KR101470995B1 - Propionic acid producing microorganism and roughage comprising the same - Google Patents

Propionic acid producing microorganism and roughage comprising the same Download PDF

Info

Publication number
KR101470995B1
KR101470995B1 KR20130104520A KR20130104520A KR101470995B1 KR 101470995 B1 KR101470995 B1 KR 101470995B1 KR 20130104520 A KR20130104520 A KR 20130104520A KR 20130104520 A KR20130104520 A KR 20130104520A KR 101470995 B1 KR101470995 B1 KR 101470995B1
Authority
KR
South Korea
Prior art keywords
propionic acid
mushroom
forage
production
lactobacillus
Prior art date
Application number
KR20130104520A
Other languages
Korean (ko)
Inventor
정승기
조경현
Original Assignee
주식회사 바이오리쏘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오리쏘스 filed Critical 주식회사 바이오리쏘스
Priority to KR20130104520A priority Critical patent/KR101470995B1/en
Priority to PCT/KR2014/007770 priority patent/WO2015030423A1/en
Priority to JP2016538843A priority patent/JP2016533755A/en
Application granted granted Critical
Publication of KR101470995B1 publication Critical patent/KR101470995B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • A23K10/38Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/105Aliphatic or alicyclic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Physiology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a microorganism having an ability to produce propionic acid and a bulky feed composition comprising the same. The purpose of the present invention is to provide a bulky feed composition having excellent fatting promoting effects and a method for fatting a ruminant by using the bulky feed composition including rumen microbes. To this end, provided is a bulky feed composition including a microorganism having an ability to produce propionic acid separated from the ruminant stomach and Lactobacillus mucosae KCCM11440P.

Description

프로피온산 생산능을 갖는 미생물 및 그를 포함하는 조사료 조성물{Propionic acid producing microorganism and roughage comprising the same}[0001] The present invention relates to a microorganism having propionic acid producing ability and a roughage composition comprising the microorganism,

본 발명은 중소기업청의 중소기업융복합기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다.The present invention is derived from research conducted by the Small and Medium Business Administration as part of the SME technology development project.

[과제고유번호: S2063309, 과제명: 비육촉진효과를 갖는 반추미생물 강화 버섯 폐배지 개발][Assignment number: S2063309, Project title: Development of waste microbial enriched mushroom waste medium with finishing promotion effect]

본 발명은 프로온산 생산능을 갖는 미생물 및 그를 포함하는 조사료 조성물에 관한 것이다. The present invention relates to a microorganism having proton acid producing ability and a calcination composition containing the same.

휘발성 지방산(VFA)은 반추위 내에서 탄수화물 분해의 가장 중요한 최종산물이다. 휘발성 지방산은 반추동물을 위한 에너지의 중요한 자원(70%)이고, 우유 중 단백질과 지방의 함량에도 영향을 미친다. 반추위 내의 대사에서 생성되는 주요한 휘발성 지방산은 아세트산, 프로피온산 및 부티르산의 3종으로, 급이된 사료의 종류 및 소화 정도에 따라 결정된다. 반추동물에서 휘발성 지방산 중 프로피온산만이 포도당 합성에 기여하며, 양적으로 포도당은 매우 중요한 단독의 전구체이다. 프로피온산은 총 휘발성 지방산의 18 내지 20%를 구성하며, 간에서 혈당으로 전환되어 에너지를 제공하고, 유당 합성에 사용된다. 프로피온산의 증가는 반추 상피세포에서 혈류를 증가시켜 혈관 생성을 자극하고 상피세포를 증가시키며, 소를 포함한 반추동물의 비육을 촉진하고 육질 개선에 기여한다.Volatile fatty acids (VFA) are the most important end product of carbohydrate degradation in the rumen. Volatile fatty acids are an important source of energy for ruminants (70%) and also affect protein and fat content in milk. The main volatile fatty acids produced in the metabolism in the rumen are acetic acid, propionic acid, and butyric acid, depending on the type and degree of digestion of feed. In ruminants, only propionic acid among volatile fatty acids contributes to glucose synthesis, and quantitatively glucose is a very important precursor. Propionic acid constitutes 18 to 20% of total volatile fatty acids and is converted from liver to blood sugar to provide energy and is used in the synthesis of lactose. Increase of propionic acid stimulates angiogenesis, increases epithelial cell by increasing blood flow in ruminant epithelial cells, promotes fattening of ruminants including bovine and contributes to improvement of meat quality.

섬유소는 지구상에서 가장 풍부한 에너지원이다. 그러나, 현재 우리나라에서 조사료 사용량 중 상당 부분이 수입에 의존하고 있다. 조사료의 높은 수입 의존도는 국내 축산농가의 경쟁력 확보를 위해서도 해결되어야 하는 과제이다. 버섯 생산 후 부산물인 섬유소가 풍부한 폐배지 등의 자원을 사료로 활용하기 위한 다양한 시도가 이루어졌다. Fibers are the most abundant energy source on the planet. However, at present, a large part of the use of the forage is dependent on imports in Korea. The dependence of forage on high imports is a problem that needs to be solved also to secure competitiveness of domestic farmers. Various efforts have been made to utilize resources such as waste paper, which is a byproduct of mushroom production and fiber-rich, as feed.

한국 특허 제1144473호는 버섯 부산물을 주원료로 이용한 가축용 발효 조사료 제조방법에 관한 것으로, 버섯 폐배지에 생균제로 사용되고 있는 유산균, 고초균 및 효모균을 첨가하여 발효시키는 것을 특징으로 한다. Korean Patent No. 1144473 relates to a method for producing a fermentation forage for livestock using mushroom by-products as a main raw material and is characterized in that lactic acid bacteria, Bacillus subtilis, and yeast bacteria used as a probiotic agent are added to the mushroom waste medium and fermented.

한국 특허 제1138934호는 폐 버섯 배지를 사용하여 돼지 사료를 제조하는 방법에 관한 것으로, 프로피오산 생산능을 갖는 미생물을 포함하지 않는 복합 미생물 발효제를 이용하여 발효시키는 것을 특징으로 한다. Korean Patent No. 1138934 relates to a method for producing a pig feed using a waste mushroom culture medium and is characterized in that fermentation is carried out using a complex microbial fermentation agent containing no microorganism capable of producing propionic acid.

그러나, 풍부한 섬유소를 활용하면서, 항생제나 호르몬 등의 사용에 따른 부작용 없이 비육 촉진에 기여할 수 있는 효과적인 사료에 대한 요구가 여전히 존재한다. However, there is still a need for an effective feed that can contribute to the promotion of fodder without the side effects associated with the use of antibiotics and hormones, while utilizing abundant fiber.

이에, 본 발명자들은 반추동물의 비육 촉진용 사료에 대한 연구를 수행하여, 반추위에서 조사료를 발효시켜 프로피오산 생성을 증가시키고 이에 의해 비육을 촉진할 수 있는 프로피온산 생산능을 갖는 미생물에 기반한 본 발명을 완성하였다. Accordingly, the present inventors conducted a study on ruminants for promoting finishing of ruminants, and found that the present invention based on a microorganism having a propionic acid-producing ability capable of promoting fattening by fermenting the forage in the rumen to increase propionic acid production Completed.

본 발명은 프로피온산 생산능을 갖는 반추 미생물을 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a ruminant microorganism having the ability to produce propionic acid.

본 발명은 또한 탁월한 비육 촉진 효과를 갖는 조사료 조성물을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a forage composition having an excellent fattening effect.

본 발명은 또한 반추 미생물을 포함하는 조사료를 이용하여 반추동물을 비육하는 방법을 제공하는 것을 목적으로 한다.The present invention also aims at providing a method for raising a ruminant using a foraging material containing a ruminant microorganism.

본 발명의 일 양태는 반추위로부터 분리된 프로피온산 생산능을 갖는 미생물을 제공한다. One aspect of the present invention provides a microorganism having the ability to produce propionic acid separated from the rumen.

본 발명의 일 구체예에서, 상기 미생물은 락토바실러스 뮤코사에(Lactobacillus mucosae) KCCM11440P이다. In one embodiment of the invention, the microorganism is selected from the group consisting of Lactobacillus mucosae ) KCCM11440P.

락토바실러스 뮤코사에 KCCM11440P는 서열번호 1의 16S rRNA 염기서열을 가지며, 이 서열에 근거하여 동정되었다. 도 1은 16S rRNA 염기서열에 근거하여 작성된 계통수를 보여준다. KCCM11440P in Lactobacillus mucosa has the 16S rRNA nucleotide sequence of SEQ ID NO: 1 and is identified based on this sequence. Figure 1 shows the phylogenetic tree created based on the 16S rRNA nucleotide sequence.

프로피온산은 반추위 내에서 탄수화물 분해의 가장 중요한 산물로서, 반추동물의 간에서 포도당으로 전환되어 반추동물의 비육을 촉진하며, 육질 개선에 기여한다. Propionate is the most important product of carbohydrate degradation in the rumen, which converts rumen liver to glucose, promotes the flesh of ruminants, and contributes to meat quality improvement.

반추위로부터 프로피온산 생산능에 근거하여 분리된 락토바실러스 뮤코사에 KCCM11440P는 MRS 배지에서 성장하며, 특히, 비타민 B12나 젖산 나트륨이 첨가된 배지에서 높은 프로피온 생산능을 갖는 것으로 확인되었다. KCCM11440P in Lactobacillus mucosa isolated from rumen on the basis of propionic acid production ability was found to grow in MRS medium, especially in the medium supplemented with vitamin B 12 or sodium lactate.

본 발명의 또 다른 양태는 락토바실러스 뮤코사에 KCCM11440P를 포함하는, 조사료 조성물을 제공한다. Another aspect of the present invention provides a trial composition comprising KCCM 11440P in Lactobacillus mucosa.

본 명세서에서 사용된 용어 "조사료 조성물"은 목초, 건초, 사일리지, 등과 같이, 섬유질 함량이 높고, 지방, 단백질, 전분 등의 함량이 낮은 사료 조성물을 의미한다. The term " roughage composition "as used herein means a feed composition having a high fiber content and a low content of fat, protein, starch, etc., such as grasses, hay, silage and the like.

본 발명의 일 양태에 따른 조사료 조성물은 프로피온산 생산능을 갖는 락토바실러스 뮤코사에 KCCM11440P를 포함하여, 반추위에서 조사료의 발효시 프로피온산의 생산을 증가시키고, 이에 의해 반추동물의 비육을 촉진하며 육질을 개선시킬 수 있다. 프로피온산은 반추위에서 생성되는 휘발성 지방산 중 유일하게 포도당으로 전환되어 에너지 대사 등에 기여하므로, 소를 포함한 반추동물의 비육 촉진은 반추위에서 생성되는 프로피온산에 의해 결정된다.The forage composition according to an embodiment of the present invention includes KCCM11440P in Lactobacillus mucosa having propionic acid producing ability to increase the production of propionic acid upon fermentation of the forage in the rumen, thereby promoting the fattening of ruminants and improving meat quality . Since propionic acid is the only volatile fatty acid produced in the rumen, it is converted to glucose and contributes to energy metabolism and so, the promotion of the fattening of the ruminants including the bovine is determined by the propionic acid produced in the rumen.

본 발명의 일 구체예에서, 상기 조사료 조성물은 버섯 폐배지를 포함한다.In one embodiment of the invention, the forage composition comprises mushroom waste media.

버섯 폐배지는 주원료가 톱밥이며, 부원료가 농산부산물로 이루어진 배지를 버섯 배양에 사용한 후 수득하는 배지를 의미한다. 버섯 폐배지 중 톱밥은 반추위에서 섬유소 분해 미생물에 의해 탄소 공급원으로 이용된다. 락토바실러스 뮤코사에 KCCM11440P는 버섯 폐배지에서 배양되어 프로피온산 생산을 증가시키고, 이에 의해 반추동물의 비육을 촉진시킬 수 있다. 특히, 버섯 폐배지는 버섯류의 섬유소 분해균에 의해 분해된 후 수득된 폐배지를 원료로 하므로 소화성이 우수한 조사료로 이용될 수 있다. The mushroom waste medium means a medium in which the main raw material is sawdust and the supplementary raw material is a medium containing agricultural by-products, which is then used for mushroom cultivation. Sawdust in mushroom waste media is used as a carbon source by fibrinolytic microorganisms in the rumen. KCCM11440P in Lactobacillus mucosa may be cultivated in mushroom waste medium to increase production of propionic acid, thereby promoting the flesh of ruminants. In particular, the mushroom waste medium is decomposed by fibrinolytic bacteria of mushroom, and the obtained waste medium is used as a raw material.

본 발명의 일 구체예에서, 상기 조사료 조성물은 비타민 B12 및 젖산염 중 하나 이상을 포함한다. In one embodiment of the invention, the forage composition comprises at least one of vitamin B 12 and a lactate.

락토바실러스 뮤코사에 KCCM11440P는 배지 중에 비타민 B12 또는 젖산염, 예를 들면, 젖산 나트륨이 보충된 경우 프로피온산 생산량을 크게 증가시킨다. 따라서, 조사료 조성물 중에 비타민 B12 및 젖산염 중 하나 이상을 포함시키면 프로피오산 생산이 증가되고, 이에 의해 비육이 촉진된다. KCCM11440P at Lactobacillus mucosa significantly increases production of propionic acid when supplemented with vitamin B 12 or lactate, for example, sodium lactate, in the medium. Thus, inclusion of at least one of vitamin B 12 and lactate in the forage composition increases propionic acid production, thereby promoting fattening.

본 발명의 일 구체예에서, 상기 조사료 조성물은 반추동물의 비육을 촉진시킨다. 통상적인 조사료 조성물에 비해, 프로피오산 생산능을 갖는 락토바실러스 뮤코사에 KCCM11440P를 포함하므로, 반추위에서 프로피오산 생산을 증가시키고, 이에 의해 반추동물의 비육을 촉진하며, 육질 개선에 기여한다. In one embodiment of the present invention, the forage composition promotes the fattening of ruminants. Compared to a conventional forage composition, it contains KCCM11440P in lactobacillus mucosa having propionic acid producing ability, thereby increasing the production of propionic acid in the rumen, thereby promoting the fattening of ruminants and contributing to the improvement of meat quality.

본 발명의 일 구체예에서, 상기 조사료 조성물은 생균제를 더 포함할 수 있다.In one embodiment of the present invention, the forage composition may further comprise a probiotic agent.

가축 사육시에는 항생제의 사용이 불가피하나, 이의 오남용으로 인한 문제가 심각해지면서 생균제가 널리 이용되고 있다. 생균제는 가축의 장내에 유익한 미생물을 섭취시켜 병원성 미생물의 증식을 억제하고, 질병의 발생을 예방하며, 가축의 생산성을 높이는 데 기여한다. 현재 널리 사용되는 미생물은 유산균, 고초균, 효모균 등이다. 유산균은 유기산을 생성하여 pH를 저하시켜 산성에 약한 유해세균을 억제하며, 소화효소의 활동을 증진시키며, 특히, 설사발생빈도도 감소시킨다. 고초균은 고활성의 탄수화물, 단백질, 지질 등을 분해하는 분해효소를 생성하므로, 장내에서 사료의 소화, 흡수를 증진시켜 사료 효율을 향상시키며, 소화에 따른 스트레스를 감소시켜 가축의 생육을 원활하게 하며, 정장 효과가 있어 가축의 장을 튼튼하게 하여 질병을 예방하는 역할을 한다. 또한, 효모균은 가축의 소화관에서 용이하게 소화될 수 있는 형태로 존재하며, 알코올, 글루타민산 등 천연 향미성분을 생산하여 가축의 사료에 대한 기호성을 증진시킨다. The use of antibiotics is inevitable at the time of livestock breeding, but probiotics are widely used as the problems caused by abuse of them are serious. Probiotics contribute beneficial microbes to the intestines of livestock to inhibit the growth of pathogenic microorganisms, prevent disease outbreaks, and increase livestock productivity. Currently widely used microorganisms are lactic acid bacteria, Bacillus subtilis, and yeast bacteria. Lactic acid bacteria produce organic acids to lower the pH to inhibit harmful bacteria that are weak in acidity, promote the activity of digestive enzymes, and especially reduce the incidence of diarrhea. Bacillus subtilis produces decomposition enzymes that degrade highly active carbohydrates, proteins, and lipids. It enhances digestion and absorption of feed in the intestines, improves feed efficiency, reduces stress caused by digestion, facilitates the growth of livestock , And the effect of suits to strengthen the field of livestock to prevent disease. In addition, yeast exists in a form that can be easily digested in the digestive tract of livestock, and produces natural flavor components such as alcohol and glutamic acid, thereby improving the palatability of the livestock feed.

본 발명의 일 구체예에서, 상기 조사료 조성물은 일반 사료와 혼합되어 제공될 수 있다. 예를 들면, 조사료 조성물은 시판 배합사료와 1:1의 비율로 혼합되어 1일 2회 반추동물에게 급이될 수 있다. 적절한 혼합 비율이나 급이량 및 급이 빈도는 당업자가 대상 반추동물의 연령, 체중, 건강 상태 등을 고려하여 용이하게 결정할 수 있다. In one embodiment of the present invention, the forage composition may be provided in admixture with a common feed. For example, the forage composition may be mixed with commercially available feed at a ratio of 1: 1 to feed the ruminant twice a day. Appropriate mixing ratios, feed rates and feeding frequency can be easily determined by those skilled in the art taking into account the age, weight, and health status of the subject ruminants.

본 발명의 또 다른 양태는 반추동물을 비육하는 방법으로서, 락토바실러스 뮤코사에 KCCM11440P를 포함하는 조사료를 급이하는 단계를 포함하는 것인 방법을 제공한다. Yet another aspect of the present invention provides a method of raising a ruminant, comprising feeding raffia containing KCCM 11440P to Lactobacillus mucosa.

본 발명의 일 구체예에서, 상기 조사료는 버섯 폐배지를 주성분으로 포함할 수 있다. In one embodiment of the present invention, the forage may contain mushroom waste medium as a main component.

본 발명의 일 구체예에서, 상기 조사료는 생균제를 더 포함할 수 있다. In one embodiment of the present invention, the forage can further comprise a probiotic agent.

본 발명의 일 구체예에서, 상기 조사료는 비타민 B12 및 젖산 나트륨 중 하나 이상을 더 포함할 수 있다. In one embodiment of the present invention, the forage may further comprise at least one of vitamin B 12 and sodium lactate.

본 발명의 일 구체예에서, 조사료는 통상적인 배합사료와 혼합하여 급이될 수 있다. In one embodiment of the invention, the forage can be fed by mixing with conventional compound feed.

본 발명의 일 구체예에서, 반추동물은 소, 양, 염소, 및 사슴일 수 있으나, 이에 한정되지 않는다.In one embodiment of the invention, the ruminant can be, but is not limited to, cattle, sheep, goats, and deer.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명을 한정하는 것으로 해석되어서는 안 된다. Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to illustrate the invention and should not be construed as limiting the invention.

본 발명의 일 구체예에 따른 락토바실러스 뮤코사에 KCCM11440P 및 이를 포함하는 조사료 조성물은 반추동물의 반추위에서 프로피오산 생산을 증가시키고 이에 의해 우수한 비육 촉진 및 육질 개선 효과를 가져온다. In accordance with one embodiment of the present invention, KCCM 11440P and a calcination composition containing the same in Lactobacillus mucosa increase the production of propionic acid in the rumen rumen and thereby provide excellent finishing and meat quality improving effects.

도 1은 본 발명의 락토바실러스 뮤코사에 KCCM11440P의 16S rRNA 유전자를 근간으로 작성한 계통수이다.
도 2는 배양 시간에 따른 발효 사료, 밀기울, 버섯 부산물, 및 양조 부산물의 건물 소실량을 보여준다
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a phylogenetic tree based on the 16S rRNA gene of KCCM11440P in Lactobacillus mucosa of the present invention.
Figure 2 shows the loss of building fermented feed, wheat bran, mushroom by-products, and brewing by-products over time

실시예Example 1. 프로피온산  1. Propionic acid 생성균의Bacillus 분리 및 동정 Isolation and identification

1-1. 균주의 분리1-1. Isolation of strain

프로피오산 생산능을 갖는 균주를 분리하기 위해, 40±5kg의 재래 흑염소 3두의 반추위액을 채취하였다. 혐기 상태를 유지하기 위해 혐기 챔버 안에서 수행하였으며, Hattori 와 Matsui(Anaerobe, Vol. 14, pp. 87-93, (2008)) 방법을 이용하였다. In order to isolate strains having propionic acid producing ability, 3 rats of 40 ± 5 kg of conventional black goats were collected. In order to maintain the anaerobic condition, it was performed in the anaerobic chamber and Hattori and Matsui (Anaerobe, Vol. 14, pp. 87-93, (2008)) method was used.

반추위액으로부터 배양된 균을 배지 ml 당 10-3 내지 10-9로 희석한 후 Hungate 롤 튜브에 접종한 후 24 내지 48시간 동안 배양하였다. 배양된 단일 콜로니를 분리하여 액상 배지(MRS)에 접종 후 24시간 동안 120 rpm에서 배양하였다. 모든 배양은 37℃에서 혐기상태에서 수행하였으며(Lee, et al., Applied Microbiology and Biotechnology, Vol. 58, pp. 663-668, 2002), 사용된 모든 배지와 버퍼(Bryant and Burkey, Journal of Dairy Science, Vol. 82, pp. 780-787, 1953)는 121℃에서 15분 동안 멸균시켰고 O₂와 N₂가스를 사용하였다.
Bacteria cultured from rumen juice were diluted to 10 < -3 > to 10 < -9 > / ml of medium, inoculated into a Hungate roll tube and cultured for 24 to 48 hours. The cultured single colonies were separated and cultured at 120 rpm for 24 hours after inoculation into liquid medium (MRS). All cultures were performed in anaerobic conditions at 37 ° C. (Lee et al., Applied Microbiology and Biotechnology, Vol. 58, pp. 663-668, 2002) Science, Vol 82, pp. 780-787, 1953) was sterilized at 121 ° C for 15 minutes and O 2 and N 2 gas were used.

총 51개의 균주를 분리하고, 이들을 MRS 배지에서 배양하면서 휘발성 지방산의 생산량을 측정하였다. 가장 높은 프로피온산 생산량을 보이는 균주를 선택하였다.
A total of 51 strains were isolated and the amount of volatile fatty acid production was measured by culturing them in MRS medium. The strains showing the highest production of propionic acid were selected.

1-2. 균주의 동정1-2. Identification of the strain

1-1에서 분리된 균주를 MRS 배지에서 배양한 후 Wizard Genomic DNA Purification Kits (Promega, USA)를 사용하여 염색체 DNA를 추출하였다. 이를 주형으로 이용하여 16S rRNA를 코딩하는 유전자의 증폭을 위해 27F 프라이머(AGAGTTTGATCMTGGCTCAG)와 1492R 프라이머(GGTTACCTTGTTACGACTT)를 사용하여 PCR 반응을 수행하였다. PCR 조건은 94℃에서 5분의 초기 변성 단계, 94℃에서 45초의 변성, 65℃에서 45초의 어닐링, 및 72℃에서 1분의 신장으로 이루어진 사이클의 32회 반복, 및 72℃에서 10분의 신장이었다.The strain isolated from 1-1 was cultured on MRS medium and then the chromosomal DNA was extracted using Wizard Genomic DNA Purification Kits (Promega, USA). PCR was performed using 27F primer (AGAGTTTGATCMTGGCTCAG) and 1492R primer (GGTTACCTTGTTACGACTT) for amplification of the gene encoding 16S rRNA using this as a template. The PCR conditions consisted of 32 cycles of a cycle consisting of an initial denaturation step at 94 DEG C for 5 minutes, denaturation at 94 DEG C for 45 seconds, annealing at 65 DEG C for 45 seconds, extension at 72 DEG C for 1 minute, and 72 DEG C for 10 minutes It was kidney.

증폭된 리보솜 DNA을 ARDRA(Amplified Ribosomal DNA Restriction Analysis) 방법을 통하여 유사성을 분석하였다. PCR 산물을 Hae Hha 제한효소(Takara, Japan)를 37℃에서 5시간 동안 처리하고, 수득된 DNA 시료를 메타포 아가로스겔을 이용한 전기영동을 통해 170v로 80분 동안 분리하였다. 그 후, Kodak Gel Logic 200 화상 시스템(Eastman Kodak Company, Rochester, NY, USA)을 이용하여 시각화하고, ARDRA로부터 얻어진 밴드들은 QIA quick PCR Purification Kit를 사용하여 정제하였다.The similarity of amplified ribosomal DNA was analyzed by ARDRA (Amplified Ribosomal DNA Restriction Analysis) method. The PCR products were treated with Hae and Hha restriction enzymes (Takara, Japan) at 37 캜 for 5 hours, and the obtained DNA samples were separated by electrophoresis using a meta-agarose gel for 70 minutes at 170 v. Then, visualization was performed using a Kodak Gel Logic 200 imaging system (Eastman Kodak Company, Rochester, NY, USA), and bands obtained from ARDRA were purified using QIA quick PCR Purification Kit.

정제된 16S rDNA PCR 산물은 Macrogen(한국)에서 염기서열을 분석하여 서열번호 1로 확인하였다. 분석된 염기서열 정보는 SeqMan program(DNA Star, Lasergene software, Madison, WI, USA)을 이용하여 조합하였으며, 염기서열은 NCBI(http://www.ncbi.nlm.nih.gov/BLAST)와 EzTaxon(http://147.47.212.35:8080/index.jsp)의 GeneBank에 있는 BLAST 프로그램을 이용하여 비교하였다. 대략적인 계통학적 분류는 CLUSTRAL W version 1.6을 이용하여 가장 가까운 종과 염기서열을 비교함으로써 결정하였다. 쌍대-갭 제거(pair-wise gap removal) 기능을 갖는 NJ(neighbor-joining) 방법을 이용하여 Kimura(1980)에 개시된 바에 따라 계통수를 작성하였다. 최종적으로, PHYLIP 패키지에 있는 two-parameter NJ 방법을 이용하고 계통수의 안정성을 평가하기 위하여 1000배에 이르는 자료를 더 수집하여 부트스트랩(bootstrap) 분석방법을 이용하였다. 50% 이상의 부트스트랩 값만 나타내었다. 도 1은 작성된 계통수를 보여준다. The purified 16S rDNA PCR product was identified as SEQ ID NO: 1 by analyzing the nucleotide sequence in Macrogen (Korea). The nucleotide sequence was analyzed using NCBI ( http://www.ncbi.nlm.nih.gov/BLAST ) and EzTaxon (Nasdaq, Nasdaq, Japan) using the SeqMan program (DNA Star, Lasergene software, Madison, WI, USA) ( http://147.47.212.35:8080/index.jsp ) using the BLAST program in GeneBank. The approximate phylogenetic classification was determined by comparing the closest species to the nucleotide sequence using CLUSTRAL W version 1.6. We constructed the phylogenetic tree as described in Kimura (1980) using a neighbor-joining method with pair-wise gap removal. Finally, we used a two-parameter NJ method in the PHYLIP package and used a bootstrap analysis method to collect 1000 times more data to evaluate the stability of the phylogenetic tree. Only 50% or more bootstrap values were shown. Figure 1 shows the tree number created.

분리된 균주는 락토바실러스 뮤코사에 S32(T)와 96%의 유사도를 보였다. 이에 근거하여, 분리된 균주를 락토바실러스 뮤코사에 BR-PP로 명명하고, 이를 2013년 7월 26일자로 한국미생물보존센터에 기탁하여 KCCM11440P의 수탁번호를 부여받았다.
The isolated strains showed 96% similarity to S32 (T) in Lactobacillus mucosa. Based on this, the isolated strain was named BR-PP in Lactobacillus mucosa, deposited with the Korean Society for Microbiological Research on July 26, 2013, and granted the deposit number of KCCM 11440P.

1-3. 대조군 균주의 선택1-3. Selection of control strains

1-1 및 1-2에서 분리되고 동정된 락토바실러스 뮤코사에 KCCM11440P의 프로피온산 생산능을 비교하기 위한 대조군을 선택하기 위해, 프로피온산 생산능을 갖는 것으로 알려진 셀레노모나스 보비스(Selenomonas bovis) 15154(SB), 베일리오넬라 파르불라(Veillonella parvula) 5019(VP), 프로피오니박테리움 액시디프로피오니시(Propionobacterium acidipropionici) 5020(PAci) 과 프로피오니박테리움 아크네스(Propionibacterium acnes) 11946 (PAcn)를 각각 KCTC 및 KACC에서 분양받아 이용하였다. In order to select a control group for comparing the production ability of KCCM11440P with propionic acid to Lactobacillus mucosa isolated and identified in 1-1 and 1-2, Selenomonas bovis, which is known to have the ability to produce propionic acid bovis ) 15154 (SB) , Veilonella parvula ) 5019 (VP) , Propionibacterium acipidipropionis ( Propionobacterium acidipropionici ) 5020 (PAci) and Propionibacterium < RTI ID = 0.0 > acnes ) 11946 (PAcn) were purchased from KCTC and KACC, respectively.

각 균주를 37℃에서 48, 72, 96, 120 및 144시간 동안 배양하면서 OD(Optical density) 값과 pH를 측정하였다. 각 실험은 3회 반복실시하였다. 또한, 채취된 각 배양 시간의 시료를 UV 검출기가 장착된 고성능 액체 크로마토 그래피(HPLC) (Agilent Technologies 1200 series)에서 MetaCarb 87H (Varian, Germany) 컬럼 상에서 유동 속도 0.6ml/min로 0.0085N·H2SO4 완충액으로 용리시켜 분리하고 210nm 및 220nm에서 검출하여 휘발성 지방산(VFA)의 생산량을 측정하였다(Tabaru et al., Japanese Journal of Veterinary Science Vol.50, pp. 1124-1126 (1988) 및 와 Han et al., Process Biochemistry, Vol. 40, pp.2897-2905 (2005)). Optical density (OD) and pH were measured while each strain was incubated at 37 ° C for 48, 72, 96, 120 and 144 hours. Each experiment was repeated three times. In addition, each incubation time for the sample by high performance liquid chromatography equipped with a UV detector (HPLC) the collected (Agilent Technologies 1200 series) in MetaCarb 87H (Varian, Germany) Flow rate 0.6ml / min with 0.0085N · H 2 on a column SO 4 (VFA) production was measured at 210 nm and 220 nm (Tabaru et al . , Japanese Journal of Veterinary Science Vol. 50, pp. 1124-1126 (1988) and Han et al., Process Biochemistry, Vol. 40, pp. 2897-2905 (2005)).

프로피오니박테리움 액시디프로피오니시는 144시간 후에 높은 프로피온산 생산량을 보였다. 또한, 프로피오니박테리움 액시디프로피오니시는 완전하거나 필수적 혐기성인 다른 프로피온산 생성 균주와 달리 조건적 혐기성을 보였다. 높은 프로피온산 생산량과 조건적 혐기성인 프로피오니박테리움 액시디프로피오니시를 프로피온산생성 표준 미생물로 선택하여 대조군으로 이용하였다.
Propionibacterium acidic acid propionic acid showed high propionic acid production after 144 hours. In addition, Propionibacterium acidic propionice showed conditional anaerobic differently from other propionic acid producing strains which were complete or essential anaerobic. Propionibacterium acidic propionic acid, which is high in propionic acid production and conditional anaerobic, was selected as a standard microorganism producing propionic acid and used as a control.

실시예Example 2.  2. 락토바실러스Lactobacillus 뮤코사에Mucosa KCCM1140PKCCM1140P 의 프로피온산 Of propionic acid 생산능Production capacity

실시예 1에서 분리하고 동정한 락토바실러스 뮤토사에의 프로피온산 생산능을 평가하였다. MRS 배지에 기반한 아가에서 48시간 동안 혐기 상태로 배양하였다. 배지를 Hungate 튜브를 넣고, pH 6.5, O2-free 20% CO2-80% N2 가스 충진 후 121℃에서 15분 동안 고압 멸균하였다. 프로피온산 생산능에 미치는 효과를 확인하기 위해 MRS 배지의 아가에 각각 비오틴(0.5mg/L), 소디움 락테이트 (2%), 비타민 B12 (50 ㎍/L) 또는 글리세롤 (2%)을 첨가하였다. 프로피온산 생산능의 평가를 위한 대조군은 실시예 1에서 선택된 프로피오니박테리움 액시디프로피오니시였다.
The production ability of propionic acid in Lactobacillus mythusa isolated and identified in Example 1 was evaluated. And cultured in agar based on MRS medium for 48 hours. The medium was placed in a Hungate tube and autoclaved at 121 ° C for 15 min at pH 6.5, O 2 -free 20% CO 2 -80% N 2 gas filling. Biotin (0.5 mg / L), sodium lactate (2%), vitamin B 12 (50 μg / L) or glycerol (2%) were added to the agar of the MRS medium to confirm the effect on the production of propionic acid. The control group for evaluation of the production ability of propionic acid was the propionibacterium acidic proteinide selected in Example 1.

배양 24시간, 48시간 및 72시간에 시료를 채취하여 OD, pH 및 프로피온산을 포함한 휘발성 지방산의 생성량을 측정하였다. The samples were collected at 24 hours, 48 hours and 72 hours after culturing and the amounts of volatile fatty acids including OD, pH and propionic acid were measured.

pH는 인큐베이터에서 바로 측정하지 않고 상온과 동일한 온도로 안정화시킨 후 M503P 미터(wrks, Medififield, MA, USA)를 이용하여 측정하였다.The pH was stabilized at the same temperature as the room temperature without measuring directly in the incubator and then measured using M503P meter (wrks, Medififield, MA, USA).

휘발성 지방산의 생성량은 배양시간대별 배양물을 1000×g 4℃에서 10분간 원심분리 후 상등액을 채취하여 0.2㎛ 마이크로 필터로 정제한 후 분석하였다. METACARB87H(Varian, Germany) 컬럼을 장착한 HPLC(Agilent technolgies 1200 series)를 이용하여 35℃에서 분석했고, 검출기의 UV의 파장은 210nm와 220nm였다. 이동상 용매는 0.0085N H2SO4이고 유속은 0.6ml/min이었다. The amount of volatile fatty acid was determined by centrifugation at 1000 x g for 10 min at 4 ° C, and the supernatant was collected and analyzed by 0.2 μm microfilter. Was analyzed at 35 ° C using HPLC (Agilent technolgies 1200 series) equipped with a METACARB87H (Varian, Germany) column and the UV wavelengths of the detectors were 210 nm and 220 nm. The mobile phase solvent was 0.0085NH 2 SO 4 and the flow rate was 0.6 ml / min.

하기 표 1 및 2는 그 결과를 요약한다. Tables 1 and 2 below summarize the results.

파라미터parameter 배양시간Incubation time C
(MRS)
C
(MRS)
B
(MRS + 비오틴)
B
(MRS + biotin)
B12
(MRS + 비타민 B12)
B 12
( MRS + vitamin B 12 )
S
(MRS +
젖산 나트륨)
S
(MRS +
Sodium lactate)
G
(MRS + 글리세롤)
G
(MRS + glycerol)
SEMSEM P 값P value
ODOD 2424 2.5802.580 2.5692.569 2.5602.560 2.4292.429 2.3322.332 0.0310.031 0.00530.0053 4848 2.6552.655 2.6592.659 2.6032.603 2.4242.424 2.2932.293 0.0040.004 <.0001<.0001 7272 2.6472.647 2.6372.637 2.6192.619 2.4072.407 2.3272.327 0.0080.008 <.0001<.0001 pHpH 2424 4.244.24 4.244.24 4.254.25 4.574.57 4.254.25 0.000.00 <.0001<.0001 4848 4.214.21 4.224.22 4.224.22 4.534.53 4.234.23 0.010.01 <.0001<.0001 7272 4.224.22 4.234.23 4.234.23 4.554.55 4.234.23 0.010.01 <.0001<.0001

  락테이트Lactate 포르메이트Formate 아세테이트acetate 프로피오네이트Propionate 부티레이트Butyrate 총 VFATotal VFA MRSMRS 13146.513146.5 -550.8-550.8 -1190.1-1190.1 678.2678.2 00 -511.9-511.9 MRS + 비오틴MRS + Biotin 12782.812782.8 -502.1-502.1 -554.0-554.0 1012.21012.2 00 458.2458.2 MRS + 젖산 나트륨MRS + sodium lactate 13993.813993.8 00 3115.03115.0 1810.61810.6 00 4925.64925.6 MRS + 비타민 B12 MRS + Vitamin B 12 15224.615224.6 00 6002.76002.7 1797.61797.6 00 7800.37800.3

삭제delete

수득된 결과는 락토바실러스 뮤코사에 KCCM11440P는 비타민 B12 또는 젖산 나트륨이 보충된 MRS 배지에서 배양 시 가장 많은 양의 프로피온산을 생산한다는 것을 보여준다.
The results obtained show that KCCM11440P in Lactobacillus mucosa produces the highest amount of propionic acid when cultured in MRS medium supplemented with vitamin B 12 or sodium lactate.

실시예Example 3. 조사료의 제조 3. Manufacture of forage

반추위액 및 완충액을 이용하여 인 비트로(In Vitro)에서 반추위에서의 발효 효과를 평가하였다.
In vitro (In Vitro) using a ruminant stomach juices and the buffer solution was evaluated in the effect of the fermentation in the rumen.

반추위액 채취 및 완충액 제조Ruminal fluid collection and buffer preparation

순천대학교 부설농장에서 사육중인 반추위 누관이 장착된 600 ± 47kg 홀스타인 젖소를 이용하여 in vitro 시험을 위한 위액을 채취하였다. 공시동물인 한우는 이탈리안 라이 그라스(rye grass)와 농후사료(중량 기준으로 옥수수 55%, 밀 15%, 탈지 미강 8%, 옥수수 글루텐 사료 5%, 대두박 10%, 당밀 0.2%, 탄산칼슘(limestone) 2.0%, 염 0.5%, 인산칼슘 1.3%, 비타민-미네랄 혼합물(비타민 A 3000 IU, 비타민 D 6000 IU, 비타민 E 30 IU, Cu 25 mg, Fe 150 mg, Zn 200 mg, Mn 100 mg, Co 0.5 mg, 및 I 1.5 mg) 1.0%)를 2:8의 비율로 체중의 2% 수준으로 1일 2회 분할 급여하였고 물은 자유 섭취하도록 하였다. 사료 급여 2시간 후 치즈 직포(cheese cloth)를 이용하여 위액을 채취하여 사용하였다. 완충액(Hino et al., 1992)은 K2HPO4 0.45 g/L, KH2PO4 0.45 g/L, (NH4)2SO4 0.9 g/L, CaCl2·2H2O 0.12 g/L, MgSO4·7H2O 0.19g/L, 트립티카제(Trypticase) 1.0 g/L, 효모 추출물 1.0 g/L, 시스테인·HCl 0.6 g/L (pH 6.9)을 포함하는 기본 배지(basal media)로 제조하였다. Use the Sunchon National University is equipped with a 600 ± 47kg Holstein cow rumen fistula being bred in R & D in farm vitro The gastric juice for the test was taken. Hanwoo, a public animal, was fed with a mixture of Italian rye grass and concentrated feed (55% corn, 15% wheat, 8% defatted rice, 5% corn gluten feed, 10% soybean meal, 0.2% molasses, (Vitamin A 3000 IU, vitamin D 6000 IU, vitamin E 30 IU, Cu 25 mg, Fe 150 mg, Zn 200 mg, Mn 100 mg, and Co 0.5 mg, and I 1.5 mg) 1.0%) at a ratio of 2: 8 to 2% of body weight twice a day, and free access to water. Gastric juice was collected by using cheese cloth 2 hours after feeding. The buffer solution (Hino et al., 1992) contained 0.45 g / L K 2 HPO 4, 0.45 g / L KH 2 PO 4 , 0.9 g / L (NH 4 ) 2 SO 4 , 0.12 g / L CaCl 2 .2H 2 O , Basal medium containing 0.19 g / L of MgSO 4 .7H 2 O, 1.0 g / L of Trypticase, 1.0 g / L of yeast extract and 0.6 g / L of cysteine HCl (pH 6.9) .

반추위액과 완충액을 1:3(반추위액: 완충액)의 비율로 혼합한 후 질소 가스(N2 gas)로 충진시켰다. 각각의 발효 사료를 건물 2%로 160 ml 배양 병(serum bottle)에 넣은 후 준비된 완충액 100 ml를 넣고 O2 free-N2로 혐기 상태를 유지하며 고무 마개와 알루미늄 캡으로 밀봉하고, 39℃의 혐기성 상태에서 100 rpm으로 수평이 되도록 섞어주면서 배양하였다(Hattori and Matsui, Anaerobe, Vol.14, pp.87-93, (2008)). 인 비트로 배양은 0, 12, 24, 및 48시간을 3개의 반복 실험으로 수행하고, 반추위 발효의 특성으로 pH, 총 가스발생량, 메탄, 암모니아, 및 VFA를 측정하였다.
Ruminal fluid and buffer were mixed at a ratio of 1: 3 (ruminal fluid: buffer) and filled with nitrogen gas (N 2 gas). Each fermented feed was placed in a 160 ml serum bottle at 2% of the building, and 100 ml of the prepared buffer was added. The mixture was anaerobically maintained with O 2 free-N 2 , sealed with a rubber stopper and an aluminum cap, (Hattori and Matsui, Anaerobe, Vol. 14, pp. 87-93, (2008)). In vitro culturing was performed in three replicate experiments at 0, 12, 24, and 48 hours, and the pH, total gas production, methane, ammonia, and VFA were measured by the characteristics of rumen fermentation.

pH의 변화Change in pH

pH는 인큐베이터에서 바로 측정하지 않고 상온과 동일한 온도로 안정화시킨 후 M503P 미터(wrks, Medififield, MA, USA)를 이용하여 측정하였다.
The pH was stabilized at the same temperature as the room temperature without measuring directly in the incubator and then measured using M503P meter (wrks, Medififield, MA, USA).

총 가스발생량Total gas production

총 가스발생량은 시료를 안정화시킨 후 EA-6(Inc, Sun Bee instrument) 압력센서 측정기를 사용하였다. 총 가스발생량 측정 후 메탄과 이산화탄소 발생량을 측정하기 위해 진공관을 이용하여 발생된 가스를 포집하였다. 각 배양시간대별로 얻어진 총 가스발생량을 기초로 하여 Qrskov와 McDonald(1979)의 공식에 의해 가스발생량을 추정하였다.
The total gas emission was measured by EA-6 (Inc, Sun Bee instrument) pressure sensor after the sample was stabilized. After measuring the total gas emission, the gas generated by the vacuum tube was collected to measure methane and carbon dioxide emissions. Gas production was estimated by the formula of Qrskov and McDonald (1979) based on the total gas production amount obtained for each culture time.

휘발성 지방산(volatile fatty acids) 함량Volatile fatty acids content

VFA 측정은 배양시간대별 배양물을 1000×g 4℃에서 10분간 원심분리 후 상등액을 채취하여 0.2㎛ 마이크로 필터로 정제한 후 분석하였다. METACARB87H(Varian, Germany) 컬럼을 장착한 HPLC(Agilent technolgies 1200 series)를 이용하여 35℃에서 분석했고, 검출기의 UV의 파장은 210nm와 220nm였다. 이동상 용매는 0.0085N H2SO4이고 유속은 0.6ml/min이었다.
The VFA measurement was performed by centrifuging the culture for 10 minutes at 1000 x g at 4 DEG C after culturing the culture supernatant. The supernatant was collected and purified with a 0.2 mu m microfilter and analyzed. Was analyzed at 35 ° C using HPLC (Agilent technolgies 1200 series) equipped with a METACARB87H (Varian, Germany) column and the UV wavelengths of the detectors were 210 nm and 220 nm. The mobile phase solvent was 0.0085NH 2 SO 4 and the flow rate was 0.6 ml / min.

암모니아태 질소(NH3-N) 농도Ammonia nitrogen (NH 3 -N) concentration

암모니아 농도측정은 채취한 시료를 13000rpm으로 원심분리시킨 후 Chany와 Marbach(Clinical Chemistry, Vol. 8, pp. 130-132, (1962))의 방법에 따라 페놀 용액으로 시료 중의 암모니아를 발색시킨 후 분광광도계(Spectronics 21D)를 이용하여 630nm에서 흡광도를 측정하여 계산하였다.
Ammonia concentration was determined by centrifuging the collected samples at 13000 rpm and then developing the ammonia in the sample with a phenol solution according to the method of Chany and Marbach (Clinical Chemistry, Vol.8, pp. 130-132, (1962) Absorbance was measured at 630 nm using a spectrophotometer (Spectronics 21D).

3-1. 부산물의 발효3-1. Fermentation of by-products

대부분의 부산물은 주요 생산물의 생산 후 일반적으로 폐기된다. 이러한 부산물 중 섬유소 성분이 여전히 높은 양조 부산물과 버섯 부산물(버섯 폐배지)을 수집하여 반추동물의 사료로 사용될 수 있는지 여부를 평가하였다. 즉, 이들을 발효 사료로 이용하여 전술된 바와 같이, 반추위액과 완충액의 혼합물 중 인 비트로 발효를 수행했다.
Most by-products are generally discarded after production of the main product. Among these by-products, the fibrin component still collected high brewing by-products and mushroom by-products (mushroom waste media) and evaluated whether they could be used as feed for ruminants. In other words, in vitro fermentation was carried out in a mixture of ruminal juice and buffer, as described above, using them as a fermented feed.

도 2는 배양 시간에 따른 발효 사료의 건물 소실량을 보여준다. 밀기울과 양조 부산물 또는 버섯 부산물의 조합을 발효 사료로 이용했다. 밀기울의 경우 양조 부산물보다 버섯 부산물에서 소실량이 더 높았다. 결과적으로 버섯부산물은 양조 부산물보다 반추위 내에서 소화가 더 쉽다는 것을 나타낸다.
Fig. 2 shows the amount of building loss in the fermented feed according to the incubation time. Bran and a combination of brewed by-products or mushroom by-products were used as fermented feed. The loss of bran in mushroom by - products was higher than that of brewed by - products. As a result, mushroom by-products indicate that digestion is easier within the rumen than by-product by-products.

3-2. 프로피온산 생산능을 갖는 미생물을 첨가한 사료의 발효3-2. Fermentation of feeds containing microorganisms with the ability to produce propionic acid

사일리지는 사료의 질과 최대의 건물을 제공한다. 또한 사료 중 미생물은 발효의 속도를 높이고 사일리지의 결과를 증진시킨다. 그러므로 프로피온산 생산능을 갖는 미생물을 첨가하여 인 비트로 발효 효과를 측정하였다.
Silage provides the quality of feed and maximum building. In addition, microorganisms in the feed increase the rate of fermentation and improve the results of silage. Therefore, the fermentation efficiency of the in vitro was measured by adding a microorganism having the ability to produce propionic acid.

밀기울과 양조 부산물 또는 버섯 부산물의 조합에 락토바실러스 뮤코사에 KCCM11440P 또는 프로피오니박테리움 액시디오프로피오니시를 첨가한 후, 인 비트로 배양하면서 건물 소실량, 수분 함량, pH, 휘발성 지방산의 생산량, 총 가스발생량 및 암모니아 생산량을 측정하였다.
The addition of KCCM11440P or Propionibacterium acipiodopropionis to Lactobacillus mucosa in combination with wheat bran, by-products or by-products of mushroom byproducts was followed by incubation with in-vitro to determine the amount of building loss, moisture content, pH, volatile fatty acid production, And ammonia production were measured.

밀기울과 양조 부산물 또는 버섯 부산물(폐배지)을 각각 1:1의 비율로 섞고 1%의 당밀을 첨가한 후 10%의 배양된 미생물, 락토바실러스 뮤코사에 또는 프로피오니박테리움 액시도프로피오니시(양성 대조군)를 접종하였다. 모든 시료는 진공포장한 후 37℃에서 72시간 배양하였다.
The bran and the brewed by-product or the mushroom by-product (waste medium) were mixed at a ratio of 1: 1, 1% molasses was added, and 10% of the cultured microorganism, Lactobacillus mucosa or Propionibacterium liquorpropionice (Positive control group). All samples were vacuum packed and incubated at 37 ° C for 72 hours.

사일리지 제조 후에 양조 부산물은 버섯 부산물보다 수분함량이 높았으나(P<0.05) pH 수치는 낮았다(P<0.05). 하기 표 3은 측정된 수분 함량 및 pH를 보여준다. The yield of byproducts after silage production was higher than that of by - products of mushrooms (P <0.05) but the pH value was lower (P <0.05). Table 3 below shows the measured moisture content and pH.

코드code 처리process 수분 함량 (%)Water content (%) pHpH Con 1Con 1 양조 부산물 + 밀기울 + 증류수Brewing byproduct + bran + distilled water 48.786948.7869 3.843.84 T1T1 양조 부산물 + 밀기울 + 락토바실러스 뮤코사에 KCCM11440PBrewing Byproduct + Bran + Lactobacillus mucosae KCCM11440P 47.917347.9173 3.853.85 T2T2 양조 부산물 + 밀기울 + 프로피오니박테리움 액시디프로피오니시Brewing by-product + Bran + Propionibacterium acuminata Propionii 47.613947.6139 3.833.83 Con 2Con 2 버섯 부산물 + 밀기울 + 증류수Mushroom by-product + bran + distilled water 35.319835.3198 4.864.86 T3T3 버섯 부산물 + 밀기울 + 락토바실러스 뮤코사에 KCCM11440PMushroom by product + Bran + Lactobacillus mucosae KCCM11440P 36.894236.8942 4.904.90 T4T4 버섯 부산물 + 밀기울 + 프로피오니박테리움 액시디프로피오니시Mushroom by-product + Bran + Propionibacterium acuminata Propionice 35.673535.6735 4.854.85

하기 표 4는 발효 배양 시간에 따른 건조 물질(건물) 소실을 보여준다. 버섯 부산물의 건물의 소실은 양조 부산물보다 낮았다(P<0.05). 결과적으로 사일리지의 양조 부산물의 건물 소실의 증가는 락토바실러스 뮤코사에의 첨가에서 기인된다는 것을 나타낸다.Table 4 below shows the disappearance of dry matter (building) over fermentation incubation time. The disappearance of mushroom by - products was lower than that of brewed by - products (P <0.05). As a result, the increase in the disappearance of the brewing by-products of silage is attributed to the addition to Lactobacillus mucosa.

Figure 112013079686318-pat00001
Figure 112013079686318-pat00001

표 5는 발효에 의한 VFA 생산량을 보여준다. 건물 소실은 버섯 부산물에서 낮은 것으로 관찰되었으나, 총 VFA와 프로피온산은 양조 부산물에서 높았다. 또한, 처리 중에 부산물에 락토바실러스 뮤코사에를 첨가한 발효는 프로피온산 생산량과 총 휘발성 지방산(TVFA)이 높게 나타났다. 이는 영양학적 구성상 양조 부산물보다 버섯 부산물의 산의 변화가 더 높게 일어난다는 것을 보여준다. 사일리지가 제조될 동안 생산된 다량의 산은 사료 급여시 반추동물에게 더 높은 에너지원이 된다는 것을 의미한다.Table 5 shows VFA production by fermentation. The loss of building was observed to be low in mushroom byproducts, but total VFA and propionic acid were higher in brewing byproducts. In addition, fermentation with Lactobacillus mucosae as a byproduct during the treatment showed high production of propionic acid and total volatile fatty acid (TVFA). This shows that the change in acidity of mushroom byproducts is higher than that of brewed by-products due to nutritional composition. The large amount of acid produced during the manufacture of the silage means that it becomes a higher energy source for ruminants when fed.

Figure 112013079686318-pat00002
Figure 112013079686318-pat00002

표 6은 양조 부산물과 버섯 부산물의 인 비트로 발효에 의한 총 가스생산량, pH, 및 암모니아 질소 생산량을 보여준다.Table 6 shows the total gas production, pH, and ammonia nitrogen production by in vitro fermentation of brewed by-products and mushroom by-products.

시간 (h)Time (h) 양조 부산물Brewing byproduct 버섯 부산물Mushroom by-products Con1Con1 T1T1 T2T2 Con2Con2 T3T3 T4T4 SEMSEM 총 가스생산량 (ml)Total gas production (ml) 1212 58.0058.00 54.00b54.00b 59.0059.00 65.0065.00 65.3365.33 66.6766.67 1.9261.926 2424 76.3376.33 84.3384.33 88.0088.00 107.50107.50 110.00110.00 112.50112.50 1.4611.461 4848 116.00116.00 116.50116.50 105.50105.50 112.50112.50 120.67120.67 109.33109.33 1.5421.542 pHpH 00 5.345.34 5.385.38 5.385.38 5.685.68 5.685.68 5.695.69 0.0060.006 1212 5.085.08 5.075.07 5.035.03 5.065.06 5.155.15 5.175.17 0.0140.014 2424 5.005.00 5.075.07 4.944.94 5.005.00 5.275.27 5.265.26 0.0170.017 4848 5.015.01 5.055.05 4.994.99 5.245.24 5.275.27 5.265.26 0.0190.019 암모니아-질소 (ppm)Ammonia-nitrogen (ppm) 00 253.90253.90 260.54260.54 252.95252.95 247.95247.95 255.69255.69 250.41250.41 5.5485.548 1212 319.11319.11 361.12361.12 271.52271.52 363.12363.12 360.80360.80 386.27386.27 8.8418.841 2424 408.71408.71 479.95479.95 418.95418.95 505.03505.03 486.07486.07 514.53514.53 15.90415.904 4848 450.72450.72 511.19511.19 378.21378.21 491.59491.59 510.13510.13 509.81509.81 15.57615.576

양조부산물 + 증류수(Con1), 양조부산물 + L. mucosae(T1), 양조부산물 + P. acidipropionici(T2, 양성 대조군), 버섯부산물 + 증류수(Con2), 버섯부산물 + L. mucosae(T3), 버섯부산물 + P. acidipropionici(T4, 양성 대조군)
Mushroom byproduct + distilled water (Con1), brewing byproduct + L. mucosae (T1), brewing byproduct + P. acidipropionici (T2, positive control), mushroom byproduct + distilled water (Con2) By-product + P. acidipropionici (T4, positive control)

통계적 방법 Statistical method

본 연구에서 얻어진 모든 결과들의 무작위 디자인 일반적인 선형 모델(GLM)을 사용한 분산분석(ANOVA)에 의해 분석되었다. 모든 처리는 DMRT(Duncan's Multiple Range Test) 방법을 이용하여 처리구간의 특이성을 확인하였고, 3회 반복 실시하였다. 통계적 유의성은 P<0.05로 나타냈으며, 모든 분석은 SAS(Statistical Analysis Systems) 버전 9.1 (SAS, 2002)을 사용하여 수행했다. All of the results obtained in this study were analyzed by ANOVA using the random design general linear model (GLM). All treatments were confirmed by Duncan's Multiple Range Test (DMRT) method. Statistical significance was P <0.05 and all analyzes were performed using SAS (Statistical Analysis Systems) version 9.1 (SAS, 2002).

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11440PKCCM11440P 2013072620130726

<110> BIORESOURCE INC. <120> Propionic acid producing microorganism and roughage comprising the same <130> PN102527 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 1446 <212> DNA <213> Lactobacillus mucosae <220> <221> gene <222> (1)..(1446) <223> 16S rRNA <400> 1 ccgactttgg gtgttgcaaa cttttcatgg tgtgacgggc ggtgtgtaca aggcccggga 60 acgtattcac cgcggcatgc tgatccgcga ttactagcga ttccgacttc gtgcaggcga 120 gttgcagcct gcagtccgaa ctgagaacgg ttttaagaga ttagcttgcc ctcgcgagtt 180 cgcgactcgt tgtaccgtcc attgtagcac gtgtgtagcc caggtcataa ggggcatgat 240 gatctgacgt cgtccccacc ttcctccggt ttgtcaccgg cagtctcact agagtgccca 300 acttaatgct ggcaactagt aacaagggtt gcgctcgttg cgggacttaa cccaacatct 360 cacgacacga gctgacgacg accatgcacc acctgtcatt gcgttcccga aggaaacgcc 420 ctatctctag ggttggcgca agatgtcaag acctggtaag gttcttcgcg tagcttcgaa 480 ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa ttcctttgag tttcaacctt 540 gcggtcgtac tccccaggcg gagtgcttaa tgcgttagct gcggcactga agggcggaaa 600 ccctccaaca cctagcactc atcgtttacg gcatggacta ccagggtatc taatcctgtt 660 cgctacccat gctttcgagc ctcagcgtca gttgcagacc aggcagccgc cttcgccact 720 ggtgttcttc catatatcta cgcattccac cgctacacat ggagttccac tgtcctcttc 780 tgcactcaag tttgacagtt tccgatgcac ttcttcggtt aagccaaagg ctttcacatc 840 agacttagca aaccgcctgc gctctcttta cgcccaataa atccggataa cgcttgccac 900 ctacgtatta ccgcggctgc tggcacgtag ttagccgtga ctttctggtt aaataccgtc 960 actgcatgaa cagttactct catacacgtt cttctctaac aacagagctt tacgagccga 1020 aacccttctt cactcacgcg gtgttgctcc atcaggcttg cgcccattgt ggaagattcc 1080 ctactgctgc ctcccgtagg agtatggacc gtgtctcagt tccattgtgg ccgatcagtc 1140 tctcaactcg gctatgcatc atcgccttgg taggccgtta ccctaccaac aagctaatgc 1200 accgcaggtc catcccaaag tgatagccaa aaccatcctt taaatttgag tcatggcaat 1260 caaagtggta aggcggaata acatccggtt ccaaatggta gcccccggtt tgtggcaagg 1320 taactaagtg gtaattaacc cgccggccaa tcggtgggag accaacgtca agtccgtgca 1380 agcaccgttc aatcaattgg gccaacgcgt tcgactttgc atgtattaag gcacaccggc 1440 cggcgt 1446 <110> BIORESOURCE INC. <120> Propionic acid-producing microorganism and roughage comprising          the same <130> PN102527 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 1446 <212> DNA <213> Lactobacillus mucosae <220> <221> gene &Lt; 222 > (1) .. (1446) <223> 16S rRNA <400> 1 ccgactttgg gtgttgcaaa cttttcatgg tgtgacgggc ggtgtgtaca aggcccggga 60 acgtattcac cgcggcatgc tgatccgcga ttactagcga ttccgacttc gtgcaggcga 120 gttgcagcct gcagtccgaa ctgagaacgg ttttaagaga ttagcttgcc ctcgcgagtt 180 cgcgactcgt tgtaccgtcc attgtagcac gtgtgtagcc caggtcataa ggggcatgat 240 gatctgacgt cgtccccacc ttcctccggt ttgtcaccgg cagtctcact agagtgccca 300 acttaatgct ggcaactagt aacaagggtt gcgctcgttg cgggacttaa cccaacatct 360 cacgacacga gctgacgacg accatgcacc acctgtcatt gcgttcccga aggaaacgcc 420 ctatctctag ggttggcgca agatgtcaag acctggtaag gttcttcgcg tagcttcgaa 480 ttaaaccaca tgctccaccg cttgtgcggg cccccgtcaa ttcctttgag tttcaacctt 540 gcggtcgtac tccccaggcg gagtgcttaa tgcgttagct gcggcactga agggcggaaa 600 ccctccaaca cctagcactc atcgtttacg gcatggacta ccagggtatc taatcctgtt 660 cgctacccat gctttcgagc ctcagcgtca gttgcagacc aggcagccgc cttcgccact 720 ggtgttcttc catatatcta cgcattccac cgctacacat ggagttccac tgtcctcttc 780 tgcactcaag tttgacagtt tccgatgcac ttcttcggtt aagccaaagg ctttcacatc 840 agacttagca aaccgcctgc gctctcttta cgcccaataa atccggataa cgcttgccac 900 ctacgtatta ccgcggctgc tggcacgtag ttagccgtga ctttctggtt aaataccgtc 960 actgcatgaa cagttactct catacacgtt cttctctaac aacagagctt tacgagccga 1020 aacccttctt cactcacgcg gtgttgctcc atcaggcttg cgcccattgt ggaagattcc 1080 ctactgctgc ctcccgtagg agtatggacc gtgtctcagt tccattgtgg ccgatcagtc 1140 tctcaactcg gctatgcatc atcgccttgg taggccgtta ccctaccaac aagctaatgc 1200 accgcaggtc catcccaaag tgatagccaa aaccatcctt taaatttgag tcatggcaat 1260 caaagtggta aggcggaata acatccggtt ccaaatggta gcccccggtt tgtggcaagg 1320 taactaagtg gtaattaacc cgccggccaa tcggtgggag accaacgtca agtccgtgca 1380 agcaccgttc aatcaattgg gccaacgcgt tcgactttgc atgtattaag gcacaccggc 1440 cggcgt 1446

Claims (7)

프로피온산 생산능을 갖는 락토바실러스 뮤코사에(Lactobacillus mucosae) KCCM11440P.Lactobacillus mucosa ( Lactobacillus) having the ability to produce propionic acid mucosae ) KCCM11440P. 락토바실러스 뮤코사에 KCCM11440P를 포함하는, 조사료 조성물.Gt; KCCM11440P &lt; / RTI &gt; in Lactobacillus mucosa. 청구항 2에 있어서, 상기 조사료 조성물은 버섯 폐배지를 포함하는 것인 조사료 조성물.3. The calcite composition of claim 2, wherein the calcareous composition comprises mushroom waste medium. 청구항 2에 있어서, 상기 조사료 조성물은 비타민 B12 및 젖산염 중 하나 이상을 포함하는 것인 조사료 조성물.3. The calcite composition of claim 2, wherein the forage composition comprises at least one of vitamin B 12 and a lactate. 청구항 2에 있어서, 상기 조사료 조성물은 반추동물의 비육촉진용인 것인 조사료 조성물.[Claim 3] The roughage composition according to claim 2, wherein the roughage composition is for promoting the raising of the ruminant. 반추동물을 비육하는 방법으로서, 락토바실러스 뮤코사에 KCCM11440P를 포함하는 조사료를 급이하는 단계를 포함하는 것인 방법. A method of raising a ruminant, comprising the step of raising a forage containing KCCM 11440P to Lactobacillus mucosa. 청구항 6에 있어서, 상기 조사료는 버섯 폐배지를 포함하는 것인 방법.7. The method of claim 6, wherein the forage comprises mushroom waste media.
KR20130104520A 2013-08-30 2013-08-30 Propionic acid producing microorganism and roughage comprising the same KR101470995B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20130104520A KR101470995B1 (en) 2013-08-30 2013-08-30 Propionic acid producing microorganism and roughage comprising the same
PCT/KR2014/007770 WO2015030423A1 (en) 2013-08-30 2014-08-21 Microorganism having propionic acid production capability and feed composition comprising same
JP2016538843A JP2016533755A (en) 2013-08-30 2014-08-21 Microorganism capable of producing propionic acid and roughage composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130104520A KR101470995B1 (en) 2013-08-30 2013-08-30 Propionic acid producing microorganism and roughage comprising the same

Publications (1)

Publication Number Publication Date
KR101470995B1 true KR101470995B1 (en) 2014-12-09

Family

ID=52586905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130104520A KR101470995B1 (en) 2013-08-30 2013-08-30 Propionic acid producing microorganism and roughage comprising the same

Country Status (3)

Country Link
JP (1) JP2016533755A (en)
KR (1) KR101470995B1 (en)
WO (1) WO2015030423A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201807023QA (en) * 2016-02-25 2018-09-27 Caelus Pharmaceuticals B V Compositions and methods for preventing and/or treating vitamin b12 deficiency
CN113575768B (en) * 2021-06-23 2023-09-15 中国农业科学院北京畜牧兽医研究所 Composition for regulating and controlling rumen fermentation gas yield of ruminant and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048356A1 (en) * 2000-11-10 2004-03-11 Marie-Louise Johansson Use of a strain of lactobacillus reducing the risk factors involved in the metabolic syndrome
US20090162322A1 (en) * 2004-05-28 2009-06-25 Markus Rudolph Oral administration form comprising probiotic bacteria
KR20110102172A (en) * 2010-03-08 2011-09-16 김중관 Fermented complex feed for cow

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575522B1 (en) * 2003-11-11 2006-05-03 대한민국 Lactobacillus plantarum for fermentation of corn silage
US20080138461A1 (en) * 2006-12-11 2008-06-12 Pioneer Hi-Bred International, Inc. Lactobacillus buchneri strain LN1297 and its use to improve aerobic stability of silage
WO2008078878A1 (en) * 2006-12-22 2008-07-03 Deuk-Sik Lee Fermented feeds for livestock farming using lactic acid bacteria and yeast and processing method thereof
JP2009044976A (en) * 2007-08-16 2009-03-05 Meiji Shiryo Kk Animal body type-improving feeding system
JP2011030466A (en) * 2009-07-30 2011-02-17 Kamada Kogyo:Kk Beef cattle feed and method for fattening beef cattle using the same
TWI476000B (en) * 2009-12-10 2015-03-11 Meiji Co Ltd Production of Propionic Acid Bacteria in the Preparation of Preventive Agents for Influenza Infectious Diseases and Induction Promoters for Neutralizing Antibodies
NZ600700A (en) * 2009-12-25 2014-05-30 Meiji Feed Co Ltd Composition containing bacterium capable of producing propionic acid bacterium, and use thereof
PL214583B1 (en) * 2010-06-16 2013-08-30 Inst Biotechnologii Przemyslu Rolno Spozywczego Im Prof Waclawa Dabrowskiego A new strain of Lactobacillus plantarum S, the use of the strain of Lactobacillus plantarum S and preparation for ensiling bulky feed
US20120034198A1 (en) * 2010-08-04 2012-02-09 Microbios, Inc. Carriers for storage and delivery of biologics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048356A1 (en) * 2000-11-10 2004-03-11 Marie-Louise Johansson Use of a strain of lactobacillus reducing the risk factors involved in the metabolic syndrome
US20090162322A1 (en) * 2004-05-28 2009-06-25 Markus Rudolph Oral administration form comprising probiotic bacteria
KR20110102172A (en) * 2010-03-08 2011-09-16 김중관 Fermented complex feed for cow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Arch. Microbiol., Vol.183, pp.45-55(2005.) *

Also Published As

Publication number Publication date
JP2016533755A (en) 2016-11-04
WO2015030423A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
CN110218688B (en) Bacillus marinus LY-23, microbial inoculum and application thereof and product using same
KR20210043877A (en) Method for preparing fermented total mixed ration using microbial strain complex
CN111534459B (en) Lactobacillus fermentum for high yield of amylase and application of lactobacillus fermentum in preparation of fermented feed
CN114158648A (en) Tomato peel residue biological fermentation feed, preparation method and application thereof
CN104664169A (en) Biological enhancer for ruminant feeds, and preparation method for biological enhancer
CN110628669B (en) Bacillus subtilis LY-5, microbial inoculum and application thereof and product applying same
CN103525724A (en) Microbial leavening agent of cottonseed meal as well as preparation method thereof
Miguel et al. Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population
KR100287825B1 (en) Probiotics For Feed Additives
KR101470995B1 (en) Propionic acid producing microorganism and roughage comprising the same
CN107259139A (en) The preparation method and applications of lactobacillus acidophilus solid state fermentation sow mixed feed
Ye et al. Preparation of glycerol-enriched yeast culture and its effect on blood metabolites and ruminal fermentation in goats
KR101252134B1 (en) Feed additives for promoting growth of cattle and process for the preparation of feed for breeding cattle using the same
CN109170149A (en) A method of microecological fermented forage is produced using antibiotic milk
JP2016533755A5 (en)
KR101156940B1 (en) Process for preparing feed additives comprising fermented chlorella and process for preparing feed for breeding chicken using the same
Woo et al. Effect of temperature on single-and mixed-strain fermentation of ruminant feeds
CN111961602A (en) Saccharomyces cerevisiae and application thereof in feed for lactating calves
CN108719624A (en) A kind of compound microecological fermentation preparation and production method improving beef cattle meat
CN111109433A (en) Compound biological preparation for regulating intestinal health of sows and preparation method and application thereof
CN115486497B (en) Yeast culture for ruminant animals and preparation method and application thereof
CN112493366B (en) Compound microbial inoculum for solid-state fermentation weaned piglet feed, preparation method and application
LU502113B1 (en) Method for producing micro-ecological fermented feed by using antibiotic milk
CN115786228B (en) Lactobacillus genetically engineered bacterium and application thereof
RU2511994C2 (en) Method of conservation of beet pulp

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee