WO2023015947A1 - 螺杆压缩机和空调器 - Google Patents

螺杆压缩机和空调器 Download PDF

Info

Publication number
WO2023015947A1
WO2023015947A1 PCT/CN2022/088919 CN2022088919W WO2023015947A1 WO 2023015947 A1 WO2023015947 A1 WO 2023015947A1 CN 2022088919 W CN2022088919 W CN 2022088919W WO 2023015947 A1 WO2023015947 A1 WO 2023015947A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
compressor
compression unit
rotating shaft
rotor
Prior art date
Application number
PCT/CN2022/088919
Other languages
English (en)
French (fr)
Inventor
张治平
曹聪
武晓昆
龙忠铿
毕雨时
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2023015947A1 publication Critical patent/WO2023015947A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump

Definitions

  • the present disclosure relates to the technical field of compressor equipment and air conditioner equipment, in particular to a screw compressor and an air conditioner.
  • bearings are usually used to balance the force on the rotor of the compressor, but too many bearings lead to excessive operating loss and reduce the efficiency of the screw compressor.
  • the design of the single-unit two-stage screw compressor is based on the principle of axial force balance or decomposition.
  • the two sets of compressor rotors are connected in series through a coupling.
  • the rotors of the two-stage compressor are compressed, and the pressure difference between the suction and exhaust corresponding to the two-stage compressor rotors is reduced, which can reduce the axial force carried by each.
  • the axial force is balanced at the coupling by means of suction relative.
  • the coupling actually mainly carries torque, the force on the rotor of the compressor cannot be completely balanced by the coupling, so multiple sets of bearings need to be installed, and the setting of the coupling makes the compressor divided into multiple compressor shell segments. The overall cost is higher.
  • the purpose of the present disclosure is to provide a screw compressor and an air conditioner, aiming to solve the axial force balance problem of the screw compressor including two compression units in the related art.
  • the first aspect of the present disclosure provides a screw compressor, including:
  • a compressor casing having a space for installing the compression part and a space for installing the drive part, and a compressor inlet and a compressor outlet communicating with the space for installing the compression part;
  • the compression part is arranged in the installation space of the compression part, and is used to compress the gas at the inlet of the compressor and output it from the outlet of the compressor, including a first compression unit and a second compression unit, and the first compression unit including a first male rotor and a first female rotor engaged with the first male rotor; the second compression unit includes a second male rotor and a second female rotor engaged with the second male rotor; and
  • the driving part is arranged in the installation space of the driving part, and includes a motor rotor and a motor stator which is relatively fixed to the compressor casing and relatively rotatably sleeved on the outer periphery of the motor rotor;
  • the motor rotor is fixedly sleeved on the rotating shaft of the first male rotor, and the rotating shaft of the second male rotor is coaxially arranged integrally with the rotating shaft of the first male rotor to form a single rotating shaft.
  • the suction ends of the first compression unit and the second compression unit are adjacent to each other and the discharge ends are far away from each other.
  • the first compression unit and the second compression unit are connected in series.
  • At least one of the helical portion of the first male rotor and the helical portion of the second male rotor is integrally formed with the one-piece rotating shaft;
  • At least one of the helical portion of the first male rotor and the helical portion of the second male rotor is a sheathing helical portion that is non-rotatably connected to the unitary rotating shaft.
  • the step surface between the exhaust end of the sleeve screw part and the unit rotating shaft is limited in an axial direction to prevent the sleeve screw part from moving toward the sleeve screw part.
  • the suction end moves, and the single rotating shaft and the suction end of the sleeve spiral part are axially fixed by the axial positioning part.
  • the axial positioning part includes:
  • the stopper is attached to the end surface of the suction end of the sleeve spiral part and the step surface of the single rotating shaft at the suction end of the sleeve spiral part;
  • a connecting piece is used to connect the stopper to the set screw part and/or the single rotating shaft.
  • the screw compressor includes an installation cavity isolation part
  • the driving part installation space is located at one end of the compression part installation space along the axial direction of the unit rotation shaft
  • the installation cavity isolation part is arranged on the Between the first compression unit and the second compression unit, the installation space of the compression part is divided into a first installation cavity and a second installation cavity, and the rotation shaft of the single body passes through the isolation part of the installation cavity and
  • the installation cavity isolation part can be sealed and connected in a relatively rotatable manner, and the installation cavity isolation part is provided with a communication port for delivering the exhaust gas of the first compression unit to the second compression unit.
  • the unitary rotating shaft and the partition of the installation cavity are sealed and connected relatively rotatably through a tooth-shaped sealing structure.
  • the first compression unit is located between the driving part and the second compression unit.
  • the first compression unit further includes a first inner shell, a first partition wall, and an inner bearing seat fixed relative to the compressor shell,
  • the inner bearing seat and the isolation part of the installation cavity are respectively located at both axial ends of the first inner shell, and the first male rotor and the second female rotor are located at the inner bearing seat, the first In the first rotor space enclosed by the inner shell and the isolation part of the installation cavity, the first inner shell is provided with a suction port of the first compression unit, and the inner bearing seat and/or the first inner shell are provided with There is a first compression unit exhaust port, the first partition wall is located between the compressor shell and the first inner shell, and the first inner shell and the inner bearing seat and the compressor
  • the first installation chamber between the shells is divided into a first suction chamber and a first exhaust chamber, the first suction chamber is in communication with the inlet of the compressor and the suction port of the first compression unit, the first an exhaust chamber communicates with the exhaust port of the first compression unit and the communication port; and/or
  • the second compression unit further includes a second inner shell and a second partition wall fixed relative to the compressor shell, the second inner shell is arranged in the second installation cavity, the second male rotor and The second female rotor is located in the second rotor space surrounded by the installation cavity isolation part, the second inner shell and the compressor shell, and the second inner shell is provided with a second compression unit suction port and the discharge port of the second compression unit, the second partition wall is located between the compressor shell and the second inner shell, and the second partition wall between the second inner shell and the compressor shell
  • the installation cavity is divided into a second suction cavity and a second discharge cavity, the second suction cavity communicates with the communication port and the suction port of the second compression unit, the second discharge cavity communicates with the The discharge port of the second compression unit communicates with the compressor outlet.
  • the unitary rotating shaft is supported by bearings on the inner bearing housing and the compressor casing;
  • the first female rotor is supported on the inner bearing seat and the isolation part of the installation cavity through bearings;
  • the second female rotor is supported on the installation cavity isolation part and the compressor casing through bearings.
  • the axis of the first female rotor, the axis of the second female rotor and the axis of the single rotating shaft are located in the same plane, and the axes of the first female rotor and The axis of the second female rotor is located on both sides of the axis of the single rotating shaft.
  • the compressor casing includes four shell sections arranged in sequence along the axial direction of the unit rotating shaft, and the four shell sections include:
  • the second shell segment the first end of the second shell segment is connected to the second end of the first shell segment, the compressor inlet is arranged on the second shell segment, and the first compression unit is installed on within the second shell segment;
  • the first end of the third shell segment is connected to the second end of the second shell segment, and the second compression unit is installed in the third shell segment;
  • a fourth shell segment the first end of the fourth shell segment is connected to the second end of the third shell segment, the second end of the fourth shell segment is closed, and the fourth shell segment is provided for A bearing cavity for accommodating a bearing supporting the unitary rotating shaft and a bearing cavity for accommodating a bearing supporting the second female rotor, the outlet of the compressor is located on the fourth shell segment.
  • the first shell section is provided with a cooling passage for cooling the driving part through which a cooling fluid flows.
  • the present disclosure provides an air conditioner, including the screw compressor according to the first aspect of the present disclosure.
  • the second male rotor of the second compression unit of the compression part is arranged on the rotor shaft of the first male rotor of the first compression unit, and the rotation shaft of the first male rotor is connected to the first male rotor.
  • the rotating shafts of the two male rotors form a structure of a single rotating shaft, and the axial force of the two male rotors can be directly and effectively balanced through the single rotating shaft.
  • the motor rotor of the driving part is directly set on the single rotating shaft of the compressing part, and the driving part and the compressing part form a direct drive, and one shaft section of the rotating shaft of the first male rotor of the first compression unit is used as the driving shaft of the driving part.
  • the rotation shaft of the first male rotor of the first compression unit and the rotation shaft of the second male rotor of the second compression unit are arranged coaxially and integrally, instead of transmitting force through a structure such as a coupling, which can effectively reduce the transmission loss, Improve energy efficiency and reliability of screw compressors.
  • the setting of the single transmission shaft reduces the number of positioning segments of the rotating shafts of the male rotors in the driving part and the compression part, reduces the risk caused by positioning deviation, reduces the connecting parts between the rotating shafts and the supporting parts of each rotating shaft, and makes the screw
  • the compact structure of the compressor is beneficial to reduce the structural redundancy of the compressor and the cost of the compressor.
  • the air conditioner of the present disclosure includes the screw compressor of the present disclosure, and has the advantages of the screw compressor of the present disclosure.
  • Fig. 1 is a schematic cross-sectional structural diagram of a screw compressor in one direction according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic cross-sectional structural view of the screw compressor of the embodiment shown in Fig. 1 in another direction.
  • Fig. 3 is a schematic cross-sectional structure diagram of the screw compressor of the embodiment shown in Fig. 1 along the line A-A.
  • Fig. 4 is a schematic cross-sectional structure diagram along the B-B direction of the screw compressor of the embodiment shown in Fig. 1 .
  • FIG. 5 is a schematic cross-sectional structural view of a second male rotor of a second compression unit of a screw compressor according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of the stopper of the second male rotor of the embodiment shown in FIG. 5 .
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present disclosure and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to Must have a specific orientation or be constructed and operated in a specific orientation, and therefore should not be construed as limiting the scope of the present disclosure; the orientation words “inside and outside” refer to inside and outside relative to the outline of each part itself.
  • the screw compressor of the embodiment of the present disclosure mainly includes a compressor shell 1 , a compression part 2 and a drive part 3 .
  • the compressor housing 1 has a compressor installation space C1 and a driver installation space C2 , and has a compressor inlet 1A and a compressor outlet 1B communicating with the compressor installation space C1 .
  • the compression unit 2 is disposed in the installation space C1 of the compression unit, and is used to compress the gas at the compressor inlet 1A and output it from the compressor outlet 1B.
  • the compression section 2 includes a first compression unit 21 and a second compression unit 22 .
  • the first compression unit 21 includes a first male rotor 211 and a first female rotor 212 engaged with the first male rotor 211 .
  • the second compression unit 22 includes a second male rotor 221 and a second female rotor 222 engaged with the second male rotor 221 .
  • the drive unit 3 is disposed in the drive unit installation space C2.
  • the driving part 3 includes a motor rotor 31 and a motor stator 32 relatively fixed to the compressor casing 1 and relatively rotatably sleeved on the outer periphery of the motor rotor 31 .
  • the motor rotor 31 is fixedly sleeved on the rotating shaft of the first male rotor 211 .
  • the rotation shaft of the second male rotor 221 and the rotation shaft of the first male rotor 211 are arranged coaxially and integrally to form a single rotation shaft.
  • the second male rotor 221 of the second compression unit 22 of the compression part 2 of the screw compressor in the embodiment of the present disclosure adopts the form of being arranged on the rotor shaft 2111 of the first male rotor 211 of the first compression unit 21, and the first male rotor
  • the rotating shaft 2111 of 211 and the rotating shaft 2211 of the second male rotor 221 form a single rotating shaft structure, and the axial force of the two male rotors can be directly and effectively balanced through the single rotating shaft.
  • the motor rotor 31 of the drive part 3 is directly sleeved on the single rotating shaft of the compression part 2, and the drive part 3 and the compression part 2 form a direct drive.
  • the section serves as the driving shaft of the driving part 3, the rotating shaft 2111 of the first male rotor 211 of the first compression unit 21 and the rotating shaft 2211 of the second male rotor 221 of the second compression unit 22 are coaxially and integrally arranged to form a single rotating shaft, Instead of force transmission through structures such as couplings, transmission losses can be effectively reduced, and the energy efficiency and reliability of the screw compressor can be improved.
  • the setting of the single transmission shaft reduces the number of positioning segments of the rotating shafts of the male rotors in the driving part and the compression part, reduces the risk caused by positioning deviation, reduces the connecting parts between the rotating shafts and the supporting parts of each rotating shaft, and the screw compression
  • the structure of the machine is compact, which is beneficial to reduce the structural redundancy of the compressor and the cost of the compressor.
  • the suction ends of the first compression unit 21 and the second compression unit 22 are adjacent to each other and the discharge ends are far away from each other.
  • This setting facilitates that the axial force formed by the first compression unit 21 and the second compression unit 22 during the operation of the screw compressor is directed from the discharge end of the first compression unit 21 and the second compression unit 22 to the suction end, and finally by Bearing by a single rotating shaft is beneficial to reducing the number and/or carrying capacity of the thrust bearing, and is also beneficial to the compact structure of the screw compressor, and is beneficial to reducing the cost of the screw compressor.
  • the first compression unit 21 and the second compression unit 22 are connected in series.
  • the gas undergoes primary compression in the first compression unit 21
  • the gas after the primary compression enters the second compression unit 22 for secondary compression.
  • At least one of the helical portion of the first male rotor 211 and the helical portion of the second male rotor 221 is integrally formed with a single rotating shaft.
  • at least one of the helical portion of the first male rotor 211 and the helical portion of the second male rotor 221 is a sleeved helical portion that is non-rotatably connected to the single rotating shaft.
  • the helical part 2112 of the first male rotor 211 and the rotating shaft 2111 are made integrally with the single rotating shaft, and the helical part 2212 of the second male rotor 221 is The sleeve screw part is connected with the rotation shaft 2211, that is, with the single rotation shaft in a non-rotational manner.
  • the driving part 3 , the first male rotor 211 of the first compression unit 21 of the compression part 2 and the second male rotor 221 of the second compression unit 22 share a single rotating shaft.
  • the spiral portion 2112 of the first male rotor 211 is manufactured integrally with the single-body rotating shaft.
  • the helical part 2112 of the second male rotor 211 is a fitting helical part.
  • the helical part 2112 is installed on the single rotating shaft by shrink fit.
  • Both the first female rotor 212 and the second female rotor 222 are integral rotors in which the rotating shaft and the spiral part are integrally manufactured.
  • the axial limit fit between the exhaust end of the sleeve helix and the rotating shaft of the single body is used to prevent the sleeve helix from moving toward the suction end of the sleeve helix.
  • the rotating shaft of the body and the suction end of the sleeve spiral part are axially fixed by the axial positioning part. This arrangement facilitates a reduction in the number and/or load carrying capacity of thrust bearings.
  • the axial positioning portion includes, for example, a stopper and a connecting piece.
  • the stopper is attached to the end surface of the suction end of the casing spiral part and the step surface of the single rotating shaft at the suction end of the casing spiral part.
  • the connecting piece connects the stop piece to the sleeve screw and/or the single-body rotating shaft.
  • FIG. 5 and FIG. 6 show an example of a connection manner between the spiral portion 2212 of the second-stage male rotor 221 and the rotation shaft 2211 of the second-stage male rotor 221 in some embodiments.
  • the rotating shaft 2211 of the second-stage male rotor 221 and the rotating shaft 2111 of the first-stage male rotor 211 form a single rotating shaft.
  • the screw part 2212 is a sleeve screw part, which forms a tight fit with the rotating shaft 2211. There is a small gap or interference fit between the inner hole of the screw part 2212 and the single rotating shaft.
  • the shaft 2211, the screw part 2212 of the second-stage male rotor 221 and the exhaust end of the rotating shaft 2211 are provided with a step limiter (see the S part in Figure 5).
  • the spiral part 2212 cannot move toward the suction end.
  • An axial positioning portion is provided at the suction end of the second-stage male rotor 221 .
  • the axial positioning part includes a pressure plate 2213 as a stopper and a screw 2214 as a connecting member.
  • the pressing plate 2213 is composed of two symmetrical semi-circular rings 22131 and 22132 , and each semi-circular ring is provided with a mounting hole 2213A for passing the screw 2214 .
  • the pressure plate 2213 is embedded in the suction end surface of the second male rotor 22, where the single rotation shaft also has a stepped surface to limit the axial position between the pressure plate 2213 and the single rotation shaft, and is fixed on the end surface of the spiral part 2212 with screws 2214, Then the suction end of the helical part 2212 can be limited to ensure that the helical part 2212 of the second male rotor 22 does not move toward the exhaust end.
  • the pressing plate 2213 is arranged in the form of two semicircular rings, which may not be limited by the diameter of the single rotating shaft.
  • the pressing plate can also be provided with more ring segments.
  • the cooperation between the spiral portion 2212 and the rotating shaft 2211 is only a possible locking method.
  • the spiral part and the rotating shaft of the second male rotor can also be locked by screw threads, keys, etc., and can also be processed into an integrated two-stage male rotor, that is, the first male rotor and the second male rotor.
  • Two-stage male rotor The two-stage male rotor can be processed coaxially and integrally.
  • the screw compressor includes an installation chamber isolation part 4 .
  • the drive part installation space C2 is located at one end of the compression part installation space C1
  • the installation chamber isolation part 4 is arranged between the first compression unit 21 and the second compression unit 22, and the compression part installation space C1 It is divided into a first installation cavity C11 and a second installation cavity C12.
  • the single rotating shaft passes through the installation cavity isolation part 4 and is relatively rotatably sealed and connected with the installation cavity isolation part 4 .
  • a communication port 4A for delivering exhaust gas from the first compression unit 21 to the second compression unit 22 is provided on the installation chamber isolation portion 4 .
  • the screw compressor in the embodiment of the present disclosure is a single-machine two-stage screw compressor.
  • the fluid between the first compression unit 21 and the second compression unit 22 flows inside the compressor casing through the installation cavity isolation part 4 and the communication port 4A on it, and there is no need to set a medium-pressure fluid channel outside the screw compressor , so that the structure of the screw compressor is compact.
  • the single rotating shaft and the installation chamber partition 4 are relatively rotatably sealed and connected through a tooth-shaped sealing structure 4B.
  • the installation cavity isolation part 4 can be a single structure, and can also be divided into multiple functional parts according to the function of the installation cavity isolation part 4, and each functional part is assembled and cooperated to form a complete installation cavity isolation part.
  • the first compression unit 21 is located between the driving part 3 and the second compression unit 22. This arrangement facilitates the fluid transmission between the first compression unit and the second compression unit, and the layout of the compression part and the screw compressor is compact, which is beneficial to reduce the number of bearings.
  • the first compression unit 21 further includes a first inner shell 213 , a first partition wall 214 and an inner bearing seat 215 .
  • the first inner shell 213 , the first partition wall 214 and the inner bearing housing 215 are fixed relative to the compressor shell 1 .
  • the inner bearing seat 215 and the installation chamber isolation part 4 are respectively located at two axial ends of the first inner shell 213 .
  • the first male rotor 211 and the second female rotor 222 are located in the first rotor space C111 surrounded by the inner bearing seat 215 , the first inner shell 213 and the installation cavity isolation part 4 .
  • the first inner casing 213 is provided with a suction port 21A of the first compression unit.
  • the first compression unit exhaust port 21B is provided on the inner bearing seat 215 and/or the first inner shell 213 .
  • the first partition wall 214 is located between the compressor shell 1 and the first inner shell 213, and divides the first installation cavity C11 between the first inner shell 213 and the inner bearing seat 215 and the compressor shell 1 into a first suction cavity C112 and the first exhaust chamber C113.
  • the first suction cavity C112 communicates with the compressor inlet 1A and the first compression unit suction port 21A.
  • the first discharge chamber C113 communicates with the first compression unit discharge port 21B and the communication port 4A.
  • the second compression unit 22 further includes a second inner shell 223 and a second partition wall 224 fixed relative to the compressor shell 1 .
  • the second inner shell 223 is disposed in the second installation cavity C12.
  • the second male rotor 221 and the second female rotor 222 are located in the second rotor space C121 enclosed by the installation cavity isolation part 4 , the second inner shell 223 and the compressor shell 1 .
  • the second inner casing 223 is provided with a suction port 22A of the second compression unit and a discharge port of the second compression unit.
  • the second partition wall 224 is located between the compressor shell 1 and the second inner shell 223, and divides the second installation cavity C12 between the second inner shell 223 and the compressor shell 1 into a second suction cavity C122 and a second row Air cavity C123.
  • the second suction chamber C122 communicates with the communication port 4A and the second compression unit suction port 22A.
  • the second discharge chamber C123 communicates with the discharge port of the second compression unit and the compressor outlet 1B.
  • the first compression unit and/or the second compression unit are set to have a structure with an inner shell and a partition wall, which facilitates the flow of gas inside the screw compression part, shortens the flow path of the screw compressor, reduces the flow loss of the gas, and improves the efficiency of screw compression.
  • the structure of the machine is more compact.
  • the axis of the first female rotor 212, the axis of the second female rotor 222 and the axis of the single rotating shaft are located in the same plane, and the axis of the first female rotor 212 and the second female rotor
  • the axis of the rotor 222 is located on both sides of the axis of the single-body rotating shaft.
  • the single rotating shaft is supported on the inner bearing housing 215 and the compressor casing 1 through bearings; and/or the first female rotor 212 is supported on the inner bearing housing 215 through bearings and the installation cavity isolation part 4; the second female rotor 222 is supported on the installation cavity isolation part 4 and the compressor casing 1 through bearings.
  • the compressor housing 1 includes four shell sections arranged in sequence along the axial direction of the single rotating shaft, and the four shell sections include a first shell section 11 , a second shell section 11 and a second shell section 11 .
  • Shell segment 12 Shell segment 12 , third shell segment 13 and fourth shell segment 14 .
  • the first end of the first shell segment 11 is closed, and the driving part 3 is installed in the first shell segment 11 .
  • the first end of the second shell section 12 is connected to the second end of the first shell section 11 , the compressor inlet 1A is arranged on the second shell section 12 , and the first compression unit 21 is installed in the second shell section 12 .
  • the first end of the third shell segment 13 is connected to the second end of the second shell segment 12 , and the second compression unit 22 is installed in the third shell segment 13 .
  • the first end of the fourth shell segment 14 is connected to the second end of the third shell segment 13, the second end of the fourth shell segment 14 is closed, and the fourth shell segment 14 is provided with a bearing for supporting the single rotating shaft.
  • the bearing cavity and the bearing cavity for accommodating the bearing supporting the second female rotor 222 , the compressor outlet 1B is located on the fourth shell segment 14 .
  • the above four shell sections are connected in sequence, and the main parts of the screw compressor are arranged in the compressor shell, there is no space between the shell sections of the compressor, and there is no need to set the ends between adjacent shell sections for sealing different shell sections. plate, and the length of the single rotating shaft of the compression part is relatively short, which makes the screw compressor compact in structure and low in cost.
  • the radial inner space of the second shell segment 12 and the third shell segment 13 constitutes a compression part installation space C1.
  • the installation cavity isolation part 4 is disposed inside the compressor shell 1 at the junction of the second shell segment 12 and the third shell segment 13, and divides the compressor part installation space C1 into a first installation cavity C11 and a second installation cavity C12.
  • the second shell section 12 defines the first installation chamber C11 of the compressor installation space C1
  • the compressor inlet 1A is arranged on the second shell section 12 .
  • the third shell segment 13 defines a second installation cavity C12 of the compression part installation space C1.
  • the inner bearing seat 215 is built in the first installation cavity C11 .
  • the inner bearing seat 215 is provided with a bearing cavity for accommodating a bearing supporting the single-body rotating shaft and a bearing cavity for accommodating a bearing supporting the first male rotor.
  • the inner bearing seat 215 includes a support body 2151 and a bearing cover 2152 , each bearing cavity of the inner bearing seat 215 is disposed on the support body 2151 , and the bearing device 2152 is used to close each bearing cavity of the inner bearing seat 215 .
  • the installation cavity isolation part 4 includes a sealing sleeve with the aforementioned tooth-shaped sealing structure 4B that is sleeved on the single rotating shaft and a bearing plate that is sleeved outside the sealing sleeve.
  • the bearing plates are respectively arranged for The bearing cavity carrying the bearing of the first female rotor 212 and the bearing of the second female rotor 222 is installed.
  • the fourth casing section 14 is provided with a compressor outlet 1B and a bearing cavity for accommodating a bearing supporting a single rotating shaft and a bearing cavity for accommodating a bearing supporting a second female rotor.
  • the fourth housing 14 includes a shell segment main body 141 and a shell segment cover plate 142 . Each bearing cavity of the fourth shell segment 14 is disposed in the shell segment main body 141 , and the shell segment cover plate 142 is used to close each bearing cavity of the fourth shell segment 14 .
  • the bearings supporting the rotating shafts of the compression part 2 include a first radial bearing 51, a second radial bearing 52, a first thrust bearing 53, a third radial bearing Bearing 54 , fourth radial bearing 55 , second thrust bearing 56 , fifth radial bearing 57 , sixth radial bearing 58 , and third thrust bearing 56 .
  • the first radial bearing 51 is disposed on the inner bearing seat 215 for supporting the shaft section of the single bearing between the driving part 3 and the first compression unit 21 .
  • the second radial bearing 52 and the first thrust bearing 53 are arranged in the bearing cavity of the fourth shell segment 14, and are used to support the exhaust end of the second male rotor of the single rotating shaft, that is, the right end in Fig. 1 and Fig. 2 .
  • the third radial bearing 54 is located on the bearing plate of the isolation part 4 of the installation cavity, and is used to support the suction end of the first female rotor 212 .
  • the fourth radial bearing 55 and the second thrust bearing 56 are disposed on the inner bearing seat 215 for supporting the exhaust end of the first female rotor.
  • the fifth radial bearing 57 is located on the bearing plate of the isolation part 4 of the installation cavity, and is used to support the suction end of the second female rotor 212 .
  • the sixth radial bearing 58 and the third thrust bearing 56 are arranged in the corresponding bearing cavity of the fourth shell segment 14, and are used to support the exhaust end of the second female rotor of the single rotating shaft, that is, the exhaust end of the second female rotor in Fig. 1 and Fig. 2 right end.
  • the first shell segment 11 in order to prevent the driving part 3 from overheating, is provided with a cooling channel 111 for cooling the driving part 3 through a cooling fluid flow.
  • the driving part 3 is cooled by an independent liquid spray cooling method, and the cooling liquid enters and flows out of the driving part installation space C2 through the cooling channel 111 .
  • other cooling structures such as air suction cooling can also be used to cool the driving part 3 .
  • the driving part, the first male rotor and the second male rotor share a single rotating shaft, forming an integrated direct drive structure of the male rotor, which can control the two male rotors of the compression part.
  • the force balance of the rotor is beneficial to reduce the deformation of the male rotor and ensure the reliable operation of the screw compressor.
  • due to the balanced force on the male rotors there is no need to install thrust bearings at the suction ends of the two male rotors, and thrust bearings can only be installed at the exhaust ends of the second-stage male rotors, which is beneficial to reduce moving parts, simplify the compressor structure, and reduce costs.
  • the drive part of the screw compressor and the transmission parts of the two male rotors are reduced, which is conducive to improving the efficiency of the screw compressor, and is also conducive to improving the reliability of the compressor due to the reduction of compressor moving parts.
  • the overall deflection and deformation of the two male rotors of the compressor can be reduced by 2-8 ⁇ m, and the maximum deformation can be reduced by 0.01-0.07 mm.
  • the force can be reduced by 1KN to 5KN, and the performance of the screw compressor can be effectively improved.
  • the embodiment of the present disclosure also provides an air conditioner, including the screw compressor of the embodiment of the present disclosure.
  • the air conditioner has the corresponding advantages of the screw compressor of the disclosed embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种螺杆压缩机和空调器,螺杆压缩机包括:压缩机外壳(1),具有压缩部安装空间(C1)、驱动部安装空间(C2)、压缩机进口(1A)和压缩机出口(1B);压缩部(2),设置于压缩部安装空间(C1)内,用于将压缩机进口(1A)的气体压缩后从压缩机出口(1B)输出,包括第一压缩单元(21)和第二压缩单元(22);和驱动部(3),设置于驱动部安装空间(C2)内,包括电机转子(31)和与压缩机外壳(1)相对固定且可相对转动地套设于电机转子(31)外周的电机定子(32);电机转子(31)固定地套装于第一阳转子(211)的转动轴上,第二阳转子(221)的转动轴与第一阳转子(211)的转动轴同轴一体设置形成单体转动轴。该螺杆压缩机的两个阳转子的轴向受力可通过单体转动轴直接进行有效的平衡,并且可以有效降低传动损失,提高螺杆压缩机的能效和可靠性。

Description

螺杆压缩机和空调器
相关申请的交叉引用
本公开是以申请号为202110923450.8,申请日为2021年8月12日,发明名称为“螺杆压缩机和空调器”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及压缩机设备和空调设备技术领域,特别涉及一种螺杆压缩机和空调器。
背景技术
螺杆压缩机在工作过程中,由于压缩机转子轴向两端所受吸排气压力不同而产生的轴向力,和受压缩机转子齿形、结构等特征影响产生的径向力形成螺杆压缩机运行时的主要载荷。
相关技术中,通常通过轴承去平衡压缩机转子的受力,但过多的轴承导致运行损耗过大,降低螺杆压缩机的效率。
单机双级螺杆压缩机的设计基于轴向力平衡或分解原则,设置两组旋向相同或相反的压缩机转子,两组压缩机转子通过联轴器串联,一级压缩机转子压缩后再进行二级压缩机转子压缩,二级压缩机转子分别对应的吸排气压差降低,可以减少各自承载的轴向力。通过吸气相对的方式,将轴向力在联轴器处进行平衡。但由于联轴器实际上主要承载扭矩,压缩机转子受力并不能完全由联轴器平衡,需要设置多组轴承,且联轴器的设置使得压缩机被分为多个压缩机外壳段,整体成本较高。
发明内容
本公开的目的在于提供一种螺杆压缩机和空调器,旨在解决相关技术中包括两个压缩单元的螺杆压缩机的轴向力平衡问题。
本公开第一方面提供一种螺杆压缩机,包括:
压缩机外壳,具有压缩部安装空间和驱动部安装空间,以及具有与所述压缩部安装空间连通的压缩机进口和压缩机出口;
压缩部,设置于所述压缩部安装空间内,用于将所述压缩机进口的气体压缩后从所述压缩机出口输出,包括第一压缩单元和第二压缩单元,所述第一压缩单元包括第一阳转子和与所述第一阳转子啮合的第一阴转子;所述第二压缩单元包括第二阳转子和与所述第二阳转子啮合的第二阴转子;和
驱动部,设置于所述驱动部安装空间内,包括电机转子和与所述压缩机外壳相对固定且可相对转动地套设于所述电机转子外周的电机定子;
其中,所述电机转子固定地套装于所述第一阳转子的转动轴上,所述第二阳转子的转动轴与所述第一阳转子的转动轴同轴一体设置形成单体转动轴。
在一些实施例的螺杆压缩机中,沿所述单体转动轴的轴向,所述第一压缩单元和所述第二压缩单元的吸气端相邻而排气端相互远离。
在一些实施例的螺杆压缩机中,所述第一压缩单元和所述第二压缩单元串联。
在一些实施例的螺杆压缩机中,
所述第一阳转子的螺旋部和所述第二阳转子的螺旋部中至少一个与所述单体转动轴一体制成;或者
所述第一阳转子的螺旋部和所述第二阳转子的螺旋部中至少一个为与所述单体转动轴止转地连接的套装螺旋部。
在一些实施例的螺杆压缩机中,所述套装螺旋部的排气端与所述单体转动轴之间通过台阶面轴向限位配合以防止所述套装螺旋部朝向所述套装螺旋部的吸气端运动,所述单体转动轴与所述套装螺旋部的吸气端通过轴向定位部轴向固定。
在一些实施例的螺杆压缩机中,所述轴向定位部包括:
止挡件,贴靠于所述套装螺旋部的吸气端的端面与所述单体转动轴的位于套装螺旋部的吸气端的台阶面上;和
连接件,将所述止挡件连接于所述套装螺旋部和/或所述单体转动轴上。
在一些实施例的螺杆压缩机中,包括安装腔隔离部,沿所述单体转动轴的轴向,所述驱动部安装空间位于压缩部安装空间的一端,所述安装腔隔离部设置于所述第一压缩单元和所述第二压缩单元之间,将所述压缩部安装空间分隔为第一安装腔和第二安装腔,所述单体转动轴穿过所述安装腔隔离部并与所述安装腔隔离部可相对转动地密封连接,所述安装腔隔离部上设有用于将所述第一压缩单元的排气输送至所述第二压缩单元的连通口。
在一些实施例的螺杆压缩机中,所述单体转动轴与所述安装腔隔离部之间通过齿 形密封结构可相对转动地密封连接。
在一些实施例的螺杆压缩机中,所述第一压缩单元位于所述驱动部与所述第二压缩单元之间。
在一些实施例的螺杆压缩机中,
所述第一压缩单元还包括第一内壳、第一分隔壁和内部轴承座,所述第一内壳、所述第一分隔壁和所述内部轴承座相对于所述压缩机外壳固定,所述内部轴承座和所述安装腔隔离部分别位于所述第一内壳的轴向两端,所述第一阳转子和所述第二阴转子位于所述内部轴承座、所述第一内壳和所述安装腔隔离部围成的第一转子空间内,所述第一内壳上设有第一压缩单元吸气口,所述内部轴承座和/或所述第一内壳上设有第一压缩单元排气口,所述第一分隔壁位于所述压缩机外壳和所述第一内壳之间,将所述第一内壳和所述内部轴承座以及所述压缩机外壳之间的第一安装腔分隔为第一吸气腔和第一排气腔,所述第一吸气腔与所述压缩机进口和所述第一压缩单元吸气口连通,所述第一排气腔与所述第一压缩单元排气口和所述连通口连通;和/或
所述第二压缩单元还包括相对于所述压缩机外壳固定的第二内壳和第二分隔壁,所述第二内壳设置于所述第二安装腔内,所述第二阳转子和所述第二阴转子位于所述安装腔隔离部、所述第二内壳和所述压缩机外壳围成的第二转子空间内,所述第二内壳上设有第二压缩单元吸气口和第二压缩单元排气口,所述第二分隔壁位于所述压缩机外壳和所述第二内壳之间,将所述第二内壳和所述压缩机外壳之间的第二安装腔分隔为第二吸气腔和第二排气腔,所述第二吸气腔与所述连通口和所述第二压缩单元吸气口连通,所述第二排气腔与所述第二压缩单元排气口和所述压缩机出口连通。
在一些实施例的螺杆压缩机中,
所述单体转动轴通过轴承支承于所述内部轴承座和所述压缩机外壳上;和/或
所述第一阴转子通过轴承支承于所述内部轴承座和所述安装腔隔离部上;
所述第二阴转子通过轴承支承于所述安装腔隔离部和所述压缩机外壳上。
在一些实施例的螺杆压缩机中,所述第一阴转子的轴线、所述第二阴转子的轴线和所述单体转动轴的轴线位于同一平面内,所述第一阴转子的轴线和所述第二阴转子的轴线位于所述单体转动轴的轴线两侧。
在一些实施例的螺杆压缩机中,所述压缩机外壳包括沿所述单体转动轴的轴向顺次布置的四个壳段,所述四个壳段包括:
第一壳段,所述第一壳段的第一端封闭,所述驱动部安装于所述第一壳段内;
第二壳段,所述第二壳段的第一端与所述第一壳段的第二端连接,所述压缩机进口设置于所述第二壳段,所述第一压缩单元安装于所述第二壳段内;
第三壳段,所述第三壳段的第一端与所述第二壳段的第二端连接,所述第二压缩单元安装于所述第三壳段内;和
第四壳段,所述第四壳段的第一端与所述第三壳段的第二端连接,所述第四壳段的第二端封闭,所述第四壳段内设置用于容纳支撑所述单体转动轴的轴承的轴承腔和用于容纳支撑所述第二阴转子的轴承的轴承腔,所述压缩机出口位于所述第四壳段上。
在一些实施例的螺杆压缩机中,所述第一壳段上设置用于冷却所述驱动部的冷却流体流动的冷却通道。
本公开提供一种空调器,包括本公开第一方面的螺杆压缩机。
基于本公开提供的螺杆压缩机,其压缩部的第二压缩单元的第二阳转子采用设置在第一压缩单元的第一阳转子的转子轴上的形式,第一阳转子的转动轴与第二阳转子的转动轴形成单体转动轴的结构,两个阳转子的轴向受力可通过单体转动轴直接进行有效的平衡。
驱动部的电机转子直接套装于压缩部的该单体转动轴上,驱动部与压缩部形成直接驱动,第一压缩单元的第一阳转子的转动轴的一个轴段作为驱动部的驱动轴,第一压缩单元的第一阳转子的转动轴和第二压缩单元的第二阳转子的转动轴同轴一体设置,而不是通过联轴器等结构进行力的传递,可以有效的降低传动损失,提高螺杆压缩机的能效和可靠性。
单体传动轴的设置减少了驱动部和压缩部的各阳转子的转动轴的定位段数,降低定位偏差引起的风险,减少各转动轴之间的连接部件和各转动轴的支撑部件,使螺杆压缩机的结构紧凑,利于降低压缩机的结构冗余性和压缩机成本。
本公开的空调器包括本公开的螺杆压缩机,具有本公开的螺杆压缩机具有的优点。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公 开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例的螺杆压缩机的一个方向的剖视结构示意图。
图2为图1所示实施例的螺杆压缩机的另一个方向的剖视结构示意图。
图3为图1所示实施例的螺杆压缩机的A-A向剖视结构示意图。
图4为图1所示实施例的螺杆压缩机的B-B向剖视结构示意图。
图5为本公开一实施例的螺杆压缩机的第二压缩单元的第二阳转子的剖视结构示意图。
图6为图5所示实施例的第二阳转子的止挡件的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本公开的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本公开保护范围的限制。
在本公开的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,在未作相反说明的情况 下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
图1至图6为本公开一些实施例的螺杆压缩机的结构示意图。如图1至图6所示,本公开实施例的螺杆压缩机主要包括压缩机外壳1、压缩部2和驱动部3。
如图1至图4所示,压缩机外壳1具有压缩部安装空间C1和驱动部安装空间C2,以及具有与压缩部安装空间C1连通的压缩机进口1A和压缩机出口1B。
压缩部2设置于压缩部安装空间C1内,用于将压缩机进口1A的气体压缩后从压缩机出口1B输出。压缩部2包括第一压缩单元21和第二压缩单元22。第一压缩单元21包括第一阳转子211和与第一阳转子211啮合的第一阴转子212。第二压缩单元22包括第二阳转子221和与第二阳转子221啮合的第二阴转子222。
驱动部3设置于驱动部安装空间C2内。驱动部3包括电机转子31和与压缩机外壳1相对固定且可相对转动地套设于电机转子31外周的电机定子32。电机转子31固定地套装于第一阳转子211的转动轴上。第二阳转子221的转动轴与第一阳转子211的转动轴同轴一体设置形成单体转动轴。
本公开实施例的螺杆压缩机的压缩部2的第二压缩单元22的第二阳转子221采用设置在第一压缩单元21的第一阳转子211的转子轴2111上的形式,第一阳转子211的转动轴2111与第二阳转子221的转动轴2211形成单体转动轴的结构,两个阳转子的轴向受力可通过单体转动轴直接进行有效的平衡。
驱动部3的电机转子31直接套装于压缩部2的该单体转动轴上,驱动部3与压缩部2形成直接驱动,第一压缩单元21的第一阳转子211的转动轴2111的一个轴段作为驱动部3的驱动轴,第一压缩单元21的第一阳转子211的转动轴2111和第二压缩单元22的第二阳转子221的转动轴2211同轴一体设置形成单体转动轴,而不是通过联轴器等结构进行力的传递,可以有效的降低传动损失,提高螺杆压缩机的能效和可靠性。
单体传动轴的设置减少了驱动部和压缩部的各阳转子的转动轴的定位段数,降低定位偏差引起的风险,减少各转动轴之间的连接部件和各转动轴的支撑部件,螺杆压缩机的结构紧凑,利于降低压缩机的结构冗余性和压缩机成本。
如图1至图4所示,在一些实施例中,沿单体转动轴的轴向,第一压缩单元21和第二压缩单元22的吸气端相邻而排气端相互远离。该设置利于第一压缩单元21和 第二压缩单元22在螺杆压缩机运行中形成的轴向力分别由第一压缩单元21和第二压缩单元22的排气端指向吸气端,并最终由单体转动轴承担,利于减少推力轴承的数量和/或承载能力,也利于螺杆压缩机的结构紧凑,并利于减少螺杆压缩机的成本。
如图1至图4所示,在一些实施例中,第一压缩单元21和第二压缩单元22串联。例如,气体在第一压缩单元21进行一级压缩,一级压缩后的气体进入第二压缩单元22进行二级压缩。
在一些实施例中,第一阳转子211的螺旋部和第二阳转子221的螺旋部中至少一个与单体转动轴一体制成。或者,第一阳转子211的螺旋部和第二阳转子221的螺旋部中至少一个为与单体转动轴止转地连接的套装螺旋部。
如图1至图4所示,在一些实施例中,第一阳转子211的螺旋部2112与转动轴2111,也即与单体转动轴一体制成,第二阳转子221的螺旋部2212为套装螺旋部,与转动轴2211,也即与单体转动轴止转地连接。
如图1至图4所示,驱动部3、压缩部2的第一压缩单元21的第一阳转子211和第二压缩单元22的第二阳转子221共用一个单体转动轴。第一阳转子211的螺旋部2112与单体转动轴整体制造。第二阳转子211的螺旋部2112为套装螺旋部,在图1至图4所示的实施例中,螺旋部2112通过热套方式安装于单体转动轴上。第一阴转子212和第二阴转子222均为转动轴和螺旋部整体制造的整体转子。
如图5所示,在一些实施例中,套装螺旋部的排气端与单体转动轴之间通过台阶面轴向限位配合以防止套装螺旋部朝向套装螺旋部的吸气端运动,单体转动轴与套装螺旋部的吸气端通过轴向定位部轴向固定。该设置利于减少推力轴承的数量和/或承载能力。
如图5所示,在一些实施例中,轴向定位部例如包括止挡件和连接件。止挡件贴靠于套装螺旋部的吸气端的端面与单体转动轴的位于套装螺旋部的吸气端的台阶面上。连接件将止挡件连接于套装螺旋部和/或单体转动轴上。
图5和图6显示了一些实施例中二级阳转子221的螺旋部2212与二级阳转子221的转动轴2211的一种连接方式的示例。其中二级阳转子221的转动轴2211与一级阳转子211的转动轴2111形成单体转动轴。螺旋部2212为套装螺部,与转动轴2211形成紧配合,其中螺旋部2212的内孔与单体转动轴之间留有较小间隙或过盈配合,螺旋部2212通过冷装方式套装于转动轴2211,二级阳转子221的螺旋部2212和转动轴2211的排气端设置台阶限位部(见图5中S部位)螺旋部2212和转动轴2211装 配后由于台阶限位部的设置,螺旋部2212无法向吸气端移动。在二级阳转子221的吸气端设置轴向定位部。轴向定位部包括作为止挡件的压板2213和作为连接件的螺钉2214。如图6所示,压板2213由两个对称的半圆环22131和22132构成,各半圆环上设置用于穿过螺钉2214的安装孔2213A。压板2213嵌在第二阳转子22的吸气端面处,此处单体转动轴也具有台阶面来限定压板2213与单体转动轴的轴向位置,以螺钉2214固定于螺旋部2212端面上,则可以对螺旋部2212的吸气端进行限位,保证第二阳转子22的螺旋部2212不向排气端移动。
其中,压板2213设置成两个半圆环的方式,可以不受单体转动轴的直径大小的限制。压板也可以设置更多环段的方式。
图5至图6所示实施例中螺旋部2212和转动轴2211的配合方式仅为一种可行的锁紧方式。在未图示的实施例中,第二阳转子的螺旋部与转动轴也可通过螺纹、键等方式进行锁紧,还可以加工为一体化的两级阳转子,即第一阳转子和第二阳转子两段阳转子可以同轴一体加工。
如图1至图4所示,在一些实施例中,螺杆压缩机包括安装腔隔离部4。沿单体转动轴的轴向,驱动部安装空间C2位于压缩部安装空间C1的一端,安装腔隔离部4设置于第一压缩单元21和第二压缩单元22之间,将压缩部安装空间C1分隔为第一安装腔C11和第二安装腔C12。单体转动轴穿过安装腔隔离部4并与安装腔隔离部4可相对转动地密封连接。安装腔隔离部4上设有用于将第一压缩单元21的排气输送至第二压缩单元22的连通口4A。
该设置利于第一压缩单元21和第二压缩单元22内的气体按规定的流动路径在第一压缩单元21和第二压缩单元22间流动,适用于第一压缩单元21和第二压缩单元22串联的情形。本公开实施例的螺杆压缩机为单机双级螺杆压缩机。通过安装腔隔离部4及其上的连通口4A的设置,使第一压缩单元21和第二压缩单元22之间的流体在压缩机外壳内部流动,无需在螺杆压缩机外部设置中压流体通道,使螺杆压缩机的结构紧凑。
如图1至图4所示,在一些实施例中,单体转动轴与安装腔隔离部4之间通过齿形密封结构4B可相对转动地密封连接。
安装腔隔离部4可以为单体结构,也可以根据安装腔隔离部4的功能分为多个功能部件,各功能部件组装配合形成完整的安装腔隔离部。
如图1至图4所示,在一些实施例中,第一压缩单元21位于驱动部3与第二压 缩单元22之间。该设置利于第一压缩单元和第二压缩单元之间的流体传递,压缩部及螺杆压缩机的布局紧凑,利于减少轴承数量。
如图1至图4所示,在一些实施例中,第一压缩单元21还包括第一内壳213、第一分隔壁214和内部轴承座215。第一内壳213、第一分隔壁214和内部轴承座215相对于压缩机外壳1固定。内部轴承座215和安装腔隔离部4分别位于第一内壳213的轴向两端。第一阳转子211和第二阴转子222位于内部轴承座215、第一内壳213和安装腔隔离部4围成的第一转子空间C111内。第一内壳213上设有第一压缩单元吸气口21A。内部轴承座215和/或第一内壳213上设有第一压缩单元排气口21B。第一分隔壁214位于压缩机外壳1和第一内壳213之间,将第一内壳213和内部轴承座215以及压缩机外壳1之间的第一安装腔C11分隔为第一吸气腔C112和第一排气腔C113。第一吸气腔C112与压缩机进口1A和第一压缩单元吸气口21A连通。第一排气腔C113与第一压缩单元排气口21B和连通口4A连通。
如图1至图4所示,在一些实施例中,第二压缩单元22还包括相对于压缩机外壳1固定的第二内壳223和第二分隔壁224。第二内壳223设置于第二安装腔C12内。第二阳转子221和第二阴转子222位于安装腔隔离部4、第二内壳223和压缩机外壳1围成的第二转子空间C121内。第二内壳223上设有第二压缩单元吸气口22A和第二压缩单元排气口。第二分隔壁224位于压缩机外壳1和第二内壳223之间,将第二内壳223和压缩机外壳1之间的第二安装腔C12分隔为第二吸气腔C122和第二排气腔C123。第二吸气腔C122与连通口4A和第二压缩单元吸气口22A连通。第二排气腔C123与第二压缩单元排气口和压缩机出口1B连通。
第一压缩单元和/或第二压缩单元设置为具有内壳和分隔壁的结构,利于气体在螺杆压缩部内部流转,使螺杆压缩机的流道变短,气体的流动损失减小,螺杆压缩机的结构更加紧凑。
如图2所示,在一些实施例中,第一阴转子212的轴线、第二阴转子222的轴线和单体转动轴的轴线位于同一平面内,第一阴转子212的轴线和第二阴转子222的轴线位于单体转动轴的轴线两侧。该设置利于单体转动轴的径向力的平衡,有效提升压缩部2的两个阳转子的运动可靠性,也利于减少径向轴承的数量和承载能力,从而利于螺杆压缩机结构紧凑,减少成本。
如图1至图4所示,在一些实施例中,单体转动轴通过轴承支承于内部轴承座215和压缩机外壳1上;和/或第一阴转子212通过轴承支承于内部轴承座215和安装腔隔 离部4上;第二阴转子222通过轴承支承于安装腔隔离部4和压缩机外壳1上。
如图1至图4所示,在一些实施例中,压缩机外壳1包括沿单体转动轴的轴向顺次布置的四个壳段,四个壳段包括第一壳段11、第二壳段12、第三壳段13和第四壳段14。
第一壳段11的第一端封闭,驱动部3安装于第一壳段11内。第二壳段12的第一端与第一壳段11的第二端连接,压缩机进口1A设置于第二壳段12,第一压缩单元21安装于第二壳段12内。第三壳段13的第一端与第二壳段12的第二端连接,第二压缩单元22安装于第三壳段13内。第四壳段14的第一端与第三壳段13的第二端连接,第四壳段14的第二端封闭,第四壳段14内设置用于容纳支撑单体转动轴的轴承的轴承腔和用于容纳支撑第二阴转子222的轴承的轴承腔,压缩机出口1B位于第四壳段14上。
以上四个壳段依次相连,螺杆压缩机的各主要部分均布置于压缩机外壳内,压缩机各壳段之间无间隔,无需设置相邻壳段之间的用于封闭不同壳段的端板,且压缩部的单体转动轴的长度较短,使得螺杆压缩机结构紧凑,成本降低。
第二壳段12和第三壳段13的径向内侧空间构成压缩部安装空间C1。安装腔隔离部4设置于压缩机外壳1内部,位于第二壳段12和第三壳段13的交界处,将压缩部安装空间C1分隔为第一安装腔C11和第二安装腔C12。其中第二壳段12限定压缩部安装空间C1的第一安装腔C11,压缩机进口1A设置于第二壳段12上。第三壳段13限定压缩部安装空间C1的第二安装腔C12。
如图1至图4所示,内部轴承座215内置于第一安装腔C11内部。内部轴承座215上设置用于容纳支承单体转动轴的轴承的轴承腔和用于容纳支承第一阳转子的轴承的轴承腔。内部轴承座215包括支撑主体2151和轴承盖2152,内部轴承座215的各轴承腔设置于支撑主体2151上,轴承装置2152用于封闭内部轴承座215的各轴承腔。
如图1至图4所示,安装腔隔离部4包括套装于单体转动轴上的具有前述齿形密封结构4B的密封套和套装于密封套外的轴承板,轴承板上分别设置用于安装承载第一阴转子212的轴承和承载第二阴转子222的轴承的轴承腔。
如图1至图4所示,第四壳段14设有压缩机出口1B和用于容纳支撑单体转动轴的轴承的轴承腔和用于容纳支撑第二阴转子的轴承的轴承腔。第四壳体14包括壳段主体141和壳段盖板142。第四壳段14的各轴承腔设置于壳段主体141内,壳段盖板142用于封闭第四壳段14的各轴承腔。
如图1至图4所示,本公开实施例中,支撑压缩部2的各转动轴的轴承包括第一径向轴承51、第二径向轴承52、第一推力轴承53、第三径向轴承54、第四径向轴承55、第二推力轴承56、第五径向轴承57、第六径向轴承58和第三推力轴承56。
第一径向轴承51设置于内部轴承座215上,用于支撑驱动部3和第一压缩单元21之间的单体轴承的轴段。第二径向轴承52和第一推力轴承53设置于第四壳段14的轴承腔内,用于支撑单体转动轴的第二阳转子的排气端,即图1和图2中的右端。
第三径向轴承54位于安装腔隔离部4的轴承板上,用于支撑第一阴转子212的吸气端。第四径向轴承55和第二推力轴承56设置于内部轴承座215上,用于支撑第一阴转子的排气端。
第五径向轴承57位于安装腔隔离部4的轴承板上,用于支撑第二阴转子212的吸气端。第六径向轴承58和第三推力轴承56设置于第四壳段14的相应轴承腔内,用于支撑单体转动轴的第二阴转子的排气端,即图1和图2中的右端。
如图1所示,在一些实施例中,为防止驱动部3超温工作,第一壳段11上设置用于冷却驱动部3的冷却流体流动的冷却通道111。驱动部3采用独立喷液冷却方式进行冷却,冷却液通过冷却通道111进入和流出驱动部安装空间C2。在一些未图示的实施例中,也可采用吸气冷却等其他冷却结构实现驱动部3的冷却。
根据以上描述可知,本公开实施例的螺杆压缩机,驱动部、第一阳转子和第二阳转子共用单体转动轴,形成一体化的阳转子直驱结构,可以对压缩部的两个阳转子进行受力平衡,利于减少阳转子变形,利于保证螺杆压缩机可靠运行。同时,由于阳转子受力平衡,则两阳转子吸气端不必再设置推力轴承,可以仅在二级阳转子排气端设置推力轴承,利于减少运动部件、简化压缩机结构、降低成本。螺杆压缩机的驱动部和两个阳转子的传动部件减少,利于螺杆压缩机提高效率,由于减少压缩机运转部件,也利于提升压缩机可靠性。
通过仿真校核,在其它条件相同的情况下,采用本公开实施例的阳转子结构后,压缩机的两阳转子的整体挠度变形可降低2~8μm,最大变形可降低0.01~0.07mm,受力可降低1KN~5KN,螺杆压缩机性能可得到有效提升。
本公开实施例还提供一种空调器,包括本公开实施例的螺杆压缩机。该空调器具有本公开实施例的螺杆压缩机的相应优点。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解: 依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (15)

  1. 一种螺杆压缩机,包括:
    压缩机外壳(1),具有压缩部安装空间(C1)和驱动部安装空间(C2),以及具有与所述压缩部安装空间(C1)连通的压缩机进口(1A)和压缩机出口(1B);
    压缩部(2),设置于所述压缩部安装空间(C1)内,用于将所述压缩机进口(1A)的气体压缩后从所述压缩机出口(1B)输出,包括第一压缩单元(21)和第二压缩单元(22),所述第一压缩单元(21)包括第一阳转子(211)和与所述第一阳转子(211)啮合的第一阴转子(212);所述第二压缩单元(22)包括第二阳转子(221)和与所述第二阳转子(221)啮合的第二阴转子(222);和
    驱动部(3),设置于所述驱动部安装空间(C2)内,包括电机转子(31)和与所述压缩机外壳(1)相对固定且可相对转动地套设于所述电机转子(31)外周的电机定子(32);
    其中,所述电机转子(31)固定地套装于所述第一阳转子(211)的转动轴上,所述第二阳转子(221)的转动轴与所述第一阳转子(211)的转动轴同轴一体设置形成单体转动轴。
  2. 根据权利要求1所述的螺杆压缩机,其中,沿所述单体转动轴的轴向,所述第一压缩单元(21)和所述第二压缩单元(22)的吸气端相邻而排气端相互远离。
  3. 根据权利要求1或2所述的螺杆压缩机,其中,所述第一压缩单元(21)和所述第二压缩单元(22)串联。
  4. 根据权利要求1至3中任一项所述的螺杆压缩机,其中,
    所述第一阳转子(211)的螺旋部和所述第二阳转子(221)的螺旋部中至少一个与所述单体转动轴一体制成;或者
    所述第一阳转子(211)的螺旋部和所述第二阳转子(221)的螺旋部中至少一个为与所述单体转动轴止转地连接的套装螺旋部。
  5. 根据权利要求4所述的螺杆压缩机,其中,所述套装螺旋部的排气端与所述单 体转动轴之间通过台阶面轴向限位配合以防止所述套装螺旋部朝向所述套装螺旋部的吸气端运动,所述单体转动轴与所述套装螺旋部的吸气端通过轴向定位部轴向固定。
  6. 根据权利要求5所述的螺杆压缩机,其中,所述轴向定位部包括:
    止挡件,贴靠于所述套装螺旋部的吸气端的端面与所述单体转动轴的位于套装螺旋部的吸气端的台阶面上;和
    连接件,将所述止挡件连接于所述套装螺旋部和/或所述单体转动轴上。
  7. 根据权利要求1至6中任一项所述的螺杆压缩机,其中,包括安装腔隔离部(4),沿所述单体转动轴的轴向,所述驱动部安装空间(C2)位于压缩部安装空间(C1)的一端,所述安装腔隔离部(4)设置于所述第一压缩单元(21)和所述第二压缩单元(22)之间,将所述压缩部安装空间(C1)分隔为第一安装腔(C11)和第二安装腔(C12),所述单体转动轴穿过所述安装腔隔离部(4)并与所述安装腔隔离部(4)可相对转动地密封连接,所述安装腔隔离部(4)上设有用于将所述第一压缩单元(21)的排气输送至所述第二压缩单元(22)的连通口(4A)。
  8. 根据权利要求7所述的螺杆压缩机,其中,所述单体转动轴与所述安装腔隔离部(4)之间通过齿形密封结构(4B)可相对转动地密封连接。
  9. 根据权利要求7或8所述的螺杆压缩机,其中,所述第一压缩单元(21)位于所述驱动部(3)与所述第二压缩单元(22)之间。
  10. 根据权利要求7至9中任一项所述的螺杆压缩机,其中,
    所述第一压缩单元(21)还包括第一内壳(213)、第一分隔壁(214)和内部轴承座(215),所述第一内壳(213)、所述第一分隔壁(214)和所述内部轴承座(215)相对于所述压缩机外壳(1)固定,所述内部轴承座(215)和所述安装腔隔离部(4)分别位于所述第一内壳(213)的轴向两端,所述第一阳转子(211)和所述第二阴转子(222)位于所述内部轴承座(215)、所述第一内壳(213)和所述安装腔隔离部(4)围成的第一转子空间(C111)内,所述第一内壳(213)上设有第一压缩单元吸 气口(21A),所述内部轴承座(215)和/或所述第一内壳(213)上设有第一压缩单元排气口(21B),所述第一分隔壁(214)位于所述压缩机外壳(1)和所述第一内壳(213)之间,将所述第一内壳(213)和所述内部轴承座(215)以及所述压缩机外壳(1)之间的第一安装腔(C11)分隔为第一吸气腔(C112)和第一排气腔(C113),所述第一吸气腔(C112)与所述压缩机进口(1A)和所述第一压缩单元吸气口(21A)连通,所述第一排气腔(C113)与所述第一压缩单元排气口(21B)和所述连通口(4A)连通;和/或
    所述第二压缩单元(22)还包括相对于所述压缩机外壳(1)固定的第二内壳(223)和第二分隔壁(224),所述第二内壳(223)设置于所述第二安装腔(C12)内,所述第二阳转子(221)和所述第二阴转子(222)位于所述安装腔隔离部(4)、所述第二内壳(223)和所述压缩机外壳(1)围成的第二转子空间(C121)内,所述第二内壳(223)上设有第二压缩单元吸气口(22A)和第二压缩单元排气口,所述第二分隔壁(224)位于所述压缩机外壳(1)和所述第二内壳(223)之间,将所述第二内壳(223)和所述压缩机外壳(1)之间的第二安装腔(C12)分隔为第二吸气腔(C122)和第二排气腔(C123),所述第二吸气腔(C122)与所述连通口(4A)和所述第二压缩单元吸气口(22A)连通,所述第二排气腔(C123)与所述第二压缩单元排气口和所述压缩机出口(1B)连通。
  11. 根据权利要求10所述的螺杆压缩机,其中,
    所述单体转动轴通过轴承支承于所述内部轴承座(215)和所述压缩机外壳(1)上;和/或
    所述第一阴转子(212)通过轴承支承于所述内部轴承座(215)和所述安装腔隔离部(4)上;
    所述第二阴转子(222)通过轴承支承于所述安装腔隔离部(4)和所述压缩机外壳(1)上。
  12. 根据权利要求1至11中任一项所述的螺杆压缩机,其中,所述第一阴转子(212)的轴线、所述第二阴转子(222)的轴线和所述单体转动轴的轴线位于同一平面内,所述第一阴转子(212)的轴线和所述第二阴转子(222)的轴线位于所述单体转动轴的轴线两侧。
  13. 根据权利要求1至12中任一项所述的螺杆压缩机,其中,所述压缩机外壳(1)包括沿所述单体转动轴的轴向顺次布置的四个壳段,所述四个壳段包括:
    第一壳段(11),所述第一壳段(11)的第一端封闭,所述驱动部(3)安装于所述第一壳段(11)内;
    第二壳段(12),所述第二壳段(12)的第一端与所述第一壳段(11)的第二端连接,所述压缩机进口(1A)设置于所述第二壳段(12),所述第一压缩单元(21)安装于所述第二壳段(12)内;
    第三壳段(13),所述第三壳段(13)的第一端与所述第二壳段(12)的第二端连接,所述第二压缩单元(22)安装于所述第三壳段(13)内;和
    第四壳段(14),所述第四壳段(14)的第一端与所述第三壳段(13)的第二端连接,所述第四壳段(14)的第二端封闭,所述第四壳段(14)内设置用于容纳支撑所述单体转动轴的轴承的轴承腔和用于容纳支撑所述第二阴转子(222)的轴承的轴承腔,所述压缩机出口(1B)位于所述第四壳段(14)上。
  14. 根据权利要求13所述的螺杆压缩机,其中,所述第一壳段(11)上设置用于冷却所述驱动部(3)的冷却流体流动的冷却通道(111)。
  15. 一种空调器,其中,包括权利要求1至14中任一项所述的螺杆压缩机。
PCT/CN2022/088919 2021-08-12 2022-04-25 螺杆压缩机和空调器 WO2023015947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110923450.8 2021-08-12
CN202110923450.8A CN113417851A (zh) 2021-08-12 2021-08-12 螺杆压缩机和空调器

Publications (1)

Publication Number Publication Date
WO2023015947A1 true WO2023015947A1 (zh) 2023-02-16

Family

ID=77718990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088919 WO2023015947A1 (zh) 2021-08-12 2022-04-25 螺杆压缩机和空调器

Country Status (2)

Country Link
CN (1) CN113417851A (zh)
WO (1) WO2023015947A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417851A (zh) * 2021-08-12 2021-09-21 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机和空调器
CN113819056A (zh) * 2021-10-13 2021-12-21 珠海格力电器股份有限公司 压缩机及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279682A (en) * 1963-02-23 1966-10-18 Howden James & Co Ltd Screw air compressors
JPH1193875A (ja) * 1997-07-25 1999-04-06 Kobe Steel Ltd 2段形油冷式スクリュ圧縮機
CN105257516A (zh) * 2015-11-17 2016-01-20 晗森机械(上海)有限公司 螺杆串离心叶轮的压缩机
CN205172899U (zh) * 2015-11-17 2016-04-20 晗森机械(上海)有限公司 螺杆串离心叶轮的压缩机
CN113417851A (zh) * 2021-08-12 2021-09-21 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机和空调器
CN215762238U (zh) * 2021-08-12 2022-02-08 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279682A (en) * 1963-02-23 1966-10-18 Howden James & Co Ltd Screw air compressors
JPH1193875A (ja) * 1997-07-25 1999-04-06 Kobe Steel Ltd 2段形油冷式スクリュ圧縮機
CN105257516A (zh) * 2015-11-17 2016-01-20 晗森机械(上海)有限公司 螺杆串离心叶轮的压缩机
CN205172899U (zh) * 2015-11-17 2016-04-20 晗森机械(上海)有限公司 螺杆串离心叶轮的压缩机
CN113417851A (zh) * 2021-08-12 2021-09-21 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机和空调器
CN215762238U (zh) * 2021-08-12 2022-02-08 珠海格力节能环保制冷技术研究中心有限公司 螺杆压缩机和空调器

Also Published As

Publication number Publication date
CN113417851A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2023015947A1 (zh) 螺杆压缩机和空调器
EP2119915B1 (en) Two-stage screw compressor and refrigerating device
JP2019525060A (ja) 雄および雌ロータを備えたスクリューコンプレッサ
US20020141861A1 (en) Integrally cast volute style scroll and gearbox
EP3722609B1 (en) Screw compressor and air conditioning unit
WO2019148954A1 (zh) 一种多级罗茨干式真空泵
WO2015027825A1 (zh) 多级离心压缩机及空调机组
US6488480B1 (en) Housing for screw compressor
EP3168478B1 (en) Compressor
CN215762238U (zh) 螺杆压缩机和空调器
US6093007A (en) Multi-rotor helical-screw compressor with thrust balance device
US10107290B2 (en) Scroll compressor including a discharge port for discharging high-pressure gas provided around the periphery of a rib in the discharge cavity
CN215890463U (zh) 压缩机及空调器
JP3921551B1 (ja) 多段ルーツ式コンプレッサ
US20150247500A1 (en) Key coupling and scroll compressor incorporating same
CN213478653U (zh) 一种压缩机及热泵系统
CN114151364A (zh) 压缩机的双向叶轮增压结构、离心式压缩机及空调器
CN210196008U (zh) 一种水润滑螺杆压缩机
CN109790751A (zh) 用于商用车的螺旋式压缩机的螺杆组件
KR100310922B1 (ko) 스크롤형압축기
CN208474109U (zh) 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵
JP6767948B2 (ja) 油冷式2段型スクリュ圧縮機
CN113819056A (zh) 压缩机及空调器
KR20110082356A (ko) 터보 압축기 및 이의 조립 방법
CN216922539U (zh) 压缩机的双向叶轮增压结构、离心式压缩机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22854949

Country of ref document: EP

Kind code of ref document: A1