WO2023012949A1 - 波動歯車装置の潤滑方法 - Google Patents

波動歯車装置の潤滑方法 Download PDF

Info

Publication number
WO2023012949A1
WO2023012949A1 PCT/JP2021/029022 JP2021029022W WO2023012949A1 WO 2023012949 A1 WO2023012949 A1 WO 2023012949A1 JP 2021029022 W JP2021029022 W JP 2021029022W WO 2023012949 A1 WO2023012949 A1 WO 2023012949A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
strain wave
lubricating
gear device
contact surface
Prior art date
Application number
PCT/JP2021/029022
Other languages
English (en)
French (fr)
Inventor
優 小林
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to EP21940002.5A priority Critical patent/EP4155576A4/en
Priority to JP2022562918A priority patent/JP7362946B2/ja
Priority to PCT/JP2021/029022 priority patent/WO2023012949A1/ja
Priority to CN202180043003.1A priority patent/CN117651813A/zh
Priority to KR1020227040811A priority patent/KR102641321B1/ko
Priority to TW111119233A priority patent/TW202307353A/zh
Publication of WO2023012949A1 publication Critical patent/WO2023012949A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/041Coatings or solid lubricants, e.g. antiseize layers or pastes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0409Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0486Gearings with gears having orbital motion with fixed gear ratio
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Definitions

  • the present invention relates to a strain wave gearing device, and more particularly to a method of lubricating a strain wave gearing device using powder of an ionic crystalline compound having a layered crystal structure as a solid lubricant powder.
  • Patent Documents 1 and 2 the inventor of the present invention has proposed a method of lubricating a strain wave gearing using solid lubricant powder.
  • a strain wave gearing device is lubricated using fine powder of an ion-crystalline compound having a layered crystal structure.
  • the fine powder is crushed between the contact surfaces to be lubricated, transferred to both contact surfaces to form a thin lubricating film, rolled thin, and further subdivided into contact. It changes into a shape that makes it easier to enter between surfaces. Lubrication is maintained by the shape-changed fine powder and the thin lubricating coating formed on the contact surface.
  • Patent Document 2 a mechanism for efficiently guiding fine powder of solid lubricant to a portion to be lubricated is incorporated in the strain wave gear device.
  • the fine powder of the solid lubricant filled inside the external gear is introduced into the gap between the contact surfaces by the cleavage force, rolled thinly, and further subdivided, causing loss torque.
  • the strain wave gearing may experience a temporary drop in efficiency.
  • fine powders of ionic crystalline compounds MoS 2 , WS 2 , etc.
  • moisture in the air is arranged on the surface of the layered crystals by hydrogen bonding, causing friction.
  • the cohesiveness of the fine powder becomes stronger, and coarsening of the aggregated particles occurs.
  • the fine powder filled inside the external gear is affected by moisture in the air, and is crushed between contact surfaces during operation of the strain wave gearing.
  • a reduction in efficiency occurs when a large amount of powder is introduced into the minute gap, which hinders stable operation of the strain wave gearing.
  • An object of the present invention is to suppress the temporary decrease in efficiency caused by the powder of an ion-crystalline compound having a layered crystal structure used as a powder of a solid lubricant, and to maintain a stable high-efficiency operation state.
  • the object of the present invention is to propose a method for lubricating a strain wave gear device.
  • the powder of the ionic crystalline compound having a non-hydrophobicized layered crystal structure is used to lubricate the lubricated object until the run-in (aging) of the strain wave gearing is completed. While lubricating the contact surface, the ionic crystal compound powder is transferred to the contact surface to form a strong lubricating coating on the contact surface. After that, the internal space of the strain wave gearing is filled with powder of an ionic crystalline compound having a hydrophobized layered crystal structure. During load operation, the strain wave gearing keeps the contact surfaces lubricated by the lubricating film formed on the contact surfaces and the powder of the ionic crystalline compound having a hydrophobized layered crystal structure.
  • the ionic crystalline compound with a layered crystal structure used is molybdenum disulfide, tungsten disulfide, etc.
  • the powder of the ionic crystalline compound having a hydrophobized layered crystal structure, which is enclosed or filled in the internal space of the strain wave gearing after running-in (aging), has an average particle size measured by, for example, a laser analysis/scattering method.
  • a fine powder of 5 ⁇ m or less is hydrophobized with a cationic surfactant such as an alkylamine acetate, and then ground again.
  • Hydrophobized powder is used as the ion-crystalline compound powder to be enclosed or filled in the internal space of the strain wave gearing.
  • a stable high efficiency state can be maintained over a period of time. Also, since torque loss is small, heat generation is also small.
  • FIG. 1 is a schematic longitudinal sectional view showing an example of a strain wave gearing
  • FIG. 1 is a schematic flow chart showing an example of a method for lubricating a strain wave gearing to which the present invention is applied;
  • the present invention is applied to a strain wave gearing having a cup-shaped external gear.
  • a strain wave gearing having a cup-shaped external gear.
  • it can be applied to a top-hat type wave gear device having a top hat-shaped external gear, and a flat wave gear device having a cylindrical external gear and two internal gears.
  • Fig. 1 is a schematic longitudinal sectional view showing an example of a cup-type strain wave gearing.
  • a cup-type strain wave gearing 1 (hereinafter simply referred to as "strain wave gearing 1") includes a rigid annular internal gear 2, a cup-shaped flexible external gear 3, and an elliptical profile.
  • a wave generator 4 is provided.
  • the external gear 3 is arranged coaxially inside the internal gear 2 .
  • the wave generator 4 is mounted inside the external gear 3 .
  • the external gear 3 bent into an elliptical shape by the wave generator 4 meshes with the internal gear 2 at both ends of the major axis of the ellipse.
  • the external gear 3 has a cup shape, and external teeth 3b are formed on the outer peripheral surface portion on the open end side of a radially flexible cylindrical body 3a.
  • a diaphragm 3c is formed extending radially inwardly from the opposite end of the cylindrical body 3a.
  • An annular rigid boss 3d is formed on the inner peripheral edge of the diaphragm 3c.
  • the wave generator 4 includes a rigid wave plug 4a and a wave bearing 4b (wave generator bearing) mounted on the outer peripheral surface of the elliptical contour. The wave generator 4 is mounted inside the portion of the external gear 3 where the external teeth 3b of the cylindrical body 3a are formed.
  • powder of solid lubricant is contained in the internal space 9 formed between the cylindrical body 3a and the boss 3d of the external gear 3 and the wave generator 4 mounted on the open end side of the external gear 3.
  • Body 10 is encapsulated or filled.
  • a powder 10A of an ion-crystalline compound having a layered crystal structure that is not hydrophobized hereinafter referred to as "non-hydrophobized powder 10A”
  • a hydrophobized powder 10B The powder 10B of the ionic crystalline compound
  • a central opening 3e of the boss 3d is closed by a cap 12, and a central opening 4c of the wave generator 4 is provided with the head of a bolt 13 and a plain washer 14 used for fixing the input shaft shown here in phantom lines. blocked by. Through these central openings 3e and 4c, solid lubricant powder 10 is prevented from leaking out.
  • the main parts to be lubricated in the strain wave gearing 1 are the contact portion (tooth portion) A between the internal gear 2 and the external gear 3, the inner peripheral surface 3f of the cylindrical body portion 3a of the external gear 3, and wave generation.
  • the contact portion C inside the wave generator 4 is a contact portion between the wave plug 4a and the wave bearing 4b, a contact portion between components (inner ring, outer ring, balls) of the wave bearing 4b, and the like.
  • Each contact surface (inner peripheral surface 3 f, outer peripheral surface 4 d ) of the contact portion B and each contact surface of the contact portion C inside the wave generator 4 communicate with the internal space 9 .
  • Each contact surface of these contact portions B and C is lubricated by solid lubricant powder 10 enclosed or filled in the internal space 9 .
  • the contact portion (tooth portion) A is lubricated by general oil lubrication or
  • the wave generator 4 is rotated at high speed by a motor (not shown) or the like.
  • the internal gear 2 is fixed to the casing 5 and the external gear 3 rotates at a reduced speed. Reduced rotation is picked up by a rotation output member 6 that is coaxially connected to a rigid boss 3d formed on the external gear 3. As shown in FIG.
  • the solid lubricant powder 10 in order to obtain a predetermined lubricating effect and to realize smooth rotation of the wave generator 4, should have an average particle size of 15 ⁇ m or less and Mohs It was confirmed that it is desirable to use soft micropowder having a hardness of 1.5 or less.
  • an ionic crystalline compound having a layered crystal structure such as molybdenum disulfide, tungsten disulfide, graphite, and boron nitride can be used. It is also possible to use powders of two or more of these solid lubricants in combination. In particular, molybdenum disulfide and tungsten disulfide can be used.
  • FIG. 2 is a schematic flow chart showing an example of a lubricating method for the strain wave gearing 1 to which the present invention is applied.
  • the contact portions B and C are lubricated by using powder 10A that is not hydrophobized as the solid lubricant powder 10 until the break-in operation (aging) of the strain wave gearing 1 is completed. Then, during the subsequent load operation, the contact portions B and C are lubricated using the hydrophobic powder 10B as the powder 10 of the solid lubricant.
  • the external gear 3 and the wave generator 4, which are components constituting the contact portions B and C in the strain wave gearing 1, are prepared (ST1), and powder 10A not hydrophobized (hydrophobicized A powder of molybdenum disulfide (MoS 2 ) that is not hydrophobized or a powder of tungsten disulfide (WS 2 ) that is not hydrophobized) is subjected to shot peening (ST11).
  • the non-hydrophobized powder 10A is transferred to the surface portions of the component parts, which are the contact surfaces constituting the contact portions B and C, to form a lubricating coating.
  • the non-hydrophobicized powder 10A is rubbed against the surface of the component with a soft leather buff or the like to make the contact surfaces constituting the contact portions B and C hydrophobic.
  • a lubricating coating may be formed by transferring the powder 10A that does not exist (ST12). These steps (ST11, ST12) can be omitted.
  • molybdenum disulfide (MoS 2 ) powder or tungsten disulfide as the non-hydrophobized powder 10A is placed in the internal space 9 of the cup-shaped external gear 3.
  • the powder of (WS 2 ) is enclosed or filled (ST2).
  • the break-in operation (aging) of the strain wave gearing 1 is performed with the non-hydrophobicized powder 10A enclosed or filled in the internal space 9 (ST3).
  • the non-hydrophobic powder 10A enclosed or filled in the internal space 9 is crushed between the contact surfaces of the contact portions B and C during the break-in operation of the strain wave gearing 1, and is transferred to these contact surfaces. form a strong, thin lubricating film.
  • the powder 10A that is not hydrophobized is rolled thinly and further subdivided into fine powder having a shape that can easily enter between the contact surfaces.
  • Lubrication of the contact portions B and C is maintained by the fine powder of the non-hydrophobicized powder 10A that has changed shape in this way and the thin lubricating coating formed on the respective contact surfaces of the contact portions B and C.
  • the thin lubricating coating transferred to the contact surface and the fine powder of the powder 10A which is not hydrophobized by rolling and subdivided are not viscous, they do not exhibit viscous resistance loss.
  • the non-hydrophobicized powder 10A to be enclosed or filled in the internal space 9 of the external gear 3 may be rolled in advance into thin scales. In particular, there is an effect that smooth rotation of the wave generator 4 in the initial stage of operation can be realized.
  • the component parts of the strain wave gearing 1 are assembled again.
  • the hydrophobized powder 10B that is, the hydrophobized molybdenum disulfide powder or the hydrophobized tungsten disulfide powder is enclosed or filled (ST5).
  • molybdenum disulfide powder is used for both the non-hydrophobicized powder 10A and the hydrophobicized powder 10B.
  • different types of solid lubricant powders are prepared as the solid lubricant powder 10, one of the powders is used as the powder 10A that is not hydrophobized, and the other powder is hydrophobized. It can also be used as the powder 10B that has been made hydrophobic by
  • a cationic surfactant such as an alkylamine acetate is added at a ratio of 1:100 to 1 depending on the solvent. : Dilute at a ratio of about 200.
  • a solid lubricant powder 10 having an average particle size of 5 ⁇ m or less is put into this diluted liquid and stirred to make it hydrophobic.
  • the hydrophobized powder 10B is obtained.
  • the solid lubricant powder 10 and the cationic surfactant are preferably mixed at a molar ratio of 1:0.06 to 0.07.
  • the strain wave gearing 1 in which the internal space 9 is sealed or filled with the hydrophobized powder 10B is obtained.
  • the load operating state (ST6) of the strain wave gearing 1 the hydrophobized powder 10B and the lubricating coating formed on the contact surface during the break-in (ST3) and the steps preceding it (ST11, ST12) , the contact portions B and C are kept lubricated.
  • the solid lubricant powder 10 (ionic crystalline layered compound powder) enclosed or filled in the internal space 9 of the strain wave gearing 1 during load operation is the hydrophobized powder 10B.
  • the powder 10A that has not been hydrophobized is used as it is, it is possible to reduce the degree of reduction in the efficiency of the strain wave gear device 1 and suppress the frequency of occurrence. Therefore, the stable and highly efficient state of the strain wave gearing 1 can be maintained for a long period of time. In addition, heat generation can be suppressed because torque loss is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)
  • Lubricants (AREA)

Abstract

波動歯車装置(1)は、慣らし運転(エージング)が終了するまでは、内部空間(9)に封入した疎水化していない粉体(10A)によって潤滑され、接触部(B、C)の各接触面には疎水化していない粉体(10A)が移着した強固な潤滑性被膜が形成される。負荷運転時には、波動歯車装置(1)は、疎水化していない粉体(10A)の代わりに内部空間(9)に封入された疎水化した粉体(10B)によって潤滑される。使用する粉体(10A、10B)は、層状の結晶構造を持つイオン結晶性化合物(MoS2、WS等)の粉体である。負荷運転時の波動歯車装置(1)を疎水化した粉体(10B)によって潤滑することで、運転開始時の一時的な効率低下が抑制され、波動歯車装置(1)の安定的な運転を維持できる。

Description

波動歯車装置の潤滑方法
 本発明は波動歯車装置に関し、特に、固体潤滑剤の粉体として、層状の結晶構造を持つイオン結晶性化合物の粉体を用いた波動歯車装置の潤滑方法に関する。
 本発明者は、特許文献1、2において、固体潤滑剤の粉体を用いた波動歯車装置の潤滑方法を提案している。特許文献1では、波動歯車装置を、層状の結晶構造を持つイオン結晶性化合物の微小紛体を用いて潤滑している。微小紛体は、波動歯車装置の運転時に、潤滑対象の各接触面間で押しつぶされ、双方の接触面に移着して薄い潤滑性被膜を形成すると共に、薄く圧延され、さらに細分化されて接触面の間に進入しやすい形状に変化する。形状変化した微小粉体と接触面に形成された薄い潤滑性被膜とにより潤滑が維持される。移着した薄い潤滑性被膜および圧延され細分化された微小粉末は粘性が無いので、粘性抵抗ロスが発生せず、低負荷域、高速回転域での高効率運転を実現できる。一方、特許文献2では、波動歯車装置の内部に、固体潤滑剤の微小粉体を効率良く潤滑対象の部位に導くための機構が組み込まれている。
国際公開第2016/084235号 国際公開第2016/113847号
 ここで、外歯歯車の内側に充填された固体潤滑剤の微小紛体が、劈開力により接触面の間の隙間に導入され、薄く圧延され、さらに細分化する際に発生するロストルクが原因となって、波動歯車装置には一時的な効率低下が発生することがある。特に、層状の結晶構造を持つイオン結晶性化合物(MoS、WSなど)の微小紛体を使用する場合には、大気中の水分が、この層状結晶の表面に水素結合により配列し、摩擦が増加する。また、微小粉体の凝集性も強くなり、凝集粒子の粗大化が起きる。このように、外歯歯車の内側に充填された微小紛体は、大気中の水分の影響を受け、波動歯車装置の運転時に各接触面間で押しつぶされ、特に高速回転する波動発生器の内部の微小隙間に多量の紛体が導入される際に効率低下が発生し、波動歯車装置の安定的な運転が妨げられる。
 本発明の目的は、固体潤滑剤の粉体として用いる層状の結晶構造を持つイオン結晶性化合物の粉体に起因する一時的な効率低下を抑制し、安定した高効率運転の状態を維持できるようにした波動歯車装置の潤滑方法を提案することにある。
 本発明の波動歯車装置の潤滑方法では、波動歯車装置の慣らし運転(エージング)が終了するまでは、疎水化していない層状の結晶構造を持つイオン結晶性化合物の粉体を用いて、潤滑対象の接触面を潤滑すると共に、接触面に、このイオン結晶化合物の粉体を移着させて、当該接触面に強固な潤滑性被膜を形成する。その後は、波動歯車装置の内部空間に、疎水化した層状の結晶構造を持つイオン結晶性化合物の粉体を封入あるいは充填する。波動歯車装置は、負荷運転時には、接触面に形成された潤滑性被膜と、疎水化した層状の結晶構造を持つイオン結晶性化合物の粉体とによって、接触面の潤滑状態が維持される。
 使用する層状の結晶構造を持つイオン結晶性化合物は、二硫化モリブデン、二硫化タングステンなどである。慣らし運転(エージング)後に波動歯車装置の内部空間に封入あるいは充填する疎水化した層状の結晶構造を持つイオン結晶性化合物の粉体は、例えば、レーザー解析/錯乱法により測定された平均粒径が5μm以下の微小粉体を、アルキルアミン酢酸塩などの陽イオン界面活性剤により疎水化し、再粉砕して得られる。
 波動歯車装置の内部空間に封入あるいは充填するイオン結晶性化合物の粉体として、疎水化した粉体を用いることで、波動歯車装置の効率低下幅を小さくし、その発生頻度を抑制し、長期間に亘って安定的な高効率状態を維持できる。また、損失トルクが小さくなるため発熱も少ない。
波動歯車装置の一例を示す概略縦断面図である。 本発明を適用した波動歯車装置の潤滑方法の一例を示す概略フローチャートである。
 以下に、図面を参照して本発明の波動歯車装置の潤滑方法の実施の形態を説明する。以下に述べる実施の形態は、本発明をカップ形状の外歯歯車を備えたカップ型波動歯車装置に適用したものであるが、本発明は、カップ型波動歯車装置以外の波動歯車装置にも同様に適用可能である。例えば、シルクハット形状の外歯歯車を備えたシルクハット型波動歯車装置、円筒状の外歯歯車と2枚の内歯歯車を備えたフラット型波動歯車装置に適用可能である。
 図1はカップ型波動歯車装置の一例を示す概略縦断面図である。カップ型波動歯車装置1(以下、単に「波動歯車装置1」という。)は、円環状の剛性の内歯歯車2と、カップ形状をした可撓性の外歯歯車3と、楕円状輪郭の波動発生器4とを備えている。外歯歯車3は内歯歯車2の内側に同軸に配置されている。波動発生器4は、外歯歯車3の内側に装着されている。波動発生器4によって楕円形状に撓められた外歯歯車3は、楕円形状の長軸両端の位置において、内歯歯車2にかみ合っている。
 外歯歯車3はカップ形状をしており、半径方向に撓み可能な円筒状胴部3aの開口端の側の外周面部分に外歯3bが形成されている。円筒状胴部3aの反対側の端からは半径方向の内方に延びるダイヤフラム3cが形成されている。ダイヤフラム3cの内周縁には円環状の剛性のボス3dが形成されている。波動発生器4は、剛性のウエーブプラグ4aと、この楕円状輪郭の外周面に装着されたウエーブベアリング4b(波動発生器軸受け)とを備えている。波動発生器4は、外歯歯車3における円筒状胴部3aの外歯3bが形成されている部分の内側に装着されている。
 外歯歯車3の円筒状胴部3aおよびボス3dと、外歯歯車3の開口端の側に装着された波動発生器4との間に形成される内部空間9には、固体潤滑剤の粉体10が封入あるいは充填される。後述のように、固体潤滑剤の粉体10として、疎水化していない層状の結晶構造を持つイオン結晶性化合物の粉体10A(以下、「疎水化していない粉体10A」という。)と疎水化したイオン結晶性化合物の粉体10B(以下、「疎水化した粉体10B」という。)が用いられる。ボス3dの中心開口部3eはキャップ12によって封鎖されており、波動発生器4の中心開口部4cは、ここに想像線で示す入力軸を固定するために用いるボルト13の頭部および平座金14によって封鎖されている。これらの中心開口部3e、4cを通って、固体潤滑剤の粉体10が外部に漏れ出ないようになっている。
 波動歯車装置1の主要な潤滑対象部位は、内歯歯車2および外歯歯車3の間の接触部(歯部)A、外歯歯車3の円筒状胴部3aの内周面3fと波動発生器4の外周面4dとの接触部B、および、波動発生器4の内部の接触部Cである。波動発生器4の内部の接触部Cは、ウエーブプラグ4aとウエーブベアリング4bとの間の接触部分、ウエーブベアリング4bの構成部品(内輪、外輪、ボール)の間の接触部分等である。接触部Bの各接触面(内周面3f、外周面4d)および波動発生器4の内部の接触部Cにおける各接触面は、内部空間9に連通している。これらの接触部B、Cの各接触面は、内部空間9に、封入あるいは充填した固体潤滑剤の粉体10によって潤滑される。なお、接触部(歯部)Aの潤滑は、一般的なオイル潤滑あるいはグリース潤滑によって行われる。
 波動歯車装置1を減速機として用いる場合には、波動発生器4が不図示のモーター等によって高速回転する。例えば、内歯歯車2がケーシング5に固定され、外歯歯車3が減速回転する。減速回転が、外歯歯車3に形成されている剛性のボス3dに同軸に連結される回転出力部材6に取り出される。
 本発明者等の実験によれば、所定の潤滑効果が得られ、波動発生器4のスムーズな回転を実現するために、固体潤滑剤の粉体10として、平均粒径が15μm以下で、モース硬さが1.5以下の柔らかい微小粉体を用いることが望ましいことが確認された。
 また、固体潤滑剤の粉体10として、層状の結晶構造を持つイオン結晶性化合物、例えば、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素などを用いることができる。これらのうちの2種類以上の固体潤滑剤の粉体を組み合わせて使用することも可能である。特に、二硫化モリブデン、二硫化タングステンを用いることができる。
 図2は、本発明を適用した波動歯車装置1の潤滑方法の一例を示す概略フローチャートである。本例の潤滑方法では、波動歯車装置1の慣らし運転(エージング)が終了するまでは、固体潤滑剤の粉体10として、疎水化していない粉体10Aを用いて、接触部B、Cを潤滑し、以後の負荷運転時には、固体潤滑剤の粉体10として、疎水化した粉体10Bを用いて接触部B、Cを潤滑する。
 図2を参照して説明する。まず、波動歯車装置1における接触部B、Cを構成する構成部品である外歯歯車3、波動発生器4を用意し(ST1)、これらの表面に、疎水化していない粉体10A(疎水化していない二硫化モリブデン(MoS)の粉体あるいは疎水化していない二硫化タングステン(WS)の粉体)をショットピーニングする(ST11)。これにより、構成部品における接触部B、Cを構成する接触面となる表面部分に、疎水化していない粉体10Aを移着させて潤滑性被膜を形成する。ショットピーニングの代わりに、あるいは、これと共に、疎水化していない粉体10Aを構成部品の表面に、軟質の皮革バフ等によって擦り付けることで、接触部B、Cを構成する接触面に、疎水化していない粉体10Aを移着させて、潤滑性被膜を形成してもよい(ST12)。これらの工程(ST11、ST12)は省略することも可能である。
 次に、波動歯車装置1の構成部品の組み立て工程において、カップ形状の外歯歯車3の内部空間9に、疎水化していない粉体10Aとして二硫化モリブデン(MoS)の粉体あるいは二硫化タングステン(WS)の粉体を封入あるいは充填する(ST2)。
 疎水化していない粉体10Aを内部空間9に封入あるいは充填した状態で、波動歯車装置1の慣らし運転(エージング)を行う(ST3)。内部空間9に封入あるいは充填された疎水化していない粉体10Aは、波動歯車装置1の慣らし運転時に、各接触部B、Cにおける接触面の間で押しつぶされ、これらの接触面に移着して強固な薄い潤滑性被膜を形成する。また、疎水化していない粉体10Aは、薄く圧延され、さらに細分化されて接触面間に進入しやすい形状をした微粉末に変化する。
 このように形状変化した疎水化していない粉体10Aの微粉末と、接触部B、Cの各接触面に形成された薄い潤滑性被膜とによって、接触部B、Cの潤滑が維持される。また、接触面に移着した薄い潤滑性被膜および圧延され細分化された疎水化していない粉体10Aの微粉末は粘性が無いので、粘性抵抗ロスを示さない。
 波動歯車装置1の運転初期から、潤滑効果およびスムーズな動きを得るためには、低負荷で慣らし運転(エージング)を行うことが望ましい。また、外歯歯車3の内部空間9に封入あるいは充填される疎水化していない粉体10Aを、あらかじめ圧延し薄い鱗片形状にしておいてもよい。特に運転初期の波動発生器4のスムーズな回転を実現できるという効果がある。
 慣らし運転が終わった後は、波動歯車装置1を一旦、分解する。分解して、カップ形状の外歯歯車3の内部空間9に残留している疎水化していない粉体10Aを除去して回収する(ST4)。
 この後は、波動歯車装置1の構成部品を再度、組み立てる。再組立工程において、外歯歯車3の内部空間9に、疎水化していない粉体10Aに代えて、疎水化した粉体10Bである疎水化した二硫化モリブデンの粉体あるいは疎水化した二硫化タングステンの粉体を封入あるいは充填する(ST5)。例えば、疎水化していない粉体10Aおよび疎水化した粉体10Bとして、共に、二硫化モリブデンの粉体を用いる。この代わりに、固体潤滑剤の粉体10として、異なる種類の固体潤滑剤の粉体を用意し、一方の粉体をそのまま疎水化していない粉体10Aとして用い、他方の粉体を疎水化処理して疎水化した粉体10Bとして用いることもできる。
 固体潤滑剤の粉体10(層状の結晶構造を持つイオン結晶性化合物の粉体)の疎水化処理では、陽イオン界面活性剤、例えば、アルキルアミン酢酸塩などを、溶媒によって1:100~1:200程度の比率で希釈する。この希釈液の中に、平均粒径が5μm以下の固体潤滑剤の粉体10を投入し、攪拌することで疎水化する。これにより、疎水化した粉体10Bが得られる。陽イオン界面活性剤としては、アルキルアミン酢酸塩でC=10~15が望ましい。また、固体潤滑剤の粉体10と陽イオン界面活性剤は、モル比で、1:0.06~0.07の割合で混合することが望ましい。
 以上のようにして、内部空間9に、疎水化した粉体10Bが封入あるいは充填された波動歯車装置1が得られる。波動歯車装置1の負荷運転状態(ST6)においては、疎水化した粉体10Bと、慣らし運転時(ST3)及びその前の工程(ST11、ST12)において接触面に形成された潤滑性被膜とによって、接触部B、Cの潤滑状態が維持される。
 このように、負荷運転時における波動歯車装置1の内部空間9に封入あるは充填する固体潤滑剤の粉体10(イオン結晶性層状化合物の粉体)を、疎水化した粉体10Bとしている。疎水化していない粉体10Aをそのまま用いる場合に比べて、波動歯車装置1の効率低下幅を小さくでき、その発生頻度を抑制できる。よって、長期間に亘って、波動歯車装置1の安定的な高効率状態を維持できる。また、損失トルクが小さくなるため発熱も抑制できる。

Claims (8)

  1.  層状の結晶構造を持つイオン結晶性化合物の粉体を用いた波動歯車装置の潤滑方法であって、
     潤滑対象の接触面に連通する前記波動歯車装置の内部空間に、前記イオン結晶性化合物の粉体として、疎水化していない粉体を封入あるいは充填した状態で、前記波動歯車装置の慣らし運転を行い、
     前記慣らし運転により、前記疎水化していない粉体を前記接触面に移着させて、当該接触面に潤滑性被膜を形成し、
     前記慣らし運転の後は、前記内部空間に残留している前記疎水化していない粉体を除去し、前記内部空間に、前記イオン結晶性化合物の粉体として、疎水化した粉体を封入あるいは充填し、
     負荷運転時には、前記潤滑性被膜と、前記内部空間に封入あるいは充填した前記疎水化した粉体とによって、前記接触面の潤滑状態を維持することを特徴とする波動歯車装置の潤滑方法。
  2.  請求項1において、
     前記イオン結晶性化合物は、二硫化モリブデンまたは二硫化タングステンである波動歯車装置の潤滑方法。
  3.  請求項2において、
     前記疎水化していない粉体は、平均粒径が15μm以下であり、モース硬さが1.5以下である波動歯車装置の潤滑方法。
  4.  請求項3において、
     前記疎水化した粉体は、平均粒径が5μm以下の前記イオン結晶性化合物の粉体を、陽イオン界面活性剤により疎水化したものである波動歯車装置の潤滑方法。
  5.  潤滑対象の接触面に連通している内部空間と、
     前記内部空間に封入あるいは充填された固体潤滑剤の粉体と、
     前記接触面に形成された潤滑性被膜と、
    を備えており、
     前記固体潤滑剤の粉体は、疎水化された層状の結晶構造を持つイオン結晶性化合物の粉体であり、
     前記潤滑性被膜は、疎水化していない層状の結晶構造を持つイオン結晶性化合物の粉体が前記接触面に移着して形成された被膜である波動歯車装置。
  6.  請求項5において、
     前記イオン結晶性化合物は、二硫化モリブデンまたは二流化タングステンである波動歯車装置。
  7.  請求項5において、
     前記固体潤滑剤の粉体は、平均粒径が5μm以下の前記イオン結晶性化合物の粉体を、陽イオン界面活性剤により疎水化したものである波動歯車装置。
  8.  請求項5において、
     剛性の内歯歯車と、
     前記内歯歯車の内側に配置した可撓性の外歯歯車と、
     前記外歯歯車の内側に装着され、当該外歯歯車を非円形に撓めて前記内歯歯車にかみ合わせ、これら両歯車のかみ合い位置を周方向に移動させる波動発生器と、
    を備えており、
     前記内部空間は、前記外歯歯車と前記波動発生器とによって囲まれた空間であり、
     前記接触面は、前記外歯歯車と前記波動発生器の間の接触面、および、前記波動発生器の内部の接触面である波動歯車装置。
PCT/JP2021/029022 2021-08-04 2021-08-04 波動歯車装置の潤滑方法 WO2023012949A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21940002.5A EP4155576A4 (en) 2021-08-04 2021-08-04 LUBRICATION METHOD FOR STRAIN WAVE GEAR DEVICE
JP2022562918A JP7362946B2 (ja) 2021-08-04 2021-08-04 波動歯車装置の潤滑方法
PCT/JP2021/029022 WO2023012949A1 (ja) 2021-08-04 2021-08-04 波動歯車装置の潤滑方法
CN202180043003.1A CN117651813A (zh) 2021-08-04 2021-08-04 波动齿轮装置的润滑方法
KR1020227040811A KR102641321B1 (ko) 2021-08-04 2021-08-04 파동기어장치의 윤활방법
TW111119233A TW202307353A (zh) 2021-08-04 2022-05-24 諧波齒輪裝置的潤滑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029022 WO2023012949A1 (ja) 2021-08-04 2021-08-04 波動歯車装置の潤滑方法

Publications (1)

Publication Number Publication Date
WO2023012949A1 true WO2023012949A1 (ja) 2023-02-09

Family

ID=85154441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029022 WO2023012949A1 (ja) 2021-08-04 2021-08-04 波動歯車装置の潤滑方法

Country Status (6)

Country Link
EP (1) EP4155576A4 (ja)
JP (1) JP7362946B2 (ja)
KR (1) KR102641321B1 (ja)
CN (1) CN117651813A (ja)
TW (1) TW202307353A (ja)
WO (1) WO2023012949A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205899A (ja) * 1994-01-13 1995-08-08 Hitachi Ltd 宇宙用機械要素密封装置
JP2008031254A (ja) * 2006-07-27 2008-02-14 Nsk Ltd グリース組成物及び転動装置
WO2016084235A1 (ja) 2014-11-28 2016-06-02 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置の潤滑方法
WO2016113847A1 (ja) 2015-01-13 2016-07-21 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599108B1 (fr) * 1986-05-22 1990-08-17 Alcatel Espace Mecanisme d'entrainement a grand debattement pour utilisation dans le vide comportant un reducteur qui a subi des traitements de lubrification seche
JP4124719B2 (ja) 2003-11-27 2008-07-23 日産自動車株式会社 潤滑皮膜を有する歯車部品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205899A (ja) * 1994-01-13 1995-08-08 Hitachi Ltd 宇宙用機械要素密封装置
JP2008031254A (ja) * 2006-07-27 2008-02-14 Nsk Ltd グリース組成物及び転動装置
WO2016084235A1 (ja) 2014-11-28 2016-06-02 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置の潤滑方法
WO2016113847A1 (ja) 2015-01-13 2016-07-21 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155576A4

Also Published As

Publication number Publication date
EP4155576A4 (en) 2024-02-14
KR20230021650A (ko) 2023-02-14
KR102641321B1 (ko) 2024-02-27
JP7362946B2 (ja) 2023-10-17
JPWO2023012949A1 (ja) 2023-02-09
CN117651813A (zh) 2024-03-05
EP4155576A1 (en) 2023-03-29
TW202307353A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
KR101933435B1 (ko) 파동기어장치의 윤활방법
US6672181B2 (en) Lubrication mechanism for a wave gear device
JP5004811B2 (ja) 減速装置
JP6261773B2 (ja) 波動歯車装置
JP6389038B2 (ja) 焼結軸受およびその製造方法
CN108687752A (zh) 机器人以及齿轮单元
WO2023012949A1 (ja) 波動歯車装置の潤滑方法
JP6848669B2 (ja) ロボットおよび歯車装置
CN107662203A (zh) 机器人和齿轮装置
JP7324964B1 (ja) 減速機付きモータユニット
JP2004075041A5 (ja)
JP2019077765A (ja) グリース組成物、転がり軸受、およびハブベアリング
EP4166812A1 (en) Method for powder lubricating wave motion gear device
DE10331979A1 (de) Pumpe mit optimiertem Axialspiel
JP2016211690A (ja) 焼結軸受及びその製造方法
DE102017131232B3 (de) Motor-Getriebeanordnung für ein Kraftfahrzeug
JP7221077B2 (ja) 撓み噛合い式歯車装置及びその製造方法
CN115013508A (zh) 一种降低车辆起步和行驶冲击的方法、驱动机构及车辆
JP2002089640A (ja) 直交回転駆動装置
CN112696467A (zh) 齿轮装置系列、齿轮装置系列的制造方法及设计方法
DE102016221839A1 (de) Nockenwellenversteller zur variablen Ventilsteuerung einer Brennkraftmaschine
JPH04202637A (ja) なじみ性に卓越した含油軸受用焼結金属材
JP2006183714A (ja) 転動装置
JP2007146884A (ja) 動力伝達装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17921215

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021940002

Country of ref document: EP

Effective date: 20221118

WWE Wipo information: entry into national phase

Ref document number: 202180043003.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE