WO2023013717A1 - 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板 - Google Patents

硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2023013717A1
WO2023013717A1 PCT/JP2022/029884 JP2022029884W WO2023013717A1 WO 2023013717 A1 WO2023013717 A1 WO 2023013717A1 JP 2022029884 W JP2022029884 W JP 2022029884W WO 2023013717 A1 WO2023013717 A1 WO 2023013717A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy
curable composition
compound
mass
Prior art date
Application number
PCT/JP2022/029884
Other languages
English (en)
French (fr)
Inventor
翔平 山口
尚義 金子
克哉 富澤
博史 高橋
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020237042953A priority Critical patent/KR20230174283A/ko
Priority to JP2022572722A priority patent/JP7449498B2/ja
Priority to CN202280054399.4A priority patent/CN117836369A/zh
Publication of WO2023013717A1 publication Critical patent/WO2023013717A1/ja
Priority to JP2023184356A priority patent/JP2024024631A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a curable composition, a prepreg, a metal foil-clad laminate, and a printed wiring board.
  • Patent Document 1 discloses that a thermosetting resin composition containing a specific maleimide compound, a silicone compound having an epoxy group in the molecular structure, and a compound having a phenolic hydroxyl group is excellent in heat resistance and low thermal expansion. , metal foil-clad laminates and multilayer printed wiring boards.
  • Patent Document 2 polymaleimide, a diglycidylpolysiloxane represented by the following formula (I), and an addition polymer of a diallyl bisphenol represented by the following formula (II), and the following formula (III)
  • a manufacturing method is disclosed in which a resin for encapsulating a semiconductor is obtained by reacting an allylated phenol resin represented by the formula in a predetermined ratio and under predetermined conditions.
  • the resin for semiconductor encapsulation obtained by the above production method has good compatibility with polymaleimide and the addition polymer described above, and furthermore, the composition using the resin for semiconductor encapsulation has good compatibility.
  • component b in the following formula (III) is an important component that reacts with maleimide groups in a resin formation reaction with polymaleimide and improves the compatibility between polymaleimide and polysiloxane. ing.
  • R 1 represents an alkylene group or a phenylene group
  • each R 2 independently represents an alkyl group or a phenyl group
  • n represents an integer of 1 to 100.
  • R4 represents an ether bond, a methylene group, a propylidene group, or a direct bond (single bond).
  • a resin composition containing a silicone compound having an epoxy group in its molecular structure and a thermosetting resin such as a maleimide compound is excellent in low thermal expansion.
  • the resin composition has a problem in moldability due to insufficient compatibility between the silicone compound and the thermosetting resin.
  • the present inventors have found that the above resin composition does not have sufficient chemical resistance and metal foil peel strength (for example, copper foil peel strength) when forming a metal foil clad laminate.
  • Patent Document 2 the resin composition described in Patent Document 2 is used for semiconductor encapsulation, and the low thermal expansion, copper foil peel strength, and chemical resistance required as characteristics of printed wiring boards have not been studied. do not have.
  • the present invention has been made in view of the above problems, and provides a curable composition, a prepreg, a metal foil clad laminate and a printed wiring board having excellent low thermal expansion, copper foil peel strength and chemical resistance. intended to
  • a curable composition containing an alkenylphenol, an epoxy-modified silicone, an epoxy compound other than the epoxy-modified silicone, and a cyclic carbodiimide compound, or a structural unit derived from an alkenylphenol and an epoxy-modified silicone and a polymer containing a structural unit derived from an epoxy compound other than the epoxy-modified silicone, and a curable composition containing a cyclic carbodiimide compound. have completed the present invention.
  • the present invention is as follows. [1] An alkenylphenol (A), an epoxy-modified silicone (B), an epoxy compound (C) other than the epoxy-modified silicone (B), and a cyclic carbodiimide compound (D), Curable composition. [2]
  • the cyclic carbodiimide compound (D) has a cyclic structure represented by the following formula (D1), The number of atoms forming the ring structure is 8 to 50, The curable composition according to [1]. (Wherein, L is a divalent to tetravalent linking group that is an aliphatic group, an alicyclic group, an aromatic group, or a group in which these are combined, and the linking group is a hetero atom and/or a substituent.
  • the content of the cyclic carbodiimide compound (D) is 2.0 to 15 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the alkenylphenol (A) has an average number of phenol groups per molecule of 1 or more and less than 3
  • the epoxy-modified silicone (B) has an average number of epoxy groups of 1 or more and less than 3 per molecule
  • the epoxy compound (C ) has an average number of epoxy groups per molecule of 1 or more and less than 3
  • the alkenylphenol (A) contains diallyl bisphenol and/or dipropenyl bisphenol, [1] The curable composition according to any one of [4].
  • the epoxy-modified silicone (B) contains an epoxy-modified silicone having an epoxy equivalent of 140 to 250 g/mol. [1] The curable composition according to any one of [5].
  • the epoxy-modified silicone (B) contains an epoxy-modified silicone represented by the following formula (B1). [1] The curable composition according to any one of [6].
  • each R 1 independently represents a single bond, an alkylene group, an arylene group or an aralkylene group; each R 2 independently represents an alkyl group having 1 to 10 carbon atoms or a phenyl group; n is , represents an integer from 0 to 100.
  • each R a independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom.
  • the polymer (E) has a weight average molecular weight of 3.0 ⁇ 10 3 to 5.0 ⁇ 10 4 , The curable composition according to [9].
  • the content of the polymer (E) is 5 to 50% by mass with respect to 100% by mass of the resin solid content.
  • the cyclic carbodiimide compound (D) has a cyclic structure represented by the following formula (D1), The number of atoms forming the ring structure is 8 to 50, [9] The curable composition according to any one of [11]. (Wherein, L is a divalent to tetravalent linking group that is an aliphatic group, an alicyclic group, an aromatic group, or a group in which these are combined, and the linking group is a hetero atom and/or a substituent. may contain.) [13] The content of the cyclic carbodiimide compound (D) is 2.0 to 15 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the alkenylphenol (A) has an average number of phenol groups per molecule of 1 or more and less than 3
  • the epoxy-modified silicone (B) has an average number of epoxy groups of 1 or more and less than 3 per molecule
  • the epoxy compound (C ) has an average number of epoxy groups per molecule of 1 or more and less than 3
  • the alkenylphenol (A) contains diallyl bisphenol and/or dipropenyl bisphenol, [9] The curable composition according to any one of [14].
  • the epoxy-modified silicone (B) contains an epoxy-modified silicone having an epoxy equivalent of 140 to 250 g/mol.
  • the epoxy-modified silicone (B) contains an epoxy-modified silicone represented by the following formula (B1).
  • the curable composition according to any one of [16]. (wherein each R 1 independently represents a single bond, an alkylene group, an arylene group or an aralkylene group; each R 2 independently represents an alkyl group having 1 to 10 carbon atoms or a phenyl group; n is , represents an integer from 0 to 100.)
  • the epoxy compound (C) contains a compound represented by the following formula (b2).
  • each R a independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom.
  • each R a independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom.
  • the inorganic filler contains one or more selected from the group consisting of silicas, boehmite and alumina, [1] The curable composition according to any one of [20].
  • a laminate comprising the prepreg according to [23]; a metal foil disposed on one or both sides of the laminate, Metal foil clad laminate.
  • curable compositions, prepregs, metal foil-clad laminates, and printed wiring boards that have excellent low thermal expansion, copper foil peel strength, and chemical resistance.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as “this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. It is possible.
  • resin solid content refers to the components excluding the solvent and filler in the curable composition of the present embodiment, unless otherwise specified. It means that the total amount of components excluding the solvent and filler in the curable composition is 100 parts by mass. Moreover, 100 mass % of resin solid content means that the sum total of the component except a solvent and a filler in a curable composition is 100 mass %.
  • “Compatibility” as used in this specification means the following.
  • “excellent compatibility” means alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C), and cyclic carbodiimide compound (D ) means that liquid phase separation does not occur in a mixture (for example, varnish) containing.
  • excellent compatibility means that in a mixture (for example, varnish) containing the polymer (E) and the cyclic carbodiimide compound (D), liquid phase separation does not occur.
  • the curable composition of the present embodiment suppresses liquid phase separation in the process of molding, and can obtain a molded article with excellent appearance, as well as the physical properties of the obtained molded article. It also tends to be excellent in directionality.
  • the "curable composition of the present embodiment” and the “curable composition of the second embodiment” shall include both “things”.
  • the curable composition of the first embodiment comprises an alkenylphenol (A), an epoxy-modified silicone (B), and an epoxy compound (C) other than the epoxy-modified silicone (B) (hereinafter simply referred to as "epoxy compound (C) ”) and a cyclic carbodiimide compound (D).
  • the curable composition of the first embodiment containing these components has excellent low thermal expansion, copper foil peel strength and chemical resistance. Factors that improve each characteristic are considered as follows, but the factors are not limited to these.
  • each heat such as alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C), etc. It has low reactivity with curable resins, thereby suppressing deterioration of the fluidity of the curable composition.
  • the cyclic carbodiimide compound (D) is melted, and the thermosetting resin such as alkenylphenol (A), epoxy-modified silicone (B), and epoxy compound (C) and the cyclic carbodiimide compound ( By reacting with D), a structure having a higher cross-linking density is formed, so that low thermal expansion, copper foil peel strength and chemical resistance are improved.
  • the thermosetting resin such as alkenylphenol (A), epoxy-modified silicone (B), and epoxy compound (C) and the cyclic carbodiimide compound ( By reacting with D), a structure having a higher cross-linking density is formed, so that low thermal expansion, copper foil peel strength and chemical resistance are improved.
  • Alkenylphenol (A) is not particularly limited as long as it is a compound having a structure in which one or more alkenyl groups are directly bonded to a phenolic aromatic ring. By containing the alkenylphenol (A), the curable composition of the present embodiment can exhibit excellent compatibility, thereby improving the balance between heat resistance and low thermal expansion.
  • the alkenyl group is not particularly limited, but examples thereof include alkenyl groups having 2 to 30 carbon atoms such as vinyl group, allyl group, propenyl group, butenyl group and hexenyl group. Among them, the alkenyl group is preferably an allyl group and/or a propenyl group, more preferably an allyl group, from the viewpoint of more effectively and reliably exhibiting the effects of the present invention.
  • the number of alkenyl groups directly bonded to one phenolic aromatic ring is not particularly limited, and is, for example, 1-4.
  • the number of alkenyl groups directly bonded to one phenolic aromatic ring is preferably 1 to 2, more preferably 1, from the viewpoint of more effectively and reliably exhibiting the effects of the present invention.
  • the bonding position of the alkenyl group to the phenolic aromatic ring is not particularly limited, but the ortho positions (2,6 positions) are preferable.
  • a phenolic aromatic ring is one in which one or more hydroxyl groups are directly bonded to an aromatic ring, and includes phenol rings and naphthol rings.
  • the number of hydroxyl groups directly bonded to one phenolic aromatic ring is not particularly limited, and is, for example, 1 to 2, preferably 1.
  • the phenolic aromatic ring may have substituents other than alkenyl groups.
  • substituents include linear alkyl groups having 1 to 10 carbon atoms, branched alkyl groups having 3 to 10 carbon atoms, cyclic alkyl groups having 3 to 10 carbon atoms, linear alkyl groups having 1 to 10 carbon atoms, A chain alkoxy group, a branched alkoxy group having 3 to 10 carbon atoms, a cyclic alkoxy group having 3 to 10 carbon atoms, and a halogen atom.
  • the number of such substituents directly bonded to one phenolic aromatic ring is not particularly limited, and is, for example, 1-2.
  • the bonding position of the substituent to the phenolic aromatic ring is not particularly limited.
  • Alkenylphenol (A) may have one or more structures in which one or more alkenyl groups are directly bonded to a phenolic aromatic ring. From the viewpoint of more effectively and reliably exhibiting the effects of the present invention, alkenylphenol (A) preferably has one or two structures in which one or more alkenyl groups are directly bonded to a phenolic aromatic ring. It is preferable to have
  • Alkenylphenol (A) may be, for example, a compound represented by the following formula (A1) or the following formula (A2).
  • Rxa each independently represents an alkenyl group having 2 to 8 carbon atoms
  • Rxb each independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom
  • Rxc each independently represents represents an aromatic ring having 4 to 12 carbon atoms
  • Rxc may form a condensed structure with a benzene ring
  • Rxc may or may not be present
  • A is an alkylene group having 1 to 6 carbon atoms, an aralkylene group having 7 to 16 carbon atoms, an arylene group having 6 to 10 carbon atoms, a fluorenylidene group, a sulfonyl group, an oxygen atom, a sulfur atom or a direct bond (single bond); If it does not exist, one benzene ring may have two or more Rxa and/or Rxb groups
  • alkenyl groups having 2 to 8 carbon atoms represented by Rxa and Rxd are not particularly limited, and examples thereof include vinyl group, allyl group, propenyl group, butenyl group, and hexenyl group. etc.
  • the alkyl group having 1 to 10 carbon atoms represented by Rxb and Rxe is not particularly limited, and examples thereof include methyl group, ethyl group, propyl group, butyl group and pentyl group. , straight-chain alkyl groups such as hexyl group, branched alkyl groups such as isopropyl group, isobutyl group and tert-butyl group.
  • the alkylene group having 1 to 6 carbon atoms represented by A is not particularly limited, and examples thereof include methylene group, ethylene group, trimethylene group and propylene group.
  • the aralkylene group having 7 to 16 carbon atoms represented by A is not particularly limited, but is, for example, represented by the formulas: -CH 2 -Ar-CH 2 -, -CH 2 -CH 2 -Ar-CH 2 -CH 2 - , or a group represented by the formula: —CH 2 —Ar—CH 2 —CH 2 — (wherein Ar represents a phenylene group, a naphthylene group, or a biphenylene group).
  • the arylene group having 6 to 10 carbon atoms is not particularly limited and includes, for example, a phenylene ring.
  • Rxf is preferably a benzene ring (compound containing a dihydroxynaphthalene skeleton) from the viewpoint of more effectively and reliably exhibiting the effects of the present invention.
  • alkenylphenol (A) is preferably alkenylbisphenol in which one alkenyl group is bonded to each of two phenolic aromatic rings of a bisphenol.
  • alkenyl bisphenol is diallyl bisphenol in which two phenolic aromatic rings of the bisphenol are respectively bound to one allyl group, and/or two phenolic aromatic rings of the bisphenol are respectively bound to one propenyl group. preferably dipropenyl bisphenol.
  • the diallyl bisphenol is not particularly limited, but for example, o,o'-diallyl bisphenol A ("DABPA", a product of Daiwa Kasei Kogyo Co., Ltd.), o, o'-diallyl bisphenol F, o, o'-diallyl bisphenol S , o,o'-diallylbisphenol fluorene.
  • the dipropenyl bisphenol is not particularly limited, and examples thereof include o,o'-dipropenyl bisphenol A (Gunei Chemical Industry Co., Ltd. "PBA01"), o,o'-dipropenyl bisphenol F, o,o'- Dipropenyl bisphenol S, o,o'-dipropenyl bisphenol fluorene.
  • the average number of phenol groups per molecule of alkenylphenol (A) is preferably 1 or more and less than 3, and 1.5 or more and 2.5 or less, from the viewpoint of more effectively and reliably exhibiting the effects of the present invention. is more preferable.
  • the average number of phenol groups is calculated by the following formula.
  • A represents the number of phenol groups in alkenylphenol having i phenol groups in the molecule
  • Xi represents the ratio of alkenylphenol having i phenol groups in the molecule to all alkenylphenols
  • X 1 + X 2 + . . . X n 1.
  • Epoxy-modified silicone (B) is not particularly limited as long as it is a silicone compound or resin modified with an epoxy group-containing group. By containing the epoxy-modified silicone (B), the curable composition of the present embodiment is excellent in low thermal expansion and chemical resistance.
  • the silicone compound or resin is not particularly limited as long as it is a compound having a polysiloxane skeleton in which siloxane bonds are repeatedly formed.
  • the polysiloxane skeleton may be a linear skeleton, a cyclic skeleton, or a network skeleton. Among these, a linear skeleton is preferred from the viewpoint of more effectively and reliably exhibiting the effects of the present invention.
  • the epoxy group-containing group is not particularly limited, but includes, for example, a group represented by the following formula (a1).
  • R 0 represents an alkylene group (e.g., a methylene group, an ethylene group, an alkylene group having 1 to 5 carbon atoms such as a propylene group)
  • X is a monovalent represented by the following formula (a2) group or a monovalent group represented by the following formula (a3).)
  • the epoxy-modified silicone (B) preferably contains an epoxy-modified silicone having an epoxy equivalent of 140-250 g/mol. Since the epoxy-modified silicone (B) contains an epoxy-modified silicone having an epoxy equivalent within the above range, it has even better compatibility, so that low thermal expansion and chemical resistance tend to be further improved in a well-balanced manner. It is in. From the same viewpoint, the epoxy equivalent is more preferably 145 to 245 g/mol, further preferably 150 to 240 g/mol.
  • the epoxy-modified silicone (B) preferably contains two or more types of epoxy-modified silicones, from the viewpoint of having better compatibility with the thermosetting resin and further improving low thermal expansion and chemical resistance in a well-balanced manner.
  • the two or more epoxy-modified silicones preferably have different epoxy equivalents, and an epoxy-modified silicone having an epoxy equivalent of 50 to 350 g/mol (hereinafter also referred to as "low equivalent epoxy-modified silicone (B1')").
  • low equivalent epoxy-modified silicone (B1') an epoxy-modified silicone having an epoxy equivalent of 400 to 4000 g/mol
  • high equivalent epoxy-modified silicone (B2′) an epoxy-modified silicone having an epoxy equivalent of 450 to 3000 g/mol
  • high-equivalent epoxy-modified silicone (B2'') more preferably.
  • the average epoxy equivalent of the epoxy-modified silicone (B) is preferably 140 to 3000 g/mol, more preferably 250 to 2000 g/mol. is more preferred, and 300 to 1000 g/mol is even more preferred.
  • the epoxy-modified silicone (B) may contain an epoxy-modified silicone represented by the following formula (B1) from the viewpoint of having better compatibility and further improving low thermal expansion and chemical resistance in a well-balanced manner. preferable.
  • each R 1 independently represents a single bond, an alkylene group, an arylene group or an aralkylene group; each R 2 independently represents an alkyl group having 1 to 10 carbon atoms or a phenyl group; n is , represents an integer from 0 to 100.
  • the alkylene group represented by R 1 may be linear, branched or cyclic.
  • the number of carbon atoms in the alkylene group is preferably 1-12, more preferably 1-4.
  • Alkylene groups include, for example, a methylene group, an ethylene group, or a propylene group. Among these, R 1 is preferably a propylene group.
  • the arylene group represented by R 1 may have a substituent.
  • the number of carbon atoms in the arylene group is preferably 6-40, more preferably 6-20.
  • Arylene groups include, for example, phenylene groups, cyclohexylphenylene groups, hydroxyphenylene groups, cyanophenylene groups, nitrophenylene groups, naphthylene groups, biphenylene groups, anthrylene groups, pyrenylene groups, and fluorenylene groups. These groups may contain an ether bond, a ketone bond, or an ester bond.
  • the aralkylene group represented by R 1 preferably has 7 to 30 carbon atoms, more preferably 7 to 13 carbon atoms.
  • the aralkylene group is not particularly limited, but includes, for example, groups represented by the following formula (XI). (In formula (XI), * represents a bond.)
  • the group represented by R 1 may further have a substituent.
  • substituents include a linear alkyl group having 1 to 10 carbon atoms, branched alkyl groups, cyclic alkyl groups having 3 to 10 carbon atoms, linear alkoxy groups having 1 to 10 carbon atoms, branched alkoxy groups having 3 to 10 carbon atoms, and cyclic alkoxy groups having 3 to 10 carbon atoms. be done.
  • R 1 is particularly preferably a propylene group.
  • each R 2 independently represents an alkyl group having 1 to 10 carbon atoms or a phenyl group.
  • the above alkyl group and phenyl group may have a substituent.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic.
  • Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, and cyclohexyl groups.
  • R 2 is preferably a methyl group or a phenyl group.
  • n represents an integer of 0 or more, for example, 1-100. n is preferably 50 or less, more preferably 30 or less, and still more preferably 20 or less from the viewpoint of having better compatibility and being able to further improve low thermal expansion and chemical resistance in a well-balanced manner. .
  • the epoxy-modified silicone (B) has better compatibility with the thermosetting resin, and from the viewpoint of further improving low thermal expansion and chemical resistance in a well-balanced manner, two types of epoxy-modified silicone represented by the formula (B1) are used. It is preferable to contain at least In this case, it is preferable that the two or more types of epoxy-modified silicones to be contained have different n. It is more preferable to contain a certain epoxy-modified silicone.
  • the content of the epoxy-modified silicone (B) is from 5 to 5 with respect to the total 100% by mass of the epoxy-modified silicone (B) and the epoxy compound (C), from the viewpoint of being able to exhibit even better low thermal expansion and chemical resistance. It is preferably 95% by mass, more preferably 10 to 90% by mass, even more preferably 40 to 85% by mass, even more preferably 50 to 80% by mass.
  • epoxy-modified silicone (B) As the epoxy-modified silicone (B), a commercially available product may be used, or a product manufactured by a known method may be used. Examples of commercially available products include “X-22-163" and “KF-105" manufactured by Shin-Etsu Chemical Co., Ltd.
  • Epoxy compound (C) is an epoxy compound other than the epoxy-modified silicone (B), more specifically an epoxy compound that does not have a polysiloxane skeleton.
  • the curable composition of the present embodiment can exhibit better compatibility, heat resistance, chemical resistance, copper foil peel strength, and insulation reliability.
  • the epoxy compound (C) is not particularly limited as long as it is an epoxy compound other than the epoxy-modified silicone (B).
  • the epoxy compound (C) in the curable composition of the present embodiment is typically a bifunctional epoxy compound having two epoxy groups in one molecule or a polyfunctional epoxy compound having three or more epoxy groups in one molecule. Epoxy compounds can be used.
  • the epoxy compound (C) may contain a bifunctional epoxy compound and/or a polyfunctional epoxy compound from the viewpoint of being able to exhibit even better compatibility, heat resistance, chemical resistance, copper foil peel strength and insulation reliability. preferable.
  • the epoxy compound (C) in the curable composition of the present embodiment is not particularly limited, but a compound represented by the following formula (3a) can be used.
  • Ar 3 each independently represents a benzene ring or naphthalene ring
  • Ar 4 represents a benzene ring, naphthalene ring or biphenyl ring
  • R 3a each independently represents a hydrogen atom.
  • the benzene ring or naphthalene ring in Ar 3 may further have one or more substituents, and the substituent may be a glycidyloxy group (not shown), or other substituents such as It may be an alkyl group having 1 to 5 carbon atoms, a phenyl group, etc.
  • the benzene ring, naphthalene ring or biphenyl ring in Ar 4 may further have one or more substituents, which may be a glycidyloxy group, other substituents such as carbon number It may be an alkyl group of 1 to 5, a phenyl group, or the like.
  • examples of bifunctional epoxy compounds include compounds represented by the following formula (b1).
  • each Ar 3 independently represents a benzene ring or naphthalene ring
  • each Ar 4 represents a benzene ring, naphthalene ring or biphenyl ring
  • each R 3a independently represents a hydrogen atom or represents a methyl group
  • the benzene ring or naphthalene ring in Ar 3 may further have one or more substituents, and the substituents are, for example, a glycidyloxy group such as an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • the benzene ring, naphthalene ring or biphenyl ring in Ar 4 may further have one or more substituents, and the substituents are, for example, a glycidyloxy group such as an alkyl group having 1 to 5 carbon atoms or a phenyl group. It may be a substituent other than )
  • the compound represented by formula (3a) is preferably a phenolic novolac type epoxy resin in which Ar 4 in formula (3a) is at least substituted with a glycidyloxy group.
  • the phenolic novolak-type epoxy resin is not particularly limited. Epoxy resins may be mentioned.
  • each Ar 31 independently represents a benzene ring or a naphthalene ring
  • each Ar 41 independently represents a benzene ring, a naphthalene ring or a biphenyl ring
  • each R 31a independently represents represents represents a hydrogen atom or a methyl group
  • p is an integer of 0 to 2, preferably 0 or 1
  • kz represents an integer of 1 to 50
  • each ring is a substituent other than a glycidyloxy group (for example , an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a phenyl group)
  • at least one of Ar 31 and Ar 41 represents a naphthalene ring.
  • Compounds having a structure represented by formula (3-1) include compounds having a structure represented by formula (3-2). (Wherein, R represents a methyl group, and kz is synonymous with kz in the above formula (3-1).)
  • the naphthalene cresol novolak type epoxy resin is not particularly limited, but for example, a cresol/naphthol novolak type epoxy resin represented by the following formula (NE) is preferable.
  • the compound represented by the following formula (NE) is a random copolymer of a cresol novolak epoxy structural unit and a naphthol novolak epoxy structural unit, and both cresol epoxy and naphthol epoxy can be terminals.
  • n and n in the formula (NE) each represent an integer of 1 or more.
  • naphthalene cresol novolac type epoxy resin a commercially available product or a product manufactured by a known method may be used.
  • commercially available products include "NC-7000", “NC-7300” and “NC-7300L” manufactured by Nippon Kayaku Co., Ltd., and "HP-9540” and “HP-9500” manufactured by DIC Corporation. and "HP-9540" is particularly preferred.
  • the compound represented by formula (3a) may be a compound (hereinafter also referred to as "aralkyl epoxy resin") that does not correspond to the phenolic novolac epoxy resins described above.
  • Aralkyl-type epoxy resins include compounds in which Ar 3 is a naphthalene ring and Ar 4 is a benzene ring in the formula (3a) (also referred to as a "naphthol aralkyl- type epoxy resin”); It is preferably a compound in which it is a benzene ring and Ar 4 is a biphenyl ring (also referred to as a "biphenylaralkyl-type epoxy resin”), and more preferably a biphenylaralkyl-type epoxy resin.
  • naphthol aralkyl type epoxy resin a commercially available product or a product manufactured by a known method may be used.
  • Examples of commercially available products include “HP-5000” and “HP-9900” manufactured by DIC Corporation, and “ESN-375” and “ESN-475" manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • the biphenyl aralkyl type epoxy resin is preferably a compound represented by the following formula (3b). (Wherein, ka represents an integer of 1 or more, preferably 1 to 20, more preferably 1 to 6.)
  • bifunctional epoxy compounds include, for example, compounds in which ka is 1 in formula (3b).
  • biphenyl aralkyl type epoxy resin a commercially available product or a product manufactured by a known method may be used.
  • commercially available products include “NC-3000”, “NC-3000L”, and “NC-3000FH” manufactured by Nippon Kayaku Co., Ltd.
  • the epoxy compound (C) in the curable composition of the present embodiment it is preferable to use a naphthalene-type epoxy resin (excluding those corresponding to the compounds represented by formula (3a)).
  • the naphthalene-type epoxy resin is preferably a naphthylene ether-type epoxy resin from the viewpoint of further improving heat resistance, chemical resistance, copper foil peel strength, and insulation reliability.
  • the naphthylene ether type epoxy resin is a bifunctional epoxy compound represented by the following formula (3-3) or the following formula (3 -4) is preferably a polyfunctional epoxy compound or a mixture thereof.
  • each R 13 is independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms (e.g., methyl group or ethyl group), or an alkenyl group having 2 to 3 carbon atoms (e.g., vinyl group, allyl group or propenyl group).
  • each R 14 is independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms (e.g., methyl group or ethyl group), or an alkenyl group having 2 to 3 carbon atoms (e.g., vinyl group, allyl group or propenyl group).)
  • a commercially available product or a product manufactured by a known method may be used as the naphthylene ether type epoxy resin.
  • Commercially available naphthylene ether type epoxy resins include, for example, DIC Corporation products "HP-6000", “EXA-7300”, “EXA-7310", “EXA-7311”, “EXA-7311L”, “ EXA7311-G3", “EXA7311-G4", “EXA-7311G4S”, “EXA-7311G5", etc., and HP-6000 is particularly preferred.
  • each R 3b is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms (e.g., methyl group or ethyl group), an aralkyl group, a benzyl group, a naphthyl group, at least one glycidyl represents a naphthyl group containing an oxy group or a naphthylmethyl group containing at least one glycidyloxy group, and n represents an integer of 0 or more (eg, 0 to 2).)
  • each Ra independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl and cyclohexyl groups.
  • the biphenyl-type epoxy resin may be in the form of a mixture of compounds (b2) having different numbers of Ra as alkyl groups. Specifically, it is preferably a mixture of biphenyl-type epoxy resins having different numbers of Ra as alkyl groups. is more preferably a mixture of compounds (b2) wherein is 4.
  • a dicyclopentadiene type epoxy resin (excluding those corresponding to the epoxy compound (C) described above) can be used.
  • the dicyclopentadiene-type epoxy resin is not particularly limited, but includes, for example, compounds represented by the following formula (3-5). (In the formula, each R 3c independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and k2 represents an integer of 0 to 10.)
  • each R 3c independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms (eg, methyl group or ethyl group).)
  • dicyclopentadiene type epoxy resin a commercially available product or a product manufactured by a known method may be used.
  • Commercial products of dicyclopentadiene type epoxy resin include "EPICRON HP-7200L”, “EPICRON HP-7200”, “EPICRON HP-7200H” and "EPICRON HP-7000HH” manufactured by Dainippon Ink and Chemicals. mentioned.
  • the epoxy compound (C) is an epoxy resin represented by the formula (3a), a naphthalene-type epoxy resin, from the viewpoint of being able to exhibit even better heat resistance, chemical resistance, copper foil peel strength, and insulation reliability. and biphenyl-type epoxy resins.
  • the epoxy resin represented by formula (3a) includes a naphthalene cresol novolac-type epoxy resin, and the naphthalene-type epoxy resin is It preferably contains a naphthylene ether type epoxy resin.
  • the epoxy compound (C) may contain other epoxy resins that do not correspond to the epoxy compounds described above.
  • Other epoxy resins include, but are not particularly limited to, bisphenol-type epoxy resins, trisphenolmethane-type epoxy resins, anthracene-type epoxy resins, glycidyl ester-type epoxy resins, polyol-type epoxy resins, isocyanurate ring-containing epoxy resins, and fluorene-type epoxy resins. Examples thereof include resins, epoxy resins composed of bisphenol A structural units and hydrocarbon structural units, and the like.
  • bisphenol epoxy resins can be included.
  • bisphenol epoxy resins examples include diallyl Bisphenol type epoxy resins (for example, diallyl bisphenol A type epoxy resin, diallyl bisphenol E type epoxy resin, diallyl bisphenol F type epoxy resin, diallyl bisphenol S type epoxy resin, etc.) and the like can be used.
  • epoxy compound (C) one of the above-described epoxy compounds and epoxy resins may be used alone, or two or more thereof may be used in combination.
  • the average number of epoxy groups per molecule of the epoxy compound (C) is preferably 1 or more and less than 3, and is 1.5 or more and 2.5 or less, from the viewpoint of more effectively and reliably exhibiting the effects of the present invention. is more preferable.
  • the content of the epoxy compound (C) is the content of the epoxy-modified silicone (B) and the epoxy compound (C) from the viewpoint of being able to express even better compatibility, heat resistance, chemical resistance, copper foil peel strength and insulation reliability.
  • the total amount of 100% by mass it is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, even more preferably 15 to 60% by mass, and 20 to 50% by mass. It is particularly preferred to have
  • the cyclic carbodiimide compound (D) is not particularly limited as long as it is a compound having one or more cyclic structures in the molecule and one carbodiimide group in one cyclic structure.
  • the curable composition of the present embodiment has a high glass transition temperature (Tg) while maintaining sufficient moldability without deteriorating fluidity. Excellent in heat resistance, low thermal expansion, copper foil peel strength and chemical resistance.
  • the number of atoms forming the cyclic structure is preferably 8-50, more preferably 10-30, even more preferably 10-20.
  • the number of atoms forming the ring structure means the number of atoms directly forming the ring structure.
  • an 8-membered ring has 8 atoms forming a cyclic structure
  • a 50-membered ring has 50 atoms forming a cyclic structure.
  • the cyclic carbodiimide compound When the number of atoms forming the cyclic structure is 8 or more, the cyclic carbodiimide compound has good stability, is easy to store, and is easy to use. Moreover, it is difficult to synthesize a cyclic carbodiimide compound having more than 50 atoms forming a cyclic structure.
  • the cyclic carbodiimide compound (D) preferably contains a cyclic structure represented by the following formula (D1).
  • L is a divalent to tetravalent linking group that is an aliphatic group, an alicyclic group, an aromatic group, or a group combining these.
  • the linking group is a heteroatom and/or substituted may contain groups.
  • Heteroatom refers to O, N, S and P. Two valences of the linking group are used to form a cyclic structure.
  • L is a trivalent or tetravalent linking group, L is attached to the polymer or other cyclic structure via a single bond, double bond, atom or group of atoms.
  • linking group L is preferably a divalent to tetravalent linking group represented by the following formula (1-1), (1-2) or (1-3).
  • Ar 101 and Ar 102 are each independently a divalent to tetravalent aromatic hydrocarbon group having 5 to 15 carbon atoms which may contain a heteroatom and a substituent.
  • the aromatic hydrocarbon group represented by Ar 101 and Ar 102 is not particularly limited. Examples include arenetriyl groups having 5 to 15 carbon atoms and arenetetrayl groups having 5 to 15 carbon atoms.
  • examples of the arylene group (divalent) include a phenylene group and a naphthalenediyl group.
  • examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
  • Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic hydrocarbon groups may have substituents.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups and aldehyde groups.
  • Ar 101 and Ar 102 are preferably a phenylene group, a naphthalenediyl group, a benzenetriyl group, a naphthalenetriyl group or a benzenetetrayl group, more preferably a phenylene group or a benzenetriyl group.
  • R 101 and R 102 are each independently a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms (aliphatic hydrocarbon groups), divalent to tetravalent alicyclic groups having 3 to 20 carbon atoms (alicyclic hydrocarbon groups) and combinations thereof, or these aliphatic groups and/or alicyclic groups and 2 to 4 and a combination of aromatic groups having 5 to 15 carbon atoms (aromatic hydrocarbon groups).
  • Aliphatic groups represented by R 101 and R 102 are not particularly limited, but examples include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetra group having 1 to 20 carbon atoms. and an yl group.
  • Alkylene groups include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, and hexadecylene groups.
  • Alkanetriyl groups include methanetriyl, ethanetriyl, propanetriyl, butanetriyl, pentanetriyl, hexanetriyl, heptanetriyl, octanetriyl, nonanetriyl, decanetriyl, and dodecanetriyl groups. , hexadecanetriyl group and the like.
  • the alkanetetrayl group includes a methantetrayl group, an ethanetetrayl group, a propanetetrayl group, a butanetetrayl group, a pentanetetrayl group, a hexanetetrayl group, a heptanetetrayl group, an octanetetrayl group, and a nonanetetrayl group. group, decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group, and the like. These aliphatic groups may have substituents.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups and aldehyde groups.
  • the alicyclic group includes a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • the cycloalkylene group includes cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, cyclononylene group, cyclodecylene group, cyclododecylene group, cyclohexadecylene group and the like. .
  • the cycloalkanetriyl group includes a cyclopropanetriyl group, a cyclobutanetriyl group, a cyclopentanetriyl group, a cyclohexanetriyl group, a cycloheptanetriyl group, a cyclooctanetriyl group, a cyclononanetriyl group, and a cyclodecanetriyl group.
  • the cycloalkanetetrayl group includes a cyclopropanetetrayl group, a cyclobutanetetrayl group, a cyclopentanetetrayl group, a cyclohexanetetrayl group, a cycloheptanetetrayl group, a cyclooctanetetrayl group, a cyclononanetetrayl group, and a cyclodecane.
  • a tetrayl group, a cyclododecanetetrayl group, a cyclohexadecanetetrayl group, and the like can be mentioned. These alicyclic groups may have a substituent.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups and aldehyde groups.
  • a phenylene group, a naphthalene diyl group, etc. are mentioned as an arylene group.
  • the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
  • examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group.
  • aromatic groups may have substituents.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups and aldehyde groups.
  • R 101 and R 102 are each independently preferably a methylene group, an ethylene group, a vinylidene group, a phenylene group or an ether group, more preferably a methylene group, a phenylene group or an ether group.
  • X 1 and X 2 are each independently a divalent to tetravalent carbon number of 1 to 20 which may contain a heteroatom and/or a substituent. It is an aliphatic group, a divalent to tetravalent alicyclic group having 3 to 20 carbon atoms, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.
  • X 1 and X 2 are the same as those exemplified for R 101 and R 102 above.
  • X 1 and X 2 are preferably a methylene group, an ethylene group, a vinylidene group or an ether group, more preferably a methylene group or an ether group.
  • s and k are each independently preferably 0 to 10, more preferably 0 to 3, and further preferably 0 to 1. preferable. Synthesis of cyclic carbodiimide compounds in which s and k each exceed 10 is difficult and increases costs. In addition, when s or k is 2 or more, X 1 or X 2 as a repeating unit may be different from other X 1 or X 2 .
  • X 3 is a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms, which may contain a heteroatom and/or a substituent, a divalent to tetravalent carbon number of 3 to 20 alicyclic groups, divalent to tetravalent aromatic groups having 5 to 15 carbon atoms, or a combination thereof.
  • X 3 is preferably a methylene group, an ethylene group, a vinylidene group or an ether group, more preferably a methylene group or an ether group.
  • Ar 101 , Ar 102 , R 101 , R 102 , X 1 , X 2 and X 3 may have a heteroatom selected from O atom, N atom, S atom and P atom.
  • the heteroatom is an N atom, the N atom is present as a nitro group and/or an amide group.
  • L is a divalent linking group
  • Ar 101 , Ar 102 , R 101 , R 102 , X 1 , X 2 and X 3 are all divalent groups.
  • L is a trivalent linking group
  • one of Ar 101 , Ar 102 , R 101 , R 102 , X 1 , X 2 and X 3 is a trivalent group.
  • L is a tetravalent linking group
  • one of Ar 101 , Ar 102 , R 101 , R 102 , X 1 , X 2 and X 3 is a tetravalent group, or Ar 101 , Ar 102 , R 101 , R 102 , X 1 , X 2 and X 3 are trivalent groups.
  • L is a trivalent or tetravalent linking group, and as an embodiment in which L is linked to another cyclic structure having a carbodiimide group, two or more cyclic structures represented by formula (1) are spiro 1 to 15 carbon atoms (preferably 1 to 12) in which they are bound via a shared moiety. Specific examples of such aspects are shown in the following formulas (2), (4) and (5).
  • the cyclic carbodiimide compound (D) may be a cyclic carbodiimide compound represented by the following formula (i).
  • the cyclic carbodiimide compound represented by formula (i) below may have two or more carbodiimide groups in the molecule, or may have one carbodiimide group.
  • Xa is a divalent group represented by formulas (i-1) to (i-3) below or a tetravalent group represented by formula (i-4) below. When Xa is divalent, q is 0, and when Xa is tetravalent, q is 1.
  • Each of Ar 201 to Ar 204 is independently an aromatic hydrocarbon group These aromatic hydrocarbon groups are carbon It may have an alkyl group of number 1 to 6 or a phenyl group as a substituent.)
  • n is an integer of 1 to 6.
  • m and n are each independently an integer of 0 to 3.
  • R 301 and R 302 each independently represent an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • the cyclic carbodiimide compound (D) preferably contains a polyvalent cyclic carbodiimide compound containing two or more carbodiimide groups in one molecule from the viewpoint of further excellent glass transition temperature (Tg), chemical resistance and heat resistance. .
  • the cyclic carbodiimide compound (D) more preferably contains a polyvalent cyclic carbodiimide compound containing two or three carbodiimide groups in one molecule from the viewpoint of even better curing performance. These polyvalent cyclic carbodiimide compounds are used singly or in combination of two or more.
  • polyvalent cyclic carbodiimide compound for example, among the carbodiimide compounds described above, those containing two or more carbodiimide groups in one molecule can be mentioned.
  • a compound represented by the following formula (D2) is preferable from the viewpoint of further excellent glass transition temperature (Tg), chemical resistance, and heat resistance.
  • X is a tetravalent group represented by the following formula (3)
  • Ar 1 to Ar 4 are each independently a phenylene group (e.g., orthophenylene group) or naphthalene-diyl group (eg, 1,2-naphthalene-diyl group)
  • the linking group may have a substituent, which may be an alkyl group having 1 to 20 carbon atoms. , an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, an aldehyde group, etc.
  • these linking groups are heteroatom-containing heterocyclic structures. may have
  • the cyclic carbodiimide compound (D) is preferably a compound represented by the following formula (D3) from the viewpoint of even better heat resistance.
  • cyclic carbodiimide compounds (D) can be produced by known methods (for example, the method described in International Publication No. 2010/071213).
  • the content of the cyclic carbodiimide compound (D) is preferably 1.0 to 30 parts by mass, more preferably 2.0 to 15 parts by mass, based on 100 parts by mass of the resin solid content. More preferably, it is 5 to 12.0 parts by mass.
  • the content of the cyclic carbodiimide compound (D) is 1.0 parts by mass or more, the heat resistance, low thermal expansion properties, copper foil peel strength, and chemical resistance tend to be even more excellent, and the cyclic carbodiimide compound (D) When the content of is 30 parts by mass or less, flame retardancy tends to be further excellent.
  • the curable composition of the present embodiment includes a maleimide compound, a cyanate ester compound, and a phenol compound (F) other than alkenylphenol (A). and one or more compounds (H) selected from the group consisting of alkenyl-substituted nadimide compounds.
  • the compound (H) is not particularly limited, it is preferably bifunctional or higher, and may be trifunctional or higher polyfunctional.
  • the content of the compound (H) in the curable composition of the present embodiment is preferably 10 to 80% by mass, preferably 20 to 60% by mass, relative to 100% by mass of the resin solid content. is more preferred, and 30 to 50% by mass is even more preferred.
  • the curable composition of the present embodiment preferably contains a maleimide compound from the viewpoint of further improving low thermal expansion and chemical resistance.
  • the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule.
  • each R 5 independently represents a hydrogen
  • n 1 is 1 or more, preferably 1-100, more preferably 1-10.
  • maleimide compounds are used singly or in combination of two or more.
  • maleimide compounds include bis(4-maleimidophenyl)methane, 2,2-bis ⁇ 4-(4-maleimidophenoxy)-phenyl ⁇ propane, , bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, a maleimide compound represented by the formula (H1a), and a maleimide compound represented by the following formula (H1b). preferably included.
  • each R 13 independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n 4 represents an integer of 1 or more and 10 or less.
  • maleimide compound A commercially available product or a product manufactured by a known method may be used as the maleimide compound.
  • Commercially available maleimide compounds include "BMI-70", “BMI-80” and “BMI-1000P” manufactured by K.I. -4000", “BMI-5100”, “BMI-7000”, “BMI-2300”, “MIR-3000” manufactured by Nippon Kayaku Co., Ltd., and the like.
  • the content of the maleimide compound is preferably 1 to 50 parts by mass, preferably 5 to 40 parts by mass, relative to 100 parts by mass of the resin solid content. More preferably, 10 to 40 parts by mass is even more preferable.
  • the curable composition of the present embodiment preferably contains a cyanate ester compound from the viewpoint of further improving low thermal expansion properties and copper foil peel strength.
  • the cyanate ester compound is not particularly limited as long as it is a compound having two or more cyanato groups (cyanate ester groups) in one molecule.
  • cyanate ester compounds novolak-type cyanate ester compounds such as compounds represented by the following formula (H2b) excluding compounds represented by formula (H2a), biphenylaralkyl-type cyanate esters, diallylbisphenol-type cyanate ester compounds, Bis(3,3-dimethyl-4-cyanatophenyl)methane, bis(4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanato benzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis(4-cyanatophenyl)ether, bis(4-cyana
  • the cyanate ester compound is a polyfunctional cyanate ester such as a naphthol aralkyl-type cyanate ester compound and/or a novolac-type cyanate ester compound. It preferably contains a compound.
  • each R6 independently represents a hydrogen atom or a methyl group, and n2 represents an integer of 1 or more.
  • Rya each independently represents an alkenyl group having 2 to 8 carbon atoms or a hydrogen atom
  • Ryb each independently represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom
  • Ryc is , each independently represents an aromatic ring having 4 to 12 carbon atoms
  • Ryc may form a fused structure with a benzene ring
  • Ryc may or may not be present
  • a 1a each independently represents an alkylene group having 1 to 6 carbon atoms, an aralkylene group having 7 to 16 carbon atoms, an arylene group having 6 to 10 carbon atoms, a fluorenylidene group, a sulfonyl group, an oxygen atom, a sulfur atom, or directly represents a bond (single bond)
  • one benzene ring may have two or more
  • the cyanate ester compound preferably contains a compound represented by formula (H2a) and/or formula (H2b) from the viewpoint of further improving heat resistance, low thermal expansion, and copper foil peel strength.
  • n2 represents an integer of 1 or more, preferably an integer of 1-20, more preferably an integer of 1-10.
  • the alkenyl group having 2 to 8 carbon atoms represented by Rya is not particularly limited, and examples thereof include a vinyl group, an allyl group, a propenyl group, a butenyl group, and a hexenyl group.
  • the alkyl group having 1 to 10 carbon atoms represented by Ryb is not particularly limited, and examples thereof include linear groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl branched alkyl groups such as isopropyl group, isobutyl group and tert-butyl group;
  • the alkylene group having 1 to 6 carbon atoms represented by A 1a is not particularly limited, and includes methylene group, ethylene group, trimethylene group and propylene group.
  • the aralkylene group having 7 to 16 carbon atoms represented by A 1a is not particularly limited, and examples thereof include formulas: —CH 2 —Ar—CH 2 — and —CH 2 —CH 2 . -Ar-CH 2 -CH 2 -, or a group represented by the formula: -CH 2 -Ar-CH 2 -CH 2 - (wherein Ar represents a phenylene group, a naphthylene group, or a biphenylene group) is mentioned.
  • the arylene group having 6 to 10 carbon atoms represented by A 1a is not particularly limited, and includes, for example, a phenylene ring.
  • n represents an integer of 1-20, preferably an integer of 1-15, more preferably an integer of 1-10.
  • the compound represented by the formula (H2b) is preferably a compound represented by the following formula (H2c).
  • each Rx independently represents a hydrogen atom or a methyl group, and each R independently represents an alkenyl group having 2 to 8 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or a hydrogen atom.
  • n represents an integer from 1 to 10.
  • cyanate ester compounds may be produced according to known methods. Specific production methods include, for example, the method described in JP-A-2017-195334 (particularly paragraphs 0052 to 0057).
  • the content of the cyanate ester compound is preferably 3 to 70 parts by mass, preferably 5 to 60 parts by mass, based on 100 parts by mass of the resin solid content, from the viewpoint of further improving the low thermal expansion property and the peel strength of the copper foil. It is more preferably 10 to 40 parts by mass.
  • the curable composition of the present embodiment preferably contains a phenol compound (F) other than the alkenylphenol (A) from the viewpoint of being able to exhibit even better chemical resistance.
  • the phenol compound (F) is not particularly limited, but may be bisphenol-type phenol resins (e.g., bisphenol A-type resin, bisphenol E-type resin, bisphenol F-type resin, bisphenol S-type resin, etc.), phenolic novolak resins (e.g., phenol novolak resin, naphthol novolak resin, cresol novolak resin, aminotriazine novolac resin described later), glycidyl ester type phenol resin, naphthalene type phenol resin, anthracene type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, fat Examples include cyclic phenol resins, polyol-type phenol resins, aralkyl-type phenol resins, phenol-modified aromatic hydrocarbon-formaldehyde resins, and fluorene-type phenol resins. These phenol compounds are used singly or in combination of two or more.
  • phenolic novolak resins
  • the phenol compound (F) may contain a bifunctional phenol compound or an aminotriazine novolac resin having two phenolic hydroxyl groups in one molecule from the viewpoint of being able to exhibit even better compatibility and chemical resistance. preferable.
  • bifunctional phenol compound examples include, but are not limited to, bisphenol, biscresol, bisphenols having a fluorene skeleton (e.g., bisphenol having a fluorene skeleton, biscresol having a fluorene skeleton, etc.), biphenols (e.g., p, p'- biphenol, etc.), dihydroxydiphenyl ether (e.g., 4,4'-dihydroxydiphenyl ether, etc.), dihydroxydiphenyl ketone (e.g., 4,4'-dihydroxydiphenyl ketone, etc.), dihydroxydiphenyl sulfide (e.g., 4,4'-dihydroxydiphenyl sulfide) etc.), and dihydroxyarene (eg, hydroquinone, etc.).
  • bisphenol biscresol
  • bisphenols having a fluorene skeleton e.g., bisphenol having a fluorene skeleton, biscre
  • bifunctional phenol compounds are used singly or in combination of two or more.
  • the bifunctional phenol compound preferably contains at least one selected from the group consisting of bisphenol, biscrresol, and bisphenols having a fluorene skeleton, from the viewpoint of being able to exhibit even better chemical resistance.
  • bis-cresol fluorene is preferable as the bisphenols having a fluorene skeleton.
  • aralkyl-type phenolic resins examples include compounds represented by the following formula (c2).
  • Ar 1 each independently represents a benzene ring or naphthalene ring
  • Ar 2 represents a benzene ring, naphthalene ring or biphenyl ring
  • R 2a each independently represents a hydrogen atom or a methyl group
  • m represents an integer of 1 to 50
  • each ring may have a substituent other than a hydroxyl group (eg, an alkyl group having 1 to 5 carbon atoms, a phenyl group, etc.).
  • the compound represented by formula (c2) is a compound in which Ar 1 is a naphthalene ring and Ar 2 is a benzene ring (hereinafter referred to as "naphthol aralkyl Also referred to as “biphenylaralkyl-type phenolic resin”), and in formula (c2), a compound in which Ar 1 is a benzene ring and Ar 2 is a biphenyl ring (hereinafter also referred to as "biphenylaralkyl-type phenolic resin").
  • naphthol aralkyl also referred to as "biphenylaralkyl-type phenolic resin”
  • the naphthol aralkyl-type phenolic resin is preferably a compound represented by the following formula (8).
  • each R 7 independently represents a hydrogen atom or a methyl group, and n 3 represents an integer of 1 or more.
  • n3 represents an integer of 1 or more, preferably an integer of 1-10, more preferably an integer of 1-6.
  • the biphenylaralkyl-type phenolic resin is preferably a compound represented by the following formula (2c).
  • R 2b each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group (preferably a hydrogen atom); m1 is an integer of 1 to 20 (preferably 1 to 6 integer).
  • the phenolic compound A' preferably contains the compound represented by the above formula (8).
  • a commercially available product or a product manufactured by a known method may be used as the aralkyl-type phenol resin.
  • Commercially available aralkyl-type phenolic resins include Nippon Kayaku Co., Ltd.'s "KAYAHARD GPH-65”, “KAYAHARD GPH-78", “KAYAHARD GPH-103” (biphenylaralkyl-type phenolic resin), Nippon Steel Chemical Co., Ltd.
  • the company's product "SN-495" (naphthol aralkyl type phenolic resin) can be mentioned.
  • the curable composition of the present embodiment may contain an aminotriazine novolac resin as the phenolic compound (F), as described above.
  • an aminotriazine novolac resin as the phenolic compound (F), as described above.
  • the aminotriazine novolac resin tend to further react to increase terminal functional groups such as hydroxyl groups and amino groups.
  • a large number of terminal functional groups having high reactivity with the thermosetting resin are present, so that the compatibility and crosslink density are improved, and the peel strength of the copper foil tends to be improved.
  • the aminotriazine novolak resin is not particularly limited, but from the viewpoint of improving the copper foil peel strength, it is preferably a novolak resin having 2 to 20 phenolic hydroxyl groups per triazine skeleton in the molecule. More preferably, it is a novolac resin having 2 to 15 phenolic hydroxyl groups for one triazine skeleton in the molecule, and a novolac resin having 2 to 10 phenolic hydroxyl groups for one triazine skeleton in the molecule. is more preferred.
  • the content of alkenylphenol (A) in the curable composition of the present embodiment is, from the viewpoint of being able to exhibit even better compatibility, heat resistance and low thermal expansion, alkenylphenol (A), epoxy-modified silicone (B), It is preferably 1 to 50 parts by mass, more preferably 3 to 30 parts by mass, and 5 to 20 parts by mass with respect to 100 parts by mass of the total amount of the epoxy compound (C) and the phenol compound (F). is more preferred.
  • the content of the epoxy-modified silicone (B) in the curable composition of the present embodiment is the alkenylphenol (A) and the epoxy-modified silicone (B), from the viewpoint of expressing even better low thermal expansion and chemical resistance in a well-balanced manner.
  • the total amount of the epoxy compound (C) and the phenol compound (F) it is preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, and 20 to 55 parts by mass. It is even more preferable to have
  • the content of the epoxy compound (C) in the curable composition of the present embodiment is the alkenylphenol (A ), epoxy-modified silicone (B), epoxy compound (C) and phenolic compound (F), with respect to the total amount of 100 parts by mass, preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass. It is preferably from 15 to 25 parts by mass, and more preferably from 15 to 25 parts by mass.
  • the content of the phenolic compound (F) in the curable composition of the present embodiment is, from the viewpoint of expressing even better chemical resistance, alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C) and It is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass, even more preferably 15 to 20 parts by mass, relative to 100 parts by mass of the total amount of the phenol compound (F).
  • the content of each of the alkenylphenol (A), the epoxy-modified silicone (B) and the epoxy compound (C) is equal to the alkenylphenol (A), It represents the content per 100 parts by mass of the total amount of epoxy-modified silicone (B) and epoxy compound (C).
  • the curable composition of the present embodiment preferably contains an alkenyl-substituted nadimide compound.
  • the alkenyl-substituted nadimide compound is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadimide groups in one molecule, and examples thereof include compounds represented by the following formula (H4a).
  • each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (e.g., methyl group or ethyl group), R 2 represents an alkylene group having 1 to 6 carbon atoms, represents a phenylene group, a biphenylene group, a naphthylene group, or a group represented by the following formula (3) or (4).
  • R3 represents a methylene group, an isopropylidene group, CO, O, S or SO2 .
  • each R 4 independently represents an alkylene group having 1 to 4 carbon atoms or a cycloalkylene group having 5 to 8 carbon atoms.
  • alkenyl-substituted nadimide compound represented by formula (H4a) a commercially available product or a product manufactured according to a known method may be used.
  • Commercially available products include “BANI-M” and “BANI-X” manufactured by Maruzen Petrochemical Co., Ltd.
  • the content of the alkenyl-substituted nadimide compound is preferably 1 to 40 parts by mass, more preferably 5 to 35 parts by mass, based on 100 parts by mass of the resin solid content. , more preferably 10 to 30 parts by mass.
  • the curable composition of the second embodiment comprises a structural unit derived from alkenylphenol (A), a structural unit derived from epoxy-modified silicone (B), and an epoxy compound (C) other than the epoxy-modified silicone (B). and a polymer (E) containing structural units derived from and a cyclic carbodiimide compound (D).
  • Alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C) and cyclic carbodiimide compound (D) are as described in the first embodiment.
  • the curable composition of the first embodiment is a curable composition that does not contain the polymer (E), and is distinguished from the curable composition of the second embodiment.
  • the curable composition of the second embodiment contains, in addition to the polymer (E) and the cyclic carbodiimide compound (D), optionally other than the above-described maleimide compound, cyanate ester compound, and alkenylphenol (A). may further contain one or more compounds (H) selected from the group consisting of phenol compounds (F) and alkenyl-substituted nadimide compounds.
  • the compound (H) may be an unreacted component remaining after polymerization of the polymer (E), or may be a component newly added to the synthesized polymer (E).
  • the curable composition of the second embodiment includes at least one selected from the group consisting of alkenylphenol (A), epoxy-modified silicone (B) and epoxy compound (C). may further contain.
  • the alkenylphenol (A), epoxy-modified silicone (B), or epoxy compound (C) contained in the curable composition of the second embodiment is an unreacted component remaining after polymerization of the polymer (E). Alternatively, it may be a component newly added to the synthesized polymer (E).
  • the curable composition of the second embodiment has excellent low thermal expansion, copper foil peel strength and chemical resistance.
  • the factors for improving each property are the temperature at which the curable composition is placed, the cyclic carbodiimide compound (D) and the polymer (E), and optionally By controlling the reactivity with the thermosetting resin such as the added compound (H), compatibility and crosslinking reaction rate are appropriately controlled, and low thermal expansion, copper foil peel strength and chemical resistance are improved. guessed.
  • the curable composition of the second embodiment has better compatibility by containing the polymer (E), and has better low thermal expansion, copper foil peel strength and chemical resistance. can be expressed, and the insulation reliability is also excellent.
  • the polymer (E) can exhibit sufficient compatibility even when mixed with a thermosetting resin having poor compatibility with silicone compounds. Thereby, the curable composition containing the polymer (E) and the thermosetting resin can give a uniform varnish or cured product. In a cured product such as a prepreg obtained using the curable composition, each component is uniformly compatible with each other, and variations in physical properties due to non-uniformity of components are further suppressed.
  • Polymer (E) contains a structural unit derived from alkenylphenol (A), a structural unit derived from epoxy-modified silicone (B), and a structural unit derived from epoxy compound (C), and if necessary further contains structural units derived from one or more compounds (H) selected from the group consisting of maleimide compounds, cyanate ester compounds, phenol compounds other than alkenylphenol A (F), and alkenyl-substituted nadimide compounds. good too.
  • the compound (H) is preferably a bifunctional compound.
  • structural unit derived from alkenylphenol (A) "structural unit derived from epoxy-modified silicone (B)" "structural unit derived from epoxy compound (C)” and “compound (H ) is a structural unit obtained by polymerizing each component of alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C) and compound (H) in polymer (E).
  • structural units formed by reactions or the like that can give similar structural units are also included.
  • each structural unit is also referred to as structural unit (A), (B), (C), and (H).
  • the weight average molecular weight of the polymer (E) is preferably 3.0 ⁇ 10 3 to 5.0 ⁇ 10 4 , more preferably 3.0 ⁇ 10 3 to 2.0 in terms of polystyrene in gel permeation chromatography. It is more preferably x10 4 .
  • the weight average molecular weight is 3.0 ⁇ 10 3 or more, the curable composition of the second embodiment tends to exhibit even better low thermal expansion, copper foil peel strength and chemical resistance.
  • the weight average molecular weight is 5.0 ⁇ 10 4 or less, the curable composition of the second embodiment tends to exhibit even better compatibility.
  • the content of the structural unit (A) in the polymer (E) is preferably 5-50% by mass with respect to the total mass of the polymer (E).
  • the content of the structural unit (A) is more preferably 10 to 45% by mass, even more preferably 15 to 40% by mass.
  • the content of the structural unit (B) in the polymer (E) is preferably 20-60% by mass with respect to the total mass of the polymer (E).
  • the content of the structural unit (B) is more preferably 25 to 55% by mass, even more preferably 30 to 50% by mass.
  • the structural unit (B) includes an epoxy-modified silicone having an epoxy equivalent of 50 to 350 g/mol (low equivalent epoxy-modified silicone (B1′)) and an epoxy-modified silicone having an epoxy equivalent of 400 to 4000 g/mol (high equivalent epoxy and a structural unit derived from the modified silicone (B2')).
  • Low equivalent epoxy-modified silicone (B1′) and high equivalent epoxy-modified silicone (B2′) are epoxy-modified silicones having epoxy equivalents of 140 to 250 g/mol (low equivalent epoxy-modified silicone (B1′′)), 450 More preferred is an epoxy-modified silicone with an epoxy equivalent weight of ⁇ 3000 g/mol (high-equivalent epoxy-modified silicone (B2'')).
  • the content of the structural unit (B)1 derived from the low-equivalent epoxy-modified silicone (B1′) in the polymer (E) is 5 to 25% by mass with respect to the total mass of the polymer (E). is preferred, 7.5 to 20 mass % is more preferred, and 10 to 17 mass % is even more preferred.
  • the content of the structural unit (B)2 derived from the high-equivalent epoxy-modified silicone (B2') in the polymer (E) is 15 to 55% by mass relative to the total mass of the polymer (E). is preferred, 20 to 52.5 mass % is more preferred, and 25 to 50 mass % is even more preferred.
  • the mass ratio of the content of the structural unit (B)2 to the content of the structural unit (B)1 is preferably 1.5 to 4, more preferably 1.5 to 3.5. 0.9 to 3.3 is more preferred.
  • the curable composition of the second embodiment tends to further improve the copper foil peel strength and chemical resistance. .
  • the compound represented by the above formula (b1), the compound represented by the above formula (b2), the compound represented by the above formula (b3) and the above formula It is preferably a unit derived from at least one selected from the group consisting of compounds represented by (b4).
  • the content of the structural unit (C) in the polymer (E) is preferably 5-40% by mass with respect to the total mass of the polymer (E).
  • the curable composition of the second embodiment has better compatibility, better heat resistance, chemical resistance, and copper foil peel strength. And it tends to be able to express insulation reliability.
  • the content of the structural unit (C) is preferably 10 to 30% by mass, more preferably 15 to 25% by mass.
  • the content of the structural unit (C) is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the structural unit (B) and the structural unit (C). It is more preferably 15 to 60% by mass, and particularly preferably 20 to 50% by mass.
  • the content of the structural unit (H) in the polymer (E) is from 3 to the total mass of the polymer (E). It is preferably 40% by mass.
  • the content of the structural unit (H) is within the above range, the curable composition of the second embodiment tends to exhibit even better low thermal expansion, chemical resistance and copper foil peel strength.
  • the content of the structural unit (H) is preferably 5 to 35% by mass, more preferably 10 to 30% by mass.
  • the structural unit in the polymer (E) has a structural unit derived from a phenol compound (F) other than alkenylphenol (A) (hereinafter also referred to as "structural unit (F)")
  • the content of F) is preferably 5 to 30% by mass relative to the total mass of polymer (E).
  • the content of the structural unit (F) is within the above range, the curable composition of the second embodiment tends to exhibit even better chemical resistance.
  • the content of the structural unit (F) is preferably 10 to 27.5% by mass, more preferably 10 to 25% by mass.
  • the alkenyl group equivalent weight of the polymer (E) is preferably 300-1500 g/mol.
  • the alkenyl group equivalent is 300 g/mol or more, the cured product of the curable composition of the second embodiment tends to have a further decreased elastic modulus, and as a result, substrates and the like obtained using the cured product There is a tendency that the coefficient of thermal expansion can be further reduced.
  • the alkenyl group equivalent is 1500 g/mol or less, the compatibility, heat resistance, chemical resistance, Low thermal expansion, copper foil peel strength and insulation reliability tend to be further improved.
  • the alkenyl group equivalent is preferably 350-1200 g/mol, more preferably 400-1000 g/mol.
  • the content of the polymer (E) in the curable composition of the second embodiment is preferably 5 to 50% by mass, preferably 10 to 45% by mass, with respect to 100% by mass of the resin solid content. More preferably, 10 to 40% by mass is even more preferable.
  • the curable composition of the second embodiment has more excellent compatibility, and tends to be able to further develop low thermal expansion copper foil peel strength and chemical resistance in a well-balanced manner. .
  • the polymer (E) is prepared by, for example, adding an alkenylphenol (A), an epoxy-modified silicone (B), an epoxy compound (C), and optionally a compound (H) in the presence of a polymerization catalyst (G). obtained by the step of reacting at The reaction may be performed in the presence of an organic solvent. More specifically, in the above step, the addition reaction between the epoxy group of the epoxy-modified silicone (B) and the epoxy compound (C) and the hydroxyl group of the alkenylphenol (A), and the hydroxyl group of the resulting addition reaction product.
  • the polymer (E) can be obtained by the progress of an addition reaction or the like between the epoxy-modified silicone (B) and the epoxy group of the epoxy compound (C).
  • the polymerization catalyst (G) is not particularly limited, and examples thereof include imidazole catalysts and phosphorus-based catalysts. These catalysts are used individually by 1 type or in combination of 2 or more types. Among these, imidazole catalysts are preferred.
  • the imidazole catalyst is not particularly limited. -cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1, imidazoles such as 2-a]benzimidazole ("TBZ", a product of Shikoku Kasei Kogyo Co., Ltd.) and 2,4,5-triphenylimidazole ("TPIZ", a product of Tokyo Kasei Kogyo Co., Ltd.); Among these, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole and/or 2,4,5-triphenylimidazole are preferred from the viewpoint of preventing homopolymerization of the epoxy component.
  • the amount of polymerization catalyst (G) (preferably imidazole catalyst) used is not particularly limited, and for example, the total amount of alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C) and compound (H) is 100 mass. 0.1 to 10 parts by mass per part. From the viewpoint of increasing the weight average molecular weight of the polymer (E), the amount of the polymerization catalyst (G) used is preferably 0.5 parts by mass or more, and more preferably 4.0 parts by mass or less.
  • the organic solvent is not particularly limited, and for example, a polar solvent or a non-polar solvent can be used.
  • Polar solvents include, but are not limited to, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate and acetic acid.
  • Ester solvents such as butyl, isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; and amides such as dimethylacetamide and dimethylformamide.
  • the nonpolar solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene and xylene. These solvents are used singly or in combination of two or more.
  • the amount of the organic solvent to be used is not particularly limited, and is, for example, 50 to 150 parts by mass with respect to 100 parts by mass of the total amount of alkenylphenol (A), epoxy-modified silicone (B), epoxy compound (C) and compound (H). Department.
  • the reaction temperature is not particularly limited, and may be, for example, 100-170°C.
  • the reaction time is also not particularly limited, and may be, for example, 3 to 8 hours.
  • the polymer (E) may be separated and purified from the reaction mixture by a conventional method.
  • the curable composition of the second embodiment may further contain the compound (H), if necessary.
  • the curable composition of the second embodiment has further improved heat resistance, low thermal expansion, chemical resistance and copper foil peel strength. tend to
  • the content of the polymer (E) in the curable composition of the second embodiment is the polymer (E) and It is preferably from 5 to 60% by mass, more preferably from 10 to 55% by mass, and even more preferably from 20 to 50% by mass, relative to the total 100% by mass of compound (H).
  • the curable composition tends to have better compatibility, and can exhibit heat resistance, low thermal expansion, chemical resistance, and copper foil peel strength in a well-balanced manner.
  • the content of the compound (H) in the curable composition of the second embodiment is the polymer (E) and the compound It is preferably 20 to 80% by mass, more preferably 35 to 75% by mass, and even more preferably 45 to 65% by mass relative to the total 100% by mass of (H).
  • the content of the cyclic carbodiimide compound (D) in the curable composition of the second embodiment is the same as the content in the curable composition of the first embodiment.
  • the content of the cyclic carbodiimide compound (D) is within the range described above, the heat resistance, low thermal expansion properties, copper foil peel strength, and chemical resistance tend to be even more excellent.
  • the curable composition of the present embodiment may further contain other resins as long as the effects of the curable composition of the present embodiment are not impaired.
  • Other resins include, for example, oxetane resins, benzoxazine compounds, and compounds having polymerizable unsaturated groups. These resins are used singly or in combination of two or more.
  • oxetane resins include oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, alkyloxetane such as 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3- '-di(trifluoromethyl)perfluoxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl type oxetane, products of Toagosei Co., Ltd. "OXT-101", “OXT-121" etc.
  • benzoxazine compound refers to a compound having two or more dihydrobenzoxazine rings in one molecule.
  • benzoxazine compounds include "Bisphenol F-type benzoxazine BF-BXZ” and "Bisphenol S-type benzoxazine BS-BXZ” manufactured by Konishi Chemical Co., Ltd., and the like.
  • Examples of compounds having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl; methyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl ( Monovalent meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. or polyhydric alcohol (meth)acrylates; epoxy (meth)acrylates such as bisphenol A type epoxy (meth)acrylate and bisphenol F type epoxy (meth)acrylate; benzocyclobutene resin and the like.
  • vinyl compounds such as ethylene, propylene, styrene, divinylbenzene
  • the curable composition of the present embodiment preferably further contains an inorganic filler from the viewpoint of further improving low thermal expansion properties.
  • the inorganic filler is not particularly limited, and examples thereof include silicas, silicon compounds (e.g., white carbon, etc.), metal oxides (e.g., alumina, titanium white, zinc oxide, magnesium oxide, zirconium oxide, etc.), metal nitrides.
  • boron nitride aggregated boron nitride, silicon nitride, aluminum nitride, etc.
  • metal sulfates e.g., barium sulfate, etc.
  • metal hydroxides e.g., aluminum hydroxide, aluminum hydroxide heat-treated products (e.g., aluminum hydroxide heat-treated to reduce a portion of the water of crystallization), boehmite, magnesium hydroxide, etc.
  • molybdenum compounds e.g.
  • These inorganic fillers are used individually by 1 type or in combination of 2 or more types.
  • the inorganic filler is preferably at least one selected from the group consisting of silicas, metal hydroxides and metal oxides, from the viewpoint of further improving low thermal expansion properties.
  • silicas examples include natural silica, fused silica, synthetic silica, aerosil, and hollow silica. These silicas are used individually by 1 type or in combination of 2 or more types. Among these, fused silica is preferable from the viewpoint of dispersibility, and two or more types of fused silica having different particle sizes are more preferable from the viewpoint of filling properties and fluidity.
  • the content of the inorganic filler is preferably 50 to 1000 parts by mass, more preferably 70 to 500 parts by mass, based on 100 parts by mass of the resin solid content, from the viewpoint of further improving the low thermal expansion property. , 100 to 300 parts by mass.
  • the curable composition of this embodiment may further contain a silane coupling agent.
  • a silane coupling agent By containing a silane coupling agent, the curable composition of the present embodiment further improves the dispersibility of the inorganic filler, and the components of the curable composition of the present embodiment and the substrate described later. There is a tendency that the adhesive strength can be further improved.
  • the silane coupling agent is not particularly limited, and includes silane coupling agents generally used for surface treatment of inorganic substances, aminosilane compounds (eg, ⁇ -aminopropyltriethoxysilane, N- ⁇ -(aminoethyl) - ⁇ -aminopropyltrimethoxysilane, etc.), epoxysilane compounds (eg, ⁇ -glycidoxypropyltrimethoxysilane, etc.), acrylsilane compounds (eg, ⁇ -acryloxypropyltrimethoxysilane, etc.), cationic Examples include silane compounds (eg, N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyltrimethoxysilane hydrochloride), styrylsilane compounds, phenylsilane compounds, and the like.
  • aminosilane compounds eg, ⁇ -aminopropyltriethoxysilane, N-
  • a silane coupling agent is used individually by 1 type or in combination of 2 or more types.
  • the silane coupling agent is preferably an epoxysilane compound.
  • epoxysilane compounds include Shin-Etsu Chemical Co., Ltd. products "KBM-403", “KBM-303", “KBM-402”, and "KBE-403".
  • the content of the silane coupling agent is not particularly limited, but may be 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the curable composition of this embodiment may further contain a wetting and dispersing agent.
  • the curable composition tends to further improve the dispersibility of the filler by containing a wetting and dispersing agent.
  • any known dispersing agent used to disperse the filler may be used. 161, BYK-W996, W9010, W903 and the like.
  • the content of the wetting and dispersing agent is not particularly limited, it is preferably 0.5 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass of the resin solid content.
  • the curable composition of this embodiment may further contain a solvent.
  • a solvent By containing a solvent, the curable composition of the present embodiment has a reduced viscosity during preparation of the curable composition, further improved handling properties (handleability), and further improved impregnation into the substrate. tend to fall.
  • the solvent is not particularly limited as long as it can dissolve a part or all of each component in the curable composition. xylene, etc.), amides (eg, dimethylformaldehyde, etc.), propylene glycol monomethyl ether and its acetate, and the like. These solvents are used singly or in combination of two or more.
  • the method for producing the curable composition of the present embodiment is not particularly limited, and examples thereof include a method of collectively or sequentially blending each component with a solvent and stirring. At this time, in order to uniformly dissolve or disperse each component, known treatments such as stirring, mixing, and kneading are used.
  • the curable composition of the present embodiment can exhibit excellent low thermal expansion properties, copper foil peel strength, and chemical resistance. Therefore, the curable composition of the present embodiment is suitably used for prepregs, metal foil clad laminates and printed wiring boards.
  • the curable composition of the present embodiment can be applied to the above uses by curing. That is, the cured product of the present embodiment is obtained by curing the curable composition of the present embodiment.
  • the curable composition of the second embodiment contains, in addition to the polymer (E) and the cyclic carbodiimide compound (D), at least the epoxy compound (C) (constituent unit in the polymer (E) It preferably contains an epoxy compound (C) that exists separately from (C).
  • the polymer (E) preferably has units derived from the aforementioned bifunctional epoxy compound as units derived from the epoxy compound (C), more preferably derived from the aforementioned biphenyl-type epoxy resin.
  • the epoxy compound (C) present separately from the structural unit (C) in the polymer (E) the above-mentioned naphthylene ether type epoxy resin (commercially available products, for example, “HP -6000”, etc.) and/or naphthalene cresol novolac type epoxy resin (commercially available products include, for example, “HP-9540” manufactured by DIC Corporation).
  • the prepreg of this embodiment includes a substrate and the curable composition of this embodiment impregnated or applied to the substrate.
  • the prepreg may be a prepreg obtained by a known method. Specifically, after impregnating or applying the curable composition of the present embodiment on a substrate, It is obtained by semi-curing (to B stage) by heating and drying at.
  • the prepreg of the present embodiment also includes the form of a cured product obtained by thermally curing a semi-cured prepreg under conditions of a heating temperature of 180 to 230° C. and a heating time of 60 to 180 minutes.
  • the content of the curable composition in the prepreg is preferably 30 to 90% by volume, more preferably 35 to 85% by volume, and still more preferably 40% by volume, based on the total amount of the prepreg, in terms of the solid content of the prepreg. ⁇ 80% by volume.
  • the calculation of the content of the curable composition herein includes the cured product of the curable composition of the present embodiment.
  • the solid content of the prepreg as used herein refers to a component obtained by removing the solvent from the prepreg.
  • the filler is included in the solid content of the prepreg.
  • the base material is not particularly limited, and includes, for example, known base materials used as materials for various printed wiring boards.
  • the substrate include glass substrates, inorganic substrates other than glass (for example, inorganic substrates composed of inorganic fibers other than glass such as quartz), organic substrates (for example, wholly aromatic polyamide, polyester , polyparaphenylenebenzoxazole, and organic base materials composed of organic fibers such as polyimide). These substrates are used singly or in combination of two or more. Among these, a glass substrate is preferable from the viewpoint of being more excellent in dimensional stability under heating.
  • Fibers constituting the glass substrate include, for example, E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, HME glass, and the like.
  • the fibers that make up the glass substrate are made of E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass, from the viewpoint of being more excellent in strength and low water absorption.
  • One or more fibers selected from the group are preferred.
  • the form of the substrate is not particularly limited, but examples include forms such as woven fabric, nonwoven fabric, roving, chopped strand mat, and surfacing mat.
  • the weaving method of the woven fabric is not particularly limited, but for example, plain weave, Nanako weave, twill weave, etc. are known, and it is possible to appropriately select and use from these known ones depending on the intended use and performance. .
  • glass woven fabrics surface-treated with a silane coupling agent or the like are preferably used.
  • the thickness and mass of the base material are not particularly limited, but usually about 0.01 to 0.1 mm is suitably used.
  • the metal foil-clad laminate of the present embodiment includes a laminate containing the prepreg of the present embodiment, and metal foil arranged on one side or both sides of the laminate.
  • the laminate may be formed of one prepreg, or may be formed of a plurality of prepregs.
  • the laminate may contain a resin sheet in addition to the prepreg of the present embodiment.
  • the metal foil may be any metal foil that is used for various printed wiring board materials, and examples thereof include metal foils of copper, aluminum, and the like. Copper foil, such as foil, is mentioned.
  • the thickness of the conductor layer is, for example, 1 to 70 ⁇ m, preferably 1.5 to 35 ⁇ m.
  • the molding method and molding conditions for the metal foil-clad laminate are not particularly limited, and general techniques and conditions for printed wiring board laminates and multilayer boards can be applied.
  • a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used when molding a laminate (laminate described above) or a metal foil-clad laminate.
  • the temperature is 100 to 300° C.
  • the pressure is 2 to 100 kgf/cm 2
  • the heating time is 0.05 to 5. Time ranges are common.
  • post-curing can be performed at a temperature of 150-300°C.
  • the temperature is preferably 200° C. to 250° C.
  • the pressure is 10 to 40 kgf/cm 2
  • the heating time is 80 minutes to 130 minutes
  • the temperature is 215° C. to 215° C., from the viewpoint of sufficiently accelerating the curing of the prepreg.
  • the temperature is 235° C.
  • the pressure is 25 to 35 kgf/cm 2
  • the heating time is 90 to 120 minutes.
  • the printed wiring board of this embodiment includes an insulating layer containing the prepreg of this embodiment, and a conductor layer formed on the surface of the insulating layer.
  • the insulating layer may be a cured product obtained by curing the prepreg of the present embodiment.
  • the printed wiring board of the present embodiment can be formed, for example, by etching the metal foil of the metal foil-clad laminate of the present embodiment into a predetermined wiring pattern to form a conductor layer.
  • the printed wiring board of the present embodiment can be manufactured, for example, by the following method.
  • An inner layer board having a conductor layer (inner layer circuit) is produced by etching the metal foil of the metal foil clad laminate into a predetermined wiring pattern.
  • a laminate is obtained.
  • the laminate molding method and molding conditions are the same as the laminate molding method and molding conditions for the laminate and the metal foil-clad laminate described above.
  • the laminate is perforated for through holes and via holes, and the wall surfaces of the holes thus formed are plated with a metal film for conducting the conductor layer (internal circuit) and the metal foil for the outer layer circuit.
  • the metal foil for the outer layer circuit is etched into a predetermined wiring pattern to form an outer layer substrate having a conductor layer (outer layer circuit). A printed wiring board is thus manufactured.
  • a printed wiring board may be produced by forming a conductor layer that becomes a circuit on the insulating layer. At this time, an electroless plating technique can be used to form the conductor layer.
  • triphenylphosphine dibromide (0.11 mol) and 150 ml of 1,2-dichloroethane were added to a reaction apparatus equipped with a stirring device, a heating device, and a dropping funnel under an N 2 atmosphere and stirred.
  • a solution prepared by dissolving an intermediate product (amine body, 0.025 mol) and triethylamine (0.25 mol) in 50 ml of 1,2-dichloroethane was slowly added thereto dropwise at 25°C. After completion of the dropwise addition, the mixture was reacted at 70° C. for 5 hours. Thereafter, the reaction solution was filtered, and the filtrate was subjected to liquid separation operation with 100 ml of water five times. The organic layer was dehydrated with 5 g of sodium sulfate, and 1,2-dichloroethane was removed under reduced pressure to obtain an intermediate product (triphenylphosphine compound).
  • Example 1 In a three-necked flask equipped with a thermometer and a Dimroth, 5.0 parts by mass of diallyl bisphenol A (DABPA, Daiwa Kasei Kogyo Co., Ltd.), 5.4 parts by mass of biscresol fluorene (BCF, Osaka Gas Chemical Co., Ltd.), epoxy Modified silicone (B) 1 (X-22-163, Shin-Etsu Chemical Co., Ltd., functional group equivalent 200 g / mol) 3.7 parts by mass, epoxy-modified silicone (B) 2 (KF-105, Shin-Etsu Chemical Co., Ltd.
  • diallyl bisphenol A corresponds to "alkenylphenol (A)
  • epoxy-modified silicone (B) 1 and epoxy-modified silicone (B) 2 correspond to “epoxy-modified silicone (B)”
  • biphenyl-type epoxy Resin (C) 1 corresponds to "epoxy compound (C)”.
  • a polymer ( E) was included in the phenoxy polymer solution.
  • polymer (E) is also referred to as phenoxy polymer.
  • the content of structural units derived from the epoxy-modified silicone (B) relative to the polymer (E) was 48.8% by mass.
  • the content of the structural units derived from the epoxy compound (C) with respect to the total amount of the structural units derived from the epoxy-modified silicone (B) and the structural units derived from the epoxy compound (C) was 25% by mass.
  • the weight average molecular weight Mw of the phenoxy polymer obtained as described above was measured as follows. 20 ⁇ L of a solution prepared by dissolving 0.5 g of the phenoxy polymer solution in 2 g of THF was injected into a high-performance liquid chromatography (manufactured by Shimadzu Corporation, pump: LC-20AD) for analysis. The columns were Shodex GPC KF-804 (length 30 cm x inner diameter 8 mm) manufactured by Showa Denko, Shodex GPC KF-803 (length 30 cm x inner diameter 8 mm), Shodex GPC KF-802 (length 30 cm x inner diameter 8 mm), Shodex GPC.
  • the weight average molecular weight Mw was obtained by GPC method using standard polystyrene as a standard substance.
  • the weight average molecular weight Mw of the phenoxy polymer measured as described above was 12,000.
  • This varnish is impregnated and applied to an S glass woven cloth (thickness 100 ⁇ m) and dried by heating at 165 ° C. for 5 minutes to obtain a prepreg having a resin composition solid content (including filler) content of 47.4% by mass. obtained (prepreg manufacturing process).
  • Example 2 In the prepreg manufacturing process, 14 parts by mass of a novolak-type cyanate ester compound (PT-30, Lonza Co., Ltd.) was added to 13 parts by mass, and 17 parts by mass of a novolac-type maleimide compound (BMI-2300, Daiwa Kasei Kogyo Co., Ltd.). To 16 parts by mass, 6 parts by mass of a bismaleimide compound (BMI-80, Kei Kasei Co., Ltd.) is added to 5 parts by mass, and 28 parts by mass of a naphthalene cresol novolak type epoxy compound (HP-9540, DIC Corporation) is added to 26 parts by mass.
  • a novolak-type cyanate ester compound PT-30, Lonza Co., Ltd.
  • Example 2 In the same manner as in Example 1, except that 5 parts by mass of the cyclic carbodiimide compound obtained in Production Example 1 was changed to 10 parts by mass, the content of the solid content of the resin composition (including the filler) A prepreg of 47.4% by mass was obtained.
  • Example 3 In the polymer production step, 5.0 parts by mass of diallyl bisphenol A (DABPA, Daiwa Kasei Kogyo Co., Ltd.) was added to 5.1 parts by mass, and 5.4 parts by mass of biscresol fluorene (BCF, Osaka Gas Chemical Co., Ltd.) was added.
  • DABPA diallyl bisphenol A
  • BCF biscresol fluorene
  • epoxy-modified silicone (B) 1 (X-22-163, Shin-Etsu Chemical Co., Ltd., functional group equivalent 200 g / mol) 3.7 parts by weight to 4.2 parts by weight
  • epoxy-modified Silicone (B) 2 (KF-105, Shin-Etsu Chemical Co., Ltd., functional group equivalent 490 g / mol) 11.0 parts by weight to 8.5 parts by weight
  • biphenyl type epoxy resin (C) 1 (YL-6121H, A phenoxy polymer solution (solid content: 50% by mass) was obtained in the same manner as in Example 1, except that 4.9 parts by mass of Mitsubishi Chemical Corporation was changed to 5.6 parts by mass (polymer production step ).
  • the modified phenoxy polymer solution contains structural units derived from alkenylphenol (A), structural units derived from epoxy-modified silicone (B), structural units derived from epoxy compound (C), and aminotriazine novolak.
  • the polymer (E) containing the derived structural units was included.
  • the weight average molecular weight Mw of the modified phenoxy polymer measured in the same manner as above was 12,000.
  • the polymer modification step can also be performed continuously with the polymer production step.
  • naphthylene ether type epoxy compound HP-6000, DIC Corporation
  • naphthol aralkyl type phenol compound SN495V, Nippon Steel Chemical Co., Ltd.
  • cyclic obtained in Production Example 1 Carbodiimide compound 5 parts by mass, spherical silica (SC-2050MB, Admatechs Co., Ltd.) 200 parts by mass, wetting and dispersing agent (DISPERBYK-161, BYK-Chemie Japan Co., Ltd.) 1 part by mass, silane coupling agent (KMB-403 , Shin-Etsu Chemical Co., Ltd.) were mixed to obtain a varnish.
  • wetting and dispersing agent DISPERBYK-161, BYK-Chemie Japan Co., Ltd.
  • silane coupling agent KMB-403 , Shin-Etsu Chemical Co., Ltd.
  • This varnish is impregnated and applied to an S glass woven cloth (thickness 100 ⁇ m) and dried by heating at 150° C. for 3 minutes to obtain a prepreg having a resin composition solid content (including filler) content of 48.8% by mass. obtained (prepreg manufacturing process).
  • Example 4 7.5 parts by mass of a novolak maleimide compound (BMI-2300, Daiwa Kasei Kogyo Co., Ltd.), a bismaleimide compound ( BMI-80, Kei Kasei Co., Ltd.) 7.5 parts by mass, naphthylene ether type epoxy compound (HP-6000, DIC Corporation) 23 parts by mass, naphthol aralkyl type phenol compound (SN495V, Nippon Steel Chemical Co., Ltd.) ) 22 parts by mass, 10 parts by mass of the cyclic carbodiimide compound obtained in Production Example 1, spherical silica (SC-2050MB, Admatechs Co., Ltd.) 200 parts by mass, wetting and dispersing agent (DISPERBYK-161, BYK Chemie Japan Co., Ltd.
  • Example 1 To 30 parts by mass of the phenoxy polymer solution obtained in the same manner as in Example 1 (in terms of solid content), 15 parts by mass of a novolak-type cyanate ester compound (PT-30, Lonza Co., Ltd.), a novolak-type maleimide compound (BMI- 2300, Daiwa Kasei Kogyo Co., Ltd.) 18 parts by mass, bismaleimide compound (BMI-80, Kei Kasei Co., Ltd.) 6 parts by mass, naphthalene cresol novolak type epoxy compound (HP-9540, DIC Corporation) 30 parts by mass , spherical silica (SC-2050MB, Admatechs Co., Ltd.) 140 parts by mass, wetting and dispersing agent (DISPERBYK-161, BYK Chemie Japan Co., Ltd.) 1 part by mass, silane coupling agent (KMB-403, Shin-Etsu Chemical Co., Ltd.
  • Comparative example 2 9 parts by mass of a novolak maleimide compound (BMI-2300, Daiwa Kasei Kogyo Co., Ltd.), a bismaleimide compound (BMI- 80, Kei Kasei Co., Ltd.) 9 parts by mass, naphthylene ether type epoxy compound (HP-6000, DIC Corporation) 27 parts by mass, naphthol aralkyl type phenol compound (SN495V, Nippon Steel Chemical Co., Ltd.) 25 parts by mass , spherical silica (SC-2050MB, Admatechs Co., Ltd.) 200 parts by mass, wetting and dispersing agent (DISPERBYK-161, BYK Chemie Japan Co., Ltd.) 1 part by mass, silane coupling agent (KMB-403, Shin-Etsu Chemical Co., Ltd.
  • a novolak maleimide compound BMI-2300, Daiwa Kasei Kogyo Co., Ltd.
  • BMI- 80 Kei
  • This varnish is impregnated and coated on an S glass woven fabric (thickness 100 ⁇ m) and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin composition solid content (including filler) content of 48.8% by mass. obtained (prepreg manufacturing process).
  • This varnish is impregnated and coated on an S glass woven fabric (thickness 100 ⁇ m) and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin composition solid content (including filler) content of 48.8% by mass. obtained (prepreg manufacturing process).
  • Tg glass transition temperature
  • CTE linear thermal expansion coefficient
  • the coefficient of linear thermal expansion in the longitudinal direction of the glass cloth was measured for the insulating layer of the metal foil-clad laminate. Specifically, after removing the copper foil on both sides of the copper foil clad laminate (10 mm ⁇ 6 mm ⁇ 0.2 mm) obtained by the above method by etching, it is heated in a constant temperature bath at 220 ° C. for 2 hours and molded. removed the stress due to After that, using a thermal expansion coefficient measuring device (Linseis horizontal dilatometer), the temperature was raised from 40 ° C. to 320 ° C. at 10 ° C. per minute, and the linear thermal expansion coefficient (CTE) at 60 ° C. to 260 ° C., (unit : ppm/°C) was measured.
  • CTE linear thermal expansion coefficient
  • the mass of the copper foil-clad laminate before and after the treatment was measured, and the amount of mass reduction (unit: % by mass) based on the mass of the sample before treatment was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)

Abstract

アルケニルフェノールと、エポキシ変性シリコーンと、該エポキシ変性シリコーン以外のエポキシ化合物と、環状カルボジイミド化合物と、を含有する、硬化性組成物。

Description

硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板
 本発明は、硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板に関する。
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに伴い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。これに伴い、半導体パッケージ用のプリント配線板に求められる諸特性はますます厳しいものとなっている。このようなプリント配線板に求められる特性としては、例えば、低熱膨張率、耐薬品性、ピール強度等が挙げられる。
 特許文献1には、特定のマレイミド化合物と、分子構造中にエポキシ基を有するシリコーン化合物と、フェノール性水酸基を有する化合物とを含有する熱硬化性樹脂組成物は、耐熱性及び低熱膨張性に優れ、金属箔張積層板及び多層プリント配線板に好適に用いられることが開示されている。
 特許文献2には、ポリマレイミドと、下記式(I)で表されるジグリシジルポリシロキサンと、下記式(II)で表されるジアリルビスフェノール類との付加重合物と、下記式(III)で表されるアリル化フェノール樹脂とを所定の割合及び条件にて反応させて半導体封止用樹脂を得る製造方法が開示されている。この文献によれば、上記の製造方法により得られる半導体封止用樹脂は、ポリマレイミドと、上記の付加重合物との相溶性が良いこと、更には半導体封止用樹脂を用いた組成物の硬化物特性(例えば、高いガラス転移温度、耐湿性及び熱時の強度)に優れ、半導体封止用樹脂組成物として信頼性の高いものであることが開示されている。この文献には、下記式(III)中、b成分は、ポリマレイミドとの樹脂生成反応においてマレイミド基と反応し、ポリマレイミドとポリシロキサンとの相溶性を改善する重要な成分であると開示されている。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、アルキレン基又はフェニレン基を表し、Rは、各々独立して、アルキル基又はフェニル基を表し、nは1~100の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、エーテル結合、メチレン基、プロピリデン基、又は直接結合(単結合)を表す。)
Figure JPOXMLDOC01-appb-C000009
(上記式中、a,b,及びcは、それぞれ各組成の百分率を表し、0<a,b,c<100かつa+b+c=100である。)
特開2012-149154号公報 特開平4-4213号公報
 特許文献1のように、分子構造中にエポキシ基を有するシリコーン化合物と、マレイミド化合物のような熱硬化性樹脂とを含む樹脂組成物は、低熱膨張性に優れる。しかしながら、本発明者らは、上記樹脂組成物において、上記シリコーン化合物と熱硬化性樹脂との相溶性が十分でないことに起因して成形性に問題があることを見出した。更に、本発明者らは、上記樹脂組成物は、耐薬品性及び金属箔張積層板とする際の金属箔ピール強度(例えば、銅箔ピール強度)が十分ではないことを見出した。
 一方、特許文献2に記載の樹脂組成物は、半導体封止用に用いられるものであって、プリント配線板の特性として求められる低熱膨張性、銅箔ピール強度及び耐薬品性については検討されていない。
 本発明は、上記問題点に鑑みてなされたものであり、優れた低熱膨張性、銅箔ピール強度及び耐薬品性を有する硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。その結果、アルケニルフェノールと、エポキシ変性シリコーンと、該エポキシ変性シリコーン以外のエポキシ化合物と、環状カルボジイミド化合物とを含有する硬化性組成物、あるいは、アルケニルフェノールに由来する構成単位と、エポキシ変性シリコーンに由来する構成単位と、該エポキシ変性シリコーン以外のエポキシ化合物に由来する構成単位とを含有する重合体と、環状カルボジイミド化合物とを含有する硬化性組成物であれば、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は次のとおりである。
〔1〕
 アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)と、環状カルボジイミド化合物(D)と、を含有する、
 硬化性組成物。
〔2〕
 前記環状カルボジイミド化合物(D)が、下記式(D1)で表される環状構造を有し、
 前記環状構造を形成する原子数が8~50である、
 〔1〕に記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000010
(式中、Lは、脂肪族基、脂環族基、芳香族基又はこれらを組み合わせた基である2~4価の結合基であり、前記結合基は、ヘテロ原子及び/又は置換基を含んでいてもよい。)
〔3〕
 前記環状カルボジイミド化合物(D)の含有量が、樹脂固形分100質量部に対して、2.0~15質量部である、
 〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕
 前記アルケニルフェノール(A)の1分子当たりの平均フェノール基数が1以上3未満であり、前記エポキシ変性シリコーン(B)の1分子当たりの平均エポキシ基数が1以上3未満であり、前記エポキシ化合物(C)の1分子当たりの平均エポキシ基数が1以上3未満である、
 〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕
 前記アルケニルフェノール(A)が、ジアリルビスフェノール及び/又はジプロペニルビスフェノールを含有する、
 〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕
 前記エポキシ変性シリコーン(B)が、140~250g/molのエポキシ当量を有するエポキシ変性シリコーンを含有する、
 〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕
 前記エポキシ変性シリコーン(B)が、下記式(B1)で表されるエポキシ変性シリコーンを含有する、
 〔1〕~〔6〕のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、各々独立に、単結合、アルキレン基、アリーレン基又はアラルキレン基を示し、Rは、各々独立に、炭素数1~10のアルキル基又はフェニル基を示し、nは、0~100の整数を示す。)
〔8〕
 前記エポキシ化合物(C)が、下記式(b2)で表される化合物を含む、〔1〕~〔7〕のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000012
 (式(b2)中、Rは、各々独立して、炭素数1~10のアルキル基又は水素原子を示す。)
〔9〕
 アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)に由来する構成単位とを含有する重合体(E)と、
 環状カルボジイミド化合物(D)と、を含有する、
 硬化性組成物。
〔10〕
 前記重合体(E)の重量平均分子量が、3.0×10~5.0×10である、
 〔9〕に記載の硬化性組成物。
〔11〕
 前記重合体(E)の含有量が、樹脂固形分100質量%に対して、5~50質量%である、
 〔9〕又は〔10〕に記載の硬化性組成物。
〔12〕
 前記環状カルボジイミド化合物(D)が、下記式(D1)で表される環状構造を有し、
 前記環状構造を形成する原子数が8~50である、
 〔9〕~〔11〕のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000013
(式中、Lは、脂肪族基、脂環族基、芳香族基又はこれらを組み合わせた基である2~4価の結合基であり、前記結合基は、ヘテロ原子及び/又は置換基を含んでいてもよい。)
〔13〕
 前記環状カルボジイミド化合物(D)の含有量が、樹脂固形分100質量部に対して、2.0~15質量部である、
 〔9〕~〔12〕のいずれかに記載の硬化性組成物。
〔14〕
 前記アルケニルフェノール(A)の1分子当たりの平均フェノール基数が1以上3未満であり、前記エポキシ変性シリコーン(B)の1分子当たりの平均エポキシ基数が1以上3未満であり、前記エポキシ化合物(C)の1分子当たりの平均エポキシ基数が1以上3未満である、
 〔9〕~〔13〕のいずれかに記載の硬化性組成物。
〔15〕
 前記アルケニルフェノール(A)が、ジアリルビスフェノール及び/又はジプロペニルビスフェノールを含有する、
 〔9〕~〔14〕のいずれかに記載の硬化性組成物。
〔16〕
 前記エポキシ変性シリコーン(B)が、140~250g/molのエポキシ当量を有するエポキシ変性シリコーンを含有する、
 〔9〕~〔15〕のいずれかに記載の硬化性組成物。
〔17〕
 前記エポキシ変性シリコーン(B)が、下記式(B1)で表されるエポキシ変性シリコーンを含有する、
 〔9〕~〔16〕のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000014
(式中、Rは、各々独立に、単結合、アルキレン基、アリーレン基又はアラルキレン基を示し、Rは、各々独立に、炭素数1~10のアルキル基又はフェニル基を示し、nは、0~100の整数を示す。)
〔18〕
 前記エポキシ化合物(C)が、下記式(b2)で表される化合物を含む、〔9〕~〔17〕のいずれかに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000015
 (式(b2)中、Rは、各々独立して、炭素数1~10のアルキル基又は水素原子を示す。)
〔19〕
 アルケニルフェノール(A)、エポキシ変性シリコーン(B)及び該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)からなる群より選択される1種以上を更に含有する、
 〔9〕~〔18〕のいずれかに記載の硬化性組成物。
〔20〕
 前記エポキシ化合物(C)が、ナフタレンクレゾールノボラック型エポキシ樹脂及び/又はナフチレンエーテル型エポキシ樹脂を含む、〔19〕に記載の硬化性組成物。
〔21〕
 マレイミド化合物、シアン酸エステル化合物、前記アルケニルフェノール(A)以外のフェノール化合物(F)及びアルケニル置換ナジイミド化合物からなる群より選択される1種以上の化合物(H)を更に含有する、
 〔1〕~〔20〕のいずれかに記載の硬化性組成物。
〔22〕
 無機充填材を更に含有し、
 前記無機充填材が、シリカ類、ベーマイト及びアルミナからなる群より選択される1種類以上を含む、
 〔1〕~〔20〕のいずれかに記載の硬化性組成物。
〔23〕
 基材と、
 該基材に含浸又は塗布された、〔1〕~〔22〕のいずれかに記載の硬化性組成物と、を含む、
 プリプレグ。
〔24〕
 〔23〕に記載のプリプレグを含む積層体と、
 該積層体の片面又は両面に配置された金属箔と、を含む、
 金属箔張積層板。
〔25〕
 〔23〕に記載のプリプレグを含む絶縁層と、
 該絶縁層の表面に形成された導体層と、を含む、
 プリント配線板。
 本発明によれば、優れた低熱膨張性、銅箔ピール強度及び耐薬品性を有する硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板を提供可能である。
 以下、本発明を実施するための形態(以下「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 本明細書にいう「樹脂固形分」とは、特段の記載がない限り、本実施形態の硬化性組成物における、溶剤及び充填材を除いた成分をいい、樹脂固形分100質量部とは、硬化性組成物における溶剤及び充填材を除いた成分の合計が100質量部であることをいう。また、樹脂固形分100質量%とは、硬化性組成物における溶剤及び充填材を除いた成分の合計が100質量%であることをいう。
 本明細書にいう「相溶性」とは、以下のことをいう。詳細を後述する第1実施形態の組成物においては、「優れた相溶性」とは、アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、エポキシ化合物(C)と、環状カルボジイミド化合物(D)とを含有する混合物(例えば、ワニス)において、液相分離が生じないことをいう。また、詳細を後述する第2実施形態の組成物において、「優れた相溶性」とは、重合体(E)と環状カルボジイミド化合物(D)とを含む混合物(例えば、ワニス)において、液相分離が生じないことをいう。本実施形態の硬化性組成物は、相溶性に優れることに起因して、成形の過程における液相分離が抑制され、外観に優れる成形体を得られるほか、得られた成形体の物性の等方性にも優れる傾向にある。なお、本明細書において、「本実施形態の硬化性組成物」と称するときは、特段の断りがない限り、「第1実施形態の硬化性組成物」及び「第2実施形態の硬化性組成物」の双方を包含するものとする。
<第1実施形態>
[第1実施形態の硬化性組成物]
 第1実施形態の硬化性組成物は、アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)(以下、単に「エポキシ化合物(C)」ともいう。)と、環状カルボジイミド化合物(D)とを含有する。これら成分を含む第1実施形態の硬化性組成物は、優れた低熱膨張性、銅箔ピール強度及び耐薬品性を有する。各特性が向上する要因は次のように考えられるが、要因はこれに限定されない。環状カルボジイミド化合物(D)は高い融点を有するため、例えば、プリプレグ作成時の温度(約140℃)においては、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)等の各熱硬化性樹脂との反応性が低く、これにより、硬化性組成物の流動特性の悪化が抑制される。そして、より温度が高いプレス成形時において、環状カルボジイミド化合物(D)が溶融し、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)等の熱硬化性樹脂と環状カルボジイミド化合物(D)とが反応することにより、架橋密度のより高い構造体を形成するため、低熱膨張性、銅箔ピール強度及び耐薬品性が向上する。
[アルケニルフェノール(A)]
 アルケニルフェノール(A)は、1つ以上のアルケニル基がフェノール性芳香環に直接結合した構造を有する化合物であれば特に限定されない。本実施形態の硬化性組成物は、アルケニルフェノール(A)を含有することにより、優れた相溶性を発現でき、これにより、耐熱性及び低熱膨張性のバランスが向上する。
 アルケニル基としては、特に限定されないが、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等の炭素数2~30のアルケニル基が挙げられる。なかでも、本発明の作用効果をより有効かつ確実に奏する観点から、アルケニル基は、アリル基及び/又はプロペニル基であることが好ましく、アリル基であることがより好ましい。1つのフェノール性芳香環に直接結合しているアルケニル基の数は、特に限定されず、例えば、1~4である。本発明の作用効果をより有効かつ確実に奏する観点から、1つのフェノール性芳香環に直接結合しているアルケニル基の数は、好ましくは1~2であり、より好ましくは1である。また、アルケニル基のフェノール性芳香環への結合位置も特に限定されないが、オルト位(2,6位)であることが好ましい。
 フェノール性芳香環は、1つ以上の水酸基が芳香環に直接結合したものをいい、フェノール環やナフトール環が挙げられる。1つのフェノール性芳香環に直接結合している水酸基の数は、特に限定されず、例えば1~2であり、好ましくは1である。
 フェノール性芳香環は、アルケニル基以外の置換基を有していてもよい。そのような置換基としては、例えば、炭素数1~10の直鎖状アルキル基、炭素数3~10の分岐状アルキル基、炭素数3~10の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~10の分岐状アルコキシ基、炭素数3~10の環状アルコキシ基、及びハロゲン原子が挙げられる。フェノール性芳香環がアルケニル基以外の置換基を有する場合、1つのフェノール性芳香環に直接結合している当該置換基の数は、特に限定されず、例えば1~2である。また、当該置換基のフェノール性芳香環への結合位置も特に限定されない。
 アルケニルフェノール(A)は、1つ以上のアルケニル基がフェノール性芳香環に直接結合した構造を1つ又は複数有してもよい。本発明の作用効果をより有効かつ確実に奏する観点から、アルケニルフェノール(A)は、1つ以上のアルケニル基がフェノール性芳香環に直接結合した構造を1つ又は2つ有することが好ましく、2つ有することが好ましい。
 アルケニルフェノール(A)は、例えば、下記式(A1)又は下記式(A2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000016
(式中、Rxaは、各々独立して、炭素数2~8のアルケニル基を表し、Rxbは、各々独立して、炭素数1~10のアルキル基又は水素原子を表し、Rxcは、各々独立して、炭素数4~12の芳香環を表し、Rxcは、ベンゼン環と縮合構造を形成してもよく、Rxcは、存在していてもよく、存在していなくてもよく、Aは、炭素数1~6のアルキレン基、炭素数7~16のアラルキレン基、炭素数6~10のアリーレン基、フルオレニリデン基、スルホニル基、酸素原子、硫黄原子又は直接結合(単結合)を表し、Rxcが存在しない場合は、1つのベンゼン環にRxa及び/又はRxbの基を2つ以上有してもよい。)
Figure JPOXMLDOC01-appb-C000017
(式中、Rxdは、各々独立して、炭素数2~8のアルケニル基を表し、Rxeは、各々独立して、炭素数1~10のアルキル基又は水素原子を表し、Rxfは、炭素数4~12の芳香環を表し、Rxfは、ベンゼン環と縮合構造を形成してもよく、Rxfは、存在していても、存在していなくてもよく、Rxfが存在しない場合は、1つのベンゼン環にRxd及び/又はRxeの基を2つ以上有してもよい。)
 式(A1)及び式(A2)中、Rxa及びRxdとして表される炭素数2~8のアルケニル基としては、特に制限されないが、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等が挙げられる。
 式(A1)及び式(A2)中、Rxc及びRxfで表される基がベンゼン環と縮合構造を形成している場合としては、例えば、フェノール性芳香環として、ナフトール環を含む化合物が挙げられる。また、式(A1)及び式(A2)中、Rxc及びRxfで表される基が存在しない場合としては、例えば、フェノール性芳香環として、フェノール環を含む化合物が挙げられる。
 式(A1)及び式(A2)中、Rxb及びRxeとして表される炭素数1~10のアルキル基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖状アルキル基、イソプロピル基、イソブチル基、tert-ブチル基等の分岐状アルキル基が挙げられる。
 式(A1)中、Aとして表される炭素数1~6のアルキレン基としては、特に制限されないが、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられる。Aとして表される炭素数7~16のアラルキレン基としては、特に制限されないが、例えば、式:-CH-Ar-CH-、-CH-CH-Ar-CH-CH-、又は式:-CH-Ar-CH-CH-(式中、Arは、フェニレン基、ナフチレン基、又はビフェニレン基を表す。)で表される基が挙げられる、Aとして表される炭素数6~10のアリーレン基としては、特に制限されないが、例えば、フェニレン環が挙げられる。
 式(A2)で表される化合物は、本発明の作用効果をより有効かつ確実に奏する観点から、Rxfがベンゼン環であること(ジヒドロキシナフタレン骨格を含む化合物)が好ましい。
 アルケニルフェノール(A)は、相溶性を一層向上させる観点から、ビスフェノール類の2つのフェノール性芳香環にそれぞれ1つのアルケニル基が結合したアルケニルビスフェノールであることが好ましい。同様の観点から、アルケニルビスフェノールは、ビスフェノール類の2つのフェノール性芳香環にそれぞれ1つのアリル基が結合したジアリルビスフェノール、及び/又はビスフェノール類の2つのフェノール性芳香環にそれぞれ1つのプロペニル基が結合したジプロペニルビスフェノールであることが好ましい。
 ジアリルビスフェノールとしては、特に制限されないが、例えば、o,o’-ジアリルビスフェノールA(大和化成工業株式会社製品の「DABPA」)、o,o’-ジアリルビスフェノールF、o,o’-ジアリルビスフェノールS、o,o’-ジアリルビスフェノールフルオレンが挙げられる。ジプロペニルビスフェノールとしては、特に制限されないが、例えば、o,o’-ジプロペニルビスフェノールA(群栄化学工業株式会社の「PBA01」)、o,o’- ジプロペニルビスフェノールF、o,o’-ジプロペニルビスフェノールS、o,o’-ジプロペニルビスフェノールフルオレンが挙げられる。
 アルケニルフェノール(A)の1分子当たりの平均フェノール基数は、本発明の作用効果をより有効かつ確実に奏する観点から、1以上3未満であることが好ましく、1.5以上2.5以下であることがより好ましい。平均フェノール基数は、以下の式により算出される。
Figure JPOXMLDOC01-appb-M000018
 式中、Aiは、分子中にi個のフェノール基を有するアルケニルフェノールのフェノール基数を表し、Xiは、分子中にi個のフェノール基を有するアルケニルフェノールのアルケニルフェノール全体に占める割合を表し、X+X+…X=1である。
[エポキシ変性シリコーン(B)]
 エポキシ変性シリコーン(B)は、エポキシ基含有基により変性されたシリコーン化合物又は樹脂であれば特に限定されない。本実施形態の硬化性組成物は、エポキシ変性シリコーン(B)を含有することにより、低熱膨張性及び耐薬品性に優れる。
 シリコーン化合物又は樹脂は、シロキサン結合が繰り返し形成されたポリシロキサン骨格を有する化合物であれば特に限定されない。ポリシロキサン骨格は、直鎖状の骨格であってもよく、環状の骨格であってもよく、網目状の骨格であってもよい。このなかでも、本発明の作用効果をより有効かつ確実に奏する観点から、直鎖状の骨格であることが好ましい。
 エポキシ基含有基としては、特に制限されないが、例えば、下記式(a1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、Rは、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基等の炭素数1~5のアルキレン基)を表し、Xは、下記式(a2)で表される1価の基又は下記式(a3)で表される1価の基を表す。)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 エポキシ変性シリコーン(B)は、140~250g/molのエポキシ当量を有するエポキシ変性シリコーンを含有することが好ましい。エポキシ変性シリコーン(B)は、上記範囲内にあるエポキシ当量を有するエポキシ変性シリコーンを含有することにより、一層優れた相溶性を有することから、低熱膨張性及び耐薬品性をバランスよく一層向上できる傾向にある。上記エポキシ当量は、同様の観点から、145~245g/molであることがより好ましく、150~240g/molであることがさらに好ましい。
 エポキシ変性シリコーン(B)は、熱硬化性樹脂との相溶性により一層優れ、低熱膨張性及び耐薬品性をバランスよく一層向上できる観点から、2種以上のエポキシ変性シリコーンを含有することが好ましい。この場合、2種以上のエポキシ変性シリコーンは、それぞれ異なるエポキシ当量を有することが好ましく、50~350g/molのエポキシ当量を有するエポキシ変性シリコーン(以下、「低当量エポキシ変性シリコーン(B1’)」ともいう。)と、400~4000g/molのエポキシ当量を有するエポキシ変性シリコーン(以下、「高当量エポキシ変性シリコーン(B2’)」ともいう。)とを含有することがより好ましく、140~250g/molのエポキシ当量を有するエポキシ変性シリコーン(低当量エポキシ変性シリコーン(B1’’))と、450~3000g/molのエポキシ当量を有するエポキシ変性シリコーン(高当量エポキシ変性シリコーン(B2’’))とを含有することがさらに好ましい。
 エポキシ変性シリコーン(B)が2種以上のエポキシ変性シリコーンを含有する場合、エポキシ変性シリコーン(B)の平均エポキシ当量は、140~3000g/molであることが好ましく、250~2000g/molであることがより好ましく、300~1000g/molであることがさらに好ましい。平均エポキシ当量は、以下の式により算出される。
Figure JPOXMLDOC01-appb-M000022
(式中、Eiは、2種以上のエポキシ変性シリコーンのうちの1種のエポキシ変性シリコーンのエポキシ当量を表し、Wiは、エポキシ変性シリコーン(B)中の上記エポキシ変性シリコーンの割合を表し、W+W+…W=1である。)
 エポキシ変性シリコーン(B)は、一層優れた相溶性を有し、低熱膨張性及び耐薬品性をバランスよく一層向上できる観点から、下記式(B1)で表されるエポキシ変性シリコーンを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000023
(式中、Rは、各々独立に、単結合、アルキレン基、アリーレン基又はアラルキレン基を示し、Rは、各々独立に、炭素数1~10のアルキル基又はフェニル基を示し、nは、0~100の整数を示す。)
 式(B1)中、Rで表されるアルキレン基は、直鎖状、分岐状又は環状のいずれであってもよい。アルキレン基の炭素数は、好ましくは1~12であり、より好ましくは1~4である。アルキレン基としては、例えば、メチレン基、エチレン基又はプロピレン基が挙げられる。これらの中でも、Rは、プロピレン基であることが好ましい。
 式(B1)中、Rで表されるアリーレン基は、置換基を有していてもよい。アリーレン基の炭素数としては、好ましくは6~40であり、より好ましくは6~20である。アリーレン基としては、例えば、フェニレン基、シクロヘキシルフェニレン基、ヒドロキシフェニレン基、シアノフェニレン基、ニトロフェニレン基、ナフチリレン基、ビフェニレン基、アントリレン基、ピレニレン基、及びフルオレニレン基等が挙げられる。これらの基には、エーテル結合、ケトン結合、あるいはエステル結合を含んでいてもよい。
 式(B1)中、Rで表されるアラルキレン基の炭素数は、好ましくは7~30であり、より好ましくは7~13である。アラルキレン基としては、特に制限されないが、例えば、下記式(X-I)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(式(X-I)中、*は、結合手を表す。)
 式(B1)中、Rで表される基は、更に置換基を有していてもよく、置換基としては、例えば、炭素数1~10の直鎖状アルキル基、炭素数3~10の分岐状アルキル基、炭素数3~10の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~10の分岐状アルコキシ基、炭素数3~10の環状アルコキシ基が挙げられる。これらの中でも、Rは、プロピレン基であることが特に好ましい。
 式(B1)中、Rは、各々独立して、炭素数1~10のアルキル基又はフェニル基を表す。上記アルキル基及びフェニル基は、置換基を有してもよい。炭素数1~10のアルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。アルキル基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基、シクロヘキシル基が挙げられる。これらの中でも、Rは、メチル基又はフェニル基であることが好ましい。
 式(B1)中、nは0以上の整数を表し、例えば、1~100である。一層優れた相溶性を有し、低熱膨張性及び耐薬品性をバランスよく一層向上できる観点から、nは、好ましくは50以下であり、より好ましくは30以下であり、さらに好ましくは20以下である。
 エポキシ変性シリコーン(B)は、熱硬化性樹脂との相溶性により一層優れ、低熱膨張性及び耐薬品性をバランスよく一層向上させる観点から、式(B1)で表されるエポキシ変性シリコーンを2種類以上含有することが好ましい。この場合、2種類以上含有するエポキシ変性シリコーンは、それぞれ異なるnを有することが好ましく、式(B1)においてnが1~2であるエポキシ変性シリコーンと、式(B1)においてnが5~20であるエポキシ変性シリコーンとを含有することがより好ましい。
 エポキシ変性シリコーン(B)の1分子当たりの平均エポキシ基数は、本発明の作用効果をより有効かつ確実に奏する観点から、1以上3未満であることが好ましく、1.5以上2.5以下であることがより好ましい。平均エポキシ基数は、以下の式により算出される。
Figure JPOXMLDOC01-appb-M000025
(式中、Biは、分子中にi個のエポキシ基を有するエポキシ変性シリコーンのエポキシ基数を表し、Yiは、分子中にi個のエポキシ基を有するエポキシ変性シリコーンのエポキシ変性シリコーン全体に占める割合を表し、Y+Y+…Y=1である。)
 エポキシ変性シリコーン(B)の含有量は、一層優れた低熱膨張性及び耐薬品性を発現できる観点から、エポキシ変性シリコーン(B)及びエポキシ化合物(C)の合計100質量%に対して、5~95質量%であることが好ましく、10~90質量%であることがより好ましく、40~85質量%であることが更に好ましく、50~80質量%であることが更により好ましい。
 エポキシ変性シリコーン(B)としては、市販品を用いてもよく、公知の方法により製造した製造品を用いてもよい。市販品としては、例えば、信越化学工業(株)製品の「X-22-163」、「KF-105」が挙げられる。
[エポキシ化合物(C)]
 エポキシ化合物(C)は、エポキシ変性シリコーン(B)以外のエポキシ化合物であり、より具体的には、ポリシロキサン骨格を有しないエポキシ化合物である。本実施形態の硬化性組成物は、エポキシ化合物(C)を含有することにより、より優れた相溶性、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる。
 エポキシ化合物(C)としては、エポキシ変性シリコーン(B)以外のエポキシ化合物であれば特に限定されない。本実施形態の硬化性組成物におけるエポキシ化合物(C)としては、典型的には、1分子中にエポキシ基を2つ有する2官能エポキシ化合物や1分子中にエポキシ基を3つ以上有する多官能エポキシ化合物を使用することができる。エポキシ化合物(C)は、一層優れた相溶性、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる観点から、2官能エポキシ化合物及び/又は多官能エポキシ化合物を含有することが好ましい。
 本実施形態の硬化性組成物におけるエポキシ化合物(C)としては、特に限定されないが、下記式(3a)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000026
(式(3a)中、Arは、各々独立して、ベンゼン環又はナフタレン環を表し、Arは、ベンゼン環、ナフタレン環又はビフェニル環を表し、R3aは、各々独立して、水素原子又はメチル基を表し、kは1~50の整数を表し、
 ここで、Arにおけるベンゼン環又はナフタレン環は、さらに一又は複数の置換基を有してもよく、当該置換基は、図示しないグリシジルオキシ基であってもよく、その他の置換基、例えば、炭素数1~5のアルキル基、フェニル基等であってもよく、
 Arにおけるベンゼン環、ナフタレン環又はビフェニル環は、さらに一又は複数の置換基を有してもよく、当該置換基は、グリシジルオキシ基であってもよく、その他の置換基、例えば、炭素数1~5のアルキル基、フェニル基等であってもよい。)
 上記式(3a)で表される化合物中、2官能エポキシ化合物としては、例えば、下記式(b1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(式(b1)中、Arは、各々独立して、ベンゼン環又はナフタレン環を表し、Arは、ベンゼン環、ナフタレン環又はビフェニル環を表し、R3aは、各々独立して、水素原子又はメチル基を表し、
 ここで、Arにおけるベンゼン環又はナフタレン環は、さらに一又は複数の置換基を有してもよく、当該置換基は、例えば、炭素数1~5のアルキル基やフェニル基等のグリシジルオキシ基以外の置換基であってもよく、
 Arにおけるベンゼン環、ナフタレン環又はビフェニル環は、さらに一又は複数の置換基を有してもよく、当該置換基は、例えば、炭素数1~5のアルキル基やフェニル基等のグリシジルオキシ基以外の置換基であってもよい。)
 式(3a)で表される化合物は、式(3a)においてArが少なくともグリシジルオキシ基で置換された、フェノール類ノボラック型エポキシ樹脂であることが好ましい。フェノール類ノボラック型エポキシ樹脂としては、特に限定されないが、例えば、下記式(3-1)で表される構造を有する化合物(ナフタレン骨格を有するナフタレン骨格含有多官能エポキシ樹脂)や、ナフタレンクレゾールノボラック型エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000028
(式中、Ar31は、各々独立して、ベンゼン環又はナフタレン環を表し、Ar41は、各々独立して、ベンゼン環、ナフタレン環又はビフェニル環を表し、R31aは、各々独立して、水素原子又はメチル基を表し、pは、0~2の整数であり、好ましくは0又は1を表し、kzは1~50の整数を表し、各環は、グリシジルオキシ基以外の置換基(例えば、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又はフェニル基)を有してもよく、Ar31及びAr41の少なくとも一方はナフタレン環を表す。)
 式(3-1)で表される構造を有する化合物としては、式(3-2)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
(式中、Rは、メチル基を表し、kzは、上記式(3-1)中のkzと同義である。)
 ナフタレンクレゾールノボラック型エポキシ樹脂としては、特に限定されないが、例えば、下記式(NE)で示されるクレゾール/ナフトールノボラック型エポキシ樹脂が好ましい。なお、下記式(NE)で示される化合物は、クレゾールノボラックエポキシの構成単位と、ナフトールノボラックエポキシの構成単位とのランダム共重合体であり、クレゾールエポキシ及びナフトールエポキシのいずれもが末端になりうる。
Figure JPOXMLDOC01-appb-C000030
 前記式(NE)におけるm及びnは、各々、1以上の整数を表す。m及びnの上限及びその比については特に限定されないが、低熱膨張性の観点から、m:n(ここで、m+n=100)として、30~50:70~50であることが好ましく、45~55:55~45がより好ましい。
 ナフタレンクレゾールノボラック型エポキシ樹脂としては、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。市販品としては、例えば、日本化薬株式会社製品の「NC-7000」、「NC-7300」、「NC-7300L」や、DIC株式会社製品の「HP-9540」、「HP-9500」等が挙げられ、「HP-9540」がとりわけ好ましい。
 式(3a)で表される化合物は、上述したフェノール類ノボラック型エポキシ樹脂に該当しない化合物(以下、「アラルキル型エポキシ樹脂」ともいう。)であってもよい。
 アラルキル型エポキシ樹脂としては、式(3a)においてArがナフタレン環であり、Arがベンゼン環である化合物(「ナフトールアラルキル型エポキシ樹脂」ともいう。)、及び式(3a)においてArがベンゼン環であり、Arがビフェニル環である化合物(「ビフェニルアラルキル型エポキシ樹脂」ともいう。)であることが好ましく、ビフェニルアラルキル型エポキシ樹脂であることがより好ましい。
 ナフトールアラルキル型エポキシ樹脂としては、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。市販品としては、例えば、DIC株式会社製品の「HP-5000」、「HP-9900」、日鉄ケミカル&マテリアル株式会社製品の「ESN-375」、「ESN-475」等が挙げられる。
 ビフェニルアラルキル型エポキシ樹脂は、下記式(3b)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、kaは、1以上の整数を表し、1~20が好ましく、1~6がより好ましい。)
 上記式(3b)で表される化合物中、2官能エポキシ化合物としては、例えば、式(3b)においてkaが1である化合物が挙げられる。
 ビフェニルアラルキル型エポキシ樹脂としては、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。市販品としては、例えば、日本化薬株式会社製品の「NC-3000」、「NC-3000L」、「NC-3000FH」等が挙げられる。
 また、本実施形態の硬化性組成物におけるエポキシ化合物(C)としては、ナフタレン型エポキシ樹脂(式(3a)で表される化合物に該当するものを除く。)を用いることが好ましい。ナフタレン型エポキシ樹脂としては、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を一層向上させる観点から、ナフチレンエーテル型エポキシ樹脂であることが好ましい。
 ナフチレンエーテル型エポキシ樹脂は、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を一層向上させる観点から、下記式(3-3)で表される2官能エポキシ化合物又は下記式(3-4)で表される多官能エポキシ化合物、あるいは、それらの混合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
(式中、R13は、各々独立して、水素原子、炭素数1~3のアルキル基(例えば、メチル基又はエチル基)、又は炭素数2~3のアルケニル基(例えば、ビニル基、アリル基又はプロペニル基)を表す。)
Figure JPOXMLDOC01-appb-C000033
(式中、R14は、各々独立して、水素原子、炭素数1~3のアルキル基(例えば、メチル基又はエチル基)、又は炭素数2~3のアルケニル基(例えば、ビニル基、アリル基又はプロペニル基)を表す。)
 ナフチレンエーテル型エポキシ樹脂は、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。ナフチレンエーテル型エポキシ樹脂の市販品としては、例えば、DIC株式会社製品の「HP-6000」、「EXA-7300」、「EXA-7310」、「EXA-7311」、「EXA-7311L」、「EXA7311-G3」、「EXA7311-G4」、「EXA-7311G4S」、「EXA-7311G5」等が挙げられ、とりわけHP-6000が好ましい。
 ナフタレン型エポキシ樹脂の上記したもの以外の例としては、以下に限定されないが、下記式(b3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000034
(式(b3)中、R3bは、各々独立して、水素原子、炭素数1~5のアルキル基(例えば、メチル基又はエチル基)、アラルキル基、ベンジル基、ナフチル基、少なくとも1つのグリシジルオキシ基を含有するナフチル基又は少なくとも1つのグリシジルオキシ基を含有するナフチルメチル基を表し、nは、0以上の整数(例えば、0~2)を表す。)
 上記式(b3)で表される化合物の市販品としては、例えば、DIC株式会社製品の「HP-4032」(上記式(b3)においてn=0)、「HP-4710」(上記式(b3)において、n=0であり、R3bが少なくとも1つのグリシジルオキシ基を含有するナフチルメチル基)等が挙げられる。
 また、本実施形態の硬化性組成物におけるエポキシ化合物(C)としては、ビフェニル型エポキシ樹脂(上述したエポキシ化合物(C)に該当するものを除く。)を用いることが好ましい。
 ビフェニル型エポキシ樹脂としては、特に限定されないが、例えば、下記式(b2)で表される化合物(化合物(b2))が挙げられる。
Figure JPOXMLDOC01-appb-C000035
(式(b2)中、Raは、各々独立して、炭素数1~10のアルキル基又は水素原子を表す。)
 式(b2)中、炭素数1~10のアルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基及びシクロヘキシル基が挙げられる。
 ビフェニル型エポキシ樹脂が、化合物(b2)である場合、ビフェニル型エポキシ樹脂は、アルキル基であるRaの数が異なる化合物(b2)の混合物の形態であってもよい。具体的には、アルキル基であるRaの数が異なるビフェニル型エポキシ樹脂の混合物であることが好ましく、アルキル基であるRaの数が0である化合物(b2)と、アルキル基であるRaの数が4である化合物(b2)の混合物であることがより好ましい。
 また、本実施形態の硬化性組成物におけるエポキシ化合物(C)としては、ジシクロペンタジエン型エポキシ樹脂(上述したエポキシ化合物(C)に該当するものを除く。)を用いることができる。
 ジシクロペンタジエン型エポキシ樹脂としては、特に限定されないが、例えば、下記式(3-5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000036
(式中、R3cは、各々独立し、水素原子又は炭素数1~5のアルキル基を表し、k2は、0~10の整数を表す。)
 上記式(3-5)で表される化合物は、特に限定されないが、例えば、下記式(b4)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000037
(式(b4)中、R3cは、各々独立し、水素原子又は炭素数1~5のアルキル基(例えば、メチル基又はエチル基)を表す。)
 ジシクロペンタジエン型エポキシ樹脂は、市販品を用いてもよく、公知の方法により製造した製造品を用いてもよい。ジシクロペンタジエン型エポキシ樹脂の市販品としては、大日本インキ化学工業株式会社製品の「EPICRON HP-7200L」、「EPICRON HP-7200」、「EPICRON HP-7200H」、「EPICRON HP-7000HH」等が挙げられる。
 これらの中でも、エポキシ化合物(C)は、一層優れた耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる観点から、式(3a)で表されるエポキシ樹脂、ナフタレン型エポキシ樹脂及びビフェニル型エポキシ樹脂からなる群より選択される1種以上であることが好ましく、この場合において、式(3a)で表されるエポキシ樹脂はナフタレンクレゾールノボラック型エポキシ樹脂を含み、ナフタレン型エポキシ樹脂はナフチレンエーテル型エポキシ樹脂を含むことが好ましい。
 エポキシ化合物(C)としては、前述したエポキシ化合物に該当しない、他のエポキシ樹脂を含んでいてもよい。
 他のエポキシ樹脂としては、特に限定されないが、ビスフェノール型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ポリオール型エポキシ樹脂、イソシアヌレート環含有エポキシ樹脂、フルオレン型エポキシ樹脂、ビスフェノールA型構造単位と炭化水素系構造単位からなるエポキシ樹脂等が挙げられる。
 他のエポキシ樹脂としては、上記した中でも、耐薬品性、銅箔ピール強度及び絶縁信頼性を一層向上させる観点から、ビスフェノール型エポキシ樹脂を含むことができ、ビスフェノール型エポキシ樹脂としては、例えば、ジアリルビスフェノール型エポキシ樹脂(例えば、ジアリルビスフェノールA型エポキシ樹脂、ジアリルビスフェノールE型エポキシ樹脂、ジアリルビスフェノールF型エポキシ樹脂、ジアリルビスフェノールS型エポキシ樹脂等)等を用いることができる。
 エポキシ化合物(C)としては、上述したエポキシ化合物及びエポキシ樹脂のうち、1種を単独で、又は2種以上を組み合わせて用いられる。
 エポキシ化合物(C)の1分子当たりの平均エポキシ基数は、本発明の作用効果をより有効かつ確実に奏する観点から、1以上3未満であることが好ましく、1.5以上2.5以下であることがより好ましい。平均エポキシ基数は、以下の式により算出される。
Figure JPOXMLDOC01-appb-M000038
(式中、Ciは、分子中にi個のエポキシ基を有するエポキシ化合物のエポキシ基数を表し、Ziは、分子中にi個のエポキシ基を有するエポキシ化合物のエポキシ化合物全体に占める割合を表し、Z+Z+…Z=1である。)
 エポキシ化合物(C)の含有量は、一層優れた相溶性、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる観点から、エポキシ変性シリコーン(B)及びエポキシ化合物(C)の合計量100質量%に対して、5~95質量%であることが好ましく、10~90質量%であることがより好ましく、15~60質量%であることがさらに好ましく、20~50質量%であることが特に好ましい。
[環状カルボジイミド化合物(D)]
 環状カルボジイミド化合物(D)は、分子内に1つ以上の環状構造を有し、1つの環状構造中に1つのカルボジイミド基を有する化合物であれば特に限定されない。本実施形態の硬化性組成物は、環状カルボジイミド化合物(D)を含有することにより、流動性を悪化させることなく、十分な成形性を維持しながら、ガラス転移温度(Tg)が高くなり、耐熱性、低熱膨張性、銅箔ピール強度及び耐薬品性に優れる。
 環状構造は、カルボジイミド基(-N=C=N-)を有し、その第1窒素原子と第2窒素原子とが結合基により結合されている。環状構造を形成する原子数は、8~50であることが好ましく、10~30であることがより好ましく、10~20であることが更に好ましい。ここで、環状構造を形成する原子数は、環状構造を直接構成する原子の数を意味する。例えば、8員環であれば環状構造を形成する原子数は8であり、50員環であれば環状構造を形成する原子数は50である。環状構造を形成する原子数が8以上であることにより、環状カルボジイミド化合物の安定性が良好であり、保管し易く、使用し易いという利点を備える。また、環状構造を形成する原子数が50を超える環状カルボジイミド化合物の合成は困難である。
 環状カルボジイミド化合物(D)は、下記式(D1)で表される環状構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式(D1)中、Lは、脂肪族基、脂環族基、芳香族基又はこれらを組み合わせた基である2~4価の結合基である。結合基は、ヘテロ原子及び/又は置換基を含んでいてもよい。)
 ヘテロ原子とは、O、N、S及びPをいう。結合基のうち、2つの価は、環状構造を形成するために使用される。Lが3価又は4価の結合基である場合、Lは、単結合、二重結合、原子又は原子団を介して、ポリマー又は他の環状構造と結合している。
(結合基L)
 結合基Lは、下記式(1-1)、(1-2)又は(1-3)で表される2~4価の結合基であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 式(1-1)中、Ar101及びAr102は、各々独立に、ヘテロ原子及び置換基を含んでいてもよい、2~4価の炭素数5~15の芳香族炭化水素基である。
 Ar101及びAr102で表される芳香族炭化水素基としては、特に制限されないが、例えば、へテロ原子を含有する複素環構造を有してもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、炭素数5~15のアレーンテトライル基が挙げられる。ここで、アリーレン基(2価)としては、フェニレン基、ナフタレンジイル基等が挙げられる。アレーントリイル基(3価)としては、ベンゼントリイル基、ナフタレントリイル基等が挙げられる。アレーンテトライル基(4価)としては、ベンゼンテトライル基、ナフタレンテトライル基等が挙げられる。これらの芳香族炭化水素基は置換基を有してもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。
 Ar101及びAr102としては、フェニレン基、ナフタレンジイル基、ベンゼントリイル基、ナフタレントリイル基又はベンゼンテトライル基であることが好ましく、フェニレン基又はベンゼントリイル基であることがより好ましい。
 式(1-2)中、R101及びR102は、各々独立に、ヘテロ原子及び/又は置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基(脂肪族炭化水素基)、2~4価の炭素数3~20の脂環族基(脂環式炭化水素基)及びこれらの組み合わせ、あるいはこれらの脂肪族基及び/又は脂環族基と2~4価の炭素数5~15の芳香族基(芳香族炭化水素基)の組み合わせが挙げられる。
 R101及びR102で表される脂肪族基としては、特に制限されないが、例えば、炭素数1~20のアルキレン基、炭素数1~20のアルカントリイル基、炭素数1~20のアルカンテトライル基等が挙げられる。アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基等が挙げられる。アルカントリイル基としては、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基等が挙げられる。アルカンテトライル基としては、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基等が挙げられる。これらの脂肪族基は置換基を有してもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。
 脂環族基としては、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルカントリイル基、炭素数3~20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基等が挙げられる。シクロアルカントリイル基としては、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基等が挙げられる。シクロアルカンテトライル基としては、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基等が挙げられる。これらの脂環族基は、置換基を有してもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。
 芳香族基としては、へテロ原子を含有する複素環構造を有してもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基としては、フェニレン基、ナフタレンジイル基等が挙げられる。アレーントリイル基(3価)としては、ベンゼントリイル基、ナフタレントリイル基等が挙げられる。アレーンテトライル基(4価)としては、ベンゼンテトライル基、ナフタレンテトライル基等が挙げられる。これらの芳香族基は、置換基を有してもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。
 R101及びR102としては、各々独立して、メチレン基、エチレン基、ビニリデン基、フェニレン基又はエーテル基であることが好ましく、メチレン基、フェニレン基又はエーテル基であることがより好ましい。
 式(1-1)及び(1-2)中、X及びXは、各々独立に、ヘテロ原子及び/又は置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基又はこれらの組み合わせである。
 X及びXにおける脂肪族基、脂環族基及び芳香族基の例としては、上記R101及びR102で例示されたものと同じものが挙げられる。X及びXは、メチレン基、エチレン基、ビニリデン基又はエーテル基であることが好ましく、メチレン基又はエーテル基がより好ましい。
 式(1-1)及び(1-2)において、s及びkは、各々独立して0~10であることが好ましく、0~3であることがより好ましく、0~1であることが更に好ましい。s及びkが、それぞれ10を超える環状カルボジイミド化合物の合成は困難であり、コストが増大する。なお、s又はkが2以上であるとき、繰り返し単位としてのX又はXは、他のX又はXと異なっていてもよい。
 式(1-3)中、Xは、ヘテロ原子及び/又は置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基又はこれらの組み合わせである。
 Xにおける脂肪族基、脂環族基及び芳香族基の例としては、上記のR101、R102、X及びXで例示されたものと同じものが挙げられる。Xとしては、メチレン基、エチレン基、ビニリデン基又はエーテル基であることが好ましく、メチレン基又はエーテル基であることがより好ましい。
 また、Ar101、Ar102、R101、R102、X、X及びXは、O原子、N原子、S原子及びP原子から選択されるヘテロ原子を有していてもよい。但し、ヘテロ原子がN原子の場合には、そのN原子はニトロ基及び/又はアミド基として存在する。
 また、Lが2価の結合基であるときは、Ar101、Ar102、R101、R102、X、X及びXの全ては、2価の基である。Lが3価の結合基であるときは、Ar101、Ar102、R101、R102、X、X及びXのうちの1つは、3価の基である。Lが4価の結合基であるときは、Ar101、Ar102、R101、R102、X、X及びXのうちの1つは、4価の基であるか、又はAr101、Ar102、R101、R102、X、X及びXのうちの2つが3価の基である。
 Lが3価又は4価の結合基であって、Lがカルボジイミド基を有する他の環状構造と結合している態様としては、式(1)で表される2個以上の環状構造が、スピロ環構造、単結合、炭素数1~10のアルキレン基、炭素数6~10の芳香族環構造、炭素数4~12のシクロアルカン環構造等から選ばれる炭素数1~15(好ましくは1~12)の共有部分を介して結合している態様が挙げられる。このような態様の具体例を下記式(2)、(4)、(5)に示す。
Figure JPOXMLDOC01-appb-C000041
 環状カルボジイミド化合物(D)は、下記式(i)で表される環状カルボジイミド化合物であってもよい。なお、下記式(i)で表される環状カルボジイミド化合物は、分子中に2つ以上のカルボジイミド基を有してもよく、1つのカルボジイミド基を有してもよい。
Figure JPOXMLDOC01-appb-C000042
(式(i)中、Xaは、下記式(i-1)~(i-3)で表される2価の基又は下記式(i-4)で表される4価の基である。Xaが2価のときqは0であり、Xaが4価のときqは1である。Ar201~Ar204は各々独立に芳香族炭化水素基である。これらの芳香族炭化水素基は炭素数1~6のアルキル基またはフェニル基を置換基として有してもよい。)
Figure JPOXMLDOC01-appb-C000043
(式(i-1)中、nは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000044
(式(i-2)中、m及びnは、各々独立に0~3の整数である。)
Figure JPOXMLDOC01-appb-C000045
(式(i-3)中、R301およびR302は各々独立に、炭素数1~6のアルキル基、フェニル基を表す。)
Figure JPOXMLDOC01-appb-C000046
 また、上記式(i)で表される環状カルボジイミド化合物としては、以下の構造式を有する化合物がいくつか例示される。
Figure JPOXMLDOC01-appb-C000047
 環状カルボジイミド化合物(D)は、ガラス転移温度(Tg)、耐薬品性及び耐熱性に一層優れる観点から、1分子内に2つ以上のカルボジイミド基を含有する多価環状カルボジイミド化合物を含むことが好ましい。環状カルボジイミド化合物(D)は、硬化性能に一層優れる観点から、1分子内に2つ若しくは3つのカルボジイミド基を含有する多価環状カルボジイミド化合物を含むことがより好ましい。これらの多価環状カルボジイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。
 多価環状カルボジイミド化合物としては、例えば、上述したカルボジイミド化合物のうち、1分子内に2つ以上のカルボジイミド基を含有するものが挙げられる。これらの中でも、ガラス転移温度(Tg)、耐薬品性及び耐熱性に一層優れる観点から、下記式(D2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000048
(式(D2)中、Xは、下記式(3)で表される4価の基であり、Ar~Arは、各々独立に、フェニレン基(例えば、オルトフェニレン基)又はナフタレン-ジイル基(例えば、1,2-ナフタレン-ジイル基)である2価の連結基であり、該連結基は、置換基を有してもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。また、これらの連結基は、ヘテロ原子を含む複素環構造を有していてもよい。)
Figure JPOXMLDOC01-appb-C000049
 環状カルボジイミド化合物(D)は、耐熱性に一層優れる観点から、下記式(D3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000050
 これらの環状カルボジイミド化合物(D)は、公知の方法(例えば、国際公開第2010/071213号パンフレットに記載の方法)により製造することができる。
 環状カルボジイミド化合物(D)の含有量は、樹脂固形分100質量部に対して、1.0~30質量部であることが好ましく、2.0~15質量部であることがより好ましく、2.5~12.0質量部であることがさらに好ましい。環状カルボジイミド化合物(D)の含有量が、1.0質量部以上であることにより、耐熱性、低熱膨張性、銅箔ピール強度及び耐薬品性に一層優れる傾向にあり、環状カルボジイミド化合物(D)の含有量が、30質量部以下であることにより、難燃性に一層優れる傾向にある。
[化合物(H)]
 本実施形態の硬化性組成物は、低熱膨張性、耐薬品性及び銅箔ピール強度をより一層向上させる観点から、マレイミド化合物、シアン酸エステル化合物、アルケニルフェノール(A)以外のフェノール化合物(F)及びアルケニル置換ナジイミド化合物からなる群より選択される1種以上の化合物(H)を更に含有することが好ましい。化合物(H)としては、特に限定されないが、2官能以上であることが好ましく、3官能以上の多官能であってもよい。
 本実施形態の硬化性組成物中の化合物(H)の含有量は、樹脂固形分100質量%に対して、好ましくは10~80質量%であることが好ましく、20~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。
[マレイミド化合物]
 本実施形態の硬化性組成物は、低熱膨張性及び耐薬品性を一層向上させる観点から、マレイミド化合物を含むことが好ましい。マレイミド化合物としては、1分子中に1つ以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、1分子中にマレイミド基を1つ有するモノマレイミド化合物(例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド等)、1分子中にマレイミド基を2つ以上有するポリマレイミド化合物(例えば、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン)、m-フェニレンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、下記式(H1a)で表されるマレイミド化合物、下記式(H1b)で表されるマレイミド化合物、これらのマレイミド化合物とアミン化合物とのプレポリマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000051
(式中、Rは、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を表す。)
 nは、1以上であり、好ましくは1~100であり、より好ましくは1~10である。
 これらのマレイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、低熱膨張性及び耐薬品性をより一層向上させる観点から、マレイミド化合物は、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、式(H1a)で表されるマレイミド化合物及び下記式(H1b)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000052
(式(H1b)中、R13は各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、nは1以上10以下の整数を示す。)
 マレイミド化合物は、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。マレイミド化合物の市販品としては、ケイ・アイ化成株式会社製品の、「BMI-70」、「BMI-80」、「BMI-1000P」、大和化成工業株式会社製品の「BMI-3000」、「BMI-4000」、「BMI-5100」、「BMI-7000」、「BMI-2300」、日本化薬株式会社製品の「MIR-3000」等が挙げられる。
 マレイミド化合物の含有量は、低熱膨張性及び耐薬品性を一層向上させる観点から、樹脂固形分100質量部に対して、好ましくは1~50質量部であり、5~40質量部であることがより好ましく、10~40質量部であることがさらに好ましい。
[シアン酸エステル化合物]
 本実施形態の硬化性組成物は、低熱膨張性及び銅箔ピール強度を一層向上させる観点から、シアン酸エステル化合物を含むことが好ましい。シアン酸エステル化合物としては、1分子中に2つ以上のシアナト基(シアン酸エステル基)を有する化合物であれば特に限定されないが、例えば、下記式(H2a)で表される等のナフトールアラルキル型シアン酸エステル化合物、式(H2a)で表される化合物を除く下記式(H2b)で表される化合物等のノボラック型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル、ジアリルビスフェノール型シアン酸エステル化合物、ビス(3,3-ジメチル-4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、2、2-ビス(4-シアナトフェニル)プロパンが挙げられる。これらのシアン酸エステル化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。本実施形態においては、耐熱性、低熱膨張性及び銅箔ピール強度の観点から、シアン酸エステル化合物が、ナフトールアラルキル型シアン酸エステル化合物及び/又はノボラック型シアン酸エステル化合物等の多官能シアン酸エステル化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000053
(式中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000054
(式中、Ryaは、各々独立して、炭素数2~8のアルケニル基又は水素原子を表し、Rybは、各々独立して、炭素数1~10のアルキル基又は水素原子を表し、Rycは、各々独立して、炭素数4~12の芳香環を表し、Rycは、ベンゼン環と縮合構造を形成してもよく、Rycは、存在していてもよく、存在していなくてもよく、A1aは、各々独立して、炭素数1~6のアルキレン基、炭素数7~16のアラルキレン基、炭素数6~10のアリーレン基、フルオレニリデン基、スルホニル基、酸素原子、硫黄原子、又は直接結合(単結合)を表し、Rycが存在しない場合は、1つのベンゼン環にRya及び/又はRybの基を2つ以上有してもよい。nは、1~20の整数を表す。)
 シアン酸エステル化合物は、これらの中でも、耐熱性、低熱膨張性及び銅箔ピール強度を一層向上させる観点から、式(H2a)及び/又は式(H2b)で表される化合物を含むことが好ましい。
 式(H2a)中、nは、1以上の整数を表し、1~20の整数であることが好ましく、1~10の整数であることがより好ましい。
 式(H2b)中、Ryaとして表される炭素数2~8のアルケニル基としては、特に制限されないが、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等が挙げられる。
 式(H2b)中、Rybとして表される炭素数1~10のアルキル基としては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、tert-ブチル基等の分岐状アルキル基が挙げられる。
 式(H2b)中、A1aとして表される炭素数1~6のアルキレン基としては、特に制限されないが、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられる。また、式(H2b)中、A1aとして表される炭素数7~16のアラルキレン基としては、特に制限されないが、例えば、式:-CH-Ar-CH-、-CH-CH-Ar-CH-CH-、又は式:-CH-Ar-CH-CH-(式中、Arは、フェニレン基、ナフチレン基、又はビフェニレン基を表す。)で表される基が挙げられる。さらに、A1aとして表される炭素数6~10のアリーレン基としては、特に制限されないが、例えば、フェニレン環が挙げられる。
 式(H2b)中、nは、1~20の整数を表し、1~15の整数であることが好ましく、1~10の整数であることがより好ましい。
 式(H2b)で表される化合物は、下記式(H2c)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000055
(式中、Rxは、各々独立して、水素原子又はメチル基を表し、Rは、各々独立して、炭素数2~8のアルケニル基、炭素数1~10のアルキル基又は水素原子を表し、nは、1~10の整数を表す。)
 これらのシアン酸エステル化合物は、公知の方法に準じて製造してもよい。具体的な製造方法としては、例えば、特開2017-195334号公報(特に段落0052~0057)等に記載の方法が挙げられる。
 シアン酸エステル化合物の含有量は、低熱膨張性及び銅箔ピール強度を一層向上させる観点から、樹脂固形分100質量部に対して、好ましくは3~70質量部であることが好ましく、5~60質量部であることがより好ましく、10~40質量部であることがさらに好ましい。
(アルケニルフェノール(A)以外のフェノール化合物(F))
 本実施形態の硬化性組成物は、一層優れた耐薬品性を発現できる観点から、アルケニルフェノール(A)以外のフェノール化合物(F)を含むことが好ましい。フェノール化合物(F)としては、特に限定されないが、ビスフェノール型フェノール樹脂(例えば、ビスフェノールA型樹脂、ビスフェノールE型樹脂、ビスフェノールF型樹脂、ビスフェノールS型樹脂等、)、フェノール類ノボラック樹脂(例えば、フェノールノボラック樹脂、ナフトールノボラック樹脂、クレゾールノボラック樹脂、後述するアミノトリアジンノボラック樹脂等)、グリシジルエステル型フェノール樹脂、ナフタレン型フェノール樹脂、アントラセン型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、アラルキル型フェノール樹脂、フェノール変性芳香族炭化水素ホルムアルデヒド樹脂、フルオレン型フェノール樹脂等が挙げられる。これらのフェノール化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。
 これらの中でも、フェノール化合物(F)は、一層優れた相溶性及び耐薬品性を発現できる観点から、1分子中にフェノール性水酸基を2つ有する2官能フェノール化合物またはアミノトリアジンノボラック樹脂を含むことが好ましい。
 2官能フェノール化合物としては、特に限定されないが、ビスフェノール、ビスクレゾール、フルオレン骨格を有するビスフェノール類(例えば、フルオレン骨格を有するビスフェノール、フルオレン骨格を有するビスクレゾール等)、ビフェノール(例えば、p、p’-ビフェノール等)、ジヒドロキシジフェニルエーテル(例えば、4,4’-ジヒドロキシジフェニルエーテル等)、ジヒドロキシジフェニルケトン(例えば、4,4’-ジヒドロキシジフェニルケトン等)、ジヒドロキシジフェニルスルフィド(例えば、4,4’-ジヒドロキシジフェニルスルフィド等)、ジヒドロキシアレーン(例えば、ハイドロキノン等)が挙げられる。これらの2官能フェノール化合物は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、2官能フェノール化合物は、一層優れた耐薬品性を発現できる観点から、ビスフェノール、ビスクレゾール、及びフルオレン骨格を有するビスフェノール類からなる群より選択される少なくとも1種を含むことが好ましい。上記と同様の観点から、フルオレン骨格を有するビスフェノール類としては、ビスクレゾールフルオレンが好ましい。
 アラルキル型フェノール樹脂としては、例えば、下記式(c2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000056
(式中、Arは、各々独立して、ベンゼン環又はナフタレン環を表し、Arは、ベンゼン環、ナフタレン環、又はビフェニル環を表し、R2aは、各々独立して、水素原子又はメチル基を表し、mは、1~50の整数を表し、各環は、水酸基以外の置換基(例えば、炭素数1~5のアルキル基又はフェニル基等)を有してもよい。)
 式(c2)で表される化合物は、銅箔ピール強度を一層向上させる観点から、式(c2)中、Arがナフタレン環であり、Arがベンゼン環である化合物(以下、「ナフトールアラルキル型フェノール樹脂」ともいう。)、及び式(c2)中、Arがベンゼン環であり、Arがビフェニル環である化合物(以下、「ビフェニルアラルキル型フェノール樹脂」ともいう。)であることが好ましい。
 ナフトールアラルキル型フェノール樹脂は、下記式(8)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000057
(式中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を表す。)
 式(8)中、nは1以上の整数を表し、1~10の整数であることが好ましく、1~6の整数であることがより好ましい。
 ビフェニルアラルキル型フェノール樹脂は、下記式(2c)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000058
(式中、R2bは、各々独立して、水素原子、炭素数1~5のアルキル基又はフェニル基(好ましくは水素原子)を表し、m1は、1~20の整数(好ましくは1~6の整数)を表す。)
 フェノール化合物A’は、低熱膨張性及び耐薬品性を一層向上させる観点から、上記式(8)で表される化合物を含むことが好ましい。
 アラルキル型フェノール樹脂は、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。アラルキル型フェノール樹脂の市販品としては、日本化薬株式会社製品の「KAYAHARD GPH-65」、「KAYAHARD GPH-78」、「KAYAHARD GPH-103」(ビフェニルアラルキル型フェノール樹脂)、新日鐵化学株式会社製品の「SN-495」(ナフトールアラルキル型フェノール樹脂)が挙げられる。
 本実施形態の硬化性組成物は、前述のとおり、フェノール化合物(F)としてアミノトリアジンノボラック樹脂を含んでもよい。アミノトリアジンノボラック樹脂を含む場合、アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、エポキシ変性シリコーン(B)以外のエポキシ化合物(C)とが反応することで生成した末端水酸基やエポキシ基と、アミノトリアジンノボラック樹脂とが更に反応し、水酸基やアミノ基などの末端官能基を増加させる傾向にある。これにより、熱硬化性樹脂との反応性の高い末端官能基が多数存在することになるため、相溶性および架橋密度が向上し、銅箔ピール強度を向上できる傾向にある。
 アミノトリアジンノボラック樹脂としては、特に限定されないが、銅箔ピール強度向上の観点から、分子内の一つのトリアジン骨格に対して2~20個のフェノール水酸基を有するノボラック樹脂であることが好ましく、分子内の一つのトリアジン骨格に対して2~15個のフェノール水酸基を有するノボラック樹脂であることがより好ましく、分子内の一つのトリアジン骨格に対して2~10個のフェノール水酸基を有するノボラック樹脂であることがさらに好ましい。
 本実施形態の硬化性組成物におけるアルケニルフェノール(A)の含有量は、一層優れた相溶性、耐熱性及び低熱膨張性を発現できる観点から、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及びフェノール化合物(F)の総量100質量部に対して、1~50質量部であることが好ましく、3~30質量部であることがより好ましく、5~20質量部であることがさらに好ましい。
 本実施形態の硬化性組成物におけるエポキシ変性シリコーン(B)の含有量は、一層優れた低熱膨張性及び耐薬品性をバランスよく発現できる観点から、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及びフェノール化合物(F)の総量100質量部に対して、5~70質量部であることが好ましく、10~60質量部であることがより好ましく、20~55質量部であることがさらに好ましい。
 本実施形態の硬化性組成物におけるエポキシ化合物(C)の含有量は、一層優れた相溶性、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる観点から、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及びフェノール化合物(F)の総量100質量部に対して、5~50質量部であることが好ましく、10~30質量部であることがより好ましく、15~25質量部であることがさらに好ましい。
 本実施形態の硬化性組成物におけるフェノール化合物(F)の含有量は、一層優れた耐薬品性を発現できる観点から、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及びフェノール化合物(F)の総量100質量部に対して、5~30質量部であることが好ましく、10~25質量部であることがより好ましく、15~20質量部であることがさらに好ましい。
 なお、硬化性組成物が、フェノール化合物(F)を含有しない場合、上述したアルケニルフェノール(A)、エポキシ変性シリコーン(B)及びエポキシ化合物(C)の各含有量は、アルケニルフェノール(A)、エポキシ変性シリコーン(B)及びエポキシ化合物(C)の総量100質量部に対する含有量を表す。
(アルケニル置換ナジイミド化合物)
 本実施形態の硬化性組成物は、耐熱性をより一層向上させる観点から、アルケニル置換ナジイミド化合物を含むことが好ましい。アルケニル置換ナジイミド化合物は、1分子中に1つ以上のアルケニル置換ナジイミド基を有する化合物であれば特に限定されないが、例えば、下記式(H4a)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000059
(式中、Rは、各々独立して、水素原子、又は炭素数1~6のアルキル基(例えば、メチル基又はエチル基)を表し、Rは、炭素数1~6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン基、又は下記式(3)若しくは下記式(4)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000060
(式(3)中、Rは、メチレン基、イソプロピリデン基、CO、O、S又はSOを表す。)
Figure JPOXMLDOC01-appb-C000061
(式(4)中、Rは、各々独立して、炭素数1~4のアルキレン基、又は炭素数5~8のシクロアルキレン基を表す。)
 式(H4a)で表されるアルケニル置換ナジイミド化合物は、市販品を用いてもよく、公知の方法に準じて製造された製品を用いてもよい。市販品としては、丸善石油化学株式会社製品の「BANI-M」、及び「BANI-X」が挙げられる。
 アルケニル置換ナジイミド化合物の含有量は、耐熱性をより一層向上させる観点から、樹脂固形分100質量部に対して、好ましくは1~40質量部であり、5~35質量部であることがより好ましく、10~30質量部であることがさらに好ましい。
<第2実施形態>
[第2実施形態の硬化性組成物]
 第2実施形態の硬化性組成物は、アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)に由来する構成単位とを含有する重合体(E)と、環状カルボジイミド化合物(D)とを含む。アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及び環状カルボジイミド化合物(D)としては、上記第1実施形態にて説明した通りである。本明細書において、第1実施形態の硬化性組成物は、重合体(E)を含まない硬化性組成物であり、第2実施形態の硬化性組成物とは区別される。
 第2実施形態の硬化性組成物は、重合体(E)と環状カルボジイミド化合物(D)に加えて、必要に応じて、上述した、マレイミド化合物、シアン酸エステル化合物、前記アルケニルフェノール(A)以外のフェノール化合物(F)及びアルケニル置換ナジイミド化合物からなる群より選択される1種以上の化合物(H)を更に含有してもよい。化合物(H)は、重合体(E)の重合後に残存した未反応成分であってもよいし、合成した重合体(E)に対して、改めて添加した成分であってもよい。
 なお、第2実施形態の硬化性組成物は、重合体(E)に加えて、アルケニルフェノール(A)、エポキシ変性シリコーン(B)及びエポキシ化合物(C)からなる群より選択される1種以上を更に含有してもよい。この場合、第2実施形態の硬化性組成物に含まれるアルケニルフェノール(A)、エポキシ変性シリコーン(B)又はエポキシ化合物(C)は、重合体(E)の重合後に残存した未反応成分であってもよいし、合成した重合体(E)に対して、改めて添加した成分であってもよい。
 第2実施形態の硬化性組成物は、優れた低熱膨張性、銅箔ピール強度及び耐薬品性を有する。各特性が向上する要因は、第1実施形態の硬化性組成物における作用機序と同様、硬化性組成物のおかれた温度による、環状カルボジイミド化合物(D)と重合体(E)及び任意に添加された化合物(H)等の熱硬化性樹脂との反応性の制御により、相溶性及び架橋反応速度が適度に制御され、低熱膨張性、銅箔ピール強度及び耐薬品性が向上したものと推測される。これに加えて、第2実施形態の硬化性組成物は、重合体(E)を含むことにより、一層優れた相溶性を有し、より優れた低熱膨張性、銅箔ピール強度及び耐薬品性を発現でき、絶縁信頼性にも優れる。重合体(E)は、シリコーン系化合物との相溶性に乏しい熱硬化性樹脂と混合した場合においても、十分な相溶性を発揮し得る。これにより、重合体(E)と熱硬化性樹脂を含む硬化性組成物は、均一なワニスや硬化物を与えることができる。当該硬化性組成物を用いて得られるプリプレグ等の硬化物は、各成分が均一に相溶したものであり、成分の不均一による物性のばらつきが更に抑制されたものとなる。
[重合体(E)]
 重合体(E)は、アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、エポキシ化合物(C)に由来する構成単位とを含有し、必要に応じて、マレイミド化合物、シアン酸エステル化合物、アルケニルフェノールA以外のフェノール化合物(F)及びアルケニル置換ナジイミド化合物からなる群より選択される1種以上の化合物(H)に由来する構成単位を更に含有してもよい。重合体(E)が化合物(H)に由来する構成単位を有する場合、化合物(H)としては2官能の化合物であることが好ましい。なお、本明細書において、「アルケニルフェノール(A)に由来する構成単位」、「エポキシ変性シリコーン(B)に由来する構成単位」「エポキシ化合物(C)に由来する構成単位」及び「化合物(H)に由来する構成単位」とは、重合体(E)中にアルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及び化合物(H)の各成分を重合させた構成単位を含むことに加えて、同様の構成単位を与えうる反応等で形成した構成単位を含むこととする。以下、各構成単位をそれぞれ構成単位(A)、(B)、(C)、(H)ともいう。
 重合体(E)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにおけるポリスチレン換算で、3.0×10~5.0×10であることが好ましく、3.0×10~2.0×10であることがより好ましい。重量平均分子量が3.0×10以上であることにより、第2実施形態の硬化性組成物は、一層優れた低熱膨張性、銅箔ピール強度及び耐薬品性を発現できる傾向にある。重量平均分子量が5.0×10以下であることにより、第2実施形態の硬化性組成物は、一層優れた相溶性を発現できる傾向にある。
 重合体(E)中の構成単位(A)の含有量は、重合体(E)の総質量に対して、5~50質量%であることが好ましい。構成単位(A)の含有量が上記範囲内であることにより、第2実施形態の硬化性組成物は、一層優れた相溶性を発現でき、耐熱性及び低熱膨張性のバランスが向上する傾向にある。同様の観点から、構成単位(A)の含有量は、10~45質量%であることがより好ましく、15~40質量%であることがさらに好ましい。
 重合体(E)中の構成単位(B)の含有量は、重合体(E)の総質量に対して、20~60質量%であることが好ましい。構成単位(B)の含有量が上記範囲内であることにより、第2実施形態の硬化性組成物は、一層優れた低熱膨張性及び耐薬品性をバランスよく発現できる傾向にある。同様の観点から、構成単位(B)の含有量は、25~55質量%であることがより好ましく、30~50質量%であることがさらに好ましい。
 構成単位(B)は、50~350g/molのエポキシ当量を有するエポキシ変性シリコーン(低当量エポキシ変性シリコーン(B1’))と、400~4000g/molのエポキシ当量を有するエポキシ変性シリコーン(高当量エポキシ変性シリコーン(B2’))に由来する構成単位とを含むことが好ましい。低当量エポキシ変性シリコーン(B1’)、高当量エポキシ変性シリコーン(B2’)は、それぞれ、140~250g/molのエポキシ当量を有するエポキシ変性シリコーン(低当量エポキシ変性シリコーン(B1’’))、450~3000g/molのエポキシ当量を有するエポキシ変性シリコーン(高当量エポキシ変性シリコーン(B2’’))であることが、より好ましい。
 重合体(E)中の低当量エポキシ変性シリコーン(B1’)に由来する構成単位(B)1の含有量は、重合体(E)の総質量に対して、5~25質量%であることが好ましく、7.5~20質量%であることがより好ましく、10~17質量%であることがさらに好ましい。
 重合体(E)中の高当量エポキシ変性シリコーン(B2’)に由来する構成単位(B)2の含有量は、重合体(E)の総質量に対して、15~55質量%であることが好ましく、20~52.5質量%であることがより好ましく、25~50質量%であることがさらに好ましい。
 構成単位(B)1の含有量に対する構成単位(B)2の含有量の質量比は、1.5~4であることが好ましく、1.5~3.5であることがより好ましく、1.9~3.3であることがさらに好ましい。構成単位(B)1及び構成単位(B)2の含有量が上記関係を有することにより、第2実施形態の硬化性組成物は、銅箔ピール強度及び耐薬品性がより向上する傾向にある。
 重合体(E)中の構成単位(C)としては、上記式(b1)で表される化合物、上記式(b2)で表される化合物、上記式(b3)で表される化合物及び上記式(b4)で表される化合物からなる群より選択される少なくとも1種に由来する単位であることが好ましい。
 重合体(E)中の構成単位(C)の含有量は、重合体(E)の総質量に対して、5~40質量%であることが好ましい。構成単位(C)の含有量が上記範囲内であると、第2実施形態の硬化性組成物は、一層優れた相溶性を有し、一層優れた耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性を発現できる傾向にある。同様の観点から、構成単位(C)の含有量は、10~30質量%であることが好ましく、15~25質量%であることがさらに好ましい。
 また、構成単位(C)の含有量は、構成単位(B)及び構成単位(C)の総質量に対して、5~95質量%であることが好ましく、10~90質量%であることがより好ましく、15~60質量%であることがさらに好ましく、20~50質量%であることが特に好ましい。構成単位(B)及び構成単位(C)の含有量が上記関係を有することにより、第2実施形態の硬化性組成物は、一層優れた相溶性を有し、耐熱性、耐薬品性、銅箔ピール強度及び絶縁信頼性がより向上する傾向にある。
 重合体(E)が化合物(H)に由来する構成単位を有する場合、重合体(E)中の構成単位(H)の含有量は、重合体(E)の総質量に対して、3~40質量%であることが好ましい。構成単位(H)の含有量が上記範囲内であることにより、第2実施形態の硬化性組成物は、一層優れた低熱膨張性、耐薬品性及び銅箔ピール強度を発現できる傾向にある。同様の観点から、構成単位(H)の含有量は、5~35質量%であることが好ましく、10~30質量%であることがさらに好ましい。
 重合体(E)がアルケニルフェノール(A)以外のフェノール化合物(F)に由来する構成単位(以下、「構成単位(F)」ともいう)を有する場合、重合体(E)中の構成単位(F)の含有量は、重合体(E)の総質量に対して、5~30質量%であることが好ましい。構成単位(F)の含有量が上記範囲内であることにより、第2実施形態の硬化性組成物は、一層優れた耐薬品性を発現できる傾向にある。同様の観点から、構成単位(F)の含有量は、10~27.5質量%であることが好ましく、10~25質量%であることが更に好ましい。
 重合体(E)のアルケニル基当量は、300~1500g/molであることが好ましい。アルケニル基当量が300g/mol以上であることにより、第2実施形態の硬化性組成物の硬化物は、弾性率が一層低下する傾向にあり、その結果、硬化物を用いて得られる基板等の熱膨張率を一層低下できる傾向にある。アルケニル基当量が1500g/mol以下であることにより、第2実施形態の硬化性組成物の相溶性、耐熱性、耐薬品性,
低熱膨張性、銅箔ピール強度及び絶縁信頼性が一層向上する傾向にある。同様の観点から、アルケニル基当量は、350~1200g/molであることが好ましく、400~1000g/molであることがさらに好ましい。
 第2実施形態の硬化性組成物における重合体(E)の含有量は、樹脂固形分100質量%に対して、5~50質量%であることが好ましく、10~45質量%であることがより好ましく、10~40質量%であることがさらに好ましい。含有量が上記範囲内であると、第2実施形態の硬化性組成物は、一層優れた相溶性を有し、低熱膨張性銅箔ピール強度及び耐薬品性をバランスよく一層発現できる傾向にある。
 重合体(E)は、例えば、アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、エポキシ化合物(C)と、必要に応じて化合物(H)とを、重合触媒(G)の存在下にて反応させる工程により得られる。当該反応は、有機溶媒の存在下で行ってもよい。より具体的には、上記工程において、エポキシ変性シリコーン(B)及びエポキシ化合物(C)が有するエポキシ基とアルケニルフェノール(A)が有する水酸基との付加反応と、得られた付加反応物が有する水酸基とエポキシ変性シリコーン(B)及びエポキシ化合物(C)が有するエポキシ基との付加反応などが進行することで、重合体(E)を得ることができる。
 重合触媒(G)としては、特に限定されず、例えば、イミダゾール触媒及びリン系触媒が挙げられる。これらの触媒は1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、イミダゾール触媒が好ましい。
 イミダゾール触媒としては、特に限定されず、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンゾイミダゾール(四国化成工業株式会社製品の「TBZ」)、2,4,5-トリフェニルイミダゾール(東京化成工業株式会社製品の「TPIZ」)等のイミダゾール類が挙げられる。このなかでも、エポキシ成分の単独重合を防ぐ観点から、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンゾイミダゾール及び/又は2,4,5-トリフェニルイミダゾールが好ましい。
 重合触媒(G)(好ましくはイミダゾール触媒)の使用量は、特に限定されず、例えば、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及び化合物(H)の総量100質量部に対して、0.1~10質量部である。重合体(E)の重量平均分子量を大きくする観点から、重合触媒(G)の使用量は、0.5質量部以上であることが好ましく、4.0質量部以下であることがより好ましい。
 有機溶媒としては、特に限定されず、例えば、極性溶剤又は無極性溶剤を用いることができる。極性溶剤としては、特に制限されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;ジメチルアセトアミド、ジメチルホルムアミド等のアミド類等が挙げられる。無極性溶剤としては、特に制限されないが、例えば、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて用いられる。
 有機溶媒の使用量は、特に限定されず、例えば、アルケニルフェノール(A)、エポキシ変性シリコーン(B)、エポキシ化合物(C)及び化合物(H)の総量100質量部に対して、50~150質量部である。
 反応温度は、特に限定されず、例えば、100~170℃であってよい。反応時間もまた特に限定されず、例えば、3~8時間であってよい。
 本工程における反応終了後、慣用の方法にて反応混合物から重合体(E)を分離精製してもよい。
 上述したように、第2実施形態の硬化性組成物は、重合体(E)に加えて、必要に応じて、化合物(H)を更に含有してもよい。重合体(E)に加えて、化合物(H)を更に含有することにより、第2実施形態の硬化性組成物は、耐熱性、低熱膨張性、耐薬品性及び銅箔ピール強度がより一層向上する傾向にある。
 第2実施形態の硬化性組成物が重合体(E)及び化合物(H)を含む場合、第2実施形態の硬化性組成物における重合体(E)の含有量は、重合体(E)及び化合物(H)の合計100質量%に対して、5~60質量%であることが好ましく、10~55質量%であることがより好ましく、20~50質量%であることが更に好ましい。含有量が上記範囲内であると、硬化性組成物は、一層優れた相溶性を有し、耐熱性、低熱膨張性、耐薬品性及び銅箔ピール強度をバランスよく発現できる傾向にある。
 第2実施形態の硬化性組成物が重合体(E)及び化合物(H)を含む場合、第2実施形態の硬化性組成物における化合物(H)の含有量は、重合体(E)及び化合物(H)の合計100質量%に対して、好ましくは20~80質量%であることが好ましく、35~75質量%であることがより好ましく、45~65質量%であることがさらに好ましい。
 また、第2実施形態の硬化性組成物における環状カルボジイミド化合物(D)の含有量は、第1実施形態の硬化性組成物における含有量と同様である。環状カルボジイミド化合物(D)の含有量が、上述した範囲であることにより、耐熱性、低熱膨張性、銅箔ピール強度及び耐薬品性に一層優れる傾向にある。
 本実施形態の硬化性組成物は、本実施形態の硬化性組成物における効果を阻害しない限り、その他の樹脂をさらに含有してもよい。その他の樹脂としては、例えば、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物等が挙げられる。これらの樹脂は、1種を単独で、又は2種以上を組み合わせて用いられる。
 オキセタン樹脂としては、例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、東亜合成株式会社製品の「OXT-101」、「OXT-121」等が挙げられる。
 本明細書にいう「ベンゾオキサジン化合物」とは、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物をいう。ベンゾオキサジン化合物としては、小西化学株式会社製品の「ビスフェノールF型ベンゾオキサジンBF-BXZ」「ビスフェノールS型ベンゾオキサジンBS-BXZ」等が挙げられる。
 重合可能な不飽和基を有する化合物としては、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂等が挙げられる。
[無機充填材]
 本実施形態の硬化性組成物は、低熱膨張性を一層向上させる観点から、無機充填材を更に含有することが好ましい。無機充填材としては、特に限定されず、例えば、シリカ類、ケイ素化合物(例えば、ホワイトカーボン等)、金属酸化物(例えば、アルミナ、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等)、金属窒化物(例えば、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム等)、金属硫酸化物(例えば、硫酸バリウム等)、金属水酸化物(例えば、水酸化アルミニウム、水酸化アルミニウム加熱処理品(例えば、水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等)、モリブデン化合物(例えば、酸化モリブデン、モリブデン酸亜鉛等)、亜鉛化合物(例えば、ホウ酸亜鉛、錫酸亜鉛等)、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラス等が挙げられる。これらの無機充填材は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、無機充填材は、低熱膨張性を一層向上させる観点から、シリカ類、金属水酸化物及び金属酸化物からなる群より選択される少なくとも1種であることが好ましく、シリカ類、ベーマイト及びアルミナからなる群より選択される1種以上を含むことがより好ましく、シリカ類であることがさらに好ましい。
 シリカ類としては、例えば、天然シリカ、溶融シリカ、合成シリカ、アエロジル、中空シリカ等が挙げられる。これらのシリカ類は1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、分散性の観点から、溶融シリカであることが好ましく、充填性及び流動性の観点から、異なる粒度を持つ2種類以上の溶融シリカであることがより好ましい。
 無機充填材の含有量は、低熱膨張性を一層向上させる観点から、樹脂固形分100質量部に対して、50~1000質量部であることが好ましく、70~500質量部であることがより好ましく、100~300質量部であることがさらに好ましい。
[シランカップリング剤]
 本実施形態の硬化性組成物は、シランカップリング剤を更に含有してもよい。本実施形態の硬化性組成物は、シランカップリング剤を含有することにより、無機充填材の分散性が一層向上したり、本実施形態の硬化性組成物の成分と、後述する基材との接着強度が一層向上したりできる傾向にある。
 シランカップリング剤としては特に限定されず、一般に無機物の表面処理に使用されるシランカップリング剤が挙げられ、アミノシラン系化合物(例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等)、エポキシシラン系化合物(例えば、γ-グリシドキシプロピルトリメトキシシラン等)、アクリルシラン系化合物(例えば、γ-アクリロキシプロピルトリメトキシシラン等)、カチオニックシラン系化合物(例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等)、スチリルシラン系化合物、フェニルシラン系化合物等が挙げられる。シランカップリング剤は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、シランカップリング剤は、エポキシシラン系化合物であることが好ましい。エポキシシラン系化合物としては、例えば、信越化学工業株式会社製品の「KBM-403」、「KBM-303」、「KBM-402」、「KBE-403」等が挙げられる。
 シランカップリング剤の含有量は、特に限定されないが、樹脂固形分100質量部に対して、0.1~5.0質量部であってよい。
[湿潤分散剤]
 本実施形態の硬化性組成物は、湿潤分散剤を更に含有してもよい。硬化性組成物は、湿潤分散剤を含有することにより、充填材の分散性が一層向上する傾向にある。
 湿潤分散剤としては、充填材を分散させるために用いられる公知の分散剤(分散安定剤)であればよく、例えば、ビックケミー・ジャパン(株)製のDISPER BYK-110、111、118、180、161、BYK-W996、W9010、W903等が挙げられる。
 湿潤分散剤の含有量は、特に限定されないが、樹脂固形分100質量部に対して、0.5質量部以上5.0質量部以下であることが好ましい。
[溶剤]
 本実施形態の硬化性組成物は、溶剤を更に含有してもよい。本実施形態の硬化性組成物は、溶剤を含むことにより、硬化性組成物の調製時における粘度が下がり、ハンドリング性(取り扱い性)が一層向上したり、基材への含浸性が一層向上したりする傾向にある。
 溶剤としては、硬化性組成物中の各成分の一部又は全部を溶解可能であれば、特に限定されないが、例えば、ケトン類(アセトン、メチルエチルケトン等)、芳香族炭化水素類(例えば、トルエン、キシレン等)、アミド類(例えば、ジメチルホルムアルデヒド等)、プロピレングリコールモノメチルエーテル及びそのアセテート等が挙げられる。これらの溶剤は、1種を単独で、又は2種以上を組み合わせて用いられる。
 本実施形態の硬化性組成物の製造方法としては、特に限定されるものではなく、例えば、各成分を一括的に又は逐次的に溶剤に配合し、撹拌する方法が挙げられる。この際、各成分を均一に溶解又は分散せるために、撹拌、混合、混練処理等の公知の処理が用いられる。
[用途]
 本実施形態の硬化性組成物は、上記の通り、優れた低熱膨張性、銅箔ピール強度及び耐薬品性を発現できる。このため、本実施形態の硬化性組成物は、プリプレグ、金属箔張積層板及びプリント配線板に好適に用いられる。本実施形態の硬化性組成物は、硬化させることで上述の用途に適用することができる。すなわち、本実施形態の硬化物は、本実施形態の硬化性組成物を硬化させてなる。
 なお、とりわけ上記した用途において、第2実施形態の硬化性組成物は、重合体(E)及び環状カルボジイミド化合物(D)に加え、少なくともエポキシ化合物(C)(重合体(E)中の構成単位(C)とは別に存在するエポキシ化合物(C)を含むことが好ましい。
 この場合において、重合体(E)は、エポキシ化合物(C)に由来する単位として、前述した2官能エポキシ化合物に由来する単位を有することが好ましく、より好ましくは前述したビフェニル型エポキシ樹脂に由来する単位を有し、さらに好ましくは上記式(b2)で表される化合物(化合物(b2))に由来する単位を有し、一層好ましくはRの数が0である化合物(b2)と、アルキル基であるRの数が4である化合物(b2)(市販品としては、例えば、三菱ケミカル(株)製の商品名「YL-6121H」等)に由来する単位を有する。
 また、重合体(E)中の構成単位(C)とは別に存在するエポキシ化合物(C)としては、前述したナフチレンエーテル型エポキシ樹脂(市販品としては、例えば、DIC株式会社製品の「HP-6000」等)及び/又はナフタレンクレゾールノボラック型エポキシ樹脂(市販品としては、例えば、DIC株式会社製品の「HP-9540」等)を含むことが好ましい。
[プリプレグ]
 本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された本実施形態の硬化性組成物とを含む。プリプレグは、上述の通り、公知の方法によって得られるプリプレグであってもよく、具体的には、本実施形態の硬化性組成物を基材に含浸又は塗布させた後、100~200℃の条件にて加熱乾燥させることにより半硬化(Bステージ化)させることにより得られる。
 本実施形態のプリプレグは、半硬化状態のプリプレグを180~230℃の加熱温度及び60~180分の加熱時間の条件で熱硬化させて得られる硬化物の形態も包含する。
 プリプレグにおける硬化性組成物の含有量は、プリプレグの総量に対して、プリプレグの固形分換算で、好ましくは30~90体積%であり、より好ましくは35~85体積%であり、さらに好ましくは40~80体積%である。硬化性組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。なお、ここでいう硬化性組成物の含有量計算には、本実施形態の硬化性組成物の硬化物も含む。また、ここでいうプリプレグの固形分は、プリプレグ中から溶剤を取り除いた成分をいい、例えば、充填材は、プリプレグの固形分に含まれる。
 基材としては、特に限定されず、例えば、各種プリント配線板の材料に用いられている公知の基材が挙げられる。基材の具体例としては、ガラス基材、ガラス以外の無機基材(例えば、クォーツ等のガラス以外の無機繊維で構成された無機基材)、有機基材(例えば、全芳香族ポリアミド、ポリエステル、ポリパラフェニレンベンズオキサゾール、ポリイミド等の有機繊維で構成された有機基材)等が挙げられる。これらの基材は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、加熱寸法安定性に一層優れたりする観点から、ガラス基材が好ましい。
 ガラス基材を構成する繊維としては、例えば、Eガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、HMEガラス等の繊維が挙げられる。これらの中でも、ガラス基材を構成する繊維は、強度と低吸水性に一層優れる観点から、Eガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、及びHMEガラスからなる群より選択される1種以上の繊維であることが好ましい。
 基材の形態としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等の形態が挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤等で表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.1mm程度のものが好適に用いられる。
[金属箔張積層板]
 本実施形態の金属箔張積層板は、本実施形態のプリプレグを含む積層体と、前記積層体の片面又は両面に配置された金属箔とを含む。前記積層体は1つのプリプレグで形成されていてよく、複数のプリプレグで形成されていてよい。また、前記積層体は本実施形態のプリプレグ以外にレジンシートを含んでいてもよい。
 金属箔(導体層)としては、各種プリント配線板材料に用いられる金属箔であればよく、例えば、銅、アルミニウム等の金属箔が挙げられ、銅の金属箔としては、圧延銅箔、電解銅箔等の銅箔が挙げられる。導体層の厚みは、例えば、1~70μmであり、好ましくは1.5~35μmである。
 金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、積層板(上述した積層体)又は金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いることができる。また、積層板(上述した積層体)又は金属箔張積層板の成形(積層成形)において、温度は100~300℃、圧力は面圧2~100kgf/cm2、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。特に多段プレス機を用いた場合は、プリプレグの硬化を十分に促進させる観点から、温度200℃~250℃、圧力10~40kgf/cm2、加熱時間80分~130分が好ましく、温度215℃~235℃、圧力25~35kgf/cm2、加熱時間90分~120分がより好ましい。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。
[プリント配線板]
 本実施形態のプリント配線板は、本実施形態のプリプレグを含む絶縁層と、前記絶縁層の表面に形成された導体層とを含む。ここで、絶縁層は、本実施形態のプリプレグが硬化された硬化物であってもよい。本実施形態のプリント配線板は、例えば、本実施形態の金属箔張積層板の金属箔を所定の配線パターンにエッチングして導体層とすることにより形成できる。
 本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、本実施形態の金属箔張積層板を用意する。金属箔張積層板の金属箔を所定の配線パターンにエッチングして導体層(内層回路)を有する内層基板を作成する。次に、内層基板の導体層(内装回路)表面に、所定数の絶縁層と、外層回路用の金属箔とをこの順序で積層し、加熱加圧して一体成形(積層成形)することにより、積層体を得る。尚、積層成形の方法及びその成形条件は、上記の積層板及び金属箔張積層板における積層成形の方法及びその成形条件と同様である。次に、積層体にスルーホール、バイアホール用の穴あけ加工を施し、これにより形成された穴の壁面に導体層(内装回路)と、外層回路用の金属箔とを導通させるためのめっき金属皮膜を形成する。次に、外層回路用の金属箔を所定の配線パターンにエッチングして導体層(外層回路)を有する外層基板を作成する。このようにしてプリント配線板が製造される。
 また、金属箔張積層板を用いない場合には、上記絶縁層に、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(製造例1)環状カルボジイミド化合物の合成
 o-ニトロフェノール(0.11mol)、ペンタエリトリチルテトラブロミド(0.025mol)、炭酸カリウム(0.33mol)、及びN,N-ジメチルホルムアミド(DMF)200mlを、攪拌装置及び加熱装置を設置した反応装置に、N雰囲気下で仕込み、130℃で12時間反応させた。その後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回、分液操作を行った。有機層を硫酸ナトリウム5gで脱水し、ジクロロメタンを減圧により除去して、中間生成物(ニトロ体)を得た。
 次に、得られた中間生成物(ニトロ体、0.1mol)、5%パラジウムカーボン(Pd/C)(2g)、及びエタノール/ジクロロメタン(70/30)400mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなった時点で反応を終了した。Pd/Cを回収し、混合溶媒を除去して、中間生成物(アミン体)を得た。
 次に、攪拌装置、加熱装置、及び滴下ロートを設置した反応装置に、N雰囲気下、トリフェニルホスフィンジブロミド(0.11mol)と1,2-ジクロロエタン150mlを仕込み攪拌した。そこに、中間生成物(アミン体、0.025mol)とトリエチルアミン(0.25mol)を1,2-ジクロロエタン50mlに溶かした溶液を25℃で徐々に滴下した。滴下終了後、70℃で5時間反応させた。その後、反応溶液をろ過し、ろ液を水100mlで5回、分液操作を行った。有機層を硫酸ナトリウム5gで脱水し、1,2-ジクロロエタンを減圧により除去して、中間生成物(トリフェニルホスフィン体)を得た。
 次に、攪拌装置及び滴下ロートを設置した反応装置に、N雰囲気下、ジ-tert-ブチルジカーボネート(0.11mol)、N,N-ジメチル-4-アミノピリジン(0.055mol)、及びジクロロメタン150mlを仕込み、攪拌した。そこに、25℃で中間生成物(0.025mol)を溶かしたジクロロメタン100mlをゆっくりと滴下させた。滴下後、12時間反応させた。その後、ジクロロメタンを除去して、得られた固形物を精製することで、環状カルボジイミド化合物を得た。
(実施例1)
 温度計とジムロートを取り付けた三口フラスコに、ジアリルビスフェノールA(DABPA、大和化成工業(株))5.0質量部、ビスクレゾールフルオレン(BCF、大阪ガス化学(株))5.4質量部、エポキシ変性シリコーン(B)1(X-22-163、信越化学工業(株)、官能基当量200g/mol)3.7質量部、エポキシ変性シリコーン(B)2(KF-105、信越化学工業(株)、官能基当量490g/mol)11.0質量部、ビフェニル型エポキシ樹脂(C)1(YL-6121H、三菱ケミカル(株))4.9質量部、溶媒としてプロピレングリコールモノメチルエーテルアセテート(DOWANOLPMA、ダウ・ケミカル日本(株))30質量部を加え、オイルバスにて120℃まで加熱撹拌した。原料が溶媒に溶解したことを確認後、イミダゾール触媒g1(TBZ、四国化成工業(株))0.3質量部を加えて、140℃まで昇温したのち、5時間撹拌し、冷却後、フェノキシポリマー溶液(固形分50質量%)を得た(ポリマー生成工程)。
 なお、ジアリルビスフェノールAは、「アルケニルフェノール(A)」に相当し、エポキシ変性シリコーン(B)1及びエポキシ変性シリコーン(B)2は、「エポキシ変性シリコーン(B)」に相当し、ビフェニル型エポキシ樹脂(C)1は、「エポキシ化合物(C)」に相当する。また、フェノキシポリマー溶液には、アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、エポキシ化合物(C)に由来する構成単位とを含有する重合体(E)が含まれていた。以下、重合体(E)をフェノキシポリマーともいう。
 重合体(E)に対するエポキシ変性シリコーン(B)に由来する構成単位の含有量は、48.8質量%であった。
 エポキシ変性シリコーン(B)に由来する構成単位及びエポキシ化合物(C)に由来する構成単位の総量に対するエポキシ化合物(C)に由来する構成単位の含有量は、25質量%であった。
重量平均分子量Mwの測定:
 上記のようにして得られたフェノキシポリマーの重量平均分子量Mwを、以下のようにして測定した。フェノキシポリマー溶液0.5gを2gのTHFに溶解させた溶液20μLを高速液体クロマトグラフィー(島津製作所製、ポンプ:LC-20AD)に注入して分析した。カラムは、昭和電工製Shodex GPC KF-804(長さ30cm×内径8mm)、Shodex GPC KF-803(長さ30cm×内径8mm)、Shodex GPC KF-802(長さ30cm×内径8mm)、Shodex GPC KF-801(長さ30cm×内径8mm)、の計4本使用し、移動相としてTHF(溶媒)を用いて、流速を1mL/minとし、検出器はRID-10Aを用いた。重量平均分子量Mwは、GPC法により標準ポリスチレンを標準物質として求めた。上記のようにして測定されたフェノキシポリマーの重量平均分子量Mwは、12,000であった。
 このフェノキシポリマー溶液30質量部(固形分換算)に、ノボラック型シアン酸エステル化合物(PT-30、ロンザ(株))14質量部、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))17質量部、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))6質量部、ナフタレンクレゾールノボラック型エポキシ化合物(HP-9540、DIC(株))28質量部、製造例1で得られた環状カルボジイミド化合物5質量部、球状シリカ(SC―2050MB、アドマテックス(株))140質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、165℃で5分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量47.4質量%のプリプレグを得た(プリプレグ製造工程)。
(実施例2)
 プリプレグ製造工程において、ノボラック型シアン酸エステル化合物(PT-30、ロンザ(株))14質量部を13質量部に、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))17質量部を16質量部に、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))6質量部を5質量部に、ナフタレンクレゾールノボラック型エポキシ化合物(HP-9540、DIC(株))28質量部を26質量部に、製造例1で得られた環状カルボジイミド化合物5質量部を10質量部に、変更した以外は、実施例1と同様の操作によって、樹脂組成物固形分(充填材を含む)の含有量47.4質量%のプリプレグを得た。
(実施例3)
 ポリマー生成工程において、ジアリルビスフェノールA(DABPA、大和化成工業(株))5.0質量部を5.1質量部に、ビスクレゾールフルオレン(BCF、大阪ガス化学(株))5.4質量部を5.6質量部に、エポキシ変性シリコーン(B)1(X-22-163、信越化学工業(株)、官能基当量200g/mol)3.7質量部を4.2質量部に、エポキシ変性シリコーン(B)2(KF-105、信越化学工業(株)、官能基当量490g/mol)11.0質量部を8.5質量部に、ビフェニル型エポキシ樹脂(C)1(YL-6121H、三菱ケミカル(株))4.9質量部を5.6質量部に、変更した以外は、実施例1と同様の操作によって、フェノキシポリマー溶液(固形分50質量%)を得た(ポリマー生成工程)。
 このフェノキシポリマー溶液をオイルバスにて100℃まで加熱したのち、アミノトリアジンノボラック(LA-3018)1.0質量部を加え、2時間攪拌し、冷却後、変性フェノキシポリマー溶液(固形分50質量%)を得た(ポリマー変性工程)。また、変性フェノキシポリマー溶液には、アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、エポキシ化合物(C)に由来する構成単位と、アミノトリアジンノボラックに由来する構成単位とを含有する重合体(E)が含まれていた。上記と同様にして測定された変性フェノキシポリマーの重量平均分子量Mwは、12,000であった。ポリマー変性工程はポリマー生成工程と連続して行うこともできる。
 この変性フェノキシポリマー溶液30質量部(固形分換算)に、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))8質量部、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))8質量部、ナフチレンエーテル型エポキシ化合物(HP-6000、DIC(株))25質量部、ナフトールアラルキル型フェノール化合物(SN495V、日鉄ケミカル(株))24質量部、製造例1で得られた環状カルボジイミド化合物5質量部、球状シリカ(SC―2050MB、アドマテックス(株))200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、150℃で3分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量48.8質量%のプリプレグを得た(プリプレグ製造工程)。
(実施例4)
 実施例3と同様にして得られた変性フェノキシポリマー溶液30質量部(固形分換算)に、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))7.5質量部、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))7.5質量部、ナフチレンエーテル型エポキシ化合物(HP-6000、DIC(株))23質量部、ナフトールアラルキル型フェノール化合物(SN495V、日鉄ケミカル(株))22質量部、製造例1で得られた環状カルボジイミド化合物10質量部、球状シリカ(SC―2050MB、アドマテックス(株))200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、140℃で3分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量48.8質量%のプリプレグを得た(プリプレグ製造工程)。
(比較例1)
 実施例1と同様にして得られたフェノキシポリマー溶液30質量部(固形分換算)に、ノボラック型シアン酸エステル化合物(PT-30、ロンザ(株))15質量部、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))18質量部、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))6質量部、ナフタレンクレゾールノボラック型エポキシ化合物(HP-9540、DIC(株))30質量部、球状シリカ(SC―2050MB、アドマテックス(株))140質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、165℃で5分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量47.4質量%のプリプレグを得た(プリプレグ製造工程)。
(比較例2)
 実施例3と同様にして得られた変性フェノキシポリマー溶液30質量部(固形分換算)に、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))9質量部、ビスマレイミド化合物(BMI-80、ケイアイ化成(株))9質量部、ナフチレンエーテル型エポキシ化合物(HP-6000、DIC(株))27質量部、ナフトールアラルキル型フェノール化合物(SN495V、日鉄ケミカル(株))25質量部、球状シリカ(SC―2050MB、アドマテックス(株))200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、140℃で3分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量48.8質量%のプリプレグを得た(プリプレグ製造工程)。
(比較例3)
 ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))22.5質量部、ナフチレンエーテル型エポキシ化合物(HP-6000、DIC(株))35.1質量部、ナフトールアラルキル型フェノール化合物(SN495V、日鉄ケミカル(株))33.5質量部、製造例1で得られた環状カルボジイミド化合物9.1質量部、球状シリカ(SC―2050MB、アドマテックス(株))200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、140℃で3分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量48.8質量%のプリプレグを得た(プリプレグ製造工程)。
(比較例4)
 ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株))24.6質量部、ナフチレンエーテル型エポキシ化合物(HP-6000、DIC(株))38.6質量部、ナフトールアラルキル型フェノール化合物(SN495V、日鉄ケミカル(株))36.8質量部、球状シリカ(SC―2050MB、アドマテックス(株))200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株))1質量部、シランカップリング剤(KMB-403、信越化学工業(株))5質量部を混合してワニスを得た。このワニスをSガラス織布(厚さ100μm)に含浸塗工し、140℃で3分間加熱乾燥して、樹脂組成物固形分(充填材を含む)の含有量48.8質量%のプリプレグを得た(プリプレグ製造工程)。
[金属箔張積層板の作製]
 各実施例1~4及び比較例1~4にて得られたプリプレグを2枚重ね、さらに12μmの厚さを有する電解銅箔(3EC-VLP、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm、温度230℃で100分間の積層成形を行い、金属箔張積層板として、0.2mmの厚さを有する絶縁層を含む銅箔張積層板を得た。得られた銅箔張積層板の特性を以下に示す方法にて評価した。結果を表1に示す。
[Tg(ガラス転移温度)]
 上記方法で得られた金属箔張積層板(20mm×5mm×0.2mm)の両面の銅箔をエッチングにより除去した後に、JISC6481に準拠して、動的粘弾性測定装置(TAインスツルメント製)で、ガラス転移温度(Tg)、(単位:℃)を測定した。
[CTE(線熱膨張係数)]
 金属箔張積層板の絶縁層についてガラスクロスの縦方向の線熱膨張係数を測定した。具体的には、上記方法で得られた銅箔張積層板(10mm×6mm×0.2mm)の両面の銅箔をエッチングにより除去した後に、220℃の恒温槽で2時間加熱して、成形による応力を除去した。その後、熱膨張率測定装置(リンザイス製水平ディラトメーター)を用いて40℃から320℃まで毎分10℃で昇温して、60℃から260℃における線熱膨張係数(CTE)、(単位:ppm/℃)を測定した。
[銅箔ピール強度(銅箔密着性)]
 上記方法で得られた銅箔張積層板(10mm×150mm×0.2mm)を用い、JIS C6481に準じて、銅箔ピール強度(銅箔密着性)、(単位:kN/m)を測定した。
[耐デスミア性]
 上記方法で得られた銅箔張積層板(50mm×50mm×0.2mm)の両面の銅箔をエッチングにより除去した後、膨潤液であるアトテックジャパン(株)のスウェリングディップセキュリガントPに80℃で10分間浸漬し、次に粗化液であるアトテックジャパン(株)のコンセントレートコンパクトCPに80℃で5分間浸漬し、最後に中和液であるアトテックジャパン(株)のリダクションコンディショナーセキュリガントP500に45℃で10分間浸漬した。この処理を繰り返し3回行った。処理前後の銅箔張積層板の質量を測定し、処理前の試料質量を基準とした質量減少量(単位:質量%)を求めた。質量減少量の絶対値が小さいほど、耐デスミア性に優れることを示す。
Figure JPOXMLDOC01-appb-T000062
 本出願は、2021年8月5日に日本国特許庁へ出願された日本特許出願(特願2021-128756)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (25)

  1.  アルケニルフェノール(A)と、エポキシ変性シリコーン(B)と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)と、環状カルボジイミド化合物(D)と、を含有する、
     硬化性組成物。
  2.  前記環状カルボジイミド化合物(D)が、下記式(D1)で表される環状構造を有し、
     前記環状構造を形成する原子数が8~50である、
     請求項1に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lは、脂肪族基、脂環族基、芳香族基又はこれらを組み合わせた基である2~4価の結合基であり、前記結合基は、ヘテロ原子及び/又は置換基を含んでいてもよい。)
  3.  前記環状カルボジイミド化合物(D)の含有量が、樹脂固形分100質量部に対して、2.0~15質量部である、
     請求項1又は2に記載の硬化性組成物。
  4.  前記アルケニルフェノール(A)の1分子当たりの平均フェノール基数が1以上3未満であり、前記エポキシ変性シリコーン(B)の1分子当たりの平均エポキシ基数が1以上3未満であり、前記エポキシ化合物(C)の1分子当たりの平均エポキシ基数が1以上3未満である、
     請求項1又は2に記載の硬化性組成物。
  5.  前記アルケニルフェノール(A)が、ジアリルビスフェノール及び/又はジプロペニルビスフェノールを含有する、
     請求項1又は2に記載の硬化性組成物。
  6.  前記エポキシ変性シリコーン(B)が、140~250g/molのエポキシ当量を有するエポキシ変性シリコーンを含有する、
     請求項1又は2に記載の硬化性組成物。
  7.  前記エポキシ変性シリコーン(B)が、下記式(B1)で表されるエポキシ変性シリコーンを含有する、
     請求項1又は2に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、各々独立に、単結合、アルキレン基、アリーレン基又はアラルキレン基を示し、Rは、各々独立に、炭素数1~10のアルキル基又はフェニル基を示し、nは、0~100の整数を示す。)
  8.  前記エポキシ化合物(C)が、下記式(b2)で表される化合物を含む、請求項1又は2に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
     (式(b2)中、Rは、各々独立して、炭素数1~10のアルキル基又は水素原子を示す。)
  9.  アルケニルフェノール(A)に由来する構成単位と、エポキシ変性シリコーン(B)に由来する構成単位と、該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)に由来する構成単位とを含有する重合体(E)と、
     環状カルボジイミド化合物(D)と、を含有する、
     硬化性組成物。
  10.  前記重合体(E)の重量平均分子量が、3.0×10~5.0×10である、
     請求項9に記載の硬化性組成物。
  11.  前記重合体(E)の含有量が、樹脂固形分100質量%に対して、5~50質量%である、
     請求項9又は10に記載の硬化性組成物。
  12.  前記環状カルボジイミド化合物(D)が、下記式(D1)で表される環状構造を有し、
     前記環状構造を形成する原子数が8~50である、
     請求項9又は10に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Lは、脂肪族基、脂環族基、芳香族基又はこれらを組み合わせた基である2~4価の結合基であり、前記結合基は、ヘテロ原子及び/又は置換基を含んでいてもよい。)
  13.  前記環状カルボジイミド化合物(D)の含有量が、樹脂固形分100質量部に対して、2.0~15質量部である、
     請求項9又は10に記載の硬化性組成物。
  14.  前記アルケニルフェノール(A)の1分子当たりの平均フェノール基数が1以上3未満であり、前記エポキシ変性シリコーン(B)の1分子当たりの平均エポキシ基数が1以上3未満であり、前記エポキシ化合物(C)の1分子当たりの平均エポキシ基数が1以上3未満である、
     請求項9又は10に記載の硬化性組成物。
  15.  前記アルケニルフェノール(A)が、ジアリルビスフェノール及び/又はジプロペニルビスフェノールを含有する、
     請求項9又は10に記載の硬化性組成物。
  16.  前記エポキシ変性シリコーン(B)が、140~250g/molのエポキシ当量を有するエポキシ変性シリコーンを含有する、
     請求項9又は10に記載の硬化性組成物。
  17.  前記エポキシ変性シリコーン(B)が、下記式(B1)で表されるエポキシ変性シリコーンを含有する、
     請求項9又は10に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、各々独立に、単結合、アルキレン基、アリーレン基又はアラルキレン基を示し、Rは、各々独立に、炭素数1~10のアルキル基又はフェニル基を示し、nは、0~100の整数を示す。)
  18.  前記エポキシ化合物(C)が、下記式(b2)で表される化合物を含む、請求項9又は10に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000006
     (式(b2)中、Rは、各々独立して、炭素数1~10のアルキル基又は水素原子を示す。)
  19.  アルケニルフェノール(A)、エポキシ変性シリコーン(B)及び該エポキシ変性シリコーン(B)以外のエポキシ化合物(C)からなる群より選択される1種以上を更に含有する、
     請求項9又は10に記載の硬化性組成物。
  20.  前記エポキシ化合物(C)が、ナフタレンクレゾールノボラック型エポキシ樹脂及び/又はナフチレンエーテル型エポキシ樹脂を含む、請求項19に記載の硬化性組成物。
  21.  マレイミド化合物、シアン酸エステル化合物、前記アルケニルフェノール(A)以外のフェノール化合物(F)及びアルケニル置換ナジイミド化合物からなる群より選択される1種以上の化合物(H)を更に含有する、
     請求項1又は9に記載の硬化性組成物。
  22.  無機充填材を更に含有し、
     前記無機充填材が、シリカ類、ベーマイト及びアルミナからなる群より選択される1種類以上を含む、
     請求項1又は9に記載の硬化性組成物。
  23.  基材と、
     該基材に含浸又は塗布された、請求項1又は9に記載の硬化性組成物と、を含む、
     プリプレグ。
  24.  請求項23に記載のプリプレグを含む積層体と、
     該積層体の片面又は両面に配置された金属箔と、を含む、
     金属箔張積層板。
  25.  請求項23に記載のプリプレグを含む絶縁層と、
     該絶縁層の表面に形成された導体層と、を含む、
     プリント配線板。
PCT/JP2022/029884 2021-08-05 2022-08-04 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板 WO2023013717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237042953A KR20230174283A (ko) 2021-08-05 2022-08-04 경화성 조성물, 프리프레그, 금속박 피복 적층판 및 프린트 배선판
JP2022572722A JP7449498B2 (ja) 2021-08-05 2022-08-04 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板
CN202280054399.4A CN117836369A (zh) 2021-08-05 2022-08-04 固化性组合物、预浸料、覆金属箔层叠板和印刷电路板
JP2023184356A JP2024024631A (ja) 2021-08-05 2023-10-27 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-128756 2021-08-05
JP2021128756 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013717A1 true WO2023013717A1 (ja) 2023-02-09

Family

ID=85155983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029884 WO2023013717A1 (ja) 2021-08-05 2022-08-04 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板

Country Status (5)

Country Link
JP (2) JP7449498B2 (ja)
KR (1) KR20230174283A (ja)
CN (1) CN117836369A (ja)
TW (1) TW202313832A (ja)
WO (1) WO2023013717A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044213A (ja) * 1990-04-23 1992-01-08 Sumitomo Bakelite Co Ltd 半導体封止用樹脂の製造方法
JPH04314723A (ja) * 1991-04-15 1992-11-05 Fujitsu Ltd エポキシ樹脂組成物
JPH0547964A (ja) * 1990-12-25 1993-02-26 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物
JPH06136093A (ja) * 1992-09-08 1994-05-17 Fujitsu Ltd エポキシ樹脂組成物
JP2005097448A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP2009007467A (ja) * 2007-06-28 2009-01-15 Shin Etsu Chem Co Ltd 実装用難燃性サイドフィル材及び半導体装置
JP2012007007A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd ダイボンド剤組成物及び半導体装置。
WO2018124164A1 (ja) * 2016-12-28 2018-07-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2020022084A1 (ja) * 2018-07-26 2020-01-30 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633382B2 (ja) 2011-01-18 2014-12-03 日立化成株式会社 熱硬化性樹脂組成物並びにこれを用いたプリプレグ、積層板及び多層プリント配線板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044213A (ja) * 1990-04-23 1992-01-08 Sumitomo Bakelite Co Ltd 半導体封止用樹脂の製造方法
JPH0547964A (ja) * 1990-12-25 1993-02-26 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物
JPH04314723A (ja) * 1991-04-15 1992-11-05 Fujitsu Ltd エポキシ樹脂組成物
JPH06136093A (ja) * 1992-09-08 1994-05-17 Fujitsu Ltd エポキシ樹脂組成物
JP2005097448A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP2009007467A (ja) * 2007-06-28 2009-01-15 Shin Etsu Chem Co Ltd 実装用難燃性サイドフィル材及び半導体装置
JP2012007007A (ja) * 2010-06-22 2012-01-12 Shin-Etsu Chemical Co Ltd ダイボンド剤組成物及び半導体装置。
WO2018124164A1 (ja) * 2016-12-28 2018-07-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2020022084A1 (ja) * 2018-07-26 2020-01-30 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板

Also Published As

Publication number Publication date
CN117836369A (zh) 2024-04-05
JPWO2023013717A1 (ja) 2023-02-09
JP2024024631A (ja) 2024-02-22
TW202313832A (zh) 2023-04-01
KR20230174283A (ko) 2023-12-27
JP7449498B2 (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
JP7488513B2 (ja) 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
JP7307896B2 (ja) 熱硬化性組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板及び多層プリント配線板
US11702504B2 (en) Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7274105B2 (ja) 熱硬化性組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板及び多層プリント配線板
JP7449498B2 (ja) 硬化性組成物、プリプレグ、金属箔張積層板及びプリント配線板
JP7428981B2 (ja) 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
JP7411170B2 (ja) 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
JP7276674B1 (ja) プリプレグ、金属箔張積層板及びプリント配線板
JP7284945B1 (ja) 硬化性組成物、プリプレグ、金属箔張積層板、及びプリント配線板
JP6025090B1 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2023013711A1 (ja) 熱硬化性樹脂組成物、プリプレグ及びプリント配線板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022572722

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237042953

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042953

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280054399.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401000734

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE