JP6598007B2 - Method for producing Fe-Ni alloy thin sheet - Google Patents

Method for producing Fe-Ni alloy thin sheet Download PDF

Info

Publication number
JP6598007B2
JP6598007B2 JP2015194916A JP2015194916A JP6598007B2 JP 6598007 B2 JP6598007 B2 JP 6598007B2 JP 2015194916 A JP2015194916 A JP 2015194916A JP 2015194916 A JP2015194916 A JP 2015194916A JP 6598007 B2 JP6598007 B2 JP 6598007B2
Authority
JP
Japan
Prior art keywords
rolling
cold
less
steepness
alloy thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015194916A
Other languages
Japanese (ja)
Other versions
JP2017064763A (en
Inventor
信隆 安田
拓也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015194916A priority Critical patent/JP6598007B2/en
Priority to KR1020160121356A priority patent/KR101809377B1/en
Priority to CN201610865651.6A priority patent/CN106955892B/en
Publication of JP2017064763A publication Critical patent/JP2017064763A/en
Application granted granted Critical
Publication of JP6598007B2 publication Critical patent/JP6598007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

本発明は、例えば、リードフレームやメタルマスク等に使用されるFe−Ni系合金薄板の製造方法に関するものである。   The present invention relates to a method for manufacturing an Fe—Ni alloy thin plate used for, for example, a lead frame, a metal mask, and the like.

リードフレームやメタルマスク等に使用されるFe−Ni系合金薄板には、例えば、エッチングやプレス等の加工を行い、他部材と組合わせて使用される。このFe−Ni系合金薄板は、通常、仕上圧延前後に歪取り焼鈍や軟化焼鈍が行われて、結晶方位の調整がなされ、所望の要求特性を満足するように仕上げられている。
一方で、本願出願人は、例えば、特開平6−172928号公報(特許文献1)として、質量%でNi:30〜60%を含有するFe−Ni系合金でなるリードフレーム材料であり、板幅方向に垂直な断面内での検鏡で繊維状の圧延組織を有し、かつ圧延面の{100}方位集積度が50%以上であるエッチング性に優れるリードフレーム材料の発明を提案している。また、特開平6−279946号公報(特許文献2)として、質量%で、Ni:30〜40%を含有し、残部Feおよび不可避不純物からなるFe−Ni系アンバー合金でなるシャドウマスク材料において、圧延面の{100}方位集積度が85%以上であり、かつ、板幅方向に垂直な断面内での検鏡で繊維状の圧延組織を有するエッチング性に優れるシャドウマスク材料の発明を提案している。
The Fe—Ni-based alloy thin plate used for a lead frame, a metal mask, or the like is used in combination with other members by performing processing such as etching or pressing, for example. This Fe—Ni-based alloy sheet is usually finished so as to satisfy desired required characteristics by performing strain relief annealing and softening annealing before and after finish rolling.
On the other hand, the applicant of the present application is a lead frame material made of an Fe—Ni-based alloy containing Ni: 30 to 60% by mass% as disclosed in, for example, Japanese Patent Laid-Open No. 6-172828 (Patent Document 1), Proposal of an invention of a lead frame material having excellent etching properties having a fibrous rolling structure by a spectroscope in a cross section perpendicular to the width direction and having a {100} orientation integration degree of the rolled surface of 50% or more. Yes. Further, as JP-A-6-279946 (Patent Document 2), in a shadow mask material made of Fe-Ni-based amber alloy containing Ni: 30 to 40% in mass% and the balance Fe and inevitable impurities, Proposed an invention of a shadow mask material excellent in etching property having a rolled rolling structure with a microscopic examination in a cross section perpendicular to the plate width direction and having a {100} orientation integration degree of the rolled surface of 85% or more. ing.

特開平06−172928号公報Japanese Patent Laid-Open No. 06-172928 特開平06−279946号公報Japanese Patent Laid-Open No. 06-279946

前述の特許文献1や特許文献2の発明は、冷間圧延工程にて所望の板厚として、材料内部の残留歪を低減する目的で、その後に650〜1000℃の温度範囲で焼鈍を行ったものである。
しかしながら、近年Fe−Ni系合金薄板は、生産性の観点から広幅で使用され、且つエッチング加工、プレス加工、レーザー加工等の加工方法の多様化が進み、製造コストを抑え、より安価な材料の要求がある。また、上述の残留歪は問題にせず、優れた急峻度が要求される使用用途がある。
このような要求に対しては、前述の特許文献1や特許文献2のFe−Ni系合金薄板では、以下のような課題があった。まず、熱処理を実施するため、製造コストが高い。また、圧延後に650〜1000℃の温度範囲で焼鈍をすることで、材料内部に不安定な状態で残留している転位が、安定した状態となることで歪が低減する。一方で、残留歪の開放に伴い形状変化が発生し、最終の仕上圧延形状あるいは、形状矯正後の最終形状に変化が発生する可能性が有り、急峻度の点では好ましくない。
本発明の目的は、厚さが0.25mm以下の薄いFe−Ni系合金薄板において、生産性を高めるだけでなく、特に広幅で優れた急峻度を実現することが可能なFe−Ni系合金薄板の製造方法を提供することである。
The inventions of Patent Document 1 and Patent Document 2 described above were annealed in a temperature range of 650 to 1000 ° C. for the purpose of reducing the residual strain inside the material as a desired plate thickness in the cold rolling process. Is.
However, in recent years, Fe—Ni-based alloy thin plates have been widely used from the viewpoint of productivity, and processing methods such as etching processing, press processing, and laser processing have been diversified. There is a request. Further, the above-described residual strain is not a problem, and there is a use application that requires excellent steepness.
In response to such a request, the Fe-Ni alloy thin plates of Patent Document 1 and Patent Document 2 described above have the following problems. First, since the heat treatment is performed, the manufacturing cost is high. Further, by annealing in the temperature range of 650 to 1000 ° C. after rolling, the dislocations remaining in an unstable state inside the material become stable, thereby reducing distortion. On the other hand, a shape change occurs with the release of the residual strain, and there is a possibility that the final finished rolled shape or the final shape after shape correction may change, which is not preferable in terms of steepness.
An object of the present invention is to provide a Fe-Ni alloy that not only enhances productivity but also realizes a wide and excellent steepness in a thin Fe-Ni alloy sheet having a thickness of 0.25 mm or less. It is to provide a method for manufacturing a thin plate.

本発明は上述した課題に鑑みてなされたものである。
即ち本発明は、質量%でNi+Co:35.0〜43.0%(但し、Coは0〜6.0%)、Si:0.5%以下、Mn:1.0%以下、残部はFe及び不純物からなる冷間圧延用素材を準備する工程と、前記冷間圧延用素材に冷間圧延と連続焼鈍とを1回以上繰り返す冷間圧延工程と、を含み、前記冷間圧延工程における最終の冷間仕上圧延を、単位幅当たりの圧延荷重150kg/mm以下、圧延速度1.7m/s以上、前方張力250〜400MPaの条件で行い、厚さを0.25mm以下とし、前記最終の冷間仕上圧延後には熱処理を行わないFe−Ni系合金薄板の製造方法である。
好ましくは、前記最終の冷間仕上圧延を、単位幅当たりの圧延荷重130kg/mm以下、圧延速度3.3m/s以上とし、前記最終の冷間仕上圧延工程後に形状矯正工程を行わないFe−Ni系合金の製造方法である。
更に好ましくは、前記冷間圧延工程で用いるワークロールは合金工具鋼ロールであるFe−Ni系合金薄板の製造方法である。
上述の本発明の製造法により、前記厚さが0.25mm以下のFe−Ni系合金薄板の急峻度を、前記Fe−Ni系合金薄板を水平定盤に置いた状態の浮上り高さで評価したとき、最大0.75%以下とすることができる。
The present invention has been made in view of the above-described problems.
That is, in the present invention, Ni + Co: 35.0 to 43.0% (Co: 0 to 6.0%), Si: 0.5% or less, Mn: 1.0% or less, and the balance is Fe in mass%. And a step of preparing a cold rolling material comprising impurities, and a cold rolling step in which cold rolling and continuous annealing are repeated at least once on the cold rolling material, and the final in the cold rolling step The cold finish rolling is performed under the conditions of a rolling load of 150 kg / mm or less per unit width, a rolling speed of 1.7 m / s or more and a forward tension of 250 to 400 MPa, a thickness of 0.25 mm or less, and the final cold rolling. This is a method for producing a Fe—Ni-based alloy thin sheet that is not heat-treated after intermediate finish rolling.
Preferably, the final cold finish rolling is a rolling load of 130 kg / mm or less per unit width and a rolling speed of 3.3 m / s or more, and Fe- which does not perform a shape correction process after the final cold finish rolling process. This is a method for producing a Ni-based alloy.
More preferably, the work roll used in the cold rolling step is a method for producing an Fe—Ni alloy thin plate which is an alloy tool steel roll.
According to the manufacturing method of the present invention described above, the steepness of the Fe—Ni alloy thin plate having a thickness of 0.25 mm or less is expressed by the floating height when the Fe—Ni alloy thin plate is placed on a horizontal surface plate. When evaluated, the maximum content may be 0.75% or less.

本発明によれば、厚さが0.25mm以下の薄いFe−Ni系合金薄板において適切な圧延条件を設定することと、従来のFe−Ni系合金薄板を製造する際に行っていた、最後の熱処理を省略することによって優れた急峻度を具備することが可能であり、さらに、製造コスト削減、生産性の向上、省エネ効果が望める。   According to the present invention, an appropriate rolling condition is set in a thin Fe—Ni alloy sheet having a thickness of 0.25 mm or less, and the conventional Fe—Ni alloy sheet is performed at the end. By omitting the heat treatment, excellent steepness can be achieved, and further, manufacturing cost reduction, productivity improvement, and energy saving effect can be expected.

以下に本発明を詳しく説明する。
<材料組成>
先ず、本発明で規定する化学組成について説明する。本発明で規定する組成を有するFe−Ni系合金は、所望の熱膨張を得るために必要な組成を有するものである。尚、組成は質量%である。
[Ni+Co:35.0〜43.0%(但し、Coは0〜6.0%)]
Ni及びCoは前述のように、所望の熱膨張係数を得るために必要な元素である。Ni+Co含有量が35.0%未満ではオーステナイト組織が不安定となりやすく、一方43.0%を越えると熱膨張率が上昇し、低熱膨張特性を満足しないことから、Ni+Coの含有量は35.0〜43.0%とする。なお、Coは必ずしも添加の必要はないが、6.0%までの範囲でNiの一部をCoで置換することができる。
[Si:0.5%以下、Mn:1.0%以下]
Si、Mnは通常Fe−Ni系合金では、脱酸を目的に微量含有されているが、過剰に添加すれば偏析を起こし易くなるため、Siは0.5%以下とし、Mnは1.0%以下とする。なお、SiとMnの下限は特に限定しないが、前述のように脱酸元素として添加されることから、Siは0.05%、Mnは0.05%は少なからず残留する。
[残部はFe及び不純物]
上記の元素以外は実質的にFeであれば良いが、製造上不可避的に含有する不純物は含まれる。特に制限の必要な不純物元素にはCがあり、例えば、エッチングを行う用途に使用するのであれば、その上限を0.05%とすると良い。
また、プレス打抜き性を向上させる場合はS等の快削性元素を0.020%以下で含有させても良い。熱間加工性を向上させるようなB等の元素は0.0050%以下で含有させても良い。
The present invention is described in detail below.
<Material composition>
First, the chemical composition defined in the present invention will be described. The Fe—Ni-based alloy having the composition defined in the present invention has a composition necessary for obtaining a desired thermal expansion. In addition, a composition is the mass%.
[Ni + Co: 35.0 to 43.0% (Co is 0 to 6.0%)]
As described above, Ni and Co are elements necessary for obtaining a desired coefficient of thermal expansion. If the Ni + Co content is less than 35.0%, the austenite structure tends to be unstable. On the other hand, if it exceeds 43.0%, the coefficient of thermal expansion increases and the low thermal expansion characteristics are not satisfied. Therefore, the Ni + Co content is 35.0%. -43.0%. Note that Co is not necessarily added, but a part of Ni can be replaced by Co in a range of up to 6.0%.
[Si: 0.5% or less, Mn: 1.0% or less]
Si and Mn are usually contained in Fe-Ni alloys in trace amounts for the purpose of deoxidation, but if added excessively, segregation is likely to occur, so Si is 0.5% or less, and Mn is 1.0. % Or less. In addition, although the minimum of Si and Mn is not specifically limited, Since it adds as a deoxidation element as mentioned above, 0.05% of Si and 0.05% of Mn remain not a little.
[The balance is Fe and impurities]
The elements other than the above elements may be substantially Fe, but impurities inevitably contained in production are included. Impurity elements that need to be particularly restricted include C. For example, when used for an etching application, the upper limit is preferably set to 0.05%.
In order to improve press punchability, a free-cutting element such as S may be contained at 0.020% or less. Elements such as B that improve the hot workability may be contained at 0.0050% or less.

<冷間圧延用素材>
本発明では、熱間圧延を経て、冷間圧延用素材を準備する。熱間圧延材には酸化層が形成されていることから、その酸化層を、例えば、機械的、或いは化学的に除去して冷間圧延用素材とする。また、冷間圧延中の冷間圧延材のエッジから割れ等の不良が発生しないように、エッジを整えて冷間圧延用素材とする。なお、冷間圧延用素材の厚さは2.0〜5.0mm程度とすると良い。
そして、前述の冷間圧延用素材に冷間圧延と連続焼鈍を1回以上繰り返し、所望の板厚とし、最終の冷間仕上圧延を実施する。最終圧延前の圧延率は50〜85%とし、連続焼鈍は850〜1000℃の加熱炉中を10〜60secで通板するようにすれば良い。そして、最後の冷間圧延を行う前の段階で硬さを120〜150HVとして最終の冷間仕上圧延を行うことが好ましい。
なお、上述したように、本発明では広幅のFe−Ni系合金薄板に優れた急峻度を付与することができるものである。本発明で言う「広幅」とは、例えば500〜1500mmの幅を指すものとする。
<Cold rolling material>
In the present invention, a material for cold rolling is prepared through hot rolling. Since an oxide layer is formed on the hot-rolled material, the oxide layer is removed, for example, mechanically or chemically to obtain a material for cold rolling. In addition, the edge is prepared so as to be a cold rolling material so as not to cause defects such as cracks from the edge of the cold rolled material during cold rolling. The thickness of the cold rolling material is preferably about 2.0 to 5.0 mm.
Then, cold rolling and continuous annealing are repeated once or more on the cold rolling material described above to obtain a desired plate thickness, and the final cold finish rolling is performed. The rolling rate before final rolling may be 50 to 85%, and continuous annealing may be performed in a heating furnace at 850 to 1000 ° C. in 10 to 60 seconds. And it is preferable to perform the final cold finish rolling by setting the hardness to 120 to 150 HV at the stage before the final cold rolling.
As described above, in the present invention, excellent steepness can be imparted to a wide Fe—Ni alloy thin plate. The “wide” as used in the present invention refers to a width of 500 to 1500 mm, for example.

次に、最終の冷間仕上圧延条件について詳しく説明する。
本発明では、最終の冷間仕上圧延でFe−Ni系合金薄板の厚さを0.25mm以下とする。0.25mm以下とするのは、例えば、リードフレームやメタルマスク用途に求められる厚さであるからである。なお、好ましい板厚は0.15mm以下である。
<圧延荷重>
本発明では、最終の冷間仕上圧延における単位幅当たりの圧延荷重を150kg/mm以下とする。圧延加工は、圧延のロール両端支持部に荷重を加えることにより、圧延ロール全体に荷重を加える。そのため、圧延荷重が高いと特に材料エッジ部での圧延荷重が高くなり、エッジ部の伸びが高くなる。また、圧延ロールに加わる幅方向の荷重分布差も大きくなり、平坦な形状が得られ難い。そのため、最終の冷間仕上圧延を比較的軽荷重な150kg/mm以下とする。
また、0.25mm以下のFe−Ni系合金薄板の場合、圧延荷重自体を150kg/mm以下と低くすることで、材料エッジ部に加わる荷重を低減することはもとより、幅方向の荷重分布差も低減することができ、ロールベンディング制御およびレべリング制御による形状制御が容易になる効果も得ることができる。
圧延荷重の下限値は特に定めないが、圧延荷重が低くなり過ぎると、板厚が低減せず、所望の板厚を得る圧延自体が困難となるため、下限は35kg/mmとするのが現実的である。
Next, the final cold finish rolling conditions will be described in detail.
In the present invention, the thickness of the Fe—Ni alloy thin sheet is set to 0.25 mm or less in the final cold finish rolling. The reason why the thickness is 0.25 mm or less is, for example, that the thickness is required for a lead frame or a metal mask. A preferable plate thickness is 0.15 mm or less.
<Rolling load>
In the present invention, the rolling load per unit width in the final cold finish rolling is set to 150 kg / mm or less. In the rolling process, a load is applied to the entire rolling roll by applying a load to both ends of the roll. For this reason, when the rolling load is high, the rolling load particularly at the material edge portion becomes high, and the elongation of the edge portion becomes high. Moreover, the load distribution difference in the width direction applied to the rolling roll is also increased, and it is difficult to obtain a flat shape. Therefore, the final cold finish rolling is set to 150 kg / mm or less with a relatively light load.
In addition, in the case of a Fe-Ni alloy thin sheet of 0.25 mm or less, by reducing the rolling load itself to 150 kg / mm or less, not only the load applied to the material edge portion is reduced, but also the load distribution difference in the width direction is In addition, it is possible to obtain an effect of facilitating shape control by roll bending control and leveling control.
The lower limit of the rolling load is not particularly defined, but if the rolling load becomes too low, the plate thickness is not reduced, and rolling itself to obtain a desired plate thickness becomes difficult, so the lower limit is set to 35 kg / mm. Is.

<圧延速度>
本発明では、最終の冷間仕上圧延における圧延速度を1.7m/s以上とする。圧延速度が過度に低いと、ミルオイルのかみ込み量が少なくなり、圧延ロールと材料との接触面積増大によって、摩擦抵抗が増し、圧延荷重が高くなる。また、生産性の低下により、コスト増となる。そのため、圧延速度は1.7m/s以上とする。なお、圧延速度の上限値は特に定めないが、圧延機の構造から8.3m/s以下とするのが現実的である。
<圧延張力>
上述の圧延速度と共に、圧延張力も圧延荷重に影響する。特に前方張力についてみると、張力が高いと圧延後の板中央の伸びがかえって大きくなり形状が悪化する可能性があることや、さらに圧延張力が過度に高いと、圧延中の材料が破断するおそれがある。一方、張力が低くなり過ぎると、所望の板厚を得るために圧延荷重を高くすることになる。そのため、最終の冷間仕上圧延における圧延の前方張力は、250〜400MPaとする。
以上、説明する、本発明の最終の冷間仕上圧延で行う冷間仕上圧延のパス回数は1回で十分である。上記の条件を組合わせることにより、優れた急峻度を有するFe−Ni系合金薄板とすることが可能である。
<Rolling speed>
In the present invention, the rolling speed in the final cold finish rolling is set to 1.7 m / s or more. When the rolling speed is excessively low, the amount of mill oil biting is reduced, the contact area between the rolling roll and the material is increased, the frictional resistance is increased, and the rolling load is increased. Further, the cost increases due to the decrease in productivity. Therefore, the rolling speed is set to 1.7 m / s or more. In addition, although the upper limit of rolling speed is not specifically defined, it is realistic to set it to 8.3 m / s or less from the structure of a rolling mill.
<Rolling tension>
Along with the rolling speed described above, the rolling tension also affects the rolling load. Especially when looking at the forward tension, if the tension is high, the elongation at the center of the plate after rolling may increase and the shape may deteriorate, and if the rolling tension is excessively high, the material being rolled may break. There is. On the other hand, if the tension is too low, the rolling load is increased to obtain a desired plate thickness. Therefore, the forward tension of rolling in the final cold finish rolling is 250 to 400 MPa.
As described above, the number of passes of the cold finish rolling performed in the final cold finish rolling of the present invention described above is sufficient. By combining the above conditions, it is possible to obtain an Fe—Ni alloy thin plate having excellent steepness.

<熱処理省略>
本発明のもう一つの特徴は、上述した最終の冷間仕上圧延後には、軟化焼鈍や歪取り焼鈍といった熱処理を行わないことにある。
一般的に、再結晶組織に整える軟化焼鈍や、再結晶温度以下で熱処理を行う歪取り焼鈍を行うと、材料内部に不安定な状態で残留している転移が、安定した状態となることで、歪が低減するが、残留歪の開放に伴い形状変化が発生する。そのため、最終の冷間仕上圧延で調整した形状が悪化する可能性がある。このことから、加工によって形成した優れた急峻度を維持する目的で熱処理を省略する。
そして、前記熱処理の省略は、製造コストを抑え、安価な材料を製造することはもとより、生産性の向上、省エネ効果が望める。また、使用用途によっては、残留歪が残ることで、エッチング加工性(エッチング速度)が向上する効果も期待できる。
<Omission of heat treatment>
Another feature of the present invention is that no heat treatment such as softening annealing or strain relief annealing is performed after the final cold finish rolling described above.
In general, when softening annealing to recrystallize the structure or strain relief annealing in which heat treatment is performed at a temperature lower than the recrystallization temperature, the transition remaining in an unstable state inside the material becomes stable. Although the strain is reduced, a shape change occurs as the residual strain is released. Therefore, the shape adjusted by the final cold finish rolling may deteriorate. For this reason, the heat treatment is omitted for the purpose of maintaining the excellent steepness formed by processing.
The omission of the heat treatment suppresses the manufacturing cost, and it can be expected to improve productivity and save energy as well as manufacture inexpensive materials. In addition, depending on the intended use, an effect of improving etching processability (etching rate) can be expected due to residual strain remaining.

<形状矯正の省略>
一般的に最終の冷間仕上圧延後に、より優れた急峻度を得る目的でテンションレベラー等による形状矯正を実施する。勿論、本発明においても、優れた急峻度を得るために、最終の冷間仕上圧延以降に形状矯正を実施することもできる。しかし、本発明では、上述した最終の冷間仕上圧延で、さらに、単位幅当たりの圧延荷重を130kg/mm以下、圧延速度を3.3m/s以上とすることで、前述の形状矯正工程も省略することが可能となる。
圧延機は、圧延ロールに加わる板幅方向の荷重分布を均一にする目的で、ロールベンディング制御およびレべリング制御機構を利用している。しかし、圧延荷重が高いと、その荷重分布差も大きくなり、荷重分布を均一にするためのロールベンディング制御およびレべリング制御量も増大するため、形状制御が困難になる。そのため、最終の冷間仕上圧延で、さらに、単位幅当たりの圧延荷重を130kg/mm以下、圧延速度を3.3m/s以上とすることで、ロールベンディング制御およびレべリング制御による形状制御をより容易にし、その組み合わせを行うことで、形状矯正工程を省略しても、冷間圧延した後に製品幅とした際の急峻度が、薄板を水平定盤に置いた状態の浮上り高さで評価し、0.75%以下(好ましくは0.50%以下)とすることが可能である。
<Omission of shape correction>
Generally, after the final cold finish rolling, shape correction using a tension leveler or the like is performed for the purpose of obtaining a higher steepness. Of course, also in the present invention, in order to obtain an excellent steepness, shape correction can be performed after the final cold finish rolling. However, in the present invention, in the final cold finish rolling described above, the above-mentioned shape correction step is also performed by setting the rolling load per unit width to 130 kg / mm or less and the rolling speed to 3.3 m / s or more. It can be omitted.
The rolling mill uses a roll bending control and a leveling control mechanism for the purpose of making the load distribution in the sheet width direction applied to the rolling roll uniform. However, when the rolling load is high, the load distribution difference becomes large, and the roll bending control and leveling control amount for making the load distribution uniform also increase, so that the shape control becomes difficult. Therefore, shape control by roll bending control and leveling control can be achieved by setting the rolling load per unit width to 130 kg / mm or less and the rolling speed to 3.3 m / s or more in the final cold finish rolling. By making the combination easier, even if the shape correction process is omitted, the steepness when making the product width after cold rolling is the floating height when the thin plate is placed on a horizontal surface plate It can be evaluated to be 0.75% or less (preferably 0.50% or less).

<ワークロール>
また、本発明の冷間圧延工程で用いるワークロールはJIS−G4404に規定される組成を有する合金工具鋼ロールとするのが好ましい。より好ましくは、高速度工具鋼あるいは冷間金型用鋼とする。
ワークロールには、前述の合金工具鋼ロールの他、超硬ロールがある。超硬ロールではヤング率が高く、剛性があるため、圧延機のロールベンディング機構を用いても形状調整が困難となる場合があり、特に広幅材には不向きである。そのため、広幅材の板幅方向の形状変化があった場合、幅方向の形状変化をより均一とすると共に、優れた急峻度を得やすくすることが可能な合金工具鋼のワークロールを用いるのが良い。
なお、特に最終の冷間仕上圧延に用いるワークロールの直径は60〜200mmとするのが好ましい。過度にワークロールの直径が大きいと最終の冷間仕上圧延時のパス回数が増加して生産性を劣化させるおそれがある。また、過度にワークロールの直径が小さいと、最終の冷間仕上圧延中のFe−Ni系合金の形状調整が困難となる場合がある。そのため、ワークロールの直径を60〜200mmとするのが良い。
<Work roll>
The work roll used in the cold rolling step of the present invention is preferably an alloy tool steel roll having a composition defined in JIS-G4404. More preferably, high-speed tool steel or cold mold steel is used.
In addition to the alloy tool steel roll described above, the work roll includes a carbide roll. Since the carbide roll has a high Young's modulus and rigidity, it may be difficult to adjust the shape even if a roll bending mechanism of a rolling mill is used, and is not particularly suitable for wide materials. Therefore, when there is a shape change in the sheet width direction of the wide material, it is preferable to use a work roll of alloy tool steel that can make the shape change in the width direction more uniform and easily obtain excellent steepness. good.
In particular, the diameter of the work roll used for the final cold finish rolling is preferably 60 to 200 mm. If the diameter of the work roll is excessively large, the number of passes during the final cold finish rolling may increase, and the productivity may be deteriorated. In addition, when the diameter of the work roll is excessively small, it may be difficult to adjust the shape of the Fe—Ni alloy during the final cold finish rolling. Therefore, the diameter of the work roll is preferably 60 to 200 mm.

次に、上述した本発明のFe−Ni系合金薄板の製造方法で得られるFe−Ni系合金薄板について説明する。
<急峻度>
本発明では、Fe−Ni系合金薄板を最終の冷間仕上圧延した後、製品幅とした際の急峻度を、薄板を水平定盤に置いた状態の浮上り高さで評価し、最大0.75%以下(好ましくは0.50%以下)とすることができる。
近年Fe−Ni系合金薄板は、生産性の観点から広幅で使用され、且つエッチング加工、プレス加工、レーザー加工等の加工方法の多様化が進み、上述の残留歪は問題にせず、より優れた急峻度を要求する使用用途がある。急峻度が過度に高い(悪い)と、例えば、特に広幅化したFe−Ni系合金薄板を用いて、所望の加工を施す際、ラインで搬送不具合を発生させる、加工を施した後に所望のパターンが得られない、また、他部材との組付けが困難になるなどの問題が発生する。そのため、急峻度を0.75%以下(好ましくは0.50%以下)とする。なお、急峻度の下限は特に限定しないが、全く平坦な形状(急峻度0.00%)であることが最良である。但し、全く平坦な形状を製造することは極めて困難であるため、現実的な急峻度の下限は0.01%程度である。
この急峻度の測定は、薄板を一定長さに切断し、水平定盤上に置き、レーザー変位計等を用いて、薄板の浮上り高さを測定する。この際、板幅および板長さ方向で、一定長さごとで浮上り高さをマトリックス状に記録したデータから、急峻度を算出すれば良い。
Next, the Fe—Ni alloy thin plate obtained by the above-described method for producing the Fe—Ni alloy thin plate of the present invention will be described.
<Steepness>
In the present invention, after the final cold finish rolling of the Fe—Ni alloy thin plate, the steepness when the product width is obtained is evaluated by the floating height when the thin plate is placed on a horizontal surface plate. .75% or less (preferably 0.50% or less).
In recent years, Fe-Ni alloy thin plates have been widely used from the viewpoint of productivity, and the diversification of processing methods such as etching processing, press processing, and laser processing has progressed, and the above-described residual strain does not become a problem and is more excellent. There are uses that require steepness. When the steepness is excessively high (bad), for example, when a desired processing is performed using a widened Fe-Ni alloy thin plate, a conveyance defect occurs in the line. Cannot be obtained, and problems such as difficulty in assembly with other members occur. Therefore, the steepness is set to 0.75% or less (preferably 0.50% or less). The lower limit of the steepness is not particularly limited, but it is best to have a completely flat shape (steepness of 0.00%). However, since it is extremely difficult to manufacture a completely flat shape, the practical lower limit of the steepness is about 0.01%.
The steepness is measured by cutting a thin plate into a certain length, placing it on a horizontal surface plate, and measuring the rising height of the thin plate using a laser displacement meter or the like. At this time, the steepness may be calculated from data in which the floating heights are recorded in a matrix at every fixed length in the plate width and plate length directions.

真空溶解、均熱化熱処理、熱間プレス及び熱間圧延を行って厚さ3.0mmの熱間圧延材を準備した。熱間圧延材の硬さを測定したところ、170〜190HVであった。熱間圧延材の化学組成を表1に示す。
その後、化学研摩、機械研磨にて熱間圧延材表面の酸化層を除去し、粗圧延を施し、トリム加工で素材幅方向の両端部にある熱間圧延時の亀裂を除去し、冷間圧延用素材を準備した。
次に、前述の冷間圧用素材に対し、冷間圧延と連続焼鈍とを繰り返した後、最終の冷間仕上圧延として、本発明例(No.1〜6)、比較例(No.21、22)、従来例(No.31〜33)に分けて、製造した結果を表2に示す。また、最終の冷間仕上圧延に用いたワークロールは高速度工具鋼を用い、直径120mmを使用し、最終の冷間仕上圧延のパス回数は本発明と比較例は1回とし、従来例は複数回行って、最終の厚さを0.1mmとした。なお、最終の冷間仕上圧延前の硬さは135HVであり、幅は800mmの広幅材である。
また、表2に示す急峻度の測定は3次元形状測定器を用いて、700mm長さに切断した水平定盤上のFe−Ni系合金薄板試験片に測定領域幅800mm×長さ700mmの範囲をレーザー変位計等を用いて、薄板の浮上り高さを測定した。急峻度は一定長さ(幅方向:14mm、長さ方向:8mm)ごとに浮上り高さをマトリックス状に記録したデータから算出した。
Vacuum-melting, soaking treatment, hot pressing and hot rolling were performed to prepare a hot rolled material having a thickness of 3.0 mm. It was 170-190HV when the hardness of the hot-rolled material was measured. Table 1 shows the chemical composition of the hot-rolled material.
After that, the oxide layer on the surface of the hot rolled material is removed by chemical polishing and mechanical polishing, rough rolling is performed, cracks at the time of hot rolling at both ends in the material width direction are removed by trim processing, and cold rolling is performed. Prepared materials for use.
Next, after repeating cold rolling and continuous annealing on the above-mentioned cold pressure raw material, as the final cold finish rolling, the present invention examples (No. 1 to 6) and comparative examples (No. 21, 22) and the results of manufacturing in the conventional examples (Nos. 31 to 33) are shown in Table 2. In addition, the work roll used for the final cold finish rolling uses high-speed tool steel, uses a diameter of 120 mm, the final cold finish rolling pass is one in the present invention and the comparative example, and the conventional example is The final thickness was set to 0.1 mm by performing a plurality of times. The hardness before the final cold finish rolling is 135 HV, and the width is 800 mm.
In addition, the steepness measurement shown in Table 2 was performed using a three-dimensional shape measuring instrument on a Fe—Ni alloy thin plate test piece on a horizontal surface plate cut to a length of 700 mm, and a measurement area width of 800 mm × length of 700 mm. Was measured using a laser displacement meter or the like. The steepness was calculated from data in which the floating height was recorded in a matrix for each fixed length (width direction: 14 mm, length direction: 8 mm).

Figure 0006598007
Figure 0006598007

Figure 0006598007
Figure 0006598007

表2に示す結果から、本発明のNo.1〜6は最終の冷間仕上圧延後に熱処理(歪取焼鈍)を省略して生産性を高めつつ、優れた急峻度が得られていることが分かる。また、本発明No.3は、仕上圧延のみで、優れた急峻度が得られており、形状矯正も省略可能であることも分かる。
以上の結果から、本発明の製造方法を適用することで、厚さが0.25mm以下の薄いFe−Ni系合金薄板において、広幅化となっても優れた急峻度を具備することができる。そして、従来のFe−Ni系合金薄板を製造する際に行っていた、最後の熱処理を省略することで、製造コスト削減、生産性の向上、省エネ効果が望める。

From the results shown in Table 2, No. 1 of the present invention. It can be seen that in Nos. 1 to 6, an excellent steepness was obtained while improving the productivity by omitting the heat treatment (strain relief annealing) after the final cold finish rolling. In addition, the present invention No. It can be seen that No. 3 is only finish rolling, and an excellent steepness is obtained and shape correction can be omitted.
From the above results, by applying the manufacturing method of the present invention, a thin Fe—Ni alloy thin plate having a thickness of 0.25 mm or less can have excellent steepness even when the width is increased. And the manufacturing cost reduction, productivity improvement, and an energy-saving effect can be expected by omitting the last heat processing performed when manufacturing the conventional Fe-Ni type alloy thin plate.

Claims (3)

質量%でNi+Co:35.0〜43.0%(但し、Coは0〜6.0%)、Si:0.05%〜0.5%、Mn:0.05%〜1.0%、残部はFe及び不純物からなる冷間圧延用素材を準備する工程と、前記冷間圧延用素材に冷間圧延と連続焼鈍とを1回以上繰り返す冷間圧延工程とを含み、前記冷間圧延工程における最終の冷間仕上圧延を、単位幅当たりの圧延荷重35〜150kg/mm、圧延速度1.7〜8.3m/s、前方張力250〜400MPaの条件で行い、厚さを0.25mm以下とし、前記最終の冷間仕上圧延後には熱処理を行わず、水平定盤に置いた状態の浮上り高さで評価した急峻度が、最大0.75%以下であることを特徴とするFe−Ni系合金薄板の製造方法。 Ni + Co by mass%: 35.0-43.0% (where Co is 0-6.0%), Si: 0.05% -0.5 % , Mn: 0.05% -1.0% , The balance includes a step of preparing a cold rolling material composed of Fe and impurities, and a cold rolling step in which cold rolling and continuous annealing are repeated at least once on the cold rolling material, and the cold rolling step The final cold finish rolling is performed under the conditions of a rolling load per unit width of 35 to 150 kg / mm 2 , a rolling speed of 1.7 to 8.3 m / s and a forward tension of 250 to 400 MPa, and a thickness of 0.25 mm or less. Fe-, characterized in that, after the final cold finish rolling, no heat treatment is performed , and the steepness evaluated by the floating height when placed on a horizontal surface plate is 0.75% or less at maximum. Manufacturing method of Ni-based alloy thin plate. 前記最終の冷間仕上圧延を、単位幅当たりの圧延荷重130kg/mm以下、圧延速度3.3m/s以上とし、前記最終の冷間仕上圧延工程後に形状矯正工程を行わないことを特徴とする請求項1に記載のFe−Ni系合金の製造方法。 The final cold finish rolling has a rolling load of 130 kg / mm or less per unit width and a rolling speed of 3.3 m / s or more, and the shape correction process is not performed after the final cold finish rolling process. The manufacturing method of the Fe-Ni type alloy of Claim 1. 前記冷間圧延工程で用いるワークロールは合金工具鋼ロールであることを特徴とする請求項1または2に記載のFe−Ni系合金薄板の製造方法。
The work roll used in the cold rolling step is an alloy tool steel roll, and the method for producing a Fe-Ni alloy thin plate according to claim 1 or 2.
JP2015194916A 2015-09-30 2015-09-30 Method for producing Fe-Ni alloy thin sheet Active JP6598007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015194916A JP6598007B2 (en) 2015-09-30 2015-09-30 Method for producing Fe-Ni alloy thin sheet
KR1020160121356A KR101809377B1 (en) 2015-09-30 2016-09-22 Manufacturing method of Fe-Ni based alloy strip
CN201610865651.6A CN106955892B (en) 2015-09-30 2016-09-29 Method for producing Fe-Ni alloy thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015194916A JP6598007B2 (en) 2015-09-30 2015-09-30 Method for producing Fe-Ni alloy thin sheet

Publications (2)

Publication Number Publication Date
JP2017064763A JP2017064763A (en) 2017-04-06
JP6598007B2 true JP6598007B2 (en) 2019-10-30

Family

ID=58491095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015194916A Active JP6598007B2 (en) 2015-09-30 2015-09-30 Method for producing Fe-Ni alloy thin sheet

Country Status (3)

Country Link
JP (1) JP6598007B2 (en)
KR (1) KR101809377B1 (en)
CN (1) CN106955892B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115724B1 (en) 2016-04-14 2020-05-27 도판 인사츠 가부시키가이샤 Vapor deposition mask base material, vapor deposition mask base material manufacturing method, and vapor deposition mask manufacturing method
EP3521459B1 (en) * 2016-09-29 2024-02-14 Proterial, Ltd. METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE
JP6319505B1 (en) 2017-09-08 2018-05-09 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method
JP6984529B2 (en) * 2017-09-08 2021-12-22 凸版印刷株式会社 A base material for a vapor deposition mask, a method for manufacturing a base material for a vapor deposition mask, a method for manufacturing a vapor deposition mask, and a method for manufacturing a display device.
JP6299921B1 (en) 2017-10-13 2018-03-28 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method
JP6299922B1 (en) * 2017-10-13 2018-03-28 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method
JPWO2019098168A1 (en) 2017-11-14 2019-11-14 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, metal plate inspection method, metal plate production method, vapor deposition mask, vapor deposition mask device, and vapor deposition mask production method
JP7294336B2 (en) * 2018-06-20 2023-06-20 株式会社プロテリアル Fe-Ni alloy sheet
CN111842527B (en) * 2020-06-24 2022-12-27 江苏圣珀新材料科技有限公司 Cold rolling process for LNG liquefied filling marine plate 4J36 plate
CN113492151B (en) * 2021-07-16 2023-03-17 山西太钢不锈钢股份有限公司 Manufacturing method of iron-nickel-based alloy hot-rolled coil
CN115305331B (en) * 2022-08-18 2024-04-19 山西太钢不锈钢精密带钢有限公司 Stress relief annealing process method for low-expansion alloy 4J36 for half etching

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826437B2 (en) * 1990-08-22 1996-03-13 日本鋼管株式会社 Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JPH07116558B2 (en) * 1990-02-15 1995-12-13 日本鋼管株式会社 Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JPH07116559B2 (en) * 1990-08-22 1995-12-13 日本鋼管株式会社 Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
JP2853069B2 (en) * 1991-12-26 1999-02-03 日本鋼管株式会社 Thin plate for Fe-Ni-based shadow mask and method for producing the same
JP2842022B2 (en) * 1992-02-13 1998-12-24 日本鋼管株式会社 Thin plate for Fe-Ni-based shadow mask and method for producing the same
JPH06279946A (en) 1992-04-27 1994-10-04 Hitachi Metals Ltd Shadow mask material having excellent etching property, its intermediate material, its production, production of shadow mask, and cathode ray tube
JPH06172928A (en) 1992-12-09 1994-06-21 Hitachi Metals Ltd Lead frame material excellent in etching property and its production
JPH09157799A (en) * 1995-10-05 1997-06-17 Hitachi Metals Ltd Ferrum-nickel shadow mask blank having excellent etching property and ferrum-nickel shadow mask material having excellent moldability as well as production of shadow mask
JP3871150B2 (en) * 1995-11-09 2007-01-24 日立金属株式会社 Method for producing Fe-Ni alloy thin plate for electronic member
JPH1060525A (en) * 1996-08-26 1998-03-03 Nkk Corp Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JP3379368B2 (en) * 1997-01-17 2003-02-24 日本鋼管株式会社 Method for producing low thermal expansion alloy sheet excellent in sheet shape and heat shrink resistance
JPH11172337A (en) * 1997-12-15 1999-06-29 Daido Steel Co Ltd Manufacture of fe-ni alloy sheet
JP2000144338A (en) * 1998-11-06 2000-05-26 Daido Steel Co Ltd Iron-nickel alloy thin sheet and its production
JP2001038403A (en) * 1999-07-28 2001-02-13 Nisshin Steel Co Ltd Method of manufacturing thin sheet for shadow mask
JP4164828B2 (en) * 2004-09-29 2008-10-15 日立金属株式会社 Method for producing Fe-Ni alloy sheet material
JP5294072B2 (en) * 2009-03-18 2013-09-18 日立金属株式会社 Etching material manufacturing method and etching material
CN102605269B (en) * 2012-03-27 2013-06-26 首钢总公司 Cold-rolled sheet and method for manufacturing same
CN102719731B (en) * 2012-06-28 2016-03-02 宝山钢铁股份有限公司 Secondary cold-rolling band steel for shadow mask and manufacture method thereof
JP6294028B2 (en) * 2013-08-09 2018-03-14 日本冶金工業株式会社 Method for producing Fe-Ni permalloy alloy

Also Published As

Publication number Publication date
JP2017064763A (en) 2017-04-06
KR20170038671A (en) 2017-04-07
KR101809377B1 (en) 2017-12-14
CN106955892A (en) 2017-07-18
CN106955892B (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP6598007B2 (en) Method for producing Fe-Ni alloy thin sheet
US11098393B2 (en) Martensitic stainless steel foil and manufacturing method thereof
JP2017064764A (en) Fe-Ni-BASED ALLOY THIN SHEET AND PRODUCTION METHOD OF THE SAME
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
JP2015193871A (en) Fe-Ni-BASED ALLOY THIN SHEET AND MANUFACTURING METHOD THEREFOR
JP7156279B2 (en) METHOD FOR MANUFACTURING METAL MASK THIN PLATE AND METHOD FOR METAL MASK SLIM
JP2012062499A (en) Copper or copper alloy rolled foil for electronic component, and method for producing the same
JP4164828B2 (en) Method for producing Fe-Ni alloy sheet material
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP6781960B2 (en) Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet
JP6975391B2 (en) Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet
JP2008223146A (en) METHOD FOR PRODUCING Fe-Ni BASED ALLOY THIN SHEET
JP2019173070A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE
JP6085473B2 (en) Aluminum alloy plate with excellent press formability
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP2008161879A (en) Method for producing magnesium alloy rolled sheet
JP2014080676A (en) PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP4675771B2 (en) Ferritic stainless steel wire for glass encapsulation
JP5943105B2 (en) Steel sheet and manufacturing method thereof
JP2005298942A (en) Roll for rolling plate material mainly containing silicon and producing method therefor
JP2005220443A (en) Method for manufacturing austenitic stainless steel plate having excellent precision punching property
JP2004183000A (en) Low thermal expansion alloy thin sheet excellent in formability and impact resistance, its production method, and shadow mask using the alloy thin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190918

R150 Certificate of patent or registration of utility model

Ref document number: 6598007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350