WO2020189916A1 - Low-protein feed composition for promoting feed conversion efficiency of ruminants - Google Patents

Low-protein feed composition for promoting feed conversion efficiency of ruminants Download PDF

Info

Publication number
WO2020189916A1
WO2020189916A1 PCT/KR2020/002854 KR2020002854W WO2020189916A1 WO 2020189916 A1 WO2020189916 A1 WO 2020189916A1 KR 2020002854 W KR2020002854 W KR 2020002854W WO 2020189916 A1 WO2020189916 A1 WO 2020189916A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
feed
protein
conversion efficiency
Prior art date
Application number
PCT/KR2020/002854
Other languages
French (fr)
Korean (ko)
Inventor
오화균
이정진
김소연
케브리브에르미아
Original Assignee
주식회사 씨티씨바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨티씨바이오 filed Critical 주식회사 씨티씨바이오
Publication of WO2020189916A1 publication Critical patent/WO2020189916A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to a feed composition, and in particular, to a low protein feed composition for enhancing feed conversion efficiency of ruminants.
  • livestock has formed an inseparable relationship by providing livestock products such as meat, milk, and eggs.
  • livestock products such as meat, milk, and eggs.
  • the meaning is deeper in the aspect that livestock feeds in low-quality plant feed ingredients and supplies us with protein sources. Therefore, attempts to increase the productivity of livestock have been steadily made, and rapid progress is being made through advanced technology.
  • feed cost reduction is a big task in livestock management.
  • feed containing a large amount of mannan palm meal, copra meal, soybean husk, etc.
  • feed costs were reduced and the ruminants contributed greatly as a protein ingredient.
  • fibrinolytic bacteria present in the rumen can decompose beta-mannans.
  • the amount of feed intake is lowered, and the amount of use thereof is limited.
  • the enzyme field can be said to be one of the most spotlighted fields in the last 20 years, and the main purpose of the use of enzymes is to improve digestibility of low-quality feed using enzymes and to remove anti-nutritional factors (ANFs).
  • the grafting of these enzymes in livestock is helping to remove anti-nutritional factors in feed and improve digestibility, as can be seen from phytase, xylanase, and ⁇ -glucanase, which are currently most widely used.
  • beta-met kinase-containing ruminant feed enzyme preparation 12 weeks of age or more ruminant developed ruminant animal feed for sex or rumination It is administered directly to the animal adult, and a composition containing beta-mannanase ( ⁇ -mannanase), a feed enzyme preparation for ruminants was presented.
  • beta metase improves the growth rate, feed efficiency, and nitrogen utilization rate in ruminants, thereby improving feed efficiency and raw material availability when growing ruminants, and inexpensive raw materials such as soybean meal, palm meal, palm meal, and alcoholic beverages can be used. It has been suggested that economic feasibility can be improved.
  • the present invention is to solve the above problems, in a low protein feed composition having a lower protein content than the conventional, it is an object to improve the feed conversion efficiency (FCE: Feed Conversion Efficinecy) while excellent economical efficiency.
  • FCE Feed Conversion Efficinecy
  • the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is intended to provide a feed composition capable of lowering the urea mass (MUN) and somatic cell count without having to do so.
  • MUN urea mass
  • corn silage (Corn silage), steam-flaked flakes (Steam-flaked corn), and at least one carbohydrate source selected from the group consisting of flat barley rice (Rolled barley);
  • a protein source including soybean meal and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls; A local source of cotton seeds;
  • beta-mannanase ⁇ -mannanase
  • feed conversion efficiency of ruminants (FCE: Feed Conversion Efficinecy) is a low protein feed composition for enhancement.
  • the crude protein (CP: Crude Protein) may be contained within the range of 14.5 to 15.0% by weight.
  • the soybean meal may be included in the range of 5.0 to 5.5 parts by weight based on 0.1 parts by weight of the beta met nanase.
  • the carbohydrate source contains corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and rolled barley 7.0 to 8.0 parts by weight. It is possible that it has been made.
  • the protein source is 4.0 to 7.0 parts by weight of Soybean meal, 26.0 to 27.0 parts by weight of Alfalfa hay, 5.0 to 6.0 parts by weight of Distillers grain, and Soybean meal. hulls) 11.0 to 12.0 parts by weight may be included.
  • the fat source may be made by including 6.0 to 7.0 parts by weight of cotton seed.
  • the present invention may further include at least one selected from the group consisting of mineral mix, calcium carbonate, and salt (NaCl).
  • the present invention may be to increase feed conversion efficiency and lower urea mass (MUN) and somatic cell count compared to a feed composition that does not contain beta-mannanase as an enzyme. .
  • MUN urea mass
  • the low protein feed composition for improving the feed conversion efficiency (FCE) of ruminants according to the present invention, corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 A carbohydrate source comprising 7.0 to 8.0 parts by weight, and rolled barley; Soybean meal 4.0 to 7.0 parts by weight, Alfalfa hay 26.0 to 27.0 parts by weight, Distillers grain 5.0 to 6.0 parts by weight, and Soybean hulls 11.0 to 12.0 parts by weight. Protein source; Fat source consisting of 6.0 to 7.0 parts by weight of cotton seed; And 0.1 parts by weight of beta-mannanase as an enzyme.
  • FCE feed conversion efficiency
  • 1.0 to 2.0 parts by weight of a mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl) may be further included.
  • the low-protein feed composition for improving feed conversion efficiency of ruminants includes 25.65 parts by weight of corn silage, 11.3 parts by weight of steam-flaked corn, and 7.21 parts by weight of rolled barley.
  • a carbohydrate source comprising parts by weight;
  • a protein source comprising 5.21 parts by weight of Soybean meal, 26.2 parts by weight of Alfalfa hay, 5.01 parts by weight of Distillers grain, and 11.43 parts by weight of Soybean hulls; Fat source consisting of 6.55 parts by weight of cotton seed; 0.1 parts by weight of beta-mannanase as an enzyme; 1.09 parts by weight of mineral mix; 0.16 parts by weight of calcium carbonate; And it is more preferable to include 0.19 parts by weight of salt (NaCl).
  • the present invention is a low protein feed composition with a lower protein content than the conventional, by optimizing the mixing ratio of soybean meal and beta-mannanase ( ⁇ -mannanase), while reducing the amount of soybean meal, excellent economic efficiency, feed conversion efficiency (FCE: Feed Conversion Efficinecy) can be increased.
  • ⁇ -mannanase beta-mannanase
  • the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is possible to provide a feed composition capable of lowering urea mass (MUN) and somatic cell count without having to do so.
  • CP Crude Protein
  • FCE feed conversion efficiency
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
  • the present invention relates to a feed composition, particularly to a feed composition that can be added to a ruminant feed or directly administered to a ruminant, and more particularly, to a low protein feed composition for enhancing feed conversion efficiency of ruminants. .
  • ruminant is meant to include cattle, sheep, goats, camels, water buffalo, deer, reindeer, caribou (caribou) and elk having a stomach having a complex and many rooms.
  • the low protein feed composition for enhancing feed conversion efficiency (FCE) of ruminants is composed of corn silage, steam-flaked corn, and rolled barley.
  • One or more carbohydrate sources selected from the group A protein source including soybean meal, and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls; A local source of cotton seeds; And beta-mannanase ( ⁇ -mannanase) as an enzyme, and the soybean meal is contained in the range of 4.0 to 7.0 parts by weight based on 0.1 parts by weight of the beta-met nanase.
  • beta-mannanase lowers the viscosity in the digestive tract to improve the digestibility of various nutrients, causes energy loss through stimulation of the immune system shown by the anti-nutritional factor, mannan, and interferes with the secretion of insulin and igf-1.
  • the side can be removed.
  • the beta met kinase can be obtained from a microorganism that produces a met kinase or a transformant transduced with a met kinase gene.
  • a beta metase capable of exhibiting an effect without being decomposed even in the stomach of a ruminant is preferred, and CTC Bio's CTCZYME ® product may be used, but is not limited thereto.
  • the beta-met nanase is endo- ⁇ -mannanase, and can be obtained from a microorganism or a transformant transduced with a met- kinase gene.
  • exogenous enzymes into the feed allows animals to use the nutrients in the feed to the fullest, thus reducing the environmental burden of pigs, poultry and even cattle by broadening the range.
  • the present inventors compared and evaluated the feed conversion efficiency (Feed Conversion Efficiency) and the relative flow rate for cattle ingesting a standard feed and a feed containing beta met kinase added to the feed with low crude protein content, To investigate the effect of.
  • urea intake was significantly lower in cows with low crude protein intake, and therefore the amount of urea escaped in feces and urine was also small, which in turn minimized the impact on the environment.
  • beta metase improved feed conversion efficiency FCE and had no effect on specific flow and dairy components (in cows), but instead had no effect on the number of somatic cells and the amount of urea released to the environment. Lowered.
  • beta met nanase affects cows when providing feed to which thrombolytic enzyme (beta met nanase) was added to lactating cows.
  • the protein content was high (
  • the feed conversion efficiency was higher in cows that ate feed (LCPE1) with beta metase added to feed with lower protein content (14.6% of dry matter) than cattle fed with dry matter 16.1%) feed (HCP). It was confirmed that the addition did not affect the specific flow rate and the components of milk, but only lowered the somatic cell count.
  • the inventors of the present invention are to determine to what extent components that have a large impact on economic efficiency such as soybean meal in the feed composition can be used, and to maximize feed conversion efficiency (FCE) without affecting the specific flow rate and milk components.
  • feed LCPE2 with lower soybean meal content as a protein source and higher content of Distillers grain (LCPE2) as a protein source, and lower soybean meal content as a protein source and as a source of carbohydrate.
  • Additional experiments were also conducted for feed (LCPE3) with increased steam-flaked corn content.
  • the low-protein feed composition for enhancing feed conversion efficiency (FCE) of ruminants includes corn silage, steam-flaked corn, and rolled barley.
  • At least one carbohydrate source selected from the group consisting of;
  • a local source of cotton seeds and
  • the soybean meal is contained within the range of 5.0 to 5.5 parts by weight based on 0.1 parts by weight of the beta met nanase. If soybean meal is included below the above range, there is a disadvantage in that the crude protein (CP) content is significantly lowered, the specific flow rate is also reduced, and a large change occurs in the milk component. In addition, if the soybean meal is included in excess of the above range, there is a disadvantage in that the economy is poor.
  • the crude protein (CP: Crude Protein) may be contained within the range of 14.5 to 15.0% by weight. That is, the feed composition according to the present invention is characterized by having the maximum effect of an enzyme by beta mannase in a low protein feed composition having a relatively low crude protein content by lowering the content of the protein source to the maximum.
  • the present invention is a low protein feed composition with a lower protein content than the conventional, by optimizing the mixing ratio of soybean meal and beta-mannanase ( ⁇ -mannanase), while reducing the amount of soybean meal, excellent economic efficiency, feed conversion efficiency (FCE: Feed Conversion Efficinecy) can be increased.
  • ⁇ -mannanase beta-mannanase
  • the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is possible to provide a feed composition capable of lowering urea mass (MUN) and somatic cell count without having to do so.
  • the present invention may be to increase feed conversion efficiency and lower urea mass (MUN) and somatic cell count, compared to a feed composition that does not contain beta-mannanase as an enzyme. This invention has the effect of saving $1.03 per cow when using LCPE1 feed rather than HCP feed.
  • the carbohydrate source is corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and rolled barley 7.0 It is possible to include to 8.0 parts by weight.
  • a carbohydrate source such as steam-flaked corn
  • the crude protein (CP) content is significantly lowered, the specific flow rate is also reduced, and there is a disadvantage that a large change occurs in the milk component.
  • the protein source is 4.0 to 7.0 parts by weight of Soybean meal, 26.0 to 27.0 parts by weight of Alfalfa hay, 5.0 to 6.0 parts by weight of Distillers grain, and Soybean meal. hulls) 11.0 to 12.0 parts by weight may be included. If the content of alcoholic beverages rather than soybean meal is increased, there is a disadvantage that the increase in feed conversion rate is not large and the specific flow rate decreases.
  • the fat source may be made by including 6.0 to 7.0 parts by weight of cotton seed.
  • the feed composition according to the present invention may further include one or more selected from the group consisting of mineral mix, calcium carbonate, and salt (NaCl).
  • the mineral mix refers to a mixture prepared in advance to facilitate mixing of minerals required for a ruminant with raw materials when mixing feed. Minerals form the skeleton in the body of ruminants and can be used as important nutrients in metabolic processes.
  • the amount of minerals required may vary depending on the degree of distribution in the body of livestock. Usually, the required amount of Ca, P, Na, Cl, K, and Mg is large, and the required amount of Fe, Zn, I, Se, Mn, Cu, etc. Is known to be a trace amount, but in ruminant feed, K, Mg, Mn, S, etc. are sufficiently contained in the feed and are not insufficient, but other minerals must be added to the feed.
  • a commercially available product may be used for the mineral mix, and an appropriate mixing ratio of each mineral is known in the art.
  • the mineral mix is preferably included in the range of 1.0 to 2.0 parts by weight.
  • the salt is used as a source of sodium (Na) and chlorine (Cl) in ruminant feed compositions.
  • Sodium and chlorine are the major extracellular cations and anions in the body, respectively.
  • Chlorine is the main anion in digestive juices.
  • Salt can meet the sodium and potassium requirements of ruminants in feeds based on corn and soybean meal. Deficiency of sodium or chlorine can slow the growth of ruminants and reduce feed efficiency.
  • salt may preferably be included in an amount of 0.1 to 0.2 parts by weight.
  • the feed composition according to the present invention is a vitamin premix; One or more sources of minerals selected from calcium phosphate, limestone, and dephosphorylated ores; molasses; And it may further include one or more selected from the group consisting of amino acids.
  • the low protein feed composition for improving the feed conversion efficiency (FCE) of ruminants according to the present invention, corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 A carbohydrate source comprising 7.0 to 8.0 parts by weight, and rolled barley; Soybean meal 4.0 to 7.0 parts by weight, Alfalfa hay 26.0 to 27.0 parts by weight, Distillers grain 5.0 to 6.0 parts by weight, and Soybean hulls 11.0 to 12.0 parts by weight. Protein source; Fat source consisting of 6.0 to 7.0 parts by weight of cotton seed; And 0.1 parts by weight of beta-mannanase as an enzyme.
  • FCE feed conversion efficiency
  • 1.0 to 2.0 parts by weight of a mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl) may be further included.
  • the low-protein feed composition for improving feed conversion efficiency of ruminants includes 25.65 parts by weight of corn silage, 11.3 parts by weight of steam-flaked corn, and 7.21 parts by weight of rolled barley.
  • a carbohydrate source comprising parts by weight;
  • a protein source comprising 5.21 parts by weight of Soybean meal, 26.2 parts by weight of Alfalfa hay, 5.01 parts by weight of Distillers grain, and 11.43 parts by weight of Soybean hulls; Fat source consisting of 6.55 parts by weight of cotton seed; 0.1 parts by weight of beta-mannanase as an enzyme; 1.09 parts by weight of mineral mix; 0.16 parts by weight of calcium carbonate; And it is more preferable to include 0.19 parts by weight of salt (NaCl).
  • Example 1 Experimental animals and experimental group
  • the experimental groups were as follows: a complete mixed diet containing high crude protein (16.1% crude protein, high crude protein, HCP), a complete mixed diet containing low crude protein (14.6% crude protein, low crude protein, LCP), 0.1% low crude protein.
  • Dry matter (DM, dry matter) mixed feed with beta metase enzyme added feed with low crude protein enzyme added, LCPE1
  • LCPE2 feed with lower soybean meal and higher Distillers grain as a protein source
  • LCPE3 carbohydrate source
  • Beta metase enzyme CTCZYME (Korea Patent Registration 10-0477456, CTC Bio) contains pure isolated beta metase.
  • the beta-met kinase was generated by repeating replication after inserting Bacillus subtills (WL-7) bacteria encoding the met kinase gene into Escherichia coli , and then repeating the replication (met kinase produced by E. coli expression).
  • the metase gene encodes the 362 amino acids constituting the polypeptide, and this construct is identical to the metase belonging to the GH family 26 taxon. Enzymatic reaction was carried out at 800,000 U/kg in pH 4.0 and 30 o C environment.
  • the enzyme was hand-mixed in the soybean silage and given to the animals. Then, the soybean silage, which had already been mixed first, was mixed with the rest of the feed.
  • the experimental cycle of each experiment was 18 days, 14 days was a period of adaptation in a Pristol barn, one day was a period of adaptation to metabolic changes, and urine and feces from each cow were collected for the remaining 3 days.
  • the metabolic stall consisted of food, drinking cups, and rubber soles. Cows in the Pristol barn and metabolic stall were given 110% of the amount of feed consumed the previous day, twice a day at 8 am and 8 pm. Relative flow, dairy composition, and DMI were measured for each cow living in a Pristol barn and metabolic stall. Water supplies were provided to all animals from time to time.
  • the amount of feed consumed by cattle or not consumed was weighed daily.
  • Cattle feed was analyzed on the eve of Day 13 and at the end of Day 18. Feed components and several days of feed remaining from cows were collected and stored at -20 0 C until chemical composition review. The cows are milked twice daily at 6 am and 6 pm. Milk samples from one cow each day were stored at 4 ° C until milk fat, milk protein, lactose, milk nitrogen concentration (MUN), and milk somatic (SCC) analysis.
  • MUN milk nitrogen concentration
  • SCC milk somatic
  • the urine collection method was as follows: A Foley catheter (24 French, 75-cc balloon; CR Bard, Covington, GA) was connected to an approximately 2-3 m long Tygon tube (Fisher Scientific, Waltham, MA) and then disinfected. Placed in a plastic bottle (Fisher Scientific, Waltham, MA). A urine catheter was placed immediately between the time the cattle moved to the metabolic stalls (8 am to 10 am). Samples were taken after allowing 24 hours to acclimate. After catheterization, the cow's condition was somewhat stable. All collected urine samples were weighed, and after sampling, the container containing urine was emptied every 3 hours.
  • somatic cell count was also low in the feed with increased Distillers grain content (LCPE2) and the feed with increased steam-flaked corn content (LCPE3), a carbohydrate source.
  • Feed conversion efficiency was calculated as the flow rate: dried fish ratio (Table 4). The values calculated to effectively convert CP and ACCP in feed to milk protein are shown in Table 4 above. Additionally, the value at which the absorbed OM effectively converts into flow rate was also calculated.
  • feed conversion efficiency was found in the group that consumed HCP feed and It was higher than the LCP diet group, but lower than the LCPE1 group.
  • the reason why cows fed LCP and LCPE1 diets are so efficient is that CP loss can reduce the energy consumption required to release excess nitrogen by providing only the right amount of protein.
  • the LCPE1 and LCP experimental groups were able to reserve more energy for milk production than the HCP experimental group.
  • Table 5 lists nitrogen intake, nitrogen excreted in urine and feces, nitrogen excreted in milk, and the amount of phosphorus excreted in manure.
  • nitrogen excreted in manure On average, 25% nitrogen excreted in manure, 3 to 15% nitrogen excreted in urine, or 4 to 52% nitrogen excreted in the urine, depends on soil type, moisture, temperature, wind speed, and the concentration of nitrogen in urine and the composition of urine. Therefore, it is discharged in the form of ammonia. Since urine acts as a major factor in the excretion of nitrogen, it is important to control the excretion pathway of nitrogen in order to reduce nitrogen dioxide. Nitrogen dioxide (which emits greenhouse gases that causes global warming) is 265 times more dangerous than carbon dioxide.
  • the milk of the LCP and LCPE1 experimental groups contained more nitrogen than the HCP. However, the addition of beta met kinase did not have any effect on the total amount of nitrogen discharged as manure (LCP vs LCPE1 experimental group; Table 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)

Abstract

The present invention pertains to a low-protein feed composition for promoting the feed conversion efficiency of ruminants, the low-protein feed composition containing: a carbohydrate source; a protein source containing soybean meal; a fat source; and β-mannanase as an enzyme, wherein the content of the soybean meal is in the range of 4.0-7.0 parts by weight with respect to 0.1 parts by weight of the β-mannanase. In the low-protein feed composition, which has a lower protein content than conventional feed compositions, the mixing ratio of soybean meal and β-mannanase is optimized to reduce the amount of soybean meal used. Thus, the low-protein feed composition has the effect of increasing feed conversion efficiency (FCE) while having good economic feasibility.

Description

반추동물의 사료전환효율 증진용 저단백 사료 조성물Low protein feed composition for enhancing feed conversion efficiency of ruminants
본 발명은 사료 조성물에 대한 것으로, 특히 반추동물의 사료전환효율 증진용 저단백 사료 조성물에 대한 것이다.The present invention relates to a feed composition, and in particular, to a low protein feed composition for enhancing feed conversion efficiency of ruminants.
인류의 역사를 통해 가축은 고기, 우유, 계란 등의 축산물을 제공하며 불가분의 관계를 형성하고 있다. 특히 가축들은 저질의 식물성 사료원료를 섭취하여 우리에게 단백질원을 공급해 주고 있다는 측면에서 볼 때 그 의미가 더 깊다고 볼 수 있다. 따라서 가축의 생산성을 높이려는 시도는 꾸준히 이루어져 왔고 첨단 기술을 통해서 비약적인 발전을 보이고 있다.Throughout the history of humanity, livestock has formed an inseparable relationship by providing livestock products such as meat, milk, and eggs. In particular, the meaning is deeper in the aspect that livestock feeds in low-quality plant feed ingredients and supplies us with protein sources. Therefore, attempts to increase the productivity of livestock have been steadily made, and rapid progress is being made through advanced technology.
농림축산식품부에 의하면 축산물 생산 비용의 50% 이상이 사료비에 기인한다고 한다. 따라서 사료비 절감이 축산경영에서 큰 과제임은 말할 나위가 없다. 만난이 다량 함유된 사료 (팜박, 코프라박, 대두피 등)의 경우 농식품 부산물과 더불어 사료비를 절감하고 반추동물에서 단백질 원료로서 큰 기여를 하고 있다. 단위동물과는 다르게 반추동물에서는 반추위에 존재하는 섬유소 분해 박테리아들이 베타-만난을 분해 할 수 있다. 그러나 만난함량이 높은 사료들의 항영양인자, 즉 낮은 소화율, 낮은 에너지함량, 기호성 문제 등으로 인하여 사료섭취량이 저하되어 그 사용량에 한계가 있다.According to the Ministry of Agriculture, Food and Rural Affairs, more than 50% of livestock production costs are attributed to feed costs. Therefore, it goes without saying that feed cost reduction is a big task in livestock management. In the case of feed containing a large amount of mannan (palm meal, copra meal, soybean husk, etc.), along with agri-food by-products, feed costs were reduced and the ruminants contributed greatly as a protein ingredient. Unlike unit animals, in ruminants, fibrinolytic bacteria present in the rumen can decompose beta-mannans. However, due to the anti-nutritional factors of feeds with high met content, that is, low digestibility, low energy content, and palatability problems, the amount of feed intake is lowered, and the amount of use thereof is limited.
한편, 효소분야는 그 중에 최근 20여 년간 가장 각광 받는 분야 중에 하나라 할 수 있으며 효소를 이용한 저질사료의 소화율개선 및 항영양인자(ANF)의 제거가 효소제 사용의 주 목적이라 할 수 있다. 이러한 효소제의 축산에서의 접목은 현재 가장 많이 사용되고 있는 phytase, xylanase, β-glucanase 에서 알 수 있듯이 사료내 항영양인자를 제거하고 소화율을 개선하는데 큰 도움을 주고 있다.Meanwhile, the enzyme field can be said to be one of the most spotlighted fields in the last 20 years, and the main purpose of the use of enzymes is to improve digestibility of low-quality feed using enzymes and to remove anti-nutritional factors (ANFs). The grafting of these enzymes in livestock is helping to remove anti-nutritional factors in feed and improve digestibility, as can be seen from phytase, xylanase, and β-glucanase, which are currently most widely used.
하지만 반추동물의 경우 반추위내 미생물들이 대부분의 효소를 생산하기 때문에 사료내 효소제 첨가는 별 주목을 받지 못하고 있는 실정이다. 현재 미미하나마 반추동물에서 이용되고 있는 효소들은 거의가 섬유소분해를 도울 목적으로 만들어진 것이다. 하지만 반추위 특성상 그 안에서 이루어지는 미생물간의 상호작용, 공생작용, 분비물에 의한 연쇄반응 등등으로 인해 외부 효소제의 첨가는 사실상 많은 한계에 봉착해 있다고 해도 과언이 아니다.However, in the case of ruminants, the addition of enzymes in feed is not receiving much attention because the microorganisms in the rumen produce most of the enzymes. Most of the enzymes currently used in Mimihanama ruminants are designed to help break down fibrin. However, it is not an exaggeration to say that the addition of external enzymes is actually faced with many limitations due to the nature of the rumen due to the interactions between microorganisms, symbiotic reactions, and chain reactions caused by secretions.
이와 관련하여, 본 발명자들은 대한민국 공개특허 제10-2016-0061539호(발명의 명칭 : 베타 만난아제 함유 반추동물용 사료효소제)에서, 12주령 이상의 반추위가 발달한 반추동물 성축용 사료에 배합되거나 반추동물 성축에 직접 투여되고, 베타 만난아제(β-mannanase)를 포함하는 조성물인, 반추동물용 사료효소제를 제시하였다. 이를 통하여, 베타 만난아제의 첨가가 반추동물에서 성장율, 사료효율, 질소이용율을 향상시킴으로써 반추동물 생육시 사료 효율과 원료 이용성을 개선시키고 대두박, 팜박, 야자박, 주정박 등 저가 원료를 사용할 수 있으므로 경제성을 향상시킬 수 있다는 것을 제시하였다.In this regard, the inventors of the present invention in the Republic of Korea Patent Publication No. 10-2016-0061539 (name of the invention: beta-met kinase-containing ruminant feed enzyme preparation), 12 weeks of age or more ruminant developed ruminant animal feed for sex or rumination It is administered directly to the animal adult, and a composition containing beta-mannanase (β-mannanase), a feed enzyme preparation for ruminants was presented. Through this, the addition of beta metase improves the growth rate, feed efficiency, and nitrogen utilization rate in ruminants, thereby improving feed efficiency and raw material availability when growing ruminants, and inexpensive raw materials such as soybean meal, palm meal, palm meal, and alcoholic beverages can be used. It has been suggested that economic feasibility can be improved.
그러나, 상기한 대한민국 공개특허 제10-2016-0061539호에는, 대두박과 같이 경제성에 영향을 많이 미치는 성분을 어느 정도까지 사용할 수 있는지에 대해서는 기재되어 있지 않고, 비유량과 우유 성분에는 영향을 미치지 않으면서 사료전환효율을 높일 수 있는 베타 만나아제와 대두박 등과 같은 단백질 공급원의 혼합비율에 대해서는 여전히 알 수가 없었다.However, in the Korean Patent Application Publication No. 10-2016-0061539 described above, it is not described to what extent an ingredient that has a great influence on economic efficiency such as soybean meal can be used, and if it does not affect the specific flow rate and milk ingredient Therefore, the mixing ratio of protein sources such as beta mannase and soybean meal, which can increase feed conversion efficiency, was still unknown.
본 발명은 상기한 문제점을 해결하기 위한 것으로, 종래보다 단백질 함량이 낮은 저단백 사료 조성물에 있어서, 경제성이 우수하면서도, 사료전환효율(FCE : Feed Conversion Efficinecy)을 높이는 것이 목적이다. The present invention is to solve the above problems, in a low protein feed composition having a lower protein content than the conventional, it is an object to improve the feed conversion efficiency (FCE: Feed Conversion Efficinecy) while excellent economical efficiency.
또한, 본 발명은 사료 내 단백질 공급원 중 경제성에 가장 영향을 많이 미치는 대두박 함량을 줄여서 조단백질(CP : Crude Protein) 함량이 낮더라도, 사료전환효율(FCE)은 높이고, 비유량과 우유 성분에는 영향을 미치지 않으면서, 요소태질량(MUN)과 체세포수는 낮출 수 있는 사료 조성물을 제공하기 위한 것이다.In addition, the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is intended to provide a feed composition capable of lowering the urea mass (MUN) and somatic cell count without having to do so.
상기한 목적을 달성하기 위한 본 발명은, 옥수수 사일리지(Corn silage), 증압후레이크(Steam-flaked corn), 및 납작보리쌀(Rolled barley)로 이루어진 군에서 선택되는 1종 이상의 탄수화물 공급원; 대두박(Soybean meal)을 포함하며, 알팔파 건초(Alfalfa hay), 주정박(Distillers grain), 및 콩껍질(Soybean hulls)로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 단백질 공급원; 목화씨(Cotton seed)로 이루어진 지방 공급원; 및 효소로서 베타 만난아제(β-mannanase);를 포함하여 이루어지고, 상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 4.0 내지 7.0 중량부 범위 내로 포함되는, 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물이다.The present invention for achieving the above object, corn silage (Corn silage), steam-flaked flakes (Steam-flaked corn), and at least one carbohydrate source selected from the group consisting of flat barley rice (Rolled barley); A protein source including soybean meal, and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls; A local source of cotton seeds; And beta-mannanase (β-mannanase) as an enzyme, wherein the soybean meal is contained within the range of 4.0 to 7.0 parts by weight based on 0.1 parts by weight of the beta-metase, feed conversion efficiency of ruminants (FCE: Feed Conversion Efficinecy) is a low protein feed composition for enhancement.
그리고, 본 발명에 따른 사료 조성물에서, 조단백질(CP : Crude Protein)은 14.5 내지 15.0 중량% 범위 내로 포함된 것이 가능하다.And, in the feed composition according to the present invention, the crude protein (CP: Crude Protein) may be contained within the range of 14.5 to 15.0% by weight.
또한, 일 예로서, 상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 5.0 내지 5.5 중량부 범위 내로 포함된 것일 수 있다. In addition, as an example, the soybean meal may be included in the range of 5.0 to 5.5 parts by weight based on 0.1 parts by weight of the beta met nanase.
또한, 일 예로서, 상기 탄수화물 공급원은 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 것이 가능하다. In addition, as an example, the carbohydrate source contains corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and rolled barley 7.0 to 8.0 parts by weight. It is possible that it has been made.
또한, 일 예로서, 상기 단백질 공급원은 대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 것일 수 있다.In addition, as an example, the protein source is 4.0 to 7.0 parts by weight of Soybean meal, 26.0 to 27.0 parts by weight of Alfalfa hay, 5.0 to 6.0 parts by weight of Distillers grain, and Soybean meal. hulls) 11.0 to 12.0 parts by weight may be included.
또한, 일 예로서, 상기 지방 공급원은 목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 것이 가능하다.In addition, as an example, the fat source may be made by including 6.0 to 7.0 parts by weight of cotton seed.
또한, 일 예로서, 본 발명은 미네랄믹스(Mineral mix), 탄산칼슘(Calcium carbonate), 및 소금(Salt (NaCl))으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것일 수 있다. In addition, as an example, the present invention may further include at least one selected from the group consisting of mineral mix, calcium carbonate, and salt (NaCl).
또한, 일 예로서, 상기 미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하는 것이 가능하다.In addition, as an example, it is possible to further include 1.0 to 2.0 parts by weight of the mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl). .
또한, 일 예로서, 본 발명은 효소로서 베타 만난아제(β-mannanase)를 포함하지 않는 사료 조성물과 비교하여, 사료전환효율은 증가시키고, 요소태질량(MUN)과 체세포수는 낮추는 것일 수 있다.In addition, as an example, the present invention may be to increase feed conversion efficiency and lower urea mass (MUN) and somatic cell count compared to a feed composition that does not contain beta-mannanase as an enzyme. .
한편, 본 발명에 따른 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 탄수화물 공급원; 대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 단백질 공급원; 목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 지방 공급원; 및 효소로서 베타 만난아제(β-mannanase) 0.1 중량부;를 포함하여 이루어진 것이 바람직하다. On the other hand, the low protein feed composition for improving the feed conversion efficiency (FCE) of ruminants according to the present invention, corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 A carbohydrate source comprising 7.0 to 8.0 parts by weight, and rolled barley; Soybean meal 4.0 to 7.0 parts by weight, Alfalfa hay 26.0 to 27.0 parts by weight, Distillers grain 5.0 to 6.0 parts by weight, and Soybean hulls 11.0 to 12.0 parts by weight. Protein source; Fat source consisting of 6.0 to 7.0 parts by weight of cotton seed; And 0.1 parts by weight of beta-mannanase as an enzyme.
또한, 미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하여 이루어진 것일 수 있다. In addition, 1.0 to 2.0 parts by weight of a mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl) may be further included.
또한, 본 발명에 따른 반추동물의 사료전환효율 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage) 25.65 중량부, 증압후레이크(Steam-flaked corn) 11.3 중량부, 및 납작보리쌀(Rolled barley) 7.21 중량부가 포함되어 이루어진 탄수화물 공급원; 대두박(Soybean meal) 5.21 중량부, 알팔파 건초(Alfalfa hay) 26.2 중량부, 주정박(Distillers grain) 5.01 중량부, 및 콩껍질(Soybean hulls) 11.43 중량부가 포함되어 이루어진 단백질 공급원; 목화씨(Cotton seed) 6.55 중량부가 포함되어 이루어진 지방 공급원; 효소로서 베타 만난아제(β-mannanase) 0.1 중량부; 미네랄믹스(Mineral mix) 1.09 중량부; 탄산칼슘(Calcium carbonate) 0.16 중량부; 및 소금(Salt (NaCl)) 0.19 중량부를 포함하여 이루어진 것이 더욱 바람직하다. In addition, the low-protein feed composition for improving feed conversion efficiency of ruminants according to the present invention includes 25.65 parts by weight of corn silage, 11.3 parts by weight of steam-flaked corn, and 7.21 parts by weight of rolled barley. A carbohydrate source comprising parts by weight; A protein source comprising 5.21 parts by weight of Soybean meal, 26.2 parts by weight of Alfalfa hay, 5.01 parts by weight of Distillers grain, and 11.43 parts by weight of Soybean hulls; Fat source consisting of 6.55 parts by weight of cotton seed; 0.1 parts by weight of beta-mannanase as an enzyme; 1.09 parts by weight of mineral mix; 0.16 parts by weight of calcium carbonate; And it is more preferable to include 0.19 parts by weight of salt (NaCl).
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.
이러한 본 발명은 종래보다 단백질 함량이 낮은 저단백 사료 조성물에 있어서, 대두박과 베타 만난아제(β-mannanase)의 혼합 비율을 최적화함으로써, 대두박 사용량을 줄여서 경제성이 우수하면서도, 사료전환효율(FCE : Feed Conversion Efficinecy)을 높일 수 있는 효과가 있다.The present invention is a low protein feed composition with a lower protein content than the conventional, by optimizing the mixing ratio of soybean meal and beta-mannanase (β-mannanase), while reducing the amount of soybean meal, excellent economic efficiency, feed conversion efficiency (FCE: Feed Conversion Efficinecy) can be increased.
또한, 본 발명은 사료 내 단백질 공급원 중 경제성에 가장 영향을 많이 미치는 대두박 함량을 줄여서 조단백질(CP : Crude Protein) 함량이 낮더라도, 사료전환효율(FCE)은 높이고, 비유량과 우유 성분에는 영향을 미치지 않으면서, 요소태질량(MUN)과 체세포수는 낮출 수 있는 사료 조성물을 제공할 수 있다.In addition, the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is possible to provide a feed composition capable of lowering urea mass (MUN) and somatic cell count without having to do so.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the present invention, various transformations may be applied and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to a specific embodiment, it is to be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
본 발명은 사료 조성물에 대한 것으로, 특히 반추동물용 사료에 첨가되거나 반추동물에 직접 투여될 수 있는 사료 조성물에 관한 것이며, 더욱 상세하게는 반추동물의 사료전환효율 증진용 저단백 사료 조성물에 대한 것이다. The present invention relates to a feed composition, particularly to a feed composition that can be added to a ruminant feed or directly administered to a ruminant, and more particularly, to a low protein feed composition for enhancing feed conversion efficiency of ruminants. .
본 발명에서 "반추동물"은 복잡하고 많은 방을 갖는 위를 가지는 소, 양, 염소, 낙타, 물소, 사슴, 순록, 카리부(북미산 순록; caribou) 및 엘크를 포함하는 것을 의미한다.In the present invention, "ruminant" is meant to include cattle, sheep, goats, camels, water buffalo, deer, reindeer, caribou (caribou) and elk having a stomach having a complex and many rooms.
본 발명에 따른 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage), 증압후레이크(Steam-flaked corn), 및 납작보리쌀(Rolled barley)로 이루어진 군에서 선택되는 1종 이상의 탄수화물 공급원; 대두박(Soybean meal)을 포함하며, 알팔파 건초(Alfalfa hay), 주정박(Distillers grain), 및 콩껍질(Soybean hulls)로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 단백질 공급원; 목화씨(Cotton seed)로 이루어진 지방 공급원; 및 효소로서 베타 만난아제(β-mannanase);를 포함하여 이루어지고, 상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 4.0 내지 7.0 중량부 범위 내로 포함되는 것이다. The low protein feed composition for enhancing feed conversion efficiency (FCE) of ruminants according to the present invention is composed of corn silage, steam-flaked corn, and rolled barley. One or more carbohydrate sources selected from the group; A protein source including soybean meal, and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls; A local source of cotton seeds; And beta-mannanase (β-mannanase) as an enzyme, and the soybean meal is contained in the range of 4.0 to 7.0 parts by weight based on 0.1 parts by weight of the beta-met nanase.
본 발명에서 베타 만난아제(β-mannanase)는 소화기관내 점도를 낮추어 각종 영양소의 소화율이 증진되고, 항영양인자인 만난이 보여주는 면역체계자극을 통한 에너지소실을 일으키고, 인슐린 및 igf-1 분비 방해 등의 부면이 제거될 수 있다. 상기 베타 만난아제는 만난아제를 생산하는 미생물 또는 만난아제 유전자가 형질도입된 형질전환체로부터 얻을 수 있다. 일 예에서, 반추동물의 위에서도 분해되지 않고 효과를 나타낼 수 있는 베타 만난아제가 바람직하고, 씨티씨바이오사의 CTCZYME®제품이 이용될 수 있으나, 이에 한정되지 않는다. 상기 베타 만난아제는 엔도 베타 만난아제(endo-β-mannanase)로서 만난아제를 생산하는 미생물 또는 만난아제 유전자가 형질도입된 형질전환체로부터 얻을 수 있다. 예를 들어, a) 한국 등록특허 제10-0390565호에 공개되고, 기탁번호 KCTC 0800BP로 기탁된 바실러스 속 WL-1 (Bacillus sp WL-1) 균주로부터 생산된 만난아제; b) 한국 등록특허 제10-0477456호에 공개되고, 기탁번호 KCTC 10279BP 로 기탁된 바실러스 속 WL-7(Bacillus sp WL-7) 균주로부터 생산된 만난아제; c) 한국 등록특허 제10-0560375호에 공개되고, 바실러스 리체니포미스(Bacillus licheniformis) WL-12 균주의 만난아제 유전자를 도입하여 형질전환된 대장균의 발현에 의해 생산된 만난아제; 및 d) 한국 등록특허 제10-1073987호에 공개되고, 기탁번호 KCTC 11105BP 로 기탁된 아스퍼질러스 오리재로부터 생산된 만난아제; e) 한국 등록특허 제10-1403489호에 공개되고, 기탁번호 KCTC 11302BP로 기탁된 셀룰로시마이크로비움 속 HY-13(Cellulosimicrobium sp HY-13) 균주로부터 생산된 만난아제; 및 f) 상기 a) 내지 e) 중 선택된 만난아제의 혼합물 중에서 선택될 수 있다. 상기 각각의 베타 만난아제가 개시된 한국 등록특허의 내용은 그 전체가 참조로서 본 발명의 내용에 합체된다.In the present invention, beta-mannanase (β-mannanase) lowers the viscosity in the digestive tract to improve the digestibility of various nutrients, causes energy loss through stimulation of the immune system shown by the anti-nutritional factor, mannan, and interferes with the secretion of insulin and igf-1. The side can be removed. The beta met kinase can be obtained from a microorganism that produces a met kinase or a transformant transduced with a met kinase gene. In one example, a beta metase capable of exhibiting an effect without being decomposed even in the stomach of a ruminant is preferred, and CTC Bio's CTCZYME ® product may be used, but is not limited thereto. The beta-met nanase is endo-β-mannanase, and can be obtained from a microorganism or a transformant transduced with a met- kinase gene. For example, a) a metase produced from the Bacillus sp WL-1 (Bacillus sp WL-1) strain disclosed in Korean Patent Registration No. 10-0390565 and deposited with accession number KCTC 0800BP; b) a metase produced from Bacillus sp WL-7 (Bacillus sp WL-7) strain disclosed in Korean Patent Registration No. 10-0477456 and deposited with accession number KCTC 10279BP; c) a metase produced by expression of E. coli transformed by introducing a metase gene of Bacillus licheniformis WL-12 strain disclosed in Korean Patent Registration No. 10-0560375; And d) a metase produced from Aspergillus duck material disclosed in Korean Patent Registration No. 10-1073987 and deposited with accession number KCTC 11105BP; e) a metase produced from the Cellulosimicrobium sp HY-13 strain disclosed in Korean Patent Registration No. 10-1403489 and deposited with the accession number KCTC 11302BP; And f) it may be selected from a mixture of met kinase selected from a) to e). The contents of the Korean patents in which each of the above beta met nanases are disclosed are incorporated by reference in their entirety into the contents of the present invention.
일반적으로, 외인성 효소를 사료 안에 첨가하면 동물들은 사료 내 영양분을 최대한 이용할 수 있기 때문에, 양돈, 양계 그리고 좀 더 범위를 넓혀서 축우에서까지 환경적 부담을 감소시킬 수 있다. In general, the addition of exogenous enzymes into the feed allows animals to use the nutrients in the feed to the fullest, thus reducing the environmental burden of pigs, poultry and even cattle by broadening the range.
본 발명자들은 표준 사료를 섭취하고 있는 축우와 낮은 조단백질 함량의 사료에 베타 만난아제를 첨가한 사료를 섭취하는 축우에 대하여, 사료전환효율(Feed Conversion Efficiency)과 비유량을 비교 평가함으로써, 베타 만난아제의 효과를 규명하고자 하였다.The present inventors compared and evaluated the feed conversion efficiency (Feed Conversion Efficiency) and the relative flow rate for cattle ingesting a standard feed and a feed containing beta met kinase added to the feed with low crude protein content, To investigate the effect of.
우선적으로, 하루에 40.5± 3.6 kg 우유를 생산하는 열두 마리의 중간 수유 단계의 다산 홀스타인 젖소를 세 개의 실험 그룹으로 나누어서 3x3 교차시험 (crossover design) 하였다. 실험 그룹은 다음과 같다: 높은 조단백질을 함유한 완전 혼합 사료 (16.1% 조단백질, 높은 조단백질, HCP), 낮은 조단백질을 함유한 완전 혼합 사료 (14.6% 조단백질, 낮은 조단백질, LCP) 그리고 낮은 조단백질에 0.1% 건물 (DM, dry matter) 베타 만난아제 효소제가 첨가된 혼합사료 (낮은 조단백질 내 효소제가 첨가된 사료, LCPE1). First, twelve intermediate lactating fertility Holstein cows producing 40.5±3.6 kg milk per day were divided into three experimental groups and a 3x3 crossover design was conducted. The experimental groups were as follows: a complete mixed diet containing high crude protein (16.1% crude protein, high crude protein, HCP), a complete mixed diet containing low crude protein (14.6% crude protein, low crude protein, LCP) and 0.1% low crude protein. Dry matter (DM, dry matter) Mixed feed with beta metase enzyme added (feed with low crude protein enzyme added, LCPE1).
베타 만난아제의 첨가는 건물섭취량 (DMI, Daily matter intake), 비유량 (milk yield), 유성분 (milk component yield or composition)에는 아무런 영향을 미치지 않았다. LCP (낮은 조단백질 사료) 또는 LCPE1 (낮은 조단백질 사료에 베타 만난아제가 첨가된 사료)를 섭취한 젖소에서 우유속의 요소태질소량 (MUN: milk urea nitrogen)이 현저히 낮았다. 체세포 수의 경우 나머지 두 실험 군 (LCP, HCP)보다 베타 만난아제가 함유된 사료(LCPE1)를 섭취한 젖소에서 수치가 더 낮게 확인되었다. 건물(DM, dry matter), 유기물 (OM, organic matter), 조단백질 (CP, crude protein), 산 세정 섬유 (ADF, acid detergent fiber) 중성 세정 섬유 (NDF, neutral detergent fiber), 탄수화물 (starch), 재 (ash)의 총에너지의 외관전장소화율 (apparent total tract digestibility, ATTD)에는 영향이 없었다. LCPE1 사료를 섭취한 젖소가 HCP 사료를 섭취한 젖소 보다 건물섭취 (13.4% 상승효과, P = 0.003 ) kg 당 사료전환효율 (FCE, Feed Conversion Efficiency)이 190g 더 높았다. LCP 사료를 섭취하는 젖소와 비교해 보았을 때, LCPE1 사료를 섭취한 젖소에서 사료전환효율 (FCE)가 현저히 높은 (P = 0.014) 것이 확인되었다 (건물섭취 kg당 160g, 11.0% 상승). LCPE1 사료를 섭취한 젖소는 HCP 사료를 섭취한 젖소들 보다 유 단백을 합성에 있어서 조단백질을 보다 효율적으로 사용한다(유 단백: 조단백질 섭취 = 0.34 vs. 0.30). 사료 내 조단백질 함량 차이 때문에, 낮은 조단백질을 섭취한 젖소에서 요소 섭취량은 현저히 낮았으며 그러므로 분변 및 소변 내에 빠져나오는 요소의 양도 적었으며 이는 결과적으로 환경에 미치는 영향도 최소화 시켰다. 0.1%의 건물 섭취를 한 젖소에서, 베타 만난아제는 사료전환효율(FCE)을 개선시켰으며 (젖소에서) 비유량, 유성분에는 아무런 영향을 끼치지 않는 대신 체세포 수 및 환경에 배출되는 요소의 배출량은 낮췄다. The addition of beta met nanase had no effect on dry matter intake (DMI), milk yield, and milk component yield or composition. Milk urea nitrogen (MUN) was significantly lower in cows fed LCP (low crude protein feed) or LCPE1 (low crude protein feed supplemented with beta-metinase). In the case of somatic cell count, it was found that the level was lower in cows fed diet (LCPE1) containing beta-met kinase than the other two experimental groups (LCP, HCP). Dry matter (DM), organic matter (OM), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), carbohydrate (starch), There was no effect on the apparent total tract digestibility (ATTD) of the total energy of ash. Cows fed LCPE1 had 190g higher feed conversion efficiency (FCE) per kg of dry matter intake (13.4% synergistic effect, P = 0.003) than cows fed HCP. Compared with cows fed with LCP feed, it was found that the feed conversion efficiency (FCE) was significantly higher ( P = 0.014) in cows fed LCPE1 (160g per kg of dry matter, 11.0% increase). Cows fed LCPE1 use crude protein more efficiently in synthesizing milk protein than cows fed HCP feed (milk protein: crude protein intake = 0.34 vs. 0.30). Due to the difference in the crude protein content in the feed, urea intake was significantly lower in cows with low crude protein intake, and therefore the amount of urea escaped in feces and urine was also small, which in turn minimized the impact on the environment. In cows with 0.1% dry matter intake, beta metase improved feed conversion efficiency (FCE) and had no effect on specific flow and dairy components (in cows), but instead had no effect on the number of somatic cells and the amount of urea released to the environment. Lowered.
이와 같이 본 발명자들은 비유중인 젖소에게 혈전용해효소(베타 만난아제)가 첨가된 사료를 제공했을때, 베타 만난아제가 젖소에게 어떠한 영향을 미치는지 살표보기 위해 실험을 진행한 결과, 단백질 함량이 높은(건조물의 16.1%) 사료(HCP)를 먹은 소보다 단백질 함량이 낮은(건조물의 14.6%) 사료에 베타 만난아제를 첨가한 사료(LCPE1)를 섭취한 소에서 사료전환효율이 더 높았고, 베타 만난아제 첨가는 비유량과 우유의 성분에는 영향을 미치지 않았으며, 체세포 수만 낮췄음을 확인하였다. As described above, the present inventors conducted an experiment to see how beta met nanase affects cows when providing feed to which thrombolytic enzyme (beta met nanase) was added to lactating cows. As a result, the protein content was high ( The feed conversion efficiency was higher in cows that ate feed (LCPE1) with beta metase added to feed with lower protein content (14.6% of dry matter) than cattle fed with dry matter 16.1%) feed (HCP). It was confirmed that the addition did not affect the specific flow rate and the components of milk, but only lowered the somatic cell count.
이어서, 본 발명자들은 사료 조성물에서 대두박과 같이 경제성에 영향을 많이 미치는 성분을 어느 정도까지 사용할 수 있는지, 그리고 비유량과 우유 성분에는 영향을 미치지 않으면서 사료전환효율(FCE)을 최대로 높일 수 있는 베타 만나아제의 혼합비율을 알기 위하여, 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 주정박(Distillers grain) 함량은 높인 사료(LCPE2)와, 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량은 높인 사료(LCPE3)에 대해서도 추가 실험을 진행하였다. Next, the inventors of the present invention are to determine to what extent components that have a large impact on economic efficiency such as soybean meal in the feed composition can be used, and to maximize feed conversion efficiency (FCE) without affecting the specific flow rate and milk components. To find out the mixing ratio of beta mannase, feed (LCPE2) with lower soybean meal content as a protein source and higher content of Distillers grain (LCPE2) as a protein source, and lower soybean meal content as a protein source and as a source of carbohydrate. Additional experiments were also conducted for feed (LCPE3) with increased steam-flaked corn content.
그 결과, 단백질 함량이 낮은(건조물의 14.6%) 사료에 베타 만난아제를 첨가한 사료(LCPE1)와 비교하여, 주정박(Distillers grain) 함량을 높인 사료(LCPE2)의 경우 사료전환율이 소폭 증가하는데 그쳤고, 비유량도 줄어드는 단점이 있었다. 또한, 증압후레이크(Steam-flaked corn) 함량을 높인 사료(LCPE3)의 경우 조단백질(CP) 함량이 크게 낮아졌고, 비유량도 줄어들었으며, 우유 성분에서도 큰 변화가 생기는 단점이 있었다. As a result, the feed conversion rate slightly increased in the case of feed with increased Distillers grain content (LCPE2) compared to feed with beta metase added to feed with low protein content (14.6% of dry matter) (LCPE1). It stopped, and there was a drawback of reducing the specific flow rate. In addition, in the case of feed (LCPE3) with increased steam-flaked corn content, the crude protein (CP) content was significantly lowered, the specific flow rate was also reduced, and there was a disadvantage that a large change occurred in the milk component.
이에 따라, 본 발명에 따른 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage), 증압후레이크(Steam-flaked corn), 및 납작보리쌀(Rolled barley)로 이루어진 군에서 선택되는 1종 이상의 탄수화물 공급원; 대두박(Soybean meal)을 포함하며, 알팔파 건초(Alfalfa hay), 주정박(Distillers grain), 및 콩껍질(Soybean hulls)로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 단백질 공급원; 목화씨(Cotton seed)로 이루어진 지방 공급원; 및 효소로서 베타 만난아제(β-mannanase);를 포함하여 이루어지고, 상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 4.0 내지 7.0 중량부 범위 내로 포함되는 것이다. Accordingly, the low-protein feed composition for enhancing feed conversion efficiency (FCE) of ruminants according to the present invention includes corn silage, steam-flaked corn, and rolled barley. ) At least one carbohydrate source selected from the group consisting of; A protein source including soybean meal, and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls; A local source of cotton seeds; And beta-mannanase (β-mannanase) as an enzyme, and the soybean meal is contained in the range of 4.0 to 7.0 parts by weight based on 0.1 parts by weight of the beta-met nanase.
일 예로서, 상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 5.0 내지 5.5 중량부 범위 내로 포함된 것이 더욱 바람직하다. 만약, 대두박이 상기 범위 미만으로 포함되면 조단백질(CP) 함량이 크게 낮아지고, 비유량도 줄어들며, 우유 성분에서도 큰 변화가 생기는 단점이 있다. 또한, 대두박이 상기 범위를 초과하여 포함되면 경제성이 떨어지는 단점이 있다. As an example, it is more preferable that the soybean meal is contained within the range of 5.0 to 5.5 parts by weight based on 0.1 parts by weight of the beta met nanase. If soybean meal is included below the above range, there is a disadvantage in that the crude protein (CP) content is significantly lowered, the specific flow rate is also reduced, and a large change occurs in the milk component. In addition, if the soybean meal is included in excess of the above range, there is a disadvantage in that the economy is poor.
그리고, 본 발명에 따른 사료 조성물에서, 조단백질(CP : Crude Protein)은 14.5 내지 15.0 중량% 범위 내로 포함된 것이 가능하다. 즉, 본 발명에 따른 사료 조성물은 단백질 공급원의 함량을 최대로 낮추어서 조단백질 함량이 상대적으로 낮은 저단백 사료 조성물에서, 베타 만나아제에 의한 효소의 효과를 최대로 가지는 것을 특징으로 한다. And, in the feed composition according to the present invention, the crude protein (CP: Crude Protein) may be contained within the range of 14.5 to 15.0% by weight. That is, the feed composition according to the present invention is characterized by having the maximum effect of an enzyme by beta mannase in a low protein feed composition having a relatively low crude protein content by lowering the content of the protein source to the maximum.
이러한 본 발명은 종래보다 단백질 함량이 낮은 저단백 사료 조성물에 있어서, 대두박과 베타 만난아제(β-mannanase)의 혼합 비율을 최적화함으로써, 대두박 사용량을 줄여서 경제성이 우수하면서도, 사료전환효율(FCE : Feed Conversion Efficinecy)을 높일 수 있는 효과가 있다.The present invention is a low protein feed composition with a lower protein content than the conventional, by optimizing the mixing ratio of soybean meal and beta-mannanase (β-mannanase), while reducing the amount of soybean meal, excellent economic efficiency, feed conversion efficiency (FCE: Feed Conversion Efficinecy) can be increased.
또한, 본 발명은 사료 내 단백질 공급원 중 경제성에 가장 영향을 많이 미치는 대두박 함량을 줄여서 조단백질(CP : Crude Protein) 함량이 낮더라도, 사료전환효율(FCE)은 높이고, 비유량과 우유 성분에는 영향을 미치지 않으면서, 요소태질량(MUN)과 체세포수는 낮출 수 있는 사료 조성물을 제공할 수 있다. 그래서, 본 발명은 효소로서 베타 만난아제(β-mannanase)를 포함하지 않는 사료 조성물과 비교하여, 사료전환효율은 증가시키고, 요소태질량(MUN)과 체세포수는 낮추는 것일 수 있다. 이러한 본 발명은 HCP 사료보다 LCPE1 사료 사용시 소 한 마리 당 $1.03을 절약할 수 있는 효과를 가진다.In addition, the present invention reduces the content of soybean meal, which has the greatest effect on economics among the protein sources in feed, so that even if the content of Crude Protein (CP) is low, feed conversion efficiency (FCE) is increased, and the specific flow rate and milk component are affected. It is possible to provide a feed composition capable of lowering urea mass (MUN) and somatic cell count without having to do so. Thus, the present invention may be to increase feed conversion efficiency and lower urea mass (MUN) and somatic cell count, compared to a feed composition that does not contain beta-mannanase as an enzyme. This invention has the effect of saving $1.03 per cow when using LCPE1 feed rather than HCP feed.
본 발명의 실험예에 따르면, 일 예로서, 상기 탄수화물 공급원은 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 것이 가능하다. 증압후레이크(Steam-flaked corn)와 같은 탄수화물 공급원의 함량이 높아지면, 조단백질(CP) 함량이 크게 낮아지고, 비유량도 줄어들며, 우유 성분에서도 큰 변화가 생기는 단점이 있다. According to the experimental example of the present invention, as an example, the carbohydrate source is corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and rolled barley 7.0 It is possible to include to 8.0 parts by weight. When the content of a carbohydrate source such as steam-flaked corn is increased, the crude protein (CP) content is significantly lowered, the specific flow rate is also reduced, and there is a disadvantage that a large change occurs in the milk component.
또한, 일 예로서, 상기 단백질 공급원은 대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 것일 수 있다. 대두박이 아닌 주정박 함량이 높아지는 경우, 사료전환율의 증가폭이 크지 않고, 비유량도 줄어드는 단점이 있다.In addition, as an example, the protein source is 4.0 to 7.0 parts by weight of Soybean meal, 26.0 to 27.0 parts by weight of Alfalfa hay, 5.0 to 6.0 parts by weight of Distillers grain, and Soybean meal. hulls) 11.0 to 12.0 parts by weight may be included. If the content of alcoholic beverages rather than soybean meal is increased, there is a disadvantage that the increase in feed conversion rate is not large and the specific flow rate decreases.
또한, 일 예로서, 상기 지방 공급원은 목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 것이 가능하다.In addition, as an example, the fat source may be made by including 6.0 to 7.0 parts by weight of cotton seed.
이와 함께, 본 발명에 따른 사료 조성물은 미네랄믹스(Mineral mix), 탄산칼슘(Calcium carbonate), 및 소금(Salt (NaCl))으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것일 수 있다.In addition, the feed composition according to the present invention may further include one or more selected from the group consisting of mineral mix, calcium carbonate, and salt (NaCl).
또한, 일 예로서, 상기 미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하는 것이 가능하다.In addition, as an example, it is possible to further include 1.0 to 2.0 parts by weight of the mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl). .
상기 미네랄믹스는 반추동물에게 필요한 미네랄을 사료의 배합 시 원료들과 혼합이 용이하게 미리 제조한 혼합물을 의미한다. 미네랄은 반추동물의 체내에서 골격을 형성하고 또 대사과정 중에서 중요한 영양소로서 이용될 수 있다. 미네랄은 가축의 체내에 분포되어있는 정도에 따라 그 요구량이 달라질 수 있는데, 보통 Ca, P, Na, Cl, K, Mg의 요구량은 많으며, Fe, Zn, I, Se, Mn, Cu 등의 요구량은 미량으로 알려져 있는데 반추동물 사료에 있어서 K, Mg, Mn, S 등은 사료 속에 충분히 함유되어 부족 되지 않으나 그 외의 미네랄은 사료에 첨가 급여하여 주어야 한다. 본 발명에서, 미네랄믹스는 시판되는 제품을 사용할 수 있으며 각 미네랄들의 적정 혼합 비율은 당업계에 알려져 있다. 본 발명의 일 실시예에서, 미네랄믹스는 1.0 내지 2.0 중량부 범위 내로 포함되는 것이 바람직하다.The mineral mix refers to a mixture prepared in advance to facilitate mixing of minerals required for a ruminant with raw materials when mixing feed. Minerals form the skeleton in the body of ruminants and can be used as important nutrients in metabolic processes. The amount of minerals required may vary depending on the degree of distribution in the body of livestock. Usually, the required amount of Ca, P, Na, Cl, K, and Mg is large, and the required amount of Fe, Zn, I, Se, Mn, Cu, etc. Is known to be a trace amount, but in ruminant feed, K, Mg, Mn, S, etc. are sufficiently contained in the feed and are not insufficient, but other minerals must be added to the feed. In the present invention, a commercially available product may be used for the mineral mix, and an appropriate mixing ratio of each mineral is known in the art. In one embodiment of the present invention, the mineral mix is preferably included in the range of 1.0 to 2.0 parts by weight.
상기 소금은 반추동물 사료 조성물의 나트륨(Na) 및 염소(Cl) 공급원으로서 사용된다. 나트륨과 염소는 각각 체내에서 세포외 주요 양이온과 음이온이다. 염소는 소화액의 주요 음이온이다. 소금은 옥수수 및 대두박 위주의 사료에서 반추동물의 나트륨 및 칼륨 요구량을 충족시킬 수 있다. 나트륨이나 염소가 결핍되면 반추동물의 성장이 둔화되고, 사료효율이 낮아질 수 있다. 본 발명에서, 소금은 바람직하기로 0.1 내지 0.2 중량부의 양으로 포함될 수 있다.The salt is used as a source of sodium (Na) and chlorine (Cl) in ruminant feed compositions. Sodium and chlorine are the major extracellular cations and anions in the body, respectively. Chlorine is the main anion in digestive juices. Salt can meet the sodium and potassium requirements of ruminants in feeds based on corn and soybean meal. Deficiency of sodium or chlorine can slow the growth of ruminants and reduce feed efficiency. In the present invention, salt may preferably be included in an amount of 0.1 to 0.2 parts by weight.
이외에, 본 발명에 따른 사료 조성물은 비타민 프리믹스; 인산칼슘, 석회석, 및 탈불인광석으로부터 선택되는 1종 이상의 광물질 공급원; 당밀; 및 아미노산으로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함할 수 있다.In addition, the feed composition according to the present invention is a vitamin premix; One or more sources of minerals selected from calcium phosphate, limestone, and dephosphorylated ores; molasses; And it may further include one or more selected from the group consisting of amino acids.
한편, 본 발명에 따른 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 탄수화물 공급원; 대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 단백질 공급원; 목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 지방 공급원; 및 효소로서 베타 만난아제(β-mannanase) 0.1 중량부;를 포함하여 이루어진 것이 바람직하다. On the other hand, the low protein feed composition for improving the feed conversion efficiency (FCE) of ruminants according to the present invention, corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 A carbohydrate source comprising 7.0 to 8.0 parts by weight, and rolled barley; Soybean meal 4.0 to 7.0 parts by weight, Alfalfa hay 26.0 to 27.0 parts by weight, Distillers grain 5.0 to 6.0 parts by weight, and Soybean hulls 11.0 to 12.0 parts by weight. Protein source; Fat source consisting of 6.0 to 7.0 parts by weight of cotton seed; And 0.1 parts by weight of beta-mannanase as an enzyme.
또한, 미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하여 이루어진 것일 수 있다. In addition, 1.0 to 2.0 parts by weight of a mineral mix, 0.1 to 0.2 parts by weight of calcium carbonate, and 0.1 to 0.2 parts by weight of salt (NaCl) may be further included.
또한, 본 발명에 따른 반추동물의 사료전환효율 증진용 저단백 사료 조성물은, 옥수수 사일리지(Corn silage) 25.65 중량부, 증압후레이크(Steam-flaked corn) 11.3 중량부, 및 납작보리쌀(Rolled barley) 7.21 중량부가 포함되어 이루어진 탄수화물 공급원; 대두박(Soybean meal) 5.21 중량부, 알팔파 건초(Alfalfa hay) 26.2 중량부, 주정박(Distillers grain) 5.01 중량부, 및 콩껍질(Soybean hulls) 11.43 중량부가 포함되어 이루어진 단백질 공급원; 목화씨(Cotton seed) 6.55 중량부가 포함되어 이루어진 지방 공급원; 효소로서 베타 만난아제(β-mannanase) 0.1 중량부; 미네랄믹스(Mineral mix) 1.09 중량부; 탄산칼슘(Calcium carbonate) 0.16 중량부; 및 소금(Salt (NaCl)) 0.19 중량부를 포함하여 이루어진 것이 더욱 바람직하다.In addition, the low-protein feed composition for improving feed conversion efficiency of ruminants according to the present invention includes 25.65 parts by weight of corn silage, 11.3 parts by weight of steam-flaked corn, and 7.21 parts by weight of rolled barley. A carbohydrate source comprising parts by weight; A protein source comprising 5.21 parts by weight of Soybean meal, 26.2 parts by weight of Alfalfa hay, 5.01 parts by weight of Distillers grain, and 11.43 parts by weight of Soybean hulls; Fat source consisting of 6.55 parts by weight of cotton seed; 0.1 parts by weight of beta-mannanase as an enzyme; 1.09 parts by weight of mineral mix; 0.16 parts by weight of calcium carbonate; And it is more preferable to include 0.19 parts by weight of salt (NaCl).
아래 본 발명의 실시예 및 실험예에 의하면, 베타 만난아제를 옥수수사일리지 (옥수수의 줄기와 잎을 원료로 사일로에 저장된 가축사료)와 알파파에 첨가한 결과, 중간 수유 단계의 다산 홀스타인 젖소가 생산한 우유 유량의 생산량은 증가한 동시 체세포의 수는 감소하였다. 사료내 조사료 비율을 최대로 낮추는 것보다 베타 만난아제 첨가 하였을 때 사료내 사료전환효율 (FCE, Feed Conversion Efficiency) 값이 더 향상되었다. 베타 만난아제를 0.1% 건물에 넣었을 때, 유량 및 우유 성분에는 큰 영향을 미치지는 못했지만 우유 요소내 질소양은 질소 섭취 감소로 인해 현저히 감소하였다. DM, OM, CP, ADF, NDF, 녹말 (starch) 분 (ash)의 소화율 (apparent total tract digestibility)에는 아무런 변화가 없었다. 낮은 조단백질 사료를 섭취한 소는 질소 섭취량이 줄었기 때문에 분변 및 요소 내 발견된 질소의 양도 감소하였다. 요소는 환경내 배출되면 암모니아나 이산화질소로 전환될 수 있는 확률이 높기 때문에 요소 내 질소가 감소하면 이는 환경 뿐만 아니라 (소) 건강에도 도움이 된다. 사료내 조단백질 비율이 더 줄어든다면 제1위가 아미노산에 의해 보호받는 가능성도 생각해볼 수 있다. 그러므로, 우리는 얼만큼 더 적은 양의 조단백질을 소에게 줘도 소의 유량이나 소 건강에는 영향을 안 미치는지 더 연구할 필요가 있다. 우리의 실험 연구를 통해서 우리가 발견한 것은 사료내 조단백질 비율을 좀 낮춰도, 사료전환효율 (FCE, Feed Conversion Efficiency)이 개선될 수 있으며, 유량과는 별개로 체세포 수는 감소할 수 있다는 사실이다. 사료내 조사료 비율을 낮추고 베타 만난아제를 대신 넣는다면 소 한 마리당 1.03불의 이윤을 남길 수 있다는 것이다.According to the examples and experimental examples of the present invention below, as a result of adding beta-metinase to corn silage (livestock feed stored in silos using corn stems and leaves as raw materials) and alpha waves, fertility Holstein cows in the intermediate lactation stage are produced. The production of one milk flow increased while the number of somatic cells decreased. The feed conversion efficiency (FCE) value in the feed was more improved when the beta metase was added rather than lowering the forage ratio in the feed to the maximum. When beta met nanase was added to 0.1% dry matter, the amount of nitrogen in the milk urea was significantly decreased due to the decrease in nitrogen intake, although it did not have a significant effect on the flow rate and milk composition. There was no change in the apparent total tract digestibility of DM, OM, CP, ADF, NDF, and starch. The amount of nitrogen found in feces and urea also decreased as the amount of nitrogen intake was reduced in cows fed a low crude protein diet. When urea is released into the environment, it is highly likely to be converted to ammonia or nitrogen dioxide, so reducing nitrogen in urea is beneficial not only to the environment but also to (bovine) health. If the ratio of crude protein in the diet is further reduced, the possibility that the number one is protected by amino acids is also conceivable. Therefore, we need to further study how much less crude protein given to cattle does not affect cattle flow or cattle health. What we found through our experimental research is that even if the ratio of crude protein in the feed is lowered, the feed conversion efficiency (FCE) can be improved, and the number of somatic cells can be decreased independently of the flow rate. . If the ratio of forage in the feed is lowered and beta metase is added instead, a profit of $1.03 per cow could be made.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해 될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The present invention may be better understood by the following examples, and the following examples are for illustrative purposes of the present invention, and are not intended to limit the scope of protection defined by the appended claims.
실시예 1: 실험 동물 및 실험 군Example 1: Experimental animals and experimental group
모든 동물 관련 실험들은 UC 데이비스 대학교 내에 위치한 실험동물운영위원회로부터 승인 받았다. 본 연구는 UC 데이비스 대학교 내에 위치한 동물과학 교육 및 연구발전 시설에서 진행하였다. 하루에 40.5± 3.6 kg우유를 생산하는 이십 마리의 중간 수유 단계의 다산 홀스타인 젖소들의 평균 몸무게는 643± 48 kg BW이며, 평균 비유량은 하루에 40.5± 3.6 kg이며, 128± 9.64 건어물(DMI)은 실험 초기에 Calm 울타리로 갖춰진 개방 계유식 축사에 (American Calan, Northwood, NH) 보관하였다. 실험 그룹은 다음과 같았다: 높은 조단백질을 함유한 완전 혼합 사료 (16.1% 조단백질, 높은 조단백질, HCP), 낮은 조단백질을 함유한 완전 혼합 사료 (14.6% 조단백질, 낮은 조단백질, LCP), 낮은 조단백질에 0.1% 건물 (DM, dry matter) 베타 만난아제 효소제가 첨가된 혼합사료 (낮은 조단백질 내 효소제가 첨가된 사료, LCPE1), 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 주정박(Distillers grain) 함량은 높인 사료(LCPE2), 그리고 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량은 높인 사료(LCPE3).All animal-related experiments were approved by the Laboratory Animal Steering Committee located at UC Davis. This study was conducted at the animal science education and research development facility located within UC Davis University. Twenty mid-breasting Holstein cows producing 40.5 ± 3.6 kg milk per day have an average weight of 643 ± 48 kg BW, an average specific flow of 40.5 ± 3.6 kg per day, and 128 ± 9.64 Dried Fish (DMI). Were kept in open cages (American Calan, Northwood, NH) equipped with Calm fences at the beginning of the experiment. The experimental groups were as follows: a complete mixed diet containing high crude protein (16.1% crude protein, high crude protein, HCP), a complete mixed diet containing low crude protein (14.6% crude protein, low crude protein, LCP), 0.1% low crude protein. Dry matter (DM, dry matter) mixed feed with beta metase enzyme added (feed with low crude protein enzyme added, LCPE1), feed with lower soybean meal and higher Distillers grain as a protein source (LCPE2), and feed with lower soybean meal content as a protein source and higher steam-flaked corn content as a carbohydrate source (LCPE3).
베타 만난아제 효소 CTCZYME(대한민국 등록특허 10-0477456, 씨티씨바이오)에는 순수 분리된 베타 만난아제가 함유되어 있다. 베타 만난아제는 만난아제 유전자를 코딩하는 Bacillus subtills (WL-7)균을 Escherichia coli 내로 삽입한 후, 복제 반복을 통해 생성하였다(대장균의 발현에 의해 생산된 만난아제). 만난아제 유전자는 폴리펩티드를 구성하는 362 아미노산을 코딩하며, 이 구성체는 GH family 26 분류 체 내에 속하여 있는 만난아제와 동일하다. 효소 반응은 pH 4.0 그리고 30oC 환경에서 800,000 U/kg로 수행하였다.Beta metase enzyme CTCZYME (Korea Patent Registration 10-0477456, CTC Bio) contains pure isolated beta metase. The beta-met kinase was generated by repeating replication after inserting Bacillus subtills (WL-7) bacteria encoding the met kinase gene into Escherichia coli , and then repeating the replication (met kinase produced by E. coli expression). The metase gene encodes the 362 amino acids constituting the polypeptide, and this construct is identical to the metase belonging to the GH family 26 taxon. Enzymatic reaction was carried out at 800,000 U/kg in pH 4.0 and 30 o C environment.
실험에 사용된 사료의 구성 성분 및 화학물 요소는 하기 표1 및 표 2에 기재하였다.Constituents and chemical elements of the feed used in the experiment are listed in Tables 1 and 2 below.
처음에는 콩사일지에 효소를 손으로 섞어서 동물한테 주었으며, 그 다음에 이미 1차로 섞인 콩사일리지를 나머지 사료와 섞었다. 매 실험의 실험주기는 18일이였으며, 14일은 프리스톨 헛간에서 적응하는 기간이었으며, 하루는 신진대사 변화에 적응하는 기간이었고, 남은 3일 동안에는 각 소의 소변과 분변을 채취하였다. 신진대사 스톨(metabolic stall)은 먹이, 음수 컵, 그리고 고무 바닥으로 구성하였다. 프리스톨 헛간 및 신진대사 스톨 내에 있는 소에게 아침 8시 및 저녁 8시에 총 하루에 두번씩 전 날 섭취한 사료양의 110%을 주었다. 프리스톨 헛간 및 신진대사 스톨내에 살고 있는 소 한 마리씩 비유량 및 유성분 그리고 DMI을 측정하였다. 모든 동물들에게 물 공급은 수시로 제공하였다. At first, the enzyme was hand-mixed in the soybean silage and given to the animals. Then, the soybean silage, which had already been mixed first, was mixed with the rest of the feed. The experimental cycle of each experiment was 18 days, 14 days was a period of adaptation in a Pristol barn, one day was a period of adaptation to metabolic changes, and urine and feces from each cow were collected for the remaining 3 days. The metabolic stall consisted of food, drinking cups, and rubber soles. Cows in the Pristol barn and metabolic stall were given 110% of the amount of feed consumed the previous day, twice a day at 8 am and 8 pm. Relative flow, dairy composition, and DMI were measured for each cow living in a Pristol barn and metabolic stall. Water supplies were provided to all animals from time to time.
Ingredients (% of DM)Ingredients (% of DM) HCP HCP LCP LCP LCPE1LCPE1 LCPE2LCPE2 LCPE3LCPE3
옥수수 사일리지(Corn silage1) Corn silage 1 24.6224.62 25.6525.65 25.6525.65 25.6525.65 25.6525.65
알팔파 건초(Alfalfa hay2) Alfalfa hay 2 25.325.3 26.226.2 26.226.2 26.226.2 26.226.2
증압후레이크(Steam-flaked corn)Steam-flaked corn 10.510.5 11.311.3 11.311.3 11.311.3 12.812.8
주정박(Distillers grain)Distillers grain 6.476.47 5.015.01 5.015.01 6.516.51 5.015.01
대두박(Soybean meal)Soybean meal 7.947.94 5.215.21 5.215.21 3.713.71 3.713.71
납작보리쌀(Rolled barley)Rolled barley 8.468.46 7.217.21 7.217.21 7.217.21 7.217.21
미네랄믹스(Mineral mix)Mineral mix 1.091.09 1.091.09 1.091.09 1.091.09 1.091.09
콩껍질(Soybean hulls)Soybean hulls 10.0410.04 11.4311.43 11.4311.43 11.4311.43 11.4311.43
목화씨(Cotton seed)Cotton seed 5.235.23 6.556.55 6.556.55 6.556.55 6.556.55
탄산칼슘(Calcium carbonate)Calcium carbonate 0.160.16 0.160.16 0.160.16 0.160.16 0.160.16
소금(Salt (NaCl))Salt (NaCl) 0.190.19 0.190.19 0.190.19 0.190.19 0.190.19
β-mannanase enzymeβ-mannanase enzyme 00 00 0.10.1 0.10.1 0.10.1
합계Sum 100100 100100 100.1100.1 100.1100.1 100.1100.1
1Contained 46.2% DM and 7.9% CP, 38.9% NDF, and 30.5% starch on DM basis.2Contained 88.1% DM and 24.2% CP, 33.5% NDF, and 2.8% starch on DM basis. 1 Contained 46.2% DM and 7.9% CP, 38.9% NDF, and 30.5% starch on DM basis. 2 Contained 88.1% DM and 24.2% CP, 33.5% NDF, and 2.8% starch on DM basis.
Chemical composition (% of DM)Chemical composition (% of DM) HCP HCP LCP LCP LCPE1LCPE1 LCPE2LCPE2 LCPE3LCPE3
건물 (DM: dry matter )Building (DM: dry matter) 64.664.6 64.964.9 64.964.9 64.964.9 64.964.9
조단백질(CP : Crude Protein)Crude Protein (CP) 16.116.1 14.614.6 14.614.6 14.414.4 12.912.9
산성세제 섬유 분획물(ADF : Acid Detergent Fiber Fraction) Acid Detergent Fiber Fraction (ADF) 27.527.5 25.725.7 25.725.7 25.625.6 24.824.8
중성세제 섬유 분획물(NDF : Neutral Detergent Fiber Fraction)Neutral Detergent Fiber Fraction (NDF) 38.938.9 36.536.5 36.536.5 36.636.6 37.137.1
리그닌(Lignin)Lignin 4.64.6 4.14.1 4.14.1 4.24.2 4.34.3
녹말(Starch)Starch 21.821.8 22.222.2 22.222.2 22.322.3 24.124.1
에테르 추출물(Ether Extract)Ether Extract 4.14.1 4.34.3 4.34.3 4.34.3 4.24.2
합계Sum 113113 107.4107.4 107.4107.4 107.4107.4 107.4107.4
상기 표 2에 나타난 바와 같이, 낮은 조단백질 사료(LCP)와, 낮은 조단백질에 베타 만난아제 효소제가 첨가된 혼합사료(LCPE1)와, 주정박(Distillers grain) 함량은 높인 사료(LCPE2)의 경우, 조단백질(CP) 함량은 비슷했지만, 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량을 높인 사료(LCPE3)에서는 조단백질(CP) 함량이 크게 낮아졌다.As shown in Table 2, in the case of a low crude protein feed (LCP), a mixed feed in which a beta metase enzyme is added to a low crude protein (LCPE1), and a feed with a high Distillers grain content (LCPE2), crude protein The content of (CP) was similar, but the content of crude protein (CP) was significantly lowered in the feed (LCPE3) with increased content of steam-flaked corn, a source of carbohydrates.
실시예 2 : 샘플 채취 및 분석Example 2: Sample collection and analysis
소가 섭취하거나 또는 섭취 하지 않은 사료의 양의 무게를 매일 측정하였다.The amount of feed consumed by cattle or not consumed was weighed daily.
기간을 설정하며 소가 먹다 남은 사료를 매일 샘플링 하였다. Day13일 차 전날과 Day18일 끝 무렵에 소 사료를 분석하였다. 사료 구성 요소 및 소가 먹다 남은 사료 며칠 것을 모아서 화학성분 검토 전까지는 -20 0C에 보관하였다. 매일 두 번씩 아침 6시와 오후 6시에 소의 젖을 짰다. 매일 소 한 마리 한 마리에서 채취한 우유 샘플은 유지방, 유단백, 락토스, 우유 내 질소 농도 (MUN) 그리고 우유 체세포 (SCC) 분석 전까지는 4oC에 보관하였다.The period was set and the remaining feed was sampled daily. Cattle feed was analyzed on the eve of Day 13 and at the end of Day 18. Feed components and several days of feed remaining from cows were collected and stored at -20 0 C until chemical composition review. The cows are milked twice daily at 6 am and 6 pm. Milk samples from one cow each day were stored at 4 ° C until milk fat, milk protein, lactose, milk nitrogen concentration (MUN), and milk somatic (SCC) analysis.
Day16부터 Day18까지, 신진대사 스톨(metabolic stall)에 있는 소의(kg/d) 매 분변 및 소변의 양을 측정하였다. 추측건데, 효소에 의한 소화 및 대사 반응은 2주의 적응 기간을 거치고 나면 체내 항상성에 도달하지 않을까 생각했다. 소가 분변을 밟거나 그 위에 다시 앉기 전에, 분변을 긴 괭이로 긁어낸 후, 플라스틱 트레이에 두었다. 채취한 분변 샘플이 놓여져 있는 트레이 무게를 측정한 후, 분변 샘플 중에서도 대표를 띌 수 있을 만한 샘플 100-150g을 3시간 마다 각각 재취하였다. 설정한 기간동안 매일 채취한 분변 샘플은 화학조성 분석 전까지는 -20 0C에 보관하였다. 소변 채취 방법은 다음과 같이 하였다: Foley 카테터(24 French, 75-cc balloon; C.R. Bard, Covington, GA)를 대략 2-3m 길이의 Tygon 튜브(Fisher Scientific, Waltham, MA)에 연결한 뒤, 소독한 플라스틱 병 (Fisher Scientific, Waltham, MA)에 흐르게 두었다. 소가 신진대사 스톨(metabolic stalls)으로 이동한 시간(아침 8시부터 10시) 사이에 소변 카테터를 바로 장착하였다. 샘플은 24시간 적응 시간을 갖게 한 후 채취하였다. 카테터 삽입 후, 소의 상태는 다소 안정적이 였다. 채취한 모든 소변 샘플의 무게를 측정하였으며, 샘플링 후, 소변이 담겨져 있는 통을 3시간 마다 비웠다. 5ml의 소변을180ml의 황산(농도 0.5 mol/L)이 함유 되어 있는 플라스틱 용기에 넣은 후, 피펫팅 하였다. 산화된 소변 샘플은 질소 농도 분석을 위해 사용 하였으며 -20oC에 보관하였다. 사료 성분 및 사료 찌꺼기 샘플에 대하여 다음과 같은 분석을 실시하였다: DM (135oC, AOAC 2000; method 930.15), CP (6.25 Х Kjeldahl N, AOAC 2000; method 990.03), NDF (Van Soest et al., 1991), ADF (AOAC, 2000; method 973.18), 리그닌lignin (Goering and Van Soest, 1970), 녹말 starch (Hall, 2009 with correction for free glucose), 총 재 total ash (535oC, AOAC, 2000; method 942.05) and 개별 미네랄 함량 (AOAC, 2000). 분변 샘플을 말리고 분쇄 한 뒤(1.0 mm screen), 특정 화학 성분을 분석해보았다. From Day 16 to Day 18, the amount of feces and urine per bovine (kg/d) in a metabolic stall was measured. I guess, digestion and metabolic reactions by enzymes might reach homeostasis in the body after a two-week adaptation period. Before the cow stepped on or sat back on it, the feces were scraped off with a long hoe and placed in a plastic tray. After measuring the weight of the tray on which the collected fecal samples were placed, 100-150 g of samples that could be representative among fecal samples were retaken every 3 hours. Fecal samples collected daily during the set period were stored at -20 0 C until chemical composition analysis. The urine collection method was as follows: A Foley catheter (24 French, 75-cc balloon; CR Bard, Covington, GA) was connected to an approximately 2-3 m long Tygon tube (Fisher Scientific, Waltham, MA) and then disinfected. Placed in a plastic bottle (Fisher Scientific, Waltham, MA). A urine catheter was placed immediately between the time the cattle moved to the metabolic stalls (8 am to 10 am). Samples were taken after allowing 24 hours to acclimate. After catheterization, the cow's condition was somewhat stable. All collected urine samples were weighed, and after sampling, the container containing urine was emptied every 3 hours. 5 ml of urine was placed in a plastic container containing 180 ml of sulfuric acid (concentration 0.5 mol/L), followed by pipetting. The oxidized urine sample was used for nitrogen concentration analysis and stored at -20 o C. The following analyzes were performed on feed ingredients and feed residue samples: DM (135 o C, AOAC 2000; method 930.15), CP (6.25 Х Kjeldahl N, AOAC 2000; method 990.03), NDF (Van Soest et al. , 1991), ADF (AOAC, 2000; method 973.18), lignin (Goering and Van Soest, 1970), starch starch (Hall, 2009 with correction for free glucose), total ash (535 o C, AOAC, 2000) ; method 942.05) and individual mineral content (AOAC, 2000). After drying and grinding the fecal sample (1.0 mm screen), specific chemical components were analyzed.
통계적 분석으로서, 베타 만난아제를 사료에 첨가하였을 때, 사료전환효율 (FCE, Feed Conversion Efficiency), DMI, BUN 그리고 체세포수에 어떠한 영향을 미치는 알아보기 위해 선형복합모델 R (version 3.1.1, R Foundation for Statistical Computing, Vienna, Austria)을 사용해 보았다.As a statistical analysis, a linear complex model R (version 3.1.1, R) to find out what effect beta metase was added to feed on feed conversion efficiency (FCE), DMI, BUN and somatic cell count Foundation for Statistical Computing, Vienna, Austria).
실험예 1 : 건물 섭취 및 우유 구성 요소Experimental Example 1: Dry matter intake and milk component
사료 내 단백질 감소 및 베타 만난아제 첨가는 하기 표 3에서 보다시피 건물 섭취에는 영향이 없었다. 하지만 낮은 조단백질에 0.1% 베타 만난아제가 섞인 건물(LCPE1)을 섭취한 소는 높은 조단백질(HCP)을 섭취한 소보다 건물 섭취 비율이 낮았다 (P = 0.068). 과거 실험 결과를 비추어 보았을 때, 반추동물에 베타 만난아제를 투여 한 경우 건물 섭취(DMI)에 대한 결과는 들쑥날쑥 하였다. 예를 들어, 과거에는 베타 만난아제를 투여한 소에서 건물 섭취(DMI)의 변화를 발견하지 못하였거나, 0.1% 베타 만난아제를 건물에 섞어서 소에게 주었을 때 (0.2%는 해당하지 않는다), 하루 건물 섭취량이 1.8kg 감소되었다고 하였다. As shown in Table 3 below, protein reduction and beta-met nanase addition in feed did not affect dry matter intake. However, cattle ingesting dry matter (LCPE1) with a low crude protein mixed with 0.1% beta metase (LCPE1) had a lower dry matter intake rate than those fed high crude protein (HCP) ( P = 0.068). In light of the results of past experiments, the results of dry matter intake (DMI) were jagged when beta-met nanase was administered to ruminants. For example, in the past, no change in dry matter intake (DMI) was found in cows given beta-met kinase, or 0.1% beta-met kinase was mixed with dry matter and given to cows (0.2% is not the case). It was reported that the dry matter intake was reduced by 1.8 kg.
실험군 Experimental group
HCP HCP LCP LCP LCPE1LCPE1 LCPE2LCPE2 LCPE3LCPE3 SEMSEM
섭취량 (kg/d)Intake (kg/d) 26.626.6 25.825.8 25.025.0 25.125.1 24.924.9 0.810.81
수율 (kg/d)Yield (kg/d)
우유 milk 37.737.7 3737 39.239.2 36.136.1 35.435.4 1.551.55
유지방 butterfat 1.151.15 1.211.21 1.281.28 1.221.22 1.121.12 0.080.08
유단백 Milk protein 1.221.22 1.171.17 1.231.23 1.191.19 1.051.05 0.050.05
유당 (젖당, 락토스) Lactose (lactose, lactose) 1.81.8 1.691.69 1.801.80 1.711.71 2.112.11 0.10.1
우유 무지유고형분 Milk solids 3.363.36 3.213.21 3.383.38 3.163.16 3.043.04 0.160.16
우유 성분, Milk Ingredients,
지방, % Fat, % 3.153.15 3.233.23 3.323.32 3.303.30 3.283.28 0.130.13
단백질, % protein, % 3.233.23 3.173.17 3.163.16 3.123.12 2.982.98 0.070.07
젖당 (락토스), % Lactose (lactose),% 4.684.68 4.574.57 4.614.61 4.714.71 5.255.25 0.090.09
무지유고형분, % Non-fat milk solids,% 8.88.8 8.658.65 8.698.69 8.528.52 8.128.12 0.130.13
우유 요소 질소화합물 (mg/dL)Milk urea nitrogen compound (mg/dL) 14.714.7 13.013.0 12.412.4 12.912.9 13.113.1 0.470.47
혈장 요소 질소화합물 (mg/dL)Plasma urea nitrogen compound (mg/dL) 18.118.1 16.716.7 15.615.6 16.116.1 16.516.5 0.440.44
체세포수 (Х103/mL)Somatic cell count (Х10 3 /mL) 9797 111111 5959  6161 65 65 16.116.1
비유량에서는, 낮은 조단백질(LCP)을 섭취한 소보다 베타 만난아제(LCPE1)를 섭취한 그룹(P = 0.09)에서 비유량이 더 증가된 점을 발견할 수 있었다. 또한, 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 주정박(Distillers grain) 함량은 높인 사료(LCPE2), 및 단백질 공급원으로서 대두박(Soybean meal) 함량은 낮추고 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량은 높인 사료(LCPE3)를 이용하면 베타 만난아제(LCPE1)를 섭취한 그룹보다 비유량이 더 낮아졌다.우유 내 조성의 경우, 낮은 조단백질 사료(LCP)와, 낮은 조단백질에 베타 만난아제 효소제가 첨가된 혼합사료(LCPE1)와, 주정박(Distillers grain) 함량은 높인 사료(LCPE2)의 경우, 우유 내 성분 변화가 크지 않았지만, 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량을 높인 사료(LCPE3)에서는 젖당은 크게 높아지고 단백질은 크게 감소하는 등의 변화가 있었다. In the relative flow rate, it was found that the specific flow rate was increased in the group ( P = 0.09) that consumed beta met kinase (LCPE1) than the cows that consumed low crude protein (LCP). In addition, feed (LCPE2) with a lower soybean meal content as a protein source and a higher Distillers grain content (LCPE2), and a lower soybean meal content as a protein source and steam-flaked corn as a carbohydrate source. When using the diet with high content (LCPE3), the relative milk content was lower than that of the group that consumed the beta metase (LCPE1). In the case of the composition in milk, the low crude protein feed (LCP) and the low crude protein supplemented with beta metase enzyme were added. In the case of mixed feed (LCPE1) and feed with high distillers grain (LCPE2), the composition of milk was not significantly changed, but feed with increased steam-flaked corn content (LCPE3), a source of carbohydrates. There were changes such as a large increase in lactose and a large decrease in protein.
질소 화합물의 경우, 높은 조단백질(HCP)을 섭취한 그룹보다 낮은 조단백질(LCP) 또는 낮은 조단백질 및 베타 만난아제(LCPE1)를 섭취한 그룹에서 보다 낮은 우유 요소 질소(MUN)가 확인 되었다. 과거에는 사료 내 함유된 단백질이 MUN 레벨을 결정 짓는 요소 중 하나라고 하는 주장이 있었다. 우리 실험에서는 낮은 조단백질을 섭취하고 있는 두 그룹에서 MUN 수치를 비교해 보았을 때, 두 그룹간의 차이는 확인되지 않았다. 상기 표 3에서 보다시피, 높은 조단백질(HCP)을 섭취하는 그룹의 혈장 요소 질소 (plasma urea N) 값이 낮은 조단백질(LCP) 및 낮은 조단백질과 베타 만난아제(LCPE1)를 함께 투여한 그룹보다 높았다. 이는 질소를 많이 섭취하면 MUN 레벨이 증가한다는 내용과 일치하는 결과다. 낮은 조단백질에 베타 만난아제(LCPE1)를 함께 투여받은 그룹이 낮은 조단백질(LCP)을 투여 받은 그룹보다 혈장 요소 질소 값이(P = 0.051) 더 낮았다. 그 이유는 아마도 낮은 조단백질에 베타 만난아제를 투여 받은 그룹이 우유 내 질소양이 더 많았기 때문이라고 추측해볼 수 있다.In the case of nitrogen compounds, lower milk urea nitrogen (MUN) was found in the group that consumed lower crude protein (LCP) or lower crude protein and beta met kinase (LCPE1) than the group that consumed high crude protein (HCP). In the past, it has been argued that protein in feed is one of the factors that determine MUN levels. In our experiment, when comparing MUN levels in the two groups ingesting low crude protein, no difference was found between the two groups. As can be seen in Table 3, the plasma urea nitrogen (plasma urea N) value of the group ingesting high crude protein (HCP) was higher than that of the group administered with low crude protein (LCP) and low crude protein and beta metase (LCPE1). This is consistent with the fact that high intake of nitrogen increases MUN levels. The group receiving low crude protein plus beta met kinase (LCPE1) had lower plasma urea nitrogen values ( P = 0.051) than the group receiving the low crude protein (LCP). The reason for this is probably because the group who received beta metase on low crude protein had more nitrogen in milk.
우유 내 체세포 수는 낮은 조단백질에 베타 만난아제(LCPE1)를 함께 투여 받은 그룹이 낮은 조단백질(LCP, P = 0.0038) 또는 높은 조단백질(HCP, P = 0.045) 을 투여 받은 그룹보다 현저히 낮았다. 또한, 주정박(Distillers grain) 함량을 높인 사료(LCPE2)와 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량을 높인 사료(LCPE3)에서도 체세포 수는, 낮은 편이었다.The number of somatic cells in milk was significantly lower in the group receiving low crude protein plus beta metase (LCPE1) than the group receiving low crude protein (LCP, P = 0.0038) or high crude protein (HCP, P = 0.045). In addition, the somatic cell count was also low in the feed with increased Distillers grain content (LCPE2) and the feed with increased steam-flaked corn content (LCPE3), a carbohydrate source.
실험예 2 : 총 소화 흡수율 및 사료전환효율(FCE)Experimental Example 2: Total digestive absorption and feed conversion efficiency (FCE)
아래 표 4에는 DM, OM, ADF, NDF, CP, 녹말 (starch) 및 분 (ash)에 대한 총 평균 소화 흡수율 값을 나타내었다. DM, OM 그리고 영양 흡수율에는 아무런 영향이 없었다. 이러한 결과는 과거에 알려진 베타 만난아제를 사용한 실험과 비슷한 결과이다. 이와 유사하게도, DMI 및 영양소 소화율에는 아무런 차이가 없었는데 이는 결과적으로 OM 흡수에 크게 차이가 없었기 때문인 것으로 보여진다(15.7 vs. 15.3 vs 16.0 kg/d in HCP, LCP 그리고 LCPE1 실험군). 하지만, 사료 내 함유된 여러 CP 레벨에 따라 CP의 흡수율에는 차이가 보였다(AACP = 2.72 vs. 2.39 kg/d HCP 소 그룹군과 LCPE 비교해 보았을 때, P = 0.035; 테이블 3). 하지만, HCP 그룹과 비교했을 때, LCP 그룹에서 AACP가 감소하는 경향이 있었으며 (2.72 vs. 2.46 kg/d,; P = 0.1), LCP와 LCPE1 그룹에는 아무런 차이가 없었다 (2.46 vs. 2.39, P = 0.89).Table 4 below shows the total average digestive absorption rate values for DM, OM, ADF, NDF, CP, starch, and ash. There was no effect on DM, OM and nutrient absorption rates. These results are similar to those of previously known beta-met kinase experiments. Similarly, there was no difference in DMI and nutrient digestibility, which is believed to be due to no significant difference in OM absorption as a result (15.7 vs. 15.3 vs 16.0 kg/d in HCP, LCP and LCPE1 experimental groups). However, there was a difference in the absorption rate of CP according to the various CP levels contained in the diet (AACP = 2.72 vs. 2.39 kg/d when comparing the HCP subgroup with LCPE, P = 0.035; Table 3). However, compared with the HCP group, there was a tendency for the AACP to decrease in the LCP group (2.72 vs. 2.46 kg/d,; P = 0.1), and there was no difference between the LCP and LCPE1 groups (2.46 vs. 2.39, P). = 0.89).
  실험군 Experimental group  
HCP HCP LCP LCP LCPE1LCPE1 LCPE2LCPE2 LCPE3LCPE3 SEMSEM
소화율 (%)Digestibility (%)
건물 (DM) Building (DM) 61.061.0 62.462.4 61.461.4 61.361.3 61.961.9 1.271.27
OM OM 63.363.3 63.463.4 64.564.5 64.164.1 63.963.9 1.311.31
ADF ADF 42.142.1 39.239.2 35.535.5 36.136.1 35.835.8 2.522.52
NDF NDF 43.743.7 41.241.2 42.442.4 42.142.1 41.841.8 1.911.91
ashes 32.932.9 33.433.4 34.334.3 34.534.5 34.934.9 3.23.2
조단백질 Crude protein 64.064.0 63.663.6 63.363.3 63.163.1 62.562.5 1.291.29
탄수화물 carbohydrate 96.196.1 96.996.9 96.796.7 96.596.5 98.198.1 0.30.3
AAOM, kg/d AAOM, kg/d 15.715.7 15.315.3 16.016.0 15.815.8 17.117.1 0.710.71
AACP, kg/d AACP, kg/d 2.722.72 2.462.46 2.392.39 2.402.40 2.212.21 0.110.11
효율 efficiency
MY:DMI MY:DMI 1.431.43 1.461.46 1.621.62 1.511.51 1.521.52 0.050.05
MY:AAOM MY:AAOM 2.612.61 2.472.47 2.772.77 2.622.62 2.532.53 0.0810.081
유단백질:CP intake Milk protein: CP intake 0.300.30 0.320.32 0.340.34 0.330.33 0.290.29 0.0140.014
유단백질:AACP Milk Protein: AACP 0.480.48 0.510.51 0.560.56 0.520.52 0.49 0.49 0.0310.031
* AAOM = apparently absorbed organic matter, AACP = apparently absorbed crude protein * AAOM = apparently absorbed organic matter, AACP = apparently absorbed crude protein
사료전환효율은 유량:건어물 비율로 계산하였다(표 4). 사료내 CP와 ACCP가 유단백으로 효과적으로 전환하기 위해서 계산된 값은 상기 표 4에 기재되어 있다. 추가적으로, 흡수된 OM이 유량으로 효과적으로 전환하는 값도 계산하였다. Feed conversion efficiency was calculated as the flow rate: dried fish ratio (Table 4). The values calculated to effectively convert CP and ACCP in feed to milk protein are shown in Table 4 above. Additionally, the value at which the absorbed OM effectively converts into flow rate was also calculated.
HCP사료를 섭취한 소 그룹보다 LCPE1 사료를 섭취한 그룹에서 사료전환효율(FCE)가 DMI kg당 190g이 증가하였다 (13.4% 개선, P = 0.003). LCP 사료를 섭취한 실험군과 비교해 보았을 때, LCPE1 그룹군의 사료전환효율(FCE)가 현저히 증가하였다 (P = 0.014) (DMI kg당 160g; 11.0% 개선). 그러므로 FCE의 증가의 원인 요소로는 감소된 CP 레벨 뿐만 아니라 베타 만난아제 첨가도 한 몫을 한다. 주정박(Distillers grain) 함량을 높인 사료(LCPE2)와 탄수화물 공급원인 증압후레이크(Steam-flaked corn) 함량을 높인 사료(LCPE3)의 경우에도, 사료전환효율(FCE)가 HCP사료를 섭취한 그룹 및 LCP 사료를 섭취한 그룹보다는 높았지만, LCPE1 그룹보다는 낮았다. The feed conversion efficiency (FCE) was increased by 190g per kg of DMI in the group fed LCPE1 than the small group fed HCP feed (13.4% improvement, P = 0.003). When compared with the experimental group that consumed LCP feed, the feed conversion efficiency (FCE) of the LCPE1 group was significantly increased ( P = 0.014) (160g per kg of DMI; 11.0% improvement). Therefore, as a causative factor for the increase in FCE, not only the decreased CP level but also the addition of beta met kinase plays a role. In the case of feed with increased Distillers grain content (LCPE2) and feed with increased steam-flaked corn content (LCPE3), which is a source of carbohydrates, feed conversion efficiency (FCE) was found in the group that consumed HCP feed and It was higher than the LCP diet group, but lower than the LCPE1 group.
흡수된 OM이 체내에서 효율적으로 사용되었는지에 대한 여부는 정확히 알 수 없었으나, LCPE1 실험군에서는 확실히 OM이 효과적으로 사용되었다 (P = 0.1). HCP 실험 군 보다 LCPE1 실험 군이 CP을 보다 더 효율적으로 유 단백으로 전환시켰다(유단백:CP 섭취 = 0.34 vs. 0.30). Whether or not absorbed OM was effectively used in the body was not known exactly, but OM was certainly used effectively in the LCPE1 experimental group ( P = 0.1). The LCPE1 group converted CP to milk protein more efficiently than the HCP group (milk protein: CP intake = 0.34 vs. 0.30).
불완전한 장내 단백질 소화로 인해 질소 값 감소 및 장내 핵산 합성 그리고 동물 유지에 있어서 한계가 있다. 사료로 질소를 양적으로 감소 시키기 위해서는 장내에서 분해 가능한 질소를 제공하거나 흡수된 아미노산이 우유 생산 합성에 효율적으로 전환될 수 있도록 해야 한다. 본 발명자들은 이 실험에서 우유 내 질소 효율을 높이기 위하여 효소를 첨가 하였으며, 이는 AACP을 유 단백으로 전환시키는데 중요한 역할을 하였다 (0.48 vs 0.56 HCP vs LCPE1, P = 0.017, 표 4). Due to incomplete digestion of intestinal proteins, there are limitations in reducing nitrogen levels and synthesizing intestinal nucleic acids and maintaining animals. In order to quantitatively reduce nitrogen in feed, it is necessary to provide nitrogen that can be degraded in the intestine or to allow the absorbed amino acids to be efficiently converted into the synthesis of milk production. In this experiment, the inventors added an enzyme to increase the nitrogen efficiency in milk, which played an important role in converting AACP into milk protein (0.48 vs 0.56 HCP vs LCPE1, P = 0.017, Table 4).
LCPE1 실험군이 LCP 실험군보다 AACP을 유단백으로 전환시키는 효율이 더 좋았다 (P = 0.1). LCP와 LCPE1 사료를 섭취한 소의 효율이 좋은 이유는 아마도 CP 감량으로 인해 적정량의 단백질만 제공함으로써 과다 질소를 배출하는데 필요한 에너지 소비를 줄일 수 있었던 것으로 보여진다. 그래서, HCP 실험군 보다 LCPE1과 LCP 실험군이 유생산을 위한 에너지를 보다 더 비축할 수 있었다.The LCPE1 experimental group had better efficiency of converting AACP to milk protein than the LCP experimental group ( P = 0.1). The reason why cows fed LCP and LCPE1 diets are so efficient is that CP loss can reduce the energy consumption required to release excess nitrogen by providing only the right amount of protein. Thus, the LCPE1 and LCP experimental groups were able to reserve more energy for milk production than the HCP experimental group.
실험예 3 : 질소 분배 및 인 배출Experimental Example 3: Nitrogen distribution and phosphorus emission
표 5에는 질소 섭취, 소변 및 대변으로 배출되는 질소, 우유로 배출되는 질소 그리고 거름으로 배출되는 인의 양이 기재되어 있다. Table 5 lists nitrogen intake, nitrogen excreted in urine and feces, nitrogen excreted in milk, and the amount of phosphorus excreted in manure.
Item Item 실험군 Experimental group  
HCP HCP LCP LCP LCPE1LCPE1 LCPE2LCPE2 LCPE3LCPE3 SEMSEM
N 섭취양 (g/d)N intake (g/d) 664664 609609 598598 601601 588588 23.623.6
분변으로 배출한 N (g/d)Fecal N (g/d) 239239 218218 216216 217217 211211 9.69.6
소변으로 N output (g/d)N output in urine (g/d) 229229 192192 181181 179179 176176 6.376.37
분변 N + 소변 N (g/d) Fecal N + urine N (g/d) 442442 388388 377377 376376 371371 11.611.6
우유단백 N + MUN (g/d)Milk protein N + MUN (g/d) 207207 199199 205205 204204 201201 8.18.1
보존된/남은 (retained) N (g/d)Preserved/retained N (g/d) 1515 22.322.3 1616 1818 1919 1717
거름 (Manure) P (g/d)Manure P (g/d) 8585 8282 8080 8181 7979 3.43.4
DMI 영향 없이, HCP 사료를 섭취한 실험군보다 LCP와 LCPE1 사료를 섭취한 실험군의 총 질소양이 감소하였다.Without the effect of DMI, the total amount of nitrogen in the experimental group fed LCP and LCPE1 was decreased compared to the experimental group fed the HCP feed.
유사하게도 CP 소화율에는 영향이 없었으며, CP 섭취 감소에 따라 대변으로 배출되는 질소의 양도 감소하였다. HCP 실험군 보다 CP 레벨을 낮춘 실험군에서 소변으로 배출되는 질소의 레벨이 감소하였다. 소변으로 배출 되는 질소의 양을 감소시키는 것이 중요한 이유가 소변으로 배출되는 질소가 대변으로 배출되는 질소보다 휘발성 질소로 전환되는 확률이 더 높기 때문이다. Similarly, there was no effect on CP digestibility, and the amount of nitrogen excreted through feces decreased with decreased CP intake. In the experimental group whose CP level was lower than that of the HCP group, the level of nitrogen excreted in the urine decreased. Reducing the amount of nitrogen excreted in the urine is important because the nitrogen excreted in the urine is more likely to be converted to volatile nitrogen than the nitrogen excreted in the feces.
평균 25% 거름으로 배출되는 질소, 3 에서 15% 소변으로 배출되는 질소나 4 에서 52% 오줌자리로 배설되는 질소는 토양 형태, 수분, 온도, 바람 속도 그리고 소변의 질소 농도 및 소변의 구성요소에 따라 암모니아 형태로 배출된다. 소변이 질소 배출에 있어서 주요 원인 요소로 작용하기 때문에 무엇보다 이산화질소 감량을 위해서는 질소의 배출 경로를 잘 조절하는 방법이 중요하다. 이산화질소는 (지구 온난화를 야기하는 온실가스를 배출) 이산화탄소보다 무려 265배 더 위험하다. On average, 25% nitrogen excreted in manure, 3 to 15% nitrogen excreted in urine, or 4 to 52% nitrogen excreted in the urine, depends on soil type, moisture, temperature, wind speed, and the concentration of nitrogen in urine and the composition of urine. Therefore, it is discharged in the form of ammonia. Since urine acts as a major factor in the excretion of nitrogen, it is important to control the excretion pathway of nitrogen in order to reduce nitrogen dioxide. Nitrogen dioxide (which emits greenhouse gases that causes global warming) is 265 times more dangerous than carbon dioxide.
HCP 보다 LCP와 LCPE1 실험군의 우유에 더 많은 질소가 더 많이 함유되어 있다. 하지만, 베타 만난아제 첨가가 거름으로 배출되는 질소의 총량에는 아무런 영향을 미치지 않았다 (LCP vs LCPE1 실험군; 표 5). The milk of the LCP and LCPE1 experimental groups contained more nitrogen than the HCP. However, the addition of beta met kinase did not have any effect on the total amount of nitrogen discharged as manure (LCP vs LCPE1 experimental group; Table 5).
가장 효과적으로 질소 배출양은 줄이면서 질소가 환경에 미치는 영향을 감소 시키는 위한 방법은 사료내 CP 함량을 감량하는 것이다. 사료로 섭취하는 질소의 양이 많을수록 소변과 대변으로 배출되는 총 질소의 양도 증가한다는 결과는 여러 논문을 통해서 이미 입증되었다. 필요이상의 수준으로 CP을 사료 내에 첨가하면 비효율적이다. 그 이유는 첫번째로 요소를 소변으로 배출하기 위한 요소 합성 에너지가 필요할 뿐만 아니라 필요이상의 질소가 사료가 거름으로 배출 되기 때문에 생산자 입장으로 보았을 때는 비싼 거름을 만드는 셈이다. 우리 실험에서 보여준 그대로 질소의 섭취를 줄이면 체외로 배설되는 질소양은 당연히 감소되며 이는 질소 사용 효율을 증대 시킬 수 있다. 소의 유생산이 증가될수록, 질소 사용 효율 증대와 유생산 대비 질소 배출양 감소가 동시에 일어난다. 하지만 사료 질소양을 소 체내 필요 적정 수준보다 줄이면 생산성에 악 영향을 끼칠 수 있다. 본 실험에서는 사료내 CP 레벨은 줄이면서 베타 만난아제 첨가 방식으로 유생산 레벨을 유지하였다.The most effective way to reduce nitrogen emissions while reducing the environmental impact of nitrogen is to reduce the CP content in the feed. It has already been demonstrated in several papers that the higher the amount of nitrogen consumed as feed, the higher the amount of total nitrogen excreted in urine and feces. It is inefficient if CP is added to feed at a higher level than necessary. The reason for this is that first, not only urea synthesis energy is required to discharge urea into urine, but also more nitrogen than necessary is discharged into the feed as manure, making manure expensive from the perspective of the producer. As shown in our experiment, if the intake of nitrogen is reduced, the amount of nitrogen excreted outside the body is naturally reduced, which can increase the nitrogen use efficiency. As cow's milk production increases, the efficiency of nitrogen use increases and the amount of nitrogen discharged relative to milk production decreases at the same time. However, reducing the amount of feed nitrogen below the appropriate level required in the bovine body can adversely affect productivity. In this experiment, while reducing the CP level in the feed, the milk production level was maintained by adding a beta metase.
결론적으로, 사료내 CP 레벨을 줄이고 베타 만난아제를 첨가하면 사료 생자 입장에서는 비용을 절감할 수 있다. 캘리포니아 2018년 사료 기준을 대입해서 비용을 계산해 보았을 때, 동일한 양의 우유 생산을 하기 위해서 필요한 돈은 다음과 같다: HCP=$9.41, LCP=$8.65 그리고 LCPE1=$8.38 (소 한 마리당 섭취하는 사료). 그러므로 사료내 CP 레벨을 줄이는 대신 베타 만난아제를 첨가한다면 수유를 하는 소에 한에서는 매일 소 한 마리당 $1.03 비용을 절약할 수 있다.In conclusion, by reducing the CP level in the feed and adding beta metase, the cost can be reduced from the perspective of feed producers. Using the California 2018 feed standard to calculate the cost, the money needed to produce the same amount of milk is: HCP = $9.41, LCP = $8.65 and LCPE1 = $8.38 (feed per cow). Therefore, if beta metase was added instead of reducing the CP level in the feed, it would save $1.03 per cow per day in lactating cows.
상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다.In the above, the present invention has been illustrated and described in relation to specific preferred embodiments, but the present invention may be variously modified and changed within the scope of not departing from the technical features or field of the present invention provided by the following claims. It is obvious to one of ordinary skill in the art that it can be.

Claims (12)

  1. 옥수수 사일리지(Corn silage), 증압후레이크(Steam-flaked corn), 및 납작보리쌀(Rolled barley)로 이루어진 군에서 선택되는 1종 이상의 탄수화물 공급원;Corn silage (Corn silage), steam-flaked corn (Steam-flaked corn), and one or more carbohydrate sources selected from the group consisting of flat barley rice (Rolled barley);
    대두박(Soybean meal)을 포함하며, 알팔파 건초(Alfalfa hay), 주정박(Distillers grain), 및 콩껍질(Soybean hulls)로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 단백질 공급원; A protein source including soybean meal, and further comprising one or more selected from the group consisting of Alfalfa hay, Distillers grain, and Soybean hulls;
    목화씨(Cotton seed)로 이루어진 지방 공급원; 및A local source of cotton seeds; And
    효소로서 베타 만난아제(β-mannanase);를 포함하여 이루어지고,Consists of including beta-mannanase (β-mannanase) as an enzyme,
    상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 4.0 내지 7.0 중량부 범위 내로 포함되는, 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물.The low-protein feed composition for enhancing feed conversion efficiency (FCE) of ruminants, wherein the soybean meal is contained within the range of 4.0 to 7.0 parts by weight based on 0.1 parts by weight of the beta met nanase.
  2. 제1항에 있어서, The method of claim 1,
    조단백질(CP : Crude Protein)은 14.5 내지 15.0 중량% 범위 내로 포함된 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.Crude protein (CP: Crude Protein) is characterized in that contained within the range of 14.5 to 15.0% by weight, low protein feed composition for improving feed conversion efficiency of ruminants.
  3. 제2항에 있어서, The method of claim 2,
    상기 베타 만난아제 0.1 중량부에 대하여 상기 대두박은 5.0 내지 5.5 중량부 범위 내로 포함된 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.The low-protein feed composition for improving feed conversion efficiency of ruminants, characterized in that the soybean meal is contained within the range of 5.0 to 5.5 parts by weight based on 0.1 parts by weight of the beta met nanase.
  4. 제3항에 있어서, The method of claim 3,
    상기 탄수화물 공급원은 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.The carbohydrate source is characterized in that consisting of corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and rolled barley 7.0 to 8.0 parts by weight, Low protein feed composition for enhancing the feed conversion efficiency of ruminants.
  5. 제4항에 있어서, The method of claim 4,
    상기 단백질 공급원은 대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.The protein source is 4.0 to 7.0 parts by weight of Soybean meal, 26.0 to 27.0 parts by weight of Alfalfa hay, 5.0 to 6.0 parts by weight of Distillers grain, and 11.0 to 12.0 parts by weight of Soybean hulls A low-protein feed composition for enhancing feed conversion efficiency of ruminants, characterized in that the addition is included.
  6. 제5항에 있어서, The method of claim 5,
    상기 지방 공급원은 목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.The fat source is a low-protein feed composition for improving feed conversion efficiency of ruminants, characterized in that consisting of 6.0 to 7.0 parts by weight of cotton seed (Cotton seed).
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 6,
    미네랄믹스(Mineral mix), 탄산칼슘(Calcium carbonate), 및 소금(Salt (NaCl))으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.A low protein feed for enhancing feed conversion efficiency of ruminants, characterized in that it further comprises at least one selected from the group consisting of mineral mix, calcium carbonate, and salt (NaCl) Composition.
  8. 제7항에 있어서, The method of claim 7,
    상기 미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하는 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.The mineral mix (Mineral mix) 1.0 to 2.0 parts by weight, calcium carbonate (Calcium carbonate) 0.1 to 0.2 parts by weight, and salt (NaCl), characterized in that it further comprises 0.1 to 0.2 parts by weight, ruminant feed Low protein feed composition for improving conversion efficiency.
  9. 제1항 내지 제6항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 6,
    효소로서 베타 만난아제(β-mannanase)를 포함하지 않는 사료 조성물과 비교하여, 사료전환효율은 증가시키고, 요소태질량(MUN)과 체세포수는 낮추는 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.Compared with a feed composition that does not contain beta-mannanase as an enzyme, feed conversion efficiency is increased, and urea mass (MUN) and somatic cell count are lowered, thereby enhancing feed conversion efficiency of ruminants. For low protein feed composition.
  10. 옥수수 사일리지(Corn silage) 25.0 내지 26.0 중량부, 증압후레이크(Steam-flaked corn) 11.0 내지 12.0 중량부, 및 납작보리쌀(Rolled barley) 7.0 내지 8.0 중량부가 포함되어 이루어진 탄수화물 공급원;Corn silage 25.0 to 26.0 parts by weight, steam-flaked corn 11.0 to 12.0 parts by weight, and a carbohydrate source consisting of 7.0 to 8.0 parts by weight of rolled barley;
    대두박(Soybean meal) 4.0 내지 7.0 중량부, 알팔파 건초(Alfalfa hay) 26.0 내지 27.0 중량부, 주정박(Distillers grain) 5.0 내지 6.0 중량부, 및 콩껍질(Soybean hulls) 11.0 내지 12.0 중량부가 포함되어 이루어진 단백질 공급원; Soybean meal 4.0 to 7.0 parts by weight, Alfalfa hay 26.0 to 27.0 parts by weight, Distillers grain 5.0 to 6.0 parts by weight, and Soybean hulls 11.0 to 12.0 parts by weight. Protein source;
    목화씨(Cotton seed) 6.0 내지 7.0 중량부가 포함되어 이루어진 지방 공급원; 및 Fat source consisting of 6.0 to 7.0 parts by weight of cotton seed; And
    효소로서 베타 만난아제(β-mannanase) 0.1 중량부;를 포함하여 이루어진, 반추동물의 사료전환효율(FCE : Feed Conversion Efficinecy) 증진용 저단백 사료 조성물.As an enzyme, beta met nanase (β-mannanase) 0.1 parts by weight; consisting of, including, feed conversion efficiency (FCE: Feed Conversion Efficinecy) of a ruminant low-protein feed composition for enhancing.
  11. 제10항에 있어서,The method of claim 10,
    미네랄믹스(Mineral mix) 1.0 내지 2.0 중량부, 탄산칼슘(Calcium carbonate) 0.1 내지 0.2 중량부, 및 소금(Salt (NaCl)) 0.1 내지 0.2 중량부를 더 포함하여 이루어진 것을 특징으로 하는, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.Mineral mix (Mineral mix) 1.0 to 2.0 parts by weight, calcium carbonate (Calcium carbonate) 0.1 to 0.2 parts by weight, and salt (NaCl) 0.1 to 0.2 parts by weight, characterized in that it further comprises a ruminant feed Low protein feed composition for improving conversion efficiency.
  12. 옥수수 사일리지(Corn silage) 25.65 중량부, 증압후레이크(Steam-flaked corn) 11.3 중량부, 및 납작보리쌀(Rolled barley) 7.21 중량부가 포함되어 이루어진 탄수화물 공급원;Corn silage (Corn silage) 25.65 parts by weight, steam-flaked flakes (Steam-flaked corn) 11.3 parts by weight, and a carbohydrate source consisting of 7.21 parts by weight of rolled barley;
    대두박(Soybean meal) 5.21 중량부, 알팔파 건초(Alfalfa hay) 26.2 중량부, 주정박(Distillers grain) 5.01 중량부, 및 콩껍질(Soybean hulls) 11.43 중량부가 포함되어 이루어진 단백질 공급원; A protein source comprising 5.21 parts by weight of Soybean meal, 26.2 parts by weight of Alfalfa hay, 5.01 parts by weight of Distillers grain, and 11.43 parts by weight of Soybean hulls;
    목화씨(Cotton seed) 6.55 중량부가 포함되어 이루어진 지방 공급원; Fat source consisting of 6.55 parts by weight of cotton seed;
    효소로서 베타 만난아제(β-mannanase) 0.1 중량부;0.1 parts by weight of beta-mannanase as an enzyme;
    미네랄믹스(Mineral mix) 1.09 중량부;1.09 parts by weight of mineral mix;
    탄산칼슘(Calcium carbonate) 0.16 중량부; 및0.16 parts by weight of calcium carbonate; And
    소금(Salt (NaCl)) 0.19 중량부를 포함하여 이루어진, 반추동물의 사료전환효율 증진용 저단백 사료 조성물.A low-protein feed composition for improving feed conversion efficiency of ruminants, comprising 0.19 parts by weight of salt (NaCl).
PCT/KR2020/002854 2019-03-19 2020-02-28 Low-protein feed composition for promoting feed conversion efficiency of ruminants WO2020189916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190031189A KR102082427B1 (en) 2019-03-19 2019-03-19 A low-protein feed composition for improved feed conversion efficinecy of ruminant
KR10-2019-0031189 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020189916A1 true WO2020189916A1 (en) 2020-09-24

Family

ID=69805553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002854 WO2020189916A1 (en) 2019-03-19 2020-02-28 Low-protein feed composition for promoting feed conversion efficiency of ruminants

Country Status (2)

Country Link
KR (1) KR102082427B1 (en)
WO (1) WO2020189916A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102482446B1 (en) 2020-09-09 2023-01-04 박명선 Feed composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120116974A (en) * 2010-01-13 2012-10-23 바스프 에스이 Novel mannanase variants
US20140134290A1 (en) * 2011-07-20 2014-05-15 Inco Digestive, Inc. Animal feed additives
KR20160061539A (en) * 2014-11-21 2016-06-01 주식회사 씨티씨바이오 Enzyme feed product for ruminant animals having beta mannanase
KR20160113590A (en) * 2014-01-27 2016-09-30 에따블리스멍 제이. 수플레 Use of an enzymatic composition in the feed of ruminants
KR20180133664A (en) * 2017-06-07 2018-12-17 김학규 A composition of Supplemental feed for ruminant including salicomia herbacea and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709894A (en) * 1995-06-07 1998-01-20 Biovance Nebraska Feed additive for ruminant animals and a method for feeding a ruminant
US8110214B2 (en) * 2003-12-23 2012-02-07 Land O'lakes Purina Feed Llc Method and composition for enhancing milk production and milk component concentrations
CN101730479A (en) * 2007-06-29 2010-06-09 凯敏工业公司 Enzyme product for ruminants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120116974A (en) * 2010-01-13 2012-10-23 바스프 에스이 Novel mannanase variants
US20140134290A1 (en) * 2011-07-20 2014-05-15 Inco Digestive, Inc. Animal feed additives
KR20160113590A (en) * 2014-01-27 2016-09-30 에따블리스멍 제이. 수플레 Use of an enzymatic composition in the feed of ruminants
KR20160061539A (en) * 2014-11-21 2016-06-01 주식회사 씨티씨바이오 Enzyme feed product for ruminant animals having beta mannanase
KR20180133664A (en) * 2017-06-07 2018-12-17 김학규 A composition of Supplemental feed for ruminant including salicomia herbacea and manufacturing method thereof

Also Published As

Publication number Publication date
KR102082427B1 (en) 2020-03-02

Similar Documents

Publication Publication Date Title
Karimizadeh et al. Effects of physical form of diet on nutrient digestibility, rumen fermentation, rumination, growth performance and protozoa population of finishing lambs
Poulsen et al. Effects of dietary inclusion of a zeolite (clinoptilolite) on performance and protein metabolism of young growing pigs
XIA et al. Effects of dietary forage to concentrate ratio and wildrye length on nutrient intake, digestibility, plasma metabolites, ruminal fermentation and fecal microflora of male Chinese Holstein calves
WO2011115306A1 (en) Feed-use-efficiency improver for ruminant animals
CN102972638A (en) Animal feed additive and preparation method thereof
Van Horn et al. Complete rations for dairy cattle. VIII. Effect of percent and source of protein on milk yield and ration digestibility
Hale et al. Effecs of a nonviable Lactobacillus species fermentation product on performance of pigs
CN108056260A (en) Feed for beef cattle and preparation method thereof and the application in the special cultivation of Muslim beef
CN107373132A (en) Enzyme preparation live pig mixed feed
Fessenden et al. Comparison of milk production, intake, and total-tract nutrient digestion in lactating dairy cattle fed diets containing either wheat middlings and urea, commercial fermentation by-product, or rumen-protected soybean meal
WO2020189916A1 (en) Low-protein feed composition for promoting feed conversion efficiency of ruminants
Khezri et al. Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and actation performance of Holstein dairy cows
Jones et al. Utilization of Starea, urea, or soybean meal in complete rations for lactating dairy cows
Santoso et al. Influence of β 1-4 galacto-oligosaccharides supplementation on nitrogen utilization, rumen fermentation, and microbial nitrogen supply in dairy cows fed silage
Bernard Milk yield and composition of lactating dairy cows fed diets supplemented with a probiotic extract
Nair et al. Growth and nutrient utilization in buffalo calves fed ammoniated wheat straw supplemented with sodium sulphate
Rath et al. Performance of growing lambs fed urea ammoniated and urea supplemented wheat straw based diets
Belenguer et al. Effect of the source and level of cereal in diet on the rabbit caecal environment and microbial population
US20110076356A1 (en) Novel Fibro-Biotic Bacterium Isolate
Nawaz et al. Effect of feeding xylanase and cellulase treated oat silage on nutrient digestibility, growth performance and blood metabolites of Nili Ravi buffalo calves.
De et al. Effect of cold process monensin enriched urea molasses mineral blocks on performance of crossbred calves fed a wheat straw based diet
Smith et al. Replacing maize grain with triticale grain in lactation diets for dairy cattle and fattening diets for steers
Abecia et al. Effect of fumaric acid on diet digestibility and the caecal environment of growing rabbits
Chung et al. Effects of methionine and lysine on fermentation in vitro and in vivo, nutrient flow to the intestine, and milk production
Nasir A et al. Influence of substitution of concentrate with molasses and corn steep liquor on nutrient intake, weight gain and feed conversion efficiency of buffalo calves.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772653

Country of ref document: EP

Kind code of ref document: A1