和第二RSRP阈值用于终端设备在DRXinactive time,基于所述第一周期CSI上报配置进行第一周期CSI上报时改变用于所述第一周期CSI上报的激活的PUCCH空间关系。所述第一RSRP阈值小于第二RSRP阈值。
4)对于每个下行BWP,配置至少一个PDCCH搜索空间。
步骤S402,终端设备在DRX去激活期,在第一周期CSI上报配置对应的CSI测量时机执行CSI测量。
在一些实施例中,所述终端设备还可以在DRX去激活期以及DRX激活期,在第一周期CSI上报配置对应的CSI测量时执行CSI测量。
步骤S403,终端设备基于所述第一周期CSI上报配置,在DRX激活期和DRX去激活期利用所述第一周期CSI上报配置对应的PUCCH进行CSI上报。
针对终端设备进行CSI上报所使用的PUCCH,在一些实施例中,若终端设备处于DRX激活期,且终端设备接收到PUCCH空间关系激活去激活MAC CE,则终端设备基于所述PUCCH空间关系激活去激活MAC CE指示确定PUCCH对应的空间关系。否则,终端设备维持当前的PUCCH空间关系不变。
针对终端设备进行CSI上报所使用的PUCCH,在另一些实施例中,若终端设备处于DRX去激活期,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一RSRP阈值、且存在至少一个空间关系对应的CSI测量结果大于第二RSRP阈值,则所述终端设备将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系;否则,所述终端设备保持所述当前激活的PUCCH空间关系。所述第一RSRP阈值小于所述第二RSRP阈值。
步骤S404,在终端设备由DRX去激活期进入DRX激活期的情况下,终端设备监听PDCCH。
在一些实施例中,终端设备由DRX去激活期进入DRX激活期可以是终端设备在DRX去激活期发送了调度请求(Scheduling Request,SR)并处于等待(pending)状态;终端设备由DRX去激活期进入DRX激活期也可以是终端设备启动了DRX持续定时器。
针对终端设备监听PDCCH,如果终端设备在最近一次DRX inactive time改变了所述第一周期CSI上报的激活的PUCCH空间关系,则终端设备在一个默认的PDCCH搜索空间使用与所述激活的 PUCCH空间相同或相关的SSB或者CSI-RS作为所述默认的PDCCH搜索空间对应的ControlResourceSet激活的TCI state监听PDCCH。所述默认的PDCCH搜索空间可以由网络配置,所述默认的PDCCH搜索空间对应的ControlResourceSet没有配置TCI state列表。
针对终端设备监听PDCCH,如果终端设备在最近一次DRX inactive time没有改变所述第一周期CSI上报的激活的PUCCH空间关系,则终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的所有TCI state监听PDCCH。
在一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,若所述终端设备接收到针对服务小区的至少一个ControlResourceSet的PDCCH TCI state指示MAC CE,则终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的激活TCI state监听PDCCH。
在另一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,网络设备为终端设备配置第一时长,如果终端设备在所述第一时长内没有收到针对该服务小区的至少一个ControlResourceSet的PDCCH TCI state指示MAC CE,则在达到所述第一时长后,终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的激活TCI state监听PDCCH。
下面基于图8所示的终端设备监听PDCCH的一种可选示意图,对图7所示的波束管理方法进行详细说明。
若网络设备配置第一周期CSI上报配置,所述第一周期CSI上报配置所使用的PUCCH对应的空间关系列表为SSB1、SSB2、SSB3和SSB4。网络设备在一个DL BWP上配置一个PDCCH搜索空间1,所述PDCCH搜索空间1的ControlResourceSet对应的TCI state列表为SSB1、SSB 2、SSB3和SSB4。以短DRX周期为例,在第一DRX周期,终端接收到PDCCH TCI state指示MAC CE指示激活SSB1,则终端设备在DRX激活期在SSB1上监听PDCCH,UE接收到PUCCH空间关系激活去激活MAC CE指示激活空间关系SSB1,则UE在SSB1上传输PUCCH。并且,在第一DRX周期内的DRX去激活期,终端设备仍旧在SSB1上传输PUCCH。在第二DRX周期,在DRX激活期,终端在接收到PDCCH TCI state指示MAC CE之前,终端设备在PDCCH搜索空间1的控制资源集对应的SSB1、SSB2、SSB3和SSB4上监听PDCCH;终端在接收到PDCCH TCI state指示MAC CE指示激活SSB2之后,终端设备在PDCCH搜索空间1的控制资源集对应的SSB2上监听PDCCH。终端在激活期内没有接收到PUCCH空间关系激活去激活MAC CE,则终端设备在激活的PUCCH空间关系SSB2上传输PUCCH。在第二DRX周期内的DRX去激活期,终端设备根据CSI测量结果(如测量结果小于第一RSRP阈值、且大于第二RSRP阈值)将CSI测量结果中RSRP最高的空间关系SSB3作为激活的PUCCH空间关系,并在SSB3上传输PUCCH。在第三DRX周期,由于在第二DRX周期,终端设备改变了激活的PUCCH空间关系,因此在DRX激活期,终端设备在与默认的PDCCH搜索空间的控制资源集对应的空间关系对应的SSB3上监听PDCCH、以及传输PUCCH;当终端接收到PDCCH TCI state指示MAC CE指示激活SSB3,终端设备在PDCCH搜索空间1的控制资源集对应的空间关系对应的SSB3上监听PDCCH。在第三DRX周期的DRX去激活期,终端设备在SSB3上传输PUCCH。
下面针对第一时间为CSI测量上报激活期的情况,本申请实施例中波束管理方法的一种详细处理流程,如图9所示,包括以下步骤:
步骤S501,终端设备接收网络设备发送的测量配置信息。
在一些实施例中,所述测量配置信息携带于RRC信令中。
在一些实施例中,所述测量配置信息可以包括下述中的至少一种参数:DRX相关参数、CSI测量上报相关参数和PDCCH搜索空间相关参数;其中,
1)DRX相关参数包括下述中的至少一种:Long DRX cycle,short DRX cycle,drx-onDurationTimer;
2)对于每个服务小区,配置至少一个第一周期CSI上报配置;第一周期CSI上报配置包括所述第一周期CSI上报对应的测量资源、CSI上报周期和时隙偏移、CSI上报所使用的PUCCH资源等。其中,所述第一周期CSI上报配置可以具有以下特性:
a.终端设备可以在CSI测量上报激活期在所述第一周期CSI上报配置对应的测量资源上执行CSI测量;
b.终端设备可以在CSI测量上报激活期基于所述第一周期CSI上报配置进行第一周期CSI上 报;
c.终端设备可以在CSI测量上报激活期基于所述第一周期CSI上报配置进行第一周期CSI上报时,终端设备可以基于网络设备配置的PUCCH空间关系切换准及CSI测量结果改变用于所述第一周期CSI上报的激活的PUCCH空间关系。
3)对于所述第一周期CSI上报配置对应的PUCCH资源,网络设备配置第一RSRP阈值和第二RSRP阈值,所述第一RSRP阈值和第二RSRP阈值用于终端设备在DRXinactive time,基于所述第一周期CSI上报配置进行第一周期CSI上报时改变用于所述第一周期CSI上报的激活的PUCCH空间关系。所述第一RSRP阈值小于第二RSRP阈值。
4)对于每个下行BWP,配置至少一个PDCCH搜索空间。
5)配置第一定时器,当所述第一定时器正在运行时,终端设备处于CSI测量上报激活期。
针对第一定时器,在一些可选实施方式中,所述第一定时器的启动周期为短DRX周期,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。所述第一定时器的时长可以等于DRX持续定时器的时长,或者,所述第一定时器的时长由网络设备配置。所述第一定时器的启动状态可以与DRX持续定时器的启动状态无关,或者所述第一定时器的启动状态也可以与DRX持续定时器的启动状态相关。其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关可以包括:若所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。所述第一定时器启动,可以理解为所述第一定时器的状态为启动状态,且由终端设备启动所述第一定时器。所述第一定时器不启动,可以理解为所述第一定时器的状态为不启动状态或不运行状态,且终端设备不启动所述第一定时器。举例来说,以短DRX周期为例,在每个短DRX周期对应的drx-onDurationTimer的启动时刻点(无论当前终端设备是处于short DRX cycle还是Long DRX cycle),如果终端设备不启动drx-onDurationTimer,则终端设备启动第一定时器;如果终端设备启动drx-onDurationTimer,则终端设备不启动第一定时器。
所述第一定时器启动,可以理解为所述第一定时器的状态为启动状态,且由终端设备启动所述第一定时器。所述第一定时器不启动,可以理解为所述第一定时器的状态为不启动状态或不运行状态,且终端设备不启动所述第一定时器。
针对第一定时器,在另一些可选实施方式中,所述第一定时器的启动周期和/或所述第一定时器的时长可以由网络设备配置。
步骤S502,终端设备在CSI测量上报激活期,在第一周期CSI上报配置对应的CSI测量时机执行CSI测量。
在一些实施例中,所述终端设备还可以在CSI测量上报激活以及DRX激活期,在第一周期CSI上报配置对应的CSI测量时执行CSI测量。
步骤S503,终端设备基于所述第一周期CSI上报配置,在DRX激活期和CSI测量上报激活期利用所述第一周期CSI上报配置对应的PUCCH进行CSI上报。
针对终端设备进行CSI上报所使用的PUCCH,在一些实施例中,若终端设备处于DRX激活期,且终端设备接收到PUCCH空间关系激活去激活MAC CE,则终端设备基于所述PUCCH空间关系激活去激活MAC CE指示确定PUCCH对应的空间关系。否则,终端设备维持当前的PUCCH空间关系不变。
针对终端设备进行CSI上报所使用的PUCCH,在另一些实施例中,若终端设备处于CSI测量上报激活期,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一RSRP阈值、且存在至少一个空间关系对应的CSI测量结果大于第二RSRP阈值,则所述终端设备将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系;否则,所述终端设备保持所述当前激活的PUCCH空间关系。所述第一RSRP阈值小于所述第二RSRP阈值。
步骤S504,在终端设备由DRX去激活期进入DRX激活期的情况下,终端设备监听PDCCH。
在一些实施例中,终端设备由DRX去激活期进入DRX激活期可以是终端设备在DRX去激活期发送了SR并处于pending状态;终端设备由DRX去激活期进入DRX激活期也可以是终端设备激动了DRX持续定时器。
针对终端设备监听PDCCH,如果终端设备在最近一次DRX inactive time改变了所述第一周期CSI上报的激活的PUCCH空间关系,则终端设备在一个默认的PDCCH搜索空间使用与所述激活的PUCCH空间相同或相关的SSB或者CSI-RS作为所述默认的PDCCH搜索空间对应的ControlResourceSet激活的TCI state监听PDCCH。所述默认的PDCCH搜索空间可以由网络配置,所述默认的PDCCH搜索空间对应的ControlResourceSet没有配置TCI state列表。
针对终端设备监听PDCCH,如果终端设备在最近一次DRX inactive time没有改变所述第一周期CSI上报的激活的PUCCH空间关系,则终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的所有TCI state监听PDCCH。
在一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,若所述终端设备接收到针对服务小区的至少一个ControlResourceSet的PDCCH TCI state指示MAC CE,则终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的激活TCI state监听PDCCH。
在另一些实施例中,终端设备基于上述两种方式监听PDCCH的过程中,网络设备为终端设备配置第一时长,如果终端设备在所述第一时长内没有收到针对该服务小区的至少一个ControlResourceSet的PDCCH TCI state指示MAC CE,则在达到所述第一时长后,终端设备在当前激活的下行BWP对应的除默认的PDCCH搜索空间以外的PDCCH搜索空间上使用该PDCCH搜索空间对应的ControlResourceSet的激活TCI state监听PDCCH。
下面基于图10所示的终端设备监听PDCCH的另一种可选示意图,对图9所示的波束管理方法进行详细说明。
若网络设备配置第一周期CSI上报配置,所述第一周期CSI上报配置所使用的PUCCH对应的空间关系列表为SSB1、SSB2、SSB3和SSB4。网络设备在一个DL BWP上配置一个PDCCH搜索空间1,所述PDCCH搜索空间1的ControlResourceSet对应的TCI state列表为SSB1、SSB 2、SSB3和SSB4。以长DRX周期为例,在第一DRX周期,在第一DRX周期,PUCCH空间关系激活去激活MAC CE指示激活空间关系SSB1,则终端设备在SSB1上传输PUCCH。并且,在第一DRX周期内的DRX去激活期,终端设备仍旧在SSB1上传输PUCCH。在第二DRX周期,由于在上一个非DRX激活期,未改变激活的PUCCH空间关系,则在DRX激活期,终端设备在PDCCH搜索空间1的控制资源集对应的SSB1、SSB2、SSB3和SSB4上监听PDCCH;当终端接收到PDCCH TCI state指示MAC CE指示激活SSB2,则终端设备在PDCCH搜索空间1的控制资源集对应的SSB2上监听PDCCH。终端设备在激活的空间关系SSB2上传输PUCCH。在第二DRX周期内的第一个CSI测量上报激活期,终端设备在SSB1上传输PUCCH,在第二DRX周期内的第二个CSI测量上报激活期,终端设备基于SCI测量结果将激活的PUCCH空间关系更改为SSB3,则终端设备在SSB3上传输PUCCH,在第二DRX周期内的第三个CSI测量上报激活期,终端设备在SSB3上传输PUCCH。在第三DRX周期,由于在上一个非DRX激活期,改变了激活的PUCCH空间关系,则在DRX激活期,终端设备在默认的PDCCH搜索空间的控制资源集对应的SSB3(PDCCH搜索空间1的控制资源集的激活TCI state)上监听PDCCH,当终端接收到PDCCH TCI state指示MAC CE指示激活SSB3,终端设备在PDCCH搜索空间1的控制资源集对应的SSB3上监听PDCCH。
本申请各实施例中,终端设备在DRX非激活期或者CSI测量上报激活期等非DRX激活期进行CSI测量和/或CSI上报;由于DRX非激活期或CSI测量上报激活期持续额时间较DRX激活期的时间更长,因此终端设备具有更多的CSI测量和/或CSI上报机会;使得在终端设备具有频繁切换波束需求的场景,如LEO场景,终端设备能够及时的向网络设备上报不同波束方向上的信道状态,网络设备也能够在除DRX激活期以外的时间具有更多机会向终端设备发送与波束相关的指示信息,以便进行有效的波束管理。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为实现上述波束管理方法,本申请实施例提供一种终端设备,所述终端设备600的一种可选组成结构示意图,如图11所示,包括:
处理单元601,配置为在第一时间进行CSI测量和/或CSI上报;
所述第一时间不包括DRX激活期,CSI测量结果用于所述终端设备进行波束管理。
在一些实施例中,所述终端设备600还包括:
第一接收单元602,配置为接收PUCCH空间关系激活去激活准则。
在一些实施例中在一些实施例中,所述PUCCH空间关系激活去激活准则包括:
在所述第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;所述第一阈值小于所述第二阈值。
在一些实施例中,所述第一阈值由网络设备配置或协议约定;和/或,所述第二阈值由网络设 备配置或协议约定。
在一些实施例中,所述处理单元601,还配置为基于PUCCH空间关系激活去激活准则,在所述第一时间根据所述CSI测量结果对PUCCH空间关系进行激活或去激活。
在一些实施例中,所述处理单元601,配置为在所述第一时间,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系;否则,保持所述当前激活的PUCCH空间关系。
在一些实施例中,所述第一时间包括:DRX去激活期和/或CSI测量上报激活期。
在一些实施例中,所述处理单元601,配置为在DRX去激活期进行CSI测量和/或CSI上报。
在一些实施例中,所述处理单元601,配置为在CSI测量上报激活期进行CSI测量和/或CSI上报。
在一些实施例中,所述终端设备600还包括:
第二接收单元603,配置为接收网络设备配置的第一定时器,所述第一定时器运行的时间为所述CSI测量上报激活期。
在一些实施例中,所述第一定时器的启动周期为短DRX周期。
在一些实施例中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:若所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
在一些实施例中,所述第一定时器的时长等于DRX持续定时器的时长;或者,所述第一定时器的时长由网络设备配置。
在一些实施例中,所述第一定时器的启动周期和/或所述第一定时器的时长由网络设备配置。
在一些实施例中,所述处理单元601,还配置为在所述终端设备从DRX去激活期切换为DRX激活期的情况下,监听物理下行控制信道PDCCH。
在一些实施例中,所述处理单元601,配置为若所述终端设备在最近的DRX去激活期改变了用于CSI测量上报的激活的PUCCH空间关系,则在第一PDCCH搜索空间,利用与所述激活的PUCCH空间关系相同或相关的参考信号作为所述第一PDCCH搜索空间对应的控制资源集激活的TCI状态,监听所述PDCCH。
在一些实施例中,所述第一PDCCH搜索空间由网络设备配置。
在一些实施例中,所述第一PDCCH搜索空间对应的控制资源集未配置TCI状态或未配置TCI状态列表。
在一些实施例中,所述处理单元601,配置为若所述终端设备在最近的DRX去激活期未改变用于CSI测量上报的激活的PUCCH空间关系,则在当前激活的下行带宽部分对应的第二PDCCH搜索空间上,利用所述第二PDCCH搜索空间对应的控制资源集的全部TCI状态监听PDCCH。
在一些实施例中,所述第二PDCCH搜索空间不包括默认的PDCCH搜索空间。
在一些实施例中,所述处理单元601,还配置为若所述终端设备接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示媒体接入控制单元MAC CE,则在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
在一些实施例中,所述处理单元601,还配置为若所述终端设备在第一时长内未接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
在一些实施例中,所述第一时长由网络设备配置。
在一些实施例中,所述第三PDCCH搜索空间不包括默认的PDCCH搜索空间。
为实现上述波束管理方法,本申请实施例提供一种网络设备,所述网络设备800的可选组成结构示意图,如图12所示,包括:
发送单元801,配置为发送PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
在一些实施例中,所述PUCCH空间关系激活去激活准则包括:在第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;所述第一阈值小于所述第二阈值。
在一些实施例中,所述第一阈值由网络设备配置或协议约定;和/或,所述第二阈值由网络设备配置或协议约定。
在一些实施例,所述第一时间包括:DRX去激活期和/或CSI测量上报激活期。
在一些实施例,所述发送单元801,还配置为为所述终端设备配置第一定时器,所述第一运行的时间为CSI测量上报激活期。
在一些实施例中,所述第一定时器的启动周期为短DRX周期。
在一些实施例中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
在一些实施例中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:若所述DRX持续定时器启动,则所述第一定时器不启动;或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
在一些实施例中,所述第一定时器的时长等于DRX持续定时器的时长。
在一些实施例中,所述发送单元801,还配置为向所述终端设备发送配置信息,所述配置信息用于确定所述第一定时器的时长和/或所述第一定时器的启动周期。
本申请实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的波束管理方法的步骤。
本申请实施例还提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述网络设备执行的波束管理方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述终端设备执行的波束管理方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述网络设备执行的波束管理方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的波束管理方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的波束管理方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的波束管理方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的波束管理方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的波束管理方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述网络设备执行的波束管理方法。
图13是本申请实施例的电子设备(终端设备或网络设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表 面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (88)

  1. 一种波束管理方法,所述方法包括:
    终端设备在第一时间进行信道状态信息CSI测量和/或CSI上报;
    所述第一时间不包括非连续接收DRX激活期,CSI测量结果用于所述终端设备进行波束管理。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备接收物理上行控制信道PUCCH空间关系激活去激活准则。
  3. 根据权利要求1或2所述的方法,其中,所述PUCCH空间关系激活去激活准则包括:
    在所述第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;
    所述第一阈值小于所述第二阈值。
  4. 根据权利要求3所述的方法,其中,所述第一阈值由网络设备配置或协议约定;
    和/或,所述第二阈值由网络设备配置或协议约定。
  5. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于PUCCH空间关系激活去激活准则,在所述第一时间根据所述CSI测量结果对PUCCH空间关系进行激活或去激活。
  6. 根据权利要求5所述的方法,其中,所述终端设备基于PUCCH空间关系激活去激活准则,在所述第一时间根据所述CSI测量结果对PUCCH空间关系进行激活或去激活,包括:
    在所述第一时间,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则所述终端设备将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系;
    否则,所述终端设备保持所述当前激活的PUCCH空间关系。
  7. 根据权利要求1至6任一项所述的方法,其中,所述第一时间包括:
    DRX去激活期和/或CSI测量上报激活期。
  8. 根据权利要求1至7任一项所述的方法,其中,所述终端设备在第一时间进行信道状态信息CSI测量和/或CSI上报,包括:
    所述终端设备在DRX去激活期进行CSI测量和/或CSI上报。
  9. 根据权利要求1至7任一项所述的方法,其中,所述终端设备在第一时间进行信道状态信息CSI测量和/或CSI上报,包括:
    所述终端设备在CSI测量上报激活期进行CSI测量和/或CSI上报。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备配置的第一定时器,所述第一定时器运行的时间为所述CSI测量上报激活期。
  11. 根据权利要求10所述的方法,其中,所述第一定时器的启动周期为短DRX周期。
  12. 根据权利要求10或11所述的方法,其中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
  13. 根据权利要求10至12任一项所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
  14. 根据权利要求10至12任一项所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
  15. 根据权利要求14所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:
    若所述DRX持续定时器启动,则所述第一定时器不启动;
    或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
  16. 根据权利要求11至15任一项所述的方法,其中,所述第一定时器的时长等于DRX持续定时器的时长;
    或者,所述第一定时器的时长由网络设备配置。
  17. 根据权利要求10所述的方法,其中,所述第一定时器的启动周期和/或所述第一定时器的时长由网络设备配置。
  18. 根据权利要求1至17任一项所述的方法,其中,所述方法还包括:
    在所述终端设备从DRX去激活期切换为DRX激活期的情况下,所述终端设备监听物理下行控制信道PDCCH。
  19. 根据权利要求18所述的方法,其中,所述终端设备监听PDCCH,包括:
    若所述终端设备在最近的DRX去激活期改变了用于CSI测量上报的激活的PUCCH空间关系,则所述终端设备在第一PDCCH搜索空间,利用与所述激活的PUCCH空间关系相同或相关的参考信号作为所述第一PDCCH搜索空间对应的控制资源集激活的传输配置指示TCI状态,监听所述PDCCH。
  20. 根据权利要求19所述的方法,其中,所述第一PDCCH搜索空间由网络设备配置。
  21. 根据权利要求19或20所述的方法,其中,所述第一PDCCH搜索空间对应的控制资源集未配置TCI状态或未配置TCI状态列表。
  22. 根据权利要求18所述的方法,其中,所述终端设备监听PDCCH,包括:
    若所述终端设备在最近的DRX去激活期未改变用于CSI测量上报的激活的PUCCH空间关系,则所述终端设备在当前激活的下行带宽部分对应的第二PDCCH搜索空间上,利用所述第二PDCCH搜索空间对应的控制资源集的全部TCI状态监听PDCCH。
  23. 根据权利要求22所述的方法,其中,所述第二PDCCH搜索空间不包括默认的PDCCH搜索空间。
  24. 根据权利要求18至23任一项所述的方法,其中,所述方法还包括:
    若所述终端设备接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示媒体接入控制单元MAC CE,则所述终端设备在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
  25. 根据权利要求18至23任一项所述的方法,其中,所述方法还包括:
    若所述终端设备在第一时长内未接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则所述终端设备在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
  26. 根据权利要求25所述的方法,其中,所述第一时长由网络设备配置。
  27. 根据权利要求24至26任一项所述的方法,其中,所述第三PDCCH搜索空间不包括默认的PDCCH搜索空间。
  28. 一种波束管理方法,所述方法包括:
    网络设备发送物理上行控制信道PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
  29. 根据权利要求28所述的方法,其中,所述PUCCH空间关系激活去激活准则包括:
    在第一时间,若当前激活的PUCCH空间关系对应的信道状态信息CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;
    所述第一阈值小于所述第二阈值。
  30. 根据权利要求29所述的方法,其中,所述第一阈值由网络设备配置或协议约定;
    和/或,所述第二阈值由网络设备配置或协议约定。
  31. 根据权利要求29或30所述的方法,其中,所述第一时间包括:
    DRX去激活期和/或CSI测量上报激活期。
  32. 根据权利要求28至31任一项所述的方法,其中,所述方法还包括:
    所述网络设备为所述终端设备配置第一定时器,所述第一运行的时间为CSI测量上报激活期。
  33. 根据权利要求32所述的方法,其中,所述第一定时器的启动周期为短DRX周期。
  34. 根据权利要求32或33所述的方法,其中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
  35. 根据权利要求32至34任一项所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
  36. 根据权利要求32至34任一项所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
  37. 根据权利要求36所述的方法,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:
    若所述DRX持续定时器启动,则所述第一定时器不启动;
    或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
  38. 根据权利要求33至37任一项所述的方法,其中,所述第一定时器的时长等于DRX持续定时器的时长。
  39. 根据权利要求32所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于确定所述第一定时器的时长和/或所述第一定时器的启动周期。
  40. 一种终端设备,所述终端设备包括:
    处理单元,配置为在第一时间进行信道状态信息CSI测量和/或CSI上报;
    所述第一时间不包括非连续接收DRX激活期,CSI测量结果用于所述终端设备进行波束管理。
  41. 根据权利要求40所述的终端设备,其中,所述终端设备还包括:
    第一接收单元,配置为接收物理上行控制信道PUCCH空间关系激活去激活准则。
  42. 根据权利要求40或41所述的终端设备,其中,所述PUCCH空间关系激活去激活准则包括:
    在所述第一时间,若当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;
    所述第一阈值小于所述第二阈值。
  43. 根据权利要求42所述的终端设备,其中,所述第一阈值由网络设备配置或协议约定;
    和/或,所述第二阈值由网络设备配置或协议约定。
  44. 根据权利要求40至43任一项所述的终端设备,其中,所述处理单元,还配置为基于PUCCH空间关系激活去激活准则,在所述第一时间根据所述CSI测量结果对PUCCH空间关系进行激活或去激活。
  45. 根据权利要求44所述的终端设备,其中,所述处理单元,配置为在所述第一时间,若所述终端设备在当前激活的PUCCH空间关系对应的CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则将所述CSI测量结果中最大值对应的空间关系作为激活的PUCCH的空间关系;
    否则,保持所述当前激活的PUCCH空间关系。
  46. 根据权利要求40至45任一项所述的终端设备,其中,所述第一时间包括:
    DRX去激活期和/或CSI测量上报激活期。
  47. 根据权利要求40至46任一项所述的终端设备,其中,所述处理单元,配置为在DRX去激活期进行CSI测量和/或CSI上报。
  48. 根据权利要求40至46任一项所述的终端设备,其中,所述处理单元,配置为在CSI测量上报激活期进行CSI测量和/或CSI上报。
  49. 根据权利要求48所述的终端设备,其中,所述终端设备还包括:
    第二接收单元,配置为接收网络设备配置的第一定时器,所述第一定时器运行的时间为所述CSI测量上报激活期。
  50. 根据权利要求49所述的终端设备,其中,所述第一定时器的启动周期为短DRX周期。
  51. 根据权利要求49或50所述的终端设备,其中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
  52. 根据权利要求49至51任一项所述的终端设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
  53. 根据权利要求49至51任一项所述的终端设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
  54. 根据权利要求53所述的终端设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:
    若所述DRX持续定时器启动,则所述第一定时器不启动;
    或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
  55. 根据权利要求50至54任一项所述的终端设备,其中,所述第一定时器的时长等于DRX持续定时器的时长;
    或者,所述第一定时器的时长由网络设备配置。
  56. 根据权利要求49所述的终端设备,其中,所述第一定时器的启动周期和/或所述第一定时器的时长由网络设备配置。
  57. 根据权利要求40至56任一项所述的终端设备,其中,所述处理单元,还配置为在所述终端设备从DRX去激活期切换为DRX激活期的情况下,监听物理下行控制信道PDCCH。
  58. 根据权利要求57所述的终端设备,其中,所述处理单元,配置为若所述终端设备在最近的DRX去激活期改变了用于CSI测量上报的激活的PUCCH空间关系,则在第一PDCCH搜索空间,利用与所述激活的PUCCH空间关系相同或相关的参考信号作为所述第一PDCCH搜索空间对应的控制资源集激活的传输配置指示TCI状态,监听所述PDCCH。
  59. 根据权利要求58所述的终端设备,其中,所述第一PDCCH搜索空间由网络设备配置。
  60. 根据权利要求58或59所述的终端设备,其中,所述第一PDCCH搜索空间对应的控制资源集未配置TCI状态或未配置TCI状态列表。
  61. 根据权利要求57所述的终端设备,其中,所述处理单元,配置为若所述终端设备在最近的DRX去激活期未改变用于CSI测量上报的激活的PUCCH空间关系,则在当前激活的下行带宽部分对应的第二PDCCH搜索空间上,利用所述第二PDCCH搜索空间对应的控制资源集的全部TCI状态监听PDCCH。
  62. 根据权利要求61所述的终端设备,其中,所述第二PDCCH搜索空间不包括默认的PDCCH搜索空间。
  63. 根据权利要求57至62任一项所述的终端设备,其中,所述处理单元,还配置为若所述终端设备接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示媒体接入控制单元MAC CE,则在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
  64. 根据权利要求57至62任一项所述的终端设备,其中,所述处理单元,还配置为若所述终端设备在第一时长内未接收到针对服务小区的至少一个控制资源集的PDCCH TCI状态指示MAC CE,则在当前激活的下行带宽部分对应的第三PDCCH搜索空间上,基于所述第三PDCCH搜索空间对应的控制资源集的激活TCI状态监听PDCCH。
  65. 根据权利要求64所述的终端设备,其中,所述第一时长由网络设备配置。
  66. 根据权利要求63至65任一项所述的终端设备,其中,所述第三PDCCH搜索空间不包括默认的PDCCH搜索空间。
  67. 一种网络设备,所述网络设备包括:
    发送单元,配置为发送物理上行控制信道PUCCH空间关系激活去激活准则,所述PUCCH空间关系激活去激活准则用于终端设备对PUCCH空间关系激活或去激活。
  68. 根据权利要求67所述的网络设备,其中,所述PUCCH空间关系激活去激活准则包括:
    在第一时间,若当前激活的PUCCH空间关系对应的信道状态信息CSI测量结果小于第一阈值、且存在至少一个空间关系对应的CSI测量结果大于第二阈值,则CSI测量结果中最大值对应的空间关系为激活的PUCCH的空间关系;
    所述第一阈值小于所述第二阈值。
  69. 根据权利要求68所述的网络设备,其中,所述第一阈值由网络设备配置或协议约定;
    和/或,所述第二阈值由网络设备配置或协议约定。
  70. 根据权利要求68或69所述的网络设备,其中,所述第一时间包括:
    DRX去激活期和/或CSI测量上报激活期。
  71. 根据权利要求67至70任一项所述的网络设备,其中,所述发送单元,还配置为为所述终端设备配置第一定时器,所述第一运行的时间为CSI测量上报激活期。
  72. 根据权利要求71所述的网络设备,其中,所述第一定时器的启动周期为短DRX周期。
  73. 根据权利要求71或72所述的网络设备,其中,所述第一定时器的启动时刻与DRX持续定时器的启动时刻相同。
  74. 根据权利要求71至73任一项所述的网络设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态无关。
  75. 根据权利要求71至73任一项所述的网络设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关。
  76. 根据权利要求75所述的终端设备,其中,所述第一定时器的启动状态与DRX持续定时器的启动状态相关,包括:
    若所述DRX持续定时器启动,则所述第一定时器不启动;
    或者,若所述DRX持续定时器不启动,则所述第一定时器启动。
  77. 根据权利要求72至76任一项所述的终端设备,其中,所述第一定时器的时长等于DRX持续定时器的时长。
  78. 根据权利要求71所述的网络设备,其中,所述发送单元,还配置为向所述终端设备发送配置信息,所述配置信息用于确定所述第一定时器的时长和/或所述第一定时器的启动周期。
  79. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至27任一项所述的波束管理方法的步骤。
  80. 一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求28至39任一项所述的波束管理方法的步骤。
  81. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至27任一项所述的波束管理方法。
  82. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求28至39任一项所述的波束管理方法。
  83. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至27任一项所述的波束管理方法。
  84. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求28至39任一项所述的波束管理方法。
  85. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至27任一项所述的波束管理方法。
  86. 一种计算机程序,所述计算机程序使得计算机执行如权利要求28至39任一项所述的波束管理方法。
  87. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至27任一项所述的波束管理方法。
  88. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求28至39任一项所述的波束管理方法。
PCT/CN2020/085150 2020-04-16 2020-04-16 一种波束管理方法、电子设备及存储介质 WO2021208022A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080097576.8A CN115176496A (zh) 2020-04-16 2020-04-16 一种波束管理方法、电子设备及存储介质
PCT/CN2020/085150 WO2021208022A1 (zh) 2020-04-16 2020-04-16 一种波束管理方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085150 WO2021208022A1 (zh) 2020-04-16 2020-04-16 一种波束管理方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021208022A1 true WO2021208022A1 (zh) 2021-10-21

Family

ID=78083496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085150 WO2021208022A1 (zh) 2020-04-16 2020-04-16 一种波束管理方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115176496A (zh)
WO (1) WO2021208022A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039408A (zh) * 2017-06-09 2018-12-18 维沃移动通信有限公司 一种波束失败处理方法、终端及网络设备
CN109803427A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种波束配置方法和装置
CN110393033A (zh) * 2018-02-23 2019-10-29 联发科技股份有限公司 波束故障恢复后用于上行链路传输的默认波束
CN110875812A (zh) * 2018-08-31 2020-03-10 中国移动通信有限公司研究院 一种信道测量上报方法、基站和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733717B (zh) * 2011-08-12 2018-06-12 瑞典爱立信有限公司 决定是否发送上行链路传输的方法和用户设备
US9456419B2 (en) * 2012-07-12 2016-09-27 Lg Electronics Inc. Method and apparatus for applying a discontinuous reception (DRX) cycle in a wireless communication system
CN107155212B (zh) * 2016-03-03 2021-07-30 中兴通讯股份有限公司 非连续接收控制方法及装置
US10582503B2 (en) * 2017-11-10 2020-03-03 Apple Inc. UE initiated beam management procedure
US10700758B2 (en) * 2017-11-16 2020-06-30 Mediatek Inc. Control information for CSI acquisition and beam management
US11316562B2 (en) * 2018-03-26 2022-04-26 Yeongmoon SON Method and apparatus to activate and deactivate CSI reporting on PUCCH in a mobile communication system
US10986617B2 (en) * 2018-08-07 2021-04-20 FG Innovation Company Limited Method and apparatus for activating PUCCH spatial relation
TWI729490B (zh) * 2018-09-10 2021-06-01 新加坡商聯發科技(新加坡)私人有限公司 非連續接收中的信道狀態信息參考資源的獲取方法和裝置
CN110535601B (zh) * 2019-01-10 2023-10-20 中兴通讯股份有限公司 一种确定空间关系信息的方法、装置和系统
CN114762449A (zh) * 2020-02-12 2022-07-15 Oppo广东移动通信有限公司 信道状态信息的上报方法、装置、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039408A (zh) * 2017-06-09 2018-12-18 维沃移动通信有限公司 一种波束失败处理方法、终端及网络设备
CN109803427A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种波束配置方法和装置
CN110393033A (zh) * 2018-02-23 2019-10-29 联发科技股份有限公司 波束故障恢复后用于上行链路传输的默认波束
CN110875812A (zh) * 2018-08-31 2020-03-10 中国移动通信有限公司研究院 一种信道测量上报方法、基站和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Discussion on CSI-RS configuration update for CQI reporting and active spatial relation switch", 3GPP DRAFT; R4-1913316, vol. RAN WG4, 8 November 2019 (2019-11-08), Reno, Nevada, USA, pages 1 - 8, XP051817933 *

Also Published As

Publication number Publication date
CN115176496A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN113905429B (zh) 一种监听唤醒信号的方法、电子设备及存储介质
WO2021217351A1 (zh) 一种信道监听方法、电子设备及存储介质
WO2021031089A1 (zh) 资源配置的方法、终端设备和网络设备
WO2022067760A1 (zh) 一种小区测量方法、电子设备及存储介质
WO2021189351A1 (zh) 一种小区切换方法、电子设备及存储介质
WO2021087675A1 (zh) 一种监听唤醒信号的方法、电子设备及存储介质
WO2022006879A1 (zh) 一种寻呼指示的传输方法、电子设备及存储介质
WO2021119988A1 (zh) 一种非连续接收的方法、电子设备及存储介质
US20230043850A1 (en) Channel monitoring method, electronic device, and storage medium
US20230199714A1 (en) Information indication method and apparatus, terminal device and network device
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2021227030A1 (zh) 一种非连续接收的处理方法、电子设备及存储介质
WO2023056604A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021208022A1 (zh) 一种波束管理方法、电子设备及存储介质
WO2021109038A1 (zh) 一种上行传输方法、电子设备及存储介质
WO2021227050A1 (zh) 一种信息处理方法、终端设备及存储介质
WO2021208034A1 (zh) 一种无线链路测量方法、电子设备及存储介质
WO2022227086A1 (zh) 通信方法及装置
CN113905458B (zh) 一种非连续接收的方法、终端设备及网络设备
WO2021128210A1 (zh) 一种测量方法、电子设备及存储介质
WO2021232377A1 (zh) 一种非连续接收的配置方法、电子设备及存储介质
US20240015632A1 (en) Repeater mode determining method, electronic device, and storage medium
WO2021184335A1 (zh) 一种小区切换方法、终端设备及存储介质
WO2022126482A1 (zh) 一种控制信道检测方法、电子设备及存储介质
WO2023283942A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931420

Country of ref document: EP

Kind code of ref document: A1