KR102244229B1 - Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate - Google Patents
Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate Download PDFInfo
- Publication number
- KR102244229B1 KR102244229B1 KR1020197008509A KR20197008509A KR102244229B1 KR 102244229 B1 KR102244229 B1 KR 102244229B1 KR 1020197008509 A KR1020197008509 A KR 1020197008509A KR 20197008509 A KR20197008509 A KR 20197008509A KR 102244229 B1 KR102244229 B1 KR 102244229B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- cold rolling
- thin plate
- alloy thin
- rolling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0468—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/14—Manufacture of electrodes or electrode systems of non-emitting electrodes
- H01J9/142—Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2229/00—Details of cathode ray tubes or electron beam tubes
- H01J2229/07—Shadow masks
- H01J2229/0727—Aperture plate
- H01J2229/0733—Aperture plate characterised by the material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
광폭화가 되어도 등방적인 기계 특성을 구비하는 것이 가능한 Fe-Ni계 합금 박판과 그 제조 방법을 제공한다. 질량%로 Ni+Co: 35.0 내지 43.0%(단, Co는 0 내지 6.0%), Si: 0.5% 이하, Mn: 1.0% 이하, 잔부는 Fe 및 불순물로 이루어지고, 두께가 2mm 이상인 열간 압연재를 사용하여 냉간 압연용 소재로 하고, 상기 냉간 압연용 소재에 대하여, 압하율 85% 이상의 제1 냉간 압연을 행하고, 상기 제1 냉간 압연 후, 온도 800℃ 이상, 유지 시간 0.1 내지 1.2분의 조건에서 재결정 어닐링을 행하고, 상기 재결정 어닐링 후, 압하율 40% 이하의 최종 냉간 압연을 행하여, 두께가 0.25mm 이하인 Fe-Ni계 합금 박판으로 하고, 최종 냉간 압연 후에는 열처리를 행하지 않는 것을 특징으로 하는 Fe-Ni계 합금 박판의 제조 방법 및 Fe-Ni계 합금 박판.It provides an Fe-Ni-based alloy thin plate capable of having isotropic mechanical properties even if the width is increased, and a method of manufacturing the same. By mass% Ni+Co: 35.0 to 43.0% (however, Co is 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance is made of Fe and impurities, and a hot-rolled material having a thickness of 2 mm or more Using as a cold rolling material, performing the first cold rolling with a reduction ratio of 85% or more with respect to the cold rolling material, and after the first cold rolling, a temperature of 800°C or more, and a holding time of 0.1 to 1.2 minutes Recrystallization annealing is performed at, and after the recrystallization annealing, final cold rolling with a reduction ratio of 40% or less is performed to obtain an Fe-Ni alloy thin plate having a thickness of 0.25 mm or less, and no heat treatment is performed after the final cold rolling. Method for producing a thin Fe-Ni alloy plate and a thin Fe-Ni alloy plate.
Description
본 발명은, 예를 들어 리드 프레임이나 메탈 마스크 등에 사용되는 Fe-Ni계 합금 박판 및 그 제조 방법에 관한 것이다.The present invention relates to, for example, a thin Fe-Ni alloy plate used for a lead frame or a metal mask, and a method of manufacturing the same.
리드 프레임이나 메탈 마스크 등에 사용되는 Fe-Ni계 합금 박판은, 성능 향상을 위해서 종래보다 다양한 검토가 이루어지고 있다. 예를 들어 특허문헌 1에는, 에칭 정밀도를 향상시키기 위해서, 열연판에 냉간 압연 및 어닐링을 각각 1회 이상 행하고, 최종 재결정 어닐링 전의 냉간 압연의 냉압율을 90% 이상, 최종 재결정 어닐링의 어닐링 온도를 850℃ 이상, 최종 냉압율을 30% 이하로 하여 제조하는 것을 특징으로 하는 Fe-Ni계 박판의 제조 방법이 개시되어 있다. 또한 특허문헌 2에는, 양호한 에칭성과 높은 강도를 얻기 위해서, 85% 이상의 냉간 압연율과 700℃ 이상의 어닐링을 적어도 1회 행하고, 그 후 상기 냉간 압연율을 초과하지 않는 압연율의 냉간 압연과 850℃를 초과하지 않는 온도의 어닐링을 이 순서대로 행하는 것을 특징으로 하는, 섀도우 마스크 재료의 제조 방법이 개시되어 있다.In order to improve the performance of the Fe-Ni alloy thin plate used for a lead frame, a metal mask, etc., various studies have been conducted than before. For example, in Patent Document 1, in order to improve the etching accuracy, cold rolling and annealing are performed on a hot-rolled sheet at least once, respectively, the cold rolling rate of cold rolling before final recrystallization annealing is 90% or more, and the annealing temperature of the final recrystallization annealing is Disclosed is a method of manufacturing an Fe-Ni-based thin plate, characterized in that it is manufactured at 850°C or higher and a final cold-pressing rate of 30% or lower. Further, in Patent Document 2, in order to obtain good etching property and high strength, a cold rolling rate of 85% or more and annealing of 700°C or more are performed at least once, and thereafter, cold rolling and 850°C of a rolling rate not exceeding the cold rolling rate. A method for producing a shadow mask material is disclosed, characterized in that annealing at a temperature not exceeding is performed in this order.
상기와 같은 Fe-Ni계 합금 박판은 사용 용도에 따라, 원하는 사이즈로 재단되어서 사용된다. 그러나 제품의 한층 더한 고정밀도화 요구에 의해, 메탈 마스크 등에 있어서도 치수 공차는 점점 엄격해져서, 재단 후의 치수 공차를 벗어나는 제품이 증가할 가능성이 있다. 전술한 특허문헌 1이나 특허문헌 2의 발명은 에칭 성능을 향상시키는 효과를 갖는 유용한 발명이지만, 절단 후의 박판 특성의 변동을 억제하는 것에 관해서는, 특허문헌 1이나 특허문헌 2에는 기재되어 있지 않아, 검토의 여지가 남겨져 있다.The Fe-Ni-based alloy thin plate as described above is cut to a desired size and used according to the intended use. However, due to the demand for higher precision of products, the dimensional tolerances of metal masks and the like become increasingly strict, and there is a possibility that products that exceed the dimensional tolerances after cutting may increase. The inventions of Patent Document 1 or Patent Document 2 described above are useful inventions having an effect of improving the etching performance, but regarding suppressing fluctuations in the characteristics of the thin plate after cutting, it is not described in Patent Document 1 or Patent Document 2, There is room for review.
그래서 본 발명의 목적은, 두께가 0.25mm 이하인 얇은 Fe-Ni계 합금 박판에 있어서, 압연 표면의 기계 특성의 이방성이 적고 양호한 형상 가공성을 구비하는 것이 가능한 Fe-Ni계 합금 박판과 그 제조 방법을 제공하는 것이다.Therefore, it is an object of the present invention to provide a thin Fe-Ni alloy sheet having a thickness of 0.25 mm or less, and a method of manufacturing the same, which has less anisotropy of the mechanical properties of the rolled surface and is capable of providing good shape workability. To provide.
본 발명의 일 양태는, 질량%로 Ni+Co: 35.0 내지 43.0%(단, Co는 0 내지 6.0%), Si: 0.5% 이하, Mn: 1.0% 이하, 잔부는 Fe 및 불순물로 이루어지고, 두께가 2mm 이상인 열간 압연재를 사용하여 냉간 압연용 소재로 하고, 상기 냉간 압연용 소재에 대하여,In one aspect of the present invention, in mass%, Ni+Co: 35.0 to 43.0% (however, Co is 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance consists of Fe and impurities, Using a hot rolled material having a thickness of 2 mm or more as a material for cold rolling, with respect to the material for cold rolling,
압하율 85% 이상의 제1 냉간 압연을 행하고,First cold rolling of 85% or more of a reduction ratio was performed,
상기 제1 냉간 압연 후, 온도 800℃ 이상, 유지 시간 0.1 내지 1.2분의 조건에서 재결정 어닐링을 행하고,After the first cold rolling, recrystallization annealing was performed under conditions of a temperature of 800° C. or higher and a holding time of 0.1 to 1.2 minutes,
상기 재결정 어닐링 후, 압하율 40% 이하의 최종 냉간 압연을 행하여, 두께가 0.25mm 이하인 Fe-Ni계 합금 박판으로 하고, 최종 냉간 압연 후에는 열처리를 행하지 않는 것을 특징으로 하는, Fe-Ni계 합금 박판의 제조 방법이다.After the recrystallization annealing, a final cold rolling having a reduction ratio of 40% or less is performed to obtain an Fe-Ni alloy thin plate having a thickness of 0.25 mm or less, and no heat treatment is performed after the final cold rolling. It is a method of manufacturing a thin plate.
본 발명의 다른 일 양태는,Another aspect of the present invention,
질량%로 Ni+Co: 35.0 내지 43.0%(단, Co는 0 내지 6.0%), Si: 0.5% 이하, Mn: 1.0% 이하, 잔부는 Fe 및 불순물로 이루어지고, 두께가 0.25mm 이하인 Fe-Ni계 합금 박판에 있어서, 상기 Fe-Ni계 합금 박판의 폭 방향, 길이 방향 및 45° 방향의 3방향에 있어서의 각 0.2% 내력끼리의 차가, 상기 3방향의 0.2% 내력의 평균값의 5% 이내이고, 상기 3방향에 있어서의 각 신율값이, 상기 3방향의 평균 신율값의 0.90 내지 1.10배인 것을 특징으로 하는, Fe-Ni계 합금 박판이다.Ni+Co by mass%: 35.0 to 43.0% (however, Co is 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance consisting of Fe and impurities, and a thickness of 0.25 mm or less Fe- In the Ni-based alloy thin plate, the difference between the 0.2% yield strength in each of the three directions in the width direction, the length direction, and the 45° direction of the Fe-Ni alloy thin plate is 5% of the average value of the 0.2% proof strength in the three directions. It is an Fe-Ni-based alloy thin plate, which is within the range, wherein each elongation value in the three directions is 0.90 to 1.10 times the average elongation value in the three directions.
본 발명에 따르면, 두께가 0.25mm 이하인 얇은 Fe-Ni계 합금 박판에 있어서, 절단 방향에 따른 기계 특성의 변동이 적기 때문에, 양호한 가공성을 발휘할 수 있다.According to the present invention, in a thin Fe-Ni alloy thin plate having a thickness of 0.25 mm or less, since there is little variation in mechanical properties depending on the cutting direction, good workability can be exhibited.
이하에 본 발명의 실시 형태에 대하여 설명한다. 먼저, 본 발명의 Fe-Ni계 합금 박판의 제조 방법에 대하여 설명한다.Hereinafter, an embodiment of the present invention will be described. First, a method of manufacturing a thin Fe-Ni alloy plate of the present invention will be described.
<열간 압연재 조성><Composition of hot rolled material>
본 발명에서는, 질량%로 Ni+Co: 35.0 내지 43.0%(단, Co는 0 내지 6.0%), Si: 0.5% 이하, Mn: 1.0% 이하, 잔부는 Fe 및 불순물로 이루어지는 조성을 갖는 열간 압연재를 준비한다. 본 발명에서 규정하는 조성을 갖는 Fe-Ni계 합금은, 원하는 열팽창 계수를 얻기 위해서 필요한 조성을 갖는 것이다.In the present invention, by mass% Ni + Co: 35.0 to 43.0% (however, Co is 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, the balance is a hot-rolled material having a composition consisting of Fe and impurities Prepare. The Fe-Ni-based alloy having the composition specified in the present invention has a composition necessary to obtain a desired coefficient of thermal expansion.
[Ni+Co: 35.0 내지 43.0%(단, Co는 0 내지 6.0%)][Ni+Co: 35.0 to 43.0% (however, Co is 0 to 6.0%)]
Ni 및 Co는 전술한 바와 같이, 원하는 열팽창 계수를 얻기 위해서 필요한 원소이다. Ni+Co 함유량이 35.0% 미만에서는 오스테나이트 조직이 불안정해지기 쉽고, 한편 43.0%를 초과하면 열팽창 계수가 상승하여, 저열팽창 특성을 만족하지 않는다는 점에서, Ni+Co의 함유량은 35.0 내지 43.0%로 한다. 또한, Co는 반드시 첨가할 필요는 없지만, Co에는 Fe-Ni계 합금을 고강도로 하는 작용이 있기 때문에, 특히 엄격한 핸들링성이 요구되거나 하는, 얇은 판 두께에서는 6.0%까지의 범위에서, Ni의 일부를 Co로 치환할 수 있다.As described above, Ni and Co are elements necessary to obtain a desired coefficient of thermal expansion. When the Ni+Co content is less than 35.0%, the austenite structure is liable to become unstable, whereas when it exceeds 43.0%, the coefficient of thermal expansion increases and the low thermal expansion property is not satisfied, so the content of Ni+Co is 35.0 to 43.0%. It should be. In addition, Co is not necessarily added, but since Co has an action of making an Fe-Ni alloy high strength, particularly strict handling properties are required, in the range of up to 6.0% in thin plate thickness, part of Ni Can be substituted with Co.
[Si: 0.5% 이하, Mn: 1.0% 이하][Si: 0.5% or less, Mn: 1.0% or less]
Si, Mn은 통상 Fe-Ni계 합금에서는, 탈산을 목적으로 미량 함유되어 있지만, 과잉으로 함유하면 편석을 일으키기 쉬워지기 때문에, Si는 0.5% 이하로 하고, Mn은 1.0% 이하로 한다. 또한, Si와 Mn의 하한은 특별히 한정하지 않지만, 전술한 바와 같이 탈산 원소로서 첨가된다는 점에서, Si는 0.05%, Mn은 0.05%는 적지 않게 잔류한다.Si and Mn are usually contained in a small amount for the purpose of deoxidation in an Fe-Ni-based alloy, but when contained excessively, segregation tends to occur, so that Si is 0.5% or less, and Mn is 1.0% or less. Further, the lower limit of Si and Mn is not particularly limited, but 0.05% of Si and 0.05% of Mn remain in a small amount in that they are added as deoxidation elements as described above.
[잔부는 Fe 및 불순물][The balance is Fe and impurities]
상기의 원소 이외는 실질적으로 Fe이면 되지만, 제조상 불가피적으로 함유하는 불순물은 포함된다. 특별히 제한이 필요한 불순물 원소에는 C가 있고, 예를 들어 에칭을 행하는 용도로 사용하는 것이라면, 그 상한을 0.05%로 하면 된다.Except for the above-described elements, it is substantially sufficient to include Fe, but impurities that are unavoidably contained in production are included. C is an impurity element that needs to be particularly limited, and if it is used for etching, for example, the upper limit may be set to 0.05%.
또한, 프레스 펀칭성을 향상시키는 경우는 S 등의 쾌삭성 원소를 0.020% 이하로 함유시켜도 된다. 열간 가공성을 향상시키거나 하는 B 등의 원소를 0.0050% 이하로 함유시켜도 된다.Further, in the case of improving press punchability, free-machining elements such as S may be contained in an amount of 0.020% or less. An element such as B, which improves hot workability, may be contained in an amount of 0.0050% or less.
<열간 압연재 두께: 2mm 이상><Hot-rolled material thickness: 2mm or more>
본 발명에서 사용하는 열간 압연재는, 그 두께를 2mm 이상으로 한다. 열간 압연재의 두께가 2mm 미만이 되면, 본 발명에서 규정하는 압하율 85% 이상의 냉간 압연을 행할 수 없을 우려가 있다. 또한, 열간 압연재의 두께를 2mm 미만으로 하고자 하면, 특수한 압연 설비가 필요해지는 경우가 있다. 그 때문에, 본 발명에서는 열간 압연재의 두께를 2mm 이상으로 한다.The hot-rolled material used in the present invention has a thickness of 2 mm or more. When the thickness of the hot-rolled material is less than 2 mm, there is a fear that cold rolling of 85% or more of the reduction ratio specified in the present invention cannot be performed. In addition, if the thickness of the hot-rolled material is to be less than 2 mm, special rolling equipment may be required. Therefore, in the present invention, the thickness of the hot-rolled material is 2 mm or more.
또한, 열간 압연재의 두께를 두껍게 하면 압하율을 높게 하는 것이 가능하지만, 한편, 냉간 압연 공정 중의 패스 횟수가 증가되거나, 압연 중의 Fe-Ni계 합금의 형상 조정이 곤란해지는 경우가 있기 때문에, 두께를 상한을 5mm으로 하는 것이 현실적이다.In addition, if the thickness of the hot-rolled material is increased, it is possible to increase the reduction ratio, but on the other hand, the number of passes during the cold-rolling process may increase, or the shape of the Fe-Ni-based alloy during rolling may become difficult to adjust. It is realistic to set the upper limit to 5mm.
이 열간 압연재는, 표면에 산화층이 형성되어 있고, 열간 압연재의 두께란, 그 산화층을 포함한 두께이다.This hot-rolled material has an oxide layer formed on its surface, and the thickness of the hot-rolled material is the thickness including the oxide layer.
<냉간 압연용 소재><Material for cold rolling>
본 발명에서는, 전술한 열간 압연재를 사용하여 냉간 압연용 소재로 한다. 열간 압연재에는 산화층이 형성되어 있다는 점에서, 그 산화층을, 예를 들어 기계적, 혹은 화학적으로 제거한다. 또한, 냉간 압연 중의 냉간 압연재의 에지로부터 균열 등의 불량이 발생하지 않도록, 에지를 마련해 두어도 된다. 이러한 가공을 행하여 냉간 압연용 소재로 한다.In the present invention, the above-described hot-rolled material is used as a cold-rolling material. Since an oxide layer is formed in the hot-rolled material, the oxide layer is removed mechanically or chemically, for example. Further, an edge may be provided so that defects such as cracks do not occur from the edge of the cold-rolled material during cold rolling. Such processing is performed to obtain a cold rolling material.
이어서, 냉간 압연 공정에 대해서, 상세하게 설명한다.Next, the cold rolling process is demonstrated in detail.
<제1 냉간 압연><1st cold rolling>
본 발명에서는, 재결정 어닐링 전의 냉간 압연인 제1 냉간 압연에 있어서의 압하율을 85% 이상으로 한다. 이렇게 재결정 어닐링 전의 압하율을 높게 함으로써, 후술하는 최종 압연 후에 얻어지는 합금 박판의 결정면 방위를 1방향으로 정렬시키기 쉽고, 기계 특성의 이방성을 억제할 수 있다. 또한, 냉간 압연이나 어닐링 공정의 횟수를 저감시킬 수 있기 때문에, 보다 저비용에서의 제조도 가능해진다. 압하율이 85% 미만이면, 기계 특성이 열화된다. 또한 압하율이 지나치게 낮은 냉간 압연이나 어닐링 공정의 횟수가 증가하여, 비용이 증대한다. 바람직한 압하율은 87% 이상이고, 더욱 바람직하게는 90% 이상이다. 또한, 압하율의 상한은 특별히 정하지 않지만, 압하율이 99%를 초과하면, 과대한 압연 시간에 따른 비용의 증대를 초래할 가능성이 있기 때문에, 상한은 99%로 하는 것이 현실적이다.In the present invention, the reduction ratio in the first cold rolling, which is cold rolling before recrystallization annealing, is set to 85% or more. By increasing the reduction ratio before recrystallization annealing in this way, it is easy to align the crystal plane orientation of the alloy thin plate obtained after final rolling to be described later in one direction, and the anisotropy of mechanical properties can be suppressed. Moreover, since the number of cold rolling and annealing steps can be reduced, manufacturing at a lower cost is also possible. When the reduction ratio is less than 85%, mechanical properties are deteriorated. In addition, the number of cold rolling or annealing steps having an excessively low reduction ratio increases, and the cost increases. A preferable reduction ratio is 87% or more, more preferably 90% or more. In addition, the upper limit of the reduction ratio is not particularly determined, but when the reduction ratio exceeds 99%, there is a possibility that an increase in cost due to an excessive rolling time may be caused, so that the upper limit is practically set to 99%.
<재결정 어닐링><Recrystallization Annealing>
본 발명은 전술한 제1 냉간 압연 후에, 800℃ 이상의 온도에서 재결정 어닐링을 행한다. 이 공정에 의해, 강압 하에 의해 가공 경화된 박판의 응력을 제거하여 연화시켜, 후의 최종 냉간 압연에 의해 원하는 판 두께와 기계 특성을 얻기 쉬워진다. 어닐링 온도가 800℃ 미만이면 재료가 충분히 연화되지 않을 우려가 있다. 또한 어닐링 온도의 상한은 특별히 한정하지 않지만, 너무 높으면 원하는 특성이 얻어지지 않을 가능성이 있기 때문에, 1100℃로 설정할 수 있다.In the present invention, after the first cold rolling described above, recrystallization annealing is performed at a temperature of 800°C or higher. By this step, the stress of the thin sheet that has been work-hardened under reduced pressure is removed and softened, and the desired sheet thickness and mechanical properties are easily obtained by the subsequent final cold rolling. If the annealing temperature is less than 800°C, there is a concern that the material may not be sufficiently softened. In addition, the upper limit of the annealing temperature is not particularly limited, but if it is too high, since there is a possibility that the desired characteristics may not be obtained, it can be set to 1100°C.
또한 본 발명은, 박판의 어닐링의 가열 유지 시간을 0.1 내지 1.2분으로 조정하고 있는 것도 특징이다. 이렇게 상술한 온도 범위 내에서 가열 유지 시간을 비교적 단시간에 함으로써, 생산 효율을 떨어뜨리지 않고, 원하는 내력 및 신장의 등방적인 특성을 얻을 수 있다. 어닐링 시간이 0.1분 미만이면 응력이 충분히 제거되지 않는 경우가 있다. 1.2분을 초과하면, 합금 박판의 기계 특성의 변동이나, 어닐링 시간의 증대에 따른 비용이 증대될 가능성이 있다. 어닐링 시간의 하한은 0.2분인 것이 바람직하다. 또한 어닐링 시간의 상한은, 한층 더한 저비용화를 목표로 하여, 0.9분인 것이 바람직하고, 0.6분으로 하는 것이 더욱 바람직하다.In addition, the present invention is also characterized in that the heating holding time of the annealing of the thin plate is adjusted to 0.1 to 1.2 minutes. By setting the heating holding time within the above-described temperature range in a relatively short period of time, it is possible to obtain desired isotropic properties of yield strength and elongation without deteriorating production efficiency. If the annealing time is less than 0.1 minutes, the stress may not be sufficiently removed. If it exceeds 1.2 minutes, there is a possibility that the mechanical properties of the thin alloy sheet will fluctuate, or the cost will increase due to an increase in annealing time. It is preferable that the lower limit of the annealing time is 0.2 minutes. In addition, the upper limit of the annealing time is preferably 0.9 minutes, and more preferably 0.6 minutes, aiming at further cost reduction.
또한, 이 재결정 어닐링은, 원하는 온도로 설정된 가열로에 제1 냉간 압연재를 연속적으로 통과시켜서 행할 수 있다. 예를 들어, 제1 냉간 압연재가 롤상으로 감긴 상태로부터 인출되고, 가열로를 통과하여, 롤상으로 권취하는 방법으로 행할 수 있다.In addition, this recrystallization annealing can be performed by continuously passing the first cold-rolled material through a heating furnace set to a desired temperature. For example, it can be carried out by a method in which the first cold-rolled material is taken out from a rolled state, passed through a heating furnace, and wound in a roll shape.
<최종 냉간 압연><Final cold rolling>
본 발명의 제조 방법에서는, 전술한 재결정 어닐링 후의 재료에 압하율 40% 이하의 최종 냉간 압연을 실시함으로써, 기계 특성의 이방성을 억제한 Fe-Ni계 합금 박판을 얻는 것이 가능하다. 40%를 초과하는 압연을 실시했을 때, 과도한 응력이 가해짐으로써 기계 특성의 이방성이 커지는 경향에 있기 때문에, 바람직하지 않다. 압하율의 하한은 특별히 한정하지 않지만, 압하율이 지나치게 낮으면 원하는 판 두께로의 조정이 곤란해지기 때문에, 15% 이상으로 설정할 수 있다. 이때, 또한 상술한 기계 특성을 얻기 쉽게 하기 위해서, 최종 냉간 압연에서의 압연 전방 장력을 200 내지 500MPa, 압연 후방 장력을 100 내지 200MPa, 압연 속도를 250m/분 이하로 하는 것이 바람직하다. 보다 바람직한 압연 전방 장력의 하한은 250MPa이고, 보다 바람직한 압연 전방 장력의 상한은 400MPa이다. 또한 보다 바람직한 압연 후방 장력의 하한은 120MPa이고, 보다 바람직한 압연 후방 장력의 상한은 180MPa이다. 또한 압연 속도의 하한에 대해서는 특별히 한정하지 않지만, 작업성을 고려하면 100m/분 정도로 하는 것이 바람직하다. 또한 본 실시 형태의 제조 방법에 대해서는, 최종 냉간 압연에 있어서는, 박판 표면의 흠을 억제하면서 원하는 특성을 얻기 위해서, 1패스로 압연하는 것이 바람직하다.In the manufacturing method of the present invention, it is possible to obtain an Fe-Ni-based alloy thin plate with suppressed anisotropy of mechanical properties by performing final cold rolling with a reduction ratio of 40% or less on the above-described material after recrystallization annealing. When rolling in excess of 40% is performed, the anisotropy of mechanical properties tends to increase due to the application of excessive stress, which is not preferable. Although the lower limit of the reduction ratio is not particularly limited, if the reduction ratio is too low, it becomes difficult to adjust to the desired plate thickness, and thus it can be set to 15% or more. At this time, in order to facilitate obtaining the above-described mechanical properties, it is preferable that the rolling front tension in the final cold rolling is 200 to 500 MPa, the rolling rear tension is 100 to 200 MPa, and the rolling speed is 250 m/min or less. A more preferable lower limit of the rolling front tension is 250 MPa, and a more preferable upper limit of the rolling front tension is 400 MPa. Further, a more preferable lower limit of the rolling rear tension is 120 MPa, and a more preferable upper limit of the rolling rear tension is 180 MPa. Moreover, although it does not specifically limit about the lower limit of a rolling speed, In consideration of workability, it is preferable to be about 100 m/min. In addition, about the manufacturing method of this embodiment, in final cold rolling, in order to obtain desired properties while suppressing flaws on the surface of a thin plate, it is preferable to roll in one pass.
최종 냉간 압연 후의 강대에 있어서의 두께는 0.25mm 이하로 한다. 이것은, 본 발명의 Fe-Ni계 합금 박판을 예를 들어, 리드 프레임에 사용한 경우에서는 다핀화에 대응하기 쉽고, 예를 들어 메탈 마스크에 사용한 경우는, 에칭 가공에 의한 고정밀화에 대응이 가능하기 때문이다. 바람직한 두께의 상한은 0.15mm이다. 보다 바람직한 상한은 0.1mm, 더욱 바람직한 상한은 0.08mm이다. 또한 하한은 특별히 한정하지 않지만, 재료가 지나치게 얇으면 형상 변화가 발생하기 쉬워지는 경향이 있기 때문에, 0.02mm로 설정할 수 있다. 본 발명의 Fe-Ni계 합금 박판은, 광폭(예를 들어, 판 폭이 500 내지 1200mm)인 것이 특히 바람직하다.The thickness of the steel strip after the final cold rolling is 0.25 mm or less. When the Fe-Ni-based alloy thin plate of the present invention is used for, for example, a lead frame, it is easy to cope with polyfinization, and when it is used for, for example, a metal mask, it is possible to cope with high precision by etching processing. Because. The upper limit of the preferred thickness is 0.15 mm. A more preferable upper limit is 0.1 mm, and a more preferable upper limit is 0.08 mm. In addition, the lower limit is not particularly limited, but it can be set to 0.02 mm since there is a tendency that a change in shape tends to occur when the material is too thin. It is particularly preferable that the Fe-Ni-based alloy thin plate of the present invention has a wide width (for example, a plate width of 500 to 1200 mm).
<응력 제거 어닐링 생략><Omit stress relief annealing>
본 발명에서는, 상술한 최종 냉간 압연 후에는, 열처리를 행하지 않는다. 이 열처리란, 예를 들어 재결정 온도 이하에서 행하는 응력 제거 어닐링이다. 열처리를 생략함으로써, 잔류 응력의 개방에 따른 박판 형상의 변화나 기계 특성의 변동을 억제할 수 있다. 본 발명에서는 상술한 제법에 의해 응력을 제거하지 않아도 기계 특성에서는 이방성이 없는 제품이 되기 때문에, 생략 가능하다. 또한, 열처리의 생략은, 에너지 절약 효과를 높여, 경제적이다.In the present invention, heat treatment is not performed after the above-described final cold rolling. This heat treatment is, for example, stress relief annealing performed at or below the recrystallization temperature. By omitting the heat treatment, it is possible to suppress a change in the shape of a thin plate or a change in mechanical properties due to the release of residual stress. In the present invention, even if the stress is not removed by the above-described manufacturing method, since the product has no anisotropy in terms of mechanical properties, it can be omitted. In addition, the omission of the heat treatment increases the energy saving effect and is economical.
계속해서, 상술한 본 발명의 제조 방법에 의해 얻을 수 있는, 본 발명의 Fe-Ni계 합금 박판에 대하여 설명한다.Subsequently, the Fe-Ni-based alloy thin plate of the present invention, which can be obtained by the production method of the present invention described above, will be described.
<0.2% 내력, 신율값><0.2% proof stress, elongation value>
본 발명의 Fe-Ni계 합금 박판은, 폭 방향(박판의 표면 제 1방향이며, 압연 방향에 대하여 직교하는 방향에 상당하는 방향), 길이 방향(박판의 표면 제2 방향이며, 폭 방향에 직교하는 방향이며, 압연 방향에 상당하는 방향), 45° 방향(박판의 표면 제3 방향이며, 폭 방향 및 길이 방향에 대하여 45°의 관계를 갖는 방향)의 3방향에 있어서의 각 0.2% 내력끼리의 차가, 상기 3방향의 0.2% 내력의 평균값의 5% 이하이고, 또한 상기 3방향에 있어서의 각 신율값이, 상기 3방향의 평균 신율값의 0.90 내지 1.10배인 것을 특징으로 한다. 0.2% 내력은 소성 변형 등의 가공성에 영향을 미치는 파라미터이고, 신율값은 가공 후의 제품 형상에 영향을 미치는 파라미터이다. 상기의 범위 내로 조정함으로써, 본 발명의 박판은, 절단 방향에 따른 강도나 형상의 변동이 적은 양호한 특성을 갖고, 예를 들어 여러 방향으로부터 합금 박판을 재단할 때의, 재단 조건의 변동을 억제하여, 양호한 작업성을 얻는 것이 가능하다. 3방향에 있어서의 각 0.2% 내력끼리의 차가, 3방향의 평균값의 5%를 초과하는 경우, 이방성이 강해지기 때문에 절단 방향에 따른 형상의 차이가 커지기 때문에, 절단 방향에 따라서는 원하는 특성을 충족하지 않는 박판이 발생할 가능성이 높아진다. 바람직하게는, 상기 3방향에 있어서의 각 0.2% 내력끼리의 차를, 3방향의 0.2% 내력의 평균값의 3% 이하로 설정한다. 이 각 0.2% 내력끼리의 차 및 각 신장 차끼리의 차는 0%(각 방향에서 특성이 동일)인 것이 가장 바람직하지만, 이들의 차를 0%로 하는 것은 곤란하기 때문에, 예를 들어 각 0.2% 내력끼리의 차의 하한은 0.1%로 설정할 수 있다. 또한 본 발명의 박판의 3방향에 있어서의 0.2% 내력의 평균값을 580MPa 이하로 함으로써, 합금 박판의 이방성을 더욱 억제할 수 있기 때문에, 바람직하다. 또한 본 발명의 평균 신율값을 2% 이하로 하는 것이, 재단 후의 제품 형상을 억제하는 데 바람직하다.The Fe-Ni-based alloy thin plate of the present invention is in the width direction (the first direction of the surface of the thin plate, a direction corresponding to the direction orthogonal to the rolling direction), the longitudinal direction (the second direction of the surface of the thin plate, and orthogonal to the width direction). 0.2% yield strength in each of the three directions, which is a direction that corresponds to the rolling direction) and a 45° direction (the third direction of the surface of the thin plate, and a direction having a relationship of 45° to the width and length directions) The difference is 5% or less of the average value of the 0.2% proof stress in the three directions, and each elongation value in the three directions is 0.90 to 1.10 times the average elongation value in the three directions. The 0.2% proof stress is a parameter that affects workability such as plastic deformation, and the elongation value is a parameter that affects the shape of the product after processing. By adjusting within the above range, the thin plate of the present invention has good characteristics with little fluctuation in strength or shape depending on the cutting direction, and suppresses fluctuations in cutting conditions, for example, when cutting an alloy thin plate from various directions. , It is possible to obtain good workability. When the difference between 0.2% proof strength in each of the three directions exceeds 5% of the average value in the three directions, the anisotropy becomes strong, so the difference in shape according to the cutting direction increases. Therefore, the desired characteristics are satisfied depending on the cutting direction. There is a high likelihood that a thin plate that does not occur will occur. Preferably, the difference between each 0.2% proof strength in the three directions is set to 3% or less of the average value of the 0.2% proof strength in the three directions. The difference between each 0.2% proof stress and the difference between each elongation difference is most preferably 0% (the same characteristic in each direction), but since it is difficult to make the difference between them 0%, for example, 0.2% each The lower limit of the difference between the proof strengths can be set to 0.1%. Moreover, since the anisotropy of an alloy thin plate can be further suppressed by making the average value of 0.2% proof stress in three directions of the thin plate of this invention 580 MPa or less, it is preferable. In addition, it is preferable that the average elongation value of the present invention be 2% or less to suppress the shape of the product after cutting.
<결정 방위><Crystal orientation>
본 발명의 Fe-Ni계 합금 박판은, (200)면 집적도가 90% 이상인 것이 바람직하다. 상기의 특징에 의해 본 발명의 Fe-Ni계 합금 박판은, 또한 기계 특성의 이방성을 억제할 수 있는 경향이 있다. 또한 상기 이외에도, 예를 들어 프레스 가공에 의해 리드 프레임 등을 가공하는 경우, 방향을 막론하고 제작하는 것이 가능해진다. 보다 바람직하게는, (200)면 집적도가 95% 이상이다. 또한 본 실시 형태에서의 (200)면 집적도는, 예를 들어 X선 회절(XRD)법을 사용하여 Fe-Ni계 합금 박판의 압연면에 있어서의 (111), (200), (220), (311)의 X선 회절 적분 강도 I(111), I(200), I(220), I(311)을 측정하고, I(200)/ {I(111)+I(200)+I(220)+I(311)} 식을 사용함으로써 구할 수 있다.It is preferable that the Fe-Ni alloy thin plate of the present invention has a (200) plane integration degree of 90% or more. Due to the above characteristics, the Fe-Ni-based alloy thin plate of the present invention tends to be capable of suppressing the anisotropy of mechanical properties. In addition to the above, for example, when processing a lead frame or the like by press working, it becomes possible to manufacture regardless of direction. More preferably, the (200) plane integration degree is 95% or more. In addition, the (200) plane integration degree in this embodiment is (111), (200), (220) on the rolled surface of the Fe-Ni-based alloy thin plate using, for example, X-ray diffraction (XRD) method. X-ray diffraction integral intensity I(111), I(200), I(220), I(311) of (311) were measured, and I(200)/ (I(111)+I(200)+I( It can be found by using the equation 220)+I(311)}.
[실시예][Example]
진공 용해, 온도 균일화 열처리, 열간 프레스 및 열간 압연을 행하여 두께 3.0mm의 열간 압연재를 준비하였다. 열간 압연재의 화학 조성을 표 1에 나타낸다.Vacuum melting, temperature equalization heat treatment, hot pressing and hot rolling were performed to prepare a hot rolled material having a thickness of 3.0 mm. Table 1 shows the chemical composition of the hot-rolled material.
전술한 열간 압연재를 화학 연마, 기계 연마로 열간 압연재 표면의 산화층을 제거하고, 트림 가공으로 소재 폭 방향의 양단부에 있는 열간 압연 시의 균열을 제거하여 두께 1.55mm의 냉간 압연용 소재를 준비하였다. 또한, 냉간 압연용 소재의 폭은 860mm이다.The above-described hot-rolled material is chemically polished and mechanically polished to remove the oxide layer on the surface of the hot-rolled material, and by trimming, cracks during hot-rolling at both ends of the material width direction are removed to prepare a material for cold rolling with a thickness of 1.55 mm. I did. In addition, the width of the cold rolling material is 860 mm.
이어서, 전술한 냉간 압연용 소재를, 본 발명예, 비교예로 나누고, 표 2에 나타내는 공정을 실시하여 Fe-Ni계 합금 박판으로 하였다. 본 발명예에서는, 제1 냉간 압연, 재결정 어닐링, 최종 냉간 압연으로 하고, 비교예 1에서는, 중간 압연 (1), 재결정 어닐링, 중간 압연 (2), 재결정 어닐링, 최종 냉간 압연으로 하였다. 비교예 2에서는 본 발명예와 공정은 동일하지만, 최종 냉간 압연 시의 압하율을 본 발명보다도 크게 설정하였다.Next, the above-described cold rolling material was divided into an example of the present invention and a comparative example, and the steps shown in Table 2 were performed to obtain an Fe-Ni-based alloy thin plate. In the present invention example, it was set as 1st cold rolling, recrystallization annealing, and final cold rolling, and in Comparative Example 1, it was set as intermediate rolling (1), recrystallization annealing, intermediate rolling (2), recrystallization annealing, and final cold rolling. In Comparative Example 2, although the steps of the examples of the present invention were the same, the reduction ratio at the time of final cold rolling was set larger than that of the present invention.
본 발명예, 비교예 2의 제1 냉간 압연 및 비교예 1의 중간 압연 (1) (2)는, 전술한 냉간 압연용 소재를 사용하여, 표 2에 나타내는 압하율에서, 각각 패스수를 10패스로 하였다. 그 후, 본 발명예 및 비교예 모두, 온도 900℃, 유지 시간 0.36분에서 재결정 어닐링을 행하였다. 그리고, 압연 전방 장력 320MPa, 압연 후방 장력 140MPa, 압연 속도 200m/분의 조건에서 최종 냉간 압연을 행하였다. 또한, 비교예 1에서는, 2회의 재결정 어닐링을 행하였다. 또한, 비교예 3은 최종 냉간 압연까지는 본 발명예와 공정은 동일하지만, 최종 냉간 압연 후에 온도 600℃에서 응력 제거 어닐링을 행하였다. 본 발명예, 비교예 1, 비교예 2에는, 최종 냉간 압연 후의 응력 제거 어닐링은 행하지 않았다.In the first cold rolling of the present invention example and the comparative example 2, and the intermediate rolling of the comparative example 1 (1) and (2), the number of passes was 10 at the rolling reduction ratio shown in Table 2 using the above-described cold rolling material. I made it a pass. Thereafter, recrystallization annealing was performed in both the present invention examples and the comparative examples at a temperature of 900°C and a holding time of 0.36 minutes. Then, final cold rolling was performed under conditions of a rolling front tension of 320 MPa, a rolling rear tension of 140 MPa, and a rolling speed of 200 m/min. In addition, in Comparative Example 1, recrystallization annealing was performed twice. In Comparative Example 3, although the steps of the examples of the present invention were the same until the final cold rolling, stress relief annealing was performed at a temperature of 600° C. after the final cold rolling. In the present invention example, the comparative example 1, and the comparative example 2, the stress relief annealing after the final cold rolling was not performed.
전술한 최종 냉간 압연을 종료한 Fe-Ni계 합금 박판으로부터, 각종 시험편을 채취하고, 각각의 시험에 제공하였다. 시험의 결과를 표 3에 정리하여 나타낸다. 0.2% 내력 및 신장은, JIS-Z2241에 규정된 방법에 따라서 행하였다. 시험편은 JIS13호 B 시험편이다. 또한, 본 발명예와 비교예 1에 관해서는, 박판 표면의 (200)면 집적도를 X선 회절 장치를 사용하여 측정하였다. 이 (200면) 집적도는, X선 회절 적분 강도 I(111), I(200), I(220), I(311)을 측정하고, I(200)/ {I(111)+I(200)+I(220)+I(311)} 식을 사용하여 도출하였다. 그 결과, 본 발명예의 (200)면 집적도는 98%이고, 비교예 1의 (200)면 집적도는 68%였다. 이에 의해 본 발명예의 Fe-NI계 합금 박판은, 매우 높은 (200)면 집적도를 갖는다는 것이 확인되었다.Various test pieces were taken from the Fe-Ni-based alloy thin plate after the above-described final cold rolling was completed, and were subjected to each test. The results of the test are put together in Table 3 and shown. 0.2% proof stress and elongation were performed according to the method specified in JIS-Z2241. The test piece is a JIS 13 B test piece. In addition, in the present invention example and the comparative example 1, the (200) plane integration degree of the thin plate surface was measured using an X-ray diffraction apparatus. This (200 plane) degree of integration is measured by measuring the X-ray diffraction integral intensity I(111), I(200), I(220), I(311), and I(200)/ (I(111)+I(200) It was derived using the equation )+I(220)+I(311)}. As a result, the (200) plane integration degree of the present invention example was 98%, and the (200) plane integration degree of the comparative example 1 was 68%. Thereby, it was confirmed that the Fe-NI-based alloy thin plate of the example of the present invention has a very high (200) plane integration degree.
상기한 바와 같이 본 발명의 Fe-Ni계 합금 박판에서는, 폭 방향, 길이 방향, 45° 방향의 각 0.2% 내력끼리의 차가 최대로 7MPa이고, 평균값의 약 1.3%의 값이었다. 3방향의 신율값도 평균값의 약 0.92 내지 1배이고, 본 발명의 합금 박판이 매우 이방성이 적은 양호한 특성을 갖고 있다는 것이 확인되었다. 이에 비하여 비교예 1의 Fe-Ni계 합금 박판은, 폭 방향, 길이 방향, 45° 방향의 각 0.2% 내력끼리의 차가 최대로 52MPa이고, 평균값의 약 8.8%의 값이었다. 3방향의 신율값도, 평균값의 약 0.89 내지 1.13배이고, 본 발명예의 합금 박판보다도 기계 특성의 이방성이 큰다는 것이 확인되었다. 비교예 2의 Fe-Ni계 합금 박판은, 폭 방향·길이 방향·45° 방향의 각 0.2% 내력끼리의 차가 최대로 22MPa이고, 평균값의 약3.8%의 값으로 규정 범위 내였다. 그러나 3방향의 신율값이, 평균값의 약 0.67 내지 1.33배의 값이고, 본 발명예의 합금 박판보다도 신율 특성의 이방성이 높다는 것이 확인되었다. 비교예 3의 Fe-Ni계 합금 박판도, 0.2% 내력의 값은 규정 범위 내였지만, 3방향의 신율값이 크게 불규칙적으로 분산되어 있는 것이 확인되었다.As described above, in the Fe-Ni-based alloy thin plate of the present invention, the difference between each 0.2% proof strength in the width direction, the length direction, and the 45° direction was 7 MPa at the maximum, and was a value of about 1.3% of the average value. The elongation values in the three directions are also about 0.92 to 1 times the average value, and it was confirmed that the alloy thin plate of the present invention has excellent properties with very little anisotropy. On the other hand, in the Fe-Ni alloy thin plate of Comparative Example 1, the difference between each 0.2% proof strength in the width direction, the length direction, and the 45° direction was 52 MPa at the maximum, and was a value of about 8.8% of the average value. The elongation values in the three directions were also about 0.89 to 1.13 times the average value, and it was confirmed that the anisotropy of mechanical properties was greater than that of the alloy thin plate of the example of the present invention. In the Fe-Ni-based alloy thin plate of Comparative Example 2, the difference between each 0.2% proof strength in the width direction, length direction, and 45° direction was at most 22 MPa, and was within the specified range at a value of about 3.8% of the average value. However, it was confirmed that the elongation value in the three directions was about 0.67 to 1.33 times the average value, and the anisotropy of the elongation characteristic was higher than that of the alloy thin plate of the example of the present invention. The Fe-Ni alloy thin plate of Comparative Example 3 also had a 0.2% yield strength within the specified range, but it was confirmed that the elongation values in the three directions were largely irregularly dispersed.
Claims (2)
Ni+Co: 35.0 내지 43.0%, 단, Co는 0 내지 6.0%,
Si: 0.5% 이하,
Mn: 1.0% 이하,
C: 0.05% 이하를 포함하고,
잔부는 Fe 및 불순물로 이루어지고, 두께가 2mm 이상인 열간 압연재를 사용하여 냉간 압연용 소재로 하고, 상기 냉간 압연용 소재에 대하여,
압하율 85% 이상의 제1 냉간 압연을 행하고,
상기 제1 냉간 압연 후, 온도 800℃ 이상 1100℃ 이하, 유지 시간 0.1 내지 1.2분의 조건에서 재결정 어닐링을 행하고,
상기 재결정 어닐링 후, 압연 전방 장력이 200∼500MPa, 압연 후방 장력이 100∼200MPa의 조건으로 압하율 40% 이하의 최종 냉간 압연을 행하여, 두께가 0.1mm 이하인 Fe-Ni계 합금 박판으로 하고, 최종 냉간 압연 후에는 열처리를 행하지 않는 것을 특징으로 하는, Fe-Ni계 합금 박판의 제조 방법.In mass%,
Ni+Co: 35.0 to 43.0%, provided that Co is 0 to 6.0%,
Si: 0.5% or less,
Mn: 1.0% or less,
C: contains 0.05% or less,
The remainder is made of Fe and impurities, and a hot rolled material having a thickness of 2 mm or more is used as a material for cold rolling, and with respect to the cold rolling material,
First cold rolling of 85% or more of a reduction ratio was performed,
After the first cold rolling, recrystallization annealing was performed under conditions of a temperature of 800° C. or more and 1100° C. or less and a holding time of 0.1 to 1.2 minutes,
After the recrystallization annealing, final cold rolling with a reduction ratio of 40% or less was performed under conditions of a rolling front tension of 200 to 500 MPa and a rolling rear tension of 100 to 200 MPa to obtain an Fe-Ni-based alloy thin plate having a thickness of 0.1 mm or less. A method for producing an Fe-Ni-based alloy thin plate, characterized in that no heat treatment is performed after cold rolling.
Ni+Co: 35.0 내지 43.0%, 단, Co는 0 내지 6.0%,
Si: 0.5% 이하,
Mn: 1.0% 이하,
C: 0.05% 이하를 포함하고,
잔부는 Fe 및 불순물로 이루어지고, 두께가 0.1mm 이하인 Fe-Ni계 합금 박판에 있어서, 상기 Fe-Ni계 합금 박판의 폭 방향, 길이 방향 및 45° 방향의 3방향에 있어서의 각 0.2% 내력끼리의 차가, 상기 3방향의 0.2% 내력의 평균값의 5% 이내이고, 상기 3방향에 있어서의 각 신율값이, 상기 3방향의 평균 신율값의 0.90 내지 1.10배인 것을 특징으로 하는, Fe-Ni계 합금 박판.In mass%,
Ni+Co: 35.0 to 43.0%, provided that Co is 0 to 6.0%,
Si: 0.5% or less,
Mn: 1.0% or less,
C: contains 0.05% or less,
The balance consists of Fe and impurities, and in the Fe-Ni alloy thin plate having a thickness of 0.1 mm or less, 0.2% yield strength in each of the three directions in the width direction, the length direction, and the 45° direction of the Fe-Ni alloy thin plate Fe-Ni, characterized in that the difference between them is within 5% of the average value of the 0.2% proof stress in the three directions, and the elongation values in the three directions are 0.90 to 1.10 times the average elongation value in the three directions. Based alloy thin plate.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016190743 | 2016-09-29 | ||
JPJP-P-2016-190743 | 2016-09-29 | ||
PCT/JP2017/029964 WO2018061530A1 (en) | 2016-09-29 | 2017-08-22 | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE |
Publications (3)
Publication Number | Publication Date |
---|---|
KR20190042659A KR20190042659A (en) | 2019-04-24 |
KR102244229B1 true KR102244229B1 (en) | 2021-04-26 |
KR102244229B9 KR102244229B9 (en) | 2023-03-03 |
Family
ID=61759402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197008509A KR102244229B1 (en) | 2016-09-29 | 2017-08-22 | Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP3521459B1 (en) |
JP (1) | JP6781960B2 (en) |
KR (1) | KR102244229B1 (en) |
CN (2) | CN109804093A (en) |
WO (1) | WO2018061530A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7524526B2 (en) * | 2018-09-13 | 2024-07-30 | 株式会社プロテリアル | Fe-Ni alloy thin plate |
CN112322993A (en) * | 2020-11-19 | 2021-02-05 | 苏州钿汇金属材料有限公司 | Ultrathin iron-nickel alloy material and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262231A (en) | 2000-03-17 | 2001-09-26 | Nippon Mining & Metals Co Ltd | METHOD FOR PRODUCING STOCK FOR Fe-Ni SERIES ALLOY SHADOW MASK EXCELLENT IN ETCHING PIERCEABILITY |
JP2003247048A (en) | 2002-02-25 | 2003-09-05 | Jfe Steel Kk | Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof |
JP2003253398A (en) | 2002-02-28 | 2003-09-10 | Jfe Steel Kk | Low thermal-expansion alloy thin-sheet with excellent etching rate and etching precision, and manufacturing method therefor |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021331A (en) * | 1983-07-14 | 1985-02-02 | Nippon Steel Corp | Production of low thermally expanding fe-ni alloy sheet |
JPS62224636A (en) * | 1986-03-26 | 1987-10-02 | Nippon Steel Corp | Manufacture of fe-ni alloy sheet having superior suitability to blanking and plating |
JPH07116558B2 (en) * | 1990-02-15 | 1995-12-13 | 日本鋼管株式会社 | Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same |
JPH0762217B2 (en) * | 1990-07-17 | 1995-07-05 | 日本鋼管株式会社 | Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same |
JP3346781B2 (en) * | 1991-09-09 | 2002-11-18 | 株式会社東芝 | Original plate for shadow mask and shadow mask |
JP2853069B2 (en) * | 1991-12-26 | 1999-02-03 | 日本鋼管株式会社 | Thin plate for Fe-Ni-based shadow mask and method for producing the same |
US5620535A (en) * | 1992-01-24 | 1997-04-15 | Nkk Corporation | Alloy sheet for shadow mask |
JP2842022B2 (en) * | 1992-02-13 | 1998-12-24 | 日本鋼管株式会社 | Thin plate for Fe-Ni-based shadow mask and method for producing the same |
JPH06279946A (en) | 1992-04-27 | 1994-10-04 | Hitachi Metals Ltd | Shadow mask material having excellent etching property, its intermediate material, its production, production of shadow mask, and cathode ray tube |
JPH09157799A (en) * | 1995-10-05 | 1997-06-17 | Hitachi Metals Ltd | Ferrum-nickel shadow mask blank having excellent etching property and ferrum-nickel shadow mask material having excellent moldability as well as production of shadow mask |
JPH09268348A (en) * | 1996-04-03 | 1997-10-14 | Hitachi Metals Ltd | Fe-ni alloy sheet for electronic parts and its production |
JP2004285370A (en) * | 2003-03-19 | 2004-10-14 | Hitachi Metals Ltd | Member for field emission type display |
FR2877678B1 (en) * | 2004-11-05 | 2006-12-08 | Imphy Alloys Sa | FER-NICKEL ALLOY BAND FOR THE MANUFACTURE OF GRIDS INTEGRATED CIRCUIT SUPPORT |
JP5721691B2 (en) * | 2012-11-20 | 2015-05-20 | Jx日鉱日石金属株式会社 | Metal mask material and metal mask |
JP2015193871A (en) * | 2014-03-31 | 2015-11-05 | 日立金属株式会社 | Fe-Ni-BASED ALLOY THIN SHEET AND MANUFACTURING METHOD THEREFOR |
JP6598007B2 (en) * | 2015-09-30 | 2019-10-30 | 日立金属株式会社 | Method for producing Fe-Ni alloy thin sheet |
-
2017
- 2017-08-22 CN CN201780060482.1A patent/CN109804093A/en active Pending
- 2017-08-22 KR KR1020197008509A patent/KR102244229B1/en active IP Right Review Request
- 2017-08-22 WO PCT/JP2017/029964 patent/WO2018061530A1/en unknown
- 2017-08-22 EP EP17855488.7A patent/EP3521459B1/en active Active
- 2017-08-22 EP EP23217804.6A patent/EP4328331A3/en active Pending
- 2017-08-22 JP JP2018541990A patent/JP6781960B2/en active Active
- 2017-08-22 CN CN202410310690.4A patent/CN118308655A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262231A (en) | 2000-03-17 | 2001-09-26 | Nippon Mining & Metals Co Ltd | METHOD FOR PRODUCING STOCK FOR Fe-Ni SERIES ALLOY SHADOW MASK EXCELLENT IN ETCHING PIERCEABILITY |
JP2003247048A (en) | 2002-02-25 | 2003-09-05 | Jfe Steel Kk | Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof |
JP2003253398A (en) | 2002-02-28 | 2003-09-10 | Jfe Steel Kk | Low thermal-expansion alloy thin-sheet with excellent etching rate and etching precision, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20190042659A (en) | 2019-04-24 |
JP6781960B2 (en) | 2020-11-11 |
EP3521459A1 (en) | 2019-08-07 |
EP3521459B1 (en) | 2024-02-14 |
EP3521459A4 (en) | 2020-03-25 |
EP4328331A3 (en) | 2024-05-22 |
CN118308655A (en) | 2024-07-09 |
JPWO2018061530A1 (en) | 2019-06-24 |
WO2018061530A1 (en) | 2018-04-05 |
CN109804093A (en) | 2019-05-24 |
EP4328331A2 (en) | 2024-02-28 |
KR102244229B9 (en) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106955892B (en) | Method for producing Fe-Ni alloy thin plate | |
US10760146B2 (en) | Fastening copper alloy | |
JP7532826B2 (en) | Manufacturing method of Fe-Ni alloy thin plate | |
JP5871443B1 (en) | Copper alloy sheet and manufacturing method thereof | |
KR102244229B1 (en) | Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate | |
JP7156279B2 (en) | METHOD FOR MANUFACTURING METAL MASK THIN PLATE AND METHOD FOR METAL MASK SLIM | |
KR20150023874A (en) | Copper alloy and production method thereof | |
JP2015193871A (en) | Fe-Ni-BASED ALLOY THIN SHEET AND MANUFACTURING METHOD THEREFOR | |
JP4164828B2 (en) | Method for producing Fe-Ni alloy sheet material | |
JP6975391B2 (en) | Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet | |
JP7294336B2 (en) | Fe-Ni alloy sheet | |
JP2008223146A (en) | METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET | |
JP5874771B2 (en) | Steel plate for cans excellent in workability and rough skin resistance and method for producing the same | |
CN103691741A (en) | Manufacturing method of making fe-a1 alloy strip steel | |
JP2014080676A (en) | PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL | |
JP3334172B2 (en) | Copper alloy strip with less wear on stamping mold | |
WO2023243710A1 (en) | METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE, AND Fe-Ni-BASED ALLOY THIN PLATE | |
JP5237867B2 (en) | Fe-Ni alloy material for lead frame and method for producing the same | |
JP2007169760A (en) | Method for producing iron-cobalt-based alloy | |
JP2013096007A (en) | Rolled copper foil | |
JP2019178394A (en) | Copper alloy material, electronic component, electronic device, and manufacturing method of copper alloy material | |
JP2001316765A (en) | Hot rolled steel sheet excellent in fatigue characteristic and ductility and its production method | |
JP2001240939A (en) | High strength hot rolled steel sheet excellent in ductility and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
Z072 | Maintenance of patent after cancellation proceedings: certified copy of decision transmitted [new post grant opposition system as of 20170301] | ||
Z131 | Decision taken on request for patent cancellation [new post grant opposition system as of 20170301] |