WO2023015779A1 - 一种高可靠性保护电路和供电系统 - Google Patents
一种高可靠性保护电路和供电系统 Download PDFInfo
- Publication number
- WO2023015779A1 WO2023015779A1 PCT/CN2021/134338 CN2021134338W WO2023015779A1 WO 2023015779 A1 WO2023015779 A1 WO 2023015779A1 CN 2021134338 W CN2021134338 W CN 2021134338W WO 2023015779 A1 WO2023015779 A1 WO 2023015779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- supply voltage
- voltage
- module
- control signal
- Prior art date
Links
- 230000002159 abnormal effect Effects 0.000 claims abstract description 75
- 238000012544 monitoring process Methods 0.000 claims abstract description 60
- 230000005669 field effect Effects 0.000 claims abstract description 32
- 239000003990 capacitor Substances 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 12
- 230000003071 parasitic effect Effects 0.000 abstract description 12
- 230000005856 abnormality Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/087—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00036—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
- H02J13/0004—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
Definitions
- the present application relates to the field of power supply, and more specifically refers to a high-reliability protection circuit and a power supply system.
- the current can only be judged by relying on front-end current monitoring.
- this parasitic inductance will change the voltage and current. Phase, so that the change in current phase lags behind the change in voltage phase by 90 degrees.
- This current hysteresis is reflected in the current monitoring and control device at the power supply end, which means that the actual current on the back-end chip side may have reached a higher point than that monitored by the current monitoring and control device, and the chip or board may have irrecoverable damaged or burned.
- the purpose of the embodiment of the present application is to propose a high-reliability protection circuit, which can quickly monitor the voltage change when the remote load current is abnormal, realize rapid protection against current abnormality, and avoid the current caused by parasitic inductance. Damage accidents of chips or devices at the load end caused by phase lag.
- the first aspect of the embodiment of the present application provides a high reliability protection circuit, including:
- the load overcurrent voltage monitoring module is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs the first abnormal current signal based on the load supply voltage;
- the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal;
- the driver charging charge pump module is electrically connected to the control logic module to receive the shutdown control signal, and generates the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal;
- the driving pole fast discharge module is electrically connected to the driving pole charging charge pump module to receive the driving pole voltage control signal, and based on the driving pole voltage control signal, a power FET cut-off signal is sent;
- the power FET switch is electrically connected to the driver charging charge pump module and the driver fast discharge module to respectively receive the channel conduction parameter control signal and the power FET cut-off signal, and adjust the power based on the channel conduction parameter control signal
- the channel turn-on parameter of the FET switch is based on the cut-off signal of the power FET to cut off the main current of the circuit.
- the circuit further includes a front-end current monitoring module, which is electrically connected to the power supply terminal to collect the main current of the circuit, and generates a second abnormal current signal based on the main current.
- control logic module is also electrically connected to the front-end current monitoring module to receive the second abnormal current signal, and generate a shutdown control signal based on the first abnormal current signal and the second abnormal current signal.
- the load overcurrent voltage monitoring module includes:
- the near-end supply voltage feedback module is connected in parallel at both ends of the near-end load to detect the near-end load supply voltage of the near-end load;
- the remote supply voltage feedback module is connected in parallel at both ends of the remote load to detect the remote load supply voltage of the remote load;
- the H-bridge capacitor voltage difference feedback module is electrically connected to the near-end supply voltage feedback module and the remote supply voltage feedback module to obtain the near-end load supply voltage and the remote load supply voltage, and based on the near-end load supply voltage and the remote load
- the power supply voltage determines and outputs a first current abnormal signal.
- both the near-end supply voltage feedback module and the remote supply voltage feedback module are purely resistive circuits, and both the near-end supply voltage feedback module and the remote supply voltage feedback module include voltage dividing resistors, and the voltage dividing resistors Resistor values are determined based on the total voltage of the circuit.
- the H-bridge capacitance voltage difference feedback module includes a differential comparison amplifier; the H-bridge capacitance voltage difference feedback module is further configured to determine the far-near-end load supply voltage difference based on the near-end load supply voltage and the far-end load supply voltage, and use The differential comparison amplifier amplifies the voltage difference between the far and near end load power supply and outputs it as the first abnormal current signal.
- control logic module is further configured to compare the amplified far-near end load supply voltage difference with a predetermined far-near end voltage difference threshold, and respond to the amplified far-near end load supply voltage difference exceeding the far-near end voltage difference Threshold value and output the turn-off control signal indicating to turn off the power field effect transistor switch, and output the turn-off control signal indicating to keep the power field effect transistor switch on in response to the amplified far-near end load supply voltage difference not exceeding the far-near end voltage difference threshold Signal.
- the channel conduction parameters include: whether the channel of the power field effect transistor switch is conducted, the conduction degree of the channel, and the cut-off speed of the channel.
- the power MOSFET switch is further configured to respond to the power MOSFET cut-off signal indicating to cut off the main current of the circuit, so that the driving pole of the power MOSFET switch releases the power MOSFET switch at the cut-off speed of the channel The driver voltage reaches the conduction level of the channel to cut off the main current of the circuit.
- the second aspect of the embodiments of the present application provides a high-reliability power supply system, including:
- Loads including near-end loads and far-end loads
- the high-reliability protection circuit is electrically connected to the power supply terminal and the load, so as to use the power supply terminal to supply power to the load and provide high-reliability power supply protection.
- the high reliability protection circuit includes:
- the load overcurrent voltage monitoring module is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs the first abnormal current signal based on the load supply voltage;
- the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal;
- the driver charging charge pump module is electrically connected to the control logic module to receive the shutdown control signal, and generates the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal;
- the driving pole fast discharge module is electrically connected to the driving pole charging charge pump module to receive the driving pole voltage control signal, and based on the driving pole voltage control signal, a power FET cut-off signal is sent;
- the power FET switch is electrically connected to the driver charging charge pump module and the driver fast discharge module to respectively receive the channel conduction parameter control signal and the power FET cut-off signal, and adjust the power based on the channel conduction parameter control signal
- the channel turn-on parameter of the FET switch is based on the cut-off signal of the power FET to cut off the main current of the circuit.
- the circuit further includes a front-end current monitoring module, which is electrically connected to the power supply terminal to collect the main current of the circuit, and generates a second abnormal current signal based on the main current.
- control logic module is also electrically connected to the front-end current monitoring module to receive the second abnormal current signal, and generate a shutdown control signal based on the first abnormal current signal and the second abnormal current signal.
- the load overcurrent voltage monitoring module includes:
- the near-end supply voltage feedback module is connected in parallel at both ends of the near-end load to detect the near-end load supply voltage of the near-end load;
- the remote supply voltage feedback module is connected in parallel at both ends of the remote load to detect the remote load supply voltage of the remote load;
- the H-bridge capacitor voltage difference feedback module is electrically connected to the near-end supply voltage feedback module and the remote supply voltage feedback module to obtain the near-end load supply voltage and the remote load supply voltage, and based on the near-end load supply voltage and the remote load
- the power supply voltage determines and outputs a first current abnormal signal.
- both the near-end supply voltage feedback module and the remote supply voltage feedback module are purely resistive circuits, and both the near-end supply voltage feedback module and the remote supply voltage feedback module include voltage dividing resistors, and the voltage dividing resistors Resistor values are determined based on the total voltage of the circuit.
- the H-bridge capacitance voltage difference feedback module includes a differential comparison amplifier; the H-bridge capacitance voltage difference feedback module is further configured to determine the far-near-end load supply voltage difference based on the near-end load supply voltage and the far-end load supply voltage, and use The differential comparison amplifier amplifies the voltage difference between the far and near end load power supply and outputs it as the first abnormal current signal.
- control logic module is further configured to compare the amplified far-near end load supply voltage difference with a predetermined far-near end voltage difference threshold, and respond to the amplified far-near end load supply voltage difference exceeding the far-near end voltage difference Threshold value and output the turn-off control signal indicating to turn off the power field effect transistor switch, and output the turn-off control signal indicating to keep the power field effect transistor switch on in response to the amplified far-near end load supply voltage difference not exceeding the far-near end voltage difference threshold Signal.
- the channel conduction parameters include: whether the channel of the power field effect transistor switch is conducted, the conduction degree of the channel, and the cut-off speed of the channel.
- the power MOSFET switch is further configured to respond to the power MOSFET cut-off signal indicating to cut off the main current of the circuit, so that the driving pole of the power MOSFET switch releases the power MOSFET switch at the cut-off speed of the channel The driver voltage reaches the conduction level of the channel to cut off the main current of the circuit.
- the high reliability protection circuit uses a load overcurrent voltage monitoring module, which is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs the load supply voltage based on the load supply voltage.
- the first abnormal current signal; the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal; the driving electrode charging charge pump module is electrically Connect to the control logic module to receive the shutdown control signal, and generate the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal; the driver fast discharge module is electrically connected to the driver charging charge pump module to Receive the driving pole voltage control signal, and send the power field effect tube cut-off signal based on the driving pole voltage control signal; the power field effect tube switch is electrically connected to the driving pole charge charge pump module and the driving pole fast discharge module to respectively receive the channel The conduction parameter control signal and the power FET cut-off signal are used, and the channel conduction parameters of the power FET switch are adjusted based on the channel conduction parameter control signal.
- the technical scheme of cutting off the main current of the circuit based on the power FET cut-off signal can quickly Monitor the voltage change when the remote load current is abnormal, realize fast protection against current abnormality, and avoid damage accidents of load-side chips or devices caused by the current phase lag caused by parasitic inductance.
- FIG. 1 is a schematic structural diagram of a high reliability protection circuit provided by the present application
- FIG. 2 is a circuit schematic diagram of the high reliability protection circuit provided by the present application.
- FIG. 1 shows a schematic structural diagram of the first embodiment of the high-reliability protection circuit provided by the present application.
- the described high reliability protection circuit includes:
- the load overcurrent voltage monitoring module is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs the first abnormal current signal based on the load supply voltage;
- the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal;
- the driver charging charge pump module is electrically connected to the control logic module to receive the shutdown control signal, and generates the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal;
- the driving pole fast discharge module is electrically connected to the driving pole charging charge pump module to receive the driving pole voltage control signal, and based on the driving pole voltage control signal, a power FET cut-off signal is sent;
- the power FET switch is electrically connected to the driver charging charge pump module and the driver fast discharge module to respectively receive the channel conduction parameter control signal and the power FET cut-off signal, and adjust the power based on the channel conduction parameter control signal
- the channel turn-on parameter of the FET switch is based on the cut-off signal of the power FET to cut off the main current of the circuit.
- the devices and equipment disclosed in the examples of this application can be various electronic terminal equipment, such as mobile phones, personal digital assistants (PDA), tablet computers (PAD), smart TVs, etc., or large terminal equipment, such as servers, etc. Therefore, the scope of protection disclosed in the embodiments of the present application should not be limited to a specific type of device or equipment.
- the client disclosed in the embodiments of the present application may be applied to any of the above-mentioned electronic terminal devices in the form of electronic hardware, computer software, or a combination of the two.
- the circuit further includes a front-end current monitoring module, which is electrically connected to the power supply terminal to collect the main current of the circuit, and generates a second abnormal current signal based on the main current.
- control logic module is also electrically connected to the front-end current monitoring module to receive the second abnormal current signal, and generate a shutdown control signal based on the first abnormal current signal and the second abnormal current signal.
- the load overcurrent voltage monitoring module includes:
- the near-end supply voltage feedback module is connected in parallel at both ends of the near-end load to detect the near-end load supply voltage of the near-end load;
- the remote supply voltage feedback module is connected in parallel at both ends of the remote load to detect the remote load supply voltage of the remote load;
- the H-bridge capacitor voltage difference feedback module is electrically connected to the near-end supply voltage feedback module and the remote supply voltage feedback module to obtain the near-end load supply voltage and the remote load supply voltage, and based on the near-end load supply voltage and the remote load
- the power supply voltage determines and outputs a first current abnormal signal.
- the "H-bridge capacitor voltage difference feedback module” involved in this application is essentially a differential circuit.
- an H-bridge is sometimes used to refer to a structure formed by connecting two transistors.
- the pins connected by the two transistors form the horizontal line in the middle of the H, and the pins connected to other components are connected to the left and right sides of the shit H. side.
- the H-bridge capacitor voltage difference feedback module is the same, and its topological structure is H-shaped in the circuit schematic diagram, so it is called the H-bridge capacitor voltage difference feedback module.
- both the near-end supply voltage feedback module and the remote supply voltage feedback module are purely resistive circuits, and both the near-end supply voltage feedback module and the remote supply voltage feedback module include voltage dividing resistors, and the voltage dividing resistors Resistor values are determined based on the total voltage of the circuit.
- the H-bridge capacitance voltage difference feedback module includes a differential comparison amplifier; the H-bridge capacitance voltage difference feedback module is further configured to determine the far-near-end load supply voltage difference based on the near-end load supply voltage and the far-end load supply voltage, and use The differential comparison amplifier amplifies the voltage difference between the far and near end load power supply and outputs it as the first abnormal current signal.
- control logic module is further configured to compare the amplified far-near end load supply voltage difference with a predetermined far-near end voltage difference threshold, and respond to the amplified far-near end load supply voltage difference exceeding the far-near end voltage difference Threshold value and output the turn-off control signal indicating to turn off the power field effect transistor switch, and output the turn-off control signal indicating to keep the power field effect transistor switch on in response to the amplified far-near end load supply voltage difference not exceeding the far-near end voltage difference threshold Signal.
- the channel conduction parameters include: whether the channel of the power field effect transistor switch is conducted, the conduction degree of the channel, and the cut-off speed of the channel.
- the power MOSFET switch is further configured to respond to the power MOSFET cut-off signal indicating to cut off the main current of the circuit, so that the driving pole of the power MOSFET switch releases the power MOSFET switch at the cut-off speed of the channel The driver voltage reaches the conduction level of the channel to cut off the main current of the circuit.
- the current abnormality protection design method in the prior art only relies on front-end current monitoring to realize back-end current protection.
- the path is long, and the parasitic inductance is large, the short-term transient large current at the remote end will cause the phase lag of the front-end monitoring current due to the presence of parasitic inductance.
- the greater the abnormal current the greater the parasitic inductance.
- the abnormal current protection circuit design of the embodiment of the present application has a near-end power supply voltage feedback module and a far-end load overcurrent voltage feedback module, and these two modules together form a load overcurrent voltage monitoring module; the near-end and remote voltage feedback modules are both Adopt pure resistive circuit design, adapt to different input voltage systems through voltage divider resistor adjustment, voltage feedback devices add filter capacitive devices, reduce errors caused by accidental interference, and pure resistive circuits can greatly reduce inductive parameters the lagging effect.
- the near-end and remote voltage feedback module signals use the H-bridge capacitor voltage difference feedback signal.
- the voltage at the far-end voltage feedback will drop, while the voltage at the near-end voltage feedback is basically the same as the supply voltage , thereby forming a voltage difference between the far-end voltage and the near-end voltage.
- the voltage phase is ahead of the current, which can quickly monitor the change of the far and near end voltage, so the H bridge capacitor voltage feedback method is used to monitor the change of the voltage under the abnormal current of the far end. Feedback the change of the voltage difference between the two ends of the H-bridge capacitor to the logic control module, and the partial voltage of the near-end and far-end voltage feedback can realize the application of different abnormal current protection points by adjusting the threshold.
- the input control signal of the driver charging charge pump module is connected to the logic control module, the output terminal is connected to the driving GATE pole of the MOS transistor, and the ground terminal is connected to the ground of the line.
- the fast discharge circuit is connected to the driving GATE pole of the power MOS.
- the input signals of the logic control module include the current monitoring signal of the front-end current monitoring module and the remote voltage difference signal of the load overcurrent voltage monitoring module.
- the two signals can be logically monitored independently and perform protection actions, or they can be combined to achieve a more comprehensive Protect.
- the output signal of the logic control module is the driving signal of the power MOS GATE pole, which realizes the normal power-on conduction action of the MOS and the protection action when the current is abnormal.
- the optional front-end current monitoring module is used to realize the accurate monitoring function of the current value; the voltage of the driving pole is provided and controlled through the driving pole charging charge pump module to control the on-off of the MOS transistor and the opening degree of the channel and turn-off speed; through the fast discharge module, when the MOS needs to be turned off, the GATE pole charge is quickly released, the action is rapid, and the turn-off current continues to be turned on; the near-end and far-end voltages in the module are monitored through the load overcurrent voltage
- the two parts of the feedback module use the characteristic that the voltage in the inductive circuit is ahead of the current to realize the monitoring of the near-end and remote voltage abnormalities, and then realize the faster protection action of the remote load current abnormality; through the near-end and remote voltage feedback
- the adjustment of the voltage threshold of the module can realize the protection action of two abnormal situations of slow overcurrent and instantaneous overcurrent at the same time; through the logic controller module, the current difference signal of the load overcurrent voltage monitoring module is received, and the received near
- the high-reliability protection circuit uses a load overcurrent voltage monitoring module, which is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs based on the load supply voltage.
- the first abnormal current signal; the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal; the driving electrode charging charge pump module is electrically Connect to the control logic module to receive the shutdown control signal, and generate the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal; the driver fast discharge module is electrically connected to the driver charging charge pump module to Receive the driving pole voltage control signal, and send the power field effect tube cut-off signal based on the driving pole voltage control signal; the power field effect tube switch is electrically connected to the driving pole charge charge pump module and the driving pole fast discharge module to respectively receive the channel The conduction parameter control signal and the power FET cut-off signal are used, and the channel conduction parameters of the power FET switch are adjusted based on the channel conduction parameter control signal.
- the technical scheme of cutting off the main current of the circuit based on the power FET cut-off signal can quickly Monitor the voltage change when the remote load current is abnormal, realize fast protection against current abnormality, and avoid damage accidents of load-side chips or devices caused by the current phase lag caused by parasitic inductance.
- the high-reliability power supply system includes:
- Loads including near-end loads and far-end loads
- the high-reliability protection circuit is electrically connected to the power supply terminal and the load, so as to use the power supply terminal to supply power to the load and provide high-reliability power supply protection.
- the high reliability protection circuit includes:
- the load overcurrent voltage monitoring module is connected in parallel at both ends of the load to detect the load supply voltage of the load, and determines and outputs the first abnormal current signal based on the load supply voltage;
- the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal;
- the driver charging charge pump module is electrically connected to the control logic module to receive the shutdown control signal, and generates the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal;
- the driving pole fast discharge module is electrically connected to the driving pole charging charge pump module to receive the driving pole voltage control signal, and based on the driving pole voltage control signal, a power FET cut-off signal is sent;
- the power FET switch is electrically connected to the driver charging charge pump module and the driver fast discharge module to respectively receive the channel conduction parameter control signal and the power FET cut-off signal, and adjust the power based on the channel conduction parameter control signal
- the channel turn-on parameter of the FET switch is based on the cut-off signal of the power FET to cut off the main current of the circuit.
- the circuit further includes a front-end current monitoring module, which is electrically connected to the power supply terminal to collect the main current of the circuit, and generates a second abnormal current signal based on the main current.
- control logic module is also electrically connected to the front-end current monitoring module to receive the second abnormal current signal, and generate a shutdown control signal based on the first abnormal current signal and the second abnormal current signal.
- the load overcurrent voltage monitoring module includes:
- the near-end supply voltage feedback module is connected in parallel at both ends of the near-end load to detect the near-end load supply voltage of the near-end load;
- the remote supply voltage feedback module is connected in parallel at both ends of the remote load to detect the remote load supply voltage of the remote load;
- the H-bridge capacitor voltage difference feedback module is electrically connected to the near-end supply voltage feedback module and the remote supply voltage feedback module to obtain the near-end load supply voltage and the remote load supply voltage, and based on the near-end load supply voltage and the remote load
- the power supply voltage determines and outputs a first current abnormal signal.
- both the near-end supply voltage feedback module and the remote supply voltage feedback module are purely resistive circuits, and both the near-end supply voltage feedback module and the remote supply voltage feedback module include voltage dividing resistors, and the voltage dividing resistors Resistor values are determined based on the total voltage of the circuit.
- the H-bridge capacitance voltage difference feedback module includes a differential comparison amplifier; the H-bridge capacitance voltage difference feedback module is further configured to determine the far-near-end load supply voltage difference based on the near-end load supply voltage and the far-end load supply voltage, and use The differential comparison amplifier amplifies the voltage difference between the far and near end load power supply and outputs it as the first abnormal current signal.
- control logic module is further configured to compare the amplified far-near end load supply voltage difference with a predetermined far-near end voltage difference threshold, and respond to the amplified far-near end load supply voltage difference exceeding the far-near end voltage difference Threshold value and output the turn-off control signal indicating to turn off the power field effect transistor switch, and output the turn-off control signal indicating to keep the power field effect transistor switch on in response to the amplified far-near end load supply voltage difference not exceeding the far-near end voltage difference threshold Signal.
- the channel conduction parameters include: whether the channel of the power field effect transistor switch is conducted, the conduction degree of the channel, and the cut-off speed of the channel.
- the power MOSFET switch is further configured to respond to the power MOSFET cut-off signal indicating to cut off the main current of the circuit, so that the driving pole of the power MOSFET switch releases the power MOSFET switch at the cut-off speed of the channel The driver voltage reaches the conduction level of the channel to cut off the main current of the circuit.
- the high-reliability power supply system uses a load overcurrent voltage monitoring module connected in parallel at both ends of the load to detect the load power supply voltage of the load, and determines and outputs the power supply voltage based on the load power supply voltage.
- the first abnormal current signal; the control logic module is electrically connected to the load overcurrent voltage monitoring module to receive the first abnormal current signal, and generates a shutdown control signal based on the first abnormal current signal; the driving electrode charging charge pump module is electrically Connect to the control logic module to receive the shutdown control signal, and generate the driver voltage control signal and the channel conduction parameter control signal based on the shutdown control signal; the driver fast discharge module is electrically connected to the driver charging charge pump module to Receive the driving pole voltage control signal, and send the power field effect tube cut-off signal based on the driving pole voltage control signal; the power field effect tube switch is electrically connected to the driving pole charge charge pump module and the driving pole fast discharge module to respectively receive the channel The conduction parameter control signal and the power FET cut-off signal are used, and the channel conduction parameters of the power FET switch are adjusted based on the channel conduction parameter control signal.
- the technical scheme of cutting off the main current of the circuit based on the power FET cut-off signal can quickly Monitor the voltage change when the remote load current is abnormal, realize fast protection against current abnormality, and avoid damage accidents of load-side chips or devices caused by the current phase lag caused by parasitic inductance.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electronic Switches (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本申请公开了一种高可靠性保护电路和供电系统,包括:负载过流电压监视模块,检测负载的负载供电电压并确定和输出第一电流异常信号;控制逻辑模块,接收第一电流异常信号并生成关断控制信号;驱动极充电电荷泵模块,接收关断控制信号并生成驱动极电压控制信号和通道导通参数控制信号;驱动极快速泄放模块,接收驱动极电压控制信号并发出功率场效应管切断信号;功率场效应管开关,分别接收通道导通参数控制信号和功率场效应管切断信号并调整功率场效应管开关的通道导通参数和切断电路主电流。本申请能够快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护,避免由寄生电感带来的电流相位滞后引发的负载端芯片或器件损毁事故。
Description
本申请要求在2021年8月12日提交中国专利局、申请号为202110923617.0、发明名称为“一种高可靠性保护电路和供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及供电领域,更具体地,特别是指一种高可靠性保护电路和供电系统。
伴随云计算、AI(人工智能)、大数据等新型互联网技术的发展,服务器的性能也越来越强大,各高精密芯片对电流的大小和电源的稳定性也越来越高。对电流的需求越来越大是为了获得更高的功率以及更高的性能。然而电流需求的增加也带来了电流发生异常的隐患,常见的电流异常就是过流和短路。过流和短路会使芯片内部产生较高的热量,进而损坏内部半导体结构;同时,过流和短路电流也会使芯片外部的PCB铜箔产生较高热量,对PCB(印刷电路板)路径上相邻的器件造成损坏严重的会产生明火带来严重的安全事故。
现有技术对电流的保护往往采用FUSE(保险丝)或E-FUSE(电子保险丝)方案,在输入端串联上保护器件,相当于电流监视控制器件加上功率MOS(场效应管)器件;电流监视控制器件监控到输入端电流过流或较大的电流时,给功率MOS器件发送关闭命令,切断后端电流的供应。
现有技术的技术方案中仅能依靠前端电流监视进行电流的判断。但是在实际应用中往往由于板卡面积过大,供电路径过长,会存在较大的阻抗、寄生电容和寄生电感,因此在电流突然过载或短路时,这种寄生电感会改 变电压和电流的相位,使电流相位的变化滞后于电压相位的变化90度。这种电流的滞后反映到供电端电流监视控制器件中,意味着后端芯片侧的实际电流可能已经达到了超过电流监视控制器件所监视到的更高点,芯片或板卡也许已经有不可恢复的损坏或烧毁。
总而言之,现有方案在应对突然的电流过载或短路时,电流异常传递到电流监视器件再作用到功率MOS关闭时,保护性动作存在一定的延迟。针对现有技术中电流过载侦测存在延迟的问题,目前尚无有效的解决方案。
发明内容
有鉴于此,本申请实施例的目的在于提出一种高可靠性保护电路,能够快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护,避免由寄生电感带来的电流相位滞后引发的负载端芯片或器件损毁事故。
基于上述目的,本申请实施例的第一方面提供了一种高可靠性保护电路,包括:
负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;
控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;
驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;
驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;
功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并 基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流。
在一些实施方式中,电路还包括前端电流监视模块,电性连接到电源供电端以采集电路主电流,并基于主电流生成第二电流异常信号。
在一些实施方式中,控制逻辑模块还电性连接到前端电流监视模块以接收第二电流异常信号,并基于第一电流异常信号和第二电流异常信号生成关断控制信号。
在一些实施方式中,负载过流电压监视模块包括:
近端供电压反馈模块,并联在近端负载两端以检测近端负载的近端负载供电电压;
远端供电压反馈模块,并联在远端负载两端以检测远端负载的远端负载供电电压;
H桥电容电压差反馈模块,电性连接到近端供电压反馈模块和远端供电压反馈模块以获取近端负载供电电压和远端负载供电电压,并基于近端负载供电电压和远端负载供电电压确定和输出第一电流异常信号。
在一些实施方式中,近端供电压反馈模块和远端供电压反馈模块均为纯阻性电路,并且近端供电压反馈模块和远端供电压反馈模块均包括分压电阻,分压电阻的电阻值基于电路总电压而确定。
在一些实施方式中,H桥电容电压差反馈模块包括差分比较放大器;H桥电容电压差反馈模块进一步配置为基于近端负载供电电压和远端负载供电电压确定远近端负载供电电压差,并使用差分比较放大器将远近端负载供电电压差放大并作为第一电流异常信号输出。
在一些实施方式中,控制逻辑模块进一步配置为将经放大的远近端负载供电电压差与预定的远近端电压差阈值相比较,并响应于经放大的远近端负载供电电压差超过远近端电压差阈值而输出指示关断功率场效应管开关的关断控制信号,响应于经放大的远近端负载供电电压差不超过远近端电压差阈值而输出指示保持功率场效应管开关导通的关断控制信号。
在一些实施方式中,通道导通参数包括:功率场效应管开关的通道是否导通、通道的导通程度、通道的切断速度。
在一些实施方式中,功率场效应管开关进一步配置为响应于功率场效应管切断信号指示切断电路主电流,而使功率场效应管开关的驱动极以通道的切断速度来释放功率场效应管开关的驱动极电压达到通道的导通程度,以切断电路主电流。
本申请实施例的第二方面提供了一种高可靠性供电系统,包括:
电源供电端;
负载,包括近端负载和远端负载;
高可靠性保护电路,高可靠性保护电路电性连接到电源供电端和负载,以使用电源供电端向负载供电并提供高可靠性的供电保护。
在一些实施方式中,高可靠性保护电路包括:
负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;
控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;
驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;
驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;
功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流。
在一些实施方式中,电路还包括前端电流监视模块,电性连接到电源供电端以采集电路主电流,并基于主电流生成第二电流异常信号。
在一些实施方式中,控制逻辑模块还电性连接到前端电流监视模块以接收第二电流异常信号,并基于第一电流异常信号和第二电流异常信号生成关断控制信号。
在一些实施方式中,负载过流电压监视模块包括:
近端供电压反馈模块,并联在近端负载两端以检测近端负载的近端负载供电电压;
远端供电压反馈模块,并联在远端负载两端以检测远端负载的远端负载供电电压;
H桥电容电压差反馈模块,电性连接到近端供电压反馈模块和远端供电压反馈模块以获取近端负载供电电压和远端负载供电电压,并基于近端负载供电电压和远端负载供电电压确定和输出第一电流异常信号。
在一些实施方式中,近端供电压反馈模块和远端供电压反馈模块均为纯阻性电路,并且近端供电压反馈模块和远端供电压反馈模块均包括分压电阻,分压电阻的电阻值基于电路总电压而确定。
在一些实施方式中,H桥电容电压差反馈模块包括差分比较放大器;H桥电容电压差反馈模块进一步配置为基于近端负载供电电压和远端负载供电电压确定远近端负载供电电压差,并使用差分比较放大器将远近端负载供电电压差放大并作为第一电流异常信号输出。
在一些实施方式中,控制逻辑模块进一步配置为将经放大的远近端负载供电电压差与预定的远近端电压差阈值相比较,并响应于经放大的远近端负载供电电压差超过远近端电压差阈值而输出指示关断功率场效应管开关的关断控制信号,响应于经放大的远近端负载供电电压差不超过远近端电压差阈值而输出指示保持功率场效应管开关导通的关断控制信号。
在一些实施方式中,通道导通参数包括:功率场效应管开关的通道是否导通、通道的导通程度、通道的切断速度。
在一些实施方式中,功率场效应管开关进一步配置为响应于功率场效应管切断信号指示切断电路主电流,而使功率场效应管开关的驱动极以通道的切断速度来释放功率场效应管开关的驱动极电压达到通道的导通程度,以切断电路主电流。
本申请具有以下有益技术效果:本申请实施例提供的高可靠性保护电路,通过使用负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流的技术方案,能够快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护,避免由寄生电感带来的电流相位滞后引发的负载端芯片或器件损毁事故。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的高可靠性保护电路的结构示意图;
图2为本申请提供的高可靠性保护电路的电路原理图。
为使本申请的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本申请实施例进一步详细说明。
需要说明的是,本申请实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本申请实施例的限定,后续实施例对此不再一一说明。
基于上述目的,本申请实施例的第一个方面,提出了一种快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护的高可靠性保护电路的一个实施例。图1示出的是本申请提供的高可靠性保护电路的第一实施例的结构示意图。
所述的高可靠性保护电路,如图1所示包括:
负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;
控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;
驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;
驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;
功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流。
本申请例公开所述的装置、设备等可为各种电子终端设备,例如手机、 个人数字助理(PDA)、平板电脑(PAD)、智能电视等,也可以是大型终端设备,如服务器等,因此本申请实施例公开的保护范围不应限定为某种特定类型的装置、设备。本申请实施例公开所述的客户端可以是以电子硬件、计算机软件或两者的组合形式应用于上述任意一种电子终端设备中。
在一些实施方式中,电路还包括前端电流监视模块,电性连接到电源供电端以采集电路主电流,并基于主电流生成第二电流异常信号。
在一些实施方式中,控制逻辑模块还电性连接到前端电流监视模块以接收第二电流异常信号,并基于第一电流异常信号和第二电流异常信号生成关断控制信号。
在一些实施方式中,负载过流电压监视模块包括:
近端供电压反馈模块,并联在近端负载两端以检测近端负载的近端负载供电电压;
远端供电压反馈模块,并联在远端负载两端以检测远端负载的远端负载供电电压;
H桥电容电压差反馈模块,电性连接到近端供电压反馈模块和远端供电压反馈模块以获取近端负载供电电压和远端负载供电电压,并基于近端负载供电电压和远端负载供电电压确定和输出第一电流异常信号。
本申请中涉及的“H桥电容电压差反馈模块”本质上是一种差分电路。在现有技术中,H桥有时用于指代两个晶体管对接形成的结构,两个晶体管相连的管脚构成H中间的横,而各自连接到其它元器件的管脚狗屎H的左右两条边。H桥电容电压差反馈模块与之相同,在电路原理图中其拓扑结构呈现H形,因而称为H桥电容电压差反馈模块。
在一些实施方式中,近端供电压反馈模块和远端供电压反馈模块均为纯阻性电路,并且近端供电压反馈模块和远端供电压反馈模块均包括分压电阻,分压电阻的电阻值基于电路总电压而确定。
在一些实施方式中,H桥电容电压差反馈模块包括差分比较放大器;H桥电容电压差反馈模块进一步配置为基于近端负载供电电压和远端负载供 电电压确定远近端负载供电电压差,并使用差分比较放大器将远近端负载供电电压差放大并作为第一电流异常信号输出。
在一些实施方式中,控制逻辑模块进一步配置为将经放大的远近端负载供电电压差与预定的远近端电压差阈值相比较,并响应于经放大的远近端负载供电电压差超过远近端电压差阈值而输出指示关断功率场效应管开关的关断控制信号,响应于经放大的远近端负载供电电压差不超过远近端电压差阈值而输出指示保持功率场效应管开关导通的关断控制信号。
在一些实施方式中,通道导通参数包括:功率场效应管开关的通道是否导通、通道的导通程度、通道的切断速度。
在一些实施方式中,功率场效应管开关进一步配置为响应于功率场效应管切断信号指示切断电路主电流,而使功率场效应管开关的驱动极以通道的切断速度来释放功率场效应管开关的驱动极电压达到通道的导通程度,以切断电路主电流。
现有技术的电流异常保护设计方法仅依靠前端电流监视来实现后端电流的保护。但当后端系统部件较多,路径较长,寄生感性较大时,远端的短时瞬态大电流会因存在寄生电感,导致前端监视电流相位滞后,异常电流越大,寄生感性带来的远端的瞬时过流、短路异常发生到前端实现保护会有一定延迟,此时远端芯片可能已经发生较大程度的损毁。
相对应的,本申请实施例可实现功能如下:
1)通过可选的前端电流监视模块,实现电流值准确监视功能;
2)通过驱动极充电电荷泵模块,提供和控制驱动极的电压,来控制MOS管的导通关断和通道的打开程度和关断速度;
3)通过快速泄放模块,当需要关掉MOS时,快速放掉GATE极电荷,迅速动作,关断电流的继续导通;
4)通过负载过流电压监视模块中近端和远端电压反馈模块两个部分,利用感性电路中电压超前于电流的特性,实现近端和远端电压异常的监视,进而实现更快速的远端负载电流异常的保护动作;通过近端和远端电压反 馈模块的电压阈值的调整,可以同时实现缓慢过流和瞬时过流两种异常情况的保护动作;
5)通过逻辑控制器模块,接收负载过流电压监视模块的电流差信号,对接收到的近端远端电压差与预设阈值进行比较,判断电流异常的发生;同时逻辑控制模块也会接收前端电流监视模块的电流信息,实现与外部电流值或功率的监控功能,并与负载过流电压监视模块组成双保险。
本申请实施例的电流异常保护电路设计分别具有近端供电电压反馈模块和远端负载过流电压反馈模块,这两个模块共同组成负载过流电压监视模块;近端和远端电压反馈模块均采用纯阻性电路设计,通过分压电阻调整适应不同输入电压的系统,电压反馈器件增加滤波容性器件,减小偶然干扰带来的误差,且纯阻性电路能极大的减小感性参数带来的滞后影响。
近端和远端电压反馈模块信号采用H桥电容电压差反馈信号,当远端负载出现过流时,远端电压反馈处的电压会出现跌落,而近端电压反馈处电压与供电电压基本一致,由此形成远端电压与近端电压的电压差。感性电路中电压相位超前于电流,能够快速监视远近端电压的变化,所以采用H桥电容电压反馈方式监视远端异常电流下电压的变化。将H桥电容两端电压差变化反馈给逻辑控制模块,近端和远端电压反馈的分压可通过调整阈值实现不同异常电流保护点的应用。
驱动极充电电荷泵模块的输入控制信号接逻辑控制模块,输出端接到MOS管的驱动GATE极,接地端连接至线路的地。快速泄放电路接功率MOS的驱动GATE极,当驱动极充电电荷泵模块发出关闭MOS的指令时,快速泄放电路由于驱动极电压的跌落而迅速动作,泄放掉驱动极电荷,实现快速关断导通MOS的功能,以此断掉后端异常电流的持续。
逻辑控制模块输入信号包括前端电流监视模块的电流监视信号和负载过流电压监视模块的远端电压差信号,两个信号可以逻辑独立监控并执行保护动作,也可以两者结合起来实现更全面的保护。逻辑控制模块输出信号为功率MOS GATE极驱动信号,实现MOS的正常开机导通动作和电流异常时的保护动作。
本申请实施例通过可选的前端电流监视模块,实现电流值准确监视功能;通过驱动极充电电荷泵模块,提供和控制驱动极的电压,来控制MOS管的导通关断和通道的打开程度和关断速度;通过快速泄放模块,当需要关掉MOS时,快速放掉GATE极电荷,迅速动作,关断电流的继续导通;通过负载过流电压监视模块中近端和远端电压反馈模块两个部分,利用感性电路中电压超前于电流的特性,实现近端和远端电压异常的监视,进而实现更快速的远端负载电流异常的保护动作;通过近端和远端电压反馈模块的电压阈值的调整,可同时实现缓慢过流和瞬时过流两种异常情况的保护动作;通过逻辑控制器模块,接收负载过流电压监视模块的电流差信号,对接收到的近端远端电压差与预设阈值进行比较,判断电流异常的发生;同时逻辑控制模块也会接收前端电流监视模块的电流信息,实现与外部电流值或功率的监控功能,并与负载过流电压监视模块组成双保险。本申请可有效解决服务器、计算机电源供电中寄生感性带来的电流相位滞后造成的电流异常监视和保护不及时带来的负载端芯片或器件损毁事故。
从上述实施例可以看出,本申请实施例提供的高可靠性保护电路,通过使用负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流的技术方案,能够快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护,避免由寄生电感带来的电流相位滞后引发的负载端芯片 或器件损毁事故。
基于上述目的,本申请实施例的第二个方面,提出了一种高可靠性供电系统的一个实施例。高可靠性供电系统包括:
电源供电端;
负载,包括近端负载和远端负载;
高可靠性保护电路,高可靠性保护电路电性连接到电源供电端和负载,以使用电源供电端向负载供电并提供高可靠性的供电保护。
在一些实施方式中,高可靠性保护电路包括:
负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;
控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;
驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;
驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;
功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流。
在一些实施方式中,电路还包括前端电流监视模块,电性连接到电源供电端以采集电路主电流,并基于主电流生成第二电流异常信号。
在一些实施方式中,控制逻辑模块还电性连接到前端电流监视模块以接收第二电流异常信号,并基于第一电流异常信号和第二电流异常信号生 成关断控制信号。
在一些实施方式中,负载过流电压监视模块包括:
近端供电压反馈模块,并联在近端负载两端以检测近端负载的近端负载供电电压;
远端供电压反馈模块,并联在远端负载两端以检测远端负载的远端负载供电电压;
H桥电容电压差反馈模块,电性连接到近端供电压反馈模块和远端供电压反馈模块以获取近端负载供电电压和远端负载供电电压,并基于近端负载供电电压和远端负载供电电压确定和输出第一电流异常信号。
在一些实施方式中,近端供电压反馈模块和远端供电压反馈模块均为纯阻性电路,并且近端供电压反馈模块和远端供电压反馈模块均包括分压电阻,分压电阻的电阻值基于电路总电压而确定。
在一些实施方式中,H桥电容电压差反馈模块包括差分比较放大器;H桥电容电压差反馈模块进一步配置为基于近端负载供电电压和远端负载供电电压确定远近端负载供电电压差,并使用差分比较放大器将远近端负载供电电压差放大并作为第一电流异常信号输出。
在一些实施方式中,控制逻辑模块进一步配置为将经放大的远近端负载供电电压差与预定的远近端电压差阈值相比较,并响应于经放大的远近端负载供电电压差超过远近端电压差阈值而输出指示关断功率场效应管开关的关断控制信号,响应于经放大的远近端负载供电电压差不超过远近端电压差阈值而输出指示保持功率场效应管开关导通的关断控制信号。
在一些实施方式中,通道导通参数包括:功率场效应管开关的通道是否导通、通道的导通程度、通道的切断速度。
在一些实施方式中,功率场效应管开关进一步配置为响应于功率场效应管切断信号指示切断电路主电流,而使功率场效应管开关的驱动极以通道的切断速度来释放功率场效应管开关的驱动极电压达到通道的导通程度,以切断电路主电流。
从上述实施例可以看出,本申请实施例提供的高可靠性供电系统,通过使用负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于负载供电电压确定和输出第一电流异常信号;控制逻辑模块,电性连接到负载过流电压监视模块以接收第一电流异常信号,并基于第一电流异常信号生成关断控制信号;驱动极充电电荷泵模块,电性连接到控制逻辑模块以接收关断控制信号,并基于关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;驱动极快速泄放模块,电性连接到驱动极充电电荷泵模块以接收驱动极电压控制信号,并基于驱动极电压控制信号而发出功率场效应管切断信号;功率场效应管开关,电性连接到驱动极充电电荷泵模块和驱动极快速泄放模块以分别接收通道导通参数控制信号和功率场效应管切断信号,并基于通道导通参数控制信号调整功率场效应管开关的通道导通参数,基于功率场效应管切断信号切断电路主电流的技术方案,能够快速监控到远端负载电流异常时的电压变化,实现针对电流异常的快速保护,避免由寄生电感带来的电流相位滞后引发的负载端芯片或器件损毁事故。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本申请实施例公开的范围(包括权利要求)被限于这些例子;在本申请实施例的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本申请实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本申请实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。
Claims (10)
- 一种高可靠性保护电路,其特征在于,包括:负载过流电压监视模块,并联在负载两端以检测负载的负载供电电压,并基于所述负载供电电压确定和输出第一电流异常信号;控制逻辑模块,电性连接到所述负载过流电压监视模块以接收所述第一电流异常信号,并基于所述第一电流异常信号生成关断控制信号;驱动极充电电荷泵模块,电性连接到所述控制逻辑模块以接收所述关断控制信号,并基于所述关断控制信号生成驱动极电压控制信号和通道导通参数控制信号;驱动极快速泄放模块,电性连接到所述驱动极充电电荷泵模块以接收所述驱动极电压控制信号,并基于所述驱动极电压控制信号而发出功率场效应管切断信号;功率场效应管开关,电性连接到所述驱动极充电电荷泵模块和所述驱动极快速泄放模块以分别接收所述通道导通参数控制信号和所述功率场效应管切断信号,并基于所述通道导通参数控制信号调整所述功率场效应管开关的通道导通参数,基于所述功率场效应管切断信号切断电路主电流。
- 根据权利要求1所述的电路,其特征在于,还包括:前端电流监视模块,电性连接到电源供电端以采集电路主电流,并基于所述主电流生成第二电流异常信号。
- 根据权利要求2所述的电路,其特征在于,所述控制逻辑模块还电性连接到所述前端电流监视模块以接收所述第二电流异常信号,并基于所述第一电流异常信号和所述第二电流异常信号生成关断控制信号。
- 根据权利要求1所述的电路,其特征在于,所述负载过流电压监视模块包括:近端供电压反馈模块,并联在近端负载两端以检测近端负载的近端负载供电电压;远端供电压反馈模块,并联在远端负载两端以检测远端负载的远端负载供电电压;H桥电容电压差反馈模块,电性连接到所述近端供电压反馈模块和所述远端供电压反馈模块以获取所述近端负载供电电压和所述远端负载供电电压,并基于所述近端负载供电电压和所述远端负载供电电压确定和输出所述第一电流异常信号。
- 根据权利要求4所述的电路,其特征在于,所述近端供电压反馈模块和所述远端供电压反馈模块均为纯阻性电路,并且所述近端供电压反馈模块和所述远端供电压反馈模块均包括分压电阻,所述分压电阻的电阻值基于电路总电压而确定。
- 根据权利要求4所述的电路,其特征在于,所述H桥电容电压差反馈模块包括差分比较放大器;所述H桥电容电压差反馈模块进一步配置为基于所述近端负载供电电压和所述远端负载供电电压确定远近端负载供电电压差,并使用所述差分比较放大器将所述远近端负载供电电压差放大并作为所述第一电流异常信号输出。
- 根据权利要求6所述的电路,其特征在于,所述控制逻辑模块进一步配置为将经放大的所述远近端负载供电电压差与预定的远近端电压差阈值相比较,并响应于经放大的所述远近端负载供电电压差超过所述远近端电压差阈值而输出指示关断所述功率场效应管开关的所述关断控制信号,响应于经放大的所述远近端负载供电电压差不超过所述远近端电压差阈值而输出指示保持所述功率场效应管开关导通的所述关断控制信号。
- 根据权利要求1所述的电路,其特征在于,所述通道导通参数包括:所述功率场效应管开关的通道是否导通、通道的导通程度、通道的切断速度。
- 根据权利要求8所述的电路,其特征在于,所述功率场效应管开关进一步配置为响应于所述功率场效应管切断信号指示切断电路主电流,而使所述功率场效应管开关的驱动极以所述通道的切断速度来释放所述功率场效应管开关的驱动极电压达到所述通道的导通程度,以切断电路主电流。
- 一种高可靠性供电系统,其特征在于,包括:电源供电端;负载,包括近端负载和远端负载;根据权利要求1至9中任意一项所述的高可靠性保护电路,所述高可靠性保护电路电性连接到电源供电端和负载,以使用电源供电端向负载供电并提供高可靠性的供电保护。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/261,069 US20240088641A1 (en) | 2021-08-12 | 2021-11-30 | High-reliability protection circuit and power supply system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110923617.0 | 2021-08-12 | ||
CN202110923617.0A CN113381378B (zh) | 2021-08-12 | 2021-08-12 | 一种高可靠性保护电路和供电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023015779A1 true WO2023015779A1 (zh) | 2023-02-16 |
Family
ID=77577004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/134338 WO2023015779A1 (zh) | 2021-08-12 | 2021-11-30 | 一种高可靠性保护电路和供电系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240088641A1 (zh) |
CN (1) | CN113381378B (zh) |
WO (1) | WO2023015779A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115882421A (zh) * | 2023-02-23 | 2023-03-31 | 杰华特微电子股份有限公司 | 电子保险丝电路及应用其的电路系统 |
CN117220258A (zh) * | 2023-09-20 | 2023-12-12 | 江苏高倍智能装备有限公司 | 一种远端滤波电路和滤波方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113381378B (zh) * | 2021-08-12 | 2021-11-02 | 苏州浪潮智能科技有限公司 | 一种高可靠性保护电路和供电系统 |
CN114256962B (zh) * | 2021-12-17 | 2023-08-15 | 苏州浪潮智能科技有限公司 | 一种提高供电安全性和可靠性的电路及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101557099A (zh) * | 2009-05-12 | 2009-10-14 | 中兴通讯股份有限公司 | 模块电源短路保护电路 |
CN111711164A (zh) * | 2020-05-28 | 2020-09-25 | 苏州浪潮智能科技有限公司 | 一种延迟过电流保护的电路及设计方法 |
CN111857222A (zh) * | 2020-06-18 | 2020-10-30 | 苏州浪潮智能科技有限公司 | 一种电源调节电压的系统 |
CN113381378A (zh) * | 2021-08-12 | 2021-09-10 | 苏州浪潮智能科技有限公司 | 一种高可靠性保护电路和供电系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127882A (en) * | 1999-02-23 | 2000-10-03 | Maxim Integrated Products, Inc. | Current monitors with independently adjustable dual level current thresholds |
US6864645B2 (en) * | 2003-03-05 | 2005-03-08 | Matsushita Electric Works, Ltd. | Method and circuit for driving a gas discharge lamp |
JP4651428B2 (ja) * | 2005-03-28 | 2011-03-16 | ローム株式会社 | スイッチングレギュレータ及びこれを備えた電子機器 |
US8207788B2 (en) * | 2007-04-06 | 2012-06-26 | Avnera Corporation | Calibrated feedback |
US10038427B2 (en) * | 2012-10-17 | 2018-07-31 | Qualcomm Incorporated | Power path switching in an electronic device including a plurality of charging ports |
CN203396510U (zh) * | 2013-06-09 | 2014-01-15 | 广东明阳龙源电力电子有限公司 | 一种igbt温度检测电路 |
WO2015031069A1 (en) * | 2013-08-26 | 2015-03-05 | Micropac Industries, Inc. | Power controller |
US11171481B1 (en) * | 2020-11-23 | 2021-11-09 | Ford Global Technologies, Llc | Dual-supply automotive electrical system with protection of motion control components |
-
2021
- 2021-08-12 CN CN202110923617.0A patent/CN113381378B/zh active Active
- 2021-11-30 US US18/261,069 patent/US20240088641A1/en active Pending
- 2021-11-30 WO PCT/CN2021/134338 patent/WO2023015779A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101557099A (zh) * | 2009-05-12 | 2009-10-14 | 中兴通讯股份有限公司 | 模块电源短路保护电路 |
CN111711164A (zh) * | 2020-05-28 | 2020-09-25 | 苏州浪潮智能科技有限公司 | 一种延迟过电流保护的电路及设计方法 |
CN111857222A (zh) * | 2020-06-18 | 2020-10-30 | 苏州浪潮智能科技有限公司 | 一种电源调节电压的系统 |
CN113381378A (zh) * | 2021-08-12 | 2021-09-10 | 苏州浪潮智能科技有限公司 | 一种高可靠性保护电路和供电系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115882421A (zh) * | 2023-02-23 | 2023-03-31 | 杰华特微电子股份有限公司 | 电子保险丝电路及应用其的电路系统 |
CN117220258A (zh) * | 2023-09-20 | 2023-12-12 | 江苏高倍智能装备有限公司 | 一种远端滤波电路和滤波方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113381378A (zh) | 2021-09-10 |
CN113381378B (zh) | 2021-11-02 |
US20240088641A1 (en) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023015779A1 (zh) | 一种高可靠性保护电路和供电系统 | |
JP6714050B2 (ja) | 半導体デバイスおよびそれを含む電子回路 | |
US10348079B2 (en) | Overcurrent protective device, electronic apparatus, integrated circuit, and signal transmission circuit | |
US7924538B2 (en) | Self-protecting crowbar | |
JP2021040482A (ja) | 過電流保護装置 | |
US10811874B2 (en) | Load switch integrated circuit and electronic device | |
US7619503B2 (en) | Power semiconductor apparatus provided with power controlling semiconductor modules connected in parallel to each other | |
TWI446714B (zh) | 可防止電源電壓突波之開關電路及其控制方法 | |
CN112803901A (zh) | 一种基于自适应过流保护的功率放大器 | |
TW201301702A (zh) | 保護電路及具有保護電路的電子裝置 | |
KR20120135390A (ko) | 전압 제어 회로 | |
US11626726B2 (en) | Power clamp circuit, chip and dual-clamp method | |
WO2022095498A1 (zh) | 限电流控制电路的控制方法及电气系统 | |
WO2021109591A1 (zh) | 一种电源电路及均流方法 | |
CN113452009A (zh) | 一种保护电路 | |
WO2024031994A1 (zh) | 一种防电流反灌的电路结构 | |
US9525296B2 (en) | Battery state monitoring circuit and battery device | |
KR102050907B1 (ko) | 고장 전류 제한기 및 고장 전류 제한 방법 | |
US11722130B1 (en) | System and method for distinguishing short-circuit events in high inrush current systems | |
CN111181128A (zh) | 一种基于e-fuse芯片的保护电路 | |
JP2003088095A (ja) | 電力用半導体回路装置 | |
US8687335B2 (en) | Electronic circuit breaker of a power supply having dual output ports | |
CN116316493A (zh) | 短路电流抑制电路、服务器设备及过流抑制电路 | |
JP2020129867A (ja) | 過電流検出回路及び電流出力回路 | |
TWI826114B (zh) | 穩壓電路模組與電壓控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21953384 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18261069 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21953384 Country of ref document: EP Kind code of ref document: A1 |