JP7322602B2 - Ferritic stainless steel sheet and manufacturing method thereof - Google Patents

Ferritic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP7322602B2
JP7322602B2 JP2019160137A JP2019160137A JP7322602B2 JP 7322602 B2 JP7322602 B2 JP 7322602B2 JP 2019160137 A JP2019160137 A JP 2019160137A JP 2019160137 A JP2019160137 A JP 2019160137A JP 7322602 B2 JP7322602 B2 JP 7322602B2
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
content
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019160137A
Other languages
Japanese (ja)
Other versions
JP2021038431A (en
Inventor
知洋 石井
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019160137A priority Critical patent/JP7322602B2/en
Publication of JP2021038431A publication Critical patent/JP2021038431A/en
Application granted granted Critical
Publication of JP7322602B2 publication Critical patent/JP7322602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、フェライト系ステンレス鋼板およびその製造方法に関し、特に、屋根や建築物の外装など美観と意匠性の求められる用途に好適な低光沢かつ低白色なフェライト系ステンレス鋼板及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly to a low-gloss, low-white ferritic stainless steel sheet suitable for applications such as roofs and building exteriors that require aesthetics and design, and a method for producing the same.

ステンレス鋼板は、長期間金属光沢を保った美麗な外観を維持できることから、屋根や建築物の外装材として使用されてきた。しかしながら、一部用途においては、ステンレス鋼表面での過度な日光の反射が人間の目を眩ませ問題となる場合があった。そのため、従来から防眩性を向上させたステンレス鋼板は多数発明されてきた。 Stainless steel sheets have been used as exterior materials for roofs and buildings because they can maintain a beautiful appearance with a metallic luster for a long period of time. However, in some applications, the excessive reflection of sunlight on the stainless steel surface can be a dazzling problem. Therefore, many stainless steel sheets with improved antiglare properties have been invented.

防眩性の向上には表面の粗さを増加させることが有効であることが従来から知られている。たとえば、特許文献1には、フェライト系ステンレス鋼板の表面に、最大粗さRmax:10μm以下の表層部が形成されており、前記表層部にある1μm以上の差をもつ凹凸の個数が単位長さ当り10個/mm以上である耐食性、防眩性及び加工性に優れたフェライト系ステンレス鋼板が開示されている。 It is conventionally known that increasing the surface roughness is effective for improving antiglare properties. For example, in Patent Document 1, a surface layer portion having a maximum roughness R max of 10 μm or less is formed on the surface of a ferritic stainless steel plate, and the number of irregularities having a difference of 1 μm or more on the surface layer portion is the unit length. A ferritic stainless steel sheet is disclosed which is excellent in corrosion resistance, anti-glare properties and workability and has a number of lugs per mm of 10/mm or more.

また、特許文献2には、フェライト系ステンレス鋼帯において、酸化性雰囲気で焼鈍し、ソルト処理後、硝弗酸中で酸洗することにより、原子間力顕微鏡で測定した表面粗さを2次元フーリエ変換し、可視光域350~750nmの波長成分のスペクトル密度Pが、log10P≧2.1である、防眩性に優れた高耐銹性フェライト系ステンレス鋼板を得る技術が開示されている。 Further, in Patent Document 2, a ferritic stainless steel strip is annealed in an oxidizing atmosphere, subjected to salt treatment, and then pickled in nitric hydrofluoric acid. A technique for obtaining a highly rust-resistant ferritic stainless steel sheet with excellent anti-glare properties, in which the spectral density P of the wavelength component in the visible light region of 350 to 750 nm after Fourier transform is log 10 P≧2.1 is disclosed. there is

しかしながら、これらの発明に基づいて光沢度を抑えた場合、白色度が増加し、ステンレス鋼板表面の金属感が失われるという美観上の問題があった。 However, when the glossiness is suppressed based on these inventions, there is an aesthetic problem that the whiteness is increased and the metallic feeling of the surface of the stainless steel plate is lost.

特開平7-188862号公報JP-A-7-188862 特開平9-291382号公報JP-A-9-291382

上記のように光沢度を抑えようと表面の粗さを増大させると、それに伴い白色度が増加し、ステンレス鋼本来の金属感が失われるという問題があった。また、表面酸化皮膜を制御して光沢度を抑える方法も検討されているが、ステンレス鋼本来の白色に近い色味から黄色や青といった方向に色彩の変化が起こる場合があった。 As described above, when the surface roughness is increased in order to suppress the glossiness, there is a problem that the degree of whiteness increases accordingly, and the metallic feeling inherent in stainless steel is lost. A method of controlling the surface oxide film to suppress glossiness has also been investigated, but there have been cases where the color changes from the original white color of stainless steel to yellow or blue.

これらの問題に鑑み、本発明では、低光沢かつ低白色なフェライト系ステンレス鋼板を提供することを目的とする。
また、本発明は、前記フェライト系ステンレス鋼板の好適な製造方法を提供することを目的とする。
In view of these problems, an object of the present invention is to provide a ferritic stainless steel sheet with low gloss and low whiteness.
Another object of the present invention is to provide a suitable method for producing the ferritic stainless steel sheet.

本発明では、上記材料に発生する課題を解決するために、フェライト系ステンレス鋼板の表面形態と光沢度、白色度の関係について鋭意検討を行った。その結果、白色度は表面の展開面積比Sdr(ISO25178)に相関し、光沢度は面粗さパラメータの一つである表面の算術平均高さSa(ISO25178)と基準面からの深さが0.5μm以上の領域の面積率(凹部面積率)に相関することを見出し、本発明を完成するに至った。
すなわち本発明は下記の構成を要旨とするものである。
In the present invention, in order to solve the problems occurring in the above materials, extensive studies were conducted on the relationship between the surface morphology of a ferritic stainless steel sheet and the degree of glossiness and degree of whiteness. As a result, the whiteness correlates with the surface development area ratio Sdr (ISO25178), and the glossiness is the surface arithmetic mean height Sa (ISO25178), which is one of the surface roughness parameters, and the depth from the reference surface is 0. The inventors have found that there is a correlation with the area ratio of regions of 0.5 μm or more (recess area ratio), and have completed the present invention.
That is, the gist of the present invention is the following configuration.

[1]表面の算術平均高さSa(μm)と凹部面積率(%)が下記式(1)の関係をみたし、かつ、表面の展開面積比Sdrが0.04以下であることを特徴とするフェライト系ステンレス鋼板。
451-126×Sa-5.6×凹部面積率 ≦ 100 ・・・(1)
[2]質量%で、
C:0.001~0.030%、
Si:0.01~0.60%、
Mn:0.01~0.60%、
P:0.05%以下、
S:0.01%以下、
Cr:16.0~35.0%、
N:0.001~0.030%、および、
TiおよびNbのうちの少なくとも1種を、TiおよびNbの合計の含有量が4([%C]+[%N])以上1.00%以下を満たすように含有し、
残部がFeおよび不可避的不純物からなる組成を有することを特徴とする[1]に記載のフェライト系ステンレス鋼板。
ただし、前記[%C]、[%N]は、それぞれC、Nの含有量(質量%)である。
[3]前記組成に加えてさらに、質量%で、
Ni:0~3.0%、
Mo:0~3.0%、
Cu:0~1.0%、
W:0~1.0%、
Co:0~0.5%の1種または2種以上を含有することを特徴とする[2]に記載のフェライト系ステンレス鋼板。
[4]前記組成に加えてさらに、質量%で、
Zr:0~1.0%、
V:0~1.0%、
Al:0~0.5%、
REM:0~0.1%、
B:0~0.01%の1種または2種以上を含有することを特徴とする[2]または[3]に記載のフェライト系ステンレス鋼板。
[5]前記[1]~[4]のいずれかに記載のフェライト系ステンレス鋼板の製造方法であって、
フェライト系ステンレス鋼冷延板に、表面に凹凸を有し、表面粗度Raが0.60~1.80μm、凸部の頂点の数密度が15~80個/mmであるダルロールを用いて、
1パスの圧下率が0.1~0.5%の圧延を3~20パス実施する調質圧延を施すことを特徴とするフェライト系ステンレス鋼板の製造方法。
[1] The surface arithmetic mean height Sa (μm) and the concave area ratio (%) satisfy the relationship of the following formula (1), and the surface development area ratio Sdr is 0.04 or less. A ferritic stainless steel sheet.
451-126 x Sa-5.6 x concave area ratio ≤ 100 (1)
[2] % by mass,
C: 0.001 to 0.030%,
Si: 0.01 to 0.60%,
Mn: 0.01-0.60%,
P: 0.05% or less,
S: 0.01% or less,
Cr: 16.0 to 35.0%,
N: 0.001 to 0.030%, and
At least one of Ti and Nb is contained so that the total content of Ti and Nb is 4 ([%C] + [%N]) or more and 1.00% or less,
The ferritic stainless steel sheet according to [1], wherein the balance is Fe and inevitable impurities.
However, the above [%C] and [%N] are the contents of C and N (% by mass), respectively.
[3] In addition to the above composition, in mass%,
Ni: 0 to 3.0%,
Mo: 0-3.0%,
Cu: 0-1.0%,
W: 0 to 1.0%,
Co: The ferritic stainless steel sheet according to [2], containing one or more of 0 to 0.5%.
[4] In addition to the above composition, in mass%,
Zr: 0 to 1.0%,
V: 0 to 1.0%,
Al: 0-0.5%,
REM: 0-0.1%,
B: The ferritic stainless steel sheet according to [2] or [3], containing one or more of 0 to 0.01%.
[5] A method for producing a ferritic stainless steel sheet according to any one of [1] to [4],
A dull roll having unevenness on the surface, a surface roughness Ra of 0.60 to 1.80 μm, and a number density of 15 to 80 vertices/mm 2 at the peaks of the protrusions was used on a ferritic stainless steel cold-rolled sheet. ,
A method for producing a ferritic stainless steel sheet, characterized in that temper rolling is performed by performing 3 to 20 passes of rolling with a rolling reduction of 0.1 to 0.5% per pass.

本発明によれば、低光沢かつ低白色なフェライト系ステンレス鋼板が得られる。
本発明のフェライト系ステンレス鋼板は、屋根や建築物外装材に好適である。
According to the present invention, a ferritic stainless steel sheet with low gloss and low whiteness can be obtained.
The ferritic stainless steel sheet of the present invention is suitable for roofs and building exterior materials.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

表面の算術平均高さSa(μm)と凹部面積率(%)が下記式(1)の関係をみたす。
451-126×Sa-5.6×凹部面積率 ≦ 100 ・・・(1)
フェライト系ステンレス鋼の光沢度は表面の粗さによって変化する。本発明では、ダルロールを用いた調質圧延(ダル圧延)による表面形態の制御を試み、表面粗さと光沢度の関係について詳細な検討を行った。その結果、ダル圧延によって形成された凹部面積率とISO25178で規定される算術平均高さSaの関係式(1L)
451-126×Sa-5.6×凹部面積率 ・・・(1L)
によってステンレス鋼板表面の光沢度が評価できることを本発明では見出した。ここで、凹部面積率は、凹部(ダル圧延前の圧延によって形成された圧延目の残る表面(基準面)より0.5μm以上低い領域(基準面からの深さが0.5μm以上の領域))の面積率である。この関係式(1L)が100以下になると光沢度の少ない良好な表面が得られる。よって、本発明では、451-126×Sa-5.6×凹部面積率 ≦ 100とした。好ましくは、関係式(1L)は80以下である。なお、凹部面積率(%)[(鋼板表面の凹部の面積/鋼板表面の表面積)×100]は、実施例に記載の方法により求めることができる。
The arithmetic mean height Sa (μm) of the surface and the recess area ratio (%) satisfy the relationship of the following formula (1).
451-126 x Sa-5.6 x concave area ratio ≤ 100 (1)
The glossiness of ferritic stainless steel changes depending on the surface roughness. In the present invention, an attempt was made to control the surface morphology by temper rolling using dull rolls (dull rolling), and a detailed study was conducted on the relationship between surface roughness and glossiness. As a result, the relational expression (1L) between the recess area ratio formed by dull rolling and the arithmetic mean height Sa defined by ISO25178
451-126 x Sa-5.6 x concave area ratio (1 L)
In the present invention, it was found that the glossiness of the surface of the stainless steel plate can be evaluated by Here, the recessed area area ratio is defined as a region that is 0.5 μm or more lower than the surface (reference plane) on which the rolling marks formed by rolling before dull rolling remain (a region with a depth of 0.5 μm or more from the reference plane). ) is the area ratio. When this relational expression (1L) is 100 or less, a good surface with little glossiness can be obtained. Therefore, in the present invention, 451−126×Sa−5.6×recess area ratio≦100. Preferably, relational expression (1L) is 80 or less. The area ratio of concave portions (%) [(area of concave portions on steel plate surface/surface area of steel plate surface)×100] can be obtained by the method described in Examples.

表面の算術平均高さSaは、特に限定されないが、0.20μm以上が好ましい。また、表面の算術平均高さSaは、特に限定されないが、1.50μm以下が好ましい。表面の凹部面積率は、特に限定されないが、20%以上が好ましい。また、表面の凹部面積率は、特に限定されないが、70%以下が好ましい。 The arithmetic mean height Sa of the surface is not particularly limited, but is preferably 0.20 μm or more. Moreover, although the arithmetic mean height Sa of the surface is not particularly limited, it is preferably 1.50 μm or less. Although there is no particular limitation on the area ratio of the recesses on the surface, it is preferably 20% or more. Moreover, although the recess area ratio of the surface is not particularly limited, it is preferably 70% or less.

Sdr≦0.04
通常、ステンレス鋼板は、表面の光沢度が高いと表面は黒っぽく見え、白色度の低い金属感のある良好な表面が得られる。ステンレス鋼板表面の白色は、入射光が表面の細かな凹凸によって乱反射し生成される色である。したがって、表面に細かい凹凸が増えて乱反射の量が増加すると白色度は増加する。ステンレス鋼板表面の凹凸の評価には各種の指標があるが、本発明では、ISO25178で規定される展開面積比Sdrがステンレス鋼板表面の白色度とよい相関があることを見出した。ステンレス鋼板表面の白色度は、表面の展開面積比Sdrの増加にともない増加し、Sdrが0.04を超えると白色度の増加が顕著となった。よって、Sdrは0.04以下とした。好ましくは、Sdrは0.03以下である。
Sdr≦0.04
Generally, a stainless steel plate with a high surface gloss looks blackish, and has a good surface with a low degree of whiteness and a metallic feel. The white color of the surface of a stainless steel plate is a color generated by irregular reflection of incident light due to fine irregularities on the surface. Therefore, when the amount of irregular reflection increases due to an increase in fine irregularities on the surface, the whiteness increases. There are various indices for evaluating unevenness on the surface of a stainless steel plate, but in the present invention, it was found that the developed area ratio Sdr defined by ISO25178 has a good correlation with the whiteness of the surface of the stainless steel plate. The whiteness of the surface of the stainless steel plate increased with an increase in the developed surface area ratio Sdr, and when the Sdr exceeded 0.04, the whiteness increased significantly. Therefore, Sdr is set to 0.04 or less. Preferably, Sdr is 0.03 or less.

次に、本発明のフェライト系ステンレス鋼板の有する好ましい成分組成について説明する。なお、各元素の含有量を示す「%」は、特に断らない限り質量%を意味する。 Next, a preferred chemical composition of the ferritic stainless steel sheet of the present invention will be described. Note that "%" indicating the content of each element means % by mass unless otherwise specified.

C:0.001~0.030%
Cは、鋼に不可避的に含まれる元素である。Cの含有量が多いと強度が向上し、少ないと加工性が向上する。屋根材として使用するのに適度な強度を得るためには、C含有量は0.001%以上が好ましい。一方で、過剰のCの含有は耐食性の低下が顕著となるため、C含有量は0.030%以下が好ましい。よって、Cの含有量は0.001~0.030%が好ましい。より好ましくは、C含有量は0.002%以上である。また、より好ましくは、C含有量は0.020%以下である。
C: 0.001 to 0.030%
C is an element inevitably contained in steel. If the C content is large, the strength is improved, and if it is small, the workability is improved. The C content is preferably 0.001% or more in order to obtain adequate strength for use as a roofing material. On the other hand, since excessive C content significantly reduces corrosion resistance, the C content is preferably 0.030% or less. Therefore, the C content is preferably 0.001 to 0.030%. More preferably, the C content is 0.002% or more. Moreover, more preferably, the C content is 0.020% or less.

Si:0.01~0.60%
Siは、脱酸に有用な元素であり、その効果は0.01%以上の含有で得られる。しかし、Siの含有量が0.60%を超えると、表層の酸化皮膜が生成しやすくなり、鋼板表面に色味が出やすくなる。よって、Si含有量は0.01~0.60%が好ましい。より好ましくは、Si含有量は0.05%以上である。また、より好ましくは、Si含有量は0.30%以下である。
Si: 0.01-0.60%
Si is an element useful for deoxidation, and its effect is obtained at a content of 0.01% or more. However, when the Si content exceeds 0.60%, an oxide film on the surface layer is likely to form, and the surface of the steel sheet tends to be colored. Therefore, the Si content is preferably 0.01 to 0.60%. More preferably, the Si content is 0.05% or more. Also, more preferably, the Si content is 0.30% or less.

Mn:0.01~0.60%
Mnは、鋼に不可避的に含まれる元素であり、強度を高める効果がある。その効果は0.01%以上の含有で得られる。一方、過剰のMnの含有はMnSの生成を促進して耐食性を低下させる。したがって、Mn含有量は0.60%以下が好ましい。よって、Mn含有量は0.01~0.60%が好ましい。より好ましくは、Mn含有量は0.03%以上である。また、より好ましくは、Mn含有量は0.40%以下である。
Mn: 0.01-0.60%
Mn is an element that is inevitably contained in steel and has the effect of increasing strength. The effect is obtained at a content of 0.01% or more. On the other hand, excessive Mn content accelerates the formation of MnS and lowers corrosion resistance. Therefore, the Mn content is preferably 0.60% or less. Therefore, the Mn content is preferably 0.01 to 0.60%. More preferably, the Mn content is 0.03% or more. Moreover, more preferably, the Mn content is 0.40% or less.

P:0.05%以下
Pは、鋼に不可避的に含まれる元素であり、ステンレス鋼の耐食性を低下させる元素である。よって、P含有量は少ないほど好ましく、P含有量は0.05%以下が好ましい。より好ましくは、P含有量は0.03%以下である。
P: 0.05% or less P is an element that is inevitably contained in steel, and is an element that lowers the corrosion resistance of stainless steel. Therefore, the lower the P content, the better, and the P content is preferably 0.05% or less. More preferably, the P content is 0.03% or less.

S:0.01%以下
Sは、鋼に不可避的に含まれる元素である。S含有量が0.01%超であるとCaSやMnSなどの水溶性硫化物の形成が促進され耐食性を低下させる。よって、S含有量は0.01%以下が好ましい。
S: 0.01% or less S is an element inevitably contained in steel. If the S content exceeds 0.01%, the formation of water-soluble sulfides such as CaS and MnS is accelerated and corrosion resistance is lowered. Therefore, the S content is preferably 0.01% or less.

Cr:16.0~35.0%
Crは、フェライト系ステンレス鋼の優れた耐食性を発揮するためには必須の元素である。屋根材として良好な耐食性を得るためには16.0%以上のCrを含有することが好ましい。一方で、Cr含有量が35.0%超であると加工性が低下し、屋根の成形が困難となる。よって、Cr含有量は16.0~35.0%が好ましい。より好ましくは、Cr含有量は18.0%以上である。また、より好ましくは、Cr含有量は31.0%以下である。
Cr: 16.0-35.0%
Cr is an essential element for exhibiting excellent corrosion resistance of ferritic stainless steel. In order to obtain good corrosion resistance as a roofing material, it is preferable to contain 16.0% or more of Cr. On the other hand, when the Cr content exceeds 35.0%, workability is lowered, making it difficult to form the roof. Therefore, the Cr content is preferably 16.0-35.0%. More preferably, the Cr content is 18.0% or more. Also, more preferably, the Cr content is 31.0% or less.

N:0.001~0.030%
Nは、Cと同様に鋼に不可避的に含まれる元素であり、固溶強化により鋼の強度を上昇させる効果がある。その効果はN含有量が0.001%以上で得られる。しかし、N含有量が0.030%を超えると加工性の低下が顕著となる。よって、N含有量は0.001~0.030%が好ましい。より好ましくは、N含有量は0.002%以上である。また、より好ましくは、N含有量は0.020%以下である。
N: 0.001 to 0.030%
N, like C, is an element that is unavoidably contained in steel, and has the effect of increasing the strength of steel through solid-solution strengthening. The effect is obtained when the N content is 0.001% or more. However, when the N content exceeds 0.030%, the workability is remarkably lowered. Therefore, the N content is preferably 0.001 to 0.030%. More preferably, the N content is 0.002% or more. Also, more preferably, the N content is 0.020% or less.

TiおよびNbのうちの少なくとも1種を含有し、かつ、TiおよびNbの合計の含有量が4([%C]+[%N])以上1.00%以下
TiおよびNbはいずれも、CおよびNと優先的に結合して、Cr炭窒化物の析出による耐食性の低下を抑制する元素である。そのため、TiおよびNbのうちの1種または2種を含有させたうえで、その含有量を4([%C]+[%N])以上とすることが好ましい。一方、TiおよびNbの合計の含有量が1.00%を超えると、靭性の低下を招くおそれがある。よって、TiおよびNbのうちの少なくとも1種を含有させ、かつ、TiおよびNbの合計の含有量は4([%C]+[%N])以上1.00%以下とすることが好ましい。TiおよびNbの合計の含有量は、より好ましくは0.50%以下である。なお、上記[%C]、[%N]は、それぞれC、Nの含有量(質量%)である。
At least one of Ti and Nb is contained, and the total content of Ti and Nb is 4 ([%C] + [%N]) or more and 1.00% or less Ti and Nb are both C and N, and suppresses deterioration of corrosion resistance due to precipitation of Cr carbonitrides. Therefore, it is preferable to contain one or two of Ti and Nb and set the content to 4 ([%C]+[%N]) or more. On the other hand, if the total content of Ti and Nb exceeds 1.00%, there is a risk of a decrease in toughness. Therefore, it is preferable to contain at least one of Ti and Nb, and the total content of Ti and Nb is 4 ([%C]+[%N]) or more and 1.00% or less. The total content of Ti and Nb is more preferably 0.50% or less. The above [%C] and [%N] are the contents of C and N (% by mass), respectively.

本発明のフェライト系ステンレス鋼板は、上記成分を含有し、残部がFeおよび不可避的不純物からなる組成を有することが好ましい。 The ferritic stainless steel sheet of the present invention preferably has a composition containing the above components with the balance being Fe and unavoidable impurities.

また、本発明のフェライト系ステンレス鋼板は、上記組成に加えて、下記の成分を1種または2種以上含有することができる。 In addition to the composition described above, the ferritic stainless steel sheet of the present invention may contain one or more of the following components.

Ni:0~3.0%
Niは、ステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成できず活性溶解が起こる腐食環境において腐食の進行を抑制する元素である。しかし、3.0%超の含有では、応力腐食割れの感受性が増して腐食による損傷リスクが増大する。よって、Niの含有量は0~3.0%が好ましい。より好ましくは、Ni含有量は0.01%以上である。また、より好ましくは、Ni含有量は0.6%以下である。
Ni: 0-3.0%
Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment in which a passive film cannot be formed and active dissolution occurs. However, if the content exceeds 3.0%, the susceptibility to stress corrosion cracking increases and the risk of damage due to corrosion increases. Therefore, the Ni content is preferably 0 to 3.0%. More preferably, the Ni content is 0.01% or more. Moreover, more preferably, the Ni content is 0.6% or less.

Mo:0~3.0%
Moは、ステンレス鋼の耐食性を向上させる元素であり、不動態皮膜の形成促進や安定性向上の効果がある。しかし、3.0%超の含有では、材料強度が高くなりすぎ、加工性が低下する。よって、Mo含有量は0~3.0%が好ましい。より好ましくは、Mo含有量は0.01%以上である。また、より好ましくは、Mo含有量は0.5%以下である。
Mo: 0-3.0%
Mo is an element that improves the corrosion resistance of stainless steel, and has the effects of promoting the formation of a passive film and improving the stability. However, if the content exceeds 3.0%, the strength of the material becomes too high, and workability deteriorates. Therefore, the Mo content is preferably 0 to 3.0%. More preferably, the Mo content is 0.01% or more. Moreover, more preferably, the Mo content is 0.5% or less.

Cu:0~1.0%
Cuは、ステンレス鋼の耐食性を向上させる元素である。特に大気環境における初期発銹を軽減する効果がある。しかし、1.0%超の含有は粗大なε-Cuの生成を引き起こし、耐食性を低下させる。よって、Cu含有量は0~1.0%が好ましい。より好ましくは、Cu含有量は0.01%以上である。また、より好ましくは、Cu含有量は0.6%以下である。
Cu: 0-1.0%
Cu is an element that improves the corrosion resistance of stainless steel. In particular, it has the effect of reducing initial rust generation in an atmospheric environment. However, if the content exceeds 1.0%, coarse ε-Cu is generated and the corrosion resistance is lowered. Therefore, the Cu content is preferably 0 to 1.0%. More preferably, the Cu content is 0.01% or more. Moreover, more preferably, the Cu content is 0.6% or less.

W:0~1.0%
Wは、Moと同様に耐食性を向上する効果がある。しかし、過剰の含有は強度を上昇させ、加工性を低下させる。よって、W含有量は0~1.0%が好ましい。
W: 0-1.0%
W, like Mo, has the effect of improving corrosion resistance. However, excessive content increases strength and reduces workability. Therefore, the W content is preferably 0 to 1.0%.

Co:0~0.5%
Coは、鋼の靭性を向上させる元素である。しかし、0.5%を超えて含有させると加工性が低下する。よって、Co含有量は0~0.5%が好ましい。
Co: 0-0.5%
Co is an element that improves the toughness of steel. However, if the content exceeds 0.5%, workability is lowered. Therefore, the Co content is preferably 0 to 0.5%.

Zr:0~1.0%
Zrは、C、Nと結合して鋭敏化を抑制する効果がある。しかし、過剰の含有は加工性を低下させるうえ、非常に高価な元素であるためコストの増大を招く。よって、Zrの含有量は0~1.0%が好ましい。
Zr: 0-1.0%
Zr has the effect of suppressing sensitization by binding with C and N. However, an excessive content lowers the workability, and since it is a very expensive element, it leads to an increase in cost. Therefore, the Zr content is preferably 0 to 1.0%.

V:0~1.0%
Vは、VNを形成することでCr窒化物の析出による耐食性の低下を抑制する元素である。しかし、1.0%を超える過剰な含有は、加工性が低下する。よって、V含有量は0~1.0%が好ましい。より好ましくは、V含有量は0.01%以上である。また、より好ましくは、V含有量は0.3%以下である。
V: 0-1.0%
V is an element that suppresses deterioration of corrosion resistance due to precipitation of Cr nitrides by forming VN. However, an excessive content exceeding 1.0% lowers workability. Therefore, the V content is preferably 0 to 1.0%. More preferably, the V content is 0.01% or more. Also, more preferably, the V content is 0.3% or less.

Al:0~0.5%
Alは、脱酸に有用な元素である。しかし、Alの含有量が0.5%超であるとフェライト結晶粒径が増大しやすくなり、加工部の肌荒れを悪化させる。よって、Al含有量は0~0.5%が好ましい。より好ましくは、Al含有量は0.01%以上である。また、より好ましくは、Al含有量は0.12%以下である。
Al: 0-0.5%
Al is an element useful for deoxidation. However, if the Al content exceeds 0.5%, the grain size of the ferrite grains tends to increase, which worsens the surface roughness of the processed portion. Therefore, the Al content is preferably 0 to 0.5%. More preferably, the Al content is 0.01% or more. Moreover, more preferably, the Al content is 0.12% or less.

REM:0~0.1%
REM(希土類金属:Rare Earth Metals)は、耐酸化性を向上する元素である。しかし、過剰の含有は酸洗性などの製造性を低下させるうえ、コストの増大を招く。よってREM含有量は0~0.1%が好ましい。
REM: 0-0.1%
REMs (Rare Earth Metals) are elements that improve oxidation resistance. However, excessive content lowers manufacturability such as pickling property and causes an increase in cost. Therefore, the REM content is preferably 0 to 0.1%.

B:0~0.01%
Bは、二次加工脆性を改善する元素である。しかし、過剰のBの含有は、固溶強化による加工性低下を引き起こす。よって、B含有量は0~0.01%が好ましい。
B: 0-0.01%
B is an element that improves secondary work embrittlement. However, an excessive B content causes deterioration in workability due to solid solution strengthening. Therefore, the B content is preferably 0 to 0.01%.

次に、本発明のフェライト系ステンレス鋼板の好適な製造方法の一例を以下に示す。
上記の成分組成を有する鋼スラブを、熱間圧延して熱延板とし、該熱延板に必要に応じて熱延板焼鈍、酸洗を施し、その後、該熱延板に冷間圧延を施し、必要に応じて冷延板焼鈍を施して、所望板厚のフェライト系ステンレス鋼冷延板とする。
なお、熱間圧延、冷間圧延、熱延板焼鈍、冷延板焼鈍などの条件は特に限定されず、常法に従えばよい。また、冷延板焼鈍後に酸洗してもよい。また、冷延板焼鈍を、光輝焼鈍とすることもできる。ただし、フェライト系ステンレス鋼板の色味を抑制する点からは、光輝焼鈍を行わない方が好ましい。
Next, an example of a suitable method for producing the ferritic stainless steel sheet of the present invention is shown below.
A steel slab having the above chemical composition is hot-rolled into a hot-rolled sheet, the hot-rolled sheet is subjected to hot-rolled sheet annealing and pickling as necessary, and then cold-rolled to the hot-rolled sheet. Cold-rolled sheet annealing is performed as necessary to obtain a ferritic stainless steel cold-rolled sheet having a desired thickness.
The conditions for hot rolling, cold rolling, hot-rolled sheet annealing, cold-rolled sheet annealing, etc. are not particularly limited, and conventional methods may be followed. Moreover, you may pickle after cold-rolled sheet annealing. Also, the cold-rolled sheet annealing may be bright annealing. However, from the viewpoint of suppressing the color of the ferritic stainless steel sheet, it is preferable not to perform bright annealing.

上記のようにして得たフェライト系ステンレス鋼冷延板に、表面に凹凸(凹凸部)を有するダルロールを用いた調質圧延(ダル圧延)を施す。この際、調質圧延に使用するダルロールとして、表面粗度Raが0.60~1.80μm、凸部の頂点の数密度が15~80個/mmである表面形状を有するダルロールを用いることが好適である。このようなダルロール表面は、ショットブラストや放電加工により成形できる。このダルロールを用いて、1パスの圧下率が0.1~0.5%の圧延を3~20パス行う。調質圧延の圧下率は合計で1.0~3.0%が好適である。フェライト系ステンレス鋼冷延板にこのような調質圧延を施すことによって、ダルロールのダル目が十分に転写され、かつ、白色の原因となる細かな凹凸の少ない、上述したような表面の算術平均高さSaと凹部面積率が所定の式(1)の関係を満たし、かつ、所定の展開面積比Sdrを有するフェライト系ステンレス鋼板が得られる。 The ferritic stainless steel cold-rolled sheet obtained as described above is subjected to temper rolling (dull rolling) using a dull roll having unevenness (unevenness) on the surface. At this time, as the dull roll used for temper rolling, a dull roll having a surface shape with a surface roughness Ra of 0.60 to 1.80 μm and a number density of apexes of convex portions of 15 to 80/mm 2 is used. is preferred. Such a dull roll surface can be formed by shot blasting or electrical discharge machining. Using this dull roll, 3 to 20 passes of rolling are performed with a rolling reduction of 0.1 to 0.5% per pass. The reduction ratio of temper rolling is preferably 1.0 to 3.0% in total. By subjecting the ferritic stainless steel cold-rolled sheet to such temper rolling, the dull rolls of the dull roll are sufficiently transferred, and the arithmetic average of the surface as described above with less fine unevenness that causes white color A ferritic stainless steel sheet is obtained in which the height Sa and the recess area ratio satisfy the predetermined relationship of formula (1) and the predetermined development area ratio Sdr.

なお、ダルロールの表面粗度Raは、JIS B 0601-2001に規定される算術平均粗さを意味する。また、本発明においてダルロールの表面粗度Raは、ロール軸方向の算術平均粗さである。また、ダルロールの表面の凸部の頂点の数密度は、ダルロールの表面をレーザー顕微鏡(キーエンス製 VK-X250)を用いて、1mmの範囲の3次元形状測定を行い凸部の頂点の数を測定した。測定時のパスフィルタはローパス側が2.5μm、ハイパス側が0.8mmとした。測定値は任意に選択した5か所の平均とした。 The dull roll surface roughness Ra means the arithmetic mean roughness defined in JIS B 0601-2001. Further, in the present invention, the surface roughness Ra of the dull roll is the arithmetic mean roughness in the roll axial direction. In addition, the number density of the vertices of the convex portions on the surface of the dull roll is measured using a laser microscope ( VK -X250 manufactured by Keyence) on the surface of the dull roll. It was measured. The pass filter at the time of measurement was 2.5 μm on the low-pass side and 0.8 mm on the high-pass side. The measured value was the average of 5 arbitrarily selected points.

以下、実施例に基づいて本発明をさらに詳細に説明する。
表1に示す成分組成のステンレス鋼を実験室において真空溶製し、分解圧延、熱間圧延を行い板厚3.0mmの熱延板を作製した。得られた熱延板に950~1100℃の温度で焼鈍し酸洗を行い、スケールを除去した。その後、板厚1.0mmまで冷間圧延を行い、100%Ar、露点-40℃の雰囲気において900~1050℃の温度で冷延板焼鈍を行った。冷延板焼鈍後には60℃の3質量%HF-18質量%HNO水溶液へ90s浸漬した後、10質量%HNO水溶液中で電解処理を行う酸洗を行った。このようにして得たフェライト系ステンレス鋼冷延板に、表2に示す調質圧延条件でダル圧延を行い、フェライト系ステンレス鋼板(供試材)とした。
The present invention will be described in more detail below based on examples.
A stainless steel having the chemical composition shown in Table 1 was vacuum melted in a laboratory, cracked and hot rolled to prepare a hot-rolled sheet having a thickness of 3.0 mm. The obtained hot-rolled sheet was annealed at a temperature of 950 to 1100° C. and pickled to remove scales. Thereafter, cold rolling was performed to a sheet thickness of 1.0 mm, and cold-rolled sheet annealing was performed at a temperature of 900 to 1050°C in an atmosphere of 100% Ar and a dew point of -40°C. After the cold-rolled sheet annealing, it was immersed in a 3% by mass HF-18% by mass HNO 3 aqueous solution at 60° C. for 90 s, and then pickled by electrolysis in a 10% by mass HNO 3 aqueous solution. The ferritic stainless steel cold-rolled sheet thus obtained was subjected to dull rolling under the temper rolling conditions shown in Table 2 to obtain a ferritic stainless steel sheet (test material).

得られた供試材の表面をレーザー顕微鏡(キーエンス製 VK-X250)を用いて、1mmの範囲の3次元形状測定を行い、算術平均高さSa、凹部面積率、展開面積比Sdrを測定した。測定時のパスフィルタはローパス側が2.5μm、ハイパス側が0.8mmとした。算術平均高さSa、展開面積比Sdrの測定方法はISO25178に準拠した。凹部面積率は、ダルロールを用いた調質圧延前の圧延目(圧延跡)が残る基準面から0.5μm以上凹んだ領域(凹部)の面積率とした(凹部面積率(%)=[供試材表面の凹部の面積/供試材表面の表面積]×100)。測定値は任意に選択した5か所の平均とした。結果を表2に示す。 Using a laser microscope (Keyence VK-X250), the surface of the obtained test material is subjected to three-dimensional shape measurement in the range of 1 mm 2 , and the arithmetic mean height Sa, the concave area ratio, and the developed area ratio Sdr are measured. bottom. The pass filter at the time of measurement was 2.5 μm on the low-pass side and 0.8 mm on the high-pass side. The method for measuring the arithmetic mean height Sa and the developed area ratio Sdr conformed to ISO25178. The recess area ratio was the area ratio of a region (recess) recessed by 0.5 μm or more from the reference surface where rolling marks (rolling traces) remained before temper rolling using a dull roll (recess area ratio (%) = [supplied Area of recesses on the surface of the sample/surface area of the surface of the sample]×100). The measured value was the average of 5 arbitrarily selected points. Table 2 shows the results.

光沢度計(コニカミノルタ製 GM268plus)を用いてJIS Z 8741で規定される光沢度Gs(20°)を測定した。結果を表2に示す。光沢度Gs(20°)が100以下を良好(低光沢)とした。本発明例であるNo.1~9と比較例であるNo.11では光沢度Gs(20°)が100以下であり、低光沢で、良好な防眩性が得られた。一方、式(1L)の値が100超となり所定の式(1)を満たさない比較例No.10では光沢度Gs(20°)が100超となり、良好な防眩性が得られなかった。 The glossiness Gs (20°) specified in JIS Z 8741 was measured using a glossiness meter (GM268plus manufactured by Konica Minolta). Table 2 shows the results. A glossiness Gs (20°) of 100 or less was defined as good (low gloss). No. 1, which is an example of the present invention. 1 to 9 and No. 1 which is a comparative example. In No. 11, the glossiness Gs (20°) was 100 or less, and low glossiness and good antiglare properties were obtained. On the other hand, Comparative Example No. 1 where the value of formula (1L) exceeded 100 and did not satisfy the predetermined formula (1). At 10, the glossiness Gs (20°) exceeded 100, and good antiglare properties could not be obtained.

分光測色計(コニカミノルタ製CM-600d)を用いてJIS Z 8781で規定されるL、a、bを測定した。結果を表2に示す。Lが68未満を良好(低白色)とした。a、bについてはいずれも-0.70~0.70を良好(色味無し)とした。本発明例であるNo.1~9および比較例であるNo.10ではLが67以下となり、良好な低白色表面が得られた。一方で、展開面積比Sdrが0.04超であった比較例No.11ではLが68以上となり白色度が高かった。以上の結果から、本発明例では、光沢度、白色度がともに低く良好な表面が得られた。さらに色味の無い良好な表面が得られた。 L * , a * , b * defined in JIS Z 8781 were measured using a spectrophotometer (CM-600d manufactured by Konica Minolta). Table 2 shows the results. L * of less than 68 was defined as good (low white). For both a * and b *, -0.70 to 0.70 was considered good (no color). No. 1, which is an example of the present invention. 1 to 9 and No. which is a comparative example. 10, L * was 67 or less, and a good low white surface was obtained. On the other hand, Comparative Example No. 1, which had a developed area ratio Sdr of more than 0.04. In No. 11, L * was 68 or more and the whiteness was high. From the above results, in the present invention example, both the glossiness and the whiteness were low and good surfaces were obtained. Furthermore, a good surface with no tint was obtained.

Figure 0007322602000001
Figure 0007322602000001

Figure 0007322602000002
Figure 0007322602000002

本発明によれば、屋根や建築物外装材に用いるのに好適な低光沢かつ低白色なフェライト系ステンレス鋼板が得られる。 INDUSTRIAL APPLICABILITY According to the present invention, a low-gloss, low-white ferritic stainless steel sheet suitable for use in roofs and building exterior materials can be obtained.

Claims (5)

表面の算術平均高さSaが0.20μm以上1.50μm以下であり、表面の凹部面積率が(162/5.6)%以上70%以下であり、かつ、前記算術平均高さSa(μm)と前記凹部面積率(%)が下記式(1)の関係をみたし、
かつ、表面の展開面積比Sdrが0.04以下であることを特徴とするフェライト系ステンレス鋼板。
451-126×Sa-5.6×凹部面積率 ≦ 100 ・・・(1)
The arithmetic mean height Sa of the surface is 0.20 μm or more and 1.50 μm or less, the concave area ratio of the surface is (162/5.6) % or more and 70% or less, and the arithmetic mean height Sa (μm ) and the recess area ratio (%) satisfies the relationship of the following formula (1),
A ferritic stainless steel sheet having a surface developed area ratio Sdr of 0.04 or less.
451-126 x Sa-5.6 x concave area ratio ≤ 100 (1)
質量%で、
C:0.001~0.030%、
Si:0.01~0.60%、
Mn:0.01~0.60%、
P:0.05%以下、
S:0.01%以下、
Cr:16.0~35.0%、
N:0.001~0.030%、および、
TiおよびNbのうちの少なくとも1種を、TiおよびNbの合計の含有量が4([%C]+[%N])以上1.00%以下を満たすように含有し、
残部がFeおよび不可避的不純物からなる組成を有することを特徴とする請求項1に記載のフェライト系ステンレス鋼板。
ただし、前記[%C]、[%N]は、それぞれC、Nの含有量(質量%)である。
in % by mass,
C: 0.001 to 0.030%,
Si: 0.01 to 0.60%,
Mn: 0.01-0.60%,
P: 0.05% or less,
S: 0.01% or less,
Cr: 16.0 to 35.0%,
N: 0.001 to 0.030%, and
At least one of Ti and Nb is contained so that the total content of Ti and Nb is 4 ([%C] + [%N]) or more and 1.00% or less,
2. The ferritic stainless steel sheet according to claim 1, having a composition in which the balance is Fe and unavoidable impurities.
However, the above [%C] and [%N] are the contents of C and N (% by mass), respectively.
前記組成に加えてさらに、質量%で、
Ni:0~3.0%、
Mo:0~3.0%、
Cu:0~1.0%、
W:0~1.0%、
Co:0~0.5%の1種または2種以上を含有することを特徴とする請求項2に記載のフェライト系ステンレス鋼板。
In addition to the above composition, in mass %,
Ni: 0 to 3.0%,
Mo: 0-3.0%,
Cu: 0-1.0%,
W: 0 to 1.0%,
Co: The ferritic stainless steel sheet according to claim 2, characterized by containing one or more of 0 to 0.5%.
前記組成に加えてさらに、質量%で、
Zr:0~1.0%、
V:0~1.0%、
Al:0~0.5%、
REM:0~0.1%、
B:0~0.01%の1種または2種以上を含有することを特徴とする請求項2または3に記載のフェライト系ステンレス鋼板。
In addition to the above composition, in mass %,
Zr: 0 to 1.0%,
V: 0 to 1.0%,
Al: 0-0.5%,
REM: 0-0.1%,
B: The ferritic stainless steel sheet according to claim 2 or 3, characterized by containing one or more of 0 to 0.01%.
請求項1~4のいずれかに記載のフェライト系ステンレス鋼板の製造方法であって、
フェライト系ステンレス鋼冷延板に、表面に凹凸を有し、表面粗度Raが0.60~1.80μm、凸部の頂点の数密度が15~80個/mmであるダルロールを用いて、
1パスの圧下率が0.1~0.5%の圧延を3~20パス実施する調質圧延を施すことを特徴とするフェライト系ステンレス鋼板の製造方法。
A method for manufacturing a ferritic stainless steel sheet according to any one of claims 1 to 4,
A dull roll having unevenness on the surface, a surface roughness Ra of 0.60 to 1.80 μm, and a number density of 15 to 80 vertices/mm 2 at the apexes of the protrusions was used on a ferritic stainless steel cold-rolled sheet. ,
A method for producing a ferritic stainless steel sheet, characterized in that temper rolling is performed by performing 3 to 20 passes of rolling with a rolling reduction of 0.1 to 0.5% per pass.
JP2019160137A 2019-09-03 2019-09-03 Ferritic stainless steel sheet and manufacturing method thereof Active JP7322602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019160137A JP7322602B2 (en) 2019-09-03 2019-09-03 Ferritic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019160137A JP7322602B2 (en) 2019-09-03 2019-09-03 Ferritic stainless steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021038431A JP2021038431A (en) 2021-03-11
JP7322602B2 true JP7322602B2 (en) 2023-08-08

Family

ID=74848298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160137A Active JP7322602B2 (en) 2019-09-03 2019-09-03 Ferritic stainless steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7322602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116829275A (en) * 2021-01-29 2023-09-29 杰富意钢铁株式会社 Stainless steel sheet and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133837A1 (en) 2011-03-31 2012-10-04 日新製鋼株式会社 Stainless steel sheet and method for manufacturing same
JP2016196019A (en) 2015-04-03 2016-11-24 日新製鋼株式会社 Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338538B2 (en) * 1993-12-27 2002-10-28 日新製鋼株式会社 Ferritic stainless steel sheet excellent in corrosion resistance, anti-glare property and workability and method for producing the same
JPH1161354A (en) * 1997-08-20 1999-03-05 Nisshin Steel Co Ltd Nonglaring surface-roughened stainless steel sheet with small luminosity direction dependency and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133837A1 (en) 2011-03-31 2012-10-04 日新製鋼株式会社 Stainless steel sheet and method for manufacturing same
JP2016196019A (en) 2015-04-03 2016-11-24 日新製鋼株式会社 Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet

Also Published As

Publication number Publication date
JP2021038431A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US9289964B2 (en) High purity ferritic stainless steel sheet excellent in corrosion resistance and anti-glare property
RU2678350C1 (en) Molded product and method of its manufacture
MX2007015786A (en) Austenitic stainless steel strip having a bright surface finish and excellent mechanical properties.
EP3098330A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
KR101941067B1 (en) Material for cold-rolled stainless steel sheet
EP3159423A1 (en) Cold-rolled ferritic stainless steel sheet
JPWO2018043642A1 (en) Material for metal mask and method of manufacturing the same
KR101638716B1 (en) Si-containing high-strength cold rolled steel sheet, method of producing the same, and automotive members
WO2016092713A1 (en) Stainless steel and production method therefor
JP7322602B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
KR102288000B1 (en) Material for cold rolled stainless steel sheet and manufacturing method thereof
JP2005139486A (en) Hot rolled steel sheet with excellent chemical conversion treatability
JP3052787B2 (en) Pure titanium for building materials, pure titanium plate and method for producing the same
JP2826225B2 (en) Exterior stainless steel sheet with anti-glare and corrosion resistance
JP4070253B2 (en) Highly anti-glare ferritic stainless steel sheet with excellent antiglare property and manufacturing method thereof
JP7483049B2 (en) Duplex stainless steel sheet, hot-rolled duplex stainless steel sheet, and method for manufacturing duplex stainless steel sheet
JP7564707B2 (en) Ferritic Stainless Steel
WO2022168167A1 (en) Thin steel sheet
JP7092274B1 (en) Stainless steel sheet and its manufacturing method
JP3614496B2 (en) Embossed stainless steel sheet with excellent corrosion resistance and manufacturing method
JPH0453956B2 (en)
JPH05163528A (en) Manufacture of stainless steel sheet for external use having both antidazzle characteristic and corrosion resistance
WO2021200106A1 (en) Austenitic stainless steel
JPH06257000A (en) Production of stainless steel sheet for exterior use, combining glare shielding property with corrosion resistance
WO2022163160A1 (en) Stainless steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150