WO2023013238A1 - Aluminum alloy plate for molding and method for producing same - Google Patents

Aluminum alloy plate for molding and method for producing same Download PDF

Info

Publication number
WO2023013238A1
WO2023013238A1 PCT/JP2022/022965 JP2022022965W WO2023013238A1 WO 2023013238 A1 WO2023013238 A1 WO 2023013238A1 JP 2022022965 W JP2022022965 W JP 2022022965W WO 2023013238 A1 WO2023013238 A1 WO 2023013238A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
plate thickness
hardness
plate
molding
Prior art date
Application number
PCT/JP2022/022965
Other languages
French (fr)
Japanese (ja)
Inventor
沙友理 竹村
渉 成田
誠 米光
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to CN202280053898.1A priority Critical patent/CN117813410A/en
Publication of WO2023013238A1 publication Critical patent/WO2023013238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to a molding aluminum alloy sheet with a reduced amount of springback after press molding of the sheet material, and a method for manufacturing the same.
  • Patent Document 1 discloses a layer harder than the average hardness from the surface layer to 1/4 plate thickness by incorporating a skin pass after solution treatment. A method for enhancing the shape fixability by providing is disclosed.
  • Patent Document 1 there is a problem that there are many areas that are harder than the average hardness. As mentioned above, since springback is a plastic deformation related to elastic deformation regions, it is better to minimize regions that are harder than the average hardness.
  • an object of the present invention is to provide an aluminum alloy plate that can improve the effect of reducing the amount of springback due to the decisive push.
  • the present inventors have made extensive studies and found that the springback amount is reduced while maintaining high strength by having a specific hardness distribution gradient and plate thickness in the thickness direction.
  • the present inventors have found that it is possible to obtain an aluminum alloy plate having excellent shape fixability, and have completed the present invention.
  • the hardness (Hv) is measured at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of 1/2 depth of the plate thickness to the plate surface, and the vertical axis is Hardness (Hv), plotting the hardness distribution with the horizontal axis as the distance (mm) from the position of 1/2 depth of the plate thickness, from the plot of the hardness distribution, hardness (Hv) and the distance (mm) from the position of 1/2 of the plate thickness is approximated by a linear function, and when the slope A of the linear function is obtained by the least squares method, the slope A and the plate thickness (mm) Provided is an aluminum alloy sheet for molding, characterized in that the value obtained by multiplying by is 10 to 28.
  • the hardness (Hv) and the thickness From the plot of the hardness distribution, the hardness (Hv) and the thickness
  • the slope B1 of the linear function is obtained by the method of least squares, and among the plots of the hardness distribution, the plate thickness
  • the hardness (Hv) and the distance from the 1/2 thickness position (mm ) is approximated by a linear function
  • the slope B2 of the linear function is obtained by the method of least squares, the absolute value of the difference (B1-B2) between the slope B1 and the slope B2 is 10 or less.
  • the object is to provide an aluminum alloy sheet for molding according to (1).
  • the present invention (3) provides the aluminum alloy sheet for molding of (1) or (2), characterized by having a tensile strength of 140.0 MPa or more.
  • the present invention (4) provides an aluminum alloy sheet for forming according to any one of (1) to (3), which is made of a JIS 5000 series aluminum alloy.
  • the present invention (5) provides an aluminum alloy sheet for forming according to any one of (1) to (3), which is made of a JIS6000 series aluminum alloy.
  • the present invention (6) is a method for producing an aluminum alloy sheet for molding made of a JIS 5000 series aluminum alloy, comprising: (1a) a cold working rate of 70.0% or more; Performing a skin pass with a rolling reduction of 1.0 to 10.0%, (3a) performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4a) stable
  • a method for producing an aluminum alloy sheet for molding characterized by performing at least one of treatment with a leveler after heat treatment.
  • the present invention (7) is a method for producing an aluminum alloy sheet for molding made of a JIS 6000 series aluminum alloy, in which (1b) the cold working rate is 70.0% or more, and (2b) after artificial aging treatment, (3b) Performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4b) Solution Provided is a method for producing an aluminum alloy sheet for molding, characterized by performing at least one of treatment with a leveler after heat treatment or after artificial aging treatment.
  • an aluminum alloy plate that can improve the effect of reducing the amount of springback caused by a determined push.
  • FIG. 1 is a schematic cross-sectional view of an aluminum alloy sheet for forming according to the present invention
  • FIG. FIG. 4 is a hardness plot of Example A
  • FIG. 4 is a hardness plot of Example B
  • FIG. 4 is a hardness plot of Example C
  • FIG. 4 is a hardness plot of Example D
  • FIG. 4 is a hardness plot of Example E
  • FIG. 4 is a hardness plot of Example F
  • FIG. 4 is a hardness plot of Example G
  • FIG. 10 is a plot of the hardness of Comparative Example H
  • FIG. 4 is a plot of the hardness of Comparative Example I
  • FIG. 4 is a plot of hardness of 6000 series standard materials.
  • FIG. 4 is a hardness plot of Example J
  • FIG. 4 is a hardness plot of Example K
  • FIG. 4 is a hardness plot of Example L
  • It is a plot figure of the hardness of 5000 series standard material.
  • the aluminum alloy plate for molding of the present invention is measured for hardness (Hv) at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of 1/2 depth of the plate thickness to the plate surface, and the vertical axis
  • the hardness (Hv ) and the distance (mm) from the position of half the thickness of the plate is approximated by a linear function, and when the slope A of the linear function is obtained by the least squares method, the slope A and the plate thickness (mm ) is 10 to 28.
  • FIG. 1 is a schematic cross-sectional view of an aluminum alloy sheet for molding according to the present invention.
  • FIG. 3 is a diagram plotting hardness distribution for Example B, with the vertical axis representing hardness (Hv) and the horizontal axis representing distance (mm) from a position half the plate thickness.
  • FIG. 9 is a diagram plotting the hardness distribution of Comparative Example H, with the vertical axis representing the hardness (Hv) and the horizontal axis representing the distance (mm) from the position half the plate thickness. .
  • FIG. 1 is a cross-sectional view of an aluminum alloy plate 1 for forming, taken along a plane perpendicular to the plate surface.
  • the position indicated by reference numeral 3 is the position at the depth of 1/2 of the plate thickness. That is, position 3 at a depth of 1/2 of the plate thickness is a position that is separated from the plate surface 7 in the plate thickness direction 6 by a length q of 1/2 of the plate thickness p.
  • the position indicated by reference numeral 5 is the position at the depth of 1/4 of the plate thickness. That is, the position 5 at a depth of 1/4 of the plate thickness is a position away from the plate surface 7 in the plate thickness direction 6 by a length r of 1/4 of the plate thickness p.
  • Inclination A is obtained by measuring the hardness (Hv) at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of the depth of 1/2 of the plate thickness to the plate surface, and the vertical axis is the hardness (Hv) And when plotting the hardness distribution with the horizontal axis as the distance (mm) from the position of 1/2 the plate thickness, it is obtained by the least squares method based on the plot of the hardness distribution It is the slope of a linear function obtained by approximating the relationship between the hardness (Hv) and the distance (mm) from a position half the thickness of the plate with a linear function.
  • hardness (Hv) is measured at intervals of 1/16 of the plate thickness p in the plate thickness direction 6 from the position 3 at the depth of 1/2 of the plate thickness to the plate surface position 4. to measure.
  • the hardness (Hv) results at each measurement position are plotted with the vertical axis representing the hardness (Hv) and the horizontal axis representing the distance from the position half the plate thickness (mm ) and plotted as
  • the relationship between the hardness (Hv) and the distance (mm) from the position of half the thickness of the plate is approximated by a linear function, and the slope A of the linear function is obtained by the method of least squares.
  • the slope A is determined to be 16 by the method of least squares.
  • Comparative Example H the slope A is obtained as 4.9 by the method of least squares as shown in FIG. 9 by the same procedure.
  • the hardness (Hv) is measured by a method conforming to JIS Z 2244.
  • an aluminum alloy plate is embedded in resin, polished to a mirror surface, and then rolled at right angles (surface perpendicular to the plate surface).
  • ) was measured using a micro Vickers hardness tester (FM-110, manufactured by Futuretech) under the measurement conditions of a test load of 10 gf (0.098 N) and a holding time of 10 seconds.
  • the plot of the hardness distribution from the position 3 at a depth of 1/2 of the plate thickness to the position 5 at a depth of 1/4 of the plate thickness From this, the hardness (Hv) between position 3 at 1/2 depth of the plate and position 5 at 1/4 depth of plate thickness and the distance from the position at 1/2 depth of plate thickness (mm ) is approximated by a linear function, and the slope B2 of the linear function is obtained by the method of least squares.
  • the hardness distribution from the position of 1/2 depth of the plate thickness obtained as described above to the plate surface position is plotted, 1/2 depth of plate thickness
  • the linear value obtained by multiplying the value of the slope A of the function by the plate thickness (mm) (slope A x plate thickness (mm)) is 10 to 28, preferably 10 to 20, and particularly preferably 12 to 17.
  • the value of inclination A ⁇ plate thickness (mm) is within the above range, the amount of reduction in the amount of springback due to the final push is increased, and the shape fixability is excellent.
  • the correlation coefficient (R 2 ) with the plot of the hardness distribution from the half depth position to the plate surface position is 0.50 or more, preferably 0.70 or more, and particularly preferably 0.80 or more is.
  • the depth of 1/4 of the plate thickness is based on the plot of the hardness distribution from the position of 1/2 depth of the plate thickness to the plate surface position obtained as described above. From the plot of the hardness distribution from the position to the plate surface, the "hardness (Hv) obtained by the least squares method and 1/ 2 The slope B1 of the linear function, which approximates the relationship of the distance (mm) from the depth position by a linear function, and the position of 1/4 of the plate thickness from the position of 1/2 of the plate thickness From the plot of the hardness distribution up to, the "hardness (Hv) obtained by the least squares method and the thickness
  • the absolute value of the difference (B1-B2) from the slope B2 of the linear function which approximates the relationship of the distance (mm) from the position of 1/2 depth of the linear function, is preferably 10 or less, particularly preferably is 8 or less.
  • the value of the difference between the slope B1 and the slope B2 based on the plot of the hardness distribution from the half depth position of the plate thickness of the aluminum alloy plate for forming to the plate surface position is determined by being in the above range. It is possible to improve the effect of reducing the amount of springback caused by pushing.
  • the hardness is measured at intervals of 1/16 of the plate thickness in the plate thickness direction.
  • hardness is measured at intervals of 1/16th of the thickness. This is because an approximate linear function can be drawn, and the reliability of the slope value of the linear function increases.
  • the hardness is measured at intervals of 1/10 of the plate thickness in the plate thickness direction, it is difficult to measure the hardness near the outermost surface. , and the value of the slope of the linear function becomes less reliable.
  • the plate thickness of the aluminum alloy plate for molding of the present invention is 0.4 to 5.0 mm, preferably 0.8 to 2.7 mm.
  • the value of "tilt A x plate thickness (mm)" is 10 to 28, preferably 10 to 20, particularly preferably 12 to 17. It is difficult to make a distribution of
  • the basic components of the aluminum alloy sheet for molding of the present invention are not particularly limited. various aluminum alloys such as the 7000 series.
  • the aluminum alloy sheet for molding of the present invention is preferably made of a JIS5000 series aluminum alloy or a JIS6000 series aluminum alloy.
  • the composition of the JIS5000 series aluminum alloy is Si: 0.25% by mass or less, Fe: 0.40% by mass or less, Cu: 0.10% by mass or less, Mn: 0.10% by mass or less, Mg: 2.20. 2.80% by mass, Cr: 0.15 to 0.35% by mass, Zn: 0.10% by mass or less, and the balance being aluminum and unavoidable impurities.
  • the chemical composition of the JIS6000 series aluminum alloy is Si: 0.20 to 0.60% by mass, Fe: 0.35% by mass or less, Cu: 0.10% by mass or less, Mn: 0.10% by mass or less, Mg: 0.45 to 0.90% by mass, Cr: 0.10% by mass or less, Zn: 0.10% by mass or less, Ti: 0.10% by mass or less, and the balance being made of an alloy containing aluminum and unavoidable impurities is more preferred.
  • the tensile strength of the aluminum alloy plate for molding of the present invention is preferably 140.0 MPa or more, more preferably 150.0 to 300.0 MPa, and particularly preferably 160.0 to 290.0 MPa.
  • the aluminum alloy plate for molding of the present invention has a value of "tilt A x plate thickness (mm)" of 10 to 28, preferably 10 to 20, particularly preferably 12 to 17, and more preferably "
  • the absolute value of "slope B1 - slope B2" is preferably 10 or less, particularly preferably 8 or less, so that the tensile strength is preferably 140.0 MPa or more, more preferably 150.0 to 300.0 MPa, particularly preferably Although it has a high strength of 160.0 to 290.0 MPa, the amount of reduction in the amount of springback due to the final push is large, and the shape freezeability is excellent.
  • Example B which is a plot of the hardness distribution shown in FIG. After setting the plate thickness to 0.81 mm, solution treatment and artificial aging treatment were performed, and after artificial aging, 3.0% skin pass was performed.
  • the hardness is the lowest at the central portion of the plate thickness (the position at the depth of 1/2 of the plate thickness), and the hardness is linearly increased to the plate surface. is changing.
  • the slope A obtained by the method of least squares is 16 based on the hardness distribution plotted in FIG. Therefore, the value of "tilt A x plate thickness (mm)" is 13 (16 x 0.81).
  • the aluminum alloy plate of Example B was subjected to a 90-degree bending test at 20 kgf (196) N, 100 kgf (980) N, and 200 kgf (1961 N). 7° and 3.7°.
  • the amount of springback is determined by the difference from 90°, and in the aluminum alloy plate of Example B, the phenomenon that the amount of springback is reduced under the condition of a large load in the 90° bending test, that is, the condition corresponding to the so-called final push. confirmed.
  • Comparative Example H which is a plot of the hardness distribution shown in FIG. After setting the plate thickness to 0.82 mm, 3.0% skin pass was performed, followed by solution treatment and then artificial aging treatment.
  • the slope A obtained by the method of least squares is 4.9. Therefore, the value of "tilt A x plate thickness (mm)" is 4.0 (4.9 x 0.82).
  • the springback amounts were 8.7°, 10.3° and 8.0°, respectively.
  • the amount of springback did not change even under the condition of a large load in the 90° bending test, that is, the condition corresponding to the so-called final push.
  • the aluminum alloy plate for molding of the present invention has a value of "tilt A x plate thickness (mm)" of 10 to 28, preferably 10 to 20, and particularly preferably 12 to 17, which corresponds to the decisive condition. It has excellent moldability in a high load 90° bending test. In general, a hard material is strongly influenced by springback, so it is difficult to realize a material having high strength and excellent formability.
  • the aluminum alloy sheet for molding of the present invention is suitably produced by the method for producing an aluminum alloy plate for molding according to the first aspect of the present invention or the method for producing an aluminum alloy plate for molding according to the second aspect of the present invention described below. manufactured.
  • a method for producing an aluminum alloy sheet for molding according to the first embodiment of the present invention is a method for producing an aluminum alloy sheet for molding made of a JIS 5000 series aluminum alloy, and includes (1a) a cold work rate of 70.0% or more; (2a) Performing a skin pass with a rolling reduction of 1.0 to 10.0% after the stabilization treatment, (3a) Three passes with a rolling reduction of 20.0% or less per pass of cold working.
  • a method for producing an aluminum alloy sheet for molding characterized by performing at least one of the above and (4a) treating with a leveler after the stabilization treatment.
  • the casting method, the homogenization treatment method, and the stabilization treatment method are not particularly limited, and can be appropriately selected.
  • (1a) the cold working ratio is set to 70.0% or more, and (2a) the reduction ratio after the stabilization treatment is 1.0 to 1.0%. 10.0% skin pass, (3a) performing 3 or more passes with a rolling reduction of 20.0% or less per pass of cold working, and (4a) treatment with a leveler after stabilization treatment.
  • the value of the slope A can be easily increased by combining two or more of the above (1a) to (4a).
  • (1a) is to set the cold working rate to 70.0% or more, preferably 70.0 to 80.0%.
  • (2a) is to perform skin pass with a rolling reduction of 1.0 to 10.0%, preferably 3.0 to 10.0% after the stabilization treatment.
  • the skin pass defined in (2a) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30.0 or more. It is preferably carried out when it is less than 70.0%, particularly when it is 30.0 to 60.0%.
  • (3a) is to perform three or more passes with a rolling reduction of 25.0% or less per pass of cold working.
  • the cold working path defined in (3a) is set so that the cold working rate in cold working (total cold working rate in cold working) is When it is 30.0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
  • (4a) is to treat with a leveler after stabilization treatment.
  • a leveler is a device commonly used for the purpose of straightening the warp of a thin plate, and processing with a leveler is at least two stages provided so that the points of action of the rolls are slightly different from each other with respect to the traveling direction of the plate.
  • the treatment with a leveler specified in (4a) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30. When it is 0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
  • a method for producing an aluminum alloy sheet for molding according to a second embodiment of the present invention is a method for producing an aluminum alloy sheet for molding made of a JIS 6000 series aluminum alloy, and (1b) the cold working ratio is set to 70.0% or more.
  • the casting method, homogenization treatment method, solution treatment method, and artificial aging treatment method are not particularly limited and may be appropriately selected.
  • (1b) the cold working ratio is set to 70.0% or more, and (2b) the reduction ratio after the artificial aging treatment is 1.0 to 1.0%. 10.0% skin pass, (3b) three or more cold working passes with a rolling reduction of 20.0% or less per pass, and (4b) treatment with a leveler after artificial aging treatment.
  • the above (1b) to (4b) may be implemented, or two or more of the above (1b) to (4b) may be implemented in combination.
  • the value of the slope A can be easily increased by combining two or more of the above (1b) to (4b).
  • (1b) is to set the cold working rate to 70.0% or more, preferably 70.0 to 80.0%.
  • (2b) is to perform skin pass with a rolling reduction of 1.0 to 10.0%, preferably 3.0 to 10.0%, after the artificial aging treatment.
  • the skin pass defined in (2b) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30.0 or more. It is preferably carried out when it is less than 70.0%, particularly when it is 30.0 to 60.0%.
  • (3b) is to perform three or more passes with a rolling reduction rate of 25.0% or less per pass of cold working.
  • the cold working path defined in (3b) is set so that the cold working rate in cold working (total cold working rate in cold working) is When it is 30.0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
  • (4a) is to treat with a leveler after solution treatment or after artificial aging treatment.
  • a leveler is a device commonly used for the purpose of straightening the warp of a thin plate, and processing with a leveler is at least two stages provided so that the points of action of the rolls are slightly different from each other with respect to the traveling direction of the plate.
  • the treatment with a leveler specified in (4b) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30. When it is 0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
  • the hardness as described above in the aluminum alloy plate for forming according to the present invention is as follows. It is considered that the hardness distribution in the aluminum alloy sheet for molding of the present invention originates from work hardening. In metals, dislocations increase due to working stress, and internal stress accumulates. Work hardening is said to occur when the number of dislocations increases too much, causing the dislocations to become entangled or cut, resulting in hardening of the material itself.
  • the effect of reducing the amount of springback in the aluminum alloy plate for molding of the present invention is derived from the hardness distribution in the plate thickness direction derived from work hardening, so not only work hardening alloys such as JIS 5000 series but also JIS 6000 series A similar tendency is obtained in such a heat treatable alloy.
  • work hardening alloys such as JIS 5000 series but also JIS 6000 series
  • a large number of precipitates are formed before and after artificial aging, which affects the hardness of the alloy.
  • the hardness distribution in the sheet thickness direction of the aluminum alloy sheet for molding of the present invention is derived from work hardening due to cold rolling, skin pass, etc., it is believed that there is no effect on the inclination of the hardness distribution itself before and after aging. think. This is also evident in Examples AG.
  • Springback is mainly due to elastic deformation when bending the material. Since the elastic deformation region becomes narrower as the strength of the material decreases, the amount of springback decreases as the strength of the material decreases.
  • a soft layer exists in the central portion of the plate thickness, and the elastic deformation region of that portion is narrow, so that the effect of reducing the amount of springback can be improved as a result. In other words, the wider the soft layer exists in the sheet thickness direction, the more the layer is plastically deformed.
  • Example 1 JIS A6063 aluminum alloy and JIS 5052 aluminum alloy were cast by DC casting. Next, for JIS A6063 aluminum alloy, homogenization treatment, hot rolling, cold rolling, solution treatment, and artificial aging treatment are performed in order, and for JIS 5052 aluminum alloy aluminum alloy, homogenization treatment and hot rolling are performed. , cold rolling, and stabilization treatment are performed in order, and in these processes, the manufacturing conditions shown in Table 1 or Table 2 are performed, and in the JIS A6063 aluminum alloy, the plate shown in Table 1 is produced with a target of 0.80 mm. With a target thickness of 2.70 mm for JIS 5052 aluminum alloy, aluminum alloy plates having thicknesses shown in Table 2 were produced.
  • Example A The rate of cold working was increased.
  • Example B After the artificial aging treatment, skin pass was performed with a rolling reduction of 3.0%.
  • Example C The number of cold working passes was increased.
  • Example D The number of cold working passes was increased, and a skin pass was performed with a rolling reduction of 3.0% after the artificial aging treatment.
  • Example E After the artificial aging treatment, a skin pass was performed with a rolling reduction of 5.0%.
  • Example F After the artificial aging treatment, a skin pass was performed with a rolling reduction of 10.0%.
  • Example G Treatment with a leveler was performed after solution treatment.
  • Comparative Example H After cold rolling and before solution heat treatment, skin pass was performed with a rolling reduction of 3.0%. Comparative Example I: The number of cold working passes was reduced. Example J: Increased cold rolling rate. Example K: The number of cold working passes was increased. Example L: Skin pass was performed with a rolling reduction of 3.0% after the stabilization treatment.
  • Hv Hardness (Hv) measurement> The hardness (Hv) was measured according to JIS Z 2244. An aluminum alloy plate is embedded in resin, mirror-polished, and then a rolled right-angled cross section (surface perpendicular to the plate surface) is subjected to a test load of 10 gf using a micro Vickers hardness tester (FM-110, manufactured by Futuretech Co., Ltd.). (0.098 N) and the hardness (Hv) was measured under the measurement conditions of 10 seconds of holding time. The measurement was performed at predetermined intervals in the thickness direction, three points were measured for each measurement position, and the average value was defined as the hardness (Hv) at that position.
  • FM-110 micro Vickers hardness tester
  • the thickness direction of the JIS6000 series aluminum alloy plate was measured at intervals of 0.05 mm, and the thickness direction of the JIS5000 series aluminum alloy plate was measured at intervals of 0.168 mm. At the position of the outermost layer, the hardness was not measured because the impression of Vickers hardness also reached the resin. The results are shown in Tables 3 and 4. Further, each hardness distribution is shown in FIGS. 2 to 15. FIG. Table 5 shows the slope A obtained by the method of least squares.
  • Table 5 shows each evaluation result. If the reduction in the amount of springback at 200 kgf compared to 20 kgf was 1° or more, it was evaluated as “good” because it was excellent in formability. It was set as “evaluation: bad” because it is inferior.
  • the aluminum alloy plate of the present invention has a small amount of springback after forming, and good formability can be obtained.

Abstract

Provided is an aluminum alloy plate for molding characterized in that when hardness (Hv) is measured at intervals of 1/16 of a plate thickness in the plate thickness direction from the 1/2 depth position of the plate thickness to the plate surface, a hardness distribution is plotted while setting the vertical axis as the hardness (Hv) and setting the horizontal axis as the distance (mm) from the 1/2 depth position of the plate thickness, the relation between the hardness (Hv) and the distance (mm) from the 1/2 depth position of the plate thickness is approximated by a linear function on the basis of the plot of the hardness distribution, and the slope A of the linear function is obtained by the method of least squares, the value obtained by multiplying the slope A by the plate thickness (mm) is 10-28. The present invention makes it possible to provide an aluminum alloy plate that is capable of improving the effect of reducing a springback amount caused by pressing.

Description

成型用アルミニウム合金板及びその製造方法Aluminum alloy plate for molding and its manufacturing method
 本発明は、板材のプレス成型加工後のスプリングバック量が低減された成型用アルミニウム合金板とその製造方法に関する。 The present invention relates to a molding aluminum alloy sheet with a reduced amount of springback after press molding of the sheet material, and a method for manufacturing the same.
 板材のプレス成形加工においては、材料を曲げ加工したときに、工具を離すと弾性変形分だけ元に戻ってしまうスプリングバックによる寸法形状不良が発生する。スプリングバックは、一般的に硬い材料ほど現れ、その量も大きくなる。そのため、寸法形状不良を抑えるために、材料強度を低くして、応力-歪曲線の弾性変形領域を小さくする必要が生じる。  In the press forming of plate materials, when the material is bent, springback, which returns to its original state by the amount of elastic deformation when the tool is released, causes dimensional and shape defects. Generally speaking, the harder the material, the greater the springback, and the greater the amount of springback. Therefore, in order to suppress dimensional and shape defects, it is necessary to lower the material strength and narrow the elastic deformation region of the stress-strain curve.
 そこで、従来より、スプリングバック量を低減させるために、板材に対して板厚方向に圧力を加える決め押しが行われている。この手法により板厚方向の応力を変化させて、スプリングバックを抑制する方に板材の面内応力を変化させることができる。しかし、この手法では、材質によってはスプリングバック量の低減量が小さいものがあり、 更なる対策が必要となる。 Therefore, conventionally, in order to reduce the amount of springback, pressure is applied to the plate material in the thickness direction. By this method, the stress in the plate thickness direction can be changed, and the in-plane stress of the plate material can be changed to suppress the springback. However, with this method, depending on the material, the amount of reduction in the amount of springback is small, so further measures are required.
 そのようなことから、スプリングバック量を低減させる方法として、例えば、特許文献1には、溶体化処理後にスキンパスを取り入れることにより、板表層から1/4板厚に、平均硬さよりも硬い層を設けることにより、形状凍結性を高める方法が開示されている。 For this reason, as a method for reducing the amount of springback, for example, Patent Document 1 discloses a layer harder than the average hardness from the surface layer to 1/4 plate thickness by incorporating a skin pass after solution treatment. A method for enhancing the shape fixability by providing is disclosed.
特開2006-283138号公報JP-A-2006-283138
 しかしながら、特許文献1では、平均硬さよりも硬い領域が多くなってしまうという問題がある。前述のとおり、スプリングバックは弾性変形領域に関係した塑性変形であるため、平均硬さよりも硬い領域は最小限であった方が良い。 However, in Patent Document 1, there is a problem that there are many areas that are harder than the average hardness. As mentioned above, since springback is a plastic deformation related to elastic deformation regions, it is better to minimize regions that are harder than the average hardness.
 そうすると、プレス成形加工でのスプリングバック量を低減させるには、強度を低くせざるを得なくなる。そのため、高強度と低スプリングバック量を同時に具備するアルミニウム合金板を作製することは容易ではない。 Then, in order to reduce the amount of springback in the press molding process, the strength must be lowered. Therefore, it is not easy to produce an aluminum alloy plate having both high strength and low springback.
 従って、本発明の目的は、決め押しによるスプリングバック量の低減効果を向上させることができるアルミニウム合金板を提供することにある。 Therefore, an object of the present invention is to provide an aluminum alloy plate that can improve the effect of reducing the amount of springback due to the decisive push.
 本発明者らは、上記課題を解決すべく、鋭意検討を重ねた結果、厚さ方向に特定の硬さ分布の傾きと板厚を有することにより、高強度でありながら、スプリングバック量を低減させることができ、優れた形状凍結性を有するアルミニウム合金板が得られることを見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have made extensive studies and found that the springback amount is reduced while maintaining high strength by having a specific hardness distribution gradient and plate thickness in the thickness direction. The present inventors have found that it is possible to obtain an aluminum alloy plate having excellent shape fixability, and have completed the present invention.
 すなわち、本発明(1)は、板厚の1/2深さの位置から板表面まで、板厚方向に板厚の1/16の間隔で、硬さ(Hv)を測定し、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットし、該硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きAを最小二乗法により求めたとき、該傾きAと板厚(mm)を乗じた値が10~28であることを特徴とする成型用アルミニウム合金板を提供するものである。 That is, in the present invention (1), the hardness (Hv) is measured at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of 1/2 depth of the plate thickness to the plate surface, and the vertical axis is Hardness (Hv), plotting the hardness distribution with the horizontal axis as the distance (mm) from the position of 1/2 depth of the plate thickness, from the plot of the hardness distribution, hardness (Hv) and the distance (mm) from the position of 1/2 of the plate thickness is approximated by a linear function, and when the slope A of the linear function is obtained by the least squares method, the slope A and the plate thickness (mm) Provided is an aluminum alloy sheet for molding, characterized in that the value obtained by multiplying by is 10 to 28.
 また、本発明(2)は、前記硬さの分布のプロットのうち、板厚の1/4深さの位置から板表面までの硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB1を最小二乗法により求め、且つ、前記硬さの分布のプロットのうち、板厚の1/2深さの位置から板厚の1/4深さの位置までの硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB2を最小二乗法により求めたとき、該傾きB1と該傾きB2の差(B1-B2)の絶対値が10以下であることを特徴とする(1)の成型用アルミニウム合金板を提供するものである。 In the present invention (2), from the plot of the hardness distribution, the hardness (Hv) and the thickness The relationship of the distance (mm) from the position of 1/2 depth of is approximated by a linear function, the slope B1 of the linear function is obtained by the method of least squares, and among the plots of the hardness distribution, the plate thickness From the plot of the hardness distribution from the 1/2 depth position to the 1/4 thickness position, the hardness (Hv) and the distance from the 1/2 thickness position (mm ) is approximated by a linear function, and the slope B2 of the linear function is obtained by the method of least squares, the absolute value of the difference (B1-B2) between the slope B1 and the slope B2 is 10 or less. The object is to provide an aluminum alloy sheet for molding according to (1).
 また、本発明(3)は、引張強度が140.0MPa以上であることを特徴とする(1)又は(2)の成型用アルミニウム合金板を提供するものである。 In addition, the present invention (3) provides the aluminum alloy sheet for molding of (1) or (2), characterized by having a tensile strength of 140.0 MPa or more.
 また、本発明(4)は、JIS5000系アルミニウム合金からなることを特徴とする(1)~(3)いずれかの成型用アルミニウム合金板を提供するものである。 In addition, the present invention (4) provides an aluminum alloy sheet for forming according to any one of (1) to (3), which is made of a JIS 5000 series aluminum alloy.
 また、本発明(5)は、JIS6000系アルミニウム合金からなることを特徴とする(1)~(3)いずれかの成型用アルミニウム合金板を提供するものである。 Further, the present invention (5) provides an aluminum alloy sheet for forming according to any one of (1) to (3), which is made of a JIS6000 series aluminum alloy.
 また、本発明(6)は、JIS5000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1a)冷間加工率を70.0%以上とすること、(2a)安定化処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3a)冷間加工のパス1回当たりの圧下率が25.0%以下のパスを3回以上行うこと、及び(4a)安定化処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法を提供するものである。 In addition, the present invention (6) is a method for producing an aluminum alloy sheet for molding made of a JIS 5000 series aluminum alloy, comprising: (1a) a cold working rate of 70.0% or more; Performing a skin pass with a rolling reduction of 1.0 to 10.0%, (3a) performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4a) stable Provided is a method for producing an aluminum alloy sheet for molding, characterized by performing at least one of treatment with a leveler after heat treatment.
 また、本発明(7)は、JIS6000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1b)冷間加工率を70.0%以上とすること、(2b)人工時効処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3b)冷間加工のパス1回当たりの圧下率が25.0%以下のパスを3回以上行うこと、及び(4b)溶体化処理後又は人工時効処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法を提供するものである。 In addition, the present invention (7) is a method for producing an aluminum alloy sheet for molding made of a JIS 6000 series aluminum alloy, in which (1b) the cold working rate is 70.0% or more, and (2b) after artificial aging treatment, (3b) Performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4b) Solution Provided is a method for producing an aluminum alloy sheet for molding, characterized by performing at least one of treatment with a leveler after heat treatment or after artificial aging treatment.
 本発明によれば、決め押しによるスプリングバック量の低減効果を向上させることができるアルミニウム合金板を提供することができる。 According to the present invention, it is possible to provide an aluminum alloy plate that can improve the effect of reducing the amount of springback caused by a determined push.
本発明の成形用アルミニウム合金板の模式的な断面図である。1 is a schematic cross-sectional view of an aluminum alloy sheet for forming according to the present invention; FIG. 実施例Aの硬さのプロット図である。FIG. 4 is a hardness plot of Example A; 実施例Bの硬さのプロット図である。FIG. 4 is a hardness plot of Example B; 実施例Cの硬さのプロット図である。FIG. 4 is a hardness plot of Example C; 実施例Dの硬さのプロット図である。FIG. 4 is a hardness plot of Example D; 実施例Eの硬さのプロット図である。FIG. 4 is a hardness plot of Example E; 実施例Fの硬さのプロット図である。FIG. 4 is a hardness plot of Example F; 実施例Gの硬さのプロット図である。FIG. 4 is a hardness plot of Example G; 比較例Hの硬さのプロット図である。FIG. 10 is a plot of the hardness of Comparative Example H; 比較例Iの硬さのプロット図である。FIG. 4 is a plot of the hardness of Comparative Example I; 6000系標準材の硬さのプロット図である。FIG. 4 is a plot of hardness of 6000 series standard materials. 実施例Jの硬さのプロット図である。FIG. 4 is a hardness plot of Example J; 実施例Kの硬さのプロット図である。FIG. 4 is a hardness plot of Example K; 実施例Lの硬さのプロット図である。FIG. 4 is a hardness plot of Example L; 5000系標準材の硬さのプロット図である。It is a plot figure of the hardness of 5000 series standard material.
 本発明の成型用アルミニウム合金板は、板厚の1/2深さの位置から板表面まで、板厚方向に板厚の1/16の間隔で、硬さ(Hv)を測定し、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットし、該硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きAを最小二乗法により求めたとき、該傾きAと板厚(mm)を乗じた値が10~28であることを特徴とする成型用アルミニウム合金板である。 The aluminum alloy plate for molding of the present invention is measured for hardness (Hv) at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of 1/2 depth of the plate thickness to the plate surface, and the vertical axis The hardness (Hv ) and the distance (mm) from the position of half the thickness of the plate is approximated by a linear function, and when the slope A of the linear function is obtained by the least squares method, the slope A and the plate thickness (mm ) is 10 to 28.
 本発明の成型用アルミニウム合金板について、図1、図3及び図9を参照して説明する。図1は、本発明の成型用アルミニウム合金板の模式的な断面図である。図3は、実施例Bについて、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットした図である。図9は、比較例Hについて、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットした図である。 The aluminum alloy sheet for molding of the present invention will be described with reference to FIGS. 1, 3 and 9. FIG. 1 is a schematic cross-sectional view of an aluminum alloy sheet for molding according to the present invention. FIG. 3 is a diagram plotting hardness distribution for Example B, with the vertical axis representing hardness (Hv) and the horizontal axis representing distance (mm) from a position half the plate thickness. . FIG. 9 is a diagram plotting the hardness distribution of Comparative Example H, with the vertical axis representing the hardness (Hv) and the horizontal axis representing the distance (mm) from the position half the plate thickness. .
 図1を用いて、硬さ(Hv)の測定位置を説明する。図1は、成形用アルミニウム合金板1を、板面に垂直な面で切った断面図である。図1中、符号3で示す位置が、板厚の1/2深さの位置である。つまり、板厚の1/2深さの位置3とは、板表面7から板厚方向6に、板厚pの1/2の長さ分qだけ離れた位置である。また、符号5で示す位置が、板厚の1/4深さの位置である。つまり、板厚の1/4深さの位置5とは、板表面7から板厚方向6に、板厚pの1/4の長さ分rだけ離れた位置である。 The measurement position of hardness (Hv) will be explained using FIG. FIG. 1 is a cross-sectional view of an aluminum alloy plate 1 for forming, taken along a plane perpendicular to the plate surface. In FIG. 1, the position indicated by reference numeral 3 is the position at the depth of 1/2 of the plate thickness. That is, position 3 at a depth of 1/2 of the plate thickness is a position that is separated from the plate surface 7 in the plate thickness direction 6 by a length q of 1/2 of the plate thickness p. Further, the position indicated by reference numeral 5 is the position at the depth of 1/4 of the plate thickness. That is, the position 5 at a depth of 1/4 of the plate thickness is a position away from the plate surface 7 in the plate thickness direction 6 by a length r of 1/4 of the plate thickness p.
 傾きAの求め方について説明する。傾きAは、板厚の1/2深さの位置から板表面まで、板厚方向に板厚の1/16の間隔で、硬さ(Hv)を測定し、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットしたときに、該硬さの分布のプロットに基づいて、最小二乗法により求められる硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似した、該一次関数の傾きである。先ず、成型用アルミニウム合金板の断面について、板厚の1/2深さの位置3から板表面位置4まで、板厚方向6に板厚pの1/16の間隔で、硬さ(Hv)を測定する。次いで、図3に示すように、各測定位置の硬さ(Hv)の結果を、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、プロットする。次いで、得られた硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きAを最小二乗法により求める。図3に示す実施例Bでは、最小二乗法により、傾きAは16と求められる。また、比較例Hでは、同様の手順により、図9に示すように、最小二乗法により、傾きAは4.9と求められる。 I will explain how to find the slope A. Inclination A is obtained by measuring the hardness (Hv) at intervals of 1/16 of the plate thickness in the plate thickness direction from the position of the depth of 1/2 of the plate thickness to the plate surface, and the vertical axis is the hardness (Hv) And when plotting the hardness distribution with the horizontal axis as the distance (mm) from the position of 1/2 the plate thickness, it is obtained by the least squares method based on the plot of the hardness distribution It is the slope of a linear function obtained by approximating the relationship between the hardness (Hv) and the distance (mm) from a position half the thickness of the plate with a linear function. First, with respect to the cross section of the aluminum alloy plate for molding, hardness (Hv) is measured at intervals of 1/16 of the plate thickness p in the plate thickness direction 6 from the position 3 at the depth of 1/2 of the plate thickness to the plate surface position 4. to measure. Next, as shown in FIG. 3, the hardness (Hv) results at each measurement position are plotted with the vertical axis representing the hardness (Hv) and the horizontal axis representing the distance from the position half the plate thickness (mm ) and plotted as Next, from the plot of the obtained hardness distribution, the relationship between the hardness (Hv) and the distance (mm) from the position of half the thickness of the plate is approximated by a linear function, and the slope A of the linear function is obtained by the method of least squares. In Example B shown in FIG. 3, the slope A is determined to be 16 by the method of least squares. Further, in Comparative Example H, the slope A is obtained as 4.9 by the method of least squares as shown in FIG. 9 by the same procedure.
 なお、本発明において、硬さ(Hv)は、JIS Z 2244に準拠した手法で測定され、例えば、アルミニウム合金板を、樹脂包埋し、鏡面研磨後、圧延直角断面(板面に垂直な面)について、マイクロビッカース硬さ試験機(FM-110、フューチュアテック社製)を用いて、試験荷重10gf(0.098N)、保持時間10秒の測定条件で測定された値である。 In the present invention, the hardness (Hv) is measured by a method conforming to JIS Z 2244. For example, an aluminum alloy plate is embedded in resin, polished to a mirror surface, and then rolled at right angles (surface perpendicular to the plate surface). ) was measured using a micro Vickers hardness tester (FM-110, manufactured by Futuretech) under the measurement conditions of a test load of 10 gf (0.098 N) and a holding time of 10 seconds.
 また、板表面から1/16位置の板表面近傍の部分について、正確な硬さを測定するために、本発明においては、板厚が薄い場合には、表面からおおよそ厚さの1/16以上離れた位置からの硬さ(Hv)の測定を行えば良い。 In addition, in order to accurately measure the hardness of the portion near the plate surface at 1/16 position from the plate surface, in the present invention, when the plate thickness is thin, approximately 1/16 or more of the thickness from the surface Hardness (Hv) may be measured from a distant position.
 傾きB1及びB2の求め方について説明する。傾きAを求めるときに得た硬さの分布のプロットのうち、板厚の1/4深さの位置5から板表面位置4までの硬さの分布のプロットより、板厚の1/4深さの位置5から板表面位置4までの間の硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB1を最小二乗法により求める。また、傾きAを求めるときに得た硬さの分布のプロットのうち、板厚の1/2深さの位置3から板厚の1/4深さの位置5までの硬さの分布のプロットより、板厚の1/2深さの位置3から板厚の1/4深さの位置5までの間の硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB2を最小二乗法により求める。 A method of obtaining the slopes B1 and B2 will be explained. Of the plots of the hardness distribution obtained when obtaining the slope A, from the plot of the hardness distribution from the position 5 of the plate thickness 1/4 depth to the plate surface position 4, the 1/4 depth of the plate thickness The relationship between the hardness (Hv) from the thickness position 5 to the plate surface position 4 and the distance (mm) from the position half the thickness of the plate is approximated by a linear function, and the slope B1 of the linear function is obtained by the method of least squares. In addition, among the plots of the hardness distribution obtained when obtaining the slope A, the plot of the hardness distribution from the position 3 at a depth of 1/2 of the plate thickness to the position 5 at a depth of 1/4 of the plate thickness From this, the hardness (Hv) between position 3 at 1/2 depth of the plate and position 5 at 1/4 depth of plate thickness and the distance from the position at 1/2 depth of plate thickness (mm ) is approximated by a linear function, and the slope B2 of the linear function is obtained by the method of least squares.
 本発明の成型用アルミニウム合金板では、上記のようにして求められる板厚の1/2深さの位置から板表面位置までの硬さの分布のプロットに基づく、板厚の1/2深さの位置から板表面位置までの間の「最小二乗法により求められる硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似した、該一次関数の傾きAの値」と、板厚(mm)を乗じた値(傾きA×板厚(mm))が、10~28、好ましくは10~20、特に好ましくは12~17である。傾きA×板厚(mm)の値が上記範囲にあることにより、決め押しによるスプリングバック量の低減量が多くなり、形状凍結性に優れる。一方、傾きA×板厚(mm)の値が、上記範囲未満だと、決め押しによるスプリングバック量の低減量が少なくなり、形状凍結性に劣る。また、傾きAを大きくするためには、加工硬化を多く取り入れる必要があるが、傾きA×板厚(mm)の値を、上記範囲を超える値にするには、傾きAを大きくするために、過度に大きな加工硬化が必要となるか、あるいは、板厚を過度に大きくする必要がある。そして、板厚が多過ぎると、板厚方向に、本発明の成型用アルミニウム合金板に係る硬さの分布を作ることが困難になる。 In the aluminum alloy plate for molding of the present invention, the hardness distribution from the position of 1/2 depth of the plate thickness obtained as described above to the plate surface position is plotted, 1/2 depth of plate thickness The linear The value obtained by multiplying the value of the slope A of the function by the plate thickness (mm) (slope A x plate thickness (mm)) is 10 to 28, preferably 10 to 20, and particularly preferably 12 to 17. When the value of inclination A×plate thickness (mm) is within the above range, the amount of reduction in the amount of springback due to the final push is increased, and the shape fixability is excellent. On the other hand, if the value of inclination A×plate thickness (mm) is less than the above range, the amount of reduction in the amount of springback due to the final push is small, resulting in poor shape fixability. In addition, in order to increase the slope A, it is necessary to incorporate a large amount of work hardening. , either excessively large work hardening is required, or the plate thickness needs to be excessively increased. If the plate thickness is too large, it becomes difficult to create a distribution of hardness in the aluminum alloy plate for molding of the present invention in the plate thickness direction.
 本発明において、板厚の1/2深さの位置から板表面位置までの硬さの分布のプロットに基づく、板厚の1/2深さの位置から板表面位置までの間の「最小二乗法により求められる硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似した、該一次関数の傾きAを有する一次関数」と、板厚の1/2深さの位置から板表面位置までの硬さの分布のプロットとの相関係数(R)は、0.50以上、好ましくは0.70以上、特に好ましくは0.80以上である。 In the present invention, the "minimum two A linear function having a slope A of the linear function that approximates the relationship between the hardness (Hv) obtained by multiplication and the distance (mm) from the position at the half depth of the plate thickness by a linear function ", and the plate thickness The correlation coefficient (R 2 ) with the plot of the hardness distribution from the half depth position to the plate surface position is 0.50 or more, preferably 0.70 or more, and particularly preferably 0.80 or more is.
 本発明の成型用アルミニウム合金板では、上記のようにして求められる板厚の1/2深さの位置から板表面位置までの硬さの分布のプロットに基づく、板厚の1/4深さの位置から板表面までの硬さの分布のプロットより、板厚の1/4深さの位置から板表面までの間の「最小二乗法により求められる硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似した、該一次関数の傾きB1」と、板厚の1/2深さの位置から板厚の1/4深さの位置までの硬さの分布のプロットより、板厚の1/2深さの位置から板厚の1/4深さの位置までの間の「最小二乗法により求められる硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似した、該一次関数の傾きB2」との差(B1-B2)の絶対値は、好ましくは10以下、特に好ましくは8以下である。成形用アルミニウム合金板の板厚の1/2深さの位置から板表面位置までの硬さの分布のプロットに基づく、傾きB1と傾きB2の差の値が、上記範囲にあることにより、決め押しによるスプリングバック量の低減効果を向上させることができる。 In the aluminum alloy plate for molding of the present invention, the depth of 1/4 of the plate thickness is based on the plot of the hardness distribution from the position of 1/2 depth of the plate thickness to the plate surface position obtained as described above. From the plot of the hardness distribution from the position to the plate surface, the "hardness (Hv) obtained by the least squares method and 1/ 2 The slope B1 of the linear function, which approximates the relationship of the distance (mm) from the depth position by a linear function, and the position of 1/4 of the plate thickness from the position of 1/2 of the plate thickness From the plot of the hardness distribution up to, the "hardness (Hv) obtained by the least squares method and the thickness The absolute value of the difference (B1-B2) from the slope B2 of the linear function, which approximates the relationship of the distance (mm) from the position of 1/2 depth of the linear function, is preferably 10 or less, particularly preferably is 8 or less. The value of the difference between the slope B1 and the slope B2 based on the plot of the hardness distribution from the half depth position of the plate thickness of the aluminum alloy plate for forming to the plate surface position is determined by being in the above range. It is possible to improve the effect of reducing the amount of springback caused by pushing.
 なお、本発明において、板厚方向に板厚の1/16の間隔で硬さを測定するのは、板厚の1/4深さの位置から板表面位置まで領域と、板厚の1/2深さの位置から板厚の1/4深さの位置までの領域に区切ったときに、厚さの1/16の間隔で硬さを測定すると、それぞれ領域で、4点の測定位置で近似一次関数を描くことができ、その一次関数の傾きの値の信頼性が上がるためである。一方、例えば、板厚方向に板厚の1/10の間隔で硬さを測定すると、最表面近傍の硬さの測定が困難であることを考慮すると、2点の測定位置で近似一次関数を描くことになり、その一次関数の傾きの値の信頼性が低くなる。 In the present invention, the hardness is measured at intervals of 1/16 of the plate thickness in the plate thickness direction. When the area is divided from the position of 2 depths to the position of 1/4 of the plate thickness, hardness is measured at intervals of 1/16th of the thickness. This is because an approximate linear function can be drawn, and the reliability of the slope value of the linear function increases. On the other hand, for example, if the hardness is measured at intervals of 1/10 of the plate thickness in the plate thickness direction, it is difficult to measure the hardness near the outermost surface. , and the value of the slope of the linear function becomes less reliable.
 本発明の成型用アルミニウム合金板の板厚は、0.4~5.0mm、好ましくは0.8~2.7mmである。上記範囲未満又は上記範囲を超える板厚のアルミニウム合金板において、「傾きA×板厚(mm)」の値が、10~28、好ましくは10~20、特に好ましくは12~17となる硬さの分布を作ることは難しい。 The plate thickness of the aluminum alloy plate for molding of the present invention is 0.4 to 5.0 mm, preferably 0.8 to 2.7 mm. In an aluminum alloy plate having a thickness less than or exceeding the above range, the value of "tilt A x plate thickness (mm)" is 10 to 28, preferably 10 to 20, particularly preferably 12 to 17. It is difficult to make a distribution of
 本発明の成型用アルミニウム合金板の基本成分は、特に限定されるものではなく、本発明の成型用アルミニウム合金板のアルミニウム合金は、1000系、2000系、3000系、4000系、5000系、6000系、7000系等の種々のアルミニウム合金であってよい。 The basic components of the aluminum alloy sheet for molding of the present invention are not particularly limited. various aluminum alloys such as the 7000 series.
 本発明の成型用アルミニウム合金板は、JIS5000系アルミニウム合金又はJIS6000系アルミニウム合金からなることが好ましい。 The aluminum alloy sheet for molding of the present invention is preferably made of a JIS5000 series aluminum alloy or a JIS6000 series aluminum alloy.
 JIS5000系アルミニウム合金の成分組成は、Si:0.25質量%以下、Fe:0.40質量%以下、Cu:0.10質量%以下、Mn:0.10質量%以下、Mg:2.20~2.80質量%、Cr:0.15~0.35質量%、Zn:0.10質量%以下、残部がアルミニウム及び不可避的不純物である合金からなることがより好ましい。 The composition of the JIS5000 series aluminum alloy is Si: 0.25% by mass or less, Fe: 0.40% by mass or less, Cu: 0.10% by mass or less, Mn: 0.10% by mass or less, Mg: 2.20. 2.80% by mass, Cr: 0.15 to 0.35% by mass, Zn: 0.10% by mass or less, and the balance being aluminum and unavoidable impurities.
 JIS6000系アルミニウム合金の成分組成は、Si:0.20~0.60質量%、Fe:0.35質量%以下、Cu:0.10質量%以下、Mn:0.10質量%以下、Mg:0.45~0.90質量%、Cr:0.10質量%以下、Zn:0.10質量%以下、Ti:0.10質量%以下、残部がアルミニウム及び不可避的不純物である合金からなることがより好ましい。 The chemical composition of the JIS6000 series aluminum alloy is Si: 0.20 to 0.60% by mass, Fe: 0.35% by mass or less, Cu: 0.10% by mass or less, Mn: 0.10% by mass or less, Mg: 0.45 to 0.90% by mass, Cr: 0.10% by mass or less, Zn: 0.10% by mass or less, Ti: 0.10% by mass or less, and the balance being made of an alloy containing aluminum and unavoidable impurities is more preferred.
 本発明の成型用アルミニウム合金板の引張強度は、好ましくは140.0MPa以上、より好ましくは150.0~300.0MPa、特に好ましくは160.0~290.0MPaである。本発明の成型用アルミニウム合金板は、「傾きA×板厚(mm)」の値が、10~28、好ましくは10~20、特に好ましくは12~17であることにより、更に好ましくは、「傾きB1-傾きB2」の絶対値が、好ましくは10以下、特に好ましくは8以下であることにより、引張強度が、好ましくは140.0MPa以上、より好ましくは150.0~300.0MPa、特に好ましくは160.0~290.0MPaと高強度でありながら、決め押しによるスプリングバック量の低減量が多くなり、形状凍結性に優れる。 The tensile strength of the aluminum alloy plate for molding of the present invention is preferably 140.0 MPa or more, more preferably 150.0 to 300.0 MPa, and particularly preferably 160.0 to 290.0 MPa. The aluminum alloy plate for molding of the present invention has a value of "tilt A x plate thickness (mm)" of 10 to 28, preferably 10 to 20, particularly preferably 12 to 17, and more preferably " The absolute value of "slope B1 - slope B2" is preferably 10 or less, particularly preferably 8 or less, so that the tensile strength is preferably 140.0 MPa or more, more preferably 150.0 to 300.0 MPa, particularly preferably Although it has a high strength of 160.0 to 290.0 MPa, the amount of reduction in the amount of springback due to the final push is large, and the shape freezeability is excellent.
 図3に示す硬さの分布のプロットである実施例Bは、板厚が0.81mmであり、JIS A6063アルミニウム合金を、常法により鋳造し、熱間圧延及び冷間圧延を常法によって行い、板厚を0.81mmとした後、溶体化処理及び人工時効処理を行い、人工時効後に3.0%のスキンパスを行ったものである。図3に示すように、実施例Bの硬さの分布のプロットでは、板厚の中央部(板厚の1/2深さの位置)の硬さが最も低く、板表面まで直線的に硬さが変化している。そして、図3の硬さの分布のプロットに基づいて、最小二乗法により求められる傾きAは、16となる。そのため、「傾きA×板厚(mm)」の値は、13(16×0.81)である。そして、実施例Bのアルミニウム合金板について、90度曲げ試験を、20kgf(196)N、100kgf(980)N、200kgf(1961N)で行ったところ、スプリングバック量はそれぞれ5.7°、3.7°、3.7°であった。スプリングバック量は、90°からの差を求めており、実施例Bのアルミニウム合金板では、90°曲げの試験の荷重の大きい条件、いわゆる決め押しにあたる条件において、スプリングバック量が低減する現象が確認された。 Example B, which is a plot of the hardness distribution shown in FIG. After setting the plate thickness to 0.81 mm, solution treatment and artificial aging treatment were performed, and after artificial aging, 3.0% skin pass was performed. As shown in FIG. 3, in the plot of the hardness distribution of Example B, the hardness is the lowest at the central portion of the plate thickness (the position at the depth of 1/2 of the plate thickness), and the hardness is linearly increased to the plate surface. is changing. The slope A obtained by the method of least squares is 16 based on the hardness distribution plotted in FIG. Therefore, the value of "tilt A x plate thickness (mm)" is 13 (16 x 0.81). Then, the aluminum alloy plate of Example B was subjected to a 90-degree bending test at 20 kgf (196) N, 100 kgf (980) N, and 200 kgf (1961 N). 7° and 3.7°. The amount of springback is determined by the difference from 90°, and in the aluminum alloy plate of Example B, the phenomenon that the amount of springback is reduced under the condition of a large load in the 90° bending test, that is, the condition corresponding to the so-called final push. confirmed.
 図9に示す硬さの分布のプロットである比較例Hは、板厚が0.82mmであり、JIS A6063アルミニウム合金を、常法により鋳造し、熱間圧延及び冷間圧延を常法によって行い、板厚を0.82mmとした後、3.0%のスキンパスを行い、その後に、溶体化処理、次いで、人工時効処理を行ったものである。図9に示すように、比較例Hの硬さの分布のプロットでは、最小二乗法により求められる傾きAは、4.9となる。そのため、「傾きA×板厚(mm)」の値は、4.0(4.9×0.82)である。そして、比較例Hアルミニウム合金板について、90度曲げ試験を、20kgf、100kgf、200kgfで行ったところ、スプリングバック量はそれぞれ8.7°、10.3°、8.0°であった。比較例Hのアルミニウム合金板では、90°曲げの試験の荷重の大きい条件、いわゆる決め押しにあたる条件でも、スプリングバック量に変化はなかった。 Comparative Example H, which is a plot of the hardness distribution shown in FIG. After setting the plate thickness to 0.82 mm, 3.0% skin pass was performed, followed by solution treatment and then artificial aging treatment. As shown in FIG. 9, in the plot of the hardness distribution of Comparative Example H, the slope A obtained by the method of least squares is 4.9. Therefore, the value of "tilt A x plate thickness (mm)" is 4.0 (4.9 x 0.82). When the 90-degree bending test was performed on the aluminum alloy plate of Comparative Example H at 20 kgf, 100 kgf and 200 kgf, the springback amounts were 8.7°, 10.3° and 8.0°, respectively. In the aluminum alloy plate of Comparative Example H, the amount of springback did not change even under the condition of a large load in the 90° bending test, that is, the condition corresponding to the so-called final push.
 本発明の成型用アルミニウム合金板は、「傾きA×板厚(mm)」の値が、10~28、好ましくは10~20、特に好ましくは12~17であることにより、決め押し条件に相当する高荷重の90°曲げ試験での成形加工性が優れている。一般的に硬い材料ではスプリングバックの影響が強く現れるので、高強度であり且つ成形性に優れる材料は、実現し難い。そのような技術背景において、本発明の成型用アルミニウム合金板では、板厚方向に硬さの低い領域を作り、且つ、板厚方向の硬さの変化を、「傾きA×板厚(mm)」の値が、10~28、好ましくは10~20、特に好ましくは12~17を満たすように制御することによって、決め押しにより板材の面内応力を変化させてスプリングバック量を低減させることができるので、高強度であり且つ形状凍結性に優れる。 The aluminum alloy plate for molding of the present invention has a value of "tilt A x plate thickness (mm)" of 10 to 28, preferably 10 to 20, and particularly preferably 12 to 17, which corresponds to the decisive condition. It has excellent moldability in a high load 90° bending test. In general, a hard material is strongly influenced by springback, so it is difficult to realize a material having high strength and excellent formability. In such a technical background, in the aluminum alloy plate for molding of the present invention, a region with low hardness is created in the plate thickness direction, and the change in hardness in the plate thickness direction is calculated as "tilt A x plate thickness (mm) ” is controlled to satisfy 10 to 28, preferably 10 to 20, and particularly preferably 12 to 17, so that the in-plane stress of the plate material is changed by decisive pushing to reduce the amount of springback. Therefore, it has high strength and excellent shape fixability.
 本発明の成型用アルミニウム合金板は、以下に示す本発明の第一の形態の成型用アルミニウム合金板の製造方法又は本発明の第二の形態の成型用アルミニウム合金板の製造方法により、好適に製造される。 The aluminum alloy sheet for molding of the present invention is suitably produced by the method for producing an aluminum alloy plate for molding according to the first aspect of the present invention or the method for producing an aluminum alloy plate for molding according to the second aspect of the present invention described below. manufactured.
 本発明の第一の形態の成型用アルミニウム合金板の製造方法は、JIS5000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1a)冷間加工率を70.0%以上とすること、(2a)安定化処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3a)冷間加工のパス1回当たりの圧下率が20.0%以下のパスを3回以上行うこと、及び(4a)安定化処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法である。 A method for producing an aluminum alloy sheet for molding according to the first embodiment of the present invention is a method for producing an aluminum alloy sheet for molding made of a JIS 5000 series aluminum alloy, and includes (1a) a cold work rate of 70.0% or more; (2a) Performing a skin pass with a rolling reduction of 1.0 to 10.0% after the stabilization treatment, (3a) Three passes with a rolling reduction of 20.0% or less per pass of cold working A method for producing an aluminum alloy sheet for molding, characterized by performing at least one of the above and (4a) treating with a leveler after the stabilization treatment.
 本発明の第一の形態の成型用アルミニウム合金板の製造方法では、JIS5000系アルミニウム合金の組成を有するアルミニウム合金鋳塊を造塊する鋳造工程と、均質化処理と、熱間圧延と、冷間圧延と、安定化処理と、を順に行う。なお、本発明の第一の形態の成型用アルミニウム合金板の製造方法では、鋳造方法、均質化処理方法、安定化処理方法は、特に制限されず、適宜選択される。 In the method for producing an aluminum alloy plate for molding according to the first aspect of the present invention, there is provided a casting step of casting an aluminum alloy ingot having a composition of a JIS 5000 series aluminum alloy, a homogenization treatment, a hot rolling, and a cold rolling. Rolling and stabilization treatment are performed in order. In addition, in the manufacturing method of the aluminum alloy sheet for molding according to the first embodiment of the present invention, the casting method, the homogenization treatment method, and the stabilization treatment method are not particularly limited, and can be appropriately selected.
 そして、本発明の第一の形態の成型用アルミニウム合金板の製造方法では、(1a)冷間加工率を70.0%以上とすること、(2a)安定化処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3a)冷間加工のパス1回当たりの圧下率が20.0%以下のパスを3回以上行うこと、及び(4a)安定化処理後にレベラーで処理することのうちの少なくとも1つを実施することにより、加工を増やして、板厚方向に加工硬化を進行させ、上記の本発明の成型用アルミニウム合金板における硬さの分布を発現させることができる。なお、上記(1a)~(4a)のいずれか1つを実施例してもよいし、あるいは、上記(1a)~(4a)のうちの2つ以上を組み合わせて実施してもよい。本発明の第一の形態の成型用アルミニウム合金板の製造方法では、上記(1a)~(4a)のうちの2つ以上を組み合わせることにより、傾きAの値を大きくし易くなる。 In the method for producing an aluminum alloy sheet for molding according to the first aspect of the present invention, (1a) the cold working ratio is set to 70.0% or more, and (2a) the reduction ratio after the stabilization treatment is 1.0 to 1.0%. 10.0% skin pass, (3a) performing 3 or more passes with a rolling reduction of 20.0% or less per pass of cold working, and (4a) treatment with a leveler after stabilization treatment. By performing at least one of the above steps, it is possible to increase the working and progress work hardening in the plate thickness direction, and to develop the hardness distribution in the aluminum alloy plate for molding of the present invention. . Any one of the above (1a) to (4a) may be implemented, or two or more of the above (1a) to (4a) may be implemented in combination. In the method of manufacturing an aluminum alloy sheet for molding according to the first aspect of the present invention, the value of the slope A can be easily increased by combining two or more of the above (1a) to (4a).
 (1a)は、冷間加工において、冷間加工率を70.0%以上、好ましくは70.0~80.0%とすることである。なお、冷間加工率とは、冷間加工における総加工率であり、「冷間加工率(%)=((冷間加工の最初のパス前の板厚-冷間加工の最後のパス後の板厚)/冷間加工の最初のパス前の板厚)×100」により算出される値である。 (1a) is to set the cold working rate to 70.0% or more, preferably 70.0 to 80.0%. The cold working rate is the total working rate in cold working, and "cold working rate (%) = ((thickness before the first pass of cold working - after the last pass of cold working thickness)/plate thickness before the first pass of cold working)×100”.
 (2a)は、安定化処理後に圧下率1.0~10.0%、好ましくは3.0~10.0%のスキンパスを行うことである。スキンパスとは、「圧下率(%)=((スキンパス前の板厚-スキンパス後の板厚)/スキンパス前の板厚)×100」により算出される圧下率が、1.0~10.0%、好ましくは3.0~10.0%の範囲内で、冷間で板厚を減じる加工である。本発明の第一の形態の成型用アルミニウム合金板の製造方法では、(2a)に規定するスキンパスを、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (2a) is to perform skin pass with a rolling reduction of 1.0 to 10.0%, preferably 3.0 to 10.0% after the stabilization treatment. The skin pass is a rolling reduction calculated by "rolling reduction (%) = ((board thickness before skin pass - board thickness after skin pass) / board thickness before skin pass) x 100" is 1.0 to 10.0. %, preferably within the range of 3.0 to 10.0%. In the method for producing an aluminum alloy sheet for molding according to the first aspect of the present invention, the skin pass defined in (2a) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30.0 or more. It is preferably carried out when it is less than 70.0%, particularly when it is 30.0 to 60.0%.
 (3a)は、冷間加工のパス1回当たりの圧下率が25.0%以下のパスを3回以上行うことである。冷間加工のパス1回当たりの圧下率は、「圧下率(%)=((パス前の板厚-パス後の板厚)/パス前の板厚)×100」により算出される圧下率である。本発明の第一の形態の成型用アルミニウム合金板の製造方法では、1回当たりの圧下率が10.0~25.0%の冷間加工のパスを、3回以上行うことが好ましく、1回当たりの圧下率が10.0~20.0%の冷間加工のパスを、4回以上行うことがより好ましく、1回当たりの圧下率が10.0~15.0%の冷間加工のパスを、6回以上行うことが特に好ましい。本発明の第一の形態の成型用アルミニウム合金板の製造方法では、(3a)に規定する冷間加工のパスを、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (3a) is to perform three or more passes with a rolling reduction of 25.0% or less per pass of cold working. The rolling reduction per pass of cold working is calculated by "rolling reduction (%) = ((plate thickness before pass - plate thickness after pass) / plate thickness before pass) x 100". is. In the method for producing an aluminum alloy sheet for molding according to the first aspect of the present invention, it is preferable to perform three or more passes of cold working with a rolling reduction of 10.0 to 25.0% per pass. It is more preferable to perform 4 or more passes of cold working with a rolling reduction of 10.0 to 20.0% per pass, and cold working with a rolling reduction of 10.0 to 15.0% per pass. It is particularly preferable to perform the pass of 6 times or more. In the method for producing an aluminum alloy sheet for forming according to the first aspect of the present invention, the cold working path defined in (3a) is set so that the cold working rate in cold working (total cold working rate in cold working) is When it is 30.0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
 (4a)は、安定化処理後にレベラーで処理することである。レベラーとは、薄板の反りを矯正する目的で常用されている装置であり、レベラーによる処理とは、板の進行方向に対して、ロールの作用点が少しずつ食い違うように設けられた少なくとも2段のロールの間に板を通し、反対方向に少なくとも2回の屈曲を与える処理である。本発明の第一の形態の成型用アルミニウム合金板の製造方法では、(4a)に規定するレベラーによる処理を、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (4a) is to treat with a leveler after stabilization treatment. A leveler is a device commonly used for the purpose of straightening the warp of a thin plate, and processing with a leveler is at least two stages provided so that the points of action of the rolls are slightly different from each other with respect to the traveling direction of the plate. A process in which the board is passed between rolls of 100 lbs and given at least two bends in opposite directions. In the method for producing an aluminum alloy sheet for forming according to the first embodiment of the present invention, the treatment with a leveler specified in (4a) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30. When it is 0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
 本発明の第二の形態の成型用アルミニウム合金板の製造方法は、JIS6000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1b)冷間加工率を70.0%以上とすること、(2b)人工時効処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3b)冷間加工のパス1回当たりの圧下率が20.0%以下のパスを3回以上行うこと、及び(4b)溶体化処理後又は人工時効処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法である。 A method for producing an aluminum alloy sheet for molding according to a second embodiment of the present invention is a method for producing an aluminum alloy sheet for molding made of a JIS 6000 series aluminum alloy, and (1b) the cold working ratio is set to 70.0% or more. (2b) skin pass with a rolling reduction of 1.0 to 10.0% after artificial aging treatment; (3b) three passes with a rolling reduction of 20.0% or less per pass of cold working. and (4b) treatment with a leveler after solution treatment or artificial aging treatment.
 本発明の第二の形態の成型用アルミニウム合金板の製造方法では、JIS6000系アルミニウム合金の組成を有するアルミニウム合金鋳塊を造塊する鋳造工程と、均質化処理と、熱間圧延と、冷間圧延と、溶体化処理と、人工時効処理と、を順に行う。なお、本発明の第二の形態の成型用アルミニウム合金板の製造方法では、鋳造方法、均質化処理方法、溶体化処理方法、人工時効処理方法は、特に制限されず、適宜選択される。 In the method for producing an aluminum alloy plate for molding according to the second aspect of the present invention, there is provided a casting step of casting an aluminum alloy ingot having a composition of a JIS6000 series aluminum alloy, a homogenization treatment, a hot rolling, and a cold rolling. Rolling, solution treatment, and artificial aging treatment are performed in order. In addition, in the method of manufacturing the aluminum alloy sheet for molding according to the second aspect of the present invention, the casting method, homogenization treatment method, solution treatment method, and artificial aging treatment method are not particularly limited and may be appropriately selected.
 そして、本発明の第二の形態の成型用アルミニウム合金板の製造方法では、(1b)冷間加工率を70.0%以上とすること、(2b)人工時効処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3b)冷間加工のパス1回当たりの圧下率が20.0%以下のパスを3回以上行うこと、及び(4b)人工時効処理後にレベラーで処理することのうちの少なくとも1つを実施することにより、加工を増やして、板厚方向に加工硬化を進行させ、上記の本発明の成型用アルミニウム合金板における硬さの分布を発現させることができる。なお、上記(1b)~(4b)のいずれか1つを実施例してもよいし、あるいは、上記(1b)~(4b)のうちの2つ以上を組み合わせて実施してもよい。本発明の第二の形態の成型用アルミニウム合金板の製造方法では、上記(1b)~(4b)のうちの2つ以上を組み合わせることにより、傾きAの値を大きくし易くなる。 In the method for producing an aluminum alloy sheet for molding according to the second embodiment of the present invention, (1b) the cold working ratio is set to 70.0% or more, and (2b) the reduction ratio after the artificial aging treatment is 1.0 to 1.0%. 10.0% skin pass, (3b) three or more cold working passes with a rolling reduction of 20.0% or less per pass, and (4b) treatment with a leveler after artificial aging treatment. By performing at least one of the above steps, it is possible to increase the working and progress work hardening in the plate thickness direction, and to develop the hardness distribution in the aluminum alloy plate for molding of the present invention. . Any one of the above (1b) to (4b) may be implemented, or two or more of the above (1b) to (4b) may be implemented in combination. In the method of manufacturing an aluminum alloy sheet for forming according to the second aspect of the present invention, the value of the slope A can be easily increased by combining two or more of the above (1b) to (4b).
 (1b)は、冷間加工において、冷間加工率を70.0%以上、好ましくは70.0~80.0%とすることである。なお、冷間加工率とは、冷間加工における総加工率であり、「冷間加工率(%)=((冷間加工の最初のパス前の板厚-冷間加工の最後のパス後の板厚)/冷間加工の最初のパス前の板厚)×100」により算出される値である。 (1b) is to set the cold working rate to 70.0% or more, preferably 70.0 to 80.0%. The cold working rate is the total working rate in cold working, and "cold working rate (%) = ((thickness before the first pass of cold working - after the last pass of cold working thickness)/plate thickness before the first pass of cold working)×100”.
 (2b)は、人工時効処理後に圧下率1.0~10.0%、好ましくは3.0~10.0%のスキンパスを行うことである。スキンパスとは、「圧下率(%)=((スキンパス前の板厚-スキンパス後の板厚)/スキンパス前の板厚)×100」により算出される圧下率が、1.0~10.0%、好ましくは3.0~10.0%の範囲内で、冷間で板厚を減じる加工である。本発明の第二の形態の成型用アルミニウム合金板の製造方法では、(2b)に規定するスキンパスを、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (2b) is to perform skin pass with a rolling reduction of 1.0 to 10.0%, preferably 3.0 to 10.0%, after the artificial aging treatment. The skin pass is a rolling reduction calculated by "rolling reduction (%) = ((board thickness before skin pass - board thickness after skin pass) / board thickness before skin pass) x 100" is 1.0 to 10.0. %, preferably within the range of 3.0 to 10.0%. In the method for producing an aluminum alloy sheet for forming according to the second aspect of the present invention, the skin pass defined in (2b) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30.0 or more. It is preferably carried out when it is less than 70.0%, particularly when it is 30.0 to 60.0%.
 (3b)は、冷間加工のパス1回当たりの圧下率を25.0%以下のパスを3回以上行うことである。冷間加工のパス1回当たりの圧下率は、「圧下率(%)=((パス前の板厚-パス後の板厚)/パス前の板厚)×100」により算出される圧下率である。本発明の第二の形態の成型用アルミニウム合金板の製造方法では、1回当たりの圧下率が10.0~25.0%の冷間加工のパスを、3回以上行うことが好ましく、1回当たりの圧下率が10.0~20.0%の冷間加工のパスを、4回以上行うことがより好ましく、1回当たりの圧下率が10.0~15.0%の冷間加工のパスを、5回以上行うことが特に好ましい。本発明の第二の形態の成型用アルミニウム合金板の製造方法では、(3b)に規定する冷間加工のパスを、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (3b) is to perform three or more passes with a rolling reduction rate of 25.0% or less per pass of cold working. The rolling reduction per pass of cold working is calculated by "rolling reduction (%) = ((plate thickness before pass - plate thickness after pass) / plate thickness before pass) x 100". is. In the method for producing an aluminum alloy sheet for molding according to the second aspect of the present invention, it is preferable to perform cold working passes with a rolling reduction of 10.0 to 25.0% for three times or more. It is more preferable to perform 4 or more passes of cold working with a rolling reduction of 10.0 to 20.0% per pass, and cold working with a rolling reduction of 10.0 to 15.0% per pass. It is particularly preferable to perform the pass of 5 times or more. In the method for producing an aluminum alloy sheet for forming according to the second aspect of the present invention, the cold working path defined in (3b) is set so that the cold working rate in cold working (total cold working rate in cold working) is When it is 30.0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
 (4a)は、溶体化処理後又は人工時効処理後にレベラーで処理することである。レベラーとは、薄板の反りを矯正する目的で常用されている装置であり、レベラーによる処理とは、板の進行方向に対して、ロールの作用点が少しずつ食い違うように設けられた少なくとも2段のロールの間に板を通し、反対方向に少なくとも2回の屈曲を与える処理である。本発明の第二の形態の成型用アルミニウム合金板の製造方法では、(4b)に規定するレベラーによる処理を、冷間加工における冷間加工率(冷間加工における総加工率)が、30.0以上70.0%未満である場合、特に30.0~60.0%である場合に行うことが好ましい。 (4a) is to treat with a leveler after solution treatment or after artificial aging treatment. A leveler is a device commonly used for the purpose of straightening the warp of a thin plate, and processing with a leveler is at least two stages provided so that the points of action of the rolls are slightly different from each other with respect to the traveling direction of the plate. A process in which the board is passed between rolls of 100 lbs and given at least two bends in opposite directions. In the method of manufacturing an aluminum alloy sheet for forming according to the second aspect of the present invention, the treatment with a leveler specified in (4b) is performed so that the cold working rate in cold working (total cold working rate in cold working) is 30. When it is 0 or more and less than 70.0%, it is preferable to carry out when it is particularly 30.0 to 60.0%.
 本発明の第一の形態の成型用アルミニウム合金板の製造方法又は本発明の第二の形態の成型用アルミニウム合金板の製造方法において、本発明の成型用アルミニウム合金板における上記のような硬さ分布が発現する理由は以下の通りである。
 本発明の成型用アルミニウム合金板における硬さ分布は、加工硬化に由来すると考えられる。金属は加工応力によって転位が増殖し、内部応力が蓄積される。加工硬化は、この転位が増えすぎると転位同士がからんだり切れたりして材料自体の硬化が起きるとされている。熱間圧延のような大規模変形では板厚全体に均一に応力が伝わるため、板厚方向での硬さ分布は生まれない。それに対して、(1a)~(3a)及び(1b)~(3b)の冷間圧延又はスキンパスでは、熱間圧延と比べて小規模変形のため、表層及びその近辺に加工硬化が発生し易く、板厚方向に、本発明の成型用アルミニウム合金板に係る規定を満たす硬さ分布を作ることが可能となる。このことは、実施例A~Fでも明らかである。また、上記の原理から、(4a)及び(4b)のレベラーなどのような、板の反りを強制する目的で板を屈曲させる手法においても、板表層が加工硬化して、板厚方向に、本発明の成型用アルミニウム合金板に係る規定を満たす硬さ分布を作ることが可能となる。このことは、実施例Gでも明らかである。
In the method for producing an aluminum alloy plate for forming according to the first aspect of the present invention or the method for producing an aluminum alloy plate for forming according to the second aspect of the present invention, the hardness as described above in the aluminum alloy plate for forming according to the present invention The reason why the distribution appears is as follows.
It is considered that the hardness distribution in the aluminum alloy sheet for molding of the present invention originates from work hardening. In metals, dislocations increase due to working stress, and internal stress accumulates. Work hardening is said to occur when the number of dislocations increases too much, causing the dislocations to become entangled or cut, resulting in hardening of the material itself. In large-scale deformation such as hot rolling, the stress is uniformly distributed throughout the plate thickness, so there is no hardness distribution in the plate thickness direction. On the other hand, in the cold rolling or skin pass of (1a) to (3a) and (1b) to (3b), compared to hot rolling, due to small-scale deformation, work hardening is likely to occur in and around the surface layer. , it is possible to create a hardness distribution that satisfies the requirements relating to the aluminum alloy sheet for molding of the present invention in the plate thickness direction. This is also evident in Examples AF. In addition, from the above principle, even in the method of bending the plate for the purpose of forcing the warp of the plate, such as the leveler of (4a) and (4b), the plate surface layer is work hardened, It is possible to create a hardness distribution that satisfies the regulations relating to the aluminum alloy sheet for molding of the present invention. This is also evident in Example G.
 本発明の成型用アルミニウム合金板におけるスプリングバック量の低減効果は、加工硬化に由来する板厚方向の硬さ分布に由来するので、JIS5000系のような加工硬化型合金だけでなく、JIS6000系のような熱処理型合金でも同様の傾向が得られる。熱処理型合金では人工時効の前後で析出物が多数生成するため、その影響を受けて硬さが変化する。しかし、本発明の成型用アルミニウム合金板に係る板厚方向の硬さ分布は、冷間圧延やスキンパス等による加工硬化に由来するため、時効前後で硬さ分布の傾き自体には影響が無いと考える。このことは、実施例A~Gでも明らかである。 The effect of reducing the amount of springback in the aluminum alloy plate for molding of the present invention is derived from the hardness distribution in the plate thickness direction derived from work hardening, so not only work hardening alloys such as JIS 5000 series but also JIS 6000 series A similar tendency is obtained in such a heat treatable alloy. In heat-treated alloys, a large number of precipitates are formed before and after artificial aging, which affects the hardness of the alloy. However, since the hardness distribution in the sheet thickness direction of the aluminum alloy sheet for molding of the present invention is derived from work hardening due to cold rolling, skin pass, etc., it is believed that there is no effect on the inclination of the hardness distribution itself before and after aging. think. This is also evident in Examples AG.
 スプリングバックは、材料を曲げ加工する際の弾性変形が主となる。弾性変形領域は、強度の低い材料ほど狭くなるため、強度が低い材料ほど、スプリングバック量が小さくなる。本発明の成型用アルミニウム合金板では、板厚中央部にやわらかい層が存在しており、その部分の弾性変形領域が狭いので、結果としてスプリングバック量の低減効果が向上できる。つまり、やわらかい層が板厚方向に広く存在しているほど、その層が塑性変形されるため、スプリングバック量の低減効果が向上できると考えられる。 Springback is mainly due to elastic deformation when bending the material. Since the elastic deformation region becomes narrower as the strength of the material decreases, the amount of springback decreases as the strength of the material decreases. In the aluminum alloy sheet for molding of the present invention, a soft layer exists in the central portion of the plate thickness, and the elastic deformation region of that portion is narrow, so that the effect of reducing the amount of springback can be improved as a result. In other words, the wider the soft layer exists in the sheet thickness direction, the more the layer is plastically deformed.
 以下に、実施例を示して、本発明を具体的に説明するが、本発明は、以下に示す実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples shown below.
(実施例1)
 JIS A6063アルミニウム合金及びJIS 5052アルミニウム合金を、DC鋳造により造塊した。次いで、JIS A6063アルミニウム合金については、均質化処理、熱間圧延、冷間圧延、溶体化処理、人工時効処理を順に行い、また、JIS 5052アルミニウム合金アルミニウム合金については、均質化処理、熱間圧延、冷間圧延、安定化処理を順に行い、それらの工程において、表1又は表2に示す製造条件の操作を実施し、JIS A6063アルミニウム合金では、0.80mmを目標に、表1に示す板厚のアルミニウム合金板を、JIS 5052アルミニウム合金では、2.70mmを目標に、表2に示す板厚のアルミニウム合金板を作製した。なお、均質化処理、溶体化処理、人工時効処理、安定化処理の条件は一般的なものとした。
 各条件の標準板との違いは次の通りである。実施例A:冷間加工率を高くした。実施例B:人工時効処理後に圧下率3.0%のスキンパスを実施した。実施例C:冷間加工パス数を多くした。実施例D:冷間加工のパス数を多くし且つ人工時効処理後に圧下率3.0%のスキンパスを実施した。実施例E:人工時効処理後に圧下率5.0%のスキンパスを実施した。実施例F:人工時効処理後に圧下率が10.0%のスキンパスを実施した。実施例G:溶体化処理後にレベラーによる処理を実施した。比較例H:冷間圧延後且つ溶体化処理前に圧下率3.0%のスキンパスを実施した。比較例I:冷間加工パス数を減らした。実施例J:冷延加工率を高くした。実施例K:冷間加工パス数を多くした。実施例L:安定化処理後に圧下率3.0%のスキンパスを実施した。
(Example 1)
JIS A6063 aluminum alloy and JIS 5052 aluminum alloy were cast by DC casting. Next, for JIS A6063 aluminum alloy, homogenization treatment, hot rolling, cold rolling, solution treatment, and artificial aging treatment are performed in order, and for JIS 5052 aluminum alloy aluminum alloy, homogenization treatment and hot rolling are performed. , cold rolling, and stabilization treatment are performed in order, and in these processes, the manufacturing conditions shown in Table 1 or Table 2 are performed, and in the JIS A6063 aluminum alloy, the plate shown in Table 1 is produced with a target of 0.80 mm. With a target thickness of 2.70 mm for JIS 5052 aluminum alloy, aluminum alloy plates having thicknesses shown in Table 2 were produced. General conditions were used for the homogenization treatment, solution treatment, artificial aging treatment, and stabilization treatment.
Differences from the standard plate under each condition are as follows. Example A: The rate of cold working was increased. Example B: After the artificial aging treatment, skin pass was performed with a rolling reduction of 3.0%. Example C: The number of cold working passes was increased. Example D: The number of cold working passes was increased, and a skin pass was performed with a rolling reduction of 3.0% after the artificial aging treatment. Example E: After the artificial aging treatment, a skin pass was performed with a rolling reduction of 5.0%. Example F: After the artificial aging treatment, a skin pass was performed with a rolling reduction of 10.0%. Example G: Treatment with a leveler was performed after solution treatment. Comparative Example H: After cold rolling and before solution heat treatment, skin pass was performed with a rolling reduction of 3.0%. Comparative Example I: The number of cold working passes was reduced. Example J: Increased cold rolling rate. Example K: The number of cold working passes was increased. Example L: Skin pass was performed with a rolling reduction of 3.0% after the stabilization treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各評価の方法及び評価基準は次の通りである。
<硬さ(Hv)測定>
 硬さ(Hv)の測定について、JIS Z 2244に準拠した手法で行った。アルミニウム合金板を、樹脂包埋し、鏡面研磨後、圧延直角断面(板面に垂直な面)について、マイクロビッカース硬さ試験機(FM-110、フューチュアテック社製)を用いて、試験荷重10gf(0.098N)、保持時間10秒の測定条件で、硬さ(Hv)を測定した。測定は、厚み方向に、所定の間隔で行い、各測定位置について3点測定し、平均値を、その位置における硬さ(Hv)とした。
 JIS6000系のアルミニウム合金板では、厚み方向に、0.05mm間隔で測定を行い、JIS5000系のアルミニウム合金板では、厚み方向に、0.168mm間隔で測定を行った。
 なお、最表層の位置では、ビッカース硬さの圧痕が樹脂にも及んでしまうため、硬さ測定しなかった。
 その結果を、表3及び表4に示す。また、各硬さ分布を図2~図15に示す。また、最小二乗法により求められた傾きAを表5に示す。
Each evaluation method and evaluation criteria are as follows.
<Hardness (Hv) measurement>
The hardness (Hv) was measured according to JIS Z 2244. An aluminum alloy plate is embedded in resin, mirror-polished, and then a rolled right-angled cross section (surface perpendicular to the plate surface) is subjected to a test load of 10 gf using a micro Vickers hardness tester (FM-110, manufactured by Futuretech Co., Ltd.). (0.098 N) and the hardness (Hv) was measured under the measurement conditions of 10 seconds of holding time. The measurement was performed at predetermined intervals in the thickness direction, three points were measured for each measurement position, and the average value was defined as the hardness (Hv) at that position.
The thickness direction of the JIS6000 series aluminum alloy plate was measured at intervals of 0.05 mm, and the thickness direction of the JIS5000 series aluminum alloy plate was measured at intervals of 0.168 mm.
At the position of the outermost layer, the hardness was not measured because the impression of Vickers hardness also reached the resin.
The results are shown in Tables 3 and 4. Further, each hardness distribution is shown in FIGS. 2 to 15. FIG. Table 5 shows the slope A obtained by the method of least squares.
<スプリングバック量(成形性)>
 成形性を評価するため、圧延方向60mm×幅方向30mmの板を、各5枚用意して、曲げ半径R=5.0mmの90°曲げ試験を実施した。試験荷重は、20kgf(196N)、100kgf(980N)、200kgf(1961N)とした。荷重を除荷した後に、板の角度を分度器により求め、90°からの差をスプリングバック量とした。スプリングバック量は5枚平均の値とした。
<Springback amount (formability)>
In order to evaluate the formability, five plates each having a size of 60 mm in the rolling direction and 30 mm in the width direction were prepared and subjected to a 90° bending test with a bending radius R of 5.0 mm. The test loads were 20 kgf (196 N), 100 kgf (980 N), and 200 kgf (1961 N). After the load was removed, the angle of the plate was determined using a protractor, and the difference from 90° was taken as the amount of springback. The amount of springback was taken as the average value of 5 sheets.
 各評価結果を表5に示す。20kgfに比べ200kgfのスプリングバック量の減少量が、1°以上であったものを、成形性に優れるということで「評価:良い」とし、一方、1°未満であったものを、成形性に劣るということで「評価:悪い」とした。 Table 5 shows each evaluation result. If the reduction in the amount of springback at 200 kgf compared to 20 kgf was 1° or more, it was evaluated as "good" because it was excellent in formability. It was set as "evaluation: bad" because it is inferior.
 表5からは、図2~図15に示す硬さ分布に基づく、近似一次関数の傾きAと板厚(mm)を乗じた値(傾きA×板厚(mm))が、10以上の場合に、20kgfに比べ200kgfのスプリングバック量が1°以上減少していることが分かった。 From Table 5, when the value obtained by multiplying the slope A of the approximate linear function by the plate thickness (mm) (slope A × plate thickness (mm)) based on the hardness distribution shown in FIGS. 2 to 15 is 10 or more In addition, it was found that the amount of springback at 200 kgf was reduced by 1° or more compared to that at 20 kgf.
 そして、「傾きA×板厚(mm)」が10以上となるのは、製造条件が、A、B、C、D、E、F、G、J、K及びLの場合であった。一方、製造条件が、H及びIの場合は、板厚方向の硬さ分布の傾きが小さ過ぎるため、「傾きA×板厚(mm)」が10未満となってしまい、その結果、スプリングバック量が低減しなかったと考えられる。 "Inclination A x plate thickness (mm)" was 10 or more when manufacturing conditions were A, B, C, D, E, F, G, J, K, and L. On the other hand, when the manufacturing conditions are H and I, the slope of the hardness distribution in the plate thickness direction is too small, so the "slope A x plate thickness (mm)" is less than 10, resulting in springback. It is assumed that the amount did not decrease.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のアルミニウム合金板は、成形加工後のスプリングバック量が小さく、良好な成形性が得られる。 The aluminum alloy plate of the present invention has a small amount of springback after forming, and good formability can be obtained.
1     成形用アルミニウム合金板
3     板厚の1/2深さの位置
4     板表面位置
5     板厚の1/4深さの位置
6     板厚方向
7     板表面
p     板厚
q     板厚の1/2の長さ分
r     板厚の1/4の長さ分
1 Aluminum alloy plate for forming 3 Half thickness position 4 Plate surface position 5 Plate thickness position 1/4 depth 6 Plate thickness direction 7 Plate surface p Plate thickness q Half thickness Length r 1/4 of plate thickness

Claims (7)

  1.  板厚の1/2深さの位置から板表面まで、板厚方向に板厚の1/16の間隔で、硬さ(Hv)を測定し、縦軸を硬さ(Hv)とし、横軸を板厚の1/2深さの位置からの距離(mm)として、硬さの分布をプロットし、該硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きAを最小二乗法により求めたとき、該傾きAと板厚(mm)を乗じた値が10~28であることを特徴とする成型用アルミニウム合金板。 The hardness (Hv) is measured from the position of 1/2 of the plate thickness to the plate surface at intervals of 1/16 of the plate thickness in the plate thickness direction, the vertical axis is the hardness (Hv), and the horizontal axis As the distance (mm) from the position of 1/2 depth of the plate thickness, plot the hardness distribution, and from the plot of the hardness distribution, the hardness (Hv) and 1/2 depth of the plate thickness When the relationship of the distance (mm) from the position is approximated by a linear function, and the slope A of the linear function is obtained by the method of least squares, the value obtained by multiplying the slope A by the plate thickness (mm) is 10 to 28. An aluminum alloy plate for molding, characterized by:
  2.  前記硬さの分布のプロットのうち、板厚の1/4深さの位置から板表面までの硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB1を最小二乗法により求め、且つ、前記硬さの分布のプロットのうち、板厚の1/2深さの位置から板厚の1/4深さの位置までの硬さの分布のプロットより、硬さ(Hv)と板厚の1/2深さの位置からの距離(mm)の関係を一次関数により近似し、該一次関数の傾きB2を最小二乗法により求めたとき、該傾きB1と該傾きB2の差(B1-B2)の絶対値が10以下であることを特徴とする請求項1記載の成型用アルミニウム合金板。 Among the plots of the hardness distribution, from the plot of the hardness distribution from the position of 1/4 depth of the plate thickness to the plate surface, the hardness (Hv) and the position of 1/2 depth of the plate thickness The relationship of the distance (mm) is approximated by a linear function, the slope B1 of the linear function is obtained by the method of least squares, and from the plot of the hardness distribution, from the position half the thickness of the plate From the plot of the hardness distribution up to 1/4 of the plate thickness, the relationship between the hardness (Hv) and the distance (mm) from the position of 1/2 of the plate thickness is approximated by a linear function. 2. The molding according to claim 1, wherein the absolute value of the difference (B1-B2) between the slope B1 and the slope B2 is 10 or less when the slope B2 of the linear function is obtained by the method of least squares. Aluminum alloy plate.
  3.  引張強度が140.0MPa以上であることを特徴とする請求項1又は2記載の成型用アルミニウム合金板。 The aluminum alloy sheet for molding according to claim 1 or 2, characterized by having a tensile strength of 140.0 MPa or more.
  4.  JIS5000系アルミニウム合金からなることを特徴とする請求項1~3いずれか1項記載の成型用アルミニウム合金板。 The aluminum alloy sheet for molding according to any one of claims 1 to 3, characterized by being made of a JIS 5000 series aluminum alloy.
  5.  JIS6000系アルミニウム合金からなることを特徴とする請求項1~3いずれか1項記載の成型用アルミニウム合金板。 The aluminum alloy sheet for molding according to any one of claims 1 to 3, characterized by being made of a JIS6000 series aluminum alloy.
  6.  JIS5000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1a)冷間加工率を70.0%以上とすること、(2a)安定化処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3a)冷間加工のパス1回当たりの圧下率が25.0%以下のパスを3回以上行うこと、及び(4a)安定化処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法。 A method for manufacturing an aluminum alloy sheet for molding made of a JIS 5000 series aluminum alloy, comprising: (1a) a cold working ratio of 70.0% or more; and (2a) a reduction ratio of 1.0 to 10.0 after stabilization treatment (3a) performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4a) treating with a leveler after stabilization treatment. A method for producing an aluminum alloy sheet for molding, characterized by carrying out at least one of the above.
  7.  JIS6000系アルミニウム合金からなる成型用アルミニウム合金板の製造方法であり、(1b)冷間加工率を70.0%以上とすること、(2b)人工時効処理後に圧下率1.0~10.0%のスキンパスを行うこと、(3b)冷間加工のパス1回当たりの圧下率が25.0%以下のパスを3回以上行うこと、及び(4b)溶体化処理後又は人工時効処理後にレベラーで処理することのうちの少なくとも1つを実施することを特徴とする成型用アルミニウム合金板の製造方法。 A method for producing an aluminum alloy sheet for molding made of a JIS 6000 series aluminum alloy, comprising: (1b) a cold working rate of 70.0% or more; and (2b) a reduction rate of 1.0 to 10.0 after artificial aging treatment. (3b) performing three or more passes with a rolling reduction of 25.0% or less per pass of cold working, and (4b) leveling after solution treatment or after artificial aging treatment A method for producing an aluminum alloy plate for molding, characterized in that at least one of the treatments is performed with.
PCT/JP2022/022965 2021-08-02 2022-06-07 Aluminum alloy plate for molding and method for producing same WO2023013238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280053898.1A CN117813410A (en) 2021-08-02 2022-06-07 Aluminum alloy sheet for molding and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126953A JP2023021838A (en) 2021-08-02 2021-08-02 Aluminum alloy sheet for molding and method for manufacturing the same
JP2021-126953 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013238A1 true WO2023013238A1 (en) 2023-02-09

Family

ID=85155740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022965 WO2023013238A1 (en) 2021-08-02 2022-06-07 Aluminum alloy plate for molding and method for producing same

Country Status (3)

Country Link
JP (1) JP2023021838A (en)
CN (1) CN117813410A (en)
WO (1) WO2023013238A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192781A (en) * 1992-05-12 1994-07-12 Sky Alum Co Ltd Aluminum alloy sheet excellent in galling resistance and scuffing resistance
JP2003129201A (en) * 2001-10-18 2003-05-08 Furukawa Electric Co Ltd:The Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method
JP2003247040A (en) * 2002-02-25 2003-09-05 Kobe Steel Ltd Aluminum alloy sheet having excellent flat hem workability and production method thereof
JP2007136464A (en) * 2005-11-15 2007-06-07 Sumitomo Light Metal Ind Ltd METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013194286A (en) * 2012-03-21 2013-09-30 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent press formability and shape flexibility and method for producing the same
CN104532077A (en) * 2014-11-28 2015-04-22 苏州有色金属研究院有限公司 Short-flow preparation method for 6XXX-series aluminum alloy automotive body sheet without paint brushed lines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192781A (en) * 1992-05-12 1994-07-12 Sky Alum Co Ltd Aluminum alloy sheet excellent in galling resistance and scuffing resistance
JP2003129201A (en) * 2001-10-18 2003-05-08 Furukawa Electric Co Ltd:The Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method
JP2003247040A (en) * 2002-02-25 2003-09-05 Kobe Steel Ltd Aluminum alloy sheet having excellent flat hem workability and production method thereof
JP2007136464A (en) * 2005-11-15 2007-06-07 Sumitomo Light Metal Ind Ltd METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013194286A (en) * 2012-03-21 2013-09-30 Nippon Light Metal Co Ltd Aluminum alloy sheet having excellent press formability and shape flexibility and method for producing the same
CN104532077A (en) * 2014-11-28 2015-04-22 苏州有色金属研究院有限公司 Short-flow preparation method for 6XXX-series aluminum alloy automotive body sheet without paint brushed lines

Also Published As

Publication number Publication date
JP2023021838A (en) 2023-02-14
CN117813410A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP6598007B2 (en) Method for producing Fe-Ni alloy thin sheet
KR102114022B1 (en) Martensitic stainless steel foil and its manufacturing method
CN112789362B (en) Austenitic stainless steel sheet and method for producing same
WO2016043125A1 (en) Austenitic stainless steel plate
JP2010214447A (en) Method for manufacturing material for etching, and material for etching
RU2678350C1 (en) Molded product and method of its manufacture
WO2012118113A1 (en) Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP6646882B2 (en) Material for metal mask and manufacturing method thereof
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
KR102294111B1 (en) Manufacturing method of thin plate for metal mask and thin plate for metal mask
WO2023013238A1 (en) Aluminum alloy plate for molding and method for producing same
JP2006322064A (en) High moldability aluminum material
JP4959245B2 (en) Method for producing high-strength metal member
JP2010209449A (en) Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
KR102244229B1 (en) Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
KR101460931B1 (en) Rolled copper foil
JP3677460B2 (en) Steel manufacturing method
JP7322602B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP7249730B2 (en) Steel plates, tubular moldings, and stampings
JP2023150452A (en) Shearing work method and shearing workpiece
Takahashi et al. Effects of nitrided surface layer and microstructure on press formability in commercially pure titanium sheet annealed in nitrogen gas atmosphere
Narayanasamy et al. Effects of material orientation on air bending of interstitial free steel sheet
WO2019093399A1 (en) Steel material having high toughness, method for producing same, and structural steel plate using said steel material
JP2023161303A (en) aluminum alloy foil
JPH05154504A (en) Method for controlling surface roughness of rolled material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE