WO2023078163A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023078163A1
WO2023078163A1 PCT/CN2022/128097 CN2022128097W WO2023078163A1 WO 2023078163 A1 WO2023078163 A1 WO 2023078163A1 CN 2022128097 W CN2022128097 W CN 2022128097W WO 2023078163 A1 WO2023078163 A1 WO 2023078163A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
timer
user equipment
electronic device
beam measurement
Prior art date
Application number
PCT/CN2022/128097
Other languages
English (en)
French (fr)
Inventor
张雪菲
贺清清
刘芳昕
李浩进
Original Assignee
索尼集团公司
张雪菲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 张雪菲 filed Critical 索尼集团公司
Publication of WO2023078163A1 publication Critical patent/WO2023078163A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to energy-saving technology of user equipment in non-terrestrial network communication. More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • Non-Terrestrial Network NTN
  • satellites have the characteristics of high position, large beam coverage, and fast operation speed of non-stationary orbit satellites. These characteristics have brought technical challenges to 5G non-terrestrial networks, such as large transmission delay, large cell coverage radius, and mobile cells.
  • the round trip time (Round Trip Time, RTT) between the terminal and the satellite is about 270.73ms; for NTN Geostationary Earth Orbiting (GEO), the time between the terminal and the satellite The RTT between is about 12.89ms.
  • the RTT between the terminal and the base station is only 0.066ms.
  • NTN NTN
  • satellites form multiple beams on the earth, each beam covers a certain area on the earth, and the beam coverage radius can reach hundreds to thousands of kilometers.
  • the speed of low-orbit satellites is about 7.56km/s, and the moving speed of user equipment (UE) is negligible compared with low-orbit satellites.
  • UE user equipment
  • the beam actually moves with time. This means that if a UE receives a signal from a satellite, the UE's serving beam will change over time.
  • the UE Due to the large transmission delay of the NTN, the UE will have a lot of signaling interactions with the gNB when performing cell switching, and frequent cell switching will cause a lot of energy consumption. Therefore, it is desirable to propose a technique to reduce the UE's energy consumption.
  • an electronic device for wireless communication including: a processing circuit configured to: set a timer, and the timer is used for starting from the first cell where the user equipment accesses the non-terrestrial network Time is counted, and the timing duration of the timer is set based on the expected service duration of the first cell to the user equipment; and compared with the beam measurement result report performed after the timer expires, when the timer does not expire Reduce the number of times beam measurement results are reported.
  • a method for wireless communication including: setting a timer, the timer is used to count the time since the user equipment accesses the first cell of the non-terrestrial network, and the timing The timing duration of the timer is set based on the expected service duration of the first cell to the user equipment; and compared with the beam measurement result reporting performed after the timer expires, the number of beam measurement result reports is reduced during the period when the timer does not expire .
  • an electronic device for wireless communication including: a processing circuit configured to: determine the expected service duration of the user equipment based on the first cell of the non-terrestrial network to be accessed by the user equipment The timing duration of the timer used for the user equipment; and the information of the timing duration is provided to the user equipment, so that the user equipment uses the timer to count the time since the user equipment accesses the first cell, wherein, after the timer expires Compared with the reporting of beam measurement results performed by the user equipment, the user equipment reduces the number of beam measurement result reports when the timer does not expire.
  • a method for wireless communication including: determining a timer for the user equipment based on the expected service duration of the first cell of the non-terrestrial network that the user equipment is to access to the user equipment and provide the information of the timing duration to the user equipment, so that the user equipment uses the timer to time the time since the user equipment accesses the first cell, wherein the beam measurement result performed by the user equipment after the timer expires Compared with reporting, the user equipment reduces the number of beam measurement result reports when the timer does not expire.
  • the electronic device and method according to the embodiments of the present application reduce signaling overhead by reducing reporting of measurement results within a relatively stable service time after accessing a cell, thereby reducing energy consumption of the UE.
  • FIG. 1 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Fig. 2 shows an example of the scene of NTN network
  • Fig. 3 shows another example of the scene of NTN network
  • FIG. 4 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application.
  • Figure 5 shows an example of the selection of the target cell
  • FIG. 6 shows a schematic diagram of UE approaching the edge of the cell corresponding to beam 5 when the timer expires
  • FIG. 7 shows a schematic diagram of UE approaching the edge of cell 5 when the timer expires
  • FIG. 8 shows a schematic diagram of a signaling process of a cell handover operation according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of the information flow of beam measurement and beam measurement result reporting of the UE after switching to the target cell;
  • FIG. 10 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 11 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • Fig. 12 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 13 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied;
  • FIG. 14 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure can be applied;
  • 15 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • 16 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 17 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present disclosure can be implemented.
  • This embodiment provides an electronic device 100 for reducing energy consumption of a UE.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100
  • the electronic device 100 includes: a setting unit 101 configured to set a timer, the timer is used to count the time since the UE accesses the first cell of the NTN, and The timing duration of the timer is set based on the expected service duration of the UE by the first cell; and the control unit 102 is configured to reduce the beam measurement result when the timer expires compared with the beam measurement result report when the timer does not expire. The number of times measurement results are reported.
  • the setting unit 101 and the control unit 102 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example.
  • the processing circuits may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 1 is only a logic module divided according to a specific function realized by it, and is not used to limit a specific implementation manner.
  • the electronic device 100 may be disposed on the UE side or be communicably connected to the UE.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a UE itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that need to be executed by the user equipment to realize various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base station, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • FIG. 2 and FIG. 3 show examples of scenarios of the NTN network.
  • one beam corresponds to (maps to) one cell; in FIG. 3 , multiple beams correspond to (map to) one cell.
  • the solution of this embodiment is applicable in both scenarios.
  • the moving speed of the UE is negligible compared to the satellite, but the moving direction and moving speed of the satellite follow a predetermined rule.
  • the satellite moves to the left.
  • the relative position of the UE in the first cell will change over time Change until the UE leaves the coverage of the first cell, and the first cell can no longer serve the UE.
  • the control unit 102 may reduce the number of beam measurement results reported. Moreover, the control unit 102 can also reduce the number of beam measurements.
  • the timer in this embodiment is used to count the above time, and the approximate location of the UE can be estimated through the timer, so that when the UE moves out of the coverage of the first cell, the control unit 102 can restore the number of beam measurements and /or the number of times beam measurement results are reported, so as to reliably perform cell handover operations.
  • the timing duration of the timer may be set based on the expected service duration of the first cell for the UE.
  • the estimated service duration may be determined by the base station based on UE location information, satellite ephemeris information, satellite moving direction and speed, beam elevation angle, and cell coverage area.
  • the timing duration information of the timer can be obtained from the base station.
  • the electronic device 100 may further include a communication unit 103 configured to receive a radio resource control reconfiguration (RRC Reconfiguration) message from the base station, and the RRC Reconfiguration message includes information about the timing duration of the timer.
  • the base station here is the base station corresponding to the serving cell where the UE is before handing over to the first cell.
  • the setting unit 101 disables the timer. In other words, the UE performs normal beam measurement and reporting operations.
  • the control unit 102 reduces the number of beam measurement result reports when the timer does not expire.
  • the control unit 102 may not perform beam measurement result reporting when the timer does not expire.
  • the control unit 102 may also reduce the number of beam measurements when the timer does not expire.
  • the control unit 102 may also not perform beam measurement when the timer does not expire.
  • the control unit 102 may only measure one or more beams corresponding to the serving cell, that is, the first cell. Taking FIG. 2 as an example, when the timer does not expire, the UE may only measure beam 5. Taking FIG. 3 as an example, when the timer does not expire, the UE may only measure multiple beams corresponding to cell 5 . This is because, before the timer expires, the UE does not need to perform cell handover, so it does not need to measure all beams, and only needs to monitor the beam quality of the current serving cell.
  • the control unit 102 interrupts the timing of the timer and triggers a cell handover procedure. For example, the UE measures all beams and reports the beam measurement results to the base station, and the base station performs cell handover based on the beam measurement results.
  • control unit 102 when the timer expires, the control unit 102 also performs a cell switching operation. In order to switch to a cell with better communication quality, the UE needs to measure the beam and report the beam measurement result to the base station.
  • the UE locates its own position after the timer expires, and the communication unit 103 may also include the UE's position information in the beam measurement report to provide to the base station.
  • the base station can estimate the expected service duration that the corresponding cell can provide services for the UE according to the UE's location information, satellite ephemeris information, satellite moving direction and speed, beam elevation angle, and cell coverage area. For example, when determining the target cell to which the UE is to be handed over, the base station may select a cell that can enable the UE to work normally and provide the longest expected service duration among candidate cells for which the UE has performed beam measurement. Then, the base station indicates the selected target cell to the UE. The control unit 102 may switch to the target cell based on an instruction from the base station.
  • Fig. 5 shows an example of selection of a target cell. Wherein, it is found through the measurement that the communication quality of the cell 3 and the cell 4 both meet the conditions for the UE to work normally. For the UE, the base station calculates that the expected service duration of cell 3 is shorter than the expected service duration of cell 4 . Therefore, in cell handover, the base station selects cell 4 as the target cell and instructs the UE to handover to cell 4 .
  • control unit 102 may also be configured not to measure the beam corresponding to the cell that the UE has passed through when performing the cell handover operation. This is because the moving direction and speed of the satellite, the ephemeris information of the satellite, and the location information of the UE when performing cell handover are all known, which cells have already passed the coverage of the UE (or, which cells the UE has already passed the coverage of) ) can be determined, and these cells that have passed the UE will not serve the UE immediately, so the UE may not measure its beams, thereby reducing the power consumption caused by measurement and reporting.
  • FIG. 6 shows a schematic diagram of the UE approaching the edge of the cell corresponding to beam 5 when the timer expires.
  • the UE performs a cell handover operation.
  • the UE has passed the cells corresponding to the beam 7 and the beam 8, and these two cells will no longer serve it, so the UE may not measure the beam 7 and the beam 8 during the cell handover operation.
  • Figure 3 shows a schematic diagram of the UE approaching the edge of the cell 5 when the timer expires.
  • the UE has passed cell 7 and cell 8, and these two cells will no longer serve it, so the UE may not measure the beams corresponding to cell 7 and cell 8 during the cell handover operation.
  • the communication unit 103 can also obtain information about the timing duration of the timer via the RRC Reconfiguration message.
  • the timing duration of the timer may be the estimated service duration of the target cell to which the UE is to be handed over, or a value calculated based on the estimated service duration, for example, a certain margin may be considered.
  • the timer is started, and the UE reduces the number of times of beam measurement and/or beam measurement reporting.
  • FIG. 8 shows a schematic diagram of a signaling flow of a cell handover operation according to an embodiment of the present application. It should be noted that this signaling process is only exemplary rather than restrictive.
  • the timer expires and a measurement event for cell handover operation is triggered.
  • the UE After measuring all beams or a specific beam (for example, removing the beam corresponding to the cell that has passed), the UE sends a measurement report to the source gNB (the current serving cell, that is, the base station corresponding to cell 5), in which, for example, Including UE location information.
  • the source gNB makes a decision based on the received measurement report and the estimated service duration of each cell, and determines the target cell to which the UE will handover.
  • the source gNB can base on the UE's location information, satellite ephemeris information, satellite moving direction and speed,
  • the estimated service duration of the corresponding cell is determined by using the beam elevation angle, cell coverage area, etc., and the source gNB can determine the cell that can enable the UE to work normally and provide the longest expected service duration among the measured candidate cells as the target cell.
  • the source gNB sends a handover request to the determined gNB of the target cell (target gNB), and the target gNB performs admission control and sends a handover request acknowledgment to the source gNB.
  • the source gNB sends an RRC Reconfiguration message to the UE, which includes information about the timing duration of the timer, for example, the timing duration of the timer may be the expected service duration of the target cell.
  • the UE performs a random access procedure to the target gNB. Specifically, the UE sends a pilot to the target gNB, receives a random access response from the target gNB, and sends an RRC ReconfigurationComplete message to the gNB.
  • the UE also starts a timer to time the time when the UE accesses the target cell. It should be noted that although the timer start is placed after the sending of the RRC ReconfigurationComplete message in Figure 8, this is not restrictive, for example, the timer can also be started immediately after receiving the RRC Reconfiguration message.
  • Fig. 9 shows a schematic diagram of the beam measurement and the information flow of the beam measurement result reporting after the UE is handed over to the target cell. Wherein, the parts that overlap with those in FIG. 8 will not be shown and described in detail again.
  • the UE may only measure beams corresponding to the current serving cell.
  • the UE may not report the measurement result to the gNB, or reduce the number of times of reporting compared with normal conditions.
  • the UE can also reduce the number of measurements, or even not perform beam measurement.
  • the timer in FIG. 9 expires, the cell handover process in FIG. 8 will be repeated, and will not be repeated here.
  • the electronic device 100 reduces signaling overhead by reducing beam measurement and/or reporting of beam measurement results within a relatively stable service time after accessing a cell, thereby reducing UE energy consumption.
  • the electronic device 100 according to this embodiment can also avoid frequent cell switching by making the UE preferentially access the cell with a long service time, thereby further reducing the energy consumption of the UE.
  • FIG. 10 shows a block diagram of functional modules of an electronic device 200 for wireless communication according to another embodiment of the present application.
  • the electronic device 200 includes: a determining unit 201 configured to The expected service duration of a cell to the UE determines the timing duration of the timer used for the UE; and the communication unit 202 is configured to provide the information of the timing duration to the UE, so that the UE uses the timer to access the first cell to the UE The time since the timer expires is counted, wherein, compared with the beam measurement result report performed by the UE after the timer expires, the UE reduces the number of beam measurement result reports when the timer does not expire.
  • the determination unit 201 and the communication unit 202 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example.
  • the processing circuits may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 10 is only a logic module divided according to the specific function it implements, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be disposed on the base station side or communicably connected to the base station.
  • the base station described in this application may also be a transceiver point (Transmit Receive Point, TRP) or an access point (Access Point, AP).
  • TRP Transmit Receive Point
  • AP Access Point
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station itself, and may also include external devices such as memory, transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, UE, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the first cell here may be a target cell to which the UE is to switch when performing cell switching.
  • the timer is used to count the time since the UE accesses the first cell. Before the timer expires, in order to reduce energy consumption, the UE can reduce the number of beam measurement results reported or not perform the beam measurement result report; the UE can also reduce the beam measurement results. The times of measurement may not perform beam measurement; the UE may also only measure one or more beams corresponding to the first cell.
  • the timer expires, for example, it means that the UE has come to the edge of the first cell, and the UE triggers a cell handover operation to switch to another cell. At this time, the UE performs a normal number of beam measurement results to report. Relevant operations and details have been given in detail in the first embodiment and will not be repeated here.
  • the communication unit 202 may include the timing duration information in the RRC Reconfiguration message and provide it to the UE.
  • the communication unit 202 instructs the UE to disable the timer. For example, if the field indicating the timing duration in the RRC Reconfiguration message is empty, it means that the base station instructs the UE to disable the timer, that is, perform normal beam measurement and/or report beam measurement results after accessing the first cell.
  • the determining unit 201 Before the determining unit 201 determines that the UE will access the first cell, for example, in a cell handover process, the UE needs to report the beam measurement result to the base station.
  • the communication unit 202 is also configured to acquire the beam measurement result of the UE from the UE.
  • the beam measurement result may include, for example, location information of the UE.
  • the determining unit 201 may determine the service duration for each candidate cell to provide services for the UE based on UE location information, satellite ephemeris information, satellite moving direction and speed, beam elevation angle, and cell coverage area. The determining unit 201 determines that the user equipment is to be handed over to the first cell based on the acquired beam measurement result and the determined expected service duration of each candidate cell.
  • the first cell is a cell among the candidate cells that can enable the UE to work normally and provide the longest expected service duration.
  • the determining unit 201 may also be configured to determine the cell that the UE has passed according to the moving direction of the satellite, and configure the UE not to measure the beam corresponding to the cell that the UE has passed. In this way, the energy consumption of the UE can be reduced by reducing unnecessary measurement and reporting of measurement results.
  • the electronic device 200 reduces signaling overhead by reducing beam measurement and/or reporting of beam measurement results within a relatively stable service time after accessing a cell, thereby reducing UE energy consumption.
  • the electronic device 200 according to this embodiment can also avoid frequent cell switching by making the UE preferentially access the cell with a long service time, thereby further reducing the energy consumption of the UE.
  • the method includes: setting a timer (S12), the timer is used for the time since the UE accesses the first cell of the NTN Timing is performed, and the timing duration of the timer is set based on the expected service duration of the UE by the first cell; and compared with the beam measurement result report performed after the timer expires, the beam measurement result is reduced during the period that the timer does not expire The number of times reported (S13).
  • This method can be performed, for example, on the UE side.
  • the beam measurement result may not be reported before the timer expires.
  • the number of times of beam measurement may be reduced while the timer is not expired.
  • only one or more beams corresponding to the first cell may be measured before the timer expires. For example, when the measured beam quality of the first cell is lower than a predetermined threshold, timing of the timer may be interrupted and a cell handover procedure may be triggered.
  • the above method may also include step S11: receiving an RRC Reconfiguration message from the base station, and the RRC Reconfiguration message includes information about the timing duration of the timer. In the case that there is no information about the timing duration of the timer in the RRC Reconfiguration message, the timer can be disabled.
  • the above method may further include step S14: performing a cell handover operation after the timer expires.
  • the location information of the UE may be included in the beam measurement report to be provided to the base station of the first cell, so that the base station of the first cell is based on at least the location information of the UE, satellite ephemeris information, satellite moving direction and speed, and beam elevation angle and cell coverage area to determine the expected service time of each candidate cell.
  • the base station of the first cell determines the target cell based on the beam measurement result of the UE and the determined expected service time of each candidate cell. Districts with service hours. The UE is handed over to the target cell based on an indication about the target cell from the base station of the first cell.
  • the beam corresponding to the cell that the UE has passed may not be measured, so as to further reduce the energy consumption of the UE.
  • the method includes: determining the expected service duration for the UE based on the first cell of the non-terrestrial network to be accessed by the UE The timing duration of the timer of the UE (S22); and the information of the timing duration is provided to the UE (S23), so that the UE uses the timer to time the time since the UE accesses the first cell, wherein, when the timer expires Compared with the beam measurement result reporting performed by the UE after the UE, the UE reduces the number of beam measurement result reports when the timer does not expire.
  • This method can be performed, for example, at the base station side.
  • the timing duration information may be included in the RRC Reconfiguration message and provided to the UE. It is also possible to instruct the UE to deactivate the timer by not including the timing duration information in the RRC Reconfiguration message.
  • the above method may further include step S21: obtaining the beam measurement result of the UE, and determining that the UE is to be handed over to the first cell based on the beam measurement result and the determined expected service duration of each candidate cell. That is, in the cell handover process, the base station determines the target cell to be handed over to (ie, the first cell) based not only on the beam measurement result of the UE, but also on the estimated service duration of each candidate cell.
  • the first cell is a cell among the candidate cells that can enable the UE to work normally and provide the longest expected service duration.
  • the estimated service duration that each candidate cell can serve the UE may be determined based on the UE's location information, satellite ephemeris information, satellite moving direction and speed, beam elevation angle, and cell coverage area.
  • the location information of the UE can be obtained through the beam measurement report of the UE.
  • the cell that the UE has passed can also be determined according to the moving direction of the satellite, and the UE can be configured not to measure the beam corresponding to the cell that the UE has passed, so as to further reduce the energy consumption caused by the beam measurement.
  • the electronic device 100 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • the electronic device 200 may be implemented as various base stations.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, micro eNB, and home (femto) eNB.
  • a similar situation may also exist for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • a base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at places different from the main body.
  • a main body also referred to as a base station device
  • RRHs remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-permanently performing the base station function.
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 13 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821 , a memory 822 , a network interface 823 and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in signals processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another eNB via a network interface 823 .
  • eNB 800 and core network nodes or other eNBs can be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than that used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • the BB processor 826 may have part or all of the logic functions described above.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program may cause the function of the BB processor 826 to change.
  • the module may be a card or a blade inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827 , the wireless communication interface 825 may include a single BB processor 826 or a single RF circuit 827 .
  • the communication unit 202 and the transceiver of the electronic device 200 can be realized by the wireless communication interface 825. At least part of the functions can also be realized by the controller 821 .
  • the controller 821 may set a timer for the UE by executing the functions of the determination unit 201 and the communication unit 202, so that the UE reduces the number of beam measurement result reports and reduces the energy consumption of the UE when the timer does not expire.
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850 and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 14 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 and a connection interface 857 .
  • the controller 851, memory 852, and network interface 853 are the same as the controller 821, memory 822, and network interface 823 described with reference to FIG. 13 .
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 13 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 14 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856 , the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line used to connect the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • the communication unit 202 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least part of the functions can also be realized by the controller 851 .
  • the controller 851 may set a timer for the UE by executing the functions of the determination unit 201 and the communication unit 202, so that the UE reduces the number of beam measurement result reports and reduces the energy consumption of the UE when the timer does not expire.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900 .
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 910 , a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 910 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts an audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which a BB processor 913 and an RF circuit 914 are integrated. As shown in FIG. 15 , the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 . Although FIG. 15 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914 , the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 15 shows an example in which the smartphone 900 includes multiple antennas 916
  • the smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 15 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in a sleep mode.
  • the communication unit 103 and the transceiver of the electronic device 100 can be realized by the wireless communication interface 912 .
  • At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 may set a timer by executing the functions of the setting unit 101, the control unit 102, and the communication unit 103, so as to reduce the number of times the UE performs beam measurement result reporting when the timer does not expire, and reduce the UE energy consumption.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930 , and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935 .
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 .
  • FIG. 16 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 , such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 16 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920 .
  • the battery 938 supplies power to the various blocks of the car navigation device 920 shown in FIG. 16 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the communication unit 103 and the transceiver of the electronic device 100 can be realized by the wireless communication interface 933 .
  • At least part of the functions can also be implemented by the processor 921 .
  • the processor 921 may set a timer by executing the functions of the setting unit 101, the control unit 102, and the communication unit 103, so as to reduce the number of times the UE performs beam measurement result reporting and reduce UE energy consumption when the timer does not expire.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920, an in-vehicle network 941, and a vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941 .
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiments of the present disclosure can be executed.
  • a storage medium for carrying the program product storing the above-mentioned machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 1700 shown in FIG. 17 ), where various programs are installed. , various functions and the like can be performed.
  • a central processing unit (CPU) 1701 executes various processes according to programs stored in a read only memory (ROM) 1702 or programs loaded from a storage section 1708 to a random access memory (RAM) 1703 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1701 executes various processing and the like is also stored as necessary.
  • the CPU 1701, ROM 1702, and RAM 1703 are connected to each other via a bus 1704.
  • the input/output interface 1705 is also connected to the bus 1704 .
  • the following components are connected to the input/output interface 1705: an input section 1706 (including a keyboard, a mouse, etc.), an output section 1707 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), Storage section 1708 (including hard disk, etc.), communication section 1709 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1709 performs communication processing via a network such as the Internet.
  • a driver 1710 may also be connected to the input/output interface 1705 as needed.
  • a removable medium 1711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is mounted on the drive 1710 as necessary, so that a computer program read therefrom is installed into the storage section 1708 as necessary.
  • the programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 1711 .
  • a storage medium is not limited to the removable medium 1711 shown in FIG. 17 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 1711 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1702, a hard disk contained in the storage section 1708, or the like, in which programs are stored and distributed to users together with devices containing them.
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure. Also, the steps for executing the series of processes described above may naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:设置定时器,该定时器用于对用户设备接入非地面网络的第一小区起的时间进行计时,并且该定时器的定时时长是基于第一小区对用户设备的预计服务时长设定的;以及与定时器超时后执行的波束测量结果上报相比,在所述定时器未超时期间减少波束测量结果上报的次数。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2021年11月4日提交中国专利局、申请号为202111298774.3、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及非地面网络通信中的用户设备节能技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在5G非地面网络(Non-Terrestrial Network,NTN)中,卫星具有位置高、波束覆盖范围大、以及非静止轨道卫星运行速度快等特点。这些特点给5G非地面网络带来了传输时延大、小区覆盖半径大和小区在移动等技术挑战。
对于NTN近地轨道(Low Earth Orbit,LEO),终端和卫星之间的往返时间(Round Trip Time,RTT)约为270.73ms;对于NTN地球静止轨道(Geostationary Earth Orbiting,GEO),终端和卫星之间的RTT约为12.89ms。相比之下,在地面网络中,以NR基站(gNB)和终端之间的距离为10km为例,终端和基站之间的RTT仅为0.066ms。
在NTN中,卫星在地球上形成多个波束,每个波束都覆盖地球上的某一区域,波束覆盖半径可达数百至数千公里。
低轨卫星的速度约为7.56km/s,用户设备(User Equipment,UE)的移动速度与低轨卫星相比可以忽略不计。当低轨卫星移动时,波束实际上也随着时间移动。这意味着,如果UE接收到来自卫星的信号,则UE的服务波束将随时间而改变。
由于NTN的传输时延很大,UE进行小区切换时会和gNB有很多的信令交互,如果进行频繁的小区切换会造成很大的能耗。因此,期望提 出一种技术来降低UE的能耗。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:设置定时器,该定时器用于对用户设备接入非地面网络的第一小区起的时间进行计时,并且该定时器的定时时长是基于第一小区对用户设备的预计服务时长设定的;以及与定时器超时后执行的波束测量结果上报相比,在所述定时器未超时期间减少波束测量结果上报的次数。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:设置定时器,该定时器用于对用户设备接入非地面网络的第一小区起的时间进行计时,并且该定时器的定时时长是基于第一小区对用户设备的预计服务时长设定的;以及与定时器超时后执行的波束测量结果上报相比,在所述定时器未超时期间减少波束测量结果上报的次数。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:基于用户设备要接入的非地面网络的第一小区对用户设备的预计服务时长确定用于用户设备的定时器的定时时长;以及将定时时长的信息提供给用户设备,以使得用户设备使用定时器对用户设备接入第一小区起的时间进行计时,其中,与定时器超时后用户设备执行的波束测量结果上报相比,用户设备在定时器未超时期间减少波束测量结果上报的次数。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:基于用户设备要接入的非地面网络的第一小区对用户设备的预计服务时长确定用于用户设备的定时器的定时时长;以及将定时时长的信息提供给用户设备,以使得用户设备使用定时器对用户设备接入第一小区起的时间进行计时,其中,与定时器超时后用户设备执行的波束测量结果上 报相比,用户设备在定时器未超时期间减少波束测量结果上报的次数。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过减少在接入小区后的相对稳定的服务时间内的测量结果上报来减少信令开销,从而降低UE的能耗。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了NTN网络的场景的一个示例;
图3示出了NTN网络的场景的另一个示例;
图4是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图5示出了目标小区的选择的一个示例;
图6示出了在定时器超时时UE靠近波束5对应的小区的边缘的示意图;
图7示出了在定时器超时时UE靠近小区5的边缘的示意图;
图8示出了根据本申请的实施例的小区切换操作的信令流程的示意图;
图9示出了UE在切换到目标小区后的波束测量和波束测量结果上 报的信息流程的示意图;
图10是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图11示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图12示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图14是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图15是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图16是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图17是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/ 或处理步骤,而省略了与本公开关系不大的其他细节。
<第一实施例>
如上所述,由于NTN的传输时延很大,UE进行小区切换时或者UE在执行与小区切换相关的操作时会和gNB有很多的信令交互,这会造成很大的能耗。由于UE移动速度和卫星相比几乎可以忽略,而且卫星的移动是有规律的,因此可以据此减少一些UE的测量上报,从而减少能耗。本实施例提供了一种用于减少UE的能耗的电子设备100。
图1示出了电子设备100的功能模块框图,该电子设备100包括:设置单元101,被配置为设置定时器,该定时器用于对UE接入NTN的第一小区起的时间进行计时,并且定时器的定时时长是基于第一小区对UE的预计服务时长设定的;以及控制单元102,被配置为与定时器超时后执行的波束测量结果上报相比,在定时器未超时期间减少波束测量结果上报的次数。
其中,设置单元101和控制单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
此外,应该注意,在本申请中,第一、第二等术语仅是为了区分的需要,而不代表任何顺序或其他含义。
为了便于理解,图2和图3示出了NTN网络的场景的示例。在图2中,一个波束对应于(映射于)一个小区;在图3中,多个波束对应于(映射于)一个小区。本实施例的方案在这两种场景下均可以适用。
一般情况下,UE的移动速度相对于卫星而言可以忽略不计,而卫星的移动方向和移动速度是按照预定规律的,以图2和图3为例,卫星往左方向移动。因此,从图中的UE接入第一小区(例如,图2中表示为波束5,图3中表示为小区5)开始,随着时间的推移,UE在第一小区中的相对位置会发生改变,直到UE脱离第一小区的覆盖范围,第一小区不能再服务于该UE。
在UE处于第一小区的覆盖范围内的这段时间内,通信质量很可能满足UE的需求,因此,UE不必要频繁地对波束进行测量以及/或者向基站报告波束测量结果。相应地,在此期间,控制单元102可以减少波束测量结果上报的次数。并且,控制单元102还可以减少波束测量的次数。
本实施例中的定时器用于对上述时间进行计时,通过该定时器可以对UE的大致位置进行估计,以使得在UE移出第一小区的覆盖范围时,控制单元102能够恢复波束测量的次数和/或波束测量结果上报的次数,从而可靠地执行小区切换操作。
因此,定时器的定时时长可以基于第一小区对UE的预计服务时长而设定。该预计服务时长可以由基站基于UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积来确定。作为一个示例,定时器的定时时长的信息可以从基站获得。相应地,如图4所示,电子设备100还可以包括通信单元103,被配置为从基站接收无线资源控制重配置(RRC Reconfiguration)消息,RRC Reconfiguration消息中包括定时器的定时时长的信息。这里的基站是UE切换到第一小区前所在的服务小区对应的基站。在RRC Reconfiguration消息中没有定时器的定时时长的信息的情况下,例如,相应的字段为空,则设置单元101停用该定时器。换言之,UE执行正常的波束测量和上报操作。
与定时器超时后执行的波束测量结果上报相比,控制单元102在定时器未超时期间减少波束测量结果上报的次数。示例性地,控制单元102可以在定时器未超时期间不执行波束测量结果上报。此外,与定时器超时后执行的波束测量相比,控制单元102还可以在定时器未超时期间减少波束测量的次数。当然,为了最大程度地降低能耗,控制单元102也可以在定时器未超时期间不执行波束测量。
另一方面,在定时器未超时期间,控制单元102可以仅测量服务小区、即第一小区对应的一个或多个波束。以图2为例,在定时器未超时期间,UE可以仅测量波束5。以图3为例,在定时器未超时期间,UE可以仅测量小区5对应的多个波束。这是因为,在定时器未超时期间,UE不需要进行小区切换,因此不需要测量所有波束,只需要监视当前服务小区的波束质量即可。
在定时器未超时期间,如果测量的第一小区的波束质量低于预定阈值,例如该波束质量已无法满足UE的需求,则控制单元102中断定时器的计时并触发小区切换流程。例如,UE对所有波束进行测量并将波束测量结果上报至基站,基站基于该波束测量结果进行小区切换。
此外,当定时器超时后,控制单元102也执行小区切换操作。为了切换到通信质量较好的小区,UE需要对波束进行测量并向基站上报波束测量结果。
作为一个示例,UE在定时器超时后定位自己的位置,通信单元103还可以将UE的位置信息包括在波束测量报告中以提供给基站。相应地,基站可以根据UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积等估计相应小区能够为UE提供服务的预计服务时长。例如,在确定UE要切换到的目标小区时,基站可以在UE执行了波束测量的候选小区中选择能够使UE正常工作且提供最长预计服务时长的小区。接着,基站将选择的目标小区指示给UE。控制单元102可以基于来自基站的指示切换到目标小区。
图5示出了目标小区的选择的一个示例。其中,通过测量发现小区3和小区4的通信质量均满足使UE正常工作的条件。对于UE,基站计算出小区3的预计服务时长比小区4的预计服务时长短。因此,在小区切换中,基站选择小区4作为目标小区并指示UE切换到小区4。
这样,通过优先切换到服务时间更长的小区,可以减少UE的频繁的小区切换,从而降低UE的能耗。
此外,为了进一步降低UE的能耗,控制单元102还可以被配置为在执行小区切换操作时不对UE已经经过的小区对应的波束进行测量。这是因为,卫星的移动方向和速度、卫星的星历信息以及UE执行小区切换时的位置信息均是已知的,哪些小区的覆盖范围已经经过UE(或者, UE已经经过哪些小区的覆盖范围)是可以确定的,而这些已经经过UE的小区在接下来将不会立即为UE服务,因此UE可以不对其波束进行测量,从而减少测量和上报引起的功耗。
仍以图2为例,其中,一个波束映射到一个小区,图6示出了在定时器超时时UE靠近波束5对应的小区的边缘的示意图。此时,UE执行小区切换操作。根据卫星的移动方向,UE已经通过了与波束7和波束8对应的小区,这两个小区将不再为其服务,则在执行小区切换操作时,UE可以不对波束7和波束8进行测量。类似地,以图3为例,多个波束映射到一个小区,图7示出了在定时器超时时UE靠近小区5的边缘的示意图。根据卫星的移动方向,UE已经通过了小区7和小区8,这两个小区将不再为其服务,则在执行小区切换操作时,UE可以不对小区7和小区8对应的波束进行测量。
如前所述,在执行小区切换时,通信单元103还可以经由RRC Reconfiguration消息来获取定时器的定时时长的信息。这里,定时器的定时时长可以是UE将要切换到的目标小区的预计服务时长,或者是基于该预计服务时长所计算的值,例如可以考虑一定的裕量。在小区切换后,定时器启动,UE减少波束测量和/或波束测量上报的次数。
为了便于理解,图8示出了根据本申请的实施例的小区切换操作的信令流程的示意图。应该注意,该信令流程仅是示例性的,而非限制性的。
假设UE处于图2所示的场景中的波束对应的小区5中,随着时间推移,定时器超时并且触发用于小区切换操作的测量事件。UE在对所有波束或者特定波束(例如,去除掉已经经过的小区对应的波束)进行测量之后,向源gNB(当前服务小区、即小区5对应的基站)发送测量报告,该测量报告中例如可以包括UE的位置信息。源gNB基于接收到的测量报告以及各个小区的预计服务时长来进行决策,确定UE将要切换到的目标小区,这里,源gNB可以基于UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角、小区覆盖面积等来确定相应小区的预计服务时长,并且源gNB可以将所测量的候选小区中能够使UE正常工作且提供最长预计服务时长的小区确定为目标小区。接着,源gNB向所确定的目标小区的gNB(目标gNB)发送切换请求,目标gNB执行准入控制并且向源gNB发送切换请求确认。源gNB向UE发送RRC  Reconfiguration消息,其中包括定时器的定时时长的信息,例如,定时器的的定时时长可以为目标小区的预计服务时长。接下来,UE执行对目标gNB的随机接入过程,具体地,UE向目标gNB发送导频,接收来自目标gNB的随机接入响应,并向gNB发送RRC ReconfigurationComplete消息。此外,UE还启动定时器对UE接入目标小区的时间进行计时。应该注意,虽然图8中将定时器启动放置在RRC ReconfigurationComplete消息的发送之后,这并不是限制性的,例如也可以在接收到RRC Reconfiguration消息之后立即启动定时器。
图9示出了UE在切换到目标小区后的波束测量和波束测量结果上报的信息流程的示意图。其中,与图8中重复的部分不再详细示出和描述。在图9中,在小区切换完成并且定时器启动后,UE可以仅测量与当前服务小区对应的波束。可选地,在定时器未超时时,UE可以不向gNB上报测量结果,或者与正常情况下相比减少上报的次数。此外,UE也可以减少测量的次数,甚至不进行波束测量。在图9中的定时器超时后,将重复执行图8的小区切换流程,在此不再重复。
综上所述,根据本实施例的电子设备100通过减少在接入小区后的相对稳定的服务时间内的波束测量和/或波束测量结果上报来减少信令开销,从而降低UE的能耗。此外,根据本实施例的电子设备100还可以通过使UE优先接入服务时长长的小区来避免频繁的小区切换,从而进一步降低UE的能耗。
<第二实施例>
图10示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图,该电子设备200包括:确定单元201,被配置为基于UE要接入的NTN网络的第一小区对UE的预计服务时长确定用于UE的定时器的定时时长;以及通信单元202,被配置为将定时时长的信息提供给UE,以使得UE使用该定时器对UE接入第一小区起的时间进行计时,其中,与定时器超时后UE执行的波束测量结果上报相比,UE在定时器未超时期间减少波束测量结果上报的次数。
其中,确定单元201和通信单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图10 中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或者可通信地连接到基站。本申请中所述的基站也可以是收发点(Transmit Receive Point,TRP)或者接入点(Access Point,AP)。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,UE、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
这里的第一小区可以是执行小区切换时UE要切换到的目标小区。定时器用于对UE接入第一小区起的时间进行计时,在定时器未超时期间,为了降低能耗,UE可以减少波束测量结果上报的次数或者不执行波束测量结果上报;UE还可以减少波束测量的次数或者不执行波束测量;UE还可以仅测量第一小区对应的一个或多个波束。在定时器超时时,例如说明UE已经来到第一小区的边缘,UE触发小区切换操作以切换到其他小区,此时,UE执行正常次数的波束测量结果上报。相关操作和细节在第一实施例中已经详细给出,在此不再重复。
例如,通信单元202可以将定时时长的信息包括在RRC Reconfiguration消息中提供给UE。在RRC Reconfiguration消息中不包括定时时长的信息的情况下,通信单元202向UE指示停用定时器。例如,如果RRC Reconfiguration消息中指示定时时长的字段为空,则代表基站指示UE停用定时器,即,在接入第一小区后执行正常的波束测量和/或波束测量结果上报。
在确定单元201确定UE要接入第一小区之前的例如小区切换流程中,UE需要向基站上报波束测量结果。换言之,通信单元202还被配置为从UE获取UE的波束测量结果。该波束测量结果中例如可以包括UE的位置信息。
确定单元201可以基于UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积确定各个候选小区能够为所述用户设备提供服务的服务时长。确定单元201基于所获取的波束测量结果 和所确定的各个候选小区的预计服务时长确定所述用户设备要切换到第一小区。示例性地,第一小区为候选小区中能够使UE正常工作且提供最长预计服务时长的小区。
此外,确定单元201还可以被配置为根据卫星的移动方向来确定UE已经经过的小区,并将UE配置为不对UE已经经过的小区对应的波束进行测量。这样,可以通过减少不必要的测量和测量结果上报来降低UE的能耗。
有关的信息流程可以参照图8和图9以及第一实施例中的相关描述,在此不再重复。
综上所述,根据本实施例的电子设备200通过减少在接入小区后的相对稳定的服务时间内的波束测量和/或波束测量结果上报来减少信令开销,从而降低UE的能耗。此外,根据本实施例的电子设备200还可以通过使UE优先接入服务时长长的小区来避免频繁的小区切换,从而进一步降低UE的能耗。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图11示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:设置定时器(S12),该定时器用于对UE接入NTN的第一小区起的时间进行计时,并且该定时器的定时时长是基于第一小区对UE的预计服务时长设定的;以及与定时器超时后执行的波束测量结果上报相比,在定时器未超时期间减少波束测量结果上报的次数(S13)。该方法例如可以在UE侧执行。
例如,在步骤S13中,在定时器未超时期间可以不执行波束测量结果上报。此外,在步骤S13中,与定时器超时后执行的波束测量相比,在定时器未超时期间还可以减少波束测量的次数。另一方面,在定时器未超时期间可以仅测量第一小区对应的一个或多个波束。例如,在所测量的第一小区的波束质量低于预定阈值时,可以中断定时器的计时并触发小区切换流程。
如图11中的虚线框所示,上述方法还可以包括步骤S11:从基站接收RRC Reconfiguration消息,该RRC Reconfiguration消息包括定时器的定时时长的信息。在RRC Reconfiguration消息中没有定时器的定时时长的信息的情况下,可以停用该定时器。
如图11中的另一个虚线框所示,上述方法还可以包括步骤S14:在定时器超时后执行小区切换操作。例如,可以将UE的位置信息包括在波束测量报告中以提供给第一小区的基站,以使得第一小区的基站至少基于UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积来确定各个候选小区的预计服务时间。并且,第一小区的基站基于UE的波束测量结果和所确定的各个候选小区的预计服务时间来确定目标小区,例如,目标小区为UE测量的候选小区中能够使UE正常工作且提供最长预计服务时长的小区。UE基于来自第一小区的基站的关于目标小区的指示切换到目标小区。
示例性地,在执行上述小区切换操作时,可以不对UE已经经过的小区对应的波束进行测量,以进一步减少UE的能耗。
图12示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:基于UE要接入的非地面网络的第一小区对UE的预计服务时长确定用于UE的定时器的定时时长(S22);以及将定时时长的信息提供给UE(S23),以使得UE使用该定时器对UE接入第一小区起的时间进行计时,其中,与定时器超时后UE执行的波束测量结果上报相比,UE在定时器未超时期间减少波束测量结果上报的次数。该方法例如可以在基站侧执行。
例如,可以将定时时长的信息包括在RRC Reconfiguration消息中提供给UE。还可以通过在RRC Reconfiguration消息中不包括定时时长的信息,来指示UE停用定时器。
如图12中的虚线框所示,上述方法还可以包括步骤S21:获取UE的波束测量结果,并基于波束测量结果和所确定的各个候选小区的预计服务时长确定UE要切换到第一小区。即,在小区切换流程中,基站不仅基于UE的波束测量结果,还基于各个候选小区的预计服务时长来确定要切换到的目标小区(即,第一小区)。例如,第一小区为候选小区中能够使UE正常工作且提供最长预计服务时长的小区。
示例性地,可以基于UE的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积确定各个候选小区能够为UE提供服务的预计服务时长。其中,可以经由UE的波束测量报告获取UE的位置信息。
此外,还可以根据卫星的移动方向来确定UE已经经过的小区,并将UE配置为不对UE已经经过的小区对应的波束进行测量,以进一步降低波束测量引起的能耗。
注意,上述方法的细节在第一实施例和第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
例如,电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。 另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图13所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图13示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通 信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图13所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图13所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图13示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图13所示的eNB 800中,电子设备200的通信单元202、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行确定单元201和通信单元202的功能来为UE设置定时器,以使得UE在定时器未超时期间减少波束测量结果上报的次数,降低UE的能耗。
(第二应用示例)
图14是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备 850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图14所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图14示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图13描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图13描述的BB处理器826相同。如图14所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图14示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图14所示,无线通信接口863可以包括多个RF电路864。例如,多个 RF电路864可以支持多个天线元件。虽然图14示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图14所示的eNB 830中,电子设备200的通信单元202、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行确定单元201和通信单元202的功能来为UE设置定时器,以使得UE在定时器未超时期间减少波束测量结果上报的次数,降低UE的能耗。
[关于用户设备的应用示例]
(第一应用示例)
图15是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图15所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图15示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图15所示,智能电话900可以包括多个天线916。虽然图15示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图15所示的智能电话900的各个块提供电力,馈线在 图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图15所示的智能电话900中,电子设备100的通信单元103、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行设置单元101、控制单元102和通信单元103的功能来设置定时器,以在定时器未超时期间减少UE执行波束测量结果上报的次数,降低UE的能耗。
(第二应用示例)
图16是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934 和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图16所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图16示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图16所示,汽车导航设备920可以包括多个天线937。虽然图16示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图16所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图16示出的汽车导航设备920中,电子设备100的通信单元103、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行设置单元101、控制单元102和通信单元103的功能来设置定时器,以在定时器未超时期间减少UE执行波束测量结果上报的次数,降低UE的能耗。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网 络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图17所示的通用计算机1700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图17中,中央处理单元(CPU)1701根据只读存储器(ROM)1702中存储的程序或从存储部分1708加载到随机存取存储器(RAM)1703的程序执行各种处理。在RAM 1703中,也根据需要存储当CPU 1701执行各种处理等等时所需的数据。CPU 1701、ROM 1702和RAM 1703经由总线1704彼此连接。输入/输出接口1705也连接到总线1704。
下述部件连接到输入/输出接口1705:输入部分1706(包括键盘、鼠标等等)、输出部分1707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1708(包括硬盘等)、通信部分1709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1709经由网络比如因特网执行通信处理。根据需要,驱动器1710也可连接到输入/输出接口1705。可移除介质1711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1710上,使得从中读出的计 算机程序根据需要被安装到存储部分1708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图17所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1711。可移除介质1711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1702、存储部分1708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (25)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    设置定时器,所述定时器用于对用户设备接入非地面网络的第一小区起的时间进行计时,并且所述定时器的定时时长是基于所述第一小区对所述用户设备的预计服务时长设定的;以及
    与所述定时器超时后执行的波束测量结果上报相比,在所述定时器未超时期间减少波束测量结果上报的次数。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在所述定时器未超时期间仅测量所述第一小区对应的一个或多个波束。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为:与所述定时器超时后执行的波束测量相比,在所述定时器未超时期间减少波束测量的次数。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为在所测量的所述第一小区的波束质量低于预定阈值时,中断所述定时器的计时并触发小区切换流程。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在所述定时器未超时期间不执行所述波束测量结果上报。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为从所述第一小区的基站接收无线资源控制重配置消息,所述无线资源控制重配置消息包括所述定时器的定时时长的信息。
  7. 根据权利要求6所述的电子设备,其中,在所述无线资源控制重配置消息中没有所述定时器的定时时长的信息的情况下,所述处理电路被配置为停用所述定时器。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在所述定时器超时后执行小区切换操作。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为 在执行所述小区切换操作时不对所述用户设备已经经过的小区对应的波束进行测量。
  10. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为将所述用户设备的位置信息包括在波束测量报告中以提供给基站。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为基于来自所述基站的指示切换到目标小区,所述目标小区为所述用户设备测量的候选小区中能够使所述用户设备正常工作且提供最长预计服务时长的小区。
  12. 根据权利要求11所述的电子设备,其中,所述目标小区是由所述基站至少基于所述用户设备的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积所确定的。
  13. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    基于用户设备要接入的非地面网络的第一小区对所述用户设备的预计服务时长确定用于所述用户设备的定时器的定时时长;以及
    将所述定时时长的信息提供给所述用户设备,以使得所述用户设备使用所述定时器对所述用户设备接入所述第一小区起的时间进行计时,其中,与所述定时器超时后所述用户设备执行的波束测量结果上报相比,所述用户设备在所述定时器未超时期间减少波束测量结果上报的次数。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路被配置为将所述定时时长的信息包括在无线资源控制重配置消息中提供给所述用户设备。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为通过在所述无线资源控制重配置消息中不包括所述定时时长的信息,来指示所述用户设备停用所述定时器。
  16. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为基于所述用户设备的位置信息、卫星星历信息、卫星移动方向和速度、波束仰角和小区覆盖面积确定各个候选小区能够为所述用户设备提供服务的预计服务时长。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置 为经由所述用户设备的波束测量报告获取所述用户设备的位置信息。
  18. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为获取所述用户设备的波束测量结果,并基于所述波束测量结果和所确定的各个候选小区的预计服务时长确定所述用户设备要切换到所述第一小区。
  19. 根据权利要求18所述的电子设备,其中,所述第一小区为所述候选小区中能够使所述用户设备正常工作且提供最长预计服务时长的小区。
  20. 根据权利要求18所述的电子设备,其中,所述处理电路被配置为根据卫星的移动方向来确定所述用户设备已经经过的小区,并将所述用户设备配置为不对所述用户设备已经经过的小区对应的波束进行测量。
  21. 根据权利要求13所述的电子设备,其中,所述用户设备在所述定时器未超时期间不执行所述波束测量结果上报。
  22. 根据权利要求13所述的电子设备,其中,所述用户设备在所述定时器未超时期间仅测量所述第一小区对应的一个或多个波束。
  23. 一种用于无线通信的方法,包括:
    设置定时器,所述定时器用于对用户设备接入非地面网络的第一小区起的时间进行计时,并且所述定时器的定时时长是基于所述第一小区对所述用户设备的预计服务时长设定的;以及
    与所述定时器超时后执行的波束测量结果上报相比,在所述定时器未超时期间减少波束测量结果上报的次数。
  24. 一种用于无线通信的方法,包括:
    基于用户设备要接入的非地面网络的第一小区对所述用户设备的预计服务时长确定用于所述用户设备的定时器的定时时长;以及
    将所述定时时长的信息提供给所述用户设备,以使得所述用户设备使用所述定时器对所述用户设备接入所述第一小区起的时间进行计时,其中,与所述定时器超时后所述用户设备执行的波束测量结果上报相比,所述用户设备在所述定时器未超时期间减少波束测量结果上报的次数。
  25. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被一个或多个处理器执行时,使得所述一个或多个处理器执行根据权利要求23或24所述的用于无线通信的方法。
PCT/CN2022/128097 2021-11-04 2022-10-28 用于无线通信的电子设备和方法、计算机可读存储介质 WO2023078163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111298774.3 2021-11-04
CN202111298774.3A CN116074886A (zh) 2021-11-04 2021-11-04 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023078163A1 true WO2023078163A1 (zh) 2023-05-11

Family

ID=86170466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128097 WO2023078163A1 (zh) 2021-11-04 2022-10-28 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116074886A (zh)
WO (1) WO2023078163A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104897A (zh) * 2009-12-17 2011-06-22 大唐移动通信设备有限公司 一种禁止测量上报的方法和设备
CN108632836A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端
CN110121913A (zh) * 2016-12-30 2019-08-13 Oppo广东移动通信有限公司 波束选择方法、装置及系统
CN110915261A (zh) * 2017-08-11 2020-03-24 华为技术有限公司 一种测量上报方法及装置
US20210258813A1 (en) * 2018-09-13 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Method, and device for reporting beam measurement report
CN113545119A (zh) * 2019-04-30 2021-10-22 联发科技股份有限公司 具有功率节省功能的波束管理电子设备和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104897A (zh) * 2009-12-17 2011-06-22 大唐移动通信设备有限公司 一种禁止测量上报的方法和设备
CN110121913A (zh) * 2016-12-30 2019-08-13 Oppo广东移动通信有限公司 波束选择方法、装置及系统
CN108632836A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端
CN110915261A (zh) * 2017-08-11 2020-03-24 华为技术有限公司 一种测量上报方法及装置
US20210258813A1 (en) * 2018-09-13 2021-08-19 Beijing Xiaomi Mobile Software Co., Ltd. Method, and device for reporting beam measurement report
CN113545119A (zh) * 2019-04-30 2021-10-22 联发科技股份有限公司 具有功率节省功能的波束管理电子设备和方法

Also Published As

Publication number Publication date
CN116074886A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
US11456795B2 (en) Electronic device and method for measuring a beam quality of a currently serving beam based on a prediction window when the detected beam quality is within a particular range
EP3836608A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2018171580A1 (zh) 用于无线通信的电子装置以及无线通信方法
US20210306885A1 (en) Wireless communication electronic device and method, and computer-readable storage medium
EP4114083A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20210289401A1 (en) Electronic device and method executed by electronic device
AU2017262128A1 (en) Electronic apparatus, information processing device and information processing method
US10820337B2 (en) Device in wireless communication system, and wireless communication method
WO2019218909A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10904814B2 (en) Electronic device and method for wireless communication
US20230199584A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
EP4152798A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20230208476A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2023078163A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230292164A1 (en) Electronic device, method, and storage medium for wireless communication system
US20230046108A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20220167186A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2023138470A1 (zh) 电子设备、用于无线通信的方法以及计算机可读存储介质
WO2021179982A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230379886A1 (en) Transmitting electronic device and receiving electronic device and methods for wireless communication
US10028256B2 (en) Apparatus
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20240121771A1 (en) Scheduling electronic device and member electronic device for wireless communication, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889188

Country of ref document: EP

Kind code of ref document: A1