WO2023014072A1 - Composition for increasing protein bypass rate and method for increasing protein bypass rate - Google Patents

Composition for increasing protein bypass rate and method for increasing protein bypass rate Download PDF

Info

Publication number
WO2023014072A1
WO2023014072A1 PCT/KR2022/011452 KR2022011452W WO2023014072A1 WO 2023014072 A1 WO2023014072 A1 WO 2023014072A1 KR 2022011452 W KR2022011452 W KR 2022011452W WO 2023014072 A1 WO2023014072 A1 WO 2023014072A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
protein
fermented
rumen
legumes
Prior art date
Application number
PCT/KR2022/011452
Other languages
French (fr)
Korean (ko)
Inventor
이종화
이혁기
Original Assignee
주식회사 피드업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피드업 filed Critical 주식회사 피드업
Publication of WO2023014072A1 publication Critical patent/WO2023014072A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/22Methane [CH4], e.g. from rice paddies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S426/00Food or edible material: processes, compositions, and products
    • Y10S426/807Poultry or ruminant feed

Definitions

  • the present invention relates to a composition for increasing the bypass rate with increased availability of proteins and carbohydrates, and a method for increasing the bypass rate of protein.
  • Ruminants use nitrogen from feed relatively inefficiently compared to other economic animals. For example, North American and Northern European dairy cows use nitrogen as milk on average 25% and 28%, respectively. The efficiency is lower, with only about 14% efficiency in weight gain from nitrogen in the feed. Eventually, nitrogen that is not transferred to animal body tissues or milk is released into feces and urine, contaminating soil, rivers, and air. Therefore, the supply of appropriate feed protein to ruminants and the technology to increase the nitrogen utilization rate of ruminants are important in terms of not only reducing feed costs but also reducing environmental pollution. Feed protein of rumen livestock can be classified into rumen degradable protein (RDP), rumen undegradable protein (RUP), and non-protein nitrogen (NPN).
  • RDP rumen degradable protein
  • RUP rumen undegradable protein
  • NPN non-protein nitrogen
  • Ammonia (NH3) emitted from livestock farming is a major cause of air and water pollution. Ammonia affects eutrophication, soil acidification, and fine dust increase. Ammonia is oxidized by soil microorganisms and converted into nitrous oxide (N2O), and nitrous oxide is one of the strongest greenhouse gases, and its effect on global warming is about 310 times higher than that of the same amount of carbon dioxide.
  • N2O nitrous oxide
  • One example of the present invention is to provide a composition for increasing the rumen bypass rate of proteins, in which digestion and absorption can occur intensively in the small intestine after passing through the rumen in a state where digestion and absorption in the rumen of ruminants are inhibited. It is to do.
  • Another example of the present invention is to reduce methane production in the rumen of ruminants, reduce nitrogen manure excretion, and reduce emissions of nitrogen such as nitrous oxide and ammonia, which can reduce greenhouse gas emissions of ruminants, It is to provide a composition for reducing greenhouse gases in ruminants and a method for reducing greenhouse gases in ruminants.
  • One example of the present invention relates to a composition for increasing the rumen bypass rate of protein, including a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast.
  • Another example of the present invention relates to a feed containing the rumen bypass increase rate composition of protein according to an embodiment of the present invention.
  • Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And it relates to a method for producing a composition for increasing the rumen bypass rate of protein, including the step of heat-treating the fermented legumes, a method for producing a feed containing the composition, or a method for increasing the rumen bypass rate of protein.
  • Another example of the present invention relates to the use of fermented legumes fermented with fermentation bacteria including lactic acid bacteria and yeast for increasing the rumen bypass rate of protein.
  • Another example of the present invention relates to the use of fermented legumes fermented with fermenting bacteria including lactic acid bacteria and yeast for the preparation of a composition for increasing the rumen bypass rate of protein.
  • Another example of the present invention relates to a composition for reducing greenhouse gases in ruminants, including the rumen bypass increase rate composition of protein according to an embodiment of the present invention.
  • Another embodiment of the present invention relates to a method for reducing greenhouse gas emissions of ruminants, comprising the step of administering a rumen bypass increase rate composition of protein according to an embodiment of the present invention.
  • Another example of the present invention relates to the use of fermented legumes fermented with fermenting bacteria including lactic acid bacteria and yeast for reducing greenhouse gas emissions of ruminants.
  • the composition according to one embodiment of the present invention includes a fermented product of soybeans fermented with a fermenting strain, and the fermenting strain may be a fermenting strain for forming an amine group of a protein and/or a fermenting strain for accelerating a Maillard reaction.
  • One example of the present invention relates to a bypass protein in which digestion and absorption in the small intestine can occur intensively after passage in a state in which digestion and absorption in the rumen of a ruminant animal are inhibited, and a feed containing the same.
  • fructose in legumes is fermented using lactic acid bacteria and yeast to make active sugar, suppress digestion and absorption in the rumen, and heat-treat the fermented product so that digestion and absorption are maximized in the small intestine.
  • the bypass protein manufacturing process according to an example of the present invention causes a component change of legumes through fermentation without a separate additive to induce a Maillard reaction to effectively produce bypass protein.
  • bypass means passing through the rumen of a ruminant without being decomposed and being decomposed and absorbed in the intestine, and there are bypass fat and bypass protein products.
  • ruminants get most of the amino acids they need from proteins that have passed through the rumen, that is, bypass proteins, but in the case of legumes, which are the main raw materials of feed, especially soybean meal, which accounts for 60% of the world's vegetable protein feed ingredients, most of them come from the rumen. Decomposition takes place and only about 25% is bypassed, resulting in inefficiency.
  • "bypass protein” means protein that has passed through the rumen
  • bypass rate means the ratio of bypass protein among ingested proteins.
  • the fermenting bacteria may include lactic acid bacteria and yeast.
  • lactic acid bacteria and yeast When legumes are fermented using lactic acid bacteria and yeast, both species are facultative anaerobe microorganisms, so they are suitable for anaerobic solid-phase fermentation, and have the advantage that co-culture is possible.
  • the fermentation time can be greatly reduced by about half, and although the fermentation time is shortened, the protein content of the fermented product is greatly increased, and the protein is cut to form an amine group, It also has the advantage of generating reducing sugars.
  • the fermented product has high rumen non-degradable protein (RUP) and small intestine absorbable protein content due to the combined use of lactic acid bacteria and yeast, blood urea nitrogen concentration, methane gas production, fecal nitrogen excretion, and ammonia production , and the amount of nitrous oxide produced was significantly low, proving the synergistic effect by the combined use of lactic acid bacteria and yeast.
  • ROP rumen non-degradable protein
  • the present invention can use lactic acid bacteria and yeast that effectively metabolize anti-nutritional factors that are irrelevant to the nutritional properties of legumes and rather degrade the performance as a feed. That is, it is possible to provide a composition for increasing the bypass rate that significantly reduces the fermentation time compared to fermentation of lactic acid bacteria alone and has a high protein content in the final product.
  • lactic acid bacteria are known to have excellent metabolizing ability for fructose.
  • An enzyme called alpha-(1,6)galactosidase which is commonly found in lactic acid bacteria, is contained in large amounts in soybean meal such as raffinose and stachyose. It is an enzyme that breaks down fructose.
  • the content of raffinose and stachyose in soybean meal is more than 6% based on dry matter content.
  • stachyose is broken down into two galactose, one fructose, and one glucose molecules.
  • the Maillard reaction can be promoted more effectively if lactic acid bacteria capable of secreting a large amount of alpha-galacosidase enzyme and converting fructose in soybean meal into more activated monosaccharides are used.
  • the fermenting bacteria according to one embodiment of the present invention includes lactic acid bacteria and yeast, and the ratio of the number of cells of the lactic acid bacteria and the yeast is 100:1 to 1:100, 100:1 to 1:50, and 100:1 to 1:1, 50:1 to 1:50, 50:1 to 1:1, 20:1 to 1:20, 20:1 to 1:15, 20:1 to 1:10, 20:1 to 1 :5, 20:1 to 1:1, 20:1 to 5:1, 20:1 to 10:1, 15:1 to 1:20, 15:1 to 1:15, 15:1 to 1:10 , 15:1 to 1:5, 15:1 to 1:1, 15:1 to 5:1, 15:1 to 10:1, 10:1 to 1:20, 10:1 to 1:15, 10 :1 to 1:10, 10:1 to 1:5, 10:1 to 1:10, 10:1 to 1:5, 10:1 to 1:1, 10:1 to 5:1, 10:1 to 6:1, 10:1 to 7:1, 10:1 to 8:1, or 10:1 to
  • lactic acid bacteria inoculated into the fermentation raw material may be 10 6 ⁇ 10 8 cfu/g
  • yeast may be 10 5 ⁇ 10 7 cfu/g.
  • the lactic acid bacteria are Enterococcus genus strains, Lactobacillus genus strains, Weissella genus strains, Leuconostoc genus strains, Streptococcus genus strains, and Lactococcus It may be one or more selected from the group consisting of genus strains.
  • the Enterococcus genus lactic acid bacteria include Enterococcus faecium and Enterococcus faecalis
  • the Lactobacillus genus lactic acid bacteria include Lactobacillus plantarum, or Lactobacillus Lactobacillus acidophilus, etc.
  • lactic acid bacteria of the Weissella genus include Weissella koreensis or Weissella cibaria.
  • lactic acid bacteria of the genus Leuconostoc include Leuconostoc citreum or Leuconostoc mesenteroides
  • lactic acid bacteria of the genus Streptococcus include Streptococcus thermophilus thermophillus
  • Lactococcus lactis is a lactic acid bacterium of the genus Lactococcus.
  • the yeast may be at least one selected from the group consisting of strains of the genus Saccharomyces, strains of the genus Tolula, strains of the genus Xanthophyllomyces, and strains of the genus Pichia.
  • Yeasts of the genus Saccharomyces include Saccharomyces cerevisiae and Saccharomyces uvarum
  • yeasts of the genus Xanthophyllomyces include Xanthophyllomyces dendrorhous
  • yeasts of the genus Pichia include Pichia farinosa
  • Torula yeasts include Cyberlindnera jadinii.
  • the fermented product included in the composition according to an embodiment of the present invention has a moisture content of 30 to 60% by weight, 30 to 50% by weight, 30 to 45% by weight, 30 to 40% by weight, 35 to 60% by weight, 35% by weight of the medium to 50% by weight, 35 to 45% by weight, 35 to 40% by weight, 40 to 60% by weight, 40 to 50% by weight, or 40 to 45% by weight.
  • the fermented product included in the composition according to an example of the present invention is 20 to 40 °C, 20 to 35 °C, 20 to 30 °C, 25 to 40 °C, 25 to 35 °C, 25 to 30 °C, 30 to 40 °C, 30 °C to 35°C, or 35 to 40°C.
  • the fermented product may have a high rumen undegradable protein (RUP) content, and/or a high intestinal absorption protein content.
  • the composition according to one embodiment of the present invention may be a composition for increasing rumen bypass of proteins and/or a composition for increasing absorption of proteins in the small intestine.
  • the crude protein content of the fermented product may be 48.5% by weight or more, 49% by weight or more, 50% by weight or more, or 51% by weight or more.
  • the crude protein content may be the crude protein content based on 8% by weight of water.
  • the rumen non-degradable protein refers to a protein that is not degraded in the rumen, for example, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, It may be a protein that does not degrade for 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, or 24 hours.
  • the rumen undegradable protein (RUP) content of the fermented product is 74 wt% or more, 75 wt% or more, 76 wt% or more, 77 wt% or more, 78 wt% based on 100 wt% of the total crude protein content of the fermented product. It may be more than 79% by weight, or more than 80% by weight.
  • the small intestine absorption protein or small intestine degradation protein is a protein that is not degraded in the rumen but is degraded and absorbed in the small intestine, for example, pepsin treatment for 1 hour, and / or small intestine enzyme solution 18 hours, 19 hours, 20 hours, 21 hours , proteins that are digested after 22, 23, or 24 hours of treatment.
  • the small intestine enzyme solution may contain at least one of trypsin, chymotrypsin, amylase and lipase.
  • the small intestine absorbed protein content of the fermented product may be 69% by weight or more, 70% by weight or more, 71% by weight or more, or 72% by weight or more based on 100% by weight of the total crude protein content of the fermented product.
  • the fermented product may be heat treated after fermentation. Specifically, heat treatment is required to create a brownish bond between activated sugars and proteins produced as a result of lactic acid fermentation, and through heat treatment, a Maillard reaction occurs in which amino groups of amino acids and carbonyl groups of reducing sugars condense in the fermented product. At this time, when more than necessary heat is applied, the bypass rate is high, but the digestibility in the small intestine is low, and when a small amount of heat is applied, the bypass rate is low. On the other hand, amino acids such as lysine, which are very important components for the quality of feed, are highly likely to be destroyed in the heat treatment process because they are relatively bad for heat.
  • heat treatment of the fermented product is a sensitive process that must be accurately controlled so that the minimum temperature and time required for the browning reaction are used.
  • a device such as an extruder or an expeller or a device to which a roasting method is applied may be used.
  • roasting which is the most commonly used method, devices that directly heat soybean meal dispersed by fins installed inside a cylinder-shaped reactor with flames are mainly used.
  • a roasting heat treatment is used as an example, and a batch type rotary drum is used as a mechanical device for accurate control of temperature and processing time.
  • the heat treatment is 70 to 150 °C, 70 to 145 °C, 70 to 140 °C, 70 to 130 °C, 80 to 150 °C, 80 to 145 °C, 80 to 140 °C, 80 to 130 °C, 90 to 150 °C, 90 to It may be performed at a temperature of 145 ° C, 90 to 140 ° C, or 90 to 130 ° C.
  • the heat treatment is 5 to 60 minutes, 5 to 50 minutes, 5 to 40 minutes, 5 to 35 minutes, 5 to 30 minutes, 5 to 25 minutes, 5 to 20 minutes, 5 to 15 minutes, 5 to 10 minutes after fermentation, 10 to 60 minutes, 10 to 50 minutes, 10 to 40 minutes, 10 to 35 minutes, 10 to 30 minutes, 10 to 25 minutes, 10 to 20 minutes, 10 to 15 minutes, 15 to 60 minutes, 15 to 50 minutes, 15 to 40 minutes, 15 to 35 minutes, 15 to 30 minutes, 15 to 25 minutes, 15 to 20 minutes, 20 to 60 minutes, 20 to 50 minutes, 20 to 40 minutes, 20 to 35 minutes, 20 to 30 minutes, 20 to 25 minutes, 25 to 60 minutes, 25 to 50 minutes, 25 to 40 minutes, 25 to 35 minutes, 25 to 30 minutes, 30 to 60 minutes, 30 to 50 minutes, 30 to 40 minutes, or 30 to 35 minutes may be performing
  • the heat treatment may be performed at 90 to 100° C. for 10 to 60 minutes.
  • heat treatment was performed at a temperature as low as possible in order to avoid problems that may occur due to excessive heat treatment.
  • the composition according to one embodiment of the present invention may include a fermented product produced by a fermentation process using lactic acid bacteria and yeast and a heat treatment process without adding additives such as enzymes or sugars at all.
  • the manufacturing process of the fermented product is more economical and efficient than the conventional bypass soybean meal protein manufacturing process, and at the same time, it is possible to produce products with excellent efficiency and performance.
  • the bypass ratio of proteins can be increased by promoting the Maillard reaction through yeast fermentation with lactic acid bacteria that effectively decompose fructose and proteins in soybean meal, such as Raffinose and Stachyose, into activated sugars in the metabolic process.
  • the method for increasing the rumen bypass rate according to an example of the present invention uses only a fermentation process and heat treatment without additives such as enzymes or sugars, so it is possible to secure economic feasibility, and RUP (Rumen Undegradable Protein) is 74% or more in the small intestine of RUP. The digestion and absorption rate of the product is over 69%, and the product is competitive.
  • legumes may include at least one selected from the group consisting of soybeans, rapeseeds, palm, peas, kidney beans, corn, mung beans, red beans, soybeans, lupines, and oil meal thereof there is.
  • Soybean meal a representative feed ingredient in legumes, is a very important protein source, accounting for 60% of the world's vegetable protein feed ingredients based on production volume. It has the downside of not being able to. Cattle get most of the amino acids they need from microbial proteins made in the fermentation process in the rumen or proteins that have passed through the rumen, that is, bypass proteins.
  • Various methods of processing soybean meal have been studied to increase the bypass ratio in ruminants.
  • Heat treatment or treatment with lignosulfonate or formaldehyde is mainly used. Recently, a method of coating with vegetable oil has also been developed. . Among them, the process of heat-treating soybean meal is the most tried, which uses the Maillard reaction (Maillard reaction) that occurs during heating of proteins and sugars in soybean meal. That is, when the carbonyl group of sugar and the amino group of amino acid are combined by heat, most of the digestion occurs in the small intestine without being attacked by microbial enzymes that cause digestion in the rumen. A method of applying heat at a high temperature for a short time using an extruder or adding reactive sugar such as xylose and then heat-treating is used. A process for accelerating the Maillard reaction by heat treatment after treatment has also been developed.
  • Maillard reaction Maillard reaction
  • the inventors of the present invention developed a method that can increase the bypass ratio of proteins by promoting the Maillard reaction through fermentation with yeast and lactic acid bacteria that effectively decompose fructose and proteins in soybean meal, such as Raffinose and Stachyose, into activated sugars and peptides in the metabolic process. process was developed.
  • Another example of the present invention relates to a feed, including a composition for increasing the rumen bypass rate of protein according to an embodiment of the present invention.
  • the feed may be feed for ruminants.
  • ruminant means an animal having a ruminant stomach among animals belonging to the order Utilus, and includes, for example, one or more species selected from the group consisting of Bovine, Camel, Deer, Deer, and Giraffe. it may be
  • the bovine family may include, for example, at least one selected from the group consisting of Korean cattle, dairy cows, yaks, bison, buffalo, impala, gaur, water buffalo, goats, sheep, goats, and antelopes.
  • the Camelidae may include, for example, one or more species selected from the group consisting of dromedaries, bactrian camels, llamas, alpacas, guanacos, and vicu ⁇ as.
  • the deer family may include, for example, at least one selected from the group consisting of deer, reindeer, roe deer, elk, elk, and moose.
  • the deer family may include, for example, one or more species selected from the group consisting of deer and mouse deer.
  • the giraffe family may include, for example, at least one member selected from the group consisting of giraffes and okapis.
  • Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And a method for producing a composition for increasing the rumen bypass rate of protein, comprising heat-treating the fermented legumes, or a method for producing a feed containing the composition.
  • Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And it relates to a method for increasing the rumen bypass rate of protein, comprising the step of heat-treating the fermented legumes.
  • Another example of the present invention relates to a composition for reducing greenhouse gases in ruminants, including a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast.
  • a composition for reducing greenhouse gases in ruminants including a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast.
  • the composition according to one embodiment of the present invention and the feed containing the same have an effect of reducing greenhouse gas emissions of ruminants.
  • another embodiment of the present invention relates to a method for reducing greenhouse gas emissions of ruminants, comprising administering the composition to the ruminants.
  • the greenhouse gas may be methane gas and/or nitrous oxide.
  • a composition according to an example of the present invention may induce one or more of the following properties (1) to (6):
  • Reduction in blood urea nitrogen concentration for example, fasting blood urea nitrogen concentration compared to the control group is 90% or less, 80% or less, or 75% or less (the control group is a group administered with unfermented legumes or legumes fermented with lactic acid bacteria alone) can),
  • the control group may be a group treated with unfermented legumes, fermented legumes for unit animals, or legumes fermented with lactic acid bacteria alone),
  • ammonia concentration compared to the control group is 99% or less, 98% or less, 97% or less, 96% or less, 95.5% or less, 90% or less, 85% or less, 80% or less, 70% or less, 60% or less, or 50% or less (the control group may be a group treated with non-fermented legumes, fermented legumes for unit animals, or legumes fermented with lactic acid bacteria alone),
  • control group may be military
  • Increase in retained nitrogen for example, residual nitrogen is greater than 1 times, 1.05 times or more, or 1.1 times or more compared to the control group (the control group may be a group not administered with the composition according to an embodiment of the present invention) there is).
  • control group may be a group administered with a feed not containing the composition according to an embodiment of the present invention.
  • the nitrogen utilization rate in the body may be calculated by Equation 1 below:
  • Nitrogen utilization efficiency in the body (Nitrogen utilization rate compared to the control group) / (Nitrogen intake) X 100
  • the present invention can contribute to reducing manure odor by reducing ammonia gas (NH3) and reducing greenhouse gases such as nitrous oxide (N2O) by reducing methane and nitrogen excretion in the rumen of ruminants, and increasing protein utilization in ruminants to increase productivity and nitrogen reduction can solve the greenhouse gas problem.
  • NH3 ammonia gas
  • N2O nitrous oxide
  • the present invention provides rumen bypass protein to increase the small intestine absorption rate, reduce ammonia generated by excessive protein decomposition by ruminant microorganisms, and reduce the amount of nitrogen excreted as manure, thereby minimizing the use of unnecessary protein sources and increasing productivity, nationally. It is possible to provide feed (low-protein, low-temperature gas feed) that reduces environmental burden to help solve environmental problems.
  • composition for increasing the bypass rate can reduce greenhouse gases by reducing the amount of methane generated in the rumen and the amount of nitrogen in feces.
  • Example 1 Preparation of legume fermented product by lactic acid bacteria and yeast combination
  • Legumes were fermented using a combination of lactic acid bacteria and yeast as fermenting bacteria, and the crude protein content of the fermented product was measured.
  • soybean meal was used as an example of legumes, and the type of lactic acid bacteria used for fermentation of soybean meal can be used without limitation, but Enterococcus faecium or Lactococcus lactis 1.0x10 6
  • Enterococcus faecium was 6.5 x 10 8 /g
  • Lactococcus lactis was 2.5x 10 7 /g.
  • fermentation was performed using Enterococcus pesium as a lactic acid bacterium.
  • Fermentation was carried out for 24 hours by adding 500 g of seed liquid (moisture content of 480 g) to 1000 g of soybean meal (moisture content of 120 g) in an incubator pre-adjusted at 30°C or 35°C.
  • Cells used for fermentation were 10 7 cfu/g of lactic acid bacteria (Enterococcus faecium KCTC13566BP) and 10 6 cfu/g of yeast (Saccharomyces cerevisiae).
  • a DMD dryer double mixing dryer
  • the fermented product after heat treatment was treated from 10 minutes to less than 60 minutes by adjusting the heat treatment time according to the product temperature (130 °C 10 minutes; 120 °C 15 minutes; 110 °C 20 minutes; 90 °C 35 minutes). Thereafter, the temperature was limited to 60 ° C. and dried until the moisture content was 12% or less to obtain a fermented soybean product (sample name: Example 1) by a combination of lactic acid bacteria and yeast.
  • Comparative Example 1 Production of legume fermented product by lactic acid bacteria alone
  • Fermentation was performed in the same manner as in (1) of Example 1, except that 10 7 cfu/g of lactic acid bacteria (Enterococcus faecium KCTC13566BP) was used alone as the fermenting bacteria.
  • the obtained fermented product was heat-treated and dried in the same manner as in Example 1 (2) to obtain a fermented soybean product by lactic acid bacteria alone (Sample name: Comparative Example 1).
  • Example 1 30 5.6 50.3 35 5.4 51.0 Comparative Example 1 30 5.5 47.8 35 5.6 48.2
  • RUP rumen non-degradable protein
  • Example 1 fermented using lactic acid bacteria and yeast in combination showed an increase in RUP content by about 10% and an absorption of about 4% more in the small intestine after heat treatment. Therefore, it was confirmed that the fermented product of Example 1 fermented by using lactic acid bacteria and yeast in combination did not decompose in the rumen of ruminants, increased the bypass rate, and had a high absorption rate in the small intestine.
  • the fermented soybean product of Example 1, the fermented soybean product of Comparative Example 1, or soybean meal (Sajo No. 5-more than 46% crude protein, Sajo Daerim) was administered to 6 animals in each group (aged 40 to 45 months) at an amount of 350 g/kg each for 6 weeks. After feeding Holstein castration), blood was collected from a vein and blood urea nitrogen (BUN) concentration and total protein concentration were analyzed and shown in Table 3.
  • BUN blood urea nitrogen
  • the concentration of BUN 3 hours after administration was 9.83 mg/dL, which is lower than the fasting BUN concentration of the fermented legumes or soybean meal feed of Comparative Example 1.
  • the fermented soybean product according to one embodiment of the present invention is widely used as a metabolic protein, and the effect of reducing the nitrogen source discharged into manure was remarkably excellent.
  • the rumen gastric juice was collected using 3 Korean cattle equipped with rumen fistulas reared at the animal breeding farm attached to Sunchon National University. After filtering to remove feed particles, the temperature was maintained at 39° C. using a constant temperature water bath.
  • the fermented soybean product of Example 1, the fermented soybean product of Comparative Example 1, fermented soybean meal and soybean meal for unit animals were prepared, each sample was put into a 160mm serum bottle at a total volume of 1.0% (DM), and gastric juice and buffer solution were mixed. 100 ml was dispensed at a ratio of 1:3, covered with a butyl rubber stopper and an aluminum cap, and cultured at 100 rpm in a shaking incubator at 39 ° C. During the entire process of dilution and filtration of gastric juice, gastric juice was bubbling with N 2 to maintain the gastric juice in an anaerobic state.
  • Fermented soybean meal for unit animals is for animals with a single stomach, such as pigs or chickens. It is a product used as a substitute for fish meal by removing anti-nutritional factors from soybean meal to increase digestion and absorption. It is a product manufactured by drying under conditions that prevent the Mayer reaction by not exceeding °C.
  • Table 4 shows the total amount of gas produced for each sample. As shown in Table 4, the fermented soybean meal for monogastric animals showed a significantly high gas production amount, and the fermented product of Example 1 showed a significantly low gas production amount because the decrease in protein degradation rate in the rumen inhibited ruminal microbial fermentation. It is presumed to have been seen. In Table 4, SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p ⁇ 0.05).
  • Example 1 SEM P value 3h 7.000b 12.333 a 11.400 a 12.153 a 12.233 a 0.478 0.0001 6h 9.000 c. 23.500 a 22.833a 20.867b 20.667b 0.571 ⁇ .0001 12h 11.500 d 33.167 a ⁇ 30.333b 28.920c 27.000 c. 0.446 ⁇ .0001 24h 19.333d 53.333b 62.333 a 44.358c 42.333c 1.586 ⁇ .0001
  • Methane analysis was performed using gas chromatography (Gas Chromatography, Agilent technolgies HP 5890).
  • the detector uses TCD, column Carboxen 1006PLOT capillary column 30m ⁇ 0.53mm (Supelco), and the analysis conditions are oven temperature 35°C, injection part temperature 200°C, detector temperature of the injection port part 200°C, and mobile phase gas N 2 at 3ml/min. It was flowed and analyzed the amount generated by culture time.
  • Table 5 shows the amount of methane produced through rumen fermentation in mM/ml concentration.
  • the fermented product of Example 1 was significantly the lowest in 12-hour and 24-hour culture.
  • the bypass fermented product of Example 1 showed methane reduction effects of 35.9% and 45.5%, respectively, compared to soybean meal in 12-hour and 24-hour cultivation.
  • the fermented product of Comparative Example 1 showed methane reduction effects of 31.2% and 38.8%, respectively, compared to soybean meal after 12 hours and 24 hours of cultivation.
  • SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p ⁇ 0.05).
  • Ammonia concentrations through rumen fermentation are shown in Table 6 as mM/L concentrations. As shown in Table 6, the concentration of ammonia (NH 3 -N) in the 24-hour culture period was significantly higher in the fermented soybean meal for unit animals (p ⁇ 0.05). The bypass fermented soybean meal of Example 1 had a significantly low ammonia concentration, showing that protein degradation did not occur in the rumen and digestion proceeded in the small intestine. In Table 6, SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p ⁇ 0.05).
  • Eight 14.8-month-old Hanwoo castrated cattle were prepared and placed in 8 cages, divided into two groups, a control group and an experimental group, and fed with general feed according to Table 7 or feed containing the fermented product of Example 1.
  • Water was freely fed in a drinking tank, and roughages were fed at 08:00 and 14:00 every day.
  • Individual feeding was carried out through feed baskets while hanging on the stanchion, and the remaining amount was measured using a scale at the end of each feeding.
  • Concentrated feed was freely fed using a DeLaval automatic feeder, and individual intake was measured and recorded daily using Delpro software. Weight measurement was performed before breakfast feed, and all feces and urine were collected at 9:00 every morning to record the amount of excretion.
  • Samples of 10% for feces and 5% for urine were collected and stored frozen. After 5 days, samples from each sample were mixed, collected for analysis, and stored frozen. After the end of the 24-day experiment, after washout for 2 days to verify the experiment result, the control group and the experimental group were changed to each other and the same experiment was performed.
  • RUP rumen-undegradable protein
  • DDGS distillers dried grains with solubles.
  • 3.063% of 23.7 tons is 726 kg, and through the increase in the utilization efficiency of nitrogen by the bypass protein according to an example of the present invention, it has the effect of reducing about 726 kg CO 2 per head until the 30-month slaughter of Hanwoo geese, in Korea When applied to 1.27 million heads of Korean cattle under breeding, it has the effect of reducing 922,000 tons of CO 2 .
  • the bypass protein according to an example of the present invention reduces the nitrogen content excreted in manure and reduces the generation of ammonia gas and nitrous oxide gas, thereby having an advantageous effect on eco-friendly livestock farming and increasing the nitrogen utilization rate of ruminants.
  • the effect of improving nitrogen utilization efficiency and reducing environmental burden was confirmed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)

Abstract

The present invention relates to a composition for increasing a rumen bypass rate of proteins, wherein the composition comprises a fermentate of soybeans fermented with fermenting bacteria including lactic acid bacteria and yeasts, and thus can undergo intensive digestive absorption into the small intestine after passing through the rumen of ruminants under a suppressed condition of digestive absorption in the rumen, and a composition and a method for reducing the greenhouse gas of ruminants, which can reduce methane production within the rumen of ruminants, discharge of nitrogenous excretion, and emission of nitrogen gas such as nitrous oxide and ammonia.

Description

단백질의 바이패스율 증가용 조성물 및 단백질의 바이패스율 증가 방법Composition for increasing protein bypass rate and method for increasing protein bypass rate
본 발명은 단백질 및 탄수화물의 이용성이 증가된 바이패스율 증가용 조성물 및 단백질의 바이패스율 증가 방법에 관한 것이다.The present invention relates to a composition for increasing the bypass rate with increased availability of proteins and carbohydrates, and a method for increasing the bypass rate of protein.
축산 분야에서 2050년 탄소중립 목표 달성을 위해 환경부담 저감사료 보급 및 확대를 통해 잉여 질소 감축을 추진 진행 중이고, 실제로 축우 사료 조 단백질 상한치 설정으로 사료법 개정이 예정되고 있으며, 사료법 개정 예정에 따라 소 생산성 증진을 위해 단백질 이용율이 높은 사료 원료 공급의 중요성이 매우 높아지고 있다. 한우에서는 증체 및 육량 증진을 위해, 그리고 젖소에서는 유량 증가 및 유단백질 증진을 위해 단백질 이용율이 높은 사료 공급의 중요성이 높아지고 있다. 또한 단백질 이용율이 높아 질소 분뇨 배설량을 낮출 수 있는 사료 원료 공급의 중요성이 높아지고 있다.In the livestock sector, in order to achieve the goal of carbon neutrality by 2050, surplus nitrogen reduction is in progress through the distribution and expansion of feed to reduce environmental burden. In order to improve cattle productivity, the importance of supplying feed ingredients with high protein utilization is very high. To increase body weight and increase meat mass in Korean cattle, and to increase milk yield and To improve milk protein, the importance of supplying feed with high protein utilization is increasing. In addition, the importance of supplying feed raw materials that can reduce nitrogen manure excretion due to high protein utilization is increasing.
반추동물은 상대적으로 다른 경제동물들에 비해 사료의 질소를 비효율적으로 이용하는데, 예를 들어 북미와 북유럽 젖소의 우유로의 질소 이용 효율은 각각 평균 25%와 28%로 나타나고, 비육우의 경우 질소 이용 효율이 더 낮아서 사료 내 질소에 의한 체중 증가 효율이 약 14%에 불과하다. 결국 동물의 체조직이나 우유로 전이되지 않은 질소는 분과 뇨로 빠져나가서 토양, 하천, 공기를 오염시킨다. 따라서 반추동물에게 과도하지 않고 적절한 사료 단백질을 공급하는 것과 반추동물의 질소 이용율을 높이는 기술은 사료비 절감뿐 아니라 환경 오염을 줄인다는 측면에서 중요하다. 반추가축의 사료 단백질은 반추위 분해 단백질 (rumen degradable protein: RDP), 반추위 미분해 단백질 (rumen undegradable protein; RUP), 비단백태 질소원 (non protein nitrogen: NPN)으로 구분이 가능하다.Ruminants use nitrogen from feed relatively inefficiently compared to other economic animals. For example, North American and Northern European dairy cows use nitrogen as milk on average 25% and 28%, respectively. The efficiency is lower, with only about 14% efficiency in weight gain from nitrogen in the feed. Eventually, nitrogen that is not transferred to animal body tissues or milk is released into feces and urine, contaminating soil, rivers, and air. Therefore, the supply of appropriate feed protein to ruminants and the technology to increase the nitrogen utilization rate of ruminants are important in terms of not only reducing feed costs but also reducing environmental pollution. Feed protein of rumen livestock can be classified into rumen degradable protein (RDP), rumen undegradable protein (RUP), and non-protein nitrogen (NPN).
축산으로부터 배출되는 암모니아(NH3)는 공기와 수질 오염의 주요 원인이다. 암모니아는 부영양화, 토양 산성화, 미세먼지 증가 등에 영향을 미친다. 암모니아는 토양 미생물에 의해 산화되어 아산화질소(N2O)로 전변되고, 아산화질소는 강력한 온난화 가스 중 하나로 지구 온난화에 미치는 영향이 같은 양의 이산화 탄소와 비교하여 약 310배 높다.Ammonia (NH3) emitted from livestock farming is a major cause of air and water pollution. Ammonia affects eutrophication, soil acidification, and fine dust increase. Ammonia is oxidized by soil microorganisms and converted into nitrous oxide (N2O), and nitrous oxide is one of the strongest greenhouse gases, and its effect on global warming is about 310 times higher than that of the same amount of carbon dioxide.
본 발명의 일 예는 반추동물의 반추위 내 소화흡수가 억제된 상태에서 반추위를 통과한 후, 소장에서 소화흡수가 집중적으로 일어날 수 있는, 단백질의 반추위 바이패스율 (bypass rate) 증가용 조성물을 제공하기 위한 것이다.One example of the present invention is to provide a composition for increasing the rumen bypass rate of proteins, in which digestion and absorption can occur intensively in the small intestine after passing through the rumen in a state where digestion and absorption in the rumen of ruminants are inhibited. It is to do.
본 발명의 또 다른 일 예는 반추동물의 반추위 내 메탄 생성량을 저감하고, 질소 분뇨 배설량을 저감하고, 아산화질소 및 암모니아와 같은 질소의 배출을 저감하여 반추동물의 온실가스 배출을 저감할 수 있는, 반추동물의 온실가스 저감용 조성물 및 반추동물의 온실가스 저감 방법을 제공하기 위한 것이다.Another example of the present invention is to reduce methane production in the rumen of ruminants, reduce nitrogen manure excretion, and reduce emissions of nitrogen such as nitrous oxide and ammonia, which can reduce greenhouse gas emissions of ruminants, It is to provide a composition for reducing greenhouse gases in ruminants and a method for reducing greenhouse gases in ruminants.
본 발명의 일 예는 유산균 및 효모를 포함하는 발효균으로 발효된 콩류의 발효물을 포함하는, 단백질의 반추위 바이패스율 증가용 조성물에 관한 것이다.One example of the present invention relates to a composition for increasing the rumen bypass rate of protein, including a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast.
본 발명의 또 다른 일 예는, 본 발명의 일 예에 따른 단백질의 반추위 바이패스 증가율 조성물을 포함하는 사료에 관한 것이다.Another example of the present invention relates to a feed containing the rumen bypass increase rate composition of protein according to an embodiment of the present invention.
본 발명의 또 다른 일 예는, 유산균 및 효모를 포함하는 발효균으로 콩류를 발효하는 단계; 및 상기 발효된 콩류를 열처리하는 단계를 포함하는, 단백질의 반추위 바이패스율 증가용 조성물의 제조방법, 상기 조성물을 포함하는 사료의 제조방법, 또는 단백질의 반추위 바이패스율 증가 방법에 관한 것이다.Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And it relates to a method for producing a composition for increasing the rumen bypass rate of protein, including the step of heat-treating the fermented legumes, a method for producing a feed containing the composition, or a method for increasing the rumen bypass rate of protein.
본 발명의 또 다른 일 예는, 단백질의 반추위 바이패스율 증가를 위한, 유산균 및 효모를 포함하는 발효균으로 발효된 콩류 발효물의 용도에 관한 것이다.Another example of the present invention relates to the use of fermented legumes fermented with fermentation bacteria including lactic acid bacteria and yeast for increasing the rumen bypass rate of protein.
본 발명의 또 다른 일 예는, 단백질의 반추위 바이패스율 증가용 조성물의 제조를 위한, 유산균 및 효모를 포함하는 발효균으로 발효된 콩류 발효물의 용도에 관한 것이다.Another example of the present invention relates to the use of fermented legumes fermented with fermenting bacteria including lactic acid bacteria and yeast for the preparation of a composition for increasing the rumen bypass rate of protein.
본 발명의 또 다른 일 예는, 본 발명의 일 예에 따른 단백질의 반추위 바이패스 증가율 조성물을 포함하는, 반추동물의 온실가스 저감용 조성물에 관한 것이다.Another example of the present invention relates to a composition for reducing greenhouse gases in ruminants, including the rumen bypass increase rate composition of protein according to an embodiment of the present invention.
본 발명의 또 다른 일 예는, 본 발명의 일 예에 따른 단백질의 반추위 바이패스 증가율 조성물을 투여하는 단계를 포함하는, 반추동물의 온실가스 배출을 저감하는 방법에 관한 것이다.Another embodiment of the present invention relates to a method for reducing greenhouse gas emissions of ruminants, comprising the step of administering a rumen bypass increase rate composition of protein according to an embodiment of the present invention.
본 발명의 또 다른 일 예는, 반추동물의 온실가스 배출을 저감하기 위한, 유산균 및 효모를 포함하는 발효균으로 발효된 콩류 발효물의 용도에 관한 것이다.Another example of the present invention relates to the use of fermented legumes fermented with fermenting bacteria including lactic acid bacteria and yeast for reducing greenhouse gas emissions of ruminants.
이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 예는 반추위 바이패스율이 높고, 소장에서 흡수율이 높아 생산성이 향상되고, 반추동물의 온실가스 배출을 감소할 수 있는 조성물에 관한 것이다. 본 발명의 일 예에 따른 조성물은, 발효균으로 발효된 콩류의 발효물을 포함하며, 상기 발효균은 단백질의 아민기 형성용 발효균, 및/또는 마이야르 반응 촉진용 발효균인 것일 수 있다.One example of the present invention relates to a composition capable of improving productivity and reducing greenhouse gas emissions of ruminants due to high rumen bypass rate and high absorption rate in the small intestine. The composition according to one embodiment of the present invention includes a fermented product of soybeans fermented with a fermenting strain, and the fermenting strain may be a fermenting strain for forming an amine group of a protein and/or a fermenting strain for accelerating a Maillard reaction.
본 발명의 일 예는 반추동물의 반추위 내에서의 소화흡수가 억제된 상태에서 통과한 후 소장에서의 소화흡수가 집중적으로 일어 날 수 있는 바이패스(bypass) 단백질 및 이를 포함하는 사료에 관한 것이다. 구체적으로, 콩류 내의 과당류 등을 활성화당(reactive sugar)으로 만들기 위해 유산균과 효모를 사용하여 발효하고, 반추위에서 소화흡수를 억제하고, 소장에서 소화흡수가 극대화되도록 상기 발효물을 열처리한다. 본 발명의 일 예에 따른 바이패스 단백질 제조공정은 별도의 첨가물이 없이 발효를 통해 콩류의 성분변화를 일으켜 마이야르 반응(Maillard reaction)을 유도하여 바이패스 단백질을 효과적으로 생산할 수 있다.One example of the present invention relates to a bypass protein in which digestion and absorption in the small intestine can occur intensively after passage in a state in which digestion and absorption in the rumen of a ruminant animal are inhibited, and a feed containing the same. Specifically, fructose in legumes is fermented using lactic acid bacteria and yeast to make active sugar, suppress digestion and absorption in the rumen, and heat-treat the fermented product so that digestion and absorption are maximized in the small intestine. The bypass protein manufacturing process according to an example of the present invention causes a component change of legumes through fermentation without a separate additive to induce a Maillard reaction to effectively produce bypass protein.
본 명세서에서 “바이패스 (bypass)”란, 반추동물의 반추위에서 분해되지 않고 통과하여 장에서 분해 및 흡수되는 것을 의미하며, 바이패스 지방과 바이패스 단백질 제품이 있다. 구체적으로, 반추동물은 반추위를 통과한 단백질, 즉 바이패스 단백질로부터 필요한 아미노산의 대부분을 얻으나, 사료의 주요 원료인 콩류, 특히 전세계 식물성 단백질 사료원료 중 60%를 차지하는 대두박의 경우, 대부분 반추위에서 분해가 이루어지고 약 25% 정도만이 바이패스하여 비효율적인 문제가 있다. 본 명세서에서 “바이패스 단백질”은 반추위를 통과한 단백질을 의미하고, “바이패스율”은 섭취한 단백질 중의 바이패스 단백질의 비율을 의미한다.As used herein, “bypass” means passing through the rumen of a ruminant without being decomposed and being decomposed and absorbed in the intestine, and there are bypass fat and bypass protein products. Specifically, ruminants get most of the amino acids they need from proteins that have passed through the rumen, that is, bypass proteins, but in the case of legumes, which are the main raw materials of feed, especially soybean meal, which accounts for 60% of the world's vegetable protein feed ingredients, most of them come from the rumen. Decomposition takes place and only about 25% is bypassed, resulting in inefficiency. In the present specification, "bypass protein" means protein that has passed through the rumen, and "bypass rate" means the ratio of bypass protein among ingested proteins.
본 발명의 일 예에서, 상기 발효균은 유산균 및 효모를 포함하는 것일 수 있다. 유산균 및 효모를 사용하여 콩류의 발효를 수행할 경우, 두 종 모두 통성혐기성(facultative anaerobe) 미생물이기 때문에 혐기적 고상발효에 적합하며, 동시 배양 (co-culture)이 가능하다는 장점이 있다. 또한, 유산균과 효모를 같이 사용해서 발효할 경우 발효시간을 약 절반으로 크게 단축할 수 있다는 장점이 있고, 발효시간이 단축되지만 발효물의 단백질 함량은 크게 증가하며, 단백질을 절단하여 아민기를 형성하고, 환원당을 생성하는 장점도 있다. 또한, 발효균으로 유산균 및 효모를 병용 사용하는 경우, 유산균 단독 발효의 경우보다 발효물의 단백질 함량이 높고 바이패스율이 높은 효과가 있다. 구체적으로, 본원 실시예에 나타난 바와 같이, 유산균 및 효모 병용 사용에 의해 발효물의 반추위 비분해성 단백질 (RUP) 및 소장흡수단백질 함량이 높으며, 혈중 요소 질소 농도, 메탄가스 발생량, 분뇨 질소 배설량, 암모니아 발생량, 및 아산화질소 발생량 등이 유의하게 낮아, 유산균 및 효모 병용 사용에 의한 시너지 효과가 입증되었다.In one example of the present invention, the fermenting bacteria may include lactic acid bacteria and yeast. When legumes are fermented using lactic acid bacteria and yeast, both species are facultative anaerobe microorganisms, so they are suitable for anaerobic solid-phase fermentation, and have the advantage that co-culture is possible. In addition, when fermenting using lactic acid bacteria and yeast together, there is an advantage that the fermentation time can be greatly reduced by about half, and although the fermentation time is shortened, the protein content of the fermented product is greatly increased, and the protein is cut to form an amine group, It also has the advantage of generating reducing sugars. In addition, when lactic acid bacteria and yeast are used in combination as fermenting bacteria, there is an effect that the protein content of the fermented product is higher and the bypass rate is higher than in the case of fermentation with lactic acid bacteria alone. Specifically, as shown in the examples herein, the fermented product has high rumen non-degradable protein (RUP) and small intestine absorbable protein content due to the combined use of lactic acid bacteria and yeast, blood urea nitrogen concentration, methane gas production, fecal nitrogen excretion, and ammonia production , and the amount of nitrous oxide produced was significantly low, proving the synergistic effect by the combined use of lactic acid bacteria and yeast.
콩류, 예를 들어 대두박의 성분 중에는 스타키오즈, 라피노즈 등으로 대표되는 과당류와 다양한 탄수화물들이 포함되어 있는데, 이들 대부분은 수용성이며 소화를 저해하는 항영양인자의 일종이다. 본 발명은 콩류의 영양성과 무관하면서 오히려 사료로서의 성능을 떨어뜨리는 항영양인자들을 효과적으로 대사시키는 유산균과 효모를 이용할 수 있다. 즉, 유산균 단독 발효보다 발효시간을 현저히 줄이고, 최종 생성물의 단백질 함량이 높은 바이패스율 증가용 조성물을 제공할 수 있다.Among the components of legumes, for example, soybean meal, fructose represented by stachyose and raffinose and various carbohydrates are included, most of which are water-soluble and are a kind of anti-nutritional factor that inhibits digestion. The present invention can use lactic acid bacteria and yeast that effectively metabolize anti-nutritional factors that are irrelevant to the nutritional properties of legumes and rather degrade the performance as a feed. That is, it is possible to provide a composition for increasing the bypass rate that significantly reduces the fermentation time compared to fermentation of lactic acid bacteria alone and has a high protein content in the final product.
특히 유산균들은 과당류들에 대한 대사능이 뛰어난 것으로 알려져 있는데, 유산균에서 흔히 발견되는 알파갈락토시데이즈 (alpa-(1,6)galactosidase)라는 효소는 라피노즈와 스타키오즈 등의 대두박에 다량으로 포함되어 있는 과당류들을 분해하는 효소이다. 대두박 중 라피노즈와 스타키오즈의 함량은 건물량 기준으로 6% 이상이다. 한 개의 라피노스 분자는 알파갈락토시데이즈에 의해 분해되면 갈락토스, 프럭토스(fructose), 글루코스 등 3종의 단당류 각각 한 분자씩으로 분해된다. 한편, 스타키오스는 두 개의 갈락토스와 1개의 프럭토스, 1개의 글루코스 분자로 분해된다. 이와같이 알파갈락코시데이즈 효소를 많이 분비하여 대두박 내의 과당류들을 보다 활성화된 형태이면서 비율적으로 증가된 단당류들로 전환할 수 있는 유산균을 활용한다면 마이야르 반응을 보다 효과적으로 촉진시킬 수 있다.In particular, lactic acid bacteria are known to have excellent metabolizing ability for fructose. An enzyme called alpha-(1,6)galactosidase, which is commonly found in lactic acid bacteria, is contained in large amounts in soybean meal such as raffinose and stachyose. It is an enzyme that breaks down fructose. The content of raffinose and stachyose in soybean meal is more than 6% based on dry matter content. When one raffinose molecule is decomposed by alpha-galactosidase, it is decomposed into one molecule of each of three monosaccharides, such as galactose, fructose, and glucose. Meanwhile, stachyose is broken down into two galactose, one fructose, and one glucose molecules. In this way, the Maillard reaction can be promoted more effectively if lactic acid bacteria capable of secreting a large amount of alpha-galacosidase enzyme and converting fructose in soybean meal into more activated monosaccharides are used.
예를 들어, 본 발명의 일 예에 따른 발효균은 유산균 및 효모를 포함하며, 상기 유산균 및 상기 효모의 균체수의 비율은 100:1 내지 1:100, 100:1 내지 1:50, 100:1 내지 1:1, 50:1 내지 1:50, 50:1 내지 1:1, 20:1 내지 1:20, 20:1 내지 1:15, 20:1 내지 1:10, 20:1 내지 1:5, 20:1 내지 1:1, 20:1 내지 5:1, 20:1 내지 10:1, 15:1 내지 1:20, 15:1 내지 1:15, 15:1 내지 1:10, 15:1 내지 1:5, 15:1 내지 1:1, 15:1 내지 5:1, 15:1 내지 10:1, 10:1 내지 1:20, 10:1 내지 1:15, 10:1 내지 1:10, 10:1 내지 1:5, 10:1 내지 1:1, 10:1 내지 5:1, 10:1 내지 6:1, 10:1 내지 7:1, 10:1 내지 8:1, 또는 10:1 내지 9:1 일 수 있다.For example, the fermenting bacteria according to one embodiment of the present invention includes lactic acid bacteria and yeast, and the ratio of the number of cells of the lactic acid bacteria and the yeast is 100:1 to 1:100, 100:1 to 1:50, and 100:1 to 1:1, 50:1 to 1:50, 50:1 to 1:1, 20:1 to 1:20, 20:1 to 1:15, 20:1 to 1:10, 20:1 to 1 :5, 20:1 to 1:1, 20:1 to 5:1, 20:1 to 10:1, 15:1 to 1:20, 15:1 to 1:15, 15:1 to 1:10 , 15:1 to 1:5, 15:1 to 1:1, 15:1 to 5:1, 15:1 to 10:1, 10:1 to 1:20, 10:1 to 1:15, 10 :1 to 1:10, 10:1 to 1:5, 10:1 to 1:1, 10:1 to 5:1, 10:1 to 6:1, 10:1 to 7:1, 10:1 to 8:1, or 10:1 to 9:1.
예를 들어, 발효 원료에 접종되는 유산균은 106~108cfu/g, 효모는 105~107cfu/g 일 수 있다.For example, lactic acid bacteria inoculated into the fermentation raw material may be 10 6 ~ 10 8 cfu/g, and yeast may be 10 5 ~ 10 7 cfu/g.
상기 유산균은 엔테로코커스 (Enterococcus) 속 균주, 락토바실러스 (Lactobacillus) 속 균주, 바이셀라 (Weissella) 속 균주, 류코노스톡 (Leuconostoc) 속 균주, 스트렙토코커스 (Streptococcus) 속 균주, 및 락토코커스 (Lactococcus) 속 균주로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다. The lactic acid bacteria are Enterococcus genus strains, Lactobacillus genus strains, Weissella genus strains, Leuconostoc genus strains, Streptococcus genus strains, and Lactococcus It may be one or more selected from the group consisting of genus strains.
상기 엔테로코커스(Enterococcus) 속 유산균에는 엔테로코커스 페시움(Enterococcus faecium), 엔테로코커스 피칼리스(Enterococcus faecalis)가 있고, 락토바실러스(Lactobacillus) 속 유산균에는 락토바실러스 플란타룸 (Lactobacillus plantarum), 또는 락토바실러스 에시도필러스(Lactobacillus acidophilus) 등이 있으며, 바이셀라 (Weissella) 속 유산균에는 바이셀라 코리엔시스(Weissella koreensis), 또는 바이셀라 사이베리아 (Weissella cibaria) 등이 있다. 또한 류코노스톡(Leuconostoc) 속 유산균에는 류코노스톡 시트레움(Leuconostoc citreum), 또는 류코노스톡 메젠테로이드스(Leuconostoc mesenteroides) 등이 있으며, 스트렙토코커스(Streptococcus) 속 유산균에는 스트렙토코커스 서모필러스 (Streptococcus thermophillus)가 있으며, 락토코커스(Lactococcus) 속 유산균에는 락토코커스 락티스 (Lactococcus lactis)가 있다.The Enterococcus genus lactic acid bacteria include Enterococcus faecium and Enterococcus faecalis, and the Lactobacillus genus lactic acid bacteria include Lactobacillus plantarum, or Lactobacillus Lactobacillus acidophilus, etc., and lactic acid bacteria of the Weissella genus include Weissella koreensis or Weissella cibaria. In addition, lactic acid bacteria of the genus Leuconostoc include Leuconostoc citreum or Leuconostoc mesenteroides, and lactic acid bacteria of the genus Streptococcus include Streptococcus thermophilus thermophillus), and Lactococcus lactis is a lactic acid bacterium of the genus Lactococcus.
상기 효모는 사카로미세스 (Saccharomyces) 속 균주, 토룰라 (Tolula) 속 균주, 크산토필로마이세스 (Xanthophyllomyces) 속 균주, 및 피키아 (Pichia) 속 균주로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다. 상기 Saccharomyces속 효모에는 Saccharomyces cerevisiae, Saccharomyces uvarum 등이 있고, Xanthophyllomyces 속 효모에는 Xanthophyllomyces dendrorhous가 있고 Pichia 속 효모에는 Pichia farinosa가 있고 Torula 효모류에는 Cyberlindnera jadinii가 있다.The yeast may be at least one selected from the group consisting of strains of the genus Saccharomyces, strains of the genus Tolula, strains of the genus Xanthophyllomyces, and strains of the genus Pichia. Yeasts of the genus Saccharomyces include Saccharomyces cerevisiae and Saccharomyces uvarum, yeasts of the genus Xanthophyllomyces include Xanthophyllomyces dendrorhous, yeasts of the genus Pichia include Pichia farinosa, and Torula yeasts include Cyberlindnera jadinii.
본 발명의 일 예에 따른 조성물에 포함되는 발효물은, 배지의 수분함량 30 내지 60중량%, 30 내지 50중량%, 30 내지 45중량%, 30 내지 40중량%, 35 내지 60중량%, 35 내지 50중량%, 35 내지 45중량%, 35 내지 40중량%, 40 내지 60중량%, 40 내지 50중량%, 또는 40 내지 45중량%에서 발효된 것일 수 있다.The fermented product included in the composition according to an embodiment of the present invention has a moisture content of 30 to 60% by weight, 30 to 50% by weight, 30 to 45% by weight, 30 to 40% by weight, 35 to 60% by weight, 35% by weight of the medium to 50% by weight, 35 to 45% by weight, 35 to 40% by weight, 40 to 60% by weight, 40 to 50% by weight, or 40 to 45% by weight.
본 발명의 일 예에 따른 조성물에 포함되는 발효물은 20 내지 40℃, 20 내지 35℃, 20 내지 30℃, 25 내지 40℃, 25 내지 35℃, 25 내지 30℃, 30 내지 40℃, 30 내지 35℃, 또는 35 내지 40℃ 온도에서 발효된 것일 수 있다.The fermented product included in the composition according to an example of the present invention is 20 to 40 ℃, 20 to 35 ℃, 20 to 30 ℃, 25 to 40 ℃, 25 to 35 ℃, 25 to 30 ℃, 30 to 40 ℃, 30 ℃ to 35°C, or 35 to 40°C.
상기 발효물은 반추위 비분해성 단백질 (Rumen Undegradable Protein; RUP) 함량이 높은 것, 및/또는 소장 흡수 단백질 함량이 높은 것일 수 있다. 이에, 본 발명의 일 예에 따른 조성물은 단백질의 반추위 바이패스 증가용 조성물, 및/또는 단백질의 소장 흡수 증가용 조성물인 것일 수 있다.The fermented product may have a high rumen undegradable protein (RUP) content, and/or a high intestinal absorption protein content. Accordingly, the composition according to one embodiment of the present invention may be a composition for increasing rumen bypass of proteins and/or a composition for increasing absorption of proteins in the small intestine.
상기 발효물의 조단백 함량은 48.5중량% 이상, 49중량% 이상, 50중량% 이상, 또는 51중량% 이상인 것일 수 있다. 상기 조단백 함량은 수분 8중량% 기준일 때의 조단백 함량인 것일 수 있다.The crude protein content of the fermented product may be 48.5% by weight or more, 49% by weight or more, 50% by weight or more, or 51% by weight or more. The crude protein content may be the crude protein content based on 8% by weight of water.
상기 반추위 비분해성 단백질은 반추위에서 분해되지 않는 단백질을 의미하며, 예를 들어 반추위액 처리 후 8시간, 9시간, 10시간, 11시간, 12시간, 13시간, 14시간, 15시간, 16시간, 17시간, 18시간, 19시간, 20시간, 21시간, 22시간, 23시간, 또는 24시간 동안 분해되지 않는 단백질일 수 있다. 상기 발효물의 반추위 비분해성 단백질 (Rumen Undegradable Protein; RUP) 함량은, 발효물의 전체 조단백질 함량 100중량% 기준으로 74중량% 이상, 75중량% 이상, 76중량% 이상, 77중량% 이상, 78중량% 이상, 79중량% 이상, 또는 80중량% 이상인 것일 수 있다.The rumen non-degradable protein refers to a protein that is not degraded in the rumen, for example, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, It may be a protein that does not degrade for 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, or 24 hours. The rumen undegradable protein (RUP) content of the fermented product is 74 wt% or more, 75 wt% or more, 76 wt% or more, 77 wt% or more, 78 wt% based on 100 wt% of the total crude protein content of the fermented product. It may be more than 79% by weight, or more than 80% by weight.
상기 소장 흡수 단백질 또는 소장 내 분해 단백질은, 반추위에서 분해되지 않지만 소장에서 분해되어 흡수되는 단백질로, 예를 들어 펩신 1시간 처리, 및/또는 소장효소용액 18시간, 19시간, 20시간, 21시간, 22시간, 23시간, 또는 24시간 처리 후 소화되는 단백질일 수 있다. 상기 소장효소용액은 트립신, 키모트립신, 아밀라제 및 리파제 중 하나 이상을 포함하는 것일 수 있다. 상기 발효물의 소장흡수 단백질 함량은, 발효물의 전체 조단백질 함량 100중량% 기준으로 69중량% 이상, 70중량% 이상, 71중량% 이상, 또는 72중량% 이상인 것일 수 있다.The small intestine absorption protein or small intestine degradation protein is a protein that is not degraded in the rumen but is degraded and absorbed in the small intestine, for example, pepsin treatment for 1 hour, and / or small intestine enzyme solution 18 hours, 19 hours, 20 hours, 21 hours , proteins that are digested after 22, 23, or 24 hours of treatment. The small intestine enzyme solution may contain at least one of trypsin, chymotrypsin, amylase and lipase. The small intestine absorbed protein content of the fermented product may be 69% by weight or more, 70% by weight or more, 71% by weight or more, or 72% by weight or more based on 100% by weight of the total crude protein content of the fermented product.
상기 발효물은 발효 후 열처리된 것일 수 있다. 구체적으로, 유산균 발효 결과 만들어진 활성화 당들과 단백질 간의 갈색화 결합물을 만들기 위해서 열처리가 필요하며, 열처리를 통해 발효물 내 아미노산의 아미노기와 환원당의 카보닐기가 축합하는 마이야르 반응이 일어난다. 이 때, 필요 이상의 열이 가해질 경우에는 바이패스율은 높으나 소장에서의 소화율이 낮아지고, 적은 양의 열이 가해질 경우에는 바이패스 비율이 낮아진다. 한편 라이신(lysine)과 같은 아미노산은 사료의 품질에 매우 중요한 성분인데 열에 상대적으로 악하기 때문에 열처리 과정에서 파괴될 가능성이 높다. 따라서 발효물의 열처리는 갈색화 반응에 필요한 최소한의 온도와 시간이 사용되도록 정확하게 통제되어야 하는 민감한 공정이다. 발효물의 열처리를 위해서는 익스트루더(extruder)나 익스펠러(expeller) 등의 장치를 사용하거나 로스팅 방식 이 적용되는 장치를 사용하기도 한다. 가장 많이 쓰는 방식인 로스팅에는 실린더 형태의 반응기 내부에 설치된 핀(fin)에 의해 분산되는 대두박에 화염으로 직접 가열하는 장치들이 주로 사용된다. 본원 실시예에서는 예시로서 로스팅 방식의 열처리를 사용하였으며, 온도와 처리시간의 정확한 제어를 위해 회분식(batch type)의 로타리 드럼(rotary drum)을 기계장치로 채택하여 사용했다.The fermented product may be heat treated after fermentation. Specifically, heat treatment is required to create a brownish bond between activated sugars and proteins produced as a result of lactic acid fermentation, and through heat treatment, a Maillard reaction occurs in which amino groups of amino acids and carbonyl groups of reducing sugars condense in the fermented product. At this time, when more than necessary heat is applied, the bypass rate is high, but the digestibility in the small intestine is low, and when a small amount of heat is applied, the bypass rate is low. On the other hand, amino acids such as lysine, which are very important components for the quality of feed, are highly likely to be destroyed in the heat treatment process because they are relatively bad for heat. Therefore, heat treatment of the fermented product is a sensitive process that must be accurately controlled so that the minimum temperature and time required for the browning reaction are used. For the heat treatment of the fermented product, a device such as an extruder or an expeller or a device to which a roasting method is applied may be used. In roasting, which is the most commonly used method, devices that directly heat soybean meal dispersed by fins installed inside a cylinder-shaped reactor with flames are mainly used. In the present embodiment, a roasting heat treatment is used as an example, and a batch type rotary drum is used as a mechanical device for accurate control of temperature and processing time.
상기 열처리는 70 내지 150℃, 70 내지 145℃, 70 내지 140℃, 70 내지 130℃, 80 내지 150℃, 80 내지 145℃, 80 내지 140℃, 80 내지 130℃, 90 내지 150℃, 90 내지 145℃, 90 내지 140℃, 또는 90 내지 130℃ 온도에서 수행하는 것일 수 있다.The heat treatment is 70 to 150 ℃, 70 to 145 ℃, 70 to 140 ℃, 70 to 130 ℃, 80 to 150 ℃, 80 to 145 ℃, 80 to 140 ℃, 80 to 130 ℃, 90 to 150 ℃, 90 to It may be performed at a temperature of 145 ° C, 90 to 140 ° C, or 90 to 130 ° C.
상기 열처리는 발효 후 5 내지 60분, 5 내지 50분, 5 내지 40분, 5 내지 35분, 5 내지 30분, 5 내지 25분, 5 내지 20분, 5 내지 15분, 5 내지 10분, 10 내지 60분, 10 내지 50분, 10 내지 40분, 10 내지 35분, 10 내지 30분, 10 내지 25분, 10 내지 20분, 10 내지 15분, 15 내지 60분, 15 내지 50분, 15 내지 40분, 15 내지 35분, 15 내지 30분, 15 내지 25분, 15 내지 20분, 20 내지 60분, 20 내지 50분, 20 내지 40분, 20 내지 35분, 20 내지 30분, 20 내지 25분, 25 내지 60분, 25 내지 50분, 25 내지 40분, 25 내지 35분, 25 내지 30분, 30 내지 60분, 30 내지 50분, 30 내지 40분, 또는 30 내지 35분 수행하는 것일 수 있다.The heat treatment is 5 to 60 minutes, 5 to 50 minutes, 5 to 40 minutes, 5 to 35 minutes, 5 to 30 minutes, 5 to 25 minutes, 5 to 20 minutes, 5 to 15 minutes, 5 to 10 minutes after fermentation, 10 to 60 minutes, 10 to 50 minutes, 10 to 40 minutes, 10 to 35 minutes, 10 to 30 minutes, 10 to 25 minutes, 10 to 20 minutes, 10 to 15 minutes, 15 to 60 minutes, 15 to 50 minutes, 15 to 40 minutes, 15 to 35 minutes, 15 to 30 minutes, 15 to 25 minutes, 15 to 20 minutes, 20 to 60 minutes, 20 to 50 minutes, 20 to 40 minutes, 20 to 35 minutes, 20 to 30 minutes, 20 to 25 minutes, 25 to 60 minutes, 25 to 50 minutes, 25 to 40 minutes, 25 to 35 minutes, 25 to 30 minutes, 30 to 60 minutes, 30 to 50 minutes, 30 to 40 minutes, or 30 to 35 minutes may be performing
일 예로, 상기 열처리는 90~100℃에서 10~60분 수행하는 것일 수 있다. 본원 실시예에서는 과도한 열처리에 의해 발생할 수 있는 문제점들을 회피하기 위해 가급적 낮은 온도에서 열처리를 수행하였다.For example, the heat treatment may be performed at 90 to 100° C. for 10 to 60 minutes. In the present embodiment, heat treatment was performed at a temperature as low as possible in order to avoid problems that may occur due to excessive heat treatment.
본 발명의 일 예에 따른 조성물은 효소나 당 등의 첨가물을 일체 첨가하지 않고, 유산균과 효모에 의한 발효공정 및 열처리공정으로 제조된 발효물을 포함하는 것일 수 있다. 상기 발효물의 제조공정은 종래의 바이패스 대두박 단백질 제조공정에 비하여 경제적이고 효율적인 동시에 효율과 성능에서도 우수한 제품을 생산할 수 있다. 이를 위한 방법으로, (1) 대사과정에서 대두박의 과당류들과 단백질을 효과적으로 분해하는 유산균과 효모를 선택하고, (2) 과당류들이 활성화 당 형태로 최대한 분해되는 고상발효 조건을 확립하며, (3) 대두박 활성화당과 단백질들 간의 마이야르 반응이 최대로 일어날 수 있도록 하는 고온 열처리 공정을 포함한다. 구체적으로, Raffinose, Stachyose 등 대두박 내의 과당류들과 단백질을 대사과정에서 효과적으로 분해하여 활성화 당 형태로 만드는 유산균과 효모 발효를 통해 마이야르 반응을 촉진함으로써 단백질의 바이패스 비율을 높일 수 있다. 본 발명의 일 예에 따른 반추위 바이패스율 증가 방법은 효소나 당 등의 첨가물 없이 발효공정과 열처리만을 사용하므로 경제성을 확보할 수 있고, RUP(Rumen Undegradable Protein)가 74% 이상, RUP의 소장에서의 소화흡수율이 69% 이상으로 제품 경쟁력이 있다.The composition according to one embodiment of the present invention may include a fermented product produced by a fermentation process using lactic acid bacteria and yeast and a heat treatment process without adding additives such as enzymes or sugars at all. The manufacturing process of the fermented product is more economical and efficient than the conventional bypass soybean meal protein manufacturing process, and at the same time, it is possible to produce products with excellent efficiency and performance. As a method for this, (1) select lactic acid bacteria and yeast that effectively decompose fructose and protein in soybean meal during metabolism, (2) establish conditions for solid phase fermentation in which fructose is maximally decomposed into activated sugar form, ( 3) It includes a high-temperature heat treatment process that maximizes the Maillard reaction between soybean meal activated sugars and proteins. Specifically, the bypass ratio of proteins can be increased by promoting the Maillard reaction through yeast fermentation with lactic acid bacteria that effectively decompose fructose and proteins in soybean meal, such as Raffinose and Stachyose, into activated sugars in the metabolic process. The method for increasing the rumen bypass rate according to an example of the present invention uses only a fermentation process and heat treatment without additives such as enzymes or sugars, so it is possible to secure economic feasibility, and RUP (Rumen Undegradable Protein) is 74% or more in the small intestine of RUP. The digestion and absorption rate of the product is over 69%, and the product is competitive.
본 발명의 일 예에서 콩류는 대두, 채종, 팜, 완두콩, 강낭콩, 옥수수, 녹두, 팥, 메주콩, 루핀 및 이들의 박 (粕, oil meal)으로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다. 콩류에서 대표적인 사료 원료인 대두박은 생산량 기준으로 전세계 식물성 단백질 사료원료 중 60%를 차지할 정도로 매우 중요한 단백질원이나, 축우에서는 대부분 반추위에서 분해가 이루어지고 단지 25~34% 정도만이 바이패스되기 때문에 효율적이지 못하다는 단점을 가지고 있다. 축우는 반추위의 발효과정에서 만들어진 미생물 단백질이나 반추위를 통과한 단백질, 즉 바이패스 단백질로부터 필요한 아미노산의 대부분을 얻는다. 반추동물에서의 바이패스 비율을 높이기 위해 대두박을 가공하는 여러가지 방법들이 연구되어 왔으며, 열처리를 하거나 lignosulfonate 또는 formaldehyde로 처리하는 방법 등이 주로 사용되며, 최근에는 식물성 오일 등으로 코팅하는 방법도 개발되어 있다. 그 중에서 대두박을 열처리하는 공정이 가장 많이 시도되고 있는데, 이는 대두박 내의 단백질과 당이 가열 과정에서 일어나는 갈색화반응 (Maillard reaction, 마이야르 반응)을 이용하는 것이다. 즉, 당의 카보닐기 (carbonyl group)와 아마노산의 아미노기(amino group)가 열에 의해 결합하게 되면 반추위에서 소화작용을 일으키는 미생물 효소들의 공격을 받지 않고 바이패스되어 소장에서 대부분 소화가 일어나게 된다. 익스트루더 등을 사용하여 고온에서 짧은 시간 열을 가하거나 자일로스(xylose) 등의 활성화 당(reactive sugar)을 첨가한 후 열처리하는 방식 등이 사용되는데 최근에는 효모 등에서 분리한 효소를 사용하여 대두박을 처리한 후 열처리를 함으로써 마이야르 반응을 촉진시키는 공정도 개발되었다.In one example of the present invention, legumes may include at least one selected from the group consisting of soybeans, rapeseeds, palm, peas, kidney beans, corn, mung beans, red beans, soybeans, lupines, and oil meal thereof there is. Soybean meal, a representative feed ingredient in legumes, is a very important protein source, accounting for 60% of the world's vegetable protein feed ingredients based on production volume. It has the downside of not being able to. Cattle get most of the amino acids they need from microbial proteins made in the fermentation process in the rumen or proteins that have passed through the rumen, that is, bypass proteins. Various methods of processing soybean meal have been studied to increase the bypass ratio in ruminants. Heat treatment or treatment with lignosulfonate or formaldehyde is mainly used. Recently, a method of coating with vegetable oil has also been developed. . Among them, the process of heat-treating soybean meal is the most tried, which uses the Maillard reaction (Maillard reaction) that occurs during heating of proteins and sugars in soybean meal. That is, when the carbonyl group of sugar and the amino group of amino acid are combined by heat, most of the digestion occurs in the small intestine without being attacked by microbial enzymes that cause digestion in the rumen. A method of applying heat at a high temperature for a short time using an extruder or adding reactive sugar such as xylose and then heat-treating is used. A process for accelerating the Maillard reaction by heat treatment after treatment has also been developed.
한편, 트립신 저해제 등의 항영양인자(anti-nutritional factors)들을 비가열적 방법으로 제거하기 위해 대두박을 효소로 처리하거나 미생물로 발효시키는 공정들이 산업화되어 있는데, 후자의 경우 Aspergillus 등의 곰팡이 균을 사용하거나 Bacillus 등의 세균을 사용하는 것이 일반적이다. 일부에서는 유산균을 이용하는 혐기적 공정을 사용하여 경제적으로 발효하는 공정을 사용하기도 하는데, 유산균의 경우 대사과정에서 대두박의 항영양인자의 하나인 과당류 (oligo-saccharide)들을 활발하게 분해하는 것으로 알려져 있다.On the other hand, processes in which soybean meal is treated with enzymes or fermented with microorganisms are industrialized to remove anti-nutritional factors such as trypsin inhibitors by non-heating methods. In the latter case, fungi such as Aspergillus or Bacillus It is common to use bacteria such as Some use an economical fermentation process using an anaerobic process using lactic acid bacteria. In the case of lactic acid bacteria, it is known that they actively decompose oligo-saccharides, one of the anti-nutritional factors of soybean meal, during the metabolic process.
이에 본 발명자들은 Raffinose, Stachyose 등 대두박 내의 과당류들과 단백질을 대사과정에서 효과적으로 분해하여 활성화 당과 펩타이드 형태로 만드는 유산균과 효모 발효를 통해 마이야르 반응을 촉진함으로써 단백질의 바이패스 비율을 높일 수 있는 공정을 개발하였다.Accordingly, the inventors of the present invention developed a method that can increase the bypass ratio of proteins by promoting the Maillard reaction through fermentation with yeast and lactic acid bacteria that effectively decompose fructose and proteins in soybean meal, such as Raffinose and Stachyose, into activated sugars and peptides in the metabolic process. process was developed.
본 발명의 또 다른 일 예는, 본 발명의 일 예에 따른 단백질의 반추위 바이패스율 증가용 조성물을 포함하는, 사료에 관한 것이다. 상기 사료는 반추동물용 사료인 것일 수 있다.Another example of the present invention relates to a feed, including a composition for increasing the rumen bypass rate of protein according to an embodiment of the present invention. The feed may be feed for ruminants.
본 명세서에서 “반추동물”이란, 우제목에 속하는 동물 중에서 반추위를 갖는 동물을 의미하며, 예를 들어 소과, 낙타과, 사슴과, 애기사슴과, 및 기린과로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다.In the present specification, “ruminant” means an animal having a ruminant stomach among animals belonging to the order Utilus, and includes, for example, one or more species selected from the group consisting of Bovine, Camel, Deer, Deer, and Giraffe. it may be
상기 소과는 예를 들어 한우, 젖소, 야크, 들소, 버팔로, 임팔라, 가우르, 물소, 염소, 양, 산양, 및 영양으로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다.The bovine family may include, for example, at least one selected from the group consisting of Korean cattle, dairy cows, yaks, bison, buffalo, impala, gaur, water buffalo, goats, sheep, goats, and antelopes.
상기 낙타과는 예를 들어 단봉낙타, 쌍봉낙타, 라마, 알파카, 과나코, 및 비쿠냐로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다.The Camelidae may include, for example, one or more species selected from the group consisting of dromedaries, bactrian camels, llamas, alpacas, guanacos, and vicuñas.
상기 사슴과는 예를 들어 사슴, 순록, 노루, 고라니, 엘크, 및 무우스로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다.The deer family may include, for example, at least one selected from the group consisting of deer, reindeer, roe deer, elk, elk, and moose.
상기 애기사슴과는 예를 들어 애기사슴 및 쥐사슴으로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다.The deer family may include, for example, one or more species selected from the group consisting of deer and mouse deer.
상기 기린과는 예를 들어 기린 및 오카피로 이루어지는 군에서 선택된 1종 이상을 포함할 수 있다.The giraffe family may include, for example, at least one member selected from the group consisting of giraffes and okapis.
본 발명의 또 다른 일 예는, 유산균 및 효모를 포함하는 발효균으로 콩류를 발효하는 단계; 및 상기 발효된 콩류를 열처리하는 단계를 포함하는, 단백질의 반추위 바이패스율 증가용 조성물의 제조방법, 또는 상기 조성물을 포함하는 사료의 제조방법에 관한 것이다.Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And a method for producing a composition for increasing the rumen bypass rate of protein, comprising heat-treating the fermented legumes, or a method for producing a feed containing the composition.
본 발명의 또 다른 일 예는, 유산균 및 효모를 포함하는 발효균으로 콩류를 발효하는 단계; 및 상기 발효된 콩류를 열처리하는 단계를 포함하는, 단백질의 반추위 바이패스율 증가 방법에 관한 것이다.Another example of the present invention is fermenting legumes with fermentation bacteria including lactic acid bacteria and yeast; And it relates to a method for increasing the rumen bypass rate of protein, comprising the step of heat-treating the fermented legumes.
본 발명의 또 다른 일 예는, 유산균 및 효모를 포함하는 발효균으로 발효된 콩류의 발효물을 포함하는, 반추동물의 온실가스 저감용 조성물에 관한 것이다. 본원 실시예에서 유산균 및 효모를 병용 사용하여 콩류를 발효한 발효물을 반추동물에 투여한 결과, 혈중 요소 질소가 감소하고, 메탄가스 및 암모니아 생성량이 감소하였으며, 분뇨 질소 배설량이 감소하였다. 따라서, 본 발명의 일 예에 따른 조성물 및 이를 포함하는 사료는, 반추동물의 온실가스 배출을 저감하는 효과를 가진다. 이에, 본 발명의 또 다른 일 예는, 상기 조성물을 반추동물에 투여하는 단계를 포함하는, 반추동물의 온실가스 배출을 저감하는 방법에 관한 것이다. 상기 온실가스는 메탄가스 및/또는 아산화질소일 수 있다.Another example of the present invention relates to a composition for reducing greenhouse gases in ruminants, including a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast. In the present example, as a result of administering the fermented product obtained by fermenting legumes using a combination of lactic acid bacteria and yeast to ruminants, blood urea nitrogen decreased, methane gas and ammonia production decreased, and manure nitrogen excretion decreased. Therefore, the composition according to one embodiment of the present invention and the feed containing the same have an effect of reducing greenhouse gas emissions of ruminants. Accordingly, another embodiment of the present invention relates to a method for reducing greenhouse gas emissions of ruminants, comprising administering the composition to the ruminants. The greenhouse gas may be methane gas and/or nitrous oxide.
본 발명의 일 예에 따른 조성물은 하기 (1) 내지 (6) 중 하나 이상의 특성을 유도하는 것일 수 있다:A composition according to an example of the present invention may induce one or more of the following properties (1) to (6):
(1) 혈중 요소 질소 농도 감소, 예를 들어 대조군 대비 공복 혈중 요소 질소 농도가 90% 이하, 80% 이하, 또는 75% 이하 (상기 대조군은 비발효 콩류 또는 유산균 단독 발효한 콩류를 투여한 그룹일 수 있다),(1) Reduction in blood urea nitrogen concentration, for example, fasting blood urea nitrogen concentration compared to the control group is 90% or less, 80% or less, or 75% or less (the control group is a group administered with unfermented legumes or legumes fermented with lactic acid bacteria alone) can),
(2) 반추위에서 메탄 생성량의 감소, 예를 들어 대조군 대비 메탄 가스 생성량이 95% 이하, 90% 이하, 85% 이하, 80% 이하, 70% 이하, 60% 이하, 55% 이하, 50% 이하, 또는 45% 이하 (상기 대조군은 비발효 콩류, 단위동물용 발효 콩류, 또는 유산균 단독 발효한 콩류를 처리한 군일 수 있다),(2) Decreased methane production in the rumen, e.g., less than 95%, less than 90%, less than 85%, less than 80%, less than 70%, less than 60%, less than 55%, less than 50% compared to the control group , or 45% or less (the control group may be a group treated with unfermented legumes, fermented legumes for unit animals, or legumes fermented with lactic acid bacteria alone),
(3) 반추위에서 암모니아 생성량의 감소, 예를 들어 대조군 대비 암모니아 농도가 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95.5% 이하, 90% 이하, 85% 이하, 80% 이하, 70% 이하, 60% 이하, 또는 50% 이하 (상기 대조군은 비발효 콩류, 단위동물용 발효 콩류, 또는 유산균 단독 발효한 콩류를 처리한 군일 수 있다),(3) Reduction of ammonia production in the rumen, for example, ammonia concentration compared to the control group is 99% or less, 98% or less, 97% or less, 96% or less, 95.5% or less, 90% or less, 85% or less, 80% or less, 70% or less, 60% or less, or 50% or less (the control group may be a group treated with non-fermented legumes, fermented legumes for unit animals, or legumes fermented with lactic acid bacteria alone),
(4) 분뇨 질소 배설량의 감소, 예를 들어 대조군 대비 분뇨 질소 배설량이 99% 이하, 98% 이하, 97% 이하, 또는 96% 이하 (상기 대조군은 본 발명의 일 예에 따른 조성물을 투여하지 않은 군일 수 있다),(4) decrease in manure nitrogen excretion, for example, 99% or less, 98% or less, 97% or less, or 96% or less in manure nitrogen excretion compared to the control group (the control group is not administered with the composition according to an embodiment of the present invention) may be military),
(5) 잔류 질소 (retained Nitrogen)의 증가, 예를 들어 대조군 대비 잔류 질소가 1배 초과, 1.05배 이상, 또는 1.1배 이상 (상기 대조군은 본 발명의 일 예에 따른 조성물을 투여하지 않은 군일 수 있다).(5) Increase in retained nitrogen, for example, residual nitrogen is greater than 1 times, 1.05 times or more, or 1.1 times or more compared to the control group (the control group may be a group not administered with the composition according to an embodiment of the present invention) there is).
(6) 질소의 체내 이용효율을 개선, 예를 들어 질소의 체내 이용효율을 1% 이상, 1.5% 이상, 2% 이상, 2.5% 이상, 3% 이상, 3.01% 이상, 3.02% 이상, 3.03% 이상, 3.04% 이상, 3.05% 이상, 또는 3.06% 이상 개선 (상기 대조군은 본 발명의 일 예에 따른 조성물을 포함하지 않은 사료를 투여한 그룹일 수 있다).(6) Improve the efficiency of nitrogen utilization in the body, for example, increase the efficiency of nitrogen utilization in the body by 1% or more, 1.5% or more, 2% or more, 2.5% or more, 3% or more, 3.01% or more, 3.02% or more, or 3.03% improvement of 3.04% or more, 3.05% or more, or 3.06% or more (the control group may be a group administered with a feed not containing the composition according to an embodiment of the present invention).
상기 질소의 체내 이용율은 하기 수학식 1로 계산되는 것일 수 있다:The nitrogen utilization rate in the body may be calculated by Equation 1 below:
[수학식 1][Equation 1]
질소의 체내 이용효율(%) = (대조군 대비 질소 이용률)/(질소 섭취량) X 100Nitrogen utilization efficiency in the body (%) = (Nitrogen utilization rate compared to the control group) / (Nitrogen intake) X 100
본 발명은 반추동물의 반추위내 메탄저감 및 질소 분뇨 배설량 저감으로 암모니아 가스 (NH3) 저감에 의한 분뇨 악취 저감, 아산화질소 (N2O) 등 온실 가스 감축에 기여할 수 있고, 반추동물에서 단백질 이용율을 높여 생산성과 질소 저감을 통해 온실가스 문제를 해결할 수 있다.The present invention can contribute to reducing manure odor by reducing ammonia gas (NH3) and reducing greenhouse gases such as nitrous oxide (N2O) by reducing methane and nitrogen excretion in the rumen of ruminants, and increasing protein utilization in ruminants to increase productivity and nitrogen reduction can solve the greenhouse gas problem.
본 발명은 반추위 바이패스 단백질을 제공하여 소장흡수율을 높여 반추 미생물에 의한 과다 단백질 분해로 발생하는 암모니아를 줄이고, 분뇨로 배설되는 질소양을 줄여 불필요한 단백질원의 사용을 최소화하면서도 생산성을 높여, 국가적으로 환경문제 해결에 도움이 되는 환경부담 저감 사료 (저단백, 저온실가스 사료)를 제공할 수 있다.The present invention provides rumen bypass protein to increase the small intestine absorption rate, reduce ammonia generated by excessive protein decomposition by ruminant microorganisms, and reduce the amount of nitrogen excreted as manure, thereby minimizing the use of unnecessary protein sources and increasing productivity, nationally. It is possible to provide feed (low-protein, low-temperature gas feed) that reduces environmental burden to help solve environmental problems.
본 발명의 일 예에 따른 바이패스율 증가용 조성물은 반추위 내 메탄의 발생량 및 분변 내 질소량을 감소시켜 온실가스를 저감할 수 있다.The composition for increasing the bypass rate according to an embodiment of the present invention can reduce greenhouse gases by reducing the amount of methane generated in the rumen and the amount of nitrogen in feces.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
실시예 1: 유산균 및 효모 병용에 의한 콩류 발효물 제조Example 1: Preparation of legume fermented product by lactic acid bacteria and yeast combination
(1) 유산균 및 효모 병용에 의한 콩류 발효(1) Fermentation of legumes by the combination of lactic acid bacteria and yeast
발효균으로 유산균 및 효모를 병용 사용하여 콩류를 발효하고 발효물의 조단백 함량을 측정하였다. 본 실시예에서 콩류의 예시로서 대두박을 사용하였으며, 대두박 발효에 사용되는 유산균의 종류는 제한 없이 사용할 수 있으나, 대두박에 엔테로코커스 페시움 (Enterococcus faecium) 또는 락토코코스 락티스 (Lactococcus lactis) 1.0x106/g을 접종 후 24시간 뒤 균수를 비교한 결과, E. faecium은 6.5 x 108/g, Lactococcus lactis는 2.5x 107/g 로 나타나, 엔테로코커스 속 균주를 사용할 경우 더욱 효율적인 대두박 발효가 가능하였다. 이에, 본 실시예에서는 유산균으로서 엔테로코커스 페시움을 사용하여 발효를 수행하였다.Legumes were fermented using a combination of lactic acid bacteria and yeast as fermenting bacteria, and the crude protein content of the fermented product was measured. In this Example, soybean meal was used as an example of legumes, and the type of lactic acid bacteria used for fermentation of soybean meal can be used without limitation, but Enterococcus faecium or Lactococcus lactis 1.0x10 6 As a result of comparing the number of bacteria 24 hours after inoculation of /g, E. faecium was 6.5 x 10 8 /g and Lactococcus lactis was 2.5x 10 7 /g. When using Enterococcus strains, more efficient soybean meal fermentation is possible did Thus, in this Example, fermentation was performed using Enterococcus pesium as a lactic acid bacterium.
30℃ 또는 35℃ 온도로 사전 조정된 배양기에서 대두박 1000g (수분함량 120g)에 종균액 500g (수분함량 480g)을 첨가하여 발효를 24시간 수행하였다. 발효에 사용된 균체는 유산균 (엔테로코커스 페시움 KCTC13566BP) 균체 107 cfu/g 및 효모 (Saccharomyces cerevisiae) 106 cfu/g를 사용하였다. Fermentation was carried out for 24 hours by adding 500 g of seed liquid (moisture content of 480 g) to 1000 g of soybean meal (moisture content of 120 g) in an incubator pre-adjusted at 30°C or 35°C. Cells used for fermentation were 10 7 cfu/g of lactic acid bacteria (Enterococcus faecium KCTC13566BP) and 10 6 cfu/g of yeast (Saccharomyces cerevisiae).
(2) 발효 콩류의 열처리(2) Heat treatment of fermented legumes
발효물의 열처리는 DMD 건조기 (double mixing dryer)방식의 건조기를 사용하였는데 드럼 내부에 이중 패들이 설치되어 있고 이중 자켓으로 온도를 일정하게 제어하고 원료가 연속적으로 투입 및 배출되는 연속식 구조를 가지고 있다. 열처리가 끝난 발효물은 품온에 따라 열처리 시간을 조절하여 10분에서 60분 미만으로 처리하였다 (130℃ 10분; 120℃ 15분; 110℃ 20분; 90℃ 35분). 이후에는 온도를 60℃로 제한하여 수분함량이 12% 이하가 될 때까지 건조하여 유산균 및 효모 병용에 의한 콩류 발효물 (샘플명: 실시예 1)을 얻었다.For the heat treatment of the fermented product, a DMD dryer (double mixing dryer) type dryer is installed. It has a continuous structure in which double paddles are installed inside the drum, the temperature is constantly controlled with a double jacket, and raw materials are continuously injected and discharged. The fermented product after heat treatment was treated from 10 minutes to less than 60 minutes by adjusting the heat treatment time according to the product temperature (130 ℃ 10 minutes; 120 ℃ 15 minutes; 110 ℃ 20 minutes; 90 ℃ 35 minutes). Thereafter, the temperature was limited to 60 ° C. and dried until the moisture content was 12% or less to obtain a fermented soybean product (sample name: Example 1) by a combination of lactic acid bacteria and yeast.
비교예 1: 유산균 단독에 의한 콩류 발효물 제조Comparative Example 1: Production of legume fermented product by lactic acid bacteria alone
실시예 1의 (1)과 동일하게 수행하되, 발효균으로 유산균 (엔테로코커스 페시움 KCTC13566BP) 균체 107 cfu/g 을 단독 사용하여 발효를 수행하였다. 얻어진 발효물을 실시예 1의 (2)와 동일한 방법으로 열처리 및 건조하여 유산균 단독에 의한 콩류 발효물 (샘플명: 비교예 1)을 얻었다.Fermentation was performed in the same manner as in (1) of Example 1, except that 10 7 cfu/g of lactic acid bacteria (Enterococcus faecium KCTC13566BP) was used alone as the fermenting bacteria. The obtained fermented product was heat-treated and dried in the same manner as in Example 1 (2) to obtain a fermented soybean product by lactic acid bacteria alone (Sample name: Comparative Example 1).
실시예 2: pH 및 조단백 함량 측정Example 2: Measurement of pH and crude protein content
발효 완료 후 열처리를 수행하기 전, 발효물에 중량 기준으로 두 배의 증류수를 첨가하여 5분간 교반 후 pH를 측정하고, 켈달(Kjeldahl) 법으로 조단백질 함량을 측정하고, 샘플의 수분 함량을 8중량% 기준으로 보정하여 표 1에 나타냈다.After completion of fermentation and before heat treatment, twice the amount of distilled water by weight was added to the fermented product, stirred for 5 minutes, and then the pH was measured, the crude protein content was measured by the Kjeldahl method, and the water content of the sample was measured by 8 weight It was corrected on a % basis and shown in Table 1.
구분division 발효온도(℃)Fermentation temperature (℃) pHpH 조단백질(%) (수분 8중량% 기준)Crude protein (%) (based on 8% by weight of water)
실시예 1Example 1 3030 5.65.6 50.350.3
3535 5.45.4 51.051.0
비교예 1Comparative Example 1 3030 5.55.5 47.847.8
3535 5.65.6 48.248.2
표 1에 나타난 바와 같이, 유산균 발효에 의해 젖산이 생성되어 배지의 pH가 낮아진 것을 확인하였으며, 유산균 및 효모를 병용 사용한 실시예 1 발효물의 조단백 함량이 유산균 단독 사용한 비교예 1 대비 조단백 함량이 약 3% 높았다.As shown in Table 1, it was confirmed that lactic acid was produced by fermentation of lactic acid bacteria and the pH of the medium was lowered. % was high.
실시예 3: RUP 및 소장 흡수 단백질 함량 측정Example 3: Measurement of RUP and small intestine absorbed protein content
각 시료의 RUP (반추위 비분해성 단백질) 분석을 위해 protease 용액을 사용하는 in vitro 분석을 실시하였다. 소장 흡수 단백질은 펩신 (pH 2)에 1시간, 트립신, 키모트립신, 아밀라제 및 리파제가 첨가된 효소 용액 (pH 9.0)을 이용하여 24시간 분해로 분석하였다. RUP 함량 및 소장흡수 단백질 함량을 전체 조단백질(CP) 함량 100중량% 기준 (%CP)으로 표 2에 나타냈다.For RUP (rumen non-degradable protein) analysis of each sample, in vitro analysis using a protease solution was performed. Intestinal absorbed proteins were analyzed by digestion in pepsin (pH 2) for 1 hour and enzyme solution (pH 9.0) supplemented with trypsin, chymotrypsin, amylase and lipase for 24 hours. Table 2 shows the RUP content and small intestine absorbed protein content based on 100% by weight of total crude protein (CP) content (% CP).
구분division 발효온도(℃)Fermentation temperature (℃) RUP (%CP)RUP (%CP) 소장흡수 단백질 (%CP)Small Intestine Absorbed Protein (%CP)
실시예 1Example 1 3030 7979 72.272.2
3535 8080 72.172.1
비교예 1Comparative Example 1 3030 7272 68.168.1
3535 7373 68.368.3
표 2에 나타난 바와 같이, 유산균 및 효모를 병용 사용하여 발효한 실시예 1의 발효물이 열처리 후 RUP 함량이 약 10% 증가하고, 소장흡수 단백질이 약 4% 더 흡수되는 것으로 나타났다. 따라서 유산균 및 효모를 병용 사용하여 발효한 실시예 1의 발효물은 반추동물의 반추위에서 분해되지 않아 바이패스율이 증가되고, 소장 흡수율이 높은 것을 확인하였다.As shown in Table 2, the fermented product of Example 1 fermented using lactic acid bacteria and yeast in combination showed an increase in RUP content by about 10% and an absorption of about 4% more in the small intestine after heat treatment. Therefore, it was confirmed that the fermented product of Example 1 fermented by using lactic acid bacteria and yeast in combination did not decompose in the rumen of ruminants, increased the bypass rate, and had a high absorption rate in the small intestine.
실시예 4. 바이패스 콩류의 혈중 요소 질소 감소 효과Example 4. Blood urea nitrogen reduction effect of bypass legumes
실시예 1의 콩류 발효물, 비교예 1의 콩류 발효물, 또는 대두박 (사조5호-조단백 46%이상, 사조대림)을 각각 350g/kg 양으로 6주 동안 각 군별 6마리 (40~45개월령 홀스타인 거세우)에 급여 후, 정맥에서 혈액을 채취하여 혈중 요소 질소 (Blood urea nitrogen; BUN) 농도 및 총 단백질 (Total protein) 농도를 분석하여 표 3에 나타내었다.The fermented soybean product of Example 1, the fermented soybean product of Comparative Example 1, or soybean meal (Sajo No. 5-more than 46% crude protein, Sajo Daerim) was administered to 6 animals in each group (aged 40 to 45 months) at an amount of 350 g/kg each for 6 weeks. After feeding Holstein castration), blood was collected from a vein and blood urea nitrogen (BUN) concentration and total protein concentration were analyzed and shown in Table 3.
항목item 비교예 1Comparative Example 1 대두박soybean meal 실시예 1Example 1
공복spandrel 3시간3 hours 공복spandrel 3시간3 hours 공복spandrel 3시간3 hours
BUN (mg/dL)BUN (mg/dL) 10.6010.60 12.4812.48 11.1511.15 15.1615.16 7.837.83 9.839.83
Total protein (g/dL)Total protein (g/dL) 8.928.92 10.3510.35 9.259.25 9.509.50 9.489.48 9.849.84
표 3에 나타난 바와 같이, 실시예 1의 콩류 발효물의 경우 투여 3시간 뒤의 BUN의 농도가 9.83 mg/dL로, 비교예 1의 콩류 발효물 또는 대두박 급여구의 공복 BUN 농도와 비교하여도 낮은 값을 보였다. 투여 3시간 뒤의 BUN 농도와 비교하면, 비교예 1의 콩류 발효물에 비해 2.65 mg/dL 낮았고 (약 21.2% 감소), 대두박 급여구에 비해 5.33 mg/dL 낮았다 (약 35.2% 감소). 따라서, 본 발명의 일 예에 따른 콩류 발효물은 대사 단백질로 많이 이용되어 분뇨로 배출되는 질소원이 감소하는 효과가 현저히 우수하였다.As shown in Table 3, in the case of the fermented legumes of Example 1, the concentration of BUN 3 hours after administration was 9.83 mg/dL, which is lower than the fasting BUN concentration of the fermented legumes or soybean meal feed of Comparative Example 1. showed Compared to the BUN concentration 3 hours after administration, it was 2.65 mg/dL lower than that of the fermented soybean product of Comparative Example 1 (about 21.2% decrease) and 5.33 mg/dL lower than that of the soybean meal feeder (about 35.2% decrease). Therefore, the fermented soybean product according to one embodiment of the present invention is widely used as a metabolic protein, and the effect of reducing the nitrogen source discharged into manure was remarkably excellent.
실시예 5. 바이패스 콩류의 메탄 대사 개선 효과Example 5. Effect of improving methane metabolism in bypass legumes
(1) 실험재료 준비(1) Preparation of experimental materials
반추위액은 국립순천대학교 부속 동물사육장에서 사육하고 있는 반추위 누관이 장착된 한우 3두를 이용하여 위액을 채취하고, 채취한 위액은 39℃ 온도를 유지하여 30분 동안 정치시킨 후 4겹의 cheese cloth로 여과하여 사료 입자를 제거한 후 항온수조를 이용하여 39℃를 유지하였다.The rumen gastric juice was collected using 3 Korean cattle equipped with rumen fistulas reared at the animal breeding farm attached to Sunchon National University. After filtering to remove feed particles, the temperature was maintained at 39° C. using a constant temperature water bath.
(2) 메탄가스 감소 효과(2) Methane gas reduction effect
실시예 1의 콩류 발효물, 비교예 1의 콩류 발효물, 단위동물용 발효대두박 및 대두박을 준비하고, 각 시료는 160mm serum bottle에 총 부피 1.0%(DM)씩 담은 후, 위액과 완충용액을 1:3 비율로 100ml씩 분주하여 butyl rubber stopper 및 aluminum cap을 씌워 39℃의 shaking incubator에 100rpm으로 배양하였다. 위액의 희석 및 여과 전 과정 동안 N2로 bubbling 하여 위액이 혐기 상태를 유지하도록 하였으며, 샘플 채취시간은 0, 3, 6, 12, 및 24시간으로 처리구당 3반복으로 2회 진행하였다. 단위동물용 발효대두박은 돼지 또는 닭과 같은 위가 하나인 동물용으로, 대두박에서 항영양인자를 제거하여 소화흡수가 빠르고 높게 만들어 어분을 대체하여 사용되는 제품으로, 발효 후 건조하는 온도의 품온이 60℃를 초과하지 않도록 하여 마이에르 반응을 방지하는 조건에서 건조하여 제조한 제품이다.The fermented soybean product of Example 1, the fermented soybean product of Comparative Example 1, fermented soybean meal and soybean meal for unit animals were prepared, each sample was put into a 160mm serum bottle at a total volume of 1.0% (DM), and gastric juice and buffer solution were mixed. 100 ml was dispensed at a ratio of 1:3, covered with a butyl rubber stopper and an aluminum cap, and cultured at 100 rpm in a shaking incubator at 39 ° C. During the entire process of dilution and filtration of gastric juice, gastric juice was bubbling with N 2 to maintain the gastric juice in an anaerobic state. Fermented soybean meal for unit animals is for animals with a single stomach, such as pigs or chickens. It is a product used as a substitute for fish meal by removing anti-nutritional factors from soybean meal to increase digestion and absorption. It is a product manufactured by drying under conditions that prevent the Mayer reaction by not exceeding ℃.
각 시료별 총 가스 생성량을 표 4에 나타냈다. 표 4에 나타난 바와 같이, 단위동물용 발효대두박은 유의적으로 높은 가스 생성량을 보였으며, 실시예 1의 발효물은 반추위 내에서의 단백질 분해율 감소가 반추위 미생물 발효를 저해해서 유의하게 낮은 가스 생성량을 보인 것으로 사료된다. 표 4에서 SEM은 평균의 표준오차 (standard error of the mean)이며, a, b 및 c는 동일한 행에서 서로 다른 첨자는 유의한 차이를 나타낸다 (p<0.05).Table 4 shows the total amount of gas produced for each sample. As shown in Table 4, the fermented soybean meal for monogastric animals showed a significantly high gas production amount, and the fermented product of Example 1 showed a significantly low gas production amount because the decrease in protein degradation rate in the rumen inhibited ruminal microbial fermentation. It is presumed to have been seen. In Table 4, SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p<0.05).
시간hour 무 처리구radish treatment 대두박soybean meal 단위동물용
발효대두박
for unit animals
fermented soybean meal
비교예1Comparative Example 1 실시예 1Example 1 SEMSEM P valueP value
3h3h 7.000b 7.000b 12.333a 12.333 a 11.400a 11.400 a 12.153a 12.153 a 12.233a 12.233 a 0.4780.478 0.00010.0001
6h6h 9.000c 9.000 c. 23.500a 23.500 a 22.833a 22.833a 20.867b 20.867b 20.667b 20.667b 0.5710.571 <.0001<.0001
12h12h 11.500d 11.500 d 33.167a 33.167 a 30.333b § 30.333b 28.920c 28.920c 27.000c 27.000 c. 0.4460.446 <.0001<.0001
24h24h 19.333d 19.333d 53.333b 53.333b 62.333a 62.333 a 44.358c 44.358c 42.333c 42.333c 1.5861.586 <.0001<.0001
반추위 발효과정에서 시간별 생성된 메탄을 분석하기 위해 6ml 진공관 (vacutainer)을 이용하여 채취하였다. 메탄 분석은 기체 크로마토그래피 (Gas Chromatography, Agilent technolgies HP 5890)를 사용하였다. Detecter는 TCD, 컬럼 Carboxen 1006PLOT capillary column 30m×0.53mm(Supelco)를 이용하며 분석조건은 oven 온도 35℃, injection 부분 온도 200℃, 사출구의 부분 detector 온도 200℃로 이동상 가스 N2를 3ml/min 흘러주어 배양시간 별 발생량을 분석하였다.In order to analyze the methane generated over time in the rumen fermentation process, it was collected using a 6ml vacuum tube (vacutainer). Methane analysis was performed using gas chromatography (Gas Chromatography, Agilent technolgies HP 5890). The detector uses TCD, column Carboxen 1006PLOT capillary column 30m×0.53mm (Supelco), and the analysis conditions are oven temperature 35℃, injection part temperature 200℃, detector temperature of the injection port part 200℃, and mobile phase gas N 2 at 3ml/min. It was flowed and analyzed the amount generated by culture time.
반추위 발효를 통한 메탄 생성량을 mM/ml 농도로 표 5에 나타냈다. 메탄 발생량에서는 12시간, 24시간 배양에서 실시예 1의 발효물이 유의적으로 가장 낮았다. 구체적으로, 실시예 1의 바이패스 발효물은 대두박 대비 12시간, 24시간 배양에서 각 35.9%, 45.5%의 메탄 저감효과를 보였다. 비교예 1의 발효물은 대두박 대비 12시간, 24시간 배양에서 각 31.2%, 38.8%의 메탄 저감효과를 보였다. 단위동물용 발효대두박의 경우 대두박 대비 12시간 배양에서는 18.2% 저감효과를 보였으나, 24시간 배양에서는 오히려 30.8% 증가하였다. 표 5에서 SEM은 평균의 표준오차 (standard error of the mean)이며, a, b 및 c는 동일한 행에서 서로 다른 첨자는 유의한 차이를 나타낸다 (p<0.05).Table 5 shows the amount of methane produced through rumen fermentation in mM/ml concentration. In terms of methane production, the fermented product of Example 1 was significantly the lowest in 12-hour and 24-hour culture. Specifically, the bypass fermented product of Example 1 showed methane reduction effects of 35.9% and 45.5%, respectively, compared to soybean meal in 12-hour and 24-hour cultivation. The fermented product of Comparative Example 1 showed methane reduction effects of 31.2% and 38.8%, respectively, compared to soybean meal after 12 hours and 24 hours of cultivation. In the case of fermented soybean meal for monogamous animals, compared to soybean meal, it showed a reduction effect of 18.2% in 12-hour culture, but increased by 30.8% in 24-hour culture. In Table 5, SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p<0.05).
TimeTime 무 처리구radish treatment 대두박soybean meal 단위동물용
발효대두박
for unit animals
fermented soybean meal
비교예1Comparative Example 1 실시예1Example 1 SEMSEM P valueP value
3h3h 0.4730.473 2.3872.387 5.5405.540 2.1202.120 1.9201.920 0.8370.837 0.2820.282
6h6h 0.513b 0.513b 3.603ab 3.603ab 5.170a 5.170 a 4.673a 4.673 a 4.433a 4.433 a 0.8420.842 0.0880.088
12h12h 3.523c 3.523c 10.670a 10.670 a 8.727ab 8.727 ab 7.340b 7.340b 6.840b 6.840b 0.5520.552 0.0010.001
24h24h 4.177d 4.177d 13.995ab 13.995 ab 18.307a 18.307 a 8.562cd 8.562 CD 7.623cd 7.623 CD 1.4411.441 0.0010.001
(3) 암모니아 농도분석(3) Ammonia concentration analysis
상기 (2)와 동일하게 배양하고, 암모니아 농도 분석은 Chaney와 Marbach (1962)의 방법에 따라 spectrophotometer (Manufactured by Biochrom Ltd, CB40Fj, England)의 파장 630㎚에서 OD(흡광도)를 측정하여 계산하였다. 구체적으로, NH3는 알칼리 용액에서 hypochlorite와 반응하여 NH2Cl을 형성하고, 순차적으로 페놀과 반응하여 청색의 인도페놀 염료를 생성한다. 반응 중 촉매인 sodium nitroprusside 혹은 MnS04를 첨가하여 반응의 속도를 촉진시킬 경우 대개 10분 이내에 반응을 완결시킬 수 있다. 이 반응에서 생성된 인도페놀은 안정하여 화학 반응을 통한 분석법의 좋은 예가 된다. 인도페놀은 630 nm 파장에서 광자를 흡수한다.Cultivated in the same manner as in (2) above, and ammonia concentration analysis was calculated by measuring OD (absorbance) at a wavelength of 630 nm of a spectrophotometer (Manufactured by Biochrom Ltd, CB40Fj, England) according to the method of Chaney and Marbach (1962). Specifically, NH 3 reacts with hypochlorite in an alkaline solution to form NH 2 Cl, which sequentially reacts with phenol to produce a blue indophenol dye. If sodium nitroprusside or MnS04 as a catalyst is added during the reaction to speed up the reaction, the reaction can usually be completed within 10 minutes. The indophenol produced in this reaction is stable and is a good example of an analytical method through a chemical reaction. Indophenol absorbs photons at a wavelength of 630 nm.
반추위 발효를 통한 암모니아 농도를 mM/L 농도로 표 6에 나타냈다. 표 6에 나타난 바와 같이, 24시간 배양 기간에서 암모니아(NH3-N)의 농도는 단위동물용 발효대두박이 유의하게 높은 결과를 나타내었다(p<0.05). 실시예 1의 바이패스 발효 대두박은 암모니아 농도가 유의적으로 낮았으며, 반추위내에서 단백질의 분해가 일어나지 않고 소장에서 소화가 진행되는 것을 보여준다. 표 6에서 SEM은 평균의 표준오차 (standard error of the mean)이며, a, b 및 c는 동일한 행에서 서로 다른 첨자는 유의한 차이를 나타낸다 (p<0.05).Ammonia concentrations through rumen fermentation are shown in Table 6 as mM/L concentrations. As shown in Table 6, the concentration of ammonia (NH 3 -N) in the 24-hour culture period was significantly higher in the fermented soybean meal for unit animals (p<0.05). The bypass fermented soybean meal of Example 1 had a significantly low ammonia concentration, showing that protein degradation did not occur in the rumen and digestion proceeded in the small intestine. In Table 6, SEM is the standard error of the mean, and different subscripts for a, b, and c in the same row show significant differences (p<0.05).
TimeTime 무 처리구radish treatment 대두박soybean meal 단위동물용 발효대두박Fermented soybean meal for unit animals 비교예1Comparative Example 1 실시예1Example 1 SEMSEM P valueP value
3h3h 14.06214.062 12.19712.197 16.03916.039 13.12113.121 13.01213.012 1.1301.130 0.3690.369
6h6h 15.75815.758 12.49812.498 16.65716.657 15.65815.658 15.29815.298 1.3791.379 0.3920.392
12h12h 19.33719.337 14.36814.368 20.53220.532 19.42119.421 17.43317.433 1.3911.391 0.1200.120
24h24h 23.277b 23.277b 24.235b 24.235b 38.527a 38.527 a 20.128b 20.128b 19.128b 19.128b 2.8802.880 0.0130.013
실시예 6. 바이패스 콩류의 질소 대사 개선 효과Example 6. Effect of improving nitrogen metabolism in bypass legumes
14.8개월령 한우 거세우 8두를 준비하여 8개 케이지에 배치하고, 대조군 및 실험군 2개 그룹으로 나누어 표 7에 따른 일반사료 또는 실시예 1의 발효물을 포함하는 사료를 급여하였다. 물은 음수조에서 자유 급여하였고, 조사료는 매일 08:00, 14:00에 급여하였다. 스탄천에 걸어둔 상태로 사료 바구니를 통한 개체별 급여를 진행하였고, 급여가 끝날 때마다 저울을 이용해 잔량을 측정했다. 농후사료는 DeLaval 자동급이기를 이용해 자유 급여를 진행하고, 개별 섭취량은 Delpro 소프트웨어를 통해 매일 측정하여 기록했다. 체중 측정은 아침사료 급여 전에 수행하고, 매일 아침 9시 전체 분변과 소변을 수거하여 배설량을 기록하고, 분은 10% 량, 뇨는 5% 량씩 시료 채취 후 냉동 보관하였다. 5일 후 각 공시축의 시료를 혼합하여 분석 시료 채취 후 냉동 보관하였다. 24일간의 실험 종료 후, 실험 결과 검증을 위해 2일 간 washout 후 대조군 그룹 및 실험군 그룹을 서로 변경하여 동일하게 실험하였다.Eight 14.8-month-old Hanwoo castrated cattle were prepared and placed in 8 cages, divided into two groups, a control group and an experimental group, and fed with general feed according to Table 7 or feed containing the fermented product of Example 1. Water was freely fed in a drinking tank, and roughages were fed at 08:00 and 14:00 every day. Individual feeding was carried out through feed baskets while hanging on the stanchion, and the remaining amount was measured using a scale at the end of each feeding. Concentrated feed was freely fed using a DeLaval automatic feeder, and individual intake was measured and recorded daily using Delpro software. Weight measurement was performed before breakfast feed, and all feces and urine were collected at 9:00 every morning to record the amount of excretion. Samples of 10% for feces and 5% for urine were collected and stored frozen. After 5 days, samples from each sample were mixed, collected for analysis, and stored frozen. After the end of the 24-day experiment, after washout for 2 days to verify the experiment result, the control group and the experimental group were changed to each other and the same experiment was performed.
성분ingredient 대조군 (Low RUP)Control (Low RUP) 실험군 (High RUP)Experimental group (High RUP)
Flaked cornFlaked corn 22.0022.00 27.0027.00
Corn gluten feedCorn gluten feed 19.0019.00 7.007.00
Fine wheatFine wheat 17.4017.40 15.0015.00
Corn DDGSCorn DDGS 12.0012.00 17.0017.00
Palm Kernel MealPalm Kernel Meal 8.408.40 20.0020.00
Ground alfalfa pelletGround alfalfa pellet 7.007.00 0.000.00
MolassesMolasses 4.504.50 5.005.00
Soy hullsSoy hulls 2.802.80 0.000.00
LimestoneLimestone 2.302.30 2.502.50
Fine cornFine corn 1.101.10 1.101.10
Rice branRice bran 1.001.00 1.001.00
Mineral premixMineral premix 0.850.85 0.850.85
UreaUrea 0.600.60 0.000.00
Extruded linseedExtruded linseed 0.500.50 0.000.00
GlycerinGlycerin 0.300.30 0.300.30
SaltSalt 0.200.20 0.200.20
Vitamin premixVitamin premix 0.050.05 0.050.05
실시예 1Example 1 0.000.00 3.003.00
TotalTotal 100.00100.00 100.00100.00
RUP = rumen-undegradable protein;DDGS = distillers dried grains with solubles.RUP = rumen-undegradable protein; DDGS = distillers dried grains with solubles.
질소 섭취량 및 분뇨 배설량 분석 결과를 표 8에 나타냈다. 사료를 통한 질소 섭취량은 대조구와 실험구 모두 160g/d로 동일했으나, 분뇨 질소 배설량은 대조구보다 실험구에서 5g/d 더 낮았으며, 체내 단백질로 축적되는 것을 의미하는 질소 이용률 (N retention)도 실험구에서 4.9g/d 더 높았다. 따라서, 본 발명의 일 예에 따른 바이패스 단백질은 질소의 체내 이용효율을 약 3.063% 개선한 것을 보여준다. 한우거세우는 6개월부터 30개월 사육시까지 약 953kg의 조단백이 필요하며, 이를 질소로 환산하면 153kg이고, 아산화질소로 환산하면 76.5kg 이며, 이산화탄소로 환산하면 23.7톤이다. 23.7톤의 3.063%는 726kg 으로, 본 발명의 일 예에 따른 바이패스 단백질에 의한 질소의 체내 이용효율 증가를 통해, 한우거세우 30개월 도축시까지 두당 약 726kg CO2를 감소한 효과를 가지며, 한국에서 사육 중인 한우 숫소 127만두에 적용하면 922천톤의 CO2를 감소하는 효과를 가진다.The results of analysis of nitrogen intake and manure excretion are shown in Table 8. Nitrogen intake through feed was the same at 160 g/d in both control and experimental groups, but excretion of manure nitrogen was 5 g/d lower in the experimental group than in the control group, and nitrogen utilization (N retention), which means accumulation as protein in the body, was also tested It was 4.9 g/d higher in the old one. Therefore, the bypass protein according to an example of the present invention shows that the efficiency of nitrogen utilization in the body is improved by about 3.063%. From 6 months to 30 months of breeding, about 953 kg of crude protein is required, which is 153 kg when converted into nitrogen, 76.5 kg when converted into nitrous oxide, and 23.7 tons when converted into carbon dioxide. 3.063% of 23.7 tons is 726 kg, and through the increase in the utilization efficiency of nitrogen by the bypass protein according to an example of the present invention, it has the effect of reducing about 726 kg CO 2 per head until the 30-month slaughter of Hanwoo geese, in Korea When applied to 1.27 million heads of Korean cattle under breeding, it has the effect of reducing 922,000 tons of CO 2 .
따라서, 본 발명의 일 예에 따른 바이패스 단백질은, 분뇨로 배설되는 질소 함량이 감소하고, 암모니아 가스 및 아산화질소 가스 발생이 감소하여 친환경 축산에 유리한 효과를 가지며, 반추동물의 질소 이용율을 증가시켜 질소 이용 효율 증진 및 환경 부담 저감 효과를 확인하였다.Therefore, the bypass protein according to an example of the present invention reduces the nitrogen content excreted in manure and reduces the generation of ammonia gas and nitrous oxide gas, thereby having an advantageous effect on eco-friendly livestock farming and increasing the nitrogen utilization rate of ruminants. The effect of improving nitrogen utilization efficiency and reducing environmental burden was confirmed.
구분division 대조군 (Low RUP)Control (Low RUP) 실험군 (High RUP)Experimental group (High RUP) SEMSEM p value p value
질소 섭취량 (g/d)Nitrogen intake (g/d) 160160 160160 1.641.64 0.770.77
질소 배설량 (g/d)Nitrogen excretion (g/d) 119119 114114 2.212.21 0.100.10
잔류 질소 (retained N) (g/d)Retained N (g/d) 40.940.9 45.845.8 2.422.42 0.0970.097

Claims (21)

  1. 유산균 및 효모를 포함하는 발효균으로 발효된 콩류의 발효물을 포함하는, 단백질의 반추위 바이패스율 증가용 조성물.A composition for increasing the rumen bypass rate of protein, comprising a fermented product of legumes fermented with fermenting bacteria including lactic acid bacteria and yeast.
  2. 제1항에 있어서, 상기 유산균 및/또는 효모는, 상기 콩류에 포함된 단백질의 아민기 형성, 및/또는 상기 콩류의 마이야르 반응 촉진용인, 조성물.The composition according to claim 1, wherein the lactic acid bacteria and/or yeast form an amine group of proteins contained in the legumes and/or promote Maillard reaction of the legumes.
  3. 제1항에 있어서, 상기 발효물의 반추위 비분해성 단백질 (Rumen Undegradable Protein; RUP) 함량은, 발효물의 전체 조단백질 함량 100중량% 기준으로 74중량% 이상인, 조성물The composition of claim 1, wherein the rumen undegradable protein (RUP) content of the fermented product is 74% by weight or more based on 100% by weight of the total crude protein content of the fermented product.
  4. 제1항에 있어서, 상기 조성물은 단백질의 소장 흡수 증가용 조성물이며, 상기 발효물의 소장흡수 단백질 함량은 발효물의 전체 조단백질 함량 100중량% 기준으로 69중량% 이상인, 조성물.The composition according to claim 1, wherein the composition is a composition for increasing absorption of protein in the small intestine, and the content of protein absorbed in the small intestine of the fermented product is 69% by weight or more based on 100% by weight of the total crude protein content of the fermented product.
  5. 제1항에 있어서, 상기 발효물의 조단백 함량은 49중량% 이상인 것인, 조성물.The composition according to claim 1, wherein the fermented product has a crude protein content of 49% by weight or more.
  6. 제1항에 있어서, 상기 발효물은 발효 후 열처리된 것인, 조성물.The composition of claim 1, wherein the fermented product is heat-treated after fermentation.
  7. 제1항에 있어서, 상기 발효물은 발효 후 80 내지 150℃ 온도에서 열처리된 것인, 조성물.The composition of claim 1, wherein the fermented product is heat-treated at a temperature of 80 to 150 ° C after fermentation.
  8. 제1항에 있어서, 상기 발효물은 발효 후 5 내지 60분 열처리된 것인, 조성물.The composition of claim 1, wherein the fermented product is heat-treated for 5 to 60 minutes after fermentation.
  9. 제1항에 있어서, 상기 발효물은 20 내지 40℃ 온도에서 발효된 것인, 조성물.The composition of claim 1, wherein the fermented product is fermented at a temperature of 20 to 40 °C.
  10. 제1항에 있어서, 상기 콩류는 대두, 채종, 팜, 완두콩, 강낭콩, 옥수수, 녹두, 팥, 메주콩, 루핀 및 이들의 박 (粕, oil meal)으로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인, 조성물.The method of claim 1, wherein the legumes include at least one selected from the group consisting of soybean, rapeseed, palm, pea, kidney bean, corn, mung bean, red bean, soybean, lupine, and oil meal thereof phosphorus, composition.
  11. 제1항에 있어서, 상기 유산균은 엔테로코커스 (Enterococcus) 속 균주, 락토바실러스 (Lactobacillus) 속 균주, 바이셀라 (Weissella) 속 균주, 류코노스톡 (Leuconostoc) 속 균주, 스트렙토코커스 (Streptococcus) 속 균주, 및 락토코커스 (Lactococcus) 속 균주로 이루어지는 군에서 선택된 1종 이상인, 조성물.The method of claim 1, wherein the lactic acid bacteria are Enterococcus genus strains, Lactobacillus genus strains, Weissella genus strains, Leuconostoc genus strains, Streptococcus genus strains, And at least one member selected from the group consisting of Lactococcus genus strains, composition.
  12. 제1항에 있어서, 상기 효모는 사카로미세스 (Saccharomyces) 속 균주, 토룰라 (Tolula) 속 균주, 크산토필로마이세스 (Xanthophyllomyces) 속 균주, 및 피키아 (Pichia) 속 균주로 이루어지는 군에서 선택된 1종 이상인, 조성물.The method of claim 1, wherein the yeast is one selected from the group consisting of Saccharomyces genus strain, Tolula genus strain, Xanthophyllomyces genus strain, and Pichia genus strain. A composition that is more than species.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 조성물을 포함하는, 사료.A feed comprising the composition according to any one of claims 1 to 12.
  14. 제13항에 있어서, 상기 사료는 반추동물용 사료인, 사료.The feed according to claim 13, wherein the feed is feed for ruminants.
  15. 제14항에 있어서, 상기 반추동물은 소과, 낙타과, 사슴과, 애기사슴과, 및 기린과로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인, 사료.The feed according to claim 14, wherein the ruminant includes at least one member selected from the group consisting of bovine, camel, deer, deer, and giraffe.
  16. 유산균 및 효모를 포함하는 발효균으로 콩류를 발효하는 단계; 및Fermenting legumes with fermenting bacteria including lactic acid bacteria and yeast; and
    상기 발효된 콩류를 열처리하는 단계를 포함하는,Including the step of heat-treating the fermented legumes,
    단백질의 반추위 바이패스율 증가용 조성물의 제조방법.Method for producing a composition for increasing the rumen bypass rate of protein.
  17. 유산균 및 효모를 포함하는 발효균으로 콩류를 발효하는 단계; 및Fermenting legumes with fermenting bacteria including lactic acid bacteria and yeast; and
    상기 발효된 콩류를 열처리하는 단계를 포함하는,Including the step of heat-treating the fermented legumes,
    단백질의 반추위 바이패스율 증가 방법.A method for increasing the rumen bypass rate of proteins.
  18. 제1항 내지 제12항 중 어느 한 항에 따른 조성물을 포함하는, 반추동물의 온실가스 배출 저감용 조성물.A composition for reducing greenhouse gas emissions of ruminants, comprising the composition according to any one of claims 1 to 12.
  19. 제18항에 있어서, 상기 조성물은 반추동물에 투여되어 하기 (1) 내지 (6) 중 하나 이상의 특성을 유도하는 것인, 조성물:19. The composition of claim 18, wherein the composition induces one or more of the following properties (1) to (6) when administered to a ruminant:
    (1) 혈중 요소 질소 농도 감소,(1) Decreased blood urea nitrogen concentration;
    (2) 반추위에서 메탄 생성량의 감소,(2) reduced methane production in the rumen;
    (3) 반추위에서 암모니아 생성량의 감소,(3) reduction of ammonia production in the rumen;
    (4) 분뇨 질소 배설량의 감소,(4) reduction of manure nitrogen excretion;
    (5) 잔류 질소 (retained Nitrogen)의 증가, 및(5) an increase in retained nitrogen, and
    (6) 질소의 체내 이용효율 개선.(6) Improving the utilization efficiency of nitrogen in the body.
  20. 제1항 내지 제12항 중 어느 한 항에 따른 조성물을 반추동물에 투여하는 단계를 포함하는, 반추동물의 온실가스 배출을 저감하는 방법.A method for reducing greenhouse gas emissions of ruminants, comprising administering a composition according to any one of claims 1 to 12 to ruminants.
  21. 제20항에 있어서, 상기 온실가스는 메탄가스 및/또는 아산화질소인, 방법.21. The method of claim 20, wherein the greenhouse gas is methane gas and/or nitrous oxide.
PCT/KR2022/011452 2021-08-03 2022-08-03 Composition for increasing protein bypass rate and method for increasing protein bypass rate WO2023014072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210101959 2021-08-03
KR10-2021-0101959 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023014072A1 true WO2023014072A1 (en) 2023-02-09

Family

ID=85156241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011452 WO2023014072A1 (en) 2021-08-03 2022-08-03 Composition for increasing protein bypass rate and method for increasing protein bypass rate

Country Status (2)

Country Link
KR (1) KR102572213B1 (en)
WO (1) WO2023014072A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229980B (en) * 2023-11-08 2024-01-30 北京市农林科学院 Weissella sinica fermented feed and application and deodorization effect thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532524A (en) * 2005-03-11 2008-08-21 アーチャー・ダニエルズ・ミッドランド カンパニー Compositions and methods for providing rumen bypass protein in ruminant feed
KR20110035610A (en) * 2009-09-30 2011-04-06 자연과기술(주) Method for manufacturing of soybeanpeptide and feed composition comprising the soybeanpeptide manufactured therefrom
KR20140144718A (en) * 2012-03-26 2014-12-19 디에스엠 아이피 어셋츠 비.브이. Use of para nitro amino derivatives in feed for reducing methane emission in ruminants
KR20140144585A (en) * 2013-06-11 2014-12-19 농업회사법인 주식회사 피드업 The cow's feed efficiency and flow rate can be fermented for two nights to increase manufacturing method
KR20160130950A (en) * 2016-09-26 2016-11-15 농업회사법인 주식회사 피드업 A manufacturing methods of fermented soybean meal using lactic acid bacteria

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297356B2 (en) * 2004-05-10 2007-11-20 Grain States Soya, Inc. Method for manufacturing animal feed, method for increasing the rumen bypass capability of an animal feedstuff and animal feed
US20140147533A1 (en) * 2012-11-27 2014-05-29 Tuskegee University Feed supplement products and methods of using such products for improved raising of ruminant livestock animals
KR101821050B1 (en) * 2015-10-14 2018-03-09 씨제이제일제당 (주) Bio-based N-acetyl-L-methionine and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532524A (en) * 2005-03-11 2008-08-21 アーチャー・ダニエルズ・ミッドランド カンパニー Compositions and methods for providing rumen bypass protein in ruminant feed
KR20110035610A (en) * 2009-09-30 2011-04-06 자연과기술(주) Method for manufacturing of soybeanpeptide and feed composition comprising the soybeanpeptide manufactured therefrom
KR20140144718A (en) * 2012-03-26 2014-12-19 디에스엠 아이피 어셋츠 비.브이. Use of para nitro amino derivatives in feed for reducing methane emission in ruminants
KR20140144585A (en) * 2013-06-11 2014-12-19 농업회사법인 주식회사 피드업 The cow's feed efficiency and flow rate can be fermented for two nights to increase manufacturing method
KR20160130950A (en) * 2016-09-26 2016-11-15 농업회사법인 주식회사 피드업 A manufacturing methods of fermented soybean meal using lactic acid bacteria

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOSSAIN S.A., SHERASIA P.L., PHONDBA B.T., PATEL B.P., GARG M.R.: "Feed Conversion Efficiency, Milk Production and Methane Emission in Cows Fed Balanced Rations Containing Bypass Protein Feed", INDIAN JOURNAL OF ANIMAL NUTRITION, ANIMAL NUTRITION SOCIETY OF INDIA, DELHI, IN, vol. 34, no. 4, IN , pages 374, XP093032054, ISSN: 0970-3209, DOI: 10.5958/2231-6744.2017.00060.3 *

Also Published As

Publication number Publication date
KR20230020372A (en) 2023-02-10
KR102572213B1 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US11607434B2 (en) Bacillus compositions and methods of use with ruminants
CN106562064B (en) Lactating sow concentrated feed suitable for wet mixing feeding and preparation method thereof
CN111328923A (en) Biological composite straw pellet feed and preparation method thereof
WO2023014072A1 (en) Composition for increasing protein bypass rate and method for increasing protein bypass rate
CN111567682A (en) Natural feed and enzyme preparation compound type functional additive and preparation method thereof
CN110692847A (en) Antibiotic-free mixed feed additive for rabbits
CN113508872B (en) Palm meal raw material biological pretreatment method
CN115176907B (en) Fermented feed for ruminant animals and preparation method thereof
Pogány et al. Enterocin M and sage supplementation in post-weaning rabbits: Effects on growth performance, caecal microbiota, fermentation and enzymatic activity
CN111053161A (en) Biological feed additive and preparation method and application thereof
CN104366109A (en) Antibiotic-free concentrated feed for young chicken and preparation method thereof
CN103710413A (en) Preparation method of lactobacillus peptide as well as application of lactobacillus peptide in animal feed
KR101470995B1 (en) Propionic acid producing microorganism and roughage comprising the same
CN114304413A (en) Composite containing acidifying agent and preparation method thereof
CN112544800A (en) Liquid feed additive for ruminants and preparation method thereof
RU2650405C1 (en) Energometabolic feed additive for stimulation of immunometabolic processes in cows in prenatal and postnatal periods
CN111034865A (en) Bacterial liquid, feed containing bacterial liquid and preparation method of feed
WO2020189916A1 (en) Low-protein feed composition for promoting feed conversion efficiency of ruminants
CN111789193A (en) Biological fermentation feed capable of remarkably improving production performance of lactating sows and preparation method thereof
CN105918618A (en) Solid microecological product rich in probiotics and preparation method and application thereof
CN115486497B (en) Yeast culture for ruminant animals and preparation method and application thereof
KR102582127B1 (en) Functional single ingredient composition reducing methane gas for carbon neutrality, improving cattle productivity and grade rate, and manufacturing method thereof
WO2016080805A1 (en) Feed enzyme supplement for ruminants containing beta-mannanase
WO2022131493A1 (en) Functional fermented-green tea composite probiotic, and production method for same
CN108813097B (en) Fermented feed of soybean-wheat paste and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE