WO2021179982A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021179982A1
WO2021179982A1 PCT/CN2021/079022 CN2021079022W WO2021179982A1 WO 2021179982 A1 WO2021179982 A1 WO 2021179982A1 CN 2021079022 W CN2021079022 W CN 2021079022W WO 2021179982 A1 WO2021179982 A1 WO 2021179982A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
electronic device
feedback information
network node
communication quality
Prior art date
Application number
PCT/CN2021/079022
Other languages
English (en)
French (fr)
Inventor
王华俊
刘敏
Original Assignee
索尼集团公司
王华俊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 王华俊 filed Critical 索尼集团公司
Priority to CN202180018222.4A priority Critical patent/CN115211202A/zh
Publication of WO2021179982A1 publication Critical patent/WO2021179982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • This application relates to the field of wireless communication technology, and specifically to the radio access technology (RAT) in the Next Generation Wireless Network (NGWN). More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • RAT radio access technology
  • NGWN Next Generation Wireless Network
  • NGWN different RATs are integrated to support various user services with different Quality of Service (QoS) requirements.
  • QoS Quality of Service
  • NTN non-terrestrial network
  • Terrestrial Network Terrestrial Network
  • TN terrestrial network
  • D2D terminal pass-through
  • WIFI Worldwide Interoperability for Microwave Access
  • UE User Equipment
  • an electronic device for wireless communication including: a processing circuit configured to: send a detection message to at least one network node, the detection message including a communication quality requirement of the user equipment; A network node receives feedback information in response to the detection message, the feedback information indicating the communication quality that the corresponding network node can provide to the user equipment; and based on the feedback information, determines the wireless resource access mode of the user equipment.
  • a method for wireless communication including: sending a detection message to at least one network node, the detection message including a communication quality requirement of a user equipment; and receiving a response to the detection from at least one network node
  • the feedback information of the message the feedback information indicating the communication quality that the corresponding network node can provide to the user equipment; and the wireless resource access mode of the user equipment is determined based on the feedback information.
  • an electronic device for wireless communication including: a processing circuit, configured to: send a detection message to a network node currently providing a service, the detection message including a communication quality requirement of the user equipment ; Receive feedback information in response to the detection message from the network node currently providing the service, the feedback information indicating the communication quality that the corresponding network node can provide for the user equipment; and determine the wireless resource access mode of the user equipment based on the feedback information.
  • a method for wireless communication including: sending a detection message to a network node currently providing a service, the detection message including a communication quality requirement of a user equipment; Receiving feedback information in response to the detection message, the feedback information indicating the communication quality that the corresponding network node can provide for the user equipment; and determining the wireless resource access mode of the user equipment based on the feedback information.
  • an electronic device for wireless communication including: a processing circuit, configured to: receive a detection message from a user equipment, the detection message including a communication quality requirement of the user equipment; Analyze and estimate the communication quality that the network node can provide to the user equipment; and include the estimated communication quality in the feedback information and send it to the user equipment.
  • a method for wireless communication including: receiving a detection message from a user equipment, the detection message including communication quality requirements of the user equipment; The provided communication quality; and the estimated communication quality is included in the feedback information and sent to the user equipment.
  • the electronic device and method according to the present application enable the user equipment to autonomously and flexibly select the wireless resource access mode according to the communication quality that the network node can provide, so as to make better use of wireless resources, improve network performance and improve user experience.
  • Fig. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the procedure of the UE detecting gNB in the four-step random access process
  • FIG. 3 shows a schematic diagram of the procedure of the UE detecting gNB in the two-step random access process
  • Figure 4 shows an example of the information flow between UE and gNB
  • Figure 5 shows another example of the information flow between UE and gNB
  • FIG. 6 shows an example of the information flow between the UE and the primary cell group and the secondary cell group
  • Figure 7 shows an example of wireless access in a multi-user scenario
  • Fig. 8 shows an example of the information flow between the UE and neighboring UEs and gNB
  • Fig. 9 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 10 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • Fig. 11 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 16 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present invention can be implemented.
  • NGWN Network-to-Network
  • the future mobile communication network will contain multiple RATs, and different RATs provide different coverage, throughput, and service quality.
  • An important issue in the context of heterogeneous network convergence is the choice of access network, that is, how can a multi-connected terminal select the most suitable radio bearer in a complex environment where multiple RATs coexist, so that users can always maintain access The best network to get the most satisfactory service.
  • a new access mechanism is proposed to solve this problem. In the following, the above-mentioned and other advantages of the access mechanism will be explained through the description of specific examples.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a sending unit 101 configured to send to at least one network node A probe message, the probe message includes the communication quality requirements of the user equipment (UE); the receiving unit 102 is configured to receive feedback information in response to the probe message from at least one network node, the feedback information indicating that the corresponding network node can be the UE The provided communication quality; and the determining unit 103 is configured to determine the radio resource access mode of the UE based on the feedback information.
  • a sending unit 101 configured to send to at least one network node A probe message, the probe message includes the communication quality requirements of the user equipment (UE);
  • the receiving unit 102 is configured to receive feedback information in response to the probe message from at least one network node, the feedback information indicating that the corresponding network node can be the UE The provided communication quality; and the determining unit 103 is configured to determine the radio resource access mode of the UE based on the feedback
  • the sending unit 101, the receiving unit 102, and the determining unit 103 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the apparatus shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 100 may, for example, be provided on the UE side or be communicably connected to the UE.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a UE itself, and may also include external devices such as a memory and a transceiver (not shown in the figure).
  • the memory can be used to store programs and related data information that the UE needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the UE selects the radio resource access mode through the detection process for at least one network node, and can make appropriate decisions to improve network performance.
  • the wireless resource access method includes, for example, selecting a network node to be accessed or selecting a wireless transmission resource to be accessed.
  • the network nodes described here may include but are not limited to base stations, access points, etc., which may be various entities that can provide access services for UEs.
  • the communication quality requirements of the UE may include, for example, one or more of the following: requirements based on QoS parameters; requirements for specific service characteristics.
  • the QoS parameters may include, for example, one or more of the following: delay, delay jitter, data transmission rate, bit error rate, and so on.
  • QoS parameters can be indicated by QoS type, QoS type 1 represents delay, QoS type 2 represents delay and data rate, and so on.
  • the requirement for specific service characteristics may include, for example, the requirement for network slice (Network Slice).
  • Network Slice the requirement for network slice
  • the UE's communication quality requirements are reflected in the requirements for the required network slice types, such as urllc, eMBB, and so on.
  • service types and requirements can be pre-identified as different network slices to generate a network slice list, such as high capacity, large bandwidth, security, connection density, priority, etc.
  • the detection message can include the required network slice identification.
  • the detection message may also include one or more of the following: user type and detection object.
  • the user type can be used to indicate whether the UE is a group user or a single user, and the situation where the UE is a group user will be described in detail later.
  • the detection object may include, for example, one of the following: a network node identifier and a wireless transmission resource identifier.
  • the network node identifier is, for example, a cell ID. In the case where the detection object includes the cell ID, it indicates that what the UE wants to detect is the communication quality that the corresponding cell can provide.
  • the wireless transmission resource identifier includes, for example, a time-frequency resource ID, a frequency resource ID, or a beam ID. When the detection object includes a wireless transmission resource identifier, it indicates that what the UE wants to detect is the communication quality that the corresponding resource can provide.
  • the network node After receiving the probe message from the UE, the network node may obtain feedback information through big data analysis, for example, and the feedback information indicates the communication quality that the corresponding network node can provide for the UE.
  • the feedback information indicates the communication quality that the corresponding network node can provide for the UE on the corresponding resource.
  • the network node can estimate the QoS satisfaction degree and/or the available network slicing capability based on historical data, load conditions, and other information, for example, through a reinforcement learning algorithm.
  • QoS satisfaction also called QoS capability
  • QoS satisfaction level can be expressed by QoS satisfaction level. For example, when delay is used as a QoS parameter, 00 level can indicate that the delay is less than 1ms, and 01 level can indicate that the delay is between 1ms and 5ms. Between, and so on.
  • the network slicing capability can be represented by the identifier in the aforementioned predefined network slicing list.
  • an implicit method such as the frequency of transmission can be used to distinguish which network node the feedback information comes from.
  • multiple network nodes respectively adopt different RATs, and the determining unit 103 determines that the feedback information indicates that the network node that can provide the UE with the best communication quality is the network node to be accessed by the UE.
  • the UE will adopt the RAT that provides the best communication quality.
  • the multiple network nodes may include terrestrial network nodes and non-terrestrial network nodes.
  • the multiple network nodes may include, for example, two or more of the following: eNB, gNB, distributed unit (DU), IAB node, relay Nodes, access points, etc.
  • the sending unit 101 and the receiving unit 102 may send probe messages and receive feedback information during the random access process. For example, in a four-step random access process, the sending unit 101 sends a probe message in Msg3, and the receiving unit 102 receives feedback information in Msg4; in a two-step random access process, the sending unit 101 sends a probe message in Msg1, and the receiving unit 102 receives feedback information in Msg2.
  • the operation of the electronic device 100 in this example will be described below through a specific scenario. Assume that the UE is covered by TN-gNB and NTN-gNB. The UE (through the electronic device 100) detects TN-gNB and NTN-gNB during the random access process, as shown in FIG. 2.
  • the UE For TN-gNB, the UE performs a four-step random access procedure, in which, for example, a detection message including a QoS requirement indicating delay type 1 and a detection message indicating a urllc network slice identification requirement is included in Msg3 and sent to TN-gNB, TN-gNB
  • the detection result is fed back in Msg4, for example, type 1 QoS 6ms, and the network slice identifier is 1 (1 means the network slice for urllc).
  • the UE detects NTN-gNB through a random access process, and the feedback information is, for example, type 1 QoS 10ms, and the network slice identifier is 1.
  • the long distance between the satellite and the UE causes a long transmission delay, and the large coverage of the satellite causes it to serve a large number of UEs.
  • the transmission delay of the UE is relatively long, especially in the GEO (Geosychronons Earth Orbit) networking scenario.
  • the delay of data packets cannot be shortened.
  • the UE selects an appropriate network for the current service based on the received feedback information, such as TN-gNB.
  • the detection process for TN-gNB can also be performed in the 2-step random access process as shown in FIG. 3, where a detection message is added to Msg1, that is, ePRACH, and feedback information is added to Msg2.
  • Msg1 that is, ePRACH
  • Msg2 feedback information
  • the UE has accessed a network node currently providing services (hereinafter also referred to as a serving network node), and the sending unit 101 is configured to use physical uplink control channel (PUCCH) or physical uplink sharing A channel (Physical Uplink Shared Channel, PUSCH) sends probe messages, and the receiving unit 102 is configured to receive feedback information via a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • Event triggering includes, for example, one or more of the following: service changes, and current wireless transmission resources cannot meet the service requirements of the UE.
  • the UE may first determine whether the new service requirement is met based on its own measurement, and if it is not met, it is considered that the above event trigger condition is established. Or, as long as there is a business change, the above-mentioned event trigger condition is considered to be established.
  • the sending unit 101 sends a detection message to the serving gNB on the PUSCH or PUCCH.
  • the detection message includes the communication quality requirements of the new service.
  • the detection object and user type can be omitted or set to default values.
  • the serving gNB then sends feedback information on the PDCCH or PDSCH.
  • the UE determines that the serving gNB cannot meet its new service requirements based on the feedback information, it initiates a random access procedure to other network nodes to try to access, where the random access procedure may include, for example, those described with reference to FIG. 2 or FIG. 3 The detection process.
  • FIG. 4 shows an example of the information flow between the UE and the gNB. Among them, the UE currently accesses gNB1, and when the feedback information from gNB1 indicates that gNB1 cannot meet the requirements of the new service, the UE attempts random access and switches to gNB2.
  • the UE can also initiate a detection process when a wireless transmission resource switch occurs.
  • the detection message may also include a detection object, such as a wireless transmission resource identifier, and the detection message may also include a user type, which is not restrictive.
  • Fig. 5 shows another example of the information flow between the UE and the gNB. Among them, the UE determines that the current wireless transmission resources cannot meet its service requirements, and sends a detection message including the detection object to the gNB currently serving on the PUSCH or PUCCH, and then selects one of the detection objects as the handover based on the feedback information from the gNB. The wireless transmission resources to be reached.
  • the UE notifies the gNB of the identification of the selected radio transmission resource on the PUSCH or PUCCH, and finally the gNB decides whether to adopt the UE's selection result.
  • the probe message may be included in a Buffer Status Report (BSR).
  • the UE has dual connectivity capabilities, and the sending unit 101 is configured to send a probe message to a master cell group (MCG), and the probe message is sent to a secondary cell group (SCG) via the MCG.
  • MCG master cell group
  • SCG secondary cell group
  • the receiving unit 102 is configured to receive feedback information from the SCG forwarded via the MCG, and the determining unit 103 determines whether to switch to the SCG based on the feedback information.
  • FIG. 6 shows an example of the information flow between the UE and the MCG and SCG.
  • the current uplink data is sent to the MCG. If the UE finds that the current link does not meet the QoS requirements, it will perform the MCG-assisted detection process to obtain the SCG detection result.
  • the MCG receives the detection message sent by the user, it exchanges information with the SCG, including the MCG forwarding the user's detection message to the SCG and adding the user's ID in the SCG.
  • the probe message is sent by MCG on PUCCH or PUSCH as a new signaling message.
  • the message can also include user type, probe object, QoS requirement, network slicing requirement, etc.
  • the feedback message is sent from the SCG to the MCG in the PDSCH.
  • the MCG provides feedback information to the user.
  • the feedback information can be obtained by evaluating information such as reinforcement learning algorithms based on historical data and load, and can include QoS capabilities and/or network slicing capabilities. If the SCG link meets the QoS requirements of the current service, the UE will send a handover request to the MCG, then synchronize with the SCG and switch to the SCG, and then send data through the new link.
  • the MCG may be TN MCG
  • the SCG may be NTN SCG.
  • the network node may be a relay node
  • the feedback information may include the communication quality of multiple relay paths, for example, the path ID and the QoS capability and/or network slicing capability of each path.
  • the relay node can obtain the detection result of the backhaul link by periodically performing a loop test. Therefore, the communication quality of the relay path may include the overall detection result after the access link and the backhaul link are combined, for example, including the minimum of the access link and one or more backhaul links.
  • the feedback information may also be based on the access link only or based on the access link and part of the backhaul link.
  • the UE selects an appropriate relay path for data transmission based on the feedback information, and sends the selected path ID to the relay node.
  • the network access technology can also be selected based on user groups.
  • Figure 7 shows an example of wireless access in a multi-user scenario.
  • multiple users may have the same or similar service requirements, resulting in a network that needs to provide a large number of services within a short period of time, which increases system signaling overhead and network load.
  • users with the same or similar business needs can be grouped together, and the network can provide services for the same business in a centralized manner to improve system performance.
  • the UE may initiate a grouping process.
  • the sending unit 101 may broadcast the detection service type and geographic location to be initiated by the UE to surrounding UEs, and perform grouping based on responses from surrounding UEs that have the same or similar service requirements or detection requirements.
  • the UE that performs the broadcast is the group owner, and the surrounding UEs that respond are group members.
  • the group owner After receiving the response from the group member, the group owner saves the information contained in the response, and the group member’s response may include the corresponding UE The type of detection service and the location of the user.
  • the UE may broadcast through D2D communication.
  • the foregoing detection service types may include ordinary services and special services.
  • Special services refer to services that have certain common characteristics, such as large bandwidth services (such as downloading high-definition maps) or neighbor base station detection. This type of service can be identified and defined in advance.
  • FIG. 8 shows an example of the information flow between the UE and neighboring UEs and gNBs.
  • the UE broadcasts its detection service type to neighboring UEs, such as downloading high-definition maps and geographic locations. Neighboring UEs will respond if they have similar needs. Based on these responses, the UEs will spontaneously form a group for detecting downloading high-definition map services and act as the group owner. Subsequently, the UE sends a probe message to the gNB.
  • the probe message also includes the user type and the location information of the group members, where the user type indicates whether it is a group owner or a single user. In this example, the user type is indicated as the group owner user.
  • the feedback information includes, for example, the QoS capability and network slicing capability of the gNB.
  • the feedback information may also include one or more of the following: group information, and identification of the detection object.
  • group information may include the ID of the temporarily allocated group, valid/invalid group members, and so on. If the detection is based on similar services, the feedback information also includes the identification (ID) of the detection object. After the group master UE receives the feedback information, the feedback information is shared with effective group members.
  • the electronic device 100 can enable the UE to have more autonomy in the selection of the best network or the best transmission resource for uplink transmission, and the UE as the selected entity is easier to deploy and accomplish.
  • the electronic device 100 reduces time delay and signaling overhead while ensuring QoS requirements.
  • FIG. 9 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a receiving unit 201 configured to receive a detection message from a UE, and the detection message includes UE's communication quality requirements; the estimation unit 202 is configured to estimate the communication quality that the network node can provide for the UE through big data analysis; and the sending unit 203 is configured to include the estimated communication quality in the feedback information and send it to the UE .
  • the receiving unit 201, the estimating unit 202, and the sending unit 203 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 9 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be installed on the network node side or communicably connected to the network node.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a network node itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the network node needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other network nodes, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the network node may be a terrestrial network node or a non-terrestrial network node.
  • the network node is, for example, one of the following: eNB, gNB, DU, IAB node, relay node, and access point.
  • big data analysis includes, for example, estimation based on at least historical data and load information using reinforcement learning algorithms.
  • the estimated result is, for example, the QoS capability and/or network slicing capability that the network node can provide.
  • the UE performs network node detection during the random access process.
  • the specific description of this example has been given in the first embodiment with reference to FIGS. 2 and 3, and will not be repeated here.
  • the UE has accessed a network node.
  • the detection message may also include a detection object.
  • the detection object is, for example, a wireless transmission resource ID.
  • the estimating unit 202 is configured to estimate the communication quality of the corresponding wireless transmission resource. The detailed description of this example has been given in the first embodiment with reference to FIG. 5, and will not be repeated here.
  • the UE has dual connectivity capabilities and is currently transmitting data on the MCG link. If the network node is the UE's MCG, the sending unit 203 forwards the probe message to the UE's SCG and forwards the SCG feedback information to the UE . In other words, the MCG assists the UE to realize the detection of the SCG. If the network node is the SCG of the UE, the probe message received by the receiving unit 201 comes from the MCG of the UE, and the sending unit 203 sends the feedback information to the MCG. The specific description of this example has been given in the first embodiment with reference to FIG. 6, and will not be repeated here.
  • the network node is a relay network node
  • the communication quality may include the communication quality of multiple relay paths, where the communication quality of the relay path may include the overall detection after the access link and the backhaul link are combined. result.
  • the UE is a group owner user
  • the detection message also includes user type and location information of group members
  • the user type indicates the group owner user.
  • the feedback information also includes one or more of the following: Information, the identification of the detection object.
  • the electronic device 200 enables the UE to autonomously and flexibly select the wireless resource access mode according to the communication quality that the network node can provide, so as to make better use of wireless resources, improve network performance and improve user experience.
  • FIG. 10 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: sending a probe message to at least one network node (S11), where the probe message includes the communication quality requirement of the UE; At least one network node receives feedback information in response to the probe message (S12), the feedback information indicating the communication quality that the corresponding network node can provide for the UE; and determines the UE's radio resource access mode based on the feedback information (S13).
  • This method can be executed on the UE side, for example.
  • the communication quality requirements may include one or more of the following: requirements based on QoS parameters, and requirements for specific service characteristics.
  • the QoS parameters include, for example, one or more of the following: delay, delay jitter, data transmission rate, and bit error rate, where the requirements for specific service characteristics include, for example, the requirements for network slicing.
  • the detection message may also include one or more of the following: user type and detection object.
  • the detection object may include one of the following: a network node identifier, and a wireless transmission resource identifier. Feedback information can be obtained by network nodes through big data analysis.
  • multiple network nodes respectively adopt different RATs, and in step S13, it is determined that the feedback information indicates that the network node that can provide the UE with the best communication quality is used as the network node to be accessed by the UE.
  • multiple network nodes may include terrestrial network nodes and non-terrestrial network nodes.
  • the multiple network nodes include, for example, two or more of the following: eNB, gNB, distributed unit DU, IAB node, relay node, access point.
  • the probe message is sent in Msg3 of the four-step random access procedure, and the feedback information is received in Msg4; the probe message is sent in Msg1 of the two-step random access procedure, and the feedback information is received in Msg2.
  • the UE has accessed a network node currently providing services, and may send a probe message via PUCCH or PUSCH, and receive feedback information via PDCCH or PDSCH.
  • the sending of probe messages and the receiving of feedback information can be triggered based on events.
  • the event trigger includes, for example, one or more of the following: service changes, and current wireless transmission resources cannot meet the service requirements of the UE.
  • the detection message may also include a detection object.
  • the detection object is, for example, a wireless transmission resource identifier.
  • the wireless transmission resource to be switched to is selected based on the feedback information.
  • the probe message can be included in the BSR.
  • the UE has dual connectivity capabilities.
  • it sends a probe message to the MCG, which is forwarded to the SCG via the MCG
  • in step S12 receives feedback information from the SCG forwarded via the MCG
  • in step S13 Determine whether to switch to SCG based on the feedback information.
  • the network node is a relay node
  • the feedback information includes the communication quality of multiple relay paths.
  • the communication quality of the relay path may include the overall detection result after the access link and the backhaul link are combined.
  • the above method further includes broadcasting the type and geographic location of the detection service to be initiated by the UE to surrounding UEs, and grouping based on responses from surrounding UEs with the same or similar service requirements or detection requirements, wherein ,
  • the UE that performs the broadcast serves as the group owner, and the surrounding UEs that make a response serve as group members.
  • the method further includes sharing feedback information in the group.
  • the detection message also includes the user type and location information of the group members, and the user type indicates whether it is a group owner or a single user.
  • the feedback information further includes, for example, one or more of the following: group information, and identification of the detection object.
  • FIG. 11 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: receiving a UE's probe message (S21), where the probe message includes the UE's communication quality requirements;
  • the communication quality that the network node can provide to the UE is analyzed and estimated (S22); and the estimated communication quality is included in the feedback information and sent to the UE (S23).
  • This method can be executed on the side of the network node, for example.
  • big data analysis includes using reinforcement learning algorithms to estimate at least based on historical data and load information.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 100 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 12 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 800 via an antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the receiving unit 201 and the sending unit 203 of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may implement the functions of the receiving unit 201, the estimating unit 202, and the sending unit 203 to send the information of the communication quality that the network node can provide in response to the request of the UE.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 12.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 12 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the receiving unit 201 and the sending unit 203 of the electronic device 200 may be implemented by a wireless communication interface 855 and/or a wireless communication interface 863. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 may implement the functions of the receiving unit 201, the estimating unit 202, and the sending unit 203 to send the information of the communication quality that the network node can provide in response to the request of the UE.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 14, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 14 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 14 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 14 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the sending unit 101 and the receiving unit 102 of the electronic device 100 may be implemented by a wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may execute the functions of the sending unit 101, the receiving unit 102, and the determining unit 103 to determine the autonomous radio resource access mode on the UE side.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 15 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 15 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 15 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the sending unit 101 and the receiving unit 102 of the electronic device 100 may be implemented by a wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 may implement the determination of the autonomous radio resource access mode on the UE side by executing the functions of the sending unit 101, the receiving unit 102, and the determining unit 103.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure such as a general-purpose computer 1600 shown in FIG. 16
  • a computer with a dedicated hardware structure such as a general-purpose computer 1600 shown in FIG. 16
  • the computer is installed with various programs. When, it can perform various functions and so on.
  • a central processing unit (CPU) 1601 executes various processes in accordance with a program stored in a read only memory (ROM) 1602 or a program loaded from a storage portion 1608 to a random access memory (RAM) 1603.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1601 executes various processes and the like is also stored as needed.
  • the CPU 1601, the ROM 1602, and the RAM 1603 are connected to each other via a bus 1604.
  • the input/output interface 1005 is also connected to the bus 1604.
  • the following components are connected to the input/output interface 1605: input part 1606 (including keyboard, mouse, etc.), output part 1607 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1608 (including hard disk, etc.), communication part 1609 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1609 performs communication processing via a network such as the Internet.
  • the driver 1610 can also be connected to the input/output interface 1605 according to needs.
  • Removable media 1611 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1610 as needed, so that the computer programs read out therefrom are installed into the storage portion 1608 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1611.
  • this storage medium is not limited to the removable medium 1611 shown in FIG. 16 which stores the program and is distributed separately from the device to provide the program to the user.
  • removable media 1611 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1602, a hard disk included in the storage portion 1608, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:向至少一个网络节点发送探测消息,该探测消息包括用户设备的通信质量要求;从至少一个网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为用户设备提供的通信质量;以及基于该反馈信息确定用户设备的无线资源接入方式。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年3月11日提交中国专利局、申请号为202010165597.0、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及下一代无线网络(Next Generation Wireless Network,NGWN)中的无线接入技术(Radio Access Technology,RAT)。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在NGWN中,集成了不同的RAT,以支持具有不同的服务质量(Quality of Service,QoS)的要求的各种用户服务。例如,可以包括非地面网络(Non-Terrestrial Network,NTN)、地面网络(Terrestrial Network,TN)、终端直通(Device to Device,D2D)、WIFI等网络模式。同时,随着通信技术的发展,用户设备(User Equipment,UE)能够访问多种网络,并且用户体验的要求越来越高。
但是,接入网技术的异构性和用户应用的多样性对处于多种网络的重叠覆盖区域中的用户的网络选择方案提出了新的挑战。如何更好地实现网络选择,以提高通信系统的性能和用户体验是一个亟待解决的问题。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论 述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:向至少一个网络节点发送探测消息,该探测消息包括用户设备的通信质量要求;从至少一个网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为用户设备提供的通信质量;以及基于该反馈信息确定用户设备的无线资源接入方式。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:向至少一个网络节点发送探测消息,该探测消息包括用户设备的通信质量要求;从至少一个网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为用户设备提供的通信质量;以及基于该反馈信息确定用户设备的无线资源接入方式。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:向当前提供服务的网络节点发送探测消息,该探测消息包括用户设备的通信质量要求;从当前提供服务的网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为用户设备提供的通信质量;以及基于该反馈信息确定用户设备的无线资源接入方式。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:向当前提供服务的网络节点发送探测消息,该探测消息包括用户设备的通信质量要求;从当前提供服务的网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为用户设备提供的通信质量;以及基于该反馈信息确定用户设备的无线资源接入方式。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:接收用户设备的探测消息,该探测消息包括用户设备的通信质量要求;通过大数据分析估计网络节点能够为用户设备提供的通信质量;以及将所估计的通信质量包括在反馈信息中发送给用户设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:接收用户设备的探测消息,该探测消息包括用户设备的通信质量要求; 通过大数据分析估计网络节点能够为用户设备提供的通信质量;以及将所估计的通信质量包括在反馈信息中发送给用户设备。
根据本申请的电子设备和方法使得用户设备根据网络节点能够提供的通信质量来自主地、灵活地选择无线资源接入方式,从而能够更好地利用无线资源,提高网络性能和改善用户体验。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了UE在四步随机接入过程中对gNB进行探测的流程的示意图;
图3示出了UE在二步随机接入过程中对gNB进行探测的流程的示意图;
图4示出了UE与gNB之间的信息流程的一个示例;
图5示出了UE与gNB之间的信息流程的另一个示例;
图6示出了UE与主小区组和辅小区组之间的信息流程的一个示例;
图7示出了多用户场景下的无线接入的示例;
图8示出了UE与相邻UE和gNB之间的信息流程的一个示例;
图9示出了根据本申请的另一个实施例的用于无线通信的电子设备 的功能模块框图;
图10示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图11示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图14是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图15是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图16是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,NGWN的特征之一是异构网络的融合。未来的移动通信网络将包含多种RAT,不同的RAT提供不同的覆盖范围、吞吐量和服务质量等。在异构网络融合环境下的一个重要的问题是接入网络的选择,即,多连接终端如何在多种RAT并存的复杂环境中,通过选择最合适的无线承载,使用户能够始终保持接入最优的网络而获得最满意的服务。在本实施例中,提出了一种新的接入机制来解决该问题。下面,将通过对具体示例的描述来阐述该接入机制的上述以及其他优点。
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:发送单元101,被配置为向至少一个网络节点发送探测消息,该探测消息包括用户设备(UE)的通信质量要求;接收单元102,被配置为从至少一个网络节点接收响应于该探测消息的反馈信息,该反馈信息指示相应的网络节点能够为UE提供的通信质量;以及确定单元103,被配置为基于反馈信息确定UE的无线资源接入方式。
其中,发送单元101、接收单元102和确定单元103可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储UE实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
可以看出,在该实施例中,UE通过针对至少一个网络节点的探测过程来选择无线资源接入方式,可以做出恰当的决策,以提高网络性能。其中,无线资源接入方式例如包括选择要接入的网络节点或者选择要接入的无线传输资源。这里所述的网络节点可以包括但不限于基站、接入点等,其可以为能够为UE提供接入服务的各种实体。
UE的通信质量要求例如可以包括如下中的一个或多个:基于QoS参数的要求;针对特定业务特性的需求。QoS参数例如可以包括如下中的一个或多个:时延、时延抖动、数据传输速率、误码率等等。例如,QoS参数可以用QoS类型指示,QoS类型1表示延迟,QoS类型2表示延迟和数据速率,等等。
针对特定业务特性的需求例如可以包括对网络切片(Network Slice)的需求。此时,UE的通信质量要求体现为对所需要的网络切片类型的需求,比如urllc、eMBB等。例如,可以预先将服务类型以及要求标识为不同的网络切片生成网络切片列表,比如高容量、大带宽、安全、连接密度、优先级等,探测消息中可以包括所需要的网络切片标识。
此外,探测消息还可以包括如下中的一个或多个:用户类型,探测对象。其中,用户类型可以用来指示UE是群组用户还是单用户,UE是群组用户的情形将在后面具体描述。探测对象例如可以包括如下之一:网络节点标识、无线传输资源标识。网络节点标识例如为小区ID,在探测对象包括小区ID的情况下,表示UE要探测的是相应的小区能够提供的通信质量。无线传输资源标识例如包括时频资源ID、频率资源ID或者波束ID,在探测对象包括无线传输资源标识的情况下,表示UE要探测的是相应资源能够提供的通信质量。
在接收到来自UE的探测消息之后,网络节点例如可以通过大数据分析来获得反馈信息,该反馈信息指示相应的网络节点能够为UE提供的通信质量。在如上所述探测对象包括无线传输资源标识的情况下,该反馈信息指示相应的网络节点在相应的资源上能够为UE提供的通信质量。
具体地,网络节点可以根据历史数据、负载情况和其他信息,例如通过强化学习算法来估计QoS满意度和/或可提供的网络切片能力。QoS满意度(也称为QoS能力)可以用QoS满意度级别表示,例如,在采用时延作为QoS参数的情况下,00级别可以指示时延小于1ms,01级别可以指示时延在1ms与5ms之间,以此类推。网络切片能力可以由前述预先定义的网络切片列表中的标识来表示。
此外,当UE向多个网络节点发送探测消息时,例如可以通过隐式方式比如传输的频率等来区分反馈信息来自哪个网络节点。
在一个示例中,多个网络节点分别采用不同的RAT,确定单元103确定反馈信息指示能够为UE提供最优通信质量的网络节点作为UE要接入的网络节点。换言之,UE将采用提供最优通信质量的RAT。多个网络节点可以包括地面网络节点和非地面网络节点,多个网络节点例如可以包括如下中的两个或多个:eNB,gNB,分布式单元(Distributed Unit,DU),IAB节点,中继节点,接入点等。
在该示例中,发送单元101和接收单元102可以在随机接入过程中发送探测消息和接收反馈信息。例如,在四步随机接入过程,发送单元101在Msg3中发送探测消息,接收单元102在Msg4中接收反馈信息;在二步随机接入过程,发送单元101在Msg1中发送探测消息,接收单元102在Msg2中接收反馈信息。
下面将通过一个具体场景来描述该示例中电子设备100的操作。假设UE被TN-gNB和NTN-gNB所覆盖。UE(通过电子设备100)在随机接入过程中对TN-gNB和NTN-gNB进行探测,如图2所示。针对TN-gNB,UE执行四步随机接入过程,其中,将例如包括指示延迟类型1的QoS要求和指示urllc网络切片标识需求的探测消息包括在Msg3中并发送至TN-gNB,TN-gNB在Msg4中反馈其探测结果,例如类型1QoS 6ms、网络切片标识为1(1表示针对urllc的网络切片)。类似地,UE通过随机接入过程针对NTN-gNB进行探测,反馈信息例如为类型1QoS 10ms、网络切片标识为1。这是因为,在NTN中,卫星和UE之间的长距离导致长的传输延迟,并且卫星的大覆盖范围导致它需要服务大量的UE。结合传输时延和调度延迟等因素,UE的传输时延较长,特别是在GEO(Geosychronons Earth Orbit)组网场景中。此外,由于物理传输距离的限制,数据包的延迟无法缩短。UE基于所接收的反馈信息为当前业务选择恰当的网络,例如TN-gNB。
此外,针对TN-gNB的探测过程还可以在如图3所示的2步随机接入过程中执行,其中在Msg1即ePRACH中添加探测消息并且在Msg2中添加反馈信息。其他过程与图2类似,在此不再重复。
在另一个示例中,UE已经接入当前提供服务的网络节点(下文中也称为服务网络节点),发送单元101被配置为经由物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送探测消息,接收单元 102被配置为经由物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理下行控制信道(Physical Downlink Control Channel,PDCCH)接收反馈信息。
在该示例中,假设UE已经与某一个网络节点比如基站建立了正常通信,但是,经过一段时间后,情况发生了变化,可能需要重新连接或切换。例如,发送单元101的发送和接收单元102的接收可以基于事件触发来进行。事件触发例如包括以下中的一个或多个:业务改变,当前的无线传输资源无法满足UE的业务需求。
例如,当发生业务改变时,UE可以先基于自己的测量判断新的业务的需求是否被满足,如果不被满足,则认为上述事件触发条件成立。或者,只要发生业务改变,即认为上述事件触发条件成立。发送单元101在PUSCH或PUCCH上向服务gNB发送探测消息,该探测消息中包括新业务的通信质量需求,其中,探测对象和用户类型可以省略或者设置为缺省值。服务gNB随后在PDCCH或PDSCH上发送反馈信息。如果UE基于该反馈信息确定服务gNB不能满足其新的业务需求,则向其他网络节点发起随机接入过程以尝试接入,其中,该随机接入过程例如可以包括参照图2或图3所述的探测过程。为了便于理解,图4示出了UE与gNB之间的信息流程的一个示例。其中,UE当前接入gNB1,在来自gNB1的反馈信息指示gNB1不能满足新业务的需求的情况下,UE尝试随机接入并切换到gNB2。
此外,在发生无线传输资源切换时,UE也可以发起探测过程。例如,除了通信质量要求之外,探测消息中还可以包括探测对象,探测对象例如为无线传输资源标识,探测消息中也可以包括用户类型,这都不是限制性的。图5示出了UE与gNB之间的信息流程的另一个示例。其中,UE确定当前的无线传输资源无法满足其业务需求,从而在PUSCH或PUCCH上向当前提供服务的gNB发送包括探测对象的探测消息,然后基于来自gNB的反馈信息选择探测对象之一作为要切换到的无线传输资源。接下来,UE在PUSCH或PUCCH上向gNB通知其所选择的无线传输资源的标识,最终由gNB来决定是否采用UE的选择结果。作为示例,探测消息可以包括在缓存状态报告(Buffer Status Report,BSR)中。
在另一个示例中,UE具有双连接能力,发送单元101被配置为向主 小区组(Master Cell Group,MCG)发送探测消息,该探测消息经由MCG发送到辅小区组(Secondary Cell Group,SCG),接收单元102被配置为接收经由MCG转发的来自SCG的反馈信息,确定单元103基于该反馈信息确定是否要切换到SCG。
为了便于理解,图6示出了UE与MCG和SCG之间的信息流程的一个示例。其中,当前上行链路数据被发送到MCG,如果UE发现当前链路不满足QoS要求,则将执行MCG辅助的探测过程,以获得SCG的探测结果。MCG接收到用户发送的探测消息后,与SCG进行信息交互,包括MCG向SCG转发用户的探测消息并添加用户在SCG中的ID。探测消息作为新的信令消息在PUCCH或PUSCH上由MCG发送,该消息同样可以包括用户类型、探测对象、QoS需求、网络切片需求等。随后,反馈消息在PDSCH中由SCG向MCG发送。最后,MCG将反馈信息提供给用户,类似地,该反馈信息可根据历史数据和负载等信息利用诸如强化学习算法评估获得,可以包括QoS能力和/或网络切片能力等。如果SCG链路满足当前业务的QoS要求,则UE将向MCG发送切换请求,然后与SCG同步并切换到SCG,接着通过新链路发送数据。在图6的示例中,非限制性地,MCG可以为TN MCG,SCG可以为NTN SCG。
在又一个示例中,网络节点可以为中继节点,反馈信息可以包括多条中继路径的通信质量例如包括路径ID和每条路径的QoS能力和/或网络切片能力。在UE向中继节点发送探测消息的情况下,中继节点通过周期性地执行环路测试可以获得回程链路的探测结果。因此,中继路径的通信质量可以包括接入链路和回程链路合并后的整体探测结果,例如包括接入链路和一个或多个回程链路中的最小值。但是,由于无法预测的原因,回程链路可能无法全部探测,因此反馈信息还可以仅基于接入链路或者基于接入链路和部分回程链路。UE基于反馈信息选择适当的中继路径进行数据传输,并将选择的路径ID发送给中继节点。
此外,在另一个示例中,还可以基于用户群组进行网络接入技术的选择。图7示出了多用户场景下的无线接入的示例。在多用户场景下,多个用户可能具有相同或相似的业务需求,导致网络在相隔很短时间内便需要提供大量服务,增大了系统信令开销和网络负载。在该示例中,可以将具有相同或相似业务需求的用户分为一组,网络可以集中为同一 业务提供服务,以提升系统性能。
例如,当UE需要探测针对某种业务类型(代表了某种通信质量需求),网络节点能够提供的通信质量时,UE可以发起分组过程。例如,发送单元101可以向周围的UE广播UE要发起的探测业务类型和地理位置,并且基于来自具有相同或相似的业务需求或探测需求的周围的UE的响应来进行分组。其中,执行广播的该UE为群主,做出响应的周围的UE为群成员,群主在接收到群成员的响应后,将响应中包含的信息保存下来,群成员的响应可以包括相应UE的探测业务类型和用户位置。示例性地,UE可以通过D2D通信来进行广播。
上述探测业务类型可以包括普通业务和特殊业务,特殊业务是指具有某种共性的业务,如大带宽业务(比如下载高清地图)或邻居基站探测,可预先识别该类业务并定义。
为了便于理解,图8示出了UE与相邻UE和gNB之间的信息流程的一个示例。其中,UE向相邻UE广播其探测业务类型比如下载高清地图和地理位置。相邻UE如果有相似需求则发出响应,UE基于这些响应自发组成针对下载高清地图业务进行探测的群组并作为群主。随后,UE向gNB发送探测消息,除了通信质量需求之外,探测消息还包括用户类型和群成员的位置信息,其中,用户类型指示为群主用户还是单用户。在该示例中,用户类型指示为群主用户。
反馈信息例如包括gNB的QoS能力、网络切片能力。此外,反馈信息还可以包括如下中的一个或多个:组的信息,探测对象的标识。例如,组的信息可以包括临时分配的组的ID,有效/无效的组成员等。如果是基于相似业务的探测,则反馈信息还包括探测对象的标识(ID)。群主UE接收到反馈信息后,将该反馈信息共享给有效的群成员。
通过上述基于群组的网络探测,可以有效地降低信令开销,节约资源。
综上所述,根据本实施例的电子设备100能够使UE在上行链路传输的最佳网络选择或最佳传输资源选择中具有更多的自主性,且UE作为选择的实体更易于部署和实现。此外,该电子设备100使得在保证QoS要求的情况下降低时延,减小信令开销。
注意,以上所述的各个信息流程图仅是示例,取决于网络节点的类 型的不同,信息流程将会相应地改变。
<第二实施例>
图9示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图9所示,电子设备200包括:接收单元201,被配置为接收UE的探测消息,该探测消息包括UE的通信质量要求;估计单元202,被配置为通过大数据分析估计网络节点能够为UE提供的通信质量;以及发送单元203,被配置为将所估计的通信质量包括在反馈信息中发送给UE。
其中,接收单元201、估计单元202和发送单元203可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图9中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200可以设置在网络节点侧或者可通信地连接网络节点。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为网络节点本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储网络节点实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他网络节点等等)间的通信,这里不具体限制收发器的实现形式。
如前所述,网络节点可以为地面网络节点或非地面网络节点,网络节点例如为如下之一:eNB,gNB,DU,IAB节点,中继节点,接入点。
其中,有关通信质量要求和探测消息的具体内容已经在第一实施例中详细给出,在此不再重复。
作为网络节点侧的操作,大数据分析例如包括至少基于历史数据和负载信息使用强化学习算法进行估计。所估计的结果例如为网络节点能够提供的QoS能力和/或网络切片能力等。
在一个示例中,UE在随机接入过程中进行网络节点的探测。有关该示例的具体描述已在第一实施例中参照图2和3给出,在此不再重复。
在另一个示例中,UE已接入网络节点,此时,探测消息中还可以包 括探测对象,探测对象例如为无线传输资源ID,估计单元202被配置为估计相应的无线传输资源的通信质量。有关该示例的具体描述已在第一实施例中参照图5给出,在此不再重复。
在另一个示例中,UE具有双连接能力并且当前在MCG链路上传输数据,如果网络节点为UE的MCG,则发送单元203将探测消息转发到UE的SCG并且将SCG的反馈信息转发给UE。换言之,MCG辅助UE实现对SCG的探测。如果网络节点为UE的SCG,则接收单元201所接收的探测消息来自UE的MCG,并且发送单元203将反馈信息发送给MCG。有关该示例的具体描述已在第一实施例中参照图6给出,在此不再重复。
在另一个示例中,网络节点为中继网络节点,通信质量可以包括多条中继路径的通信质量,其中,中继路径的通信质量可以包括接入链路和回程链路合并后的整体探测结果。有关该示例的具体描述已在第一实施例中给出,在此不再重复。
在另一个示例中,UE为群主用户,探测消息中还包括用户类型和群成员的位置信息,用户类型指示为群主用户,此时反馈信息中还包括如下中的一个或多个:组的信息,探测对象的标识。有关该示例的具体描述已在第一实施例中参照图7和8给出,在此不再重复。
综上所述,根据本实施例的电子设备200使得UE根据网络节点能够提供的通信质量来自主地、灵活地选择无线资源接入方式,从而能够更好地利用无线资源,提高网络性能和改善用户体验。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图10示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:向至少一个网络节点发送探测消息(S11),该探测消息包括UE的通信质量要求;从至少一个网络节点接收响应于探测消息的反馈信息(S12),该反馈信息指示相应的网络节点能够为UE提供的通信质量;以及基于反馈信息确定UE的无线资源接入方式(S13)。该方法例如可以在UE侧执行。
例如,通信质量要求可以包括如下中的一个或多个:基于QoS参数的要求,针对特定业务特性的需求。QoS参数例如包括如下中的一个或多个:时延、时延抖动、数据传输速率、误码率,其中,针对特定业务特性的需求例如包括对网络切片的需求。
此外,探测消息还可以包括如下中的一个或多个:用户类型,探测对象。探测对象可以包括如下之一:网络节点标识,无线传输资源标识。反馈信息可以由网络节点通过大数据分析获得。
在一个示例中,多个网络节点分别采用不同的RAT,在步骤S13中确定反馈信息指示能够为UE提供最优通信质量的网络节点作为UE要接入的网络节点。例如,多个网络节点可以包括地面网络节点和非地面网络节点,多个网络节点例如包括如下中的两个或多个:eNB,gNB,分布式单元DU,IAB节点,中继节点,接入点。
例如,可以在随机接入过程中发送探测消息和接收反馈信息。例如,在四步随机接入过程的Msg3中发送探测消息,以及在Msg4中接收反馈信息;在二步随机接入过程的Msg1中发送探测消息,以及在Msg2中接收反馈信息。
在另一个示例中,UE已接入当前提供服务的网络节点,可以经由PUCCH或PUSCH发送探测消息,并经由PDCCH或PDSCH接收反馈信息。其中,探测消息的发送和反馈信息的接收可以基于事件来触发。事件触发例如包括如下中的一个或多个:业务改变,当前的无线传输资源无法满足UE的业务需求。
例如,在反馈信息指示当前提供服务的网络节点不能满足UE的业务需求的情况下,UE尝试接入其他网络节点。探测消息中还可以包括探测对象,探测对象例如为无线传输资源标识,在步骤S13中基于反馈信息选择要切换到的无线传输资源。探测消息可以包含在BSR中。
在另一个示例中,UE具有双连接能力,在步骤S11中向MCG发送探测消息,该探测消息经由MCG转发至SCG,在步骤S12中接收经由MCG转发的来自SCG的反馈信息,并且在步骤S13中基于反馈信息确定是否要切换至SCG。
在另一个示例中,网络节点为中继节点,反馈信息包括多条中继路径的通信质量。例如,中继路径的通信质量可以包括接入链路和回程链路合并后的整体探测结果。
在另一个示例中,上述方法还包括向周围的UE广播该UE要发起的探测业务类型和地理位置,并且基于来自具有相同或相似的业务需求或探测需求的周围的UE的响应进行分组,其中,执行广播的该UE作为群主,做出响应的周围的UE作为群成员,该方法还包括在组内共享反馈信息。
在这种情况下,探测消息还包括用户类型和群成员的位置信息,用户类型指示为群主用户还是单用户。反馈信息例如还包括如下中的一个或多个:组的信息,探测对象的标识。
图11示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:接收UE的探测消息(S21),该探测消息包括UE的通信质量要求;通过大数据分析估计网络节点能够为UE提供的通信质量(S22);以及将所估计的通信质量包括在反馈信息中发送给UE(S23)。该方法例如可以在网络节点侧执行。
例如,大数据分析包括至少基于历史数据和负载信息使用强化学习算法进行估计。
上述方法分别对应于第一实施例中所描述的电子设备100和第二实施例中所描述的电子200,其具体细节可参见以上相应位置的描述,在此不再重复。注意,上述各个方法可以结合或单独使用。
本公开内容的技术能够应用于各种产品。
例如,电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、 微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图12所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图12示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号 中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图12所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图12所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图12示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口 825也可以包括单个BB处理器826或单个RF电路827。
在图12所示的eNB 800中,电子设备200的接收单元201和发送单元203可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行接收单元201、估计单元202和发送单元203的功能实现响应于UE的请求来发送网络节点能够提供的通信质量的信息。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图13所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图13示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图12描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图12描述的BB处理器826相同。如图13所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图13示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至 RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图13所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图13示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图13所示的eNB 830中,电子设备200的接收单元201和发送单元203可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行接收单元201、估计单元202和发送单元203的功能实现响应于UE的请求来发送网络节点能够提供的通信质量的信息。
[关于用户设备的应用示例]
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如 存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图14所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图14示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在 MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图14所示,智能电话900可以包括多个天线916。虽然图14示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图14所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图14所示的智能电话900中,电子设备100的发送单元101和接收单元102可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行发送单元101、接收单元102和确定单元103的功能来实现UE侧的自主的无线资源接入方式的确定。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数 据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图15所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图15示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图15所示,汽车导航设备920可以包括多个天线937。虽然图15示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线 937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图15所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图15示出的汽车导航设备920中,电子设备100的发送单元101和接收单元102可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行发送单元101、接收单元102和确定单元103的功能来实现UE侧的自主的无线资源接入方式的确定。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图16所示的通用计算机1600)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图16中,中央处理单元(CPU)1601根据只读存储器(ROM)1602中存储的程序或从存储部分1608加载到随机存取存储器(RAM) 1603的程序执行各种处理。在RAM 1603中,也根据需要存储当CPU 1601执行各种处理等等时所需的数据。CPU 1601、ROM 1602和RAM 1603经由总线1604彼此连接。输入/输出接口1005也连接到总线1604。
下述部件连接到输入/输出接口1605:输入部分1606(包括键盘、鼠标等等)、输出部分1607(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1608(包括硬盘等)、通信部分1609(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1609经由网络比如因特网执行通信处理。根据需要,驱动器1610也可连接到输入/输出接口1605。可移除介质1611比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1610上,使得从中读出的计算机程序根据需要被安装到存储部分1608中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1611安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图16所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1611。可移除介质1611的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1602、存储部分1608中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同 要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (42)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    向至少一个网络节点发送探测消息,所述探测消息包括用户设备的通信质量要求;
    从所述至少一个网络节点接收响应于所述探测消息的反馈信息,所述反馈信息指示相应的网络节点能够为所述用户设备提供的通信质量;以及
    基于所述反馈信息确定所述用户设备的无线资源接入方式。
  2. 根据权利要求1所述的电子设备,其中,所述探测消息还包括如下中的一个或多个:用户类型,探测对象。
  3. 根据权利要求1所述的电子设备,其中,所述通信质量要求包括如下中的一个或多个:基于QoS参数的要求,针对特定业务特性的需求。
  4. 根据权利要求3所述的电子设备,其中,所述QoS参数包括如下中的一个或多个:时延、时延抖动、数据传输速率、误码率,其中,所述针对特定业务特性的需求包括对网络切片的需求。
  5. 根据权利要求2所述的电子设备,其中,所述探测对象包括如下之一:网络节点标识,无线传输资源标识。
  6. 根据权利要求1所述的电子设备,其中,多个网络节点分别采用不同的无线接入技术,所述处理电路被配置为确定所述反馈信息指示能够为所述用户设备提供最优通信质量的网络节点作为所述用户设备要接入的网络节点。
  7. 根据权利要求6所述的电子设备,其中,所述多个网络节点包括地面网络节点和非地面网络节点,并且所述多个网络节点包括如下中的两个或多个:eNB,gNB,分布式单元DU,IAB节点,中继节点,接入点。
  8. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为在随机接入过程中发送所述探测消息和接收所述反馈信息。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为在四步随机接入过程的Msg3中发送所述探测消息,以及在Msg4中接收所述反馈信息;在二步随机接入过程的Msg1中发送所述探测消息,以及在Msg2中接收所述反馈信息。
  10. 根据权利要求1所述的电子设备,其中,所述用户设备已接入当前提供服务的网络节点,所述处理电路被配置为经由物理上行控制信道或物理上行共享信道发送所述探测消息,并经由物理下行共享信道或物理下行控制信道接收所述反馈信息。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路被配置为基于事件触发来发送所述探测消息和接收所述反馈信息。
  12. 根据权利要求11所述的电子设备,其中,所述事件触发包括如下中的一个或多个:业务改变,当前的无线传输资源无法满足所述用户设备的业务需求。
  13. 根据权利要求12所述的电子设备,其中,在所述反馈信息指示所述当前提供服务的网络节点不能满足所述用户设备的业务需求的情况下,所述用户设备尝试接入其他网络节点。
  14. 根据权利要求11所述的电子设备,其中,所述探测消息中还包括探测对象,所述探测对象为无线传输资源标识,所述处理电路被配置为基于所述反馈信息选择要切换到的无线传输资源。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为将所述探测消息包含在状态缓存报告中。
  16. 根据权利要求1所述的电子设备,其中,所述用户设备具有双连接能力,所述处理电路被配置为向主小区组发送所述探测消息,所述探测消息经由所述主小区组转发至辅小区组,所述处理电路被配置为接收经由所述主小区组转发的来自所述辅小区组的反馈信息,并且所述用户设备基于所述反馈信息确定是否要切换至所述辅小区组。
  17. 根据权利要求1所述的电子设备,其中,网络节点为中继节点,所述反馈信息包括多条中继路径的通信质量。
  18. 根据权利要求17所述的电子设备,其中,中继路径的通信质量包括接入链路和回程链路合并后的整体探测结果。
  19. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为向周围的用户设备广播所述用户设备要发起的探测业务类型和地理位置,并且基于来自具有相同或相似的业务需求或探测需求的周围的用户设备的响应进行分组,其中,执行广播的所述用户设备作为群主,做出响应的周围的用户设备作为群成员,所述处理电路被配置为在组内共享所述反馈信息。
  20. 根据权利要求19所述的电子设备,其中,所述探测消息还包括用户类型和群成员的位置信息,所述用户类型指示为群主用户还是单用户。
  21. 根据权利要求19所述的电子设备,其中,所述反馈信息还包括如下中的一个或多个:所述组的信息,探测对象的标识。
  22. 根据权利要求1所述的电子设备,其中,所述反馈信息由网络节点通过大数据分析获得。
  23. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    向当前提供服务的网络节点发送探测消息,所述探测消息包括用户设备的通信质量要求;
    从所述当前提供服务的网络节点接收响应于所述探测消息的反馈信息,所述反馈信息指示相应的网络节点能够为所述用户设备提供的通信质量;以及
    基于所述反馈信息确定所述用户设备的无线资源接入方式。
  24. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为经由物理上行控制信道或物理上行共享信道发送所述探测消息,并经由物理下行共享信道或物理下行控制信道接收所述反馈信息。
  25. 根据权利要求23所述的电子设备,其中,所述处理电路被配置为基于事件触发来发送所述探测消息和接收所述反馈信息。
  26. 根据权利要求25所述的电子设备,其中,所述事件触发包括如下中的一个或多个:业务改变,当前的无线传输资源无法满足所述用户设备的业务需求。
  27. 根据权利要求25所述的电子设备,其中,在所述反馈信息指示所述当前提供服务的网络节点不能满足所述用户设备的业务需求的情况下,所述用户设备尝试接入其他网络节点。
  28. 根据权利要求25所述的电子设备,其中,所述探测消息中还包括探测对象,所述探测对象为无线传输资源标识,所述处理电路被配置为基于所述反馈信息选择要切换到的无线传输资源。
  29. 根据权利要求28所述的电子设备,其中,所述处理电路被配置为将所述探测消息包含在状态缓存报告中。
  30. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    接收用户设备的探测消息,所述探测消息包括所述用户设备的通信质量要求;
    通过大数据分析估计网络节点能够为所述用户设备提供的通信质量;以及
    将所估计的通信质量包括在反馈信息中发送给所述用户设备。
  31. 根据权利要求30所述的电子设备,其中,所述大数据分析包括至少基于历史数据和负载信息使用强化学习算法进行估计。
  32. 根据权利要求30所述的电子设备,其中,其中,所述网络节点为地面网络节点或非地面网络节点,并且所述网络节点为如下之一:eNB,gNB,分布式单元DU,IAB节点,中继节点,接入点。
  33. 根据权利要求30所述的电子设备,其中,所述探测消息中还包括用户类型和群成员的位置信息,所述用户类型指示为群主用户,所述反馈信息还包括如下中的一个或多个:所述组的信息,探测对象的标识。
  34. 根据权利要求30所述的电子设备,其中,所述用户设备已接入所述网络节点,所述探测消息中还包括探测对象,所述探测对象为无线传输资源标识,所述处理电路被配置为估计相应的无线传输资源的通信质量。
  35. 根据权利要求30所述的电子设备,其中,所述网络节点为所述用户设备的主小区组,所述处理电路还被配置为将所述探测消息转发到 所述用户设备的辅小区组并且将所述辅小区组的反馈信息转发给所述用户设备。
  36. 根据权利要求30所述的电子设备,其中,所述网络节点为所述用户设备的辅小区组,所述用户设备的探测消息来自所述用户设备的主小区组。
  37. 根据权利要求30所述的电子设备,其中,所述网络节点为中继网络节点,所述通信质量包括多条中继路径的通信质量,其中,中继路径的通信质量包括接入链路和回程链路合并后的整体探测结果。
  38. 根据权利要求30述的电子设备,其中,所述处理电路被配置为在所述用户设备的随机接入过程中接收所述探测消息和发送所述反馈信息。
  39. 一种用于无线通信的方法,包括:
    向至少一个网络节点发送探测消息,所述探测消息包括用户设备的通信质量要求;
    从所述至少一个网络节点接收响应于所述探测消息的反馈信息,所述反馈信息指示相应的网络节点能够为所述用户设备提供的通信质量;以及
    基于所述反馈信息确定所述用户设备的无线资源接入方式。
  40. 一种用于无线通信的方法,包括:
    向当前提供服务的网络节点发送探测消息,所述探测消息包括用户设备的通信质量要求;
    从所述当前提供服务的网络节点接收响应于所述探测消息的反馈信息,所述反馈信息指示相应的网络节点能够为所述用户设备提供的通信质量;以及
    基于所述反馈信息确定所述用户设备的无线资源接入方式。
  41. 一种用于无线通信的方法,包括:
    接收用户设备的探测消息,所述探测消息包括所述用户设备的通信质量要求;
    通过大数据分析估计网络节点能够为所述用户设备提供的通信质 量;以及
    将所估计的通信质量包括在反馈信息中发送给所述用户设备。
  42. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求39至41中的任意一项所述的用于无线通信的方法。
PCT/CN2021/079022 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021179982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180018222.4A CN115211202A (zh) 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010165597.0 2020-03-11
CN202010165597.0A CN113395777A (zh) 2020-03-11 2020-03-11 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021179982A1 true WO2021179982A1 (zh) 2021-09-16

Family

ID=77615346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079022 WO2021179982A1 (zh) 2020-03-11 2021-03-04 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN113395777A (zh)
WO (1) WO2021179982A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355521A1 (en) * 2013-06-03 2014-12-04 Electronics And Telecommunications Research Institute Intelligent multiple access communication control apparatus and method
CN106604356A (zh) * 2015-10-15 2017-04-26 华为终端(东莞)有限公司 无线通信接入方法、装置、处理器和无线终端
CN106817747A (zh) * 2015-11-30 2017-06-09 中兴通讯股份有限公司 基于无线接入技术的数据处理方法及传输节点
CN106471857B (zh) * 2015-06-17 2020-01-31 华为技术有限公司 一种上行数据传输资源的获取方法及设备、系统
CN110856233A (zh) * 2019-11-14 2020-02-28 Oppo广东移动通信有限公司 通信控制方法及相关产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140355521A1 (en) * 2013-06-03 2014-12-04 Electronics And Telecommunications Research Institute Intelligent multiple access communication control apparatus and method
CN106471857B (zh) * 2015-06-17 2020-01-31 华为技术有限公司 一种上行数据传输资源的获取方法及设备、系统
CN106604356A (zh) * 2015-10-15 2017-04-26 华为终端(东莞)有限公司 无线通信接入方法、装置、处理器和无线终端
CN106817747A (zh) * 2015-11-30 2017-06-09 中兴通讯股份有限公司 基于无线接入技术的数据处理方法及传输节点
CN110856233A (zh) * 2019-11-14 2020-02-28 Oppo广东移动通信有限公司 通信控制方法及相关产品

Also Published As

Publication number Publication date
CN115211202A (zh) 2022-10-18
CN113395777A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
US11456789B2 (en) Electronic device, wireless communication method and computer-readable medium
US20220408298A1 (en) Electronic device and method for wireless communications
US11757510B2 (en) Electronic devices and communication methods
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11569902B2 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
US20210289401A1 (en) Electronic device and method executed by electronic device
EP3550875B1 (en) Devices in wireless communication system
CN109155959A (zh) 电子装置、信息处理设备和信息处理方法
CN115066004A (zh) 电子设备和通信方法
EP3860206A1 (en) Communication device
US20190090228A1 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2019242536A1 (zh) 用于卫星通信的用户设备
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021179982A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4175343A1 (en) Electronic device, wireless communication method and non-transitory computer-readable storage medium
US10028256B2 (en) Apparatus
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2023078163A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4373184A1 (en) Management electronic device and method for wireless communication, and member electronic device and method for wireless communication
WO2021043150A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN115968568A (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768949

Country of ref document: EP

Kind code of ref document: A1