WO2023012571A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2023012571A1
WO2023012571A1 PCT/IB2022/056827 IB2022056827W WO2023012571A1 WO 2023012571 A1 WO2023012571 A1 WO 2023012571A1 IB 2022056827 W IB2022056827 W IB 2022056827W WO 2023012571 A1 WO2023012571 A1 WO 2023012571A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wiring
light
film
organic compound
Prior art date
Application number
PCT/IB2022/056827
Other languages
English (en)
French (fr)
Inventor
片山雅博
島行徳
中田昌孝
江口晋吾
中村太紀
楠紘慈
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020247005366A priority Critical patent/KR20240044438A/ko
Priority to CN202280052018.9A priority patent/CN117693782A/zh
Priority to JP2023539213A priority patent/JPWO2023012571A1/ja
Publication of WO2023012571A1 publication Critical patent/WO2023012571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • One embodiment of the present invention relates to a display device.
  • a technical field of one embodiment of the present invention disclosed in this specification and the like includes semiconductor devices, light-emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices, or input/output devices.
  • a method can be mentioned as an example.
  • a high-definition active-matrix display device in which the upper-layer auxiliary wiring arranged adjacent only to the red pixel is connected to the upper-layer auxiliary wiring for adjusting the electrical resistance of the cathode electrode (upper electrode)
  • a structure has been proposed that has a lower layer auxiliary wiring that has been formed (see Patent Document 1).
  • Non-Patent Document 1 As a method for manufacturing an organic EL element, a method for manufacturing an organic optoelectronic device using standard UV photolithography is disclosed (see Non-Patent Document 1).
  • an object of one embodiment of the present invention is to provide a display device in which voltage drop is sufficiently suppressed and a manufacturing method thereof.
  • Another object of one embodiment of the present invention is to provide a high-definition display device and a manufacturing method thereof.
  • one embodiment of the present invention provides a first light-emitting device including a first lower electrode and a first organic compound layer located over the first lower electrode; and a second lower electrode. , a second organic compound layer positioned on the second lower electrode; a common electrode included in the first light emitting device and the second light emitting device; and electrically connected to the common electrode.
  • the auxiliary wiring has a first wiring layer and a second wiring layer, and the second wiring layer is connected to the first wiring layer through a contact hole in the insulating layer. , and the second wiring layer has a lattice shape when viewed from above.
  • Another aspect of the invention is a first light emitting device having a first bottom electrode and a first organic compound layer overlying the first bottom electrode; a second bottom electrode; a second organic compound layer positioned on the lower electrode; a common electrode included in the first light emitting device and the second light emitting device; and electrically connected to the common electrode.
  • the auxiliary wiring has a first wiring layer and a second wiring layer, and the second wiring layer is connected to the first wiring layer through a contact hole in the insulating layer.
  • the first wiring layer is electrically connected, has a lattice shape when viewed from above, and the first lower electrode, the second lower electrode, and the second wiring layer each have a region located on the insulating layer. It is a display device having.
  • Another aspect of the invention is a first light emitting device having a first bottom electrode and a first organic compound layer overlying the first bottom electrode; a second bottom electrode; a second organic compound layer positioned on the lower electrode; a common electrode included in the first light emitting device and the second light emitting device; and electrically connected to the common electrode.
  • the auxiliary wiring has a first wiring layer and a second wiring layer, and the second wiring layer is connected to the first wiring layer through a contact hole in the insulating layer.
  • the first wiring layer and the second wiring layer are electrically connected, each has a lattice shape when viewed from above, and the first lower electrode, the second lower electrode and the second wiring layer are each insulated.
  • the display device has a region located on the layer, wherein the width of the second wiring layer is smaller than the width of the first wiring layer.
  • the end portions of the first lower electrode and the second lower electrode each have a tapered shape.
  • the taper angle of the end surface of the first organic compound layer is preferably 45 degrees or more and less than 90 degrees.
  • the taper angle of the end face of the second organic compound layer is preferably 45 degrees or more and less than 90 degrees.
  • a display device with sufficiently suppressed voltage drop and a manufacturing method thereof can be provided. Further, according to one embodiment of the present invention, a high-definition display device and a manufacturing method thereof can be provided.
  • FIG. 1A is a conceptual diagram of a pixel portion having auxiliary wiring
  • FIGS. 1B1 to 1C2 are top views of the pixel portion
  • FIG. 2A is a conceptual diagram of a pixel portion having auxiliary wiring
  • FIGS. 2B1 to 2C2 are top views of the pixel portion
  • FIG. 3A is a conceptual diagram of a pixel portion having auxiliary wiring
  • FIGS. 3B and 3C are top views of the pixel portion.
  • 4A is a cross-sectional view of the pixel portion
  • FIG. 4B is a top view of the pixel portion.
  • 5A to 5D are top views of the pixel portion.
  • 6A and 6B are top views of the pixel portion.
  • 7A is a top view
  • FIG. 1A is a conceptual diagram of a pixel portion having auxiliary wiring
  • FIGS. 2B1 to 2C2 are top views of the pixel portion
  • FIG. 3A is a conceptual diagram of a pixel portion having
  • FIG. 7B is a cross-sectional view of the pixel portion
  • FIG. 7C is a cross-sectional view of the connection portion
  • 8A to 8D are top views of the pixel portion
  • 9A to 9D are top views of the pixel portion.
  • FIG. 10A is a conceptual diagram of a display device
  • FIGS. 10B to 10E are pixel circuit diagrams.
  • 11A to 11D are cross-sectional views of transistors.
  • 12A to 12C are top views of the pixel portion
  • FIG. 12D is a circuit diagram.
  • 13A to 13C are cross-sectional views of the fabrication method.
  • 14A to 14C are cross-sectional views of the fabrication method.
  • 15A to 15C are cross-sectional views of the fabrication method.
  • 16A to 16C are cross-sectional views of the fabrication method.
  • 17A and 17B are cross-sectional views of the fabrication method.
  • 18A to 18C are cross-sectional views of the fabrication method.
  • 19A to 19C are cross-sectional views of the fabrication method.
  • 20A is a top view of the display device, and FIGS. 20B and 20C are perspective views of the display device.
  • 21A and 21B are perspective views of the display device.
  • 22A to 22D are diagrams of electronic devices.
  • 23A and 23B are diagrams of electronic equipment.
  • the terms “source” and “drain” of a transistor are interchanged depending on the polarity of the transistor and the level of the potential applied to each terminal.
  • a terminal to which a low potential is applied is called a source
  • a terminal to which a high potential is applied is called a drain
  • a terminal to which a high potential is applied is called a source.
  • the terms source and drain may be interchanged depending on the potential relationship, but in this specification and the like, when describing the connection relationship between transistors, the terms source and drain are fixed for convenience.
  • a source of a transistor means a source region which is part of a semiconductor layer functioning as an active layer, or a source electrode connected to the source region.
  • the drain of a transistor means a drain region that is part of the semiconductor film or a drain electrode connected to the drain region.
  • a gate of a transistor means a gate electrode.
  • a state in which transistors are connected in series means, for example, a state in which only one of the source and drain of a first transistor is connected to only one of the source and drain of a second transistor.
  • a state in which transistors are connected in parallel means that one of the source and drain of the first transistor is connected to one of the source and drain of the second transistor, and the other of the source and drain of the first transistor is connected to It means the state of being connected to the other of the source and the drain of the second transistor.
  • connection may be referred to as electrical connection, and includes a state in which current, voltage, or potential can be supplied, or a state in which current, voltage, or potential can be transmitted. Therefore, it also includes a state in which they are connected to each other through elements such as wiring, resistors, diodes, and transistors.
  • the electrical connection includes a state of direct connection without an element such as a wiring, resistor, diode, or transistor.
  • a conductive layer may have multiple functions such as a wiring or an electrode.
  • a light-emitting device is sometimes referred to as a light-emitting element.
  • a light-emitting device has a structure in which an organic compound layer is sandwiched between a pair of electrodes.
  • One of the pair of electrodes is an anode
  • the other of the pair of electrodes is a cathode
  • at least one of the organic compound layers is a light-emitting layer.
  • the light-emitting layer has a light-emitting material, and a fluorescent material, a phosphorescent material, or the like can be used as the light-emitting material.
  • a pair of electrodes may be referred to as a lower electrode and an upper electrode, respectively.
  • One of the pair of electrodes can function as one of the anode and the cathode
  • the other of the pair of electrodes can function as the other of the anode and the cathode.
  • a light-emitting device having an organic compound layer formed using a metal mask may be referred to as a light-emitting device having an MM structure.
  • the metal mask is sometimes referred to as a fine metal mask (FMM, high-definition metal mask) as the openings become finer.
  • a light-emitting device having an organic compound layer formed without using a metal mask or a fine metal mask may be referred to as a light-emitting device having a metal maskless (MML) structure.
  • MML metal maskless
  • a light-emitting device that emits red, green, blue, and the like may be referred to as a red-light-emitting device, a green-light-emitting device, and a blue-light-emitting device, respectively.
  • a structure in which light-emitting layers are separately formed may be referred to as an SBS (side-by-side) structure.
  • SBS side-by-side
  • a full-color display device can be provided by fabricating a red light emitting device, a green light emitting device, and a blue light emitting device using the SBS structure.
  • a light-emitting device that emits white light is sometimes referred to as a white light-emitting device.
  • a white light-emitting device can provide a full-color display device by combining it with a colored layer (for example, a color filter or a color conversion layer).
  • light-emitting devices can be broadly classified into a single structure and a tandem structure.
  • a single structure is a structure having one light-emitting unit between a pair of electrodes.
  • the light-emitting unit refers to a laminate including one or more light-emitting layers.
  • the light emitting unit should have two or more light emitting layers.
  • two or more light-emitting layers may be in contact with each other.
  • a white light-emitting device can also be obtained by using three or more light-emitting layers. Three or more light-emitting layers may be in contact with each other in a light-emitting unit.
  • a tandem structure has two or more light-emitting units between a pair of electrodes.
  • an intermediate layer such as a charge generation layer between two or more light emitting units.
  • the charge-generating layer has a function of injecting holes into one of the light-emitting units formed in contact with the charge-generating layer when a voltage is applied between the cathode and the anode. It has the function of injecting electrons into the light-emitting unit.
  • holes are injected into the first light-emitting unit by the charge-generating layer, and holes are injected into the second light-emitting unit.
  • electrons may be injected into the light-emitting unit of
  • a structure in which light from the light-emitting layers of two or more light-emitting units are combined to obtain white light emission may be employed.
  • the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure.
  • the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the display panel substrate is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or an IC is mounted on the substrate by the COG (Chip On Glass) method, etc.
  • a module may be referred to as a display module.
  • a display module is one aspect of a display device.
  • the display device described in this embodiment mode is characterized by having an auxiliary wiring.
  • the auxiliary wiring is a layer having an auxiliary function of the main electrode, and the auxiliary function described in this embodiment includes a function of suppressing voltage drop caused by the main electrode.
  • the main electrode include a pair of electrodes of a light-emitting device. Since the pair of electrodes functions as a cathode or an anode of the light-emitting device, a conductive material selected based on the work function must be selected. sometimes it doesn't work. Conductive materials that only consider work function can have high resistivity. Therefore, one feature of the display device described in this embodiment mode is that the auxiliary wiring is electrically connected to one of the pair of electrodes, and the voltage drop can be suppressed.
  • the pair of electrodes is the upper electrode, which can be formed from a continuous conductive layer without interruption between the plurality of light emitting devices.
  • the series of electrodes may be referred to as a common electrode.
  • the common electrode must be formed over a large area, and a voltage drop due to such a common electrode is likely to occur. Therefore, the display device described in this embodiment is typically a large-sized display device, and is characterized by electrically connecting the auxiliary wiring to the upper electrode, and has the effect of suppressing the voltage drop. can be played.
  • the auxiliary wiring may be referred to as an auxiliary electrode according to its shape.
  • the shape of the auxiliary wiring is not limited at all, and the auxiliary wiring includes the auxiliary electrode.
  • FIG. 1A shows a conceptual diagram of a pixel portion 103 included in a display device which is one embodiment of the present invention.
  • the pixel portion 103 includes at least a light-emitting device and also includes an auxiliary wiring 151 which is one embodiment of the present invention.
  • FIG. 1A shows light-emitting devices 11R, 11G, and 11B to illustrate three light-emitting devices included in the pixel portion 103.
  • the light emitting devices 11R, 11G, and 11B may be referred to as the light emitting device 11 when not distinguished.
  • the light-emitting device 11 has at least a structure in which a lower electrode, an organic compound layer, and an upper electrode are laminated in this order.
  • lower electrodes 111R, 111G and 111B are shown
  • organic compound layers 112R, 112G and 112B are shown
  • upper electrodes 113R, 113G and 113B are shown.
  • the lower electrodes 111R, 111G, and 111B may be referred to as the lower electrode 111 when not distinguished.
  • the organic compound layers 112R, 112G, and 112B may be referred to as an organic compound layer 112 when not distinguished.
  • the upper electrodes 113R, 113G, and 113B When the upper electrodes 113R, 113G, and 113B are not distinguished, they may be referred to as an upper electrode 113E. Since the three light-emitting devices included in the pixel portion 103 can emit red (R), green (G), and blue (B) colors, RGB is added to the above symbols to correspond to each color.
  • the organic compound layers 112R, 112G, and 112B have at least light-emitting layers, and can emit red (R), green (G), and blue (B) because the light-emitting materials of the light-emitting layers are different. Note that the organic compound layer 112 has layers other than the light-emitting layer, and the structure of the layers other than the light-emitting layer will be described later.
  • the organic compound layer 112 is a stack of a light-emitting layer and other layers, and each layer can be formed by a vapor deposition method using a metal mask.
  • a light-emitting device having an organic compound layer fabricated using a metal mask is referred to as a light-emitting device having an MM structure.
  • each layer of the organic compound layer 112 can be formed using a photolithography process without using a metal mask.
  • a light-emitting device having an organic compound layer formed without using a metal mask is referred to as a light-emitting device having an MML structure. A manufacturing method using a photolithography process will be described later.
  • FIG. 1A shows a divided upper electrode, and shows a configuration in which an auxiliary wiring 151 is electrically connected to the upper electrode 113E. This electrical connection is indicated by a solid line in FIG. 1A following the circuit diagram.
  • a display device using an upper electrode to which the auxiliary wiring 151 is electrically connected is preferable because voltage drop is suppressed.
  • the upper electrode may be provided as a common electrode, which is a continuous electrode, without being separated for each light emitting device. Since a voltage drop is likely to occur when a common wiring is used, a structure in which an auxiliary wiring, which is one embodiment of the present invention, is provided is preferable. A person skilled in the art who has access to this specification and the like can appropriately read the upper electrode and the common electrode to understand the effect of the auxiliary wiring 151 .
  • auxiliary wiring 151 has a remarkable effect in a large-sized display device. also understandable.
  • the auxiliary wiring 151 preferably has two or more wiring layers provided in different layers.
  • the auxiliary wiring 151 has a first wiring layer 151a and a second wiring layer 151b as shown in FIG. 1A.
  • the first wiring layer 151a is formed in a layer different from the second wiring layer 151b, and the surface on which the first wiring layer 151a is formed is the same as the surface on which the second wiring layer 151b is formed. different.
  • the wiring layer may also be referred to as an electrode layer depending on its shape.
  • the shape of the electrode layer is not limited at all, and the wiring layer includes the electrode layer.
  • the first wiring layer 151a is electrically connected to the second wiring layer 151b.
  • the first wiring layer 151a is electrically connected to the second wiring layer 151b through the contact hole 15 in the insulating layer 14 located between the first wiring layer 151a and the second wiring layer 151b. properly connected.
  • the number of stacked wiring layers constituting the auxiliary wiring is not limited at all, and may have three or more wiring layers such as first to third wiring layers. As the number of wiring layers increases, the degree of freedom in arranging wiring layers functioning as auxiliary wiring (hereinafter sometimes referred to as layout) increases, so it can be said to be preferable.
  • the auxiliary wiring 151 of one embodiment of the present invention has two or more wiring layers provided in different layers, and the wiring layers in different layers are electrically connected to each other through contact holes. Characterized by
  • a contact hole is an opening formed in an insulating layer, and a wiring layer positioned below a certain insulating layer (referred to as a lower wiring layer) contacts a wiring layer positioned above the insulating layer (referred to as an upper wiring layer). ) to be electrically connected.
  • the lower wiring layer should have a region exposed through the opening, and the upper wiring layer should be electrically connected, typically in contact, with the exposed region.
  • insulating layers provided with contact holes may be laminated. This is called an insulating layer having a laminated structure, and is referred to as a laminated insulating layer.
  • a contact hole can be formed in a laminated insulating layer of a first insulating layer and a second insulating layer. In this case, a first contact hole is formed in the first insulating layer and a second contact hole is formed in the second insulating layer. If the first contact hole has at least a region overlapping with the second contact hole, the lower wiring layer can be electrically connected to the upper wiring layer.
  • the width of the second contact hole in cross-sectional view is preferably larger than the width of the first contact hole.
  • the width of the contact hole in each insulating layer is not limited at all.
  • the interval between the lower electrodes 111 is narrow in a high-definition display device, it becomes difficult to lay out the auxiliary wiring 151 corresponding to the interval. Therefore, a layout of the auxiliary wiring 151 that is not affected or is less affected by the interval between the lower electrodes 111 is desired.
  • both the first wiring layer 151a and the second wiring layer 151b may be formed in layers different from the lower electrode 111.
  • the auxiliary wiring 151 may be formed by placing the first wiring layer 151 a and the second wiring layer 151 b below the lower electrode 111 .
  • the first wiring layer 151a and the second wiring layer 151b can have different shapes in top view, typically different areas.
  • the first wiring layer 151a may be formed with a smaller area than the second wiring layer 151b.
  • the second wiring layer 151b may be laid out so as to have a larger area than the first wiring layer 151a.
  • the second wiring layer 151b can be laid out in a grid pattern.
  • the second wiring layer 151b may be strip-shaped or island-shaped.
  • a lattice pattern refers to a pattern in which a plurality of parallel vertical lines and a plurality of parallel horizontal lines are combined.
  • a belt shape may be called a rectangular shape or a stripe shape.
  • the island-like refers to those having a shorter length than the belt-like.
  • the first wiring layer 151a may be grid-shaped
  • the second wiring layer 151b may be strip-shaped.
  • FIGS. 1B1 and 1B2 show top views of the pixel portion 103, both of which show a grid-shaped second wiring layer 151b.
  • the first wiring layer 151a is electrically connected to the second wiring layer 151b through the contact hole 15 (not shown).
  • the first wiring layer 151a may have any shape, and may have a strip shape or an island shape, for example. It is preferable that the first wiring layer 151a has a region overlapping with a part of the second wiring layer 151b because it is easy to ensure electrical connection through the contact hole 15.
  • FIG. 1B1 and 1B2 show top views of the pixel portion 103, both of which show a grid-shaped second wiring layer 151b.
  • the first wiring layer 151a is electrically connected to the second wiring layer 151b through the contact hole 15 (not shown).
  • the first wiring layer 151a may have any shape, and may have a strip shape or an island shape, for example. It is preferable that the first wiring layer 151a has a region overlapping
  • 1B1 and 1B2 are accompanied by an X direction and a Y direction that intersects with the X direction, and the configuration of the pixel portion 103 and the like are sometimes described using these directions.
  • the grid-like second wiring layer 151b shown in FIG. 1B1 has a plurality of vertical lines along the Y direction.
  • the vertical lines overlap the sub-pixel gaps.
  • the sub-pixel gap includes an area between the edge of the lower electrode 111R and the edge of the lower electrode 111G and an area between the edge of the lower electrode 111G and the edge of the lower electrode 111B.
  • the second wiring layer 151b shown in FIG. 1B2 has a vertical line spacing different from that in FIG.
  • the gap of the pixel 150 is, for example, between the edge of the lower electrode 111B corresponding to the sub-pixel B located at the edge of the pixel 150 and the edge of the lower electrode 111R corresponding to the sub-pixel R located at the edge of the adjacent pixel.
  • has an area of "Adjacent" may mean either a relationship of being adjacent along the X direction or a relationship of being adjacent along the Y direction.
  • the second wiring layer 151b shown in FIG. 1B2 does not have a vertical line having a region that overlaps the sub-pixel gap as shown in FIG. 1B1.
  • the gap between the lower electrodes becomes narrower, making it difficult to lay out auxiliary wiring in the gap between the lower electrodes.
  • the gap between the lower electrodes is, for example, the distance between the edge of the lower electrode 111R and the edge of the lower electrode 111G, or the distance between the edge of the lower electrode 111G and the edge of the lower electrode 111B. Therefore, when the second wiring layer 151b is located in the same layer as the lower electrode 111, the layout of the second wiring layer 151b with fewer vertical lines as shown in FIG. is preferred.
  • the same layer as the grid-shaped second wiring layer 151b does not have wirings having functions such as scanning lines, signal lines, and power supply lines. This is because the wiring having the above function needs to extend in the X direction or in the Y direction, and thus contacts the second wiring layer 151b. If scanning lines, signal lines and power lines are to be provided, adjust the length along the X direction or the length along the Y axis of the scanning lines, signal lines and power lines so that they do not come in contact with the second wiring layer. You can lay it out like an island. A conductive layer different from the second wiring layer is used to ensure electrical connection between the island-shaped scanning lines and the like. Wiring for ensuring such electrical connection is sometimes referred to as bridge wiring.
  • the bridge wiring is sometimes referred to as a bridge electrode according to its shape.
  • the shape of the bridge wiring is not limited at all, and the bridge wiring includes the bridge electrode.
  • FIGS. 1C1 and 1C2 show a pixel portion 103 having signal lines and bridge wirings. Although illustration of the light emitting devices 11R, 11G, and 11B is omitted in FIGS. 1C1 and 1C2, the layouts of the light emitting devices 11R, 11G, and 11B can be referred to FIGS.
  • the signal line shown in FIGS. 1C1 and 1C2 has a third wiring layer 153a and a fourth wiring layer 153b, and the third wiring layer 153a is separated from the fourth wiring layer 153b.
  • the third wiring layer 153a and the fourth wiring layer 153b may be called island-shaped wiring layers.
  • the island-shaped wiring layers are electrically connected to each other using a bridge wiring 154 .
  • Both the third wiring layer 153a and the fourth wiring layer 153b are preferably formed using a conductive layer positioned on a surface different from that of the second wiring layer 151b.
  • both the third wiring layer 153a and the fourth wiring layer 153b are preferably formed using a conductive layer positioned below the second wiring layer 151b.
  • the third wiring layer 153a and the fourth wiring layer 153b may be formed using a conductive layer located on the same formation surface as the second wiring layer 151b.
  • the bridge wiring 154 is formed using a conductive layer positioned on a surface different from that of the second wiring layer 151b.
  • the bridge wiring 154 may use a conductive layer positioned below the second wiring layer 151b.
  • the layout of the second wiring layer 151b with few vertical lines as shown in FIG. 1B2 is also suitable for the case of having signal lines and bridge wirings as shown in FIG. 1C2.
  • FIG. 2A has a configuration in which the second wiring layer 151b and the lower electrode 111 are located on the same formation surface. Note that the same forming surface corresponds to the upper surface of the insulating layer 14 . Other configurations are the same as those in FIG. 1A.
  • FIGS. 1B1 and 1B2 show top views of the pixel portion 103, and the top views show the first wiring layer 151a having a lattice shape.
  • the layout of the grid-like second wiring layer 151b shown in FIGS. 1B1 and 1B2 can be referred to.
  • the second wiring layer 151b is positioned so as to overlap the intersections of the grid-like first wiring layer 151a.
  • the second wiring layer 151b only needs to overlap the intersections, and does not have to overlap the entire grid-like first wiring layer 151a. Furthermore, the second wiring layer 151b does not have to overlap all the intersections. Since the second wiring layer 151b has the same conductive layer as the lower electrode 111, the second wiring layer 151b must be laid out so as not to be in contact with the lower electrode 111. However, the layout of the first wiring layer 151a is It is not affected by the lower electrode 111 .
  • the second wiring layer 151b laid out in a small area may be preferably referred to as an electrode layer.
  • FIGS. 2C1 and 2C2 show the pixel portion 103 having signal lines and bridge wirings. Although illustration of the light emitting devices 11R, 11G, and 11B is omitted in FIGS. 2C1 and 2C2, FIGS. 2B1 and 2B2 can be referred to for layouts of the light emitting devices 11R, 11G, and 11B.
  • the signal line shown in FIGS. 2C1 and 2C2 has a third wiring layer 153a and a fourth wiring layer 153b, and the third wiring layer 153a is separated from the fourth wiring layer 153b.
  • the third wiring layer 153a and the fourth wiring layer 153b may be called island-shaped wiring layers, and the island-shaped wiring layers are electrically connected to each other using the bridge wiring 154.
  • FIG. Both the third wiring layer 153a and the fourth wiring layer 153b are preferably formed using a conductive layer positioned on a surface different from that of the second wiring layer 151b.
  • both the third wiring layer 153a and the fourth wiring layer 153b are preferably formed using a conductive layer positioned below the second wiring layer 151b.
  • the third wiring layer 153a and the fourth wiring layer 153b are preferably formed using a conductive layer located on the same formation surface as the first wiring layer 151a.
  • the bridge wiring 154 is formed using a conductive layer positioned on a surface different from that of the first wiring layer 151a.
  • the bridge wiring 154 may use a conductive layer positioned below the first wiring layer 151a.
  • the bridge wiring 154 may be formed using a conductive layer located on the same formation surface as the second wiring layer 151b. In this case, the layout is made so that the lower electrode 111 and the bridge wiring 154 are not in contact with each other.
  • FIG. 3A shows another mode of the pixel portion 103 of one embodiment of the present invention.
  • 3A differs from FIG. 2A in that the width of the second wiring layer 151b (the width in dB) in cross section is smaller than the width of the first wiring layer 151a (the width in dA).
  • Other configurations can be the same as in FIG. 2A.
  • FIG. 3B shows a top view of the pixel portion 103, showing how the first wiring layer 151a and the second wiring layer 151b have a grid pattern.
  • For the grid-like layout refer to the layout of the grid-like second wiring layer 151b shown in FIG. 1B2.
  • the contact hole 15 shown in FIG. 3B can have a shape that matches the region where the first wiring layer 151a and the second wiring layer 151b overlap.
  • contact hole 15 can have a shape along one side of second wiring layer 151b.
  • FIG. 3C shows a pixel portion 103 having signal lines and bridge lines.
  • the signal line shown in FIG. 3C has a third wiring layer 153a and a fourth wiring layer 153b, and the third wiring layer 153a is separated from the fourth wiring layer 153b. Therefore, the bridge wiring 154 is used to electrically connect the third wiring layer 153a and the fourth wiring layer 153b.
  • the third wiring layer 153a and the fourth wiring layer 153b have the same conductive layer as the first wiring layer 151a.
  • the bridge wiring 154 has a conductive layer different from the first wiring layer 151a, preferably a conductive layer lower than the first wiring layer 151a.
  • the auxiliary wiring 151 of one embodiment of the present invention has two or more wiring layers provided in different layers, the degree of freedom in layout of the auxiliary wiring 151 is higher than in the case where the auxiliary wiring is formed from one wiring layer. is highly desirable.
  • the auxiliary wiring 151 of one embodiment of the present invention is preferably applied to a high-definition display device.
  • the conductive material included in the auxiliary wiring 151 of one embodiment of the present invention that is, the conductive material included in the first wiring layer 151a or the second wiring layer 151b include aluminum, copper, silver, gold, platinum, chromium, molybdenum, and the like. of metals can be used. An alloy of the above metals can be used as the conductive material.
  • the conductive material is a metal and a non-translucent conductive material.
  • the first wiring layer 151a or the second wiring layer 151b can be formed as a single layer or a stacked layer using the above conductive material.
  • the first wiring layer 151a may be laminated and the second wiring layer 151b may be formed as a single layer.
  • the first wiring layer 151a may be a single layer and the second wiring layer 151b may be a laminated layer.
  • the first wiring layer 151a may be laminated, and the second wiring layer 151b may also be laminated.
  • a conductive material having a light-transmitting property may be used as the conductive material included in the auxiliary wiring of one embodiment of the present invention, that is, the conductive material included in the first wiring layer 151a or the second wiring layer 151b.
  • an oxide containing indium and tin also referred to as indium tin oxide, In—Sn oxide, or ITO
  • an oxide containing indium, silicon, and tin oxide containing indium, silicon, and tin
  • In—Si—Sn oxide, ITSO oxide containing indium and zinc also called indium zinc oxide or In--Zn oxide
  • oxide containing indium, tungsten, and zinc also called In--W--Zn oxide
  • the first wiring layer 151a or the second wiring layer 151b can be formed as a single layer or a stacked layer using the above conductive material.
  • the resistivity of the conductive material used for the auxiliary wiring of one embodiment of the present invention is the same as the conductivity used for the common electrode. It is preferably lower than the resistivity of the material. However, if the voltage drop caused by the common electrode can be sufficiently suppressed, the above relationship of resistivity need not be satisfied.
  • a display device of one embodiment of the present invention preferably has a top emission structure.
  • the upper electrode In the top emission structure, the upper electrode must be translucent, and light is emitted in the direction of the upper electrode.
  • Translucency refers to the passage of visible light (light with a wavelength of 400 nm or more and less than 750 nm), and preferably has a transmittance of 40% or more.
  • a light-transmitting conductive material may have high resistivity, which may increase the resistance of the common electrode. Then, a voltage drop occurs due to the common electrode, the potential distribution in the display surface becomes non-uniform, and the brightness of the light-emitting device varies. Therefore, the display device having the top emission structure of one embodiment of the present invention may include auxiliary wirings electrically connected to the common electrode. The auxiliary wiring can have an effect of suppressing a voltage drop.
  • the upper electrode may be read as a common electrode.
  • auxiliary wiring electrically connected to the common electrode.
  • the auxiliary wiring can have an effect of suppressing a voltage drop.
  • the bottom emission structure requires the lower electrode to be translucent, and light is emitted in the direction of the lower electrode.
  • auxiliary wiring electrically connected to the common electrode.
  • the auxiliary wiring can have an effect of suppressing a voltage drop.
  • the dual-emission structure requires the lower electrode and the upper electrode to be translucent, and light is emitted in both directions of the lower electrode and the upper electrode.
  • a dual-emission display device can be described as a transparent display.
  • FIG. 4A shows the pixel portion 103 included in the display device with the top emission structure, and shows a cross-sectional view of the auxiliary wiring 151 and the like.
  • the cross-sectional structure of the auxiliary wiring 151 described in FIG. 3 and the like in the above embodiment is applied. It may have a cross-sectional structure of the wiring 151 .
  • the pixel portion 103 has a light emitting device 11 and the light emitting device 11 has a common electrode 113 . Since the common electrode 113 has translucency, light is emitted from each light emitting device in the direction of the arrow shown in FIG. 4A.
  • the light emitting device 11 is formed on an insulating layer 104 , and the insulating layer 104 is formed on the substrate 101 .
  • the auxiliary wiring 151 has a first wiring layer 151a and a second wiring layer 151b.
  • the first wiring layer 151 a is a wiring layer formed on the substrate 101
  • the second wiring layer 151 b is a wiring layer formed on the insulating layer 104 .
  • the second wiring layer 151 b is electrically connected to the first wiring layer 151 a through the contact hole 19 of the insulating layer 104 and functions as the auxiliary wiring 151 .
  • the common electrode 113 is located on the insulating layer 126 and can be electrically connected to the auxiliary wiring 151 through the contact hole 18 of the insulating layer 126 .
  • the auxiliary wiring 151 has two or more wiring layers provided in different layers, even if any one of the wiring layers is provided on the same formation surface as the lower electrode 111 formation surface, the layout of the lower electrode does not change. It is preferable that the auxiliary wiring 151 can be formed without being affected or by minimizing the influence of the layout of the lower electrode.
  • the second wiring layer 151b is provided in the same layer as the lower electrode 111 in FIG. 4A
  • the first wiring layer 151a is provided in a layer different from the lower electrode 111. 151a can be laid out in a wider area than the second wiring layer 151b.
  • the degree of layout freedom is increased without lowering the aperture ratio. Since the first wiring layer 151a formed at a position where the aperture ratio is not lowered does not need to have a light-transmitting property, a conductive material with low resistivity can be used.
  • the auxiliary wiring 151 of one embodiment of the present invention can have a wiring layer on a formation surface different from the formation surface of the lower electrode, and the wiring layer is wide without being affected by the lower electrode layout. It becomes possible to form it in an area, and the voltage drop suppressing effect can be fully exhibited.
  • FIG. 4B shows the second wiring layer 151b and omits the first wiring layer 151a.
  • FIG. 4B includes an X direction and a Y direction that intersects with the X direction, and the layout and the like of the configuration of the pixel portion 103 may be described using these directions.
  • the pixel portion 103 located in the display area has a plurality of pixels 150 .
  • a pixel 150 is used as a minimum unit capable of full-color display, and has at least a sub-pixel 110R, a sub-pixel 110G, and a sub-pixel 110B as shown in FIG. 4B.
  • the sub-pixel 110R, sub-pixel 110G, and sub-pixel 110B may each have a colored layer, and the colored layer includes, for example, a color filter or a color conversion layer.
  • the sub-pixel 110 When describing items common to the sub-pixel 110R, the sub-pixel 110G, and the sub-pixel 110B, the sub-pixel 110 may be referred to.
  • Sub-pixel 110R, sub-pixel 110G, and sub-pixel 110B correspond to light-emitting regions of each light-emitting device, and each light-emitting region is illustrated as being rectangular in FIG. 4B.
  • the sub-pixel 110R of FIG. 4B corresponds to the light-emitting region of the red light-emitting device (illustrated as R)
  • the sub-pixel 110G corresponds to the light-emitting region of the green light-emitting device (illustrated as G)
  • the sub-pixel 110B corresponds to the blue light emitting device.
  • the light-emitting region of the device (illustrated as B) is matched.
  • the display device of one embodiment of the present invention is not limited to the above emission colors, and may include, for example, a white light-emitting device in addition to red, green, and blue light-emitting devices.
  • the sub-pixels 110R and the sub-pixels 110G are arranged alternately along the Y direction.
  • a plurality of sub-pixels 110B are arranged along the Y direction.
  • Sub-pixel 110B can have a larger area than sub-pixel 110R and sub-pixel 110G.
  • a light-emitting layer containing a fluorescent material is used for a blue light-emitting device and a light-emitting layer containing a phosphorescent material is used for each of a red light-emitting device and a green light-emitting device, as shown in FIG. It is preferable that the area is larger than that of the sub-pixel 110G.
  • the sub-pixel 110R is provided with the insulating layer 104 on the substrate 101, the lower electrode 111R of the light emitting device 11R is provided on the insulating layer 104, and the light emitting device 111R is provided on the lower electrode 111R.
  • An organic compound layer 112R of the device 11R is provided, and a common electrode 113 is provided on the organic compound layer 112R.
  • the light emitting device 11R emits light toward the common electrode 113, that is, in the direction indicated by the arrow in FIG. 4A.
  • the sub-pixel 110G is provided with an insulating layer 104 on the substrate 101, a lower electrode 111G of the light emitting device 11G is provided on the insulating layer 104, and a lower electrode 111G is provided on the lower electrode 111G.
  • An organic compound layer 112G of the light emitting device 11G is provided, and a common electrode 113 is provided on the organic compound layer 112G.
  • the light emitting device 11G emits light toward the common electrode 113, that is, in the direction indicated by the arrow in FIG. 4A.
  • the insulating layer 104 is provided on the substrate 101, the lower electrode 111B of the light emitting device 11B is provided on the insulating layer 104, and the lower electrode 111B is provided on the lower electrode 111B.
  • An organic compound layer 112B of the light emitting device 11B is provided, and a common electrode 113 is provided on the organic compound layer 112B.
  • the light emitting device 11B emits light toward the common electrode 113, that is, in the direction indicated by the arrow in FIG. 4A.
  • the sub-pixel 110 has a switching element for controlling the light emitting device in addition to the above light emitting device, but the switching element is not shown in FIGS. 4A and 4B.
  • a display device of one embodiment of the present invention can perform full-color display by emitting light from a light-emitting device controlled by a switching element.
  • the second wiring layer 151b is formed using a conductive layer provided in the same layer as the lower electrode 111, as shown in FIG. 4A.
  • the first wiring layer 151 a is a wiring layer provided in a layer different from the lower electrode 111 .
  • the second wiring layer 151b since the second wiring layer 151b has a wiring layer on the same formation surface as the lower electrode, it is provided in a region not in contact with the lower electrode 111, that is, in a region not overlapping the sub-pixels.
  • the second wiring layer 151b has a lattice shape when viewed from above.
  • the grid-shaped second wiring layer 151b has regions extending along the X direction as horizontal lines, the regions are arranged in parallel, and has regions extending along the Y direction as vertical lines. , the regions are parallel.
  • the second wiring layer 151b shown in FIG. 4B has a region located between the sub-pixel 110R and the sub-pixel 110G as a region extending along the X direction, and the regions are arranged in parallel. .
  • a region located between the sub-pixel 110R and the sub-pixel 110G corresponds to a region between pixels.
  • the second wiring layer 151b shown in FIG. 4B has a region located between the sub-pixel 110G and the sub-pixel 110B as a region extending along the Y direction, and the regions are arranged in parallel.
  • the gap between the lower electrodes 111 becomes narrower in a display device with higher definition.
  • the distance de between sub-pixels and the distance dc between pixels are narrow.
  • the spacing becomes narrower, it becomes more difficult to form a wiring layer for the auxiliary wiring. Therefore, it is preferable that the first wiring layer 151a be the wiring layer overlapping the gap between the sub-pixels when viewed from above, and the first wiring layer 151a be a wiring layer different from the lower electrode.
  • an insulating layer 126 is preferably located between the light-emitting devices as shown in FIG. 4A.
  • the insulating layer 126 can fill between pixels and between subpixels, and the second wiring layer 151 b is preferably provided so as to overlap with the insulating layer 126 .
  • the insulating layer 126 can prevent the second wiring layer 151 b from contacting the lower electrode 111 .
  • the insulating layer 126 can separate the organic compound layers of the light-emitting devices, thereby suppressing crosstalk between the light-emitting devices. Crosstalk is a phenomenon in which light is emitted from an unintended light emitting device.
  • the top surface of insulating layer 126 is shown to be generally coincident or coincident with the top surface of organic compound layer 112 .
  • the surface on which the common electrode 113 is formed becomes flat, and cutting of the common electrode 113 is suppressed, which is preferable.
  • the top surface of the insulating layer 126 may be positioned above the top surface of the organic compound layer 112 so that the common electrode 113 is not cut.
  • the edges of the insulating layer 126 are preferably thinned gradually toward the center of the organic compound layer 112 .
  • a shape that gradually becomes thinner is sometimes referred to as a tapered shape.
  • the central portion of the insulating layer 126 is located above the edge portions of the insulating layer 126 and that the central portion has a region that rises above the edge portions. It is preferable to provide the common electrode 113 over such an insulating layer 126 because cutting of the common electrode 113 is suppressed.
  • FIG. 4A shows a configuration in which the second wiring layer 151b of the auxiliary wiring 151 has a region in contact with the bottom of the common electrode 113
  • any configuration may be used as long as the auxiliary wiring 151 is electrically connected to the common electrode 113. can take
  • auxiliary wiring layout The auxiliary wiring 151 of one embodiment of the present invention is characterized by having at least two wiring layers. explain. 5 and the like show the sub-pixels (R, G, B) according to FIG. 4B, but the lower electrode 111 is omitted.
  • the auxiliary wiring 151 has a lattice shape when viewed from above, and has a first wiring layer 151a extending in the Y direction and a second wiring layer 151b extending in the X direction.
  • a contact hole is located in a region where the first wiring layer 151a and the second wiring layer 151b intersect, but it is not shown in FIG. 5A.
  • Either the first wiring layer 151a or the second wiring layer 151b may be formed in the same layer as the lower electrode 111, or both may be formed in different layers from the lower electrode 111.
  • FIG. 1 Either the first wiring layer 151a or the second wiring layer 151b may be formed in the same layer as the lower electrode 111, or both may be formed in different layers from the lower electrode 111.
  • both the first wiring layer 151a and the second wiring layer 151b are located between the pixels.
  • the pixel portion 103 is used for a high-definition display device.
  • FIG. 5B shows an auxiliary wiring 151 having a small length in the second wiring layer 151b shown in FIG. 5A. Since the length of the second wiring layer 151b is short, the first wiring layer 151a has a region extending in the X direction. The second wiring layer 151b having a small length has such a length that one end thereof overlaps with the sub-pixel G and the other end overlaps with the sub-pixel B. As shown in FIG. Other configurations are the same as those in FIG. 5A.
  • FIG. 5C shows an auxiliary wiring 151 having the first wiring layer 151a shown in FIG. 5A as the second wiring layer 151b and the second wiring layer 151b shown in FIG. 5A as the first wiring layer 151a.
  • Other configurations are the same as those in FIG. 5A.
  • FIG. 5D shows the auxiliary wiring 151 having a small length of the first wiring layer 151a shown in FIG. 5C. Since the length of the first wiring layer 151a is short, the second wiring layer 151b has a region extending in the X direction. The short first wiring layer 151a has such a length that one end overlaps the subpixel G and the other end overlaps the subpixel B. As shown in FIG. Other configurations are the same as in FIG. 5C.
  • FIG. 5A shows the auxiliary wiring 151 in which the first wiring layer 151a and the second wiring layer 151b have the same shape.
  • the first wiring layer 151a is indicated by a dotted line.
  • Other configurations are the same as those in FIG. 5A.
  • FIG. 6B shows the auxiliary wiring 151 having the first wiring layer 151a having a larger area than the second wiring layer 151b. Since it is formed in a layer different from that of the lower electrode 111, the first wiring layer 151a can be formed with a large area. Other configurations are the same as those in FIG. 5A.
  • the auxiliary wiring 151 of one embodiment of the present invention has the first wiring layer 151a and the second wiring layer 151b, it can take various forms. By electrically connecting the auxiliary wiring 151 to the common electrode, the voltage drop of the common electrode can be sufficiently suppressed.
  • a high-definition pixel portion can be used for the display device of one embodiment of the present invention.
  • the auxiliary wiring 151 may be applied to the bottom emission structure and the dual emission structure. In that case, the cross-sectional structure of the auxiliary wiring 151 described in FIGS. 1 to 3 and the like in the above embodiment can be applied. Since light is emitted below the lower electrode 111 in the bottom emission structure and the dual emission structure, the first wiring layer 151a provided below the lower electrode 111 is arranged so as to overlap with the sub-pixel gap or the pixel gap. It is preferable to have a lattice shape or an area smaller than a lattice shape. Further, the second wiring layer 151b provided below the lower electrode 111 preferably has a lattice shape overlapping with the gaps between the sub-pixels or the gaps between the pixels, or has an area smaller than the lattice shape.
  • the display device 100 has a pixel portion 103 and a connection portion 140 .
  • the pixel portion 103 has a plurality of pixels 150 .
  • the pixel 150 has a plurality of sub-pixels 110.
  • the sub-pixel 110R has a red light-emitting device 11R
  • the sub-pixel 110G has a green light-emitting device 11G
  • the sub-pixel 110B has a blue light-emitting device 11B.
  • the pixel portion 103 has contact holes 141 .
  • the contact holes 141 are selectively provided.
  • the contact holes 141 can be provided in regions corresponding to the outer periphery of the pixels 150 , and can be provided in regions corresponding to the four corners of the pixels 150 among the regions.
  • FIG. 7A the regions corresponding to the light emitting device 11R, the light emitting device 11G, and the light emitting device 11B are denoted by R, G, and B symbols.
  • the arrangement of FIG. 7A is similar to the arrangement shown in FIG. 4B, etc., and is a regular arrangement.
  • the light emitting device 11 it is preferable to use an element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light-emitting substances possessed by the light-emitting device include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit heat-activated delayed fluorescence (heat-activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material) and the like.
  • connection electrode 111C electrically connected to the common electrode 113.
  • the common electrode 113 preferably extends to the connection portion 140 beyond the edge of the pixel portion 103 .
  • the common electrode 113 extending to the connection portion 140 is indicated by a dotted line.
  • a potential to be supplied to the common electrode 113 is applied to the connection electrode 111C. If a voltage drop occurs due to the common electrode 113, the potential value will vary. Since the display device of this embodiment mode includes the auxiliary wiring 151 at least in the pixel portion 103, the potential variation is suppressed, which is preferable.
  • the auxiliary wiring 151 can be provided in the connection portion 140 in addition to the pixel portion 103 .
  • connection electrode 111 ⁇ /b>C can be provided along the outer periphery of the pixel portion 103 .
  • the connection electrode 111C may be provided along one side of the periphery of the pixel portion 103, or may be provided over two or more sides of the periphery of the pixel portion 103.
  • FIG. 7B and 7C are cross-sectional views corresponding to dashed-dotted lines B1-B2 and dashed-dotted lines B3-B4 in FIG. 7A, respectively.
  • FIG. 7B shows a cross-sectional view of the light-emitting device 11G, the light-emitting device 11B, and the auxiliary wiring 151
  • FIG. 7C shows a cross-sectional view of the connection electrode 111C.
  • FIG. 7B A cross-sectional view of the contact hole 141 is shown in FIG. 7B.
  • a contact hole 141 is formed in the insulating layer 126 . Through the contact hole 141, the second wiring layer 151b and the common electrode 113 can be electrically connected.
  • the insulating layer 104 has contact holes 142 .
  • the contact hole 142 may be formed in a region that overlaps with the contact hole 141 or may be formed in a region that does not overlap with the contact hole 141 .
  • the size (eg width in cross section) of the contact hole 141 is preferably larger than the size (eg width in cross section) of the contact hole 142.
  • the end face of the organic compound layer 112B is vertical or substantially vertical, which is preferable because the contact hole 141 can be easily processed.
  • the taper angle of the end face of the organic compound layer 112B is preferably 45 degrees or more and less than 90 degrees. It is preferable that the taper angle of the end faces of the other organic compound layers also satisfy 45 degrees or more and less than 90 degrees.
  • the taper angle is the inclination angle formed by the side surface and the bottom surface of the target layer when the target layer is observed in a direction perpendicular to a cross section (for example, a plane perpendicular to the surface of the substrate). say. If the bottom surface is unclear, the surface of the substrate can be used to define the tilt angle.
  • the light emitting device 11R has a lower electrode 111R, an organic compound layer 112R, a common layer 114, and a common electrode 113.
  • FIG. A light-emitting device 11G shown in FIG. 7B has a lower electrode 111G, an organic compound layer 112G, a common layer 114, and a common electrode 113.
  • FIG. A light-emitting device 11B shown in FIG. 7B has a lower electrode 111B, an organic compound layer 112B, a common layer 114, and a common electrode 113.
  • FIG. A functional layer that can be used for the common layer 114 is, for example, an electron injection layer.
  • the lower electrode 111 is an electrode electrically connected to the transistor and is sometimes referred to as a pixel electrode.
  • the bottom electrode 111 also functions as one of the anode or cathode of the light emitting device and is sometimes referred to as the anode or the cathode.
  • the organic compound layer 112R contains a light-emitting organic compound that emits light having an intensity in at least the red wavelength range.
  • the organic compound layer 112G contains a light-emitting organic compound that emits light having an intensity in at least the green wavelength range.
  • the organic compound layer 112B contains a light-emitting organic compound that emits light having an intensity in at least the blue wavelength range.
  • a layer containing a light-emitting organic compound can be referred to as a light-emitting layer.
  • the organic compound layer 112 and the common layer 114 can each independently have one or more layers selected from an electron injection layer, an electron transport layer, a light-emitting layer, a hole injection layer, and a hole transport layer.
  • An electron injection layer, an electron transport layer, a light-emitting layer, a hole injection layer, and a hole transport layer may be referred to as functional layers. Having two or more layers includes combining two or more different functional layers and having two or more layers having the same functional layer but different materials in combination. Specific materials that can be used for the functional layer will be described later.
  • the organic compound layer 112 has a layered structure of a hole-injection layer, a hole-transport layer, a light-emitting layer, and an electron-transport layer in this order from the lower electrode 111 side, and the common layer 114 is an electron-injection layer. shall be configured to have
  • the functional layer does not necessarily need to contain an organic compound as long as it can exhibit each function.
  • a film containing only an inorganic compound or an inorganic substance can be used for the electron injection layer or the like.
  • the lower electrode 111R, the lower electrode 111G, and the lower electrode 111B are provided for each light emitting device. Also, the common electrode 113 and the common layer 114 are provided as a continuous layer common to each light emitting device. A conductive film having a reflective property is used for the lower electrode 111 and a conductive film having a property of transmitting visible light is used for the common electrode 113, so that the display device can have a top-emission structure.
  • the end of the lower electrode 111 preferably has a tapered shape.
  • the end of the organic compound layer 112 is preferably positioned beyond the lower electrode 111, and when the end of the lower electrode 111 has a tapered shape, the organic compound layer 112 has a shape along the tapered shape.
  • the organic compound layer 112 is processed by photolithography. Therefore, the angle formed by the edge of the organic compound layer 112 and the formation surface is close to 90 degrees in some cases.
  • the edge of the organic compound layer 112 is positioned beyond the edge of the lower electrode 111 .
  • the insulating layer 126 is positioned between two adjacent light-emitting devices and is provided so as to fill at least between two adjacent organic compound layers 112 . More preferably, the insulating layer 126 has a region overlapping with the edge of the organic compound layer 112 . That is, the edge of the insulating layer 126 can be located on the organic compound layer 112, and the height difference between the top and the edge of the insulating layer 126 is reduced. If the difference in height between the upper portion and the end portion of the insulating layer 126 is large, the insulating layer 126 may be easily peeled off; therefore, the difference is preferably small.
  • the top shape of the insulating layer 126 preferably has a smooth convex shape.
  • the upper shape having a convex shape can also be described as a shape in which the central portion of the insulating layer 126 protrudes from the end portions.
  • At least the common layer 114 and the common electrode 113 are provided to cover the insulating layer 126, and cutting of the common layer 114 and the common electrode 113 can be suppressed.
  • An insulating layer 125 is preferably provided in contact with the side surface of the organic compound layer 112 .
  • the insulating layer 125 is positioned between the insulating layer 126 and the organic compound layer 112 and functions as a protective film to prevent the insulating layer 126 from contacting the organic compound layer 112 .
  • the organic compound layer 112 may be dissolved by an organic solvent or the like used when forming or processing the insulating layer 126 . Therefore, by providing the insulating layer 125 between the organic compound layer 112 and the insulating layer 126 as shown in this embodiment mode, the organic compound layer 112 can be protected.
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • a hafnium film, a tantalum oxide film, and the like are included.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • Examples of the oxynitride insulating film include a silicon oxynitride film, an aluminum oxynitride film, and the like.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • a metal oxide film such as a hafnium oxide film, or an inorganic insulating film such as a silicon oxide film
  • ALD atomic layer deposition
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • the insulating layer 125 can be formed by a sputtering method, a chemical vapor deposition (CVD) method, a pulsed laser deposition (PLD) method, an ALD method, or the like.
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene resin, phenolic resin, and precursors of these resins are applied. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used as the insulating layer 126 .
  • a photosensitive resin can be used for the insulating layer 126 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the processed insulating layer 126 can be formed by exposure and development.
  • the surface of the processed insulating layer 126 may have a rounded shape or an uneven shape. Note that etching may be performed in order to adjust the height of the surface of the processed insulating layer 126 .
  • the insulating layer 126 can be processed by ashing using oxygen plasma to adjust the surface height.
  • the insulating layer 126 preferably contains a material that absorbs visible light.
  • the insulating layer 126 itself may be made of a material that absorbs visible light, or the insulating layer 126 may contain a pigment that absorbs visible light.
  • a resin that transmits red, blue, or green light and can be used as a color filter that absorbs other light, or a resin that contains carbon black as a pigment and functions as a black matrix, or the like. can also be used.
  • the top surface of the insulating layer 126 preferably has a portion higher than the top surface of the organic compound layer 112 .
  • the insulating layer 126 is formed using a wet film formation method such as spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife coating. can do.
  • a wet film formation method such as spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife coating. can do.
  • heat treatment is preferably performed in the air at 85° C. to 120° C. for 45 minutes to 100 minutes. Dehydration or degassing from the insulating layer 126 can be performed.
  • a reflective film (eg, a metal film containing one or more selected from silver, palladium, copper, titanium, aluminum, and the like) may be provided between the insulating layer 125 and the insulating layer 126 .
  • the reflective film can be formed after forming the insulating layer 125 .
  • the light emitted from the light-emitting layer can be reflected by the reflective film. Thereby, the light extraction efficiency can be improved.
  • an insulating layer 128 may be provided between the insulating layer 125 and the top surface of the organic compound layer 112 .
  • the insulating layer 128 is a part of a protective layer (also referred to as a mask layer) for protecting the organic compound layer 112 when the organic compound layer 112 is etched.
  • a material that can be used for the insulating layer 125 is preferably used for the insulating layer 128 .
  • both the insulating layer 128 and the insulating layer 125 preferably include an aluminum oxide film, a hafnium oxide film, or a silicon oxide film.
  • the insulating layer 125, the insulating layer 126, and the insulating layer 128 are all insulating layers positioned between light emitting devices, and may be collectively referred to as an insulating laminate. Since the common layer 114 and the common electrode 113 are provided on the insulating laminate, the end of the insulating laminate preferably has a tapered shape so that the common layer 114 and the common electrode 113 are not cut off. In order for the end of the insulating laminate to have a tapered shape, the end of the insulating layer 125 may have a tapered shape, the end of the insulating layer 126 may have a tapered shape, or the insulating layer 128 may have a tapered shape.
  • the tapered shape may have a tapered shape, or the ends of the insulating layer 125, the insulating layer 126, and the insulating layer 128 may all have a tapered shape.
  • the tapered shape is formed by a plurality of insulating layers, it is preferable that the tapered shape at the end of each insulating layer is formed continuously.
  • the central portion of the insulating laminate has a rounded upper surface. That is, the central portion of the insulating laminate has a shape that rises more than the ends.
  • the insulating layer 126 located at the uppermost layer of the insulating laminate is preferably formed using an organic material.
  • the ends of the insulating laminate can have a variety of shapes.
  • the insulating layer 125 located below the insulating laminate may protrude from the insulating layer 126 .
  • part of the upper portion of the insulating layer 125 may be removed when the insulating layer 126 is processed.
  • the upper portion of the insulating layer 125 protruding from the insulating layer 126 is removed, there is an effect that the common layer 114 and the common electrode 113 are not cut.
  • Insulating layer 128 may protrude from insulating layer 126 . In this case, part of the upper portion of the insulating layer 128 may be removed when the insulating layer 126 is processed. Removing the upper portion of the insulating layer 128 protruding from the insulating layer 126 has the effect of not cutting the common layer 114 and the common electrode 113 .
  • the edge of the insulating layer 125 located below the insulating layer 128 may coincide or substantially coincide with the edge of the insulating layer 128 .
  • a protective layer 121 is provided on the common electrode 113 as shown in FIG. 7B.
  • the protective layer 121 has a function of preventing impurities from diffusing into each light emitting element from above.
  • the protective layer 121 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
  • the protective layer 121 is attached to the substrate 170 with an adhesive layer 171 .
  • an adhesive layer 171 various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • an adhesive sheet or the like may be used for the adhesive layer 171 .
  • connection portion 140 shown in FIG. 7C an opening is provided in the insulating layer 125 and the insulating layer 126 above the connection electrode 111C.
  • the connection electrode 111C and the common electrode 113 are electrically connected through the opening.
  • An opening for electrically connecting the connection electrode 111C and the common electrode 113 may be provided in any insulating layer.
  • FIG. 7C shows a configuration in which a common layer 114 is provided on the connection electrode 111C and a common electrode 113 is provided on the common layer 114.
  • a carrier injection layer such as an electron injection layer
  • the material used for the common layer 114 has a sufficiently low resistivity. can be electrically connected.
  • the common electrode 113 and the common layer 114 can be formed using the same mask (also referred to as an area mask or a rough metal mask to distinguish it from a fine metal mask), so manufacturing costs can be reduced.
  • the connecting portion 140 may have a region where the connecting electrode 111 ⁇ /b>C contacts the common electrode 113 .
  • the organic compound layer is separated.
  • crosstalk due to leakage current is suppressed, and an image with extremely high display quality can be displayed.
  • the display device of one embodiment of the present invention can be applied to a super-large display of 40 inches or more and 100 inches or more, or more than 100 inches.
  • the arrangement of sub-pixels is not particularly limited, and a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, a pentile arrangement, or the like can be used.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, polygons with rounded corners, ellipses, and circles.
  • the top surface shape of the sub-pixel here corresponds to the light-emitting region of the light-emitting device.
  • the pixel portion 103 shown in FIG. 8A has a second wiring layer 151b as part of the auxiliary wiring, and the pixel 150 includes a light emitting device 11a having a substantially trapezoidal top shape with rounded corners and a substantially triangular top shape with rounded corners. and a light emitting device 11c having a substantially square or substantially hexagonal top surface shape with rounded corners. Also, the light emitting device 11a has a larger light emitting area than the light emitting device 11b. Thus, the shape and size of each light emitting device can be determined independently. For example, more reliable light emitting devices can be made smaller in size.
  • the light emitting device 11a is a green light emitting device G
  • the light emitting device 11b is a red light emitting device R
  • the light emitting device 11c is a blue light emitting device B. can be done.
  • the pixel portion 103 shown in FIG. 8B has the second wiring layer 151b as part of the auxiliary wiring, and the pentile arrangement is applied to the arrangement of the sub-pixels.
  • Sub-pixel pairs 124a having light-emitting devices 11a and 11b and sub-pixel pairs 124b having light-emitting devices 11b and 11c are laid out alternately in a pentile arrangement.
  • the light emitting device 11a is a red light emitting device R
  • the light emitting device 11b is a green light emitting device G
  • the light emitting device 11c is a blue light emitting device B. can be done.
  • the pixel portion 103 shown in FIG. 8C has a second wiring layer 151b as part of the auxiliary wiring, and the pixels 150a and 150b are arranged in a delta arrangement.
  • pixel 150a has two light emitting devices (light emitting device 11a, light emitting device 11b) in the top row (first row) and one light emitting device (light emitting device 11b) in the bottom row (second row).
  • device 11c has one light-emitting device (light-emitting device 11c) in the upper row (first row) and two light-emitting devices (light-emitting device 11a and light-emitting device 11b) in the lower row (second row). have.
  • the light emitting device 11a may be a red light emitting device R
  • the light emitting device 11b may be a green light emitting device G
  • the light emitting device 11c may be a blue light emitting device B. .
  • the pixel portion 103 shown in FIG. 8D is an example in which the second wiring layer 151b is provided as part of the auxiliary wiring, and the light emitting devices of each color are laid out in a zigzag pattern.
  • two light emitting devices for example, light emitting device 11a and light emitting device 11b or light emitting device 11b and light emitting device 11c aligned in the column direction are misaligned in top view.
  • the light emitting device 11a may be a red light emitting device R
  • the light emitting device 11b may be a green light emitting device G
  • the light emitting device 11c may be a blue light emitting device B. .
  • the top surface shape of the light emitting device may be a polygon with rounded corners, an ellipse, a circle, or the like.
  • the organic compound layer is processed using a resist mask.
  • a resist mask formed over the organic compound layer needs to be cured at a temperature lower than the heat-resistant temperature of the organic compound layer. Therefore, depending on the heat resistance temperature of the material of the organic compound layer and the curing temperature of the resist material, curing for resist mask formation may be insufficient.
  • a resist mask that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the organic compound layer may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like. For example, when an attempt is made to form a resist mask having a square top surface shape, a resist mask having a circular top surface shape may be formed, and the top surface shape of the organic compound layer may be circular.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match. technology
  • OPC Optical Proximity Correction
  • correction patterns are added to graphic corners and the like on the mask pattern.
  • a light-transmitting conductive film is used for the electrode on the side from which light is extracted in the light-emitting device, and a conductive film that reflects visible light is used for the electrode on the side from which light is not extracted.
  • a conductive film that transmits visible light may also be used for the electrode on the side from which light is not extracted.
  • the electrode is preferably laid out between the conductive film that reflects visible light and the organic compound layer. In other words, the light emitted from the light-emitting device only needs to be reflected by the conductive film that reflects visible light and extracted from the display device.
  • Metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be appropriately used as materials for forming the electrodes of the light-emitting device.
  • aluminum-containing alloys also referred to as aluminum alloys
  • alloys of silver, palladium, and copper Ag-Pd-Cu, also referred to as APC).
  • metals such as aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium, neodymium, etc. Alloys containing suitable combinations may also be used.
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium, cesium, calcium, strontium
  • europium such as ytterbium, alloys containing appropriate combinations of these, graphene, etc.
  • those that can emit holes can be used as the anode, and those that can emit electrons can be used as the cathode.
  • the light-emitting device employs a micro-optical resonator (microcavity) structure. Therefore, one of the pair of electrodes of the light-emitting device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light emitting device has a microcavity structure, light emission can be resonated between the pair of electrodes, and the light emitted from the light emitting device can be narrowed and further enhanced.
  • microcavity micro-optical resonator
  • micro-optical resonator microcavity
  • the distance between a pair of electrodes is different in red, green and blue light emitting devices.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode (also referred to as a transparent electrode) having transparency to visible light.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the light-emitting device preferably uses an electrode having a transmittance of 40% or more for visible light (light with a wavelength of 400 nm or more and less than 750 nm).
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the organic compound layer of the light-emitting device has at least a light-emitting layer.
  • a light-emitting layer is a layer containing a light-emitting material (also referred to as a light-emitting substance).
  • the emissive layer can have one or more emissive materials.
  • As the light-emitting substance a substance exhibiting emission colors such as blue, purple, blue-violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, naphthalene derivatives, and the like. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the organic compound layer 112 includes, as layers other than the light-emitting layer, a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, a substance with a high electron-transport property, a substance with a high electron-injection property, A layer containing an electron-blocking material, a bipolar substance (a substance with high electron-transporting and hole-transporting properties), or the like may be further included.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-emitting device, and inorganic compounds may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • each of the organic compound layers 112 may have one or more of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron transport layer, and an electron injection layer.
  • One or more of a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, and an electron injection layer may be applied as the common layer 114 .
  • a carrier injection layer (hole injection layer or electron injection layer) may be formed as the common layer 114 . Note that the light emitting device need not have the common layer 114 .
  • the hole-injecting layer is a layer that injects holes from the anode to the hole-transporting layer, and contains a material with high hole-injecting properties.
  • highly hole-injecting materials include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer by means of the hole-injecting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • a substance having a hole mobility of 10 ⁇ 6 cm 2 /Vs or more is preferable as the hole-transporting material. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include materials with high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • the electron blocking layer is provided in contact with the light emitting layer.
  • the electron blocking layer is a layer containing a material capable of transporting holes and blocking electrons.
  • a material having an electron blocking property can be used among the above hole-transporting materials.
  • the electron blocking layer has hole-transporting properties, it can also be called a hole-transporting layer. Moreover, the layer which has electron blocking property can also be called an electron blocking layer among hole transport layers.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode to the light-emitting layer by the electron-injecting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ electron deficient including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron transport property such as a type heteroaromatic compound can be used.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) level of the organic compound having an unshared electron pair is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bidi(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • the hole blocking layer is provided in contact with the light emitting layer.
  • the hole-blocking layer is a layer containing a material that has electron-transport properties and can block holes.
  • a material having a hole-blocking property can be used among the above-described electron-transporting materials.
  • the hole blocking layer has electron transport properties, it can also be called an electron transport layer. Moreover, among the electron transport layers, a layer having hole blocking properties can also be referred to as a hole blocking layer.
  • the electron injection layer is a layer that injects electrons from the cathode into the electron transport layer, and is a layer containing a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • alkali metals or alkaline earth metals include lithium, cesium, magnesium, etc.
  • Compounds include lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , X is any number), lithium There are oxides (LiO x , where X is an arbitrary number), cesium carbonate, and the like.
  • Organic compounds can also be used as a material that can be used for the electron injection layer.
  • Organic compounds include 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), and 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy).
  • LiPPP 4-phenyl-2-(2-pyridyl)phenolatolithium
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline
  • LiPPP 4-phenyl-2-(2-pyridyl)phenolatolithium
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline
  • the organic compound may contain a dopant.
  • a metal may be used as a dopant, for example, silver (Ag) or ytterbium (Yb) can be used.
  • a composite material containing the above alkali metal or alkaline earth metal and the above organic compound can also be used.
  • the electron injection layer may have a laminated structure of two or more layers.
  • the above-described materials can be appropriately combined for the laminated structure.
  • lithium fluoride can be used for the first layer and ytterbium can be used for the second layer.
  • the electron-transporting material described above may be used as the electron-injecting layer.
  • FIG. 10A shows a block diagram of the display device 10. As shown in FIG.
  • the display device 10 includes a pixel portion 103, a driver circuit portion 12, a driver circuit portion 13, and the like.
  • the pixel portion 103 has a plurality of pixels 150 laid out in a matrix.
  • Pixel 150 has sub-pixel 110R, sub-pixel 110G, and sub-pixel 110B.
  • Subpixel 110R, subpixel 110G, and subpixel 110B each have a light emitting device that functions as a display device.
  • the pixel 150 is electrically connected to the wiring GL, the wiring SLR, the wiring SLG, and the wiring SLB.
  • the wiring SLR, the wiring SLG, and the wiring SLB are each electrically connected to the driver circuit portion 12 .
  • the wiring GL is electrically connected to the drive circuit section 13 .
  • the drive circuit section 12 functions as a source line drive circuit (also referred to as a source driver), and the drive circuit section 13 functions as a gate line drive circuit (also referred to as a gate driver).
  • the wiring GL functions as a gate line, and the wiring SLR, the wiring SLG, and the wiring SLB each function as a source line.
  • Sub-pixel 110R has a light-emitting device that emits red light.
  • Sub-pixel 110G has a light-emitting device that exhibits green light.
  • Sub-pixel 110B has a light-emitting device that emits blue light. Accordingly, the display device 10 can perform full-color display.
  • pixel 150 may have sub-pixels with light-emitting devices that exhibit other colors of light. For example, the pixel 150 may have, in addition to the three sub-pixels described above, a sub-pixel having a light-emitting device that emits white light, a sub-pixel that has a light-emitting device that emits yellow light, or the like.
  • the wiring GL is electrically connected to the sub-pixels 110R, 110G, and 110B arranged in the row direction (the direction in which the wiring GL extends).
  • the wiring SLR, the wiring SLG, and the wiring SLB are electrically connected to the sub-pixels 110R, 110G, or 110B (not shown) arranged in the column direction (the direction in which the wiring SLR and the like extend). .
  • FIG. 10B shows an example of a circuit diagram of a pixel 150 that can be applied to the sub-pixel 110R, sub-pixel 110G, and sub-pixel 110B.
  • Pixel 150 comprises transistor M1, transistor M2, transistor M3, capacitor C1, and light emitting device EL.
  • a wiring GL and a wiring SL are electrically connected to the pixel 150 .
  • the wiring SL corresponds to one of the wiring SLR, the wiring SLG, and the wiring SLB illustrated in FIG. 10A.
  • the transistor M1 has a gate electrically connected to the wiring GL, one of its source and drain electrically connected to the wiring SL, and the other electrically connected to one electrode of the capacitor C1 and the gate of the transistor M2. be.
  • the transistor M2 has one of its source and drain electrically connected to the wiring AL, and the other of its source and drain connected to one electrode of the light-emitting device EL, the other electrode of the capacitor C1, and one of the source and drain of the transistor M3. electrically connected.
  • the transistor M3 has a gate electrically connected to the wiring GL and the other of its source and drain electrically connected to the wiring RL.
  • the other electrode of the light emitting device EL is electrically connected to the wiring CL.
  • a data potential D is applied to the wiring SL.
  • a selection signal is applied to the wiring GL.
  • the selection signal includes a potential that makes the transistor conductive and a potential that makes the transistor non-conductive.
  • a reset potential is applied to the wiring RL.
  • An anode potential is applied to the wiring AL.
  • a cathode potential is applied to the wiring CL.
  • the anode potential is higher than the cathode potential.
  • the reset potential applied to the wiring RL can be set to a potential such that the potential difference between the reset potential and the cathode potential is smaller than the threshold voltage of the light emitting device EL.
  • the reset potential can be a potential higher than the cathode potential, the same potential as the cathode potential, or a potential lower than the cathode potential.
  • Transistor M1 and transistor M3 function as switches.
  • the transistor M2 functions as a transistor for controlling the current flowing through the light emitting device EL.
  • the transistor M1 functions as a selection transistor and the transistor M2 functions as a driving transistor.
  • LTPS transistors are preferably used for all of the transistors M1 to M3.
  • OS transistor for the transistors M1 and M3
  • LTPS transistor for the transistor M2.
  • OS transistors may be used for all of the transistors M1 to M3.
  • one or more of the plurality of transistors included in the driver circuit portion 12 and the plurality of transistors included in the driver circuit portion 13 can be an LTPS transistor, and the other transistors can be OS transistors.
  • an OS transistor can be used as the transistor provided in the pixel portion 103 and an LTPS transistor can be used as the transistor provided in the driver circuit portion 12 and the driver circuit portion 13 .
  • the OS transistor a transistor including an oxide semiconductor for a semiconductor layer in which a channel is formed can be used.
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium, gallium, and zinc (also referred to as IGZO) is preferably used for the semiconductor layer of the OS transistor.
  • oxides containing indium, tin, and zinc are preferably used.
  • oxides containing indium, gallium, tin, and zinc are preferably used.
  • a transistor including an oxide semiconductor which has a wider bandgap and a lower carrier density than silicon, can achieve extremely low off-state current. Therefore, with the small off-state current, charge accumulated in the capacitor connected in series with the transistor can be held for a long time. Therefore, it is preferable to use a transistor including an oxide semiconductor, particularly for the transistor M1 and the transistor M3 which are connected in series to the capacitor C1.
  • a transistor including an oxide semiconductor as the transistor M1 and the transistor M3
  • electric charge held in the capacitor C1 can be prevented from leaking through the transistor M1 or the transistor M3.
  • the charge held in the capacitor C1 can be held for a long time, a still image can be displayed for a long time without rewriting the data of the pixel 150 .
  • transistors are shown as n-channel transistors in FIG. 10B, p-channel transistors can also be used.
  • each transistor included in the pixel 150 is preferably formed side by side over the same substrate.
  • a transistor having a pair of gates that overlap with each other with a semiconductor layer provided therebetween can be used.
  • a structure in which the pair of gates are electrically connected to each other and supplied with the same potential is advantageous in that the on-state current of the transistor is increased and the saturation characteristics are improved.
  • a potential for controlling the threshold voltage of the transistor may be applied to one of the pair of gates.
  • the stability of the electrical characteristics of the transistor can be improved.
  • one gate of the transistor may be electrically connected to a wiring to which a constant potential is applied, or may be electrically connected to its own source or drain.
  • a pixel 150 illustrated in FIG. 10C is an example in which a transistor having a pair of gates is applied to the transistor M3. A pair of gates of the transistor M3 are electrically connected. With such a structure, the period for writing data to the pixel 150 can be shortened.
  • a pixel 150 shown in FIG. 10D is an example in which transistors having a pair of gates are applied to the transistor M1 and the transistor M2 in addition to the transistor M3. In any transistor, a pair of gates are electrically connected to each other. By applying such a transistor to at least the transistor M2, the saturation characteristic is improved, so that it becomes easy to control the light emission luminance of the light emitting device EL, and the display quality can be improved.
  • a pixel 150 shown in FIG. 10E is an example in which one of a pair of gates of the transistor M2 of the pixel 150 shown in FIG. 10D is electrically connected to the source of the transistor M2.
  • Transistor configuration example An example of a cross-sectional structure of a transistor that can be applied to the display device will be described below.
  • FIG. 11A is a cross-sectional view including transistor 410.
  • FIG. 11A is a cross-sectional view including transistor 410.
  • a transistor 410 is a transistor provided over the substrate 401 and using polycrystalline silicon for a semiconductor layer.
  • transistor 410 corresponds to transistor M2 of pixel 150 . That is, FIG. 11A is an example in which one of the source and drain of transistor 410 is electrically connected to the bottom electrode 111 of the light emitting device.
  • the transistor 410 includes a semiconductor layer 411, an insulating layer 412, a conductive layer 413, and the like.
  • the semiconductor layer 411 has a channel formation region 411i and a low resistance region 411n.
  • Semiconductor layer 411 comprises silicon.
  • Semiconductor layer 411 preferably comprises polycrystalline silicon.
  • Part of the insulating layer 412 functions as a gate insulating layer.
  • Part of the conductive layer 413 functions as a gate electrode.
  • the semiconductor layer 411 can also have a structure containing a metal oxide exhibiting semiconductor characteristics (also referred to as an oxide semiconductor).
  • the transistor 410 can be called an OS transistor.
  • the low resistance region 411n is a region containing an impurity element.
  • the transistor 410 is an n-channel transistor, phosphorus, arsenic, or the like may be added to the low resistance region 411n.
  • boron, aluminum, or the like may be added to the low resistance region 411n.
  • the impurity described above may be added to the channel formation region 411i.
  • An insulating layer 421 is provided over the substrate 401 .
  • the semiconductor layer 411 is provided over the insulating layer 421 .
  • the insulating layer 412 is provided to cover the semiconductor layer 411 and the insulating layer 421 .
  • the conductive layer 413 is provided over the insulating layer 412 so as to overlap with the semiconductor layer 411 .
  • An insulating layer 422 is provided to cover the conductive layer 413 and the insulating layer 412 .
  • a conductive layer 414 a and a conductive layer 414 b are provided over the insulating layer 422 .
  • the conductive layers 414 a and 414 b are electrically connected to the low-resistance region 411 n through openings provided in the insulating layers 422 and 412 .
  • Part of the conductive layer 414a functions as one of the source and drain electrodes, and part of the conductive layer 414b functions as the other of the source and drain electrodes.
  • An insulating layer 104 is provided to cover the conductive layers 414 a , 414 b , and the insulating layer 422 .
  • a lower electrode 111 functioning as a pixel electrode is provided on the insulating layer 104 .
  • the lower electrode 111 is provided over the insulating layer 104 and electrically connected to the conductive layer 414b through an opening provided in the insulating layer 104 .
  • an EL layer and a common electrode can be stacked over the lower electrode 111 .
  • FIG. 11B shows a transistor 410a having a pair of gate electrodes.
  • a transistor 410a illustrated in FIG. 11B is mainly different from FIG. 11A in that a conductive layer 415 and an insulating layer 416 are included.
  • the conductive layer 415 is provided over the insulating layer 421 .
  • An insulating layer 416 is provided to cover the conductive layer 415 and the insulating layer 421 .
  • the semiconductor layer 411 is provided so that at least a channel formation region 411i overlaps with the conductive layer 415 with the insulating layer 416 interposed therebetween.
  • part of the conductive layer 413 functions as a first gate electrode and part of the conductive layer 415 functions as a second gate electrode.
  • part of the insulating layer 412 functions as a first gate insulating layer, and part of the insulating layer 416 functions as a second gate insulating layer.
  • the conductive layer 413 and the conductive layer 413 are electrically conductive in a region (not shown) through openings provided in the insulating layers 412 and 416 .
  • the layer 415 may be electrically connected.
  • a conductive layer is formed through openings provided in the insulating layers 422, 412, and 416 in a region (not shown). 414a or the conductive layer 414b and the conductive layer 415 may be electrically connected.
  • the transistor 410 illustrated in FIG. 11A or the transistor 410a illustrated in FIG. 11B can be used.
  • the transistor 410a may be used for all the transistors forming the pixel 150
  • the transistor 410 may be used for all the transistors
  • the transistor 410a and the transistor 410 may be used in combination. .
  • FIG. 11C A cross-sectional view including transistor 410a and transistor 450 is shown in FIG. 11C.
  • Structure Example 1 can be used for the transistor 410a. Note that although an example using the transistor 410a is shown here, a structure including the transistors 410 and 450 may be employed, or a structure including all of the transistors 410, 410a, and 450 may be employed.
  • a transistor 450 is a transistor in which a metal oxide is applied to a semiconductor layer.
  • the configuration shown in FIG. 11C is an example in which, for example, the transistor 450 corresponds to the transistor M1 of the pixel 150 and the transistor 410a corresponds to the transistor M2.
  • 11C shows an example in which one of the source and drain of the transistor 410a is electrically connected to the lower electrode 111.
  • FIG. 11C also shows an example in which the transistor 450 has a pair of gates.
  • the transistor 450 includes a conductive layer 455, an insulating layer 422, a semiconductor layer 451, an insulating layer 452, a conductive layer 453, and the like.
  • a portion of conductive layer 453 functions as a first gate of transistor 450 and a portion of conductive layer 455 functions as a second gate of transistor 450 .
  • part of the insulating layer 452 functions as a first gate insulating layer of the transistor 450 and part of the insulating layer 422 functions as a second gate insulating layer of the transistor 450 .
  • a conductive layer 455 is provided over the insulating layer 412 .
  • An insulating layer 422 is provided to cover the conductive layer 455 .
  • the semiconductor layer 451 is provided over the insulating layer 422 .
  • the insulating layer 452 is provided to cover the semiconductor layer 451 and the insulating layer 422 .
  • the conductive layer 453 is provided over the insulating layer 452 and has regions that overlap with the semiconductor layer 451 and the conductive layer 455 .
  • An insulating layer 426 is provided to cover the insulating layer 452 and the conductive layer 453 .
  • a conductive layer 454 a and a conductive layer 454 b are provided over the insulating layer 426 .
  • the conductive layers 454 a and 454 b are electrically connected to the semiconductor layer 451 through openings provided in the insulating layers 426 and 452 .
  • Part of the conductive layer 454a functions as one of the source and drain electrodes, and part of the conductive layer 454b functions as the other of the source and drain electrodes.
  • An insulating layer 104 is provided to cover the conductive layers 454 a , 454 b , and the insulating layer 426 .
  • the conductive layers 414a and 414b electrically connected to the transistor 410a are preferably formed by processing the same conductive film as the conductive layers 454a and 454b. 11C, the conductive layer 414a, the conductive layer 414b, the conductive layer 454a, and the conductive layer 454b are formed over the same surface (that is, in contact with the top surface of the insulating layer 426) and contain the same metal element. showing. At this time, the conductive layers 414 a and 414 b are electrically connected to the low-resistance region 411 n through the insulating layers 426 , 452 , 422 , and openings provided in the insulating layer 412 . This is preferable because the manufacturing process can be simplified.
  • the conductive layer 413 functioning as the first gate electrode of the transistor 410a and the conductive layer 455 functioning as the second gate electrode of the transistor 450 are preferably formed by processing the same conductive film.
  • FIG. 11C shows a configuration in which the conductive layer 413 and the conductive layer 455 are formed on the same surface (that is, in contact with the upper surface of the insulating layer 412) and contain the same metal element. This is preferable because the manufacturing process can be simplified.
  • the insulating layer 452 functioning as a first gate insulating layer of the transistor 450 covers the edge of the semiconductor layer 451.
  • the transistor 450a shown in FIG. It may be processed so that the top surface shape matches or substantially matches that of the layer 453 .
  • the phrase “the upper surface shapes are approximately the same” means that at least part of the contours of the stacked layers overlap.
  • the upper layer and the lower layer may be processed with the same mask pattern or partially with the same mask pattern. Strictly speaking, however, the outlines do not overlap, and the upper layer may be located inside the lower layer, or the upper layer may be located outside the lower layer.
  • transistor 410a corresponds to the transistor M2 and is electrically connected to the pixel electrode
  • the present invention is not limited to this.
  • the transistor 450 or the transistor 450a may correspond to the transistor M2.
  • transistor 410a may correspond to transistor M1, transistor M3, or some other transistor.
  • the display device has one or more of sharpness of image, sharpness of image, high saturation, and high contrast ratio. be able to.
  • the leakage current that can flow through the transistor of the pixel circuit is extremely low, and the horizontal leakage current between the light emitting devices of the above embodiment is extremely low.
  • the pixel portion may have a light-receiving device in addition to the light-emitting device, and a display device having a light-receiving function can be provided.
  • a display device having a light receiving function can detect contact or proximity of an object while displaying an image.
  • the region in which the light receiving device is located is referred to as a light receiving section, and the light receiving section also has a switching element for controlling the light receiving device.
  • a light receiving device controlled by a switching element has a function of receiving light from a light source and can convert the received light into an electrical signal.
  • some sub-pixels may exhibit light as a light source and the remaining sub-pixels may display an image.
  • a pixel 150 shown in FIGS. 12A, 12B, and 12C has a sub-pixel 110G, a sub-pixel 110B, a sub-pixel 110R, and a light receiving portion S (labeled R, G, B, and S in the drawings). have wiring. 12A, 12B, and 12C show a second wiring layer 151b that is part of the auxiliary wiring 151. FIG. In FIGS. 12A, 12B, and 12C, symbols R, G, B, and S are attached to each region in order to easily distinguish each sub-pixel.
  • Pixels 150 shown in FIG. 12A are applied with a stripe arrangement, and second pixels surround subpixels 110G, 110B, 110R, and light-receiving portions S (labeled R, G, B, and S in the figure).
  • wiring layer 151b is provided.
  • a matrix arrangement is applied to the pixel shown in FIG. 12B, and a second wiring layer 151b is provided so as to surround the sub-pixel 110G, the sub-pixel 110B, the sub-pixel 110R, and the light receiving portion S. As shown in FIG. 12B, a second wiring layer 151b is provided so as to surround the sub-pixel 110G, the sub-pixel 110B, the sub-pixel 110R, and the light receiving portion S. As shown in FIG.
  • the pixel 150 shown in FIG. 12C has an arrangement in which three sub-pixels (sub-pixel 110R, sub-pixel 110G, light-receiving portion S) are vertically arranged next to one sub-pixel (sub-pixel 110B).
  • a second wiring layer 151b is provided so as to surround the sub-pixel 110G, the sub-pixel 110B, the sub-pixel 110R, and the light receiving portion S. As shown in FIG.
  • layout of sub-pixels is not limited to the configurations shown in FIGS. 12A to 12C.
  • layout of the second wiring layer 151b is not limited to the configurations shown in FIGS. 12A to 12C.
  • the display device of one embodiment of the present invention can perform high-definition or high-resolution imaging.
  • the light receiving unit S can be used to capture an image for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • the light receiving section S can be used as a touch sensor (also referred to as a direct touch sensor) or a near touch sensor (also referred to as a hover sensor, hover touch sensor, non-contact sensor, touchless sensor) or the like.
  • a touch sensor also referred to as a direct touch sensor
  • a near touch sensor also referred to as a hover sensor, hover touch sensor, non-contact sensor, touchless sensor
  • a touch sensor or near-touch sensor can detect the proximity or contact of an object (such as a finger, hand, or pen).
  • a touch sensor can detect an object by direct contact between the display device and the object.
  • the near-touch sensor can detect the object even if the object does not touch the display device.
  • the display device can detect the object when the distance between the display device and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less.
  • the display device can be operated without direct contact with the object, in other words, the display device can be operated without contact.
  • the risk of staining or scratching the display device can be reduced, or the object can be displayed without directly touching the stain (for example, dust, virus, etc.) attached to the display device. It becomes possible to operate the device.
  • the light-receiving units S are provided in all the pixels included in the display device.
  • the light-receiving portion S does not require high accuracy as compared to the case of capturing an image of a fingerprint or the like. Just do it.
  • the detection speed can be increased by reducing the number of light-receiving portions S included in the display device than the number of sub-pixels 110R and the like.
  • FIG. 12D shows an example of a pixel circuit for a sub-pixel (PIX1) with a light receiving device.
  • the pixel circuit shown in FIG. 12D has a light receiving device PD, a transistor M11, a transistor M12, a transistor M13, a transistor M14, and a capacitive element C2.
  • a light receiving device PD a transistor M11, a transistor M12, a transistor M13, a transistor M14, and a capacitive element C2.
  • an example using a photodiode is shown as the light receiving device PD.
  • the light receiving device PD has an anode electrically connected to the wiring V1 and a cathode electrically connected to one of the source and the drain of the transistor M11.
  • the transistor M11 has its gate electrically connected to the wiring TX, and the other of its source and drain electrically connected to one electrode of the capacitor C2, one of the source and drain of the transistor M12, and the gate of the transistor M13.
  • the transistor M12 has a gate electrically connected to the wiring RES and the other of the source and the drain electrically connected to the wiring V2.
  • One of the source and the drain of the transistor M13 is electrically connected to the wiring V3, and the other of the source and the drain is electrically connected to one of the source and the drain of the transistor M14.
  • the transistor M14 has a gate electrically connected to the wiring SE and the other of the source and the drain electrically connected to the wiring OUT1.
  • a constant potential is supplied to each of the wiring V1, the wiring V2, and the wiring V3.
  • the wiring V2 is supplied with a potential higher than that of the wiring V1.
  • the transistor M12 is controlled by a signal supplied to the wiring RES, and has a function of resetting the potential of the node connected to the gate of the transistor M13 to the potential supplied to the wiring V2.
  • the transistor M11 is controlled by a signal supplied to the wiring TX, and has a function of controlling the timing at which the potential of the node changes according to the current flowing through the light receiving device PD.
  • the transistor M13 functions as an amplifying transistor that outputs according to the potential of the node.
  • the transistor M14 is controlled by a signal supplied to the wiring SE, and functions as a selection transistor for reading an output corresponding to the potential of the node with an external circuit electrically connected to the wiring OUT1.
  • transistor in which a semiconductor layer in which a channel is formed using a metal oxide (oxide semiconductor) is used as each of the transistor M11, the transistor M12, the transistor M13, and the transistor M14.
  • An OS transistor with a wider bandgap and a lower carrier density than silicon can achieve extremely low off-state current.
  • transistors in which silicon is used as a semiconductor in which a channel is formed can be used for the transistors M11 to M14.
  • highly crystalline silicon such as single crystal silicon or polycrystalline silicon because high field-effect mobility can be achieved and high-speed operation is possible.
  • At least one of the transistors M11 to M14 may be formed using an oxide semiconductor, and the rest may be formed using silicon.
  • transistors are shown as n-channel transistors in FIG. 12D, p-channel transistors can also be used.
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 0.01 Hz to 240 Hz) according to the content displayed on the display device.
  • driving that reduces the power consumption of the display device by driving with a reduced refresh rate may be referred to as idling stop (IDS) driving.
  • IDS idling stop
  • the drive frequency of the touch sensor or the near touch sensor may be changed according to the refresh rate.
  • the drive frequency of the touch sensor or the near-touch sensor can be set to a frequency higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near-touch sensor can be increased.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to these, aluminum, gallium, yttrium, tin and the like are preferably contained. In addition, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained. .
  • the metal oxide can be formed by a sputtering method, a CVD method such as an MOCVD method, an ALD method, or the like.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the peak shape of the XRD spectrum is almost symmetrical.
  • the peak shape of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of a film or substrate can be evaluated by a diffraction pattern (also referred to as a nanobeam electron diffraction pattern) observed by a nano beam electron diffraction (NBED) method.
  • a diffraction pattern also referred to as a nanobeam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film deposited at room temperature is neither crystalline nor amorphous, but in an intermediate state and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS contains indium (In) and oxygen.
  • a tendency to have a layered crystal structure also referred to as a layered structure in which a layer (hereinafter referred to as an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit lattice is not always regular hexagon and may be non-regular hexagon. Moreover, the distortion may have a lattice arrangement of pentagons, heptagons, or the like. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the a-b plane direction, and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a so-called polycrystal.
  • a grain boundary becomes a recombination center, and there is a high possibility that carriers are trapped and cause a decrease in the on-state current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • a CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern like a halo pattern is obtained. Observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the nanocrystal size (for example, 1 nm or more and 30 nm or less)
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam with a probe diameter close to or smaller than the nanocrystal size for example, 1 nm or more and 30 nm or less
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • one or more metal elements are unevenly distributed in the metal oxide, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). is called). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In—Ga—Zn oxide are represented by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region mainly composed of indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • a CAC-OS can be formed, for example, by a sputtering method under conditions in which the substrate is not heated.
  • a sputtering method one or more selected from inert gas (typically argon), oxygen gas, and nitrogen gas may be used as the film formation gas. good.
  • inert gas typically argon
  • oxygen gas oxygen gas
  • nitrogen gas nitrogen gas
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures and each has different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less . 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear and may behave like a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are equal to 2. ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • a thin film (an insulating film, a semiconductor film, a conductive film, or the like) forming a display device can be formed by a sputtering method, a CVD method, a vacuum evaporation method, a PLD method, an ALD method, or the like.
  • the CVD method includes a plasma enhanced CVD (PECVD) method, a thermal CVD method, or the like.
  • PECVD plasma enhanced CVD
  • thermal CVD methods is a metal organic chemical vapor deposition (MOCVD) method.
  • Thin films (insulating films, semiconductor films, conductive films, resin films, etc.) that make up the display device can be processed by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, It can be formed by a method such as curtain coating or knife coating. These are wet deposition methods.
  • a photolithography method or the like can be used to process the thin film that constitutes the display device.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • a thin film may be directly formed by a film forming method using a metal mask or the like.
  • the photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure may be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture thereof.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light, X-rays, or the like may be used.
  • An electron beam can also be used instead of the light used for exposure.
  • the use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a resist mask is not required when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used for etching the thin film.
  • a substrate is prepared.
  • a substrate having heat resistance that can withstand at least subsequent heat treatment can be used.
  • a substrate having heat resistance that can withstand at least subsequent heat treatment can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
  • a semiconductor substrate such as a single crystal semiconductor substrate, a polycrystalline semiconductor substrate, a compound semiconductor substrate made of silicon germanium or the like, or an SOI substrate made of silicon, silicon carbide, or the like can be used.
  • a substrate in which a pixel circuit including a semiconductor element such as a transistor is formed on the semiconductor substrate or the insulating substrate A substrate on which a gate line driver circuit (gate driver), a source line driver circuit (source driver), or the like is formed may be used in addition to the pixel circuit.
  • a substrate provided with an arithmetic circuit, a memory circuit, or the like may be used.
  • an insulating layer 102 is formed on the substrate described above.
  • An inorganic material or an organic material can be used for the insulating layer 102 .
  • An organic material is preferable because the planarity of the top surface of the insulating layer 104 can be ensured.
  • the organic material one selected from acrylic resins, polyimide resins, epoxy resins, imide resins, polyamide resins, polyimideamide resins, silicone resins, siloxane resins, benzocyclobutene resins, phenolic resins, and precursors of these resins. Or two or more can be used. When two or more are used, selected organic materials may be laminated.
  • insulating layer 102 has contact holes 158 .
  • the contact hole 158 can be formed by photolithography or the like.
  • a conductive layer 160 and a first wiring layer 151a are formed over the insulating layer 102 and in the contact hole 158. Then, as shown in FIG. That is, the conductive layer 160 and the first wiring layer 151a are formed on the same formation surface through the same process. Specifically, the conductive film formed over the insulating layer 102 and in the contact hole 158 can be processed to obtain the conductive layer 160 and the first wiring layer 151a.
  • the conductive layer 160 is electrically connected to the transistor of the pixel circuit and also electrically connected to the lower electrode 111 .
  • the conductive layer 160 can be stretched over the insulating layer 102 and can function as a signal line, a power supply line, a scanning line, or the like.
  • the conductive layer 160 may be a conductive layer for electrically connecting the transistor and the lower electrode 111 without functioning as a wiring.
  • the first wiring layer 151a can function as a lower wiring layer of the auxiliary wiring 151, and is processed on the insulating layer 102 into an elongated shape, lattice shape, or the like. Since the first wiring layer 151a does not affect the aperture ratio, it may have a shape with a large area. However, the first wiring layer 151 a should not be in contact with the conductive layer 160 .
  • the conductive layer 160 and the first wiring layer 151a are made of aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium. , and neodymium, etc., and alloys obtained by appropriately combining these can be used. Since the first wiring layer 151a functions as a lower wiring layer of the auxiliary wiring, it is preferable to use a metal material with low resistivity.
  • the conductive layer 160 and the first wiring layer 151a may have a single-layer structure containing the above metal material, or may have a laminated structure containing the above metal material.
  • insulating layer 104 is formed on insulating layer 102 .
  • An inorganic material or an organic material can be used for the insulating layer 104 .
  • An organic material is preferable because the planarity of the top surface of the insulating layer 104 can be ensured.
  • the organic material one selected from acrylic resins, polyimide resins, epoxy resins, imide resins, polyamide resins, polyimideamide resins, silicone resins, siloxane resins, benzocyclobutene resins, phenolic resins, and precursors of these resins. Or two or more can be used. When two or more are used, selected organic materials may be laminated.
  • the insulating layer 104 has contact holes 159 .
  • the contact hole 159 can be formed by a photolithography method or the like, and part of the conductive layer 160 is exposed through the contact hole 159 .
  • the contact hole 159 is preferably provided at a position which does not overlap with the contact hole 158 but overlaps with the conductive layer 160 provided over the flat top surface of the insulating layer 102 .
  • the contact hole 159 overlaps with the contact hole 158 , the contact hole 159 is preferably larger than the contact hole 158 .
  • conductive layer 161, resin layer 163, and conductive layer 162 As shown in FIG. 13A, a conductive layer 161 is formed in the contact hole 159, then a resin layer 163 is formed, and then a conductive layer 162 is formed.
  • the lower electrode 111 and the second wiring layer 151b may be formed without forming the conductive layer 161, the resin layer 163, and the conductive layer 162.
  • a conductive film to be the conductive layer 161 is formed over the insulating layer 104 and the contact hole 159 .
  • the top surface of the insulating layer 104 is a surface on which the conductive film is formed, and it is preferable that the top surface is flat because the conductive film is less likely to be cut.
  • Conductive layer 161 is selected from aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium, neodymium, and the like. In addition, one or two or more metal materials, alloys obtained by appropriately combining these materials, or the like can be used.
  • a layer containing a resin as an organic material (referred to as a resin layer) 163 is preferably formed in the concave portion.
  • the resin layer 163 can reduce unevenness caused by the insulating layer 104 , the contact hole 159 , and the conductive layer 161 .
  • a photosensitive resin is preferably used as the resin layer 163 .
  • the resin layer 163 can be formed by first forming a resin film, exposing the resin film through a resist mask, and then performing development processing. More preferably, in order to adjust the height of the upper surface of the resin layer 163, the upper portion of the resin layer 163 may be etched by ashing or the like.
  • the resin layer 163 can be formed by forming a resin film and then etching the upper portion of the resin film by ashing or the like. Ashing is performed until the surface of the conductive film to be the conductive layer 161 is exposed.
  • the film thickness of the resin layer 163 can be optimized by ashing or the like.
  • the conductive layer 162 preferably has one or more metals selected from the metals shown as the conductive layer 161 .
  • a conductive film to be the lower electrode 111 and the second wiring layer 151b is formed to cover the conductive film to be the conductive layer 161 and the conductive film to be the conductive layer 162 .
  • the lower electrode 111 has the function of an anode or a cathode, and metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be used as appropriate. For specific materials that can be used for the lower electrode 111, the description of the lower electrode can be referred to.
  • the second wiring layer 151 b is preferably formed using the same material as the lower electrode 111 .
  • a resist mask is formed over the three layers of conductive films by a photolithography method, and unnecessary portions of the conductive films are removed by etching.
  • the conductive layer 161, the conductive layer 162, the lower electrode 111, and the second wiring layer 151b can be formed in the same etching step using the same resist mask.
  • the lower electrode 111 and the second wiring layer 151b can have flat upper surfaces due to the resin layer 163 and the like.
  • the conductive layers 161 and 162 are formed in the same etching step using the same resist mask, the conductive layers 161 and 162 may be processed separately using different resist masks. . At this time, it is preferable to process the conductive layer 161 and the conductive layer 162 so that the conductive layer 162 is included inside the outline of the conductive layer 161 when viewed from above.
  • the conductive layer 162 and the lower electrode 111 and the like are formed in the same etching process using the same resist mask, the conductive layer 162 and the lower electrode 111 and the like are individually processed using different resist masks. good too. At this time, it is preferable to process the conductive layer 162, the lower electrode 111 and the like so that the lower electrode 111 is included inside the outline of the conductive layer 162 and the like when viewed from above.
  • an organic compound film 112fR capable of emitting red light is formed to cover the lower electrode 111 and the second wiring layer 151b.
  • the organic compound film 112fR is formed by laminating each functional layer of the light emitting device.
  • the film is formed using an organic compound film capable of emitting red light
  • the film may be formed using an organic compound capable of emitting green light.
  • a film may be formed using an organic compound capable of emitting blue light.
  • the organic compound film 112fR may have a single structure or a tandem structure.
  • a charge generation layer is preferably provided between the first light-emitting unit and the second light-emitting unit.
  • a layer containing a hole-transporting material and an acceptor material can be used for the charge-generating layer.
  • a layer containing an electron-transporting material and a donor material can be used for the charge generation layer.
  • the material used for the electron injection layer described above may be applied. Since the charge generating layer is processed by etching or the like later, it is preferable to use a material that does not contain an alkali metal or an alkaline earth metal among the materials used for the electron injection layer. For example, it is preferable to use an organic compound containing a dopant. NBPhen can be used as the organic compound, and Ag can be used as the dopant.
  • a functional layer included in the organic compound film 112fR can be formed by a vacuum deposition method. Note that the functional layer included in the organic compound film 112fR can also be formed by a sputtering method, an inkjet method, or the like.
  • the organic compound film 112fR is formed to cover the second wiring layer 151b in FIG. 13B, it does not have to cover the second wiring layer 151b. As a result, the second wiring layer 151b can be prevented from coming into contact with the organic compound film 112fR. Preferable without touching.
  • the organic compound film 112fR may be separately formed using a fine metal mask.
  • the organic compound film 112fR is preferably formed so as to cover only the lower electrode 111R.
  • the second wiring layer 151b can be prevented from coming into contact with the organic compound film 112fR. Preferable without touching.
  • the organic compound film 112fR has each functional layer, and preferably forms a laminate having at least a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer in order from the lower electrode 111, for example.
  • One of the functional layers is an electron injection layer located on the electron transport layer.
  • the electron injection layer is a common layer, it will be formed later.
  • the common layer may be any functional layer positioned between the light emitting layer and the common electrode. Of course, all functional layers may be divided into sub-pixels without providing a common layer.
  • a material having high heat resistance is preferably used for the electron-transporting layer.
  • a material having high heat resistance for example, a material having a glass transition point of 110° C. or higher and 165° C. or lower, preferably 120° C. or higher and 135° C. or lower may be used.
  • the electron transport layer exposed to processing may have a laminated structure.
  • a laminated structure there is a structure in which a second electron-transporting layer is laminated on a first electron-transporting layer. Since the first electron-transporting layer is covered with the second electron-transporting layer during processing, the first electron-transporting layer may have lower heat resistance than the second electron-transporting layer.
  • a material having a glass transition point of 110° C. or higher and 165° C. or lower, preferably 120° C. or higher and 135° C. or lower is used for the second electron-transporting layer.
  • a material having a temperature lower than the glass transition point of the layer for example, 100° C. or higher and 155° C. or lower, preferably 110° C. or higher and 125° C. or lower, can be used.
  • the above processing is preferably performed after a functional layer (eg, an electron-transport layer or the like) is formed above the light-emitting layer.
  • a functional layer eg, an electron-transport layer or the like
  • mask film 144R Furthermore, it is preferable to form a mask layer or the like on the organic compound film.
  • the mask layer can also prevent damage due to processing from entering the light-emitting layer. By applying the method, a highly reliable display panel can be provided.
  • a mask layer is positioned above an organic compound film and has a function of protecting the organic compound film during the manufacturing process. Therefore, as shown in FIG. 13C, a mask film 144R is formed to cover the organic compound film 112fR.
  • the mask film 144R it is preferable to use a film having a large etching selectivity with respect to the organic compound film 112fR when etching the organic compound film 112fR.
  • the mask film 144R may be laminated, and the mask film 144R should preferably use a film having a high etching selectivity with respect to an upper mask film (specifically, the mask film 146R), etc., which will be described later.
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be suitably used.
  • the mask film 144R can be formed by various film forming methods such as a sputtering method, a vapor deposition method, a CVD method, and an ALD method.
  • the mask film 144R that is directly formed on the organic compound film 112fR is preferably formed using the ALD method.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials can be used.
  • a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (In--Ga--Zn oxide, also referred to as IGZO) can be used.
  • indium oxide, indium zinc oxide (In—Zn oxide), indium tin oxide (In—Sn oxide), indium titanium oxide (In—Ti oxide), indium tin zinc oxide (In—Sn -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide), or the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • the mask film 144R may have an inorganic material.
  • an oxide such as aluminum oxide, hafnium oxide, or silicon oxide, a nitride such as silicon nitride or aluminum nitride, or an oxynitride such as silicon oxynitride can be used.
  • Such an inorganic material can be formed using a film formation method such as a sputtering method, a CVD method, or an ALD method.
  • the mask film 144R may have an organic material.
  • the organic material a material that can be dissolved in a chemically stable solvent may be used for the organic compound film 112fR.
  • a material that dissolves in water or alcohol can be suitably used for the mask film 144R.
  • a wet film formation method can be used to form the mask film 144R.
  • Organic resin such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used as the mask film 144R.
  • a fluorine resin such as a perfluoropolymer may be used for the mask film 144R.
  • a mask film 146R is formed on the mask film 144R.
  • mask films are laminated, but it is also possible to protect the organic compound film 112fR by using only the mask film 144R or only the mask film 146R as a single-layer mask film.
  • the mask film 146R may be used as a hard mask when etching the mask film 144R later. After processing the mask film 146R, the mask film 144R is exposed. Therefore, when the mask film 146R is used as a half degree mask, it is preferable to select a combination of films having a high etching selectivity ratio for the mask film 144R and the mask film 146R.
  • the mask film 146R can be selected from various materials according to the etching conditions for the mask film 144R and the etching conditions for the mask film 146R. For example, it can be selected from films that can be used for the mask film 144R, and a material different from that of the mask film 144R can be selected.
  • an oxide film or an oxynitride film can be used as the mask film 146R.
  • Representative oxide or oxynitride films include silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, or hafnium oxynitride.
  • a nitride film for example, can be used as the mask film 146R.
  • Typical nitride films include silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, or germanium nitride.
  • an inorganic material such as aluminum oxide, hafnium oxide, or silicon oxide formed by ALD is used as the mask film 144R, and indium gallium zinc is formed by sputtering as the mask film 146R.
  • a metal oxide containing indium such as an oxide (In—Ga—Zn oxide, also referred to as IGZO) can be used.
  • the mask film 146R combined with the mask film 144R one or more metals selected from tungsten, molybdenum, copper, aluminum, titanium, tantalum, etc., and alloys containing such metals can be used.
  • the above metals or alloys are preferably used.
  • the film thickness of the mask film 146R is preferably larger than the film thickness of the mask film 144R.
  • a resist mask 143 is formed on the mask film 146R at a position overlapping the lower electrode 111R. At this time, a resist mask is not formed at positions overlapping with the lower electrode 111G, the lower electrode 111B, and the auxiliary wiring 151 .
  • a resist material containing a photosensitive resin such as a positive resist material or a negative resist material can be used.
  • the resist mask 143 may be formed directly on the mask film 144R without providing the mask film 146R.
  • etching the mask film 146R it is preferable to use etching conditions with a high selectivity so that the mask film 144R is not removed by the etching.
  • Etching of the mask film 146R can be performed by wet etching or dry etching.
  • the removal of the resist mask 143 can be performed by wet etching or dry etching.
  • Etching of the mask film 144R can be performed by wet etching or dry etching.
  • the etching of the organic compound film 112fR it is preferable to use dry etching using an etching gas that does not contain oxygen as its main component. This is because, as described above, if oxygen contacts the organic compound film 112fR, the characteristics may be adversely affected. Specifically, the organic compound film 112fR may be degraded, but by using an etching gas that does not contain oxygen as its main component, the degeneration can be suppressed and a highly reliable display device can be realized.
  • the etching gas containing no oxygen as a main component include rare gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , H 2 and He.
  • a mixed gas of the above gas and a diluent gas containing no oxygen may be used as the etching gas.
  • the etching of the organic compound film 112fR is not limited to the above, and dry etching using other gas may be performed, or wet etching may be performed.
  • the taper angle of the end face of the organic compound layer 112R is preferably 45 degrees or more and less than 90 degrees.
  • the insulating layer 104 is exposed when the organic compound film 112fR is etched. Therefore, recesses may be formed in the insulating layer 104 in regions overlapping with the slits 118 . Note that when it is not desired to form a concave portion, it is preferable to use a film having high resistance to the etching treatment of the organic compound film 112fR as the insulating layer 104 . For example, an insulating film containing an inorganic material may be used as the insulating layer 104 .
  • the organic compound layer 112G is formed using the mask layer 145G and the mask layer 147G with reference to etching from the deposition of the organic compound film 112fR.
  • the taper angle of the end surface of the organic compound layer 112G is preferably 45 degrees or more and less than 90 degrees.
  • the organic compound layer 112G becomes an organic compound layer of a light-emitting device that emits green light.
  • the organic compound layer 112B is formed using the mask layer 145B and the mask layer 147B with reference to etching from the formation of the organic compound film 112fR.
  • the taper angle of the end face of the organic compound layer 112B is preferably 45 degrees or more and less than 90 degrees.
  • the organic compound layer 112B becomes an organic compound layer of a light-emitting device that emits green light.
  • At least a functional layer with high heat resistance is preferably positioned on the outermost surface of the organic compound layer 112 .
  • No organic compound film is disposed on the second wiring layer 151b, and the second wiring layer 151b is exposed.
  • slits 118 are formed between the organic compound layers 112 . That is, in the organic compound layer 112 obtained through the process of processing using a photolithography method, the width of the slit 118 indicated by the arrow in FIG. 15B can be 8 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, or 1 ⁇ m or less. .
  • the width of slit 118 corresponds to the distance between each sub-pixel. By narrowing the distance between sub-pixels, a display device with high definition and high aperture ratio can be provided.
  • the adjacent organic compound layers 112 are spaced apart from each other, so that current leakage paths (leak paths) are separated, and leakage current (also referred to as side leakage or side leakage current) can be suppressed. Accordingly, it is possible to improve luminance, contrast, display quality, power efficiency, reduce power consumption, or the like in a light-emitting device.
  • the end faces of the adjacent organic compound layers 112 are preferably shaped to face each other with the slit 118 therebetween. Note that the end surfaces of the organic compound layer formed using a metal mask cannot face each other. Therefore, the organic compound layer having a shape in which the end faces face each other is different from the organic compound layer formed using a metal mask.
  • the insulating layer 104 is exposed when the organic compound film is etched. Therefore, recesses may be formed in the insulating layer 104 in regions overlapping with the slits 118 . Note that when it is not desired to form a recess, it is preferable to use a film having high resistance to etching of an organic compound film as the insulating layer 104 . For example, an insulating film containing an inorganic material may be used as the insulating layer 104 .
  • Mask layer 147 is removed to expose the top surface of mask layer 145, as shown in FIG. 15C.
  • an insulating film 125f is formed to cover the mask layer 145 and the second wiring layer 151b.
  • the insulating film 125 f functions as a barrier layer that prevents impurities such as water from diffusing into the organic compound layer 112 .
  • the insulating film 125f is preferably formed by the ALD method, which has excellent step coverage, because the side surfaces of the organic compound layer 112 can be suitably covered.
  • the insulating film 125f, the mask layer 145, and the mask layer 147 are preferably made of one or more inorganic materials selected from aluminum oxide, hafnium oxide, silicon oxide, and the like formed by ALD.
  • the material that can be used for the insulating film 125f is not limited to this.
  • materials that can be used for the mask layer 145 can be used as appropriate.
  • an insulating layer 126 is formed in a region overlapping with the slit 118 or the like.
  • the insulating layer 126 can be formed by a method similar to that of the resin layer 163 .
  • the insulating layer 126 can be formed by performing exposure and development after forming a photosensitive resin.
  • the insulating layer 126 may be formed by partially etching the resin by ashing or the like after forming the resin over the entire surface.
  • the insulating layer 126 has a width greater than the width of the slit 118 is shown.
  • An insulating layer 126 is provided so that a part of the upper surface of the second wiring layer 151b is exposed.
  • FIG. 16B portions of the insulating film 125f and the mask layer 145 that are not covered with the insulating layer 126 are removed by etching to expose a portion of the upper surface of the organic compound layer 112. As shown in FIG. As a result, the insulating layer 125 and the mask layer 145 remain in the region overlapping with the insulating layer 126 .
  • the central portion of the insulating layer 126 is located above the ends of the insulating layer 126, and the central portion has a region that rises above the ends.
  • the top surface of the insulating layer 126 is preferably located above the top surface of the organic compound layer 112 . Further, it is preferable that the end portion of the insulating layer 126 has a tapered shape.
  • the insulating film 125f and the mask layer 145 are preferably etched in the same step.
  • etching of the mask layer 145 is preferably performed by wet etching that causes less etching damage to the organic compound layer 112 .
  • wet etching using a tetramethylammonium hydroxide aqueous solution (TMAH), dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • At least one of the insulating film 125f and the mask layer 145 is preferably removed by dissolving in a solvent such as water or alcohol.
  • a solvent such as water or alcohol.
  • various alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), or glycerin can be used as the alcohol capable of dissolving the insulating film 125f and the mask layer 145 .
  • drying treatment is preferably performed in order to remove water contained inside the organic compound layer 112 and the like and water adsorbed to the surface.
  • heat treatment is preferably performed in an inert gas atmosphere or a reduced pressure atmosphere.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 120° C.
  • a reduced-pressure atmosphere is preferable because drying can be performed at a lower temperature.
  • a portion of the upper surface of the second wiring layer 151b is exposed by removing a portion of the insulating film 125f.
  • the common layer 114 is formed to cover the organic compound layer 112, the insulating layer 125, the mask layer 145, the insulating layer 126, and the like.
  • the common layer 114 can use materials that can be used for the electron injection layer described above, such as alkali metals, alkaline earth metals, or compounds thereof. Further, as the above material, there is a composite material of an organic compound and an alkali metal or an alkaline earth metal. Specifically, lithium fluoride (LiF), a composite material containing NBPhen and Ag, or the like is preferably used.
  • LiF lithium fluoride
  • the common layer 114 can be formed by the same method as the organic compound film 112fR and the like. In order to obtain the above composite material, co-evaporation may be used to form a film.
  • a common electrode 113 is formed over the common layer 114, as shown in FIG. 16C.
  • the common electrode 113 can be formed by a film formation method such as an evaporation method or a sputtering method. Alternatively, a film formed by an evaporation method and a film formed by a sputtering method may be stacked.
  • the common electrode 113 it is preferable to form the common electrode 113 so as to include the region where the common layer 114 is formed.
  • a common layer 114 may be located between the second wiring layer 151 b and the common electrode 113 . At this time, it is preferable to use a material with as low electrical resistance as possible for the common layer 114 . Alternatively, it is preferable to reduce the electrical resistance in the thickness direction of the common layer 114 by forming it as thin as possible. For example, by using an electron-injecting or hole-injecting material with a thickness of 1 nm or more and 5 nm or less, preferably 1 nm or more and 3 nm or less, for the common layer 114, the second wiring layer 151b and the common electrode 113 Electric resistance can be reduced to a negligible level.
  • the common layer 114 does not have to be positioned between the second wiring layer 151b and the common electrode 113 .
  • a protective layer 121 is formed on the common electrode 113 .
  • a sputtering method, a PECVD method, or an ALD method is preferably used for forming the inorganic insulating film used for the protective layer 121 .
  • the ALD method is preferable because it has excellent step coverage and hardly causes defects such as pinholes.
  • an adhesive layer 171 is used to bond substrates 170 together.
  • the substrate 170 to be bonded is sometimes referred to as a counter substrate.
  • the substrate 170 is preferably attached using a sealing material or the like.
  • a space is generated when the substrates are attached to each other using a sealant, and the space is preferably filled with an inert gas (a gas containing nitrogen or argon).
  • an organic material such as a reactive curable adhesive, a photocurable adhesive, a thermosetting adhesive, and/or an anaerobic adhesive can be used.
  • adhesives containing epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, etc. can be used for the adhesive layer 171 or the like.
  • the substrate 170 is provided with a light shielding layer 152, a colored layer 173R, a colored layer 173G, and a colored layer 173B.
  • the light shielding layer 152 is provided in a region overlapping with the insulating layer 126 .
  • the substrate 170 is preferably attached so that the colored layer 173R, the colored layer 173G, and the colored layer 173B overlap the lower electrodes 111R, 111G, and 111B, respectively.
  • the colored layer 173R, the colored layer 173G, and the colored layer 173B can be formed at desired positions by an ink jet method, an etching treatment using a photolithography method, or the like. Specifically, a different colored layer 173 (colored layer 173R, colored layer 173G, or colored layer 173B) can be formed for each pixel.
  • the light emitted to the common electrode 113 side is colored by absorption of light in a predetermined wavelength range by the colored layer 173R, the colored layer 173G, or the colored layer 173B (not shown). Ejected, full-color display becomes possible.
  • a display device can be manufactured.
  • an organic compound film 112jR is formed using a metal mask 135R. Since the metal mask 135R is used, the organic compound film 112jR can be formed only in the region that will become the red light emitting device.
  • an organic compound film 112jG is formed using a metal mask 135G. Since the metal mask 135G is used, the organic compound film 112jG can be formed only in the region that will become the green light emitting device, but the organic compound film 112jG has a region that partially overlaps with the organic compound film 112jR. That is, at the boundary of the light-emitting device, the organic compound film has a region that partially overlaps with the previously formed organic compound film.
  • an organic compound film 112jB is formed using a metal mask 135B. Since the metal mask 135B is used, the organic compound film 112jB can be formed only in the region that will become the blue light emitting device, but the organic compound film 112jB has a region that partially overlaps with the organic compound film 112jG. Although not shown, the organic compound film 112jB also has a region overlapping with a part of the organic compound film 112jR. That is, at the boundary of the light-emitting device, the organic compound film has a region that partially overlaps with the previously formed organic compound film.
  • mask films 144 and 146 are formed.
  • the mask films 144 and 146 can be formed in the same manner as in Manufacturing Method Example 1.
  • FIG. 19A shows that mask films 144 and 146 are formed.
  • the mask films 144 and 146 can be formed in the same manner as in Manufacturing Method Example 1.
  • resist masks 143R, 143G, and 143B are formed.
  • the resist masks 143R, 143G, and 143B can be formed in the same manner as in Manufacturing Method Example 1.
  • organic compound films 112jR, 112jG and 112jB are etched using resist masks 143R, 143G and 143B. Etching conditions and the like can be set in the same manner as in Manufacturing Method Example 1.
  • organic compound layers 112R, 112G, and 112B are formed with slits 118 in the same manner as in manufacturing method example 1.
  • FIG. 19C organic compound films 112jR, 112jG and 112jB are etched using resist masks 143R, 143G and 143B. Etching conditions and the like can be set in the same manner as in Manufacturing Method Example 1.
  • organic compound layers 112R, 112G, and 112B are formed with slits 118 in the same manner as in manufacturing method example 1.
  • FIG. 19C organic compound films 112jR, 112jG and 112jB are etched using resist masks 143R, 143G and 143B. Etching conditions and the like can be set in the same manner as in Manufacturing Method Example 1.
  • a display device can be manufactured by bonding the substrate 170 and the like.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a large-sized display device using a plurality of display modules DP each having the display device shown in the above embodiment and the FPC 74 will be described with reference to FIG.
  • FIG. 20A shows a top view of the display module DP.
  • the display module DP has a region 72 adjacent to the pixel portion 103 that transmits visible light and a region 73 that blocks visible light.
  • 20B and 20C show perspective views of a display device having four display modules DP.
  • a display device having four display modules DP By arranging a plurality of display modules DP in one or more directions (for example, in a row or in a matrix), a large display device having a wide display area can be manufactured.
  • the size of one display module DP need not be large. Therefore, it is not necessary to increase the size of the manufacturing apparatus for manufacturing the display module DP, and space can be saved.
  • manufacturing equipment for small and medium-sized display panels can be used, and there is no need to use new manufacturing equipment for increasing the size of the display device, so manufacturing costs can be suppressed.
  • a non-display area in which wiring and the like are routed is located on the outer periphery of the pixel portion 103 .
  • the non-display area corresponds to the area 73 that blocks visible light.
  • one image may be visually recognized as separated due to a non-display area or the like.
  • the display module DP is provided with the region 72 that transmits visible light, and the pixel portion 103 of the display module DP arranged on the lower side and the It overlaps with the visible light transmitting region 72 of the arranged display module DP.
  • the region 72 transmitting visible light is provided in this way, it is not necessary to positively reduce the non-display region in the display module DP.
  • the non-display area is reduced, which is preferable. As a result, it is possible to realize a large-sized display device in which the joints of the display module DP are difficult for the user to recognize.
  • a region 72 transmitting visible light may be provided in at least part of the non-display region.
  • the region 72 transmitting visible light can be overlapped with the pixel portion 103 of the display module DP positioned below.
  • At least part of the non-display area of the lower display module DP overlaps with the pixel portion 103 of the upper display module DP or the area 73 blocking visible light.
  • the distance between the end of the display module DP and the elements in the display module DP is long, and deterioration of the elements due to impurities entering from the outside of the display module DP can be suppressed. preferable.
  • the pixel portion 103 includes a plurality of pixels.
  • a resin material or the like for sealing a pair of substrates constituting the display module DP and a display element sandwiched between the pair of substrates may be provided in the region 72 through which visible light is transmitted. At this time, a material that transmits visible light is used for a member provided in the region 72 that transmits visible light.
  • Wirings or the like electrically connected to the pixels included in the pixel portion 103 may be provided in the region 73 that blocks visible light. Further, one or both of a scanning line driver circuit and a signal line driver circuit may be provided in the region 73 that blocks visible light. In addition, a terminal connected to the FPC 74, wiring connected to the terminal, and the like may be provided in the region 73 that blocks visible light.
  • 20B and 20C are examples in which the display modules DP shown in FIG. 20A are arranged in a 2 ⁇ 2 matrix (two each in the vertical direction and the horizontal direction).
  • 20B is a perspective view of the display surface side of the display module DP
  • FIG. 20C is a perspective view of the side opposite to the display surface of the display module DP.
  • the four display modules DP are arranged so as to have overlapping regions. Specifically, the display modules DPa, DPb, DPc, and DPd are arranged. Further, the display modules DPa, DPb, DPc, and DPd are arranged so that the visible light blocking region 73 of one display module DP does not overlap the pixel portion 103 of another display module DP. In the portion where the four display modules DP overlap, the display module DPb overlaps the display module DPa, the display module DPc overlaps the display module DPb, and the display module DPd overlaps the display module DPc.
  • the short sides of the display modules DPa and DPb overlap each other, and part of the pixel section 103a overlaps part of the region 72b that transmits visible light.
  • the long sides of the display modules DPa and DPc overlap each other, and part of the pixel section 103a overlaps part of the region 72c that transmits visible light.
  • a portion of the pixel portion 103b overlaps with a portion of the region 72c transmitting visible light and a portion of the region 72d transmitting visible light.
  • a portion of the pixel portion 103c overlaps a portion of the region 72d that transmits visible light.
  • the display region 79 can be a region in which the pixel portions 103a to 103d are arranged substantially seamlessly.
  • the display module DP preferably has flexibility.
  • the pair of substrates forming the display module DP have flexibility.
  • the vicinity of the FPC 74a of the display module DPa is curved, and a part of the display module DPa and A portion of the FPC 74a can be placed.
  • the FPC 74a can be arranged without physically interfering with the rear surface of the display module DPb.
  • the display module DPa and the display module DPb are stacked and fixed, there is no need to consider the thickness of the FPC 74a. can reduce the difference between As a result, the end portion of the display module DPb located on the pixel portion 103a can be made inconspicuous.
  • the height of the upper surface of the pixel portion 103b of the display module DPb is adjusted to match the height of the upper surface of the pixel portion 103a of the display module DPa. can be gently curved. Therefore, it is possible to make the height of each display area uniform except for the vicinity of the area where the display module DPa and the display module DPb overlap, so that the display quality of the image displayed in the display area 79 can be improved.
  • the thickness of the display module DP is preferably thin in order to reduce the difference in level between the two adjacent display modules DP.
  • the thickness of the display module DP is preferably 1 mm or less, more preferably 300 ⁇ m or less, even more preferably 100 ⁇ m or less.
  • the display module DP preferably incorporates both a scanning line driving circuit and a signal line driving circuit.
  • the drive circuit is arranged separately from the display panel, the printed circuit board including the drive circuit, many wirings, terminals, and the like are arranged on the back side of the display panel (the side opposite to the display surface side).
  • the display module DP has both the scanning line driving circuit and the signal line driving circuit, the number of parts of the display device can be reduced, and the weight of the display device can be reduced. Thereby, the portability of the display device can be improved.
  • the scanning line driving circuit and the signal line driving circuit are required to operate at a high driving frequency according to the frame frequency of the image to be displayed.
  • the signal line driver circuit is required to operate at a higher driving frequency than the scanning line driver circuit. Therefore, some of the transistors applied to the signal line driver circuit are required to have a large current flow capability. On the other hand, some of the transistors provided in the pixel portion may require sufficient withstand voltage performance to drive the display element.
  • the transistor included in the driver circuit and the transistor included in the pixel portion have different structures.
  • one or a plurality of transistors provided in the pixel portion is a high-voltage transistor
  • one or a plurality of transistors provided in the driver circuit is a transistor with a high driving frequency.
  • a transistor whose gate insulating layer is thinner than that of the transistor applied to the pixel portion is applied to one or a plurality of transistors applied to the signal line driver circuit.
  • a signal line driver circuit can be formed over a substrate provided with a pixel portion.
  • a metal oxide as a semiconductor in which a channel is formed in each transistor used in the scan line driver circuit, the signal line driver circuit, and the pixel portion.
  • silicon is preferably used as a semiconductor in which a channel is formed in each transistor used in the scan line driver circuit, the signal line driver circuit, and the pixel portion.
  • the transistors used in the scan line driver circuit, the signal line driver circuit, and the pixel portion use metal oxide as a semiconductor in which a channel is formed, and silicon as a semiconductor in which a channel is formed. It is preferable to apply them in combination.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • the display device of this embodiment can be a high-definition display device. Therefore, the display device of the present embodiment includes, for example, wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and the like. It can be used for the display part of wearable equipment.
  • wearable devices wearable devices
  • VR devices such as head-mounted displays, glasses-type AR devices, and the like. It can be used for the display part of wearable equipment.
  • FIG. 21A shows a perspective view of display module 280 .
  • the display module 280 has the display device 100 and the FPC 290 .
  • the display module 280 has substrates 291 and 292 .
  • the display module 280 has the pixel portion 103 .
  • the pixel portion 103 is an area in which an image is displayed in the display module 280, and an area in which light from each pixel provided in the pixel portion 103, which will be described later, can be visually recognized.
  • FIG. 21B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit portion 282 , a pixel circuit portion 283 on the circuit portion 282 , and a pixel portion 103 on the pixel circuit portion 283 are stacked on the substrate 291 .
  • a terminal portion 285 (sometimes referred to as an FPC terminal portion) for connecting to the FPC 290 is provided on a portion of the substrate 291 that does not overlap with the pixel portion 103 .
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel unit 103 has a plurality of pixels 150 arranged periodically. An enlarged view of one pixel 150 is shown on the right side of FIG. 21B.
  • the pixel 150 has a light-emitting device 11R, a light-emitting device 11G, and a light-emitting device 11B that emit light of different colors. Multiple light emitting devices can be laid out in a stripe arrangement as shown in FIG. 21B. Also, various light emitting device arrangement methods such as a delta arrangement or a pentile arrangement can be applied.
  • the pixel circuit section 283 includes a pixel circuit 283a having a plurality of periodically arranged transistors and the like.
  • One pixel circuit 283 a is a circuit that controls light emission of a light emitting device included in one pixel 150 .
  • One pixel circuit 283a may have a structure in which three circuits for controlling light emission of one light emitting device are provided.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (driving transistor), and a capacitive element for each light emitting device. At this time, a gate signal is inputted to the gate of the selection transistor, and a source signal is inputted to one of the source or the drain of the selection transistor. This realizes an active matrix display device.
  • the circuit section 282 has a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 .
  • a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 For example, it is preferable to have one or both of a gate line driver circuit and a source line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the FPC 290 functions as wiring for supplying a video signal, power supply potential, or the like to the circuit section 282 from the outside. Also, an IC may be mounted on the FPC 290 .
  • the aperture ratio (effective display area ratio) of the pixel portion 103 is extremely high. can be raised.
  • the aperture ratio of the pixel portion 103 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 150 can be laid out at an extremely high density, and the definition of the pixel portion 103 can be made extremely high.
  • the pixels 150 may be laid out with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and a resolution of 20000 ppi or less or 30000 ppi or less. preferable.
  • a display module 280 Since such a display module 280 has extremely high definition, it can be suitably used for a device for VR such as a head-mounted display or a device for glasses-type AR. For example, even in the case of a configuration in which the display portion of the display module 280 is viewed through a lens, since the display module 280 has an extremely high-definition pixel portion 103, the pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed.
  • the display module 280 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • the electronic devices of this embodiment each include the display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily have high definition and high resolution. Therefore, it can be used for display portions of various electronic devices.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, computer monitors, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens.
  • Cameras digital video cameras, digital photo frames, mobile phones, mobile game machines, personal digital assistants, sound reproducing devices, and the like.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • wearable devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • a wearable device that can be attached to a part is exemplified.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K, 8K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, and 3000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, 16:10.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display unit, touch panel functions, calendars, functions to display dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • FIG. 22A shows an example of a television device.
  • a television device 7100 includes a housing 7101 and a pixel portion 7000 incorporated therein. Here, a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the pixel portion 103 of one embodiment of the present invention can be applied to the pixel portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 22A can be performed by operation switches provided in the housing 7101 and a separate remote controller 7111 .
  • a touch sensor may be provided in the pixel portion 7000, and the television device 7100 may be operated by touching the pixel portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111, and an image displayed in the pixel portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication is performed. is also possible.
  • FIG. 22B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a housing 7211 incorporates the pixel portion 7000 .
  • the pixel portion 103 of one embodiment of the present invention can be applied to the pixel portion 7000 .
  • FIG. 22C An example of digital signage is shown in FIG. 22C and FIG. 22D.
  • a digital signage 7300 illustrated in FIG. 22C includes a housing 7301, a pixel portion 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 22D is a digital signage 7400 mounted on a cylindrical post 7401.
  • FIG. A digital signage 7400 has a pixel portion 7000 provided along the curved surface of a pillar 7401 .
  • the pixel portion 103 of one embodiment of the present invention can be applied to the pixel portion 7000 in FIGS. 22C and 22D.
  • the pixel portion 7000 As the pixel portion 7000 is wider, the amount of information that can be provided at one time can be increased. In addition, the wider the pixel portion 7000, the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the pixel portion 7000, not only an image or a moving image can be displayed on the pixel portion 7000 but also the user can intuitively operate the touch panel, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or 7400 is preferably capable of cooperating with an information terminal 7311 or 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed in the pixel portion 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display of the pixel portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operating means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • An electronic device 6500 illustrated in FIG. 23A is a personal digital assistant that can be used as a smart phone.
  • An electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the pixel portion 103 of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 23B is a cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • 103 pixel portion, 151: auxiliary wiring, 151a: first wiring layer, 151b: second wiring layer, 14: insulating layer, 15: contact hole, 11R: light emitting device, 11G: light emitting device, 11B: light emitting device , 111R: lower electrode, 111G: lower electrode, 111B: lower electrode, 112R: organic compound layer, 112G: organic compound layer, 112B: organic compound layer, 113: common electrode, 153a: third wiring layer, 153b: third 4 wiring layers, 154: bridge wiring

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

電圧降下が十分に抑制された表示装置を提供する。 第1の下部電極と、第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、第2の下部電極と、第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、第1の発光デバイスと第2の発光デバイスとが有する共通電極と、共通電極と電気的に接続された補助配線と、を有し、補助配線は、第1の配線層と、第2の配線層とを有し、第2の配線層は、絶縁層のコンタクトホールを介して第1の配線層と電気的に接続され、第2の配線層は、上面視において格子状を有する、表示装置である。

Description

表示装置
本発明の一態様は、表示装置に関する。
なお、本発明の一態様は、上記技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、又は入出力装置が含まれ、これらの製造方法を一例として挙げることができる。
高精細化が図られたアクティブマトリックス型表示装置であって、赤色画素のみに隣接して配置された上層補助配線と、カソード電極(上部電極)の電気抵抗を調整するために上層補助配線と接続された下層補助配線とを有する構成が提案されている(特許文献1参照)。
有機EL素子の製造方法として、標準的なUVフォトリソグラフィを使用した有機光電子デバイスの製造方法が開示されている(非特許文献1参照)。
特開2010−85866号公報
B.Lamprecht et al.,"Organic optoelectronic device fabrication using standard UV photolithography"phys.stat.sol.(RRL)2,No.1,p.16−18(2008)
上記特許文献1に示すアクティブマトリックス型表示装置では、下層補助配線が電源線、走査線と同じ層に形成されているため、上部電極の電圧降下を十分に抑制できない。電圧降下とは、電極が薄膜化されている、又は電極の面積が広いこと等を主な要因として起こり、上記電極が発熱する等によってエネルギーが消費され、電極にかかる電圧が当該エネルギー分、下がってしまう状態のことを指す。
さらに上記非特許文献1の方法では高精細な表示装置を提供することが困難である。
上記を鑑み、本発明の一態様は、電圧降下が十分に抑制された表示装置及びその作製方法を提供することを課題の一とする。また本発明の一態様は、高精細な表示装置及びその作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。また、これら課題は互いに独立したものと考えられ、本発明の一態様は、これらの課題のいずれか一を解決できればよく、全てを解決する必要はない。さらに本明細書等である明細書、図面、及び請求項の記載から、これら以外の課題を抽出することが可能である。
上記課題を鑑み本発明の一態様は、第1の下部電極と、第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、第2の下部電極と、第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、第1の発光デバイスと第2の発光デバイスとが有する共通電極と、共通電極と電気的に接続された補助配線と、を有し、補助配線は、第1の配線層と、第2の配線層とを有し、第2の配線層は、絶縁層のコンタクトホールを介して第1の配線層と電気的に接続され、第2の配線層は、上面視において格子状を有する、表示装置である。
本発明の別態様は、第1の下部電極と、第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、第2の下部電極と、第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、第1の発光デバイスと第2の発光デバイスとが有する共通電極と、共通電極と電気的に接続された補助配線と、を有し、補助配線は、第1の配線層と、第2の配線層とを有し、第2の配線層は、絶縁層のコンタクトホールを介して第1の配線層と電気的に接続され、第1の配線層は、上面視において格子状を有し、第1の下部電極、第2の下部電極及び第2の配線層はそれぞれ、絶縁層上に位置する領域を有する、表示装置である。
本発明の別態様は、第1の下部電極と、第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、第2の下部電極と、第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、第1の発光デバイスと第2の発光デバイスとが有する共通電極と、共通電極と電気的に接続された補助配線と、を有し、補助配線は、第1の配線層と、第2の配線層とを有し、第2の配線層は、絶縁層のコンタクトホールを介して第1の配線層と電気的に接続され、第1の配線層及び第2の配線層はそれぞれ、上面視において格子状を有し、第1の下部電極、第2の下部電極及び第2の配線層はそれぞれ、絶縁層上に位置する領域を有し、第2の配線層の幅は、第1の配線層の幅より小さい、表示装置である。
本発明において、第1の下部電極及び第2の下部電極の端部はそれぞれ、テーパ形状を有すると好ましい。
本発明において、第1の有機化合物層の端面のテーパ角は45度以上90度未満を満たすと好ましい。
本発明において、第2の有機化合物層の端面のテーパ角は45度以上90度未満を満たすと好ましい。
本発明の一態様により、電圧降下が十分に抑制された表示装置及びその作製方法を提供することができる。また本発明の一態様により、高精細な表示装置及びその作製方法を提供することができる。
なお、これらの効果の記載は、他効果の存在を妨げるものではない。また、これら効果は互いに独立したものと考えられ、本発明の一態様は、これらの効果のいずれか一を奏すればよく、全てを奏する必要はない。さらに本明細書等である明細書、図面、及び請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは補助配線を有する画素部の概念図であり、図1B1乃至図1C2は画素部の上面図である。
図2Aは補助配線を有する画素部の概念図であり、図2B1乃至図2C2は画素部の上面図である。
図3Aは補助配線を有する画素部の概念図であり、図3B及び図3Cは画素部の上面図である。
図4Aは画素部の断面図であり、図4Bは画素部の上面図である。
図5A乃至図5Dは画素部の上面図である。
図6A及び図6Bは画素部の上面図である。
図7Aは上面図であり、図7Bは画素部の断面図であり、図7Cは接続部の断面図である。
図8A乃至図8Dは画素部の上面図である。
図9A乃至図9Dは画素部の上面図である。
図10Aは表示装置の概念図であり、図10B乃至図10Eは画素回路図である。
図11A乃至図11Dはトランジスタの断面図である。
図12A乃至図12Cは画素部の上面図であり、図12Dは回路図である。
図13A乃至図13Cは作製方法の断面図である。
図14A乃至図14Cは作製方法の断面図である。
図15A乃至図15Cは作製方法の断面図である。
図16A乃至図16Cは作製方法の断面図である。
図17A及び図17Bは作製方法の断面図である。
図18A乃至図18Cは作製方法の断面図である。
図19A乃至図19Cは作製方法の断面図である。
図20Aは表示装置の上面図であり、図20B及び図20Cは表示装置の斜視図である。
図21A及び図21Bは表示装置の斜視図である。
図22A乃至図22Dは電子機器の図である。
図23A及び図23Bは電子機器の図である。
本明細書等において、構成を機能ごとに分類し、互いに独立したブロック図を用いて説明することがあるが、実際の構成は機能で切り分けることが難しく、一つの構成が複数の機能に係わることもある。
本明細書等において、トランジスタが有するソース及びドレインは、トランジスタの極性及び各端子に与えられる電位の高低によって、その呼び方が入れ替わる。一般的に、nチャネル型トランジスタでは、低い電位が与えられる端子がソースと呼ばれ、高い電位が与えられる端子がドレインと呼ばれる。また、pチャネル型トランジスタでは、低い電位が与えられる端子がドレインと呼ばれ、高い電位が与えられる端子がソースと呼ばれる。実際には上記電位の関係に従ってソースとドレインの呼び方が入れ替わることがあるが、本明細書等において、トランジスタの接続関係を説明する場合、便宜上ソースとドレインとを固定して説明する。
本明細書等において、トランジスタのソースとは、活性層として機能する半導体層の一部であるソース領域、又は上記ソース領域に接続されたソース電極を意味する。同様に、トランジスタのドレインとは、上記半導体膜の一部であるドレイン領域、又は上記ドレイン領域に接続されたドレイン電極を意味する。またトランジスタのゲートは、ゲート電極を意味する。
本明細書等において、トランジスタが直列に接続されている状態とは、例えば、第1のトランジスタのソース又はドレインの一方のみが、第2のトランジスタのソース又はドレインの一方のみに接続されている状態を意味する。また、トランジスタが並列に接続されている状態とは、第1のトランジスタのソース又はドレインの一方が第2のトランジスタのソース又はドレインの一方に接続され、第1のトランジスタのソース又はドレインの他方が第2のトランジスタのソース又はドレインの他方に接続されている状態を意味する。
本明細書等において、接続とは、電気的な接続と記すことがあり、電流、電圧又は電位が供給可能、或いは電流、電圧又は電位が伝送可能な状態が含まれる。そのため、配線、抵抗、ダイオード、トランジスタ等の素子を介して、互いに接続している状態も含む。また電気的な接続には、配線、抵抗、ダイオード、トランジスタ等の素子を介さずに、互いに直接接続している状態を含む。
本明細書等において、トランジスタのソース及びドレインについて第1の電極及び第2の電極を用いて説明することがあるが、第1の電極及び第2の電極の一方がソースの場合、他方はドレインを指す。
本明細書等において、導電層は、配線又は電極といった複数の機能を有する場合がある。
本明細書等において、発光デバイスを発光素子と記すことがある。発光デバイスは一対の電極間に有機化合物層を挟持した構造を有する。一対の電極の一方は陽極であり、一対の電極の他方は陰極であり、有機化合物層の少なくとも一つは発光層である。発光層は発光材料を有し、発光材料には蛍光材料又は燐光材料等を用いることができる。一対の電極をそれぞれ下部電極と上部電極と記すことがある。一対の電極の一方は陽極及び陰極の一方として機能することができ、一対の電極の他方は陽極及び陰極の他方として機能することができる。
本明細書等において、メタルマスク(MM)を用いて形成された有機化合物層を有する発光デバイスを、MM構造を有する発光デバイスと記す場合がある。本明細書等において、メタルマスクは、開口部の微細化に従ってファインメタルマスク(FMM、高精細なメタルマスク)と記すことがある。
本明細書等において、メタルマスク及びファインメタルマスクを用いずに形成された有機化合物層を有する発光デバイスを、メタルマスクレス(MML)構造を有する発光デバイスと記す場合がある。
本明細書等において、赤色、緑色及び青色等を発する発光デバイスをそれぞれ、赤色発光デバイス、緑色発光デバイス、及び青色発光デバイスと記す場合がある。
本明細書等において、各色発光デバイスにおいて、発光層が作り分けられた構造をSBS(Side By Side)構造と記す場合がある。例えばSBS構造を用いて、赤色発光デバイス、緑色発光デバイス、及び青色発光デバイスを作製することで、フルカラーの表示装置を提供できる。
本明細書等において、白色を発する発光デバイスを白色発光デバイスと記す場合がある。なお、白色発光デバイスは、着色層(例えば、カラーフィルタ又は色変換層)と組み合わせることで、フルカラーの表示装置を提供できる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造は、一対の電極間に1つの発光ユニットを有する構造である。当該発光ユニットは1以上の発光層を含んだ積層体を指す。
シングル構造を用いた白色発光デバイスを得るには、発光ユニット内に2以上の発光層を有すればよい。発光ユニットにおいて、2以上の発光層は互いに接していてもよい。また、3以上の発光層を用いても、白色発光デバイスを得ることができる。3以上の発光層は、発光ユニットにおいて互いに接していてもよい。
タンデム構造は、一対の電極間に2以上の発光ユニットを有する。タンデム構造において、2以上の発光ユニットの間には、電荷発生層等の中間層を設けると好適である。なお、電荷発生層とは、陰極と陽極との間に電圧を印加したときに、電荷発生層に接して形成される一方の発光ユニットに対して正孔を注入する機能を有し、他方の発光ユニットに電子を注入する機能を有する。例えば、一対の電極間に、第1の発光ユニット、電荷発生層、及び第2の発光ユニットが積層されたタンデム構造において、電荷発生層により第1の発光ユニットに正孔が注入され、第2の発光ユニットに電子が注入されるとよい。
タンデム構造を用いて白色発光デバイスを得るには、2以上の発光ユニットの発光層からの光を合わせて白色発光が得られる構造とすればよい。
また、上述の白色発光デバイスと、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
本明細書等において、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたもの、又は基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示モジュールと記すことがある。表示モジュールは表示装置の一態様である。
次に実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置の構成例について説明する。
<補助配線の機能>
本実施の形態で述べる表示装置は、補助配線を有することが特徴である。補助配線は主電極の補助機能を持つ層であり、本実施の形態で述べる補助機能とは、主電極に起因した電圧降下を抑制する機能等が含まれる。上記主電極として、発光デバイスの一対の電極等が挙げられるが、一対の電極は、発光デバイスの陰極又は陽極としての機能を有するため、仕事関数に基づき選択された導電性材料を選択しなければならないことがある。仕事関数のみを考慮した導電性材料は抵抗率が高いことがある。そこで本実施の形態で述べる表示装置は、補助配線を一対の電極のいずれか一に電気的に接続させることが一特徴であり、上記電圧降下を抑制させる効果を奏することができる。
一対の電極として上部電極があるが、上部電極は複数の発光デバイス間で分断されずに一続きの導電層から形成することができる。当該一続きの電極を共通電極と記すことがある。共通電極は表示装置が大型化するにつれて広い面積に形成される必要があり、このような共通電極に起因した電圧降下が生じやすくなる。そこで本実施の形態で述べる表示装置は、代表的には大型化された表示装置であり、補助配線を上部電極に電気的に接続させることが一特徴であり、上記電圧降下を抑制させるといった効果を奏することができる。
なお、補助配線はその形状に従い補助電極と記すこともある。本明細書等において補助配線の形状について何ら限定されるものではなく、補助配線には補助電極が含まれるものとする。
図1Aに本発明の一態様である表示装置が有する画素部103の概念図を示す。画素部103は、少なくとも発光デバイスを有し、本発明の一態様である補助配線151も有する。図1Aでは、発光デバイス11R、11G、11Bを示し、画素部103が有する3つの発光デバイスを例示している。発光デバイス11R、11G、11Bを区別しないときは、発光デバイス11と記すことがある。
<発光デバイス>
発光デバイス11は少なくとも、下部電極と、有機化合物層と、上部電極とが順に積層された構成を有する。図1Aでは、下部電極111R、111G、111Bを示し、有機化合物層112R、112G、112Bを示し、上部電極113R,113G,113Bを示す。なお、下部電極111R、111G、111Bを区別しないときは、下部電極111と記すことがある。なお、有機化合物層112R、112G、112Bを区別しないときは、有機化合物層112と記すことがある。なお、上部電極113R,113G,113Bを区別しないときは、上部電極113Eと記すことがある。画素部103が有する3つの発光デバイスは、赤色(R)、緑色(G)、及び青色(B)を発することができるため、上述した符号にRGBを添えることで、各色に対応させている。有機化合物層112R、112G、112Bは少なくとも発光層を有し、発光層の発光材料等が異なるため赤色(R)、緑色(G)、及び青色(B)を発することができる。なお有機化合物層112は発光層以外も有するが、発光層以外の構成については後述する。
<有機化合物層の作製方法>
有機化合物層112は、発光層及びそれ以外の層が積層されたものであり、各層はメタルマスクを用いた蒸着法で形成することができる。再掲するが、メタルマスクを用いて作製された有機化合物層を有する発光デバイスを、MM構造を有する発光デバイスと記す。また有機化合物層112の各層はメタルマスクを用いずに、フォトリソグラフィ工程を用いて形成することもできる。再掲するが、メタルマスクを用いずに形成された有機化合物層を有する発光デバイスを、MML構造を有する発光デバイスと記す。なおフォトリソグラフィ工程を用いた作製方法については後述する。
<上部電極、共通電極>
発光デバイスが有する上部電極113Eは各発光デバイスで分断されていてもよい。図1Aでは分断された上部電極を示し、当該上部電極113Eに補助配線151を電気的に接続させた構成を示す。この電気的な接続を、図1Aでは回路図に倣い実線で示す。補助配線151が電気的に接続された上部電極を用いた表示装置は、電圧降下が抑制されるため好ましい。
また上部電極は、各発光デバイスで分断せずに、一続きの電極である共通電極として設けてもよい。共通配線を用いた場合、電圧降下が生じやすくなるため、本発明の一態様である補助配線を設けた構成が好適となる。なお本明細書等に接した当業者であれば、上部電極と共通電極とを適宜読み替えて、補助配線151の効果を理解することができる。
さらに表示装置が大型化されるにつれて、上部電極等による電圧降下が生じやすくなるため、本明細書等に接した当業者であれば、補助配線151は大型の表示装置において顕著な効果を奏することも理解できる。
<補助配線の構成>
補助配線151は、互いに異なる層に設けられた2以上の配線層を有すると好ましい。例えば補助配線151は、図1Aに示すように第1の配線層151a及び第2の配線層151bを有する。第1の配線層151aは、第2の配線層151bとは異なる層に形成されているものであり、第1の配線層151aの被形成面は、第2の配線層151bの被形成面と異なっている。
なお、配線層はその形状に従い電極層と記すこともある。本明細書等において電極層形状について何ら限定されるものではなく、配線層には電極層が含まれるものとする。
第1の配線層151a及び第2の配線層151bを補助配線151として機能させるため、第1の配線層151aは第2の配線層151bと電気的に接続させる。具体的には、第1の配線層151aと第2の配線層151bとの間に位置する絶縁層14のコンタクトホール15を介して、第1の配線層151aは第2の配線層151bと電気的に接続させる。
補助配線を構成する配線層の積層数は何ら限定されず、第1の配線層乃至第3の配線層等の三層以上の配線層を有してもよい。配線層の数が増すにつれて、補助配線として機能させる配線層の配置(以降、レイアウトと記すことがある)の自由度が増すため好ましいともいえる。
このように本発明の一態様の補助配線151は、異なる層に設けられた配線層を2以上有し、異なる層に位置する配線層どうしは、コンタクトホールを介して電気的に接続させることを特徴とする。
<コンタクトホール>
コンタクトホールとは、絶縁層に形成された開口を指し、ある絶縁層より下に位置した配線層(下層配線層と記す)が、その絶縁層より上に位置した配線層(上層配線層と記す)と電気的に接続することを可能にするものである。電気的に接続するためには、具体的には下層配線層が開口から露出した領域を有し、上層配線層が当該露出した領域と電気的に接続する、代表的には接触するとよい。
またコンタクトホールが設けられる絶縁層を、積層させてもよい。これを積層構造の絶縁層と呼び、積層絶縁層と記す。たとえば第1の絶縁層と第2の絶縁層との積層絶縁層にコンタクトホールを形成することができる。この場合、第1の絶縁層には第1のコンタクトホールが形成され、第2の絶縁層には第2のコンタクトホールが形成される。第1のコンタクトホールは、少なくとも第2のコンタクトホールと重なる領域を有すれば、下層配線層が上層配線層と電気的に接続することが可能になる。たとえば第2の絶縁層が第1の絶縁層より上層に位置する場合、断面視における第2のコンタクトホールの幅が第1のコンタクトホールの幅より大きいと好ましい。勿論、下層配線層が上層配線層と電気的に接続することができる限りにおいて、各絶縁層のコンタクトホールの幅については何ら限定されない。
高精細な表示装置では下部電極111の間隔が狭くなるため、当該間隔に対応して補助配線151をレイアウトすることが難しくなる。そのため、下部電極111の間隔に影響を受けない又は影響の少ない補助配線151のレイアウトが望まれる。
下部電極111の影響を受けない補助配線151のレイアウトとして、代表的には第1の配線層151a及び第2の配線層151bともに下部電極111とは異なる層に形成すればよい。たとえば第1の配線層151a及び第2の配線層151bを、下部電極111より下層に位置させた補助配線151を形成すればよい。
さらに第1の配線層151aと第2の配線層151bとでは、上面視における形状を異ならせる、代表的には面積を異ならせることができる。たとえば第1の配線層151aを第2の配線層151bより小さな面積で形成すればよい。別言すれば、第2の配線層151bは第1の配線層151aより大きな面積となるようにレイアウトしてもよい。たとえば、第2の配線層151bを格子状にレイアウトすることもできる。このとき、第2の配線層151bを帯状又は島状としてもよい。格子状とは、並列した複数の縦線と、並列した複数の横線とを組み合わせた模様の一を指す。帯状は、矩形状又はストライプ状と呼ぶことがある。島状は帯状よりも長さの短いものを指す。勿論、第1の配線層151aを格子状としてもよく、このとき第2の配線層151bを帯状としてもよい。
図1B1及び図1B2には、画素部103の上面図を示し、ともに格子状の第2の配線層151bを示す。第1の配線層151aは図示しないが、コンタクトホール15を介して第2の配線層151bと電気的に接続されている。なお第1の配線層151aは何れの形状であってもよく、例えば帯状又は島状を有することができる。第1の配線層151aが第2の配線層151bの一部と重なる領域を有すると、コンタクトホール15を介した電気的な接続を確保しやすく好ましい。
図1B1及び図1B2には、X方向と、X方向に交差するY方向とが添えられており、当該方向を用いて画素部103の構成等を説明することがある。
図1B1に示す格子状の第2の配線層151bは、Y方向に沿うような縦線を複数有する。縦線は、副画素の間隙と重なる。副画素の間隙とは下部電極111Rの端と下部電極111Gの端との間の領域、及び下部電極111Gの端と下部電極111Bの端との間の領域を有する。
図1B2に示す第2の配線層151bは、縦線の間隔が図1B1と異なるものであり、縦線は、画素150の間隙と重なる。画素150の間隙とは、たとえば画素150の端に位置する副画素Bに対応する下部電極111Bの端と、隣接した画素の端に位置する副画素Rに対応する下部電極111Rの端との間の領域を有する。隣接したとはX方向にそって隣り合う関係、又はY方向に沿って隣り合う関係のいずれでもよい。別言すると図1B2に示す第2の配線層151bは、図1B1のような副画素の間隙と重なる領域を有する縦線を有さないものである。
開口率が高くなる表示装置、又は高精細化が進んだ表示装置では、下部電極の間隙が狭くなり、下部電極の間隙には補助配線をレイアウトしづらくなる。下部電極の間隙とは、たとえば下部電極111Rの端と下部電極111Gの端との距離、又は下部電極111Gの端と下部電極111Bの端との距離である。そのため、第2の配線層151bが下部電極111と同じ層に位置する場合、高精細化が進んだ表示装置のときは、図1B2に示すような縦線の少ない第2の配線層151bのレイアウトが好ましい。
格子状の第2の配線層151bと同じ層には、走査線、信号線及び電源線等の機能を奏する配線を有さないと好ましい。上記機能を奏する配線は、X方向に延在させるか、Y方向に延在させる必要があるため、第2の配線層151bと接触してしまうためである。走査線、信号線及び電源線を設けたい場合、走査線、信号線及び電源線等のX方向に沿う長さ、又はY軸方向に沿う長さを調整し、第2の配線層と接触させないように、島状にレイアウトすればよい。そして、第2の配線層とは異なる層の導電層を用いて、島状の走査線等どうしの電気的な接続を確保する。このような電気的な接続を確保するための配線をブリッジ配線と記すことがある。
なお、ブリッジ配線はその形状に従いブリッジ電極と記すこともある。本明細書等においてブリッジ配線の形状について何ら限定されるものではなく、ブリッジ配線にはブリッジ電極が含まれるものとする。
図1C1及び図1C2には、信号線とブリッジ配線を有する画素部103を示す。図1C1及び図1C2では発光デバイス11R、11G、11Bの図示を省略するが、発光デバイス11R、11G、11Bのレイアウト等は図1B1及び図1B2を参照することができる。
図1C1及び図1C2に示す信号線は、第3の配線層153aと第4の配線層153bとを有し、第3の配線層153aは第4の配線層153bと分断している。第3の配線層153aと第4の配線層153bとを島状の配線層と呼んでもよい。島状の配線層は、ブリッジ配線154を用いて互いに電気的に接続させる。第3の配線層153a及び第4の配線層153bはともに、第2の配線層151bと異なる被形成面に位置する導電層を用いて形成するとよい。例えば、第3の配線層153a及び第4の配線層153bはともに、第2の配線層151bより下層に位置した導電層を用いて形成するとよい。さらに、第3の配線層153a及び第4の配線層153bは、第2の配線層151bと同じ被形成面に位置する導電層を用いて形成してもよい。またいずれの場合においても、ブリッジ配線154は、第2の配線層151bと異なる被形成面に位置する導電層を用いて形成する。例えば、ブリッジ配線154は第2の配線層151bより下層に位置した導電層を用いればよい。
信号線以外に、走査線又は電源線を島状の配線層を用いて形成する場合も、ブリッジ配線154等で電気的な接続を確保することができる。
図1B2に示すような縦線の少ない第2の配線層151bのレイアウトは、図1C2に示すような信号線及びブリッジ配線を有する場合においても好適である。
次いで図2Aに画素部103の別形態を示す。図2Aは、第2の配線層151bが、下部電極111と同一形成面に位置する構成を有する。なお当該同一形成面とは、絶縁層14の上面に対応する。その他の構成は、図1Aと同様である。
図2B1及び図2B2は、画素部103の上面図を示し、当該上面図では格子状を有する第1の配線層151aを示す。格子状のレイアウトについては、図1B1及び図1B2に示した格子状の第2の配線層151bのレイアウトを参照することができる。
図2B1及び図2B2に示すコンタクトホール15において、格子状の第1の配線層151aの交点と重なるように、第2の配線層151bが位置する。第2の配線層151bは上記交点と重なればよく、格子状の第1の配線層151aの全体と重なっていなくてよい。さらに第2の配線層151bは、すべての交点と重なっていなくてよい。第2の配線層151bは下部電極111と同じ導電層を有するため、第2の配線層151bは下部電極111と互いに接しないようにレイアウトしなければならないが、第1の配線層151aのレイアウトは下部電極111に影響を受けない。そのため第1の配線層151aを大きな面積とすることができ、第2の配線層151bの面積が小さい場合であっても、電圧降下を抑制できる。小さな面積でレイアウトされた第2の配線層151bは、電極層と記す方が好ましい場合がある。
図2C1及び図2C2には、信号線とブリッジ配線を有する画素部103を示す。図2C1及び図2C2では発光デバイス11R、11G、11Bの図示を省略するが、発光デバイス11R、11G、11Bのレイアウト等は図2B1及び図2B2を参照することができる。
図2C1及び図2C2に示す信号線は、第3の配線層153aと第4の配線層153bとを有し、第3の配線層153aは第4の配線層153bと分断している。上述したとおり、第3の配線層153aと第4の配線層153bとを島状の配線層と呼んでもよく、島状の配線層は、ブリッジ配線154を用いて互いに電気的に接続させる。第3の配線層153a及び第4の配線層153bはともに、第2の配線層151bと異なる被形成面に位置する導電層を用いて形成するとよい。例えば、第3の配線層153a及び第4の配線層153bはともに、第2の配線層151bより下層に位置した導電層を用いて形成するとよい。さらに第3の配線層153a及び第4の配線層153bは、第1の配線層151aと同じ被形成面に位置する導電層を用いて形成するとよい。またいずれの場合においても、ブリッジ配線154は、第1の配線層151aと異なる被形成面に位置する導電層を用いて形成する。例えば、ブリッジ配線154は第1の配線層151aより下層に位置した導電層を用いればよい。またブリッジ配線154は、第2の配線層151bと同じ被形成面に位置する導電層を用いて形成してもよい。この場合、下部電極111とブリッジ配線154とが接しないようにレイアウトする。
次いで、図3Aには本発明の一態様の画素部103の別形態を示す。図3Aは、図2Aと異なり、断面視における第2の配線層151bの幅(dBを付した幅)が第1の配線層151aの幅(dAを付した幅)より小さい構成を有する。その他の構成は、図2Aと同様にすることができる。
図3Bには、画素部103の上面図を示し、第1の配線層151a及び第2の配線層151bが格子状を有する様子を示す。格子状のレイアウトについては、図1B2で示した格子状の第2の配線層151bのレイアウトを参照する。
図3Bに示すコンタクトホール15は、第1の配線層151aと第2の配線層151bとが重なる領域に合わせた形状を有することができる。たとえば、コンタクトホール15は、第2の配線層151bの一辺に沿う形状を有することができる。
図3Cには、信号線とブリッジ配線を有する画素部103を示す。図3Cに示す信号線は、第3の配線層153aと第4の配線層153bとを有し、第3の配線層153aは第4の配線層153bと分断している。そのため、ブリッジ配線154を用いて第3の配線層153aと第4の配線層153bとを電気的に接続している。第3の配線層153a及び第4の配線層153bは、第1の配線層151aと同じ層の導電層を有する。ブリッジ配線154は、第1の配線層151aと異なる層の導電層を有し、好ましくは第1の配線層151aより下層の導電層を用いる。
このように本発明の一形態の補助配線151は異なる層に設けられた配線層を2以上有するため、一層の配線層から補助配線を形成する場合と比べて、補助配線151のレイアウトの自由度が高く好ましい。本発明の一態様の補助配線151は、高精細な表示装置に適用すると好適である。
<補助配線が有する導電性材料>
本発明の一態様の補助配線151が有する導電性材料、つまり第1の配線層151a又は第2の配線層151bが有する導電性材料として、アルミニウム、銅、銀、金、白金、クロム、モリブデン等の金属を用いることができる。また導電性材料には、上記金属の合金を用いることができる。上記導電性材料は金属であり、非透光性の導電性材料である。第1の配線層151a又は第2の配線層151bは、上記導電性材料を用いて、単層又は積層で形成することができる。例えば第1の配線層151aを積層として、第2の配線層151bを単層として形成してもよい。または第1の配線層151aを単層として、第2の配線層151bを積層としてもよい。または第1の配線層151aを積層として、第2の配線層151bも積層としてもよい。
本発明の一態様の補助配線が有する導電性材料、つまり第1の配線層151a又は第2の配線層151bが有する導電性材料として、透光性を有する導電性材料を用いてもよい。具体的には、インジウムとスズとを有する酸化物(インジウム錫酸化物、In−Sn酸化物、ITOともいう)、インジウムとシリコンと錫とを有する酸化物(In−Si−Sn酸化物、ITSOともいう)、インジウムと亜鉛とを有する酸化物(インジウム亜鉛酸化物、In−Zn酸化物ともいう)、又はインジウムとタングステンと亜鉛とを有する酸化物(In−W−Zn酸化物ともいう)等を用いることができる。第1の配線層151a又は第2の配線層151bは、上記導電性材料を用いて、単層又は積層で形成することができる。第1の配線層151a又は第2の配線層151bに積層構造を用いる場合、少なくとも一層以上に上述の金属等を用いた導電性材料を有すると好ましい。
本発明の一態様の補助配線に用いられる導電性材料の抵抗率、つまり第1の配線層151a又は第2の配線層151bに用いられる導電性材料の抵抗率は、共通電極に用いられる導電性材料の抵抗率よりも低いことが好ましい。ただし共通電極に起因した電圧降下を十分に抑制できる場合、上記抵抗率の関係を満たさなくともよい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置の具体例について説明する。
<トップエミッション構造>
本発明の一態様の表示装置は、トップエミッション構造を用いると好ましい。トップエミッション構造では、上部電極に透光性が必要であり、上部電極の方向に光が発せられる。透光性とは可視光(波長400nm以上750nm未満の光)が通過することを指し、40%以上の透過率を有すると好ましい。
透光性を有する導電性材料は抵抗率が高いことがあり、共通電極の抵抗が高くなることがある。すると共通電極に起因して電圧降下が生じ、表示面内の電位分布が不均一になり、発光デバイスの輝度がばらついてしまう。そこで、本発明の一態様のトップエミッション構造を有する表示装置は、共通電極と電気的に接続された補助配線を有してもよい。当該補助配線により、電圧降下抑制の効果を奏することができる。上部電極は共通電極と読み替えてもよい。
<ボトムエミッション構造>
なお、本発明の一態様の表示装置がボトムエミッション構造であっても、共通電極と電気的に接続された補助配線を有してもよい。当該補助配線により、電圧降下抑制の効果を奏することができる。
なおボトムエミッション構造では、下部電極に透光性が必要であり、下部電極の方向に光が発せられる。
<デュアルエミッション構造>
なお、本発明の一態様の表示装置がデュアルエミッション構造であっても、共通電極と電気的に接続された補助配線を有してもよい。当該補助配線により、電圧降下抑制の効果を奏することができる。
デュアルエミッション構造とは、下部電極及び上部電極に透光性が必要であり、下部電極及び上部電極の両方向に光が発せられる。デュアルエミッション型の表示装置は、透明ディスプレイと記すことができる。
本実施の形態では、トップエミッション構造の表示装置に補助配線を適用した構成について説明する。
[補助配線の具体例]
図4Aに、トップエミッション構造の表示装置が有する画素部103を示し、補助配線151等の断面図を示す。図4Aでは、上記実施の形態にて図3等で説明した補助配線151の断面構造を適用するが、トップエミッション構造の表示装置は上記実施の形態にて図1及び図2等で説明した補助配線151の断面構造を有してもよい。
画素部103は発光デバイス11を有し、発光デバイス11は共通電極113を有する。共通電極113は透光性を有するため、各発光デバイスから図4Aに示した矢印方向へ光が発せられる。当該発光デバイス11は絶縁層104上に形成され、絶縁層104は基板101上に形成されている。
図4(A)に示すように、補助配線151は第1の配線層151a及び第2の配線層151bを有する。第1の配線層151aは基板101上に形成された配線層であり、第2の配線層151bは絶縁層104上に形成された配線層である。第2の配線層151bは、絶縁層104のコンタクトホール19を介して第1の配線層151aと電気的に接続され、補助配線151として機能する。共通電極113は、絶縁層126上に位置し、当該共通電極113は絶縁層126のコンタクトホール18を介して補助配線151と電気的に接続することができる。
補助配線151は異なる層に設けられた配線層を2以上有するため、いずれか一の配線層が下部電極111の被形成面と同一の被形成面に設けられたとしても、下部電極のレイアウトの影響を受けずに、又は下部電極のレイアウトの影響を最小限に抑えて補助配線151を形成することができ好ましい。
図4Aでは、第2の配線層151bが下部電極111と同じ層に設けられているが、第1の配線層151aは、下部電極111と異なる層に設けられているため、第1の配線層151aを第2の配線層151bよりも広い面積でレイアウトすることができる。第1の配線層151aが下部電極111の下方に位置する場合、開口率が低下することもなくレイアウトの自由度が増す。開口率を低下させない位置に形成された第1の配線層151aは透光性を有する必要がないため、抵抗率の低い導電性材料を適用することができる。
このように本発明の一形態の補助配線151は、下部電極の被形成面とは異なる被形成面の配線層を備えることができ、当該配線層は下部電極レイアウトの影響を受けることがなく広い面積に形成することが可能となり、電圧降下抑制効果を十分に発現できる。
次に、画素部103における補助配線151以外の構成を説明する。図4Bに示す画素部103の上面図も参照する。なお図4Bでは第2の配線層151bを示し、第1の配線層151aは省略する。
図4Bに一点鎖線で示すA1−A2は、図4AにおけるA1−A2に対応する。図4BにはX方向と、X方向に交差するY方向とが添えられており、当該方向を用いて画素部103が有する構成のレイアウト等を説明することがある。
図4Bに示すように、表示領域に位置する画素部103は、画素150を複数有する。画素150はフルカラー表示を可能な最小単位として用いられ、図4Bに示すように副画素110R、副画素110G、及び副画素110Bを少なくとも有する。なおフルカラー表示とするために、副画素110R、副画素110G、及び副画素110Bはそれぞれ着色層を有してもよく、着色層として例えばカラーフィルタ又は色変換層がある。
副画素110R、副画素110G、及び副画素110Bに共通する事項を説明する場合には、副画素110と呼称して説明する場合がある。
副画素110R、副画素110G、及び副画素110Bは、各発光デバイスの発光領域に対応し、図4Bでは各発光領域が矩形であるとして例示する。そして図4Bの副画素110Rに赤色発光デバイスの発光領域(Rと図示する)を対応させ、副画素110Gに緑色発光デバイスの発光領域(Gと図示する)を対応させ、副画素110Bに青色発光デバイスの発光領域(Bと図示する)を対応させる。なお本発明の一態様の表示装置は、上記の発光色に限定されるものではなく、例えば赤色、緑色及び青色の発光デバイスに加えて、白色の発光デバイスを有してもよい。
図4Bに示すように、副画素110R及び副画素110GはY方向に沿うように複数配列され、交互に位置する。また副画素110BはY方向に沿うように複数配列される。副画素110Bは副画素110R及び副画素110Gより大きな面積とすることができる。例えば青色発光デバイスに蛍光材料を有する発光層を用い、赤色発光デバイスおよび緑色発光デバイスにそれぞれ、燐光材料を有する発光層を用いた場合、図4Bに示すように、副画素110Bが副画素110R及び副画素110Gより面積が大きいと好ましい。
再掲するが、図4Aに示すように、副画素110Rには、基板101上に絶縁層104が設けられ、絶縁層104上に発光デバイス11Rの下部電極111Rが設けられ、下部電極111R上に発光デバイス11Rの有機化合物層112Rが設けられ、有機化合物層112R上に共通電極113が設けられている。そして発光デバイス11Rは共通電極113側、つまり図4Aの矢印で示す方向に光を発する。
また再掲するが、図4Aに示すように、副画素110Gには、基板101上に絶縁層104が設けられ、絶縁層104上に発光デバイス11Gの下部電極111Gが設けられ、下部電極111G上に発光デバイス11Gの有機化合物層112Gが設けられ、有機化合物層112G上に共通電極113が設けられている。そして発光デバイス11Gは共通電極113側、つまり図4Aの矢印で示す方向に光を発する。
また再掲するが、図4Aに示すように、副画素110Bには、基板101上に絶縁層104が設けられ、絶縁層104上に発光デバイス11Bの下部電極111Bが設けられ、下部電極111B上に発光デバイス11Bの有機化合物層112Bが設けられ、有機化合物層112B上に共通電極113が設けられている。そして発光デバイス11Bは共通電極113側、つまり図4Aの矢印で示す方向に光を発する。
副画素110は、上記発光デバイスに加えて、当該発光デバイスを制御するスイッチング素子を有するが、図4A及び図4Bではスイッチング素子を図示しない。本発明の一態様の表示装置は、スイッチング素子によって制御された発光デバイスから光が発せられることで、フルカラー表示を行うことができる。
第2の配線層151bは、図4Aに示すように、下部電極111と同じ層に設けられた導電層を用いて形成される。加えて第1の配線層151aは下部電極111とは異なる層に設けられた配線層である。
図4Aに示すように第2の配線層151bは下部電極と同一形成面の配線層を有するため、下部電極111に接しない、つまり副画素と重ならない領域に設けられる。たとえば第2の配線層151bは上面視において格子状を有する。格子状の第2の配線層151bは横線として、X方向に沿うように延在した領域を有し、当該領域は並列し、また縦線としてY方向に沿うように延在した領域を有し、当該領域は並列している。
また図4Bに示す第2の配線層151bは、X方向に沿うように延在した領域として、副画素110Rと副画素110Gとの間に位置する領域を有し、当該領域が並列している。副画素110Rと副画素110Gとの間に位置する領域は画素間の領域に相当する。図4Bに示す第2の配線層151bは、Y方向に沿うように延在した領域として、副画素110Gと副画素110Bとの間に位置する領域を有し、当該領域が並列している。
下部電極111の間隙は、高精細な表示装置であるほど狭くなる。たとえば、高精細な表示装置が有する図4Bの画素部103では、副画素間de及び画素間dcが狭くなる。間隔が狭くなるにつれて、補助配線のための配線層を形成することが難しくなる。そのため、上面視にて副画素の間隙に重なる配線層を第1の配線層151aとして、第1の配線層151aを下部電極と異なる層の配線層とするとよい。
<絶縁層126>
本発明の一態様の表示装置では、図4Aに示すように発光デバイス間に絶縁層126が位置すると好ましい。絶縁層126は画素間及び副画素間を充填することができ、第2の配線層151bは絶縁層126と重なるように設けるとよい。絶縁層126により、第2の配線層151bが下部電極111と接することを抑制できる。さらに、絶縁層126により、各発光デバイスの有機化合物層を離間させることができ、発光デバイス間のクロストークを抑制することができる。クロストークとは意図しない発光デバイスから光が射出されてしまう現象である。
図4Aでは、絶縁層126の上面は、有機化合物層112の上面と概略一致又は一致するように示す。このような位置関係を満たすと共通電極113の被形成面が平坦になり、当該共通電極113の切断が抑制され好ましい。
図4Aでは図示しないが、共通電極113が切断されないためには、絶縁層126の上面が有機化合物層112の上面よりも上に位置してもよい。この場合、絶縁層126の端部は、有機化合物層112の中心に向かって徐々に薄膜化しているとよい。徐々に薄膜化していく形状を、テーパ形状と記すことがある。
図4Aでは図示しないが、絶縁層126の中央部は絶縁層126の端部より上に位置し、中央部に端部より盛り上がった領域を有するとさらに好ましい。このような絶縁層126上に共通電極113を設けると、共通電極113の切断が抑制され好ましい。
図4Aでは補助配線151の第2の配線層151bが共通電極113の下と接する領域を有する構成を示すが、補助配線151が共通電極113と電気的に接続される限りにおいて、任意の構成をとることができる。
[補助配線のレイアウト]
本発明の一態様の補助配線151は、少なくとも2以上の配線層を有することが特徴であるが、図5等を用いて第1の配線層151aと第2の配線層151bとのレイアウト例を説明する。図5等では、図4Bに従って副画素(R、G、B)を示すが、下部電極111は省略する。
図5Aに示す画素部103では、補助配線151は上面視において格子状をなし、Y方向に延存した第1の配線層151aと、X方向に延在した第2の配線層151bを有する。なお第1の配線層151aと第2の配線層151bとが交差する領域には、コンタクトホールが位置するが図5Aでは図示しない。
第1の配線層151a及び第2の配線層151bのいずれか一は下部電極111と同じ層に形成してもよいし、いずれも下部電極111と異なる層に形成してもよい。
図5Aに示す画素部103では、第1の配線層151a及び第2の配線層151bは共に画素間に位置する。画素部103は高精細な表示装置に用いられる。
図5Bには、図5Aに示した第2の配線層151bの長さが小さい補助配線151を示す。第2の配線層151bの長さが小さい分、第1の配線層151aがX方向に延在した領域を有する。長さが小さい第2の配線層151bは、その一端が副画素Gと重なり、他端が副画素Bと重なる長さを有する。その他の構成は図5Aと同様である。
図5Cには、図5Aに示した第1の配線層151aを第2の配線層151bとし、同図に示した第2の配線層151bを第1の配線層151aとした補助配線151を示す。その他の構成は図5Aと同様である。
図5Dには、図5Cに示した第1の配線層151aの長さが小さい補助配線151を示す。第1の配線層151aの長さが小さい分、第2の配線層151bがX方向に延在した領域を有する。長さが小さい第1の配線層151aは、その一端が副画素Gと重なり、他端が副画素Bと重なる長さを有する。その他の構成は図5Cと同様である。
図5Aには、第1の配線層151aと第2の配線層151bとが同じ形状を有した補助配線151を示す。図6Aでは、第1の配線層151aを点線で示す。その他の構成は図5Aと同様である。
図6Bには、第2の配線層151bよりも大きな面積の第1の配線層151aを有した補助配線151を示す。下部電極111とは異なる層に形成するため、第1の配線層151aを大きな面積で形成することができる。その他の構成は図5Aと同様である。
このように本発明の一形態の補助配線151は第1の配線層151a及び第2の配線層151bを有するため、多様な形態を取ることができる。そして補助配線151が共通電極と電気的に接続することで、共通電極の電圧降下が十分に抑制できる。また本発明の一態様の表示装置は高精細な画素部を用いることができる。
またボトムエミッション構造及びデュアルエミッション構造に補助配線151を適用してもよい。その際、上記実施の形態にて図1乃至図3等で説明した補助配線151の断面構造を適用することができる。ボトムエミッション構造及びデュアルエミッション構造は下部電極111より下方に光が発せられるため、当該下部電極111より下方に設けられた第1の配線層151aは、副画素の間隙又は画素の間隙と重なるような格子状又は格子状より小さな面積を有するとよい。また当該下部電極111より下方に設けられた第2の配線層151bは、副画素の間隙又は画素の間隙と重なるような格子状、又は格子状より小さな面積を有するとよい。
<表示装置の具体例>
図7A乃至図7Cを用いて、図4等で示したトップエミッション構造の表示装置の具体例を説明する。表示装置100は、画素部103と接続部140とを有する。画素部103は複数の画素150を有する。画素150は複数の副画素110を有し、例えば副画素110Rは赤色を呈する発光デバイス11R、副画素110Gは緑色を呈する発光デバイス11G、及び副画素110Bは青色を呈する発光デバイス11Bをそれぞれ有する。画素部103は、コンタクトホール141を有する。コンタクトホール141は選択的に設けられ、例えば画素150の外周に対応した領域に設けることができ、当該領域のうち画素150の四隅に対応した領域に設けることができる。
図7Aでは、発光デバイス11R、発光デバイス11G、及び発光デバイス11Bに対応した領域にR、G、Bの符号を付す。図7Aの配列は図4B等に示した配列と同様であり、規則的な配列である。
発光デバイス11としては、OLED(Organic Light Emitting Diode)、又はQLED(Quantum−dot Light Emitting Diode)等の素子を用いることが好ましい。発光デバイスが有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料等)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)等が挙げられる。
また、図7Aに示す接続部140は、共通電極113と電気的に接続する接続電極111Cを有する領域である。共通電極113は画素部103の端を超えて、接続部140にまで延在するとよい。図7Aでは、接続部140に延在した共通電極113を点線で示す。接続電極111Cは、共通電極113に供給するための電位が与えられる。共通電極113に起因した電圧降下が生じると、上記電位の値がばらつくことになる。本実施の形態の表示装置は、少なくとも画素部103に補助配線151を有するため、上記電位のばらつきが抑制され好ましい。補助配線151は画素部103に加えて、接続部140に設けることもできる。
接続電極111Cは、画素部103の外周に沿って設けることができる。例えば、画素部103の外周の一辺に沿って接続電極111Cを設けてもよいし、画素部103の外周の二辺以上にわたって接続電極111Cを設けてもよい。すなわち、画素部103の上面形状が長方形である場合には、接続電極111Cの上面形状は、外周の一辺に沿う帯状、外周の二辺に沿うL字状、外周の三辺に沿うコの字状、又は外周の四辺に沿う四角形等とすることができる。
図7B、図7Cはそれぞれ、図7A中の一点鎖線B1−B2、一点鎖線B3−B4に対応する断面図である。図7Bには、発光デバイス11G、発光デバイス11B、及び補助配線151の断面図を示し、図7Cには接続電極111Cの断面図を示している。
図7Bにコンタクトホール141の断面図を示す。コンタクトホール141は絶縁層126に形成される。コンタクトホール141を介して、第2の配線層151bと共通電極113とが電気的に接続することができる。
図7Aには図示しなかったが、絶縁層104はコンタクトホール142を有する。コンタクトホール142を介して、第2の配線層151bと、第1の配線層151aとが電気的に接続することができる。コンタクトホール142は、コンタクトホール141と重なる領域に形成してもよいし、コンタクトホール141と重ならない領域に形成してもよい。絶縁層126の膜厚が絶縁層104の膜厚より大きい場合、コンタクトホール141のサイズ(例えば断面視における幅)は、コンタクトホール142のサイズ(例えば断面視における幅)よりも大きいとよい。
図7Bに示すように、有機化合物層112Bの端面は垂直又は概略垂直となるため、コンタクトホール141を加工しやすく好ましい。有機化合物層112Bの端面のテーパ角は45度以上90度未満を満たすと好ましい。その他の有機化合物層の端面のテーパ角も45度以上90度未満を満たすと好ましい。
なお、本明細書等において、テーパ角とは、目的の層を、断面(例えば基板の表面と直交する面)に垂直な方向から観察した際に、当該層の側面と底面がなす傾斜角をいう。底面が不明確な場合、基板の表面を用いて傾斜角を定めることができる。
図7Bに図示しないが、発光デバイス11Rは、下部電極111R、有機化合物層112R、共通層114、及び共通電極113を有する。図7Bに示す発光デバイス11Gは、下部電極111G、有機化合物層112G、共通層114、及び共通電極113を有する。図7Bに示す発光デバイス11Bは、下部電極111B、有機化合物層112B、共通層114、及び共通電極113を有する。共通層114に用いることのできる機能層は、例えば電子注入層である。なお下部電極111はトランジスタと電気的に接続される電極であり、画素電極と記すことがある。また下部電極111は発光デバイスの陽極又は陰極の一方として機能し、陽極又は陰極と記すことがある。
有機化合物層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機化合物層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機化合物層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光性の有機化合物を有する層は、発光層と記すことができる。
有機化合物層112、及び共通層114は、それぞれ独立に電子注入層、電子輸送層、発光層、正孔注入層、及び正孔輸送層から選ばれた、一又は二以上を有することができる。電子注入層、電子輸送層、発光層、正孔注入層、及び正孔輸送層は機能層と記すことがある。二以上有するとは、異なる機能層を組み合わせて二以上有する場合と、同じ機能層であって異なる材料を有する層を組み合わせて二層以上有する場合とを含む。機能層に用いることのできる具体的な材料は追って説明する。
本実施の形態において、有機化合物層112は、下部電極111側から順に、正孔注入層、正孔輸送層、発光層、及び電子輸送層の積層構造を有し、共通層114は電子注入層を有する構成とする。
なお、機能層は各機能を発揮できればよく、必ずしも有機化合物を含む必要はない。例えば、電子注入層等には無機化合物又は無機物のみを含む膜を用いることができる。
下部電極111R、下部電極111G、及び下部電極111Bは、それぞれ発光デバイス毎に設けられている。また、共通電極113及び共通層114は、各発光デバイスに共通な一続きの層として設けられている。下部電極111に反射性を有する導電膜を用い、共通電極113に可視光に対して透光性を有する導電膜を用い、トップエミッション型構造の表示装置とすることができる。
下部電極111の端部はテーパ形状を有することが好ましい。有機化合物層112の端部は下部電極111を超えた領域に位置するとよく、下部電極111の端部がテーパ形状を有する場合、有機化合物層112はテーパ形状に沿った形状を有する。下部電極111の側面をテーパ形状とすることで有機化合物層等の被覆性を高めることができる。
有機化合物層112は、フォトリソグラフィ法により加工されたものである。そのため、有機化合物層112の端部が被形成面となす角は、90度に近い形状となることがある。有機化合物層112の端部は下部電極111の端部を超えた領域に位置する。
隣接する2つの発光デバイスの間には絶縁層126を有すると好ましい。絶縁層126は、隣接する2つの発光デバイスの間に位置し、少なくとも隣接する2つの有機化合物層112の間を埋めるように設けられている。さらに好ましくは、絶縁層126は、有機化合物層112の端部と重なる領域を有するとよい。すなわち絶縁層126の端部が有機化合物層112上に位置することができ、絶縁層126の上部と端部の高さの差が小さくなる。絶縁層126の上部と端部の高さの差が大きくなると、絶縁層126がはがれやすくなることがあるため、当該差は小さい方がよい。
絶縁層126の上部形状は、滑らかな凸状を有していると好ましい。凸状を有する上部形状とは、絶縁層126の中央部が端部より盛り上がった形状と記すこともできる。
当該絶縁層126を覆って、少なくとも共通層114及び共通電極113が設けられ、共通層114及び共通電極113の切断を抑制できる。
また、有機化合物層112の側面に接して、絶縁層125が設けられているとよい。絶縁層125は、絶縁層126と有機化合物層112との間に位置し、絶縁層126が有機化合物層112に接することを防ぐための保護膜として機能する。有機化合物層112と絶縁層126とが接すると、絶縁層126の形成又は加工時に用いられる有機溶媒等により有機化合物層112が溶解する可能性がある。そのため、本実施の形態に示すように、有機化合物層112と絶縁層126との間に絶縁層125を設ける構成とすることで、有機化合物層112を保護することが可能となる。
絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜等の無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜等が挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜等が挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜等が挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜等が挙げられる。特に原子層堆積(ALD:Atomic Layer Deposition)法により形成した酸化アルミニウム膜、酸化ハフニウム膜等の酸化金属膜、又は酸化シリコン膜等の無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、有機化合物層を保護する機能に優れた絶縁層125を形成することができる。
なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層125の形成は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法等を用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
絶縁層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、絶縁層126として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、又はアルコール可溶性のポリアミド樹脂等の有機材料を用いてもよい。
また、絶縁層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、又はネガ型の材料を用いることができる。
絶縁層126として感光性を有する材料を用いる場合、露光及び現像を行うことで、加工された絶縁層126を形成することができる。加工された絶縁層126の表面は丸みを帯びた形状又は凹凸形状を有することがある。なお、加工された絶縁層126の表面の高さを調整するために、エッチングを行ってもよい。絶縁層126を、酸素プラズマを用いたアッシングにより加工して表面の高さを調整することができる。
絶縁層126は、可視光を吸収する材料を含むことが好ましい。例えば、絶縁層126自体が可視光を吸収する材料により構成されていてもよいし、絶縁層126が可視光を吸収する顔料を含んでいてもよい。絶縁層126としては、例えば、赤色、青色、又は緑色の光を透過し、他の光を吸収するカラーフィルタとして用いることのできる樹脂、又はカーボンブラックを顔料として含み、ブラックマトリクスとして機能する樹脂等を用いることもできる。
絶縁層126の上面は、有機化合物層112の上面の高さよりも高い部分を有することが好ましい。これにより、発光デバイス11から斜め上方向に射出される光を吸収することができ、補助電極と相まって、一層の迷光抑制効果を発揮できる。
絶縁層126は、例えば、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコートの湿式の成膜方法を用いて形成することができる。特に、スピンコートにより、絶縁層126となる有機絶縁膜を形成することが好ましい。
絶縁層126を形成後、大気中で85℃以上120℃以下、45分以上100分以下の加熱処理を実施するとよい。絶縁層126からの脱水又は脱気を行うことができる。
また、絶縁層125と、絶縁層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、及びアルミニウム等の中から選ばれる一又は複数を含む金属膜)を設けてもよい。例えば絶縁層125を形成した後、上記反射膜を形成することができる。上記反射膜により、発光層から射出される光を反射させる構成とすることができる。これにより、光取り出し効率を向上させることができる。
また、図7Bに示すように、絶縁層125と、有機化合物層112の上面との間に、絶縁層128が設けられていてもよい。絶縁層128は、有機化合物層112のエッチング時に、有機化合物層112を保護するための保護層(マスク層ともいう)の一部が残存したものである。絶縁層128には、上記絶縁層125に用いることのでる材料を用いるとよい。特に、絶縁層128と絶縁層125とに同じ材料を用いると、加工が容易となるため好ましい。例えば絶縁層128と絶縁層125とはともに、酸化アルミニウム膜、酸化ハフニウム膜又は酸化シリコン膜を有するとよい。
絶縁層125、絶縁層126及び絶縁層128は、いずれも発光デバイス間に位置する絶縁層であり、まとめて絶縁積層体と記すことがある。絶縁積層体上に共通層114及び共通電極113が設けられるため、共通層114及び共通電極113が段切れしないように絶縁積層体の端部がテーパ形状を有するとよい。絶縁積層体の端部がテーパ形状を有するには絶縁層125の端部がテーパ形状を有してもよいし、絶縁層126の端部がテーパ形状を有してもよいし、絶縁層128の端部がテーパ形状を有してもよいし、絶縁層125、絶縁層126及び絶縁層128の端部がすべてテーパ形状を有してもよい。複数の絶縁層でテーパ形状を構成する場合、各絶縁層の端部のテーパ形状が連続的に形成されると好ましい。
さらに、絶縁積層体の中央部は、上面に丸みを有するとよい。つまり絶縁積層体の中央部は、端部より盛り上がった形状を有する。上記形状とするために絶縁積層体の最上層に位置する絶縁層126は有機材料を用いて形成するとよい。
さらに絶縁積層体の端部は多様な形をとることができる。例えば絶縁積層体の下方に位置する絶縁層125が、絶縁層126から突出していてもよい。この場合、絶縁層126の加工の際に絶縁層125の上部の一部が除去されることがある。絶縁層126から突出した絶縁層125の上部の一部が除去されると、共通層114及び共通電極113が切断しない効果がある。
絶縁層128が絶縁層126から突出していてもよい。この場合、絶縁層126の加工の際に絶縁層128の上部の一部が除去されることがある。絶縁層126から突出した絶縁層128の上部の一部が除去されると、共通層114及び共通電極113が切断しない効果がある。
絶縁層128が絶縁層126から突出した場合、絶縁層128の下方に位置する絶縁層125の端部は、絶縁層128の端部と一致又は概略一致するとよい。
図7Bに示すように共通電極113上には保護層121が設けられている。保護層121は、上方から各発光素子に不純物が拡散することを防ぐ機能を有する。
保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
保護層121は、接着層171によって基板170と貼り合されている。接着層171には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。また接着層171には、接着シート等を用いてもよい。
図7Cに示す接続部140では、接続電極111C上において、絶縁層125及び絶縁層126に開口部が設けられる。当該開口部を介して接続電極111Cと共通電極113とが電気的に接続されている。接続電極111Cと共通電極113とが電気的に接続するための開口部は、何れの絶縁層に設けてもよい。
なお、図7Cには、接続電極111C上に共通層114を設け、共通層114上に共通電極113が設けられた構成を示す。共通層114に電子注入層等のキャリア注入層を用いた場合等では、当該共通層114に用いる材料の抵抗率が十分に低いため、接続電極111Cは、共通層114を介して共通電極113と電気的に接続することができる。これにより、共通電極113と共通層114とを同じマスク(ファインメタルマスクと区別して、エリアマスク、又はラフメタルマスク等ともいう)を用いて形成することができるため、製造コストを低減できる。勿論、接続電極111Cが共通電極113と接する領域を有する接続部140としてもよい。
以下では、上記とは一部の構成が異なる表示装置の構成例について説明する。なお以下では、上記具体例と重複する部分については同一の符号を付し、繰り返しの説明は行わない場合がある。
具体例で説明した表示装置は、少なくとも有機化合物層が分離されている。当該構成により、リーク電流によるクロストークが抑制され、極めて表示品位の高い画像を表示することができる。さらに、高い開口率と、高い精細度を両立することが可能である。40インチ以上100インチ以上、さらには100インチ超の超大型ディスプレイに本発明の一態様の表示装置を適用することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態3)
本実施の形態では副画素のレイアウトについて説明する。
<レイアウト>
副画素の配列に特に限定はなく、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、又はペンタイル配列等を用いることができる。
また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形等の多角形、これら多角形の角が丸い形状、楕円形、又は円形等が挙げられる。ここでいう副画素の上面形状は、発光デバイスの発光領域に相当する。
図8Aに示す画素部103は補助配線の一部として第2の配線層151bを有し、画素150は角が丸い略台形の上面形状を有する発光デバイス11aと、角が丸い略三角形の上面形状を有する発光デバイス11bと、角が丸い略四角形又は略六角形の上面形状を発光デバイス11cと、を有する。また、発光デバイス11aは、発光デバイス11bよりも発光面積が広い。このように、各発光デバイスの形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光デバイスほど、サイズを小さくすることができる。
図8Aに示す画素部103は、図9Aに示すように、発光デバイス11aを緑色の発光デバイスGとし、発光デバイス11bを赤色の発光デバイスRとし、発光デバイス11cを青色の発光デバイスBとすることができる。
図8Bに示す画素部103は補助配線の一部として第2の配線層151bを有し、副画素の配列にはペンタイル配列が適用されている。ペンタイル配列として、発光デバイス11a及び発光デバイス11bを有する副画素のペア124aと、発光デバイス11b及び発光デバイス11cを有する副画素のペア124bと、が交互にレイアウトされている。
図8Bに示す画素部103は、図9Bに示すように、発光デバイス11aを赤色の発光デバイスRとし、発光デバイス11bを緑色の発光デバイスGとし、発光デバイス11cを青色の発光デバイスBとすることができる。
図8Cに示す画素部103は補助配線の一部として第2の配線層151bを有し、画素150a、画素150bは、デルタ配列が適用されている。デルタ配列として、画素150aは上の行(1行目)に、2つの発光デバイス(発光デバイス11a、発光デバイス11b)を有し、下の行(2行目)に、1つの発光デバイス(発光デバイス11c)を有する。画素150bは上の行(1行目)に、1つの発光デバイス(発光デバイス11c)を有し、下の行(2行目)に、2つの発光デバイス(発光デバイス11a、発光デバイス11b)を有する。
図8Cに示す画素部103は、図9Cに示すように、発光デバイス11aを赤色の発光デバイスRとし、発光デバイス11bを緑色の発光デバイスGとし、発光デバイス11cを青色の発光デバイスBとしてもよい。
図8Dに示す画素部103は補助配線の一部として第2の配線層151bを有し、各色の発光デバイスがジグザグにレイアウトされている例である。ジグザグにレイアウトした場合、上面視において、列方向に並ぶ2つの発光デバイス(例えば、発光デバイス11aと発光デバイス11b、又は、発光デバイス11bと発光デバイス11c)の上辺の位置がずれている。
図8Dに示す画素部103は、図9Dに示すように、発光デバイス11aを赤色の発光デバイスRとし、発光デバイス11bを緑色の発光デバイスGとし、発光デバイス11cを青色の発光デバイスBとしてもよい。
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりレジストマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、レジストマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、発光デバイスの上面形状が、多角形の角が丸い形状、楕円形、又は円形等になることがある。
さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いて有機化合物層に加工する。有機化合物層上に形成したレジストマスクは、有機化合物層の耐熱温度よりも低い温度で硬化する必要がある。そのため、有機化合物層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジストマスク形成のための硬化が不十分になる場合がある。硬化が不十分なレジストマスクは、加工時に所望の形状から離れた形状をとることがある。その結果、有機化合物層の上面形状が、多角形の角が丸い形状、楕円形、又は円形等になることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、有機化合物層の上面形状が円形になることがある。
なお、有機化合物層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部等に補正用のパターンを追加する。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態4)
本実施の形態では、発光デバイスに用いることができる材料等について説明する。
[発光デバイス]
発光デバイスにおいて光を取り出す側の電極には、透光性を有する導電膜を用い、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。また、光を取り出さない側の電極にも可視光を透過する導電膜を用いてもよい。この場合、可視光を反射する導電膜と、有機化合物層との間に当該電極をレイアウトすることが好ましい。つまり、発光デバイスの発光は、当該可視光を反射する導電膜によって反射されて、表示装置から取り出すことができればよい。
発光デバイスの電極を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物等を適宜用いることができる。具体的には、インジウムスズ酸化物、In−Si−Sn酸化物、インジウム亜鉛酸化物、In−W−Zn酸化物、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La合金とも記す)等のアルミニウムを含む合金(アルミニウム合金とも記す)、及び、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)が挙げられる。その他、アルミニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、ネオジム等の金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族又は第2族に属する元素(例えば、リチウム、セシウム、カルシウム、ストロンチウム)、ユウロピウム、イッテルビウム等の希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
上記材料のうち正孔を放出できるものを陽極として用い、電子を放出できるものを陰極として用いることができる。
発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていると好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光を一対の電極間で共振させ、発光デバイスから射出される発光を狭線化させ、さらに強めることができる。
微小光共振器(マイクロキャビティ)構造が適用されると、赤色、緑色、及び青色の発光デバイスで一対の電極間距離が互いに異なる。
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。
発光デバイスの有機化合物層は少なくとも発光層を有する。発光層は、発光材料(発光物質ともいう)を含む層である。発光層は、1種又は複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色等の発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料等が挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体等が挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、又はピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
発光層は、発光物質(ゲスト材料)に加えて、1種又は複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種又は複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方又は双方を用いることができる。また、1種又は複数種の有機化合物として、バイポーラ性材料、又はTADF材料を用いてもよい。
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
有機化合物層112は、それぞれ、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック材料、又はバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
発光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
例えば、有機化合物層112は、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち1つ以上を有していてもよい。
共通層114としては、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち1つ以上を適用することができる。例えば、共通層114として、キャリア注入層(正孔注入層又は電子注入層)を形成してもよい。なお、発光デバイスは、共通層114を有していなくてもよい。
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料等が挙げられる。
正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体等)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
電子ブロック層は、発光層に接して設けられる。電子ブロック層は、正孔輸送性を有し、かつ、電子をブロックすることが可能な材料を含む層である。電子ブロック層には、上記正孔輸送性材料のうち、電子ブロック性を有する材料を用いることができる。
電子ブロック層は、正孔輸送性を有するため、正孔輸送層と呼ぶこともできる。また、正孔輸送層のうち、電子ブロック性を有する層を、電子ブロック層と呼ぶこともできる。
電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
その他の電子輸送性材料として、例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも1つを有する化合物を用いることができる。
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)準位が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:highest occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。
正孔ブロック層は、発光層に接して設けられる。正孔ブロック層は、電子輸送性を有し、かつ、正孔をブロックすることが可能な材料を含む層である。正孔ブロック層には、上記電子輸送性材料のうち、正孔ブロック性を有する材料を用いることができる。
正孔ブロック層は、電子輸送性を有するため、電子輸送層と呼ぶこともできる。また、電子輸送層のうち、正孔ブロック性を有する層を、正孔ブロック層と呼ぶこともできる。
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
例えば、アルカリ金属又はアルカリ土類金属として、リチウム、セシウム、マグネシウム等があり、化合物としてフッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、Xは任意数)、リチウム酸化物(LiO、Xは任意数)、又は炭酸セシウム等がある。
また電子注入層に用いることができる材料として、有機化合物を用いることもできる。有機化合物として、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)等がある。
上記有機化合物はドーパントを含んでもよい。ドーパントとして金属を用いればよく、例えば、銀(Ag)又はイッテルビウム(Yb)を用いることができる。
また電子注入層に用いることができる材料として、上記アルカリ金属又はアルカリ土類金属と上記有機化合物とを含む複合材料を用いることもできる。
また、電子注入層を2以上の積層構造としてもよい。当該積層構造として上述した材料を適宜組み合わせることができる。例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを用いた構成とすることができる。
電子注入層として上述した電子輸送性材料を用いてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態5)
本実施の形態では、表示装置について説明する。
[表示装置の構成例]
図10Aに、表示装置10のブロック図を示す。表示装置10は、画素部103、駆動回路部12、駆動回路部13等を有する。
画素部103は、マトリクス状にレイアウトされた複数の画素150を有する。画素150は、副画素110R、副画素110G、及び副画素110Bを有する。副画素110R、副画素110G、及び副画素110Bは、それぞれ表示デバイスとして機能する発光デバイスを有する。
画素150は、配線GL、配線SLR、配線SLG、及び配線SLBと電気的に接続されている。配線SLR、配線SLG、及び配線SLBは、それぞれ駆動回路部12と電気的に接続されている。配線GLは、駆動回路部13と電気的に接続されている。駆動回路部12は、ソース線駆動回路(ソースドライバともいう)として機能し、駆動回路部13は、ゲート線駆動回路(ゲートドライバともいう)として機能する。配線GLは、ゲート線として機能し、配線SLR、配線SLG、及び配線SLBは、それぞれソース線として機能する。
副画素110Rは、赤色の光を呈する発光デバイスを有する。副画素110Gは、緑色の光を呈する発光デバイスを有する。副画素110Bは、青色の光を呈する発光デバイスを有する。これにより、表示装置10はフルカラーの表示を行うことができる。なお、画素150は、他の色の光を呈する発光デバイスを有する副画素を有していてもよい。例えば画素150は、上記3つの副画素に加えて、白色の光を呈する発光デバイスを有する副画素、又は黄色の光を呈する発光デバイスを有する副画素等を有していてもよい。
配線GLは、行方向(配線GLの延伸方向)に配列する副画素110R、副画素110G、及び副画素110Bと電気的に接続されている。配線SLR、配線SLG、及び配線SLBは、それぞれ、列方向(配線SLR等の延伸方向)に配列する副画素110R、副画素110G、又は副画素110B(図示しない)と電気的に接続されている。
〔画素回路の構成例〕
図10Bに、上記副画素110R、副画素110G、及び副画素110Bに適用することのできる画素150の回路図の一例を示す。画素150は、トランジスタM1、トランジスタM2、トランジスタM3、容量C1、及び発光デバイスELを有する。また、画素150には、配線GL及び配線SLが電気的に接続される。配線SLは、図10Aで示した配線SLR、配線SLG、及び配線SLBのうちのいずれかに対応する。
トランジスタM1は、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLと電気的に接続され、他方が容量C1の一方の電極、及びトランジスタM2のゲートと電気的に接続される。トランジスタM2は、ソース及びドレインの一方が配線ALと電気的に接続され、ソース及びドレインの他方が発光デバイスELの一方の電極、容量C1の他方の電極、及びトランジスタM3のソース及びドレインの一方と電気的に接続される。トランジスタM3は、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線RLと電気的に接続される。発光デバイスELは、他方の電極が配線CLと電気的に接続される。
配線SLには、データ電位Dが与えられる。配線GLには、選択信号が与えられる。当該選択信号には、トランジスタを導通状態とする電位と、非導通状態とする電位が含まれる。
配線RLには、リセット電位が与えられる。配線ALには、アノード電位が与えられる。配線CLには、カソード電位が与えられる。画素150において、アノード電位はカソード電位よりも高い電位とする。また、配線RLに与えられるリセット電位は、リセット電位とカソード電位との電位差が、発光デバイスELのしきい値電圧よりも小さくなるような電位とすることができる。リセット電位は、カソード電位よりも高い電位、カソード電位と同じ電位、又は、カソード電位よりも低い電位とすることができる。
トランジスタM1及びトランジスタM3は、スイッチとして機能する。トランジスタM2は、発光デバイスELに流れる電流を制御するためのトランジスタとして機能する。例えば、トランジスタM1は選択トランジスタとして機能し、トランジスタM2は、駆動トランジスタとして機能するともいえる。
ここで、トランジスタM1乃至トランジスタM3の全てに、LTPSトランジスタを適用することが好ましい。又は、トランジスタM1及びトランジスタM3にOSトランジスタを適用し、トランジスタM2にLTPSトランジスタを適用することが好ましい。
又は、トランジスタM1乃至トランジスタM3のすべてに、OSトランジスタを適用してもよい。このとき、駆動回路部12が有する複数のトランジスタ、及び駆動回路部13が有する複数のトランジスタのうち、一以上にLTPSトランジスタを適用し、他のトランジスタにOSトランジスタを適用する構成とすることができる。例えば、画素部103に設けられるトランジスタにはOSトランジスタを適用し、駆動回路部12及び駆動回路部13に設けられるトランジスタにはLTPSトランジスタを適用することもできる。
OSトランジスタとしては、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタを用いることができる。半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種又は複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種又は複数種であることが好ましい。特に、OSトランジスタの半導体層として、インジウム、ガリウム、及び亜鉛を含む酸化物(IGZOとも記す)を用いることが好ましい。又は、インジウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。又は、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さい酸化物半導体を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量C1に直列に接続されるトランジスタM1及びトランジスタM3には、それぞれ、酸化物半導体が適用されたトランジスタを用いることが好ましい。トランジスタM1及びトランジスタM3として酸化物半導体を有するトランジスタを適用することで、容量C1に保持される電荷が、トランジスタM1又はトランジスタM3を介してリークされることを防ぐことができる。また、容量C1に保持される電荷を長時間に亘って保持できるため、画素150のデータを書き換えることなく、静止画を長期間に亘って表示することが可能となる。
なお、図10Bにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
また、画素150が有する各トランジスタは、同一基板上に並べて形成されることが好ましい。
画素150が有するトランジスタとして、半導体層を介して重なる一対のゲートを有するトランジスタを適用することができる。
一対のゲートを有するトランジスタにおいて、一対のゲートが互いに電気的に接続され、同じ電位が与えられる構成とすることで、トランジスタのオン電流が高まること、及び飽和特性が向上するといった利点がある。また、一対のゲートの一方に、トランジスタのしきい値電圧を制御する電位を与えてもよい。また、一対のゲートの一方に、定電位を与えることで、トランジスタの電気特性の安定性を向上させることができる。例えば、トランジスタの一方のゲートを、定電位が与えられる配線と電気的に接続する構成としてもよいし、自身のソース又はドレインと電気的に接続する構成としてもよい。
図10Cに示す画素150は、トランジスタM3に、一対のゲートを有するトランジスタを適用した場合の例である。トランジスタM3は一対のゲートが電気的に接続されている。このような構成とすることで、画素150へのデータの書き込み期間を短縮することができる。
図10Dに示す画素150は、トランジスタM3に加えて、トランジスタM1及びトランジスタM2にも、一対のゲートを有するトランジスタを適用した例である。いずれのトランジスタにおいても、一対のゲートが互いに電気的に接続されている。少なくともトランジスタM2に、このようなトランジスタを適用することで、飽和特性が向上するため、発光デバイスELの発光輝度の制御が容易となり、表示品位を高めることができる。
図10Eに示す画素150は、図10Dに示す画素150のトランジスタM2の一対のゲートの一がトランジスタM2のソースと電気的に接続した場合の例である。
[トランジスタの構成例]
以下では、上記表示装置に適用することのできるトランジスタの断面構成例について説明する。
〔構成例1〕
図11Aは、トランジスタ410を含む断面図である。
トランジスタ410は、基板401上に設けられ、半導体層に多結晶シリコンを適用したトランジスタである。例えばトランジスタ410は、画素150のトランジスタM2に対応する。すなわち、図11Aは、トランジスタ410のソース及びドレインの一方が、発光デバイスの下部電極111と電気的に接続されている例である。
トランジスタ410は、半導体層411、絶縁層412、導電層413等を有する。半導体層411は、チャネル形成領域411i及び低抵抗領域411nを有する。半導体層411は、シリコンを有する。半導体層411は、多結晶シリコンを有することが好ましい。絶縁層412の一部は、ゲート絶縁層として機能する。導電層413の一部は、ゲート電極として機能する。
なお、半導体層411は、半導体特性を示す金属酸化物(酸化物半導体ともいう)を含む構成とすることもできる。このとき、トランジスタ410は、OSトランジスタと呼ぶことができる。
低抵抗領域411nは、不純物元素を含む領域である。例えばトランジスタ410をnチャネル型のトランジスタとする場合には、低抵抗領域411nにリン、ヒ素等を添加すればよい。一方、pチャネル型のトランジスタとする場合には、低抵抗領域411nにホウ素、アルミニウム等を添加すればよい。また、トランジスタ410のしきい値電圧を制御するため、チャネル形成領域411iに、上述した不純物が添加されていてもよい。
基板401上に、絶縁層421が設けられている。半導体層411は、絶縁層421上に設けられている。絶縁層412は、半導体層411及び絶縁層421を覆って設けられている。導電層413は、絶縁層412上の、半導体層411と重なる位置に設けられている。
また、導電層413及び絶縁層412を覆って絶縁層422が設けられる。絶縁層422上には、導電層414a及び導電層414bが設けられる。導電層414a及び導電層414bは、絶縁層422及び絶縁層412に設けられた開口部において、低抵抗領域411nと電気的に接続されている。導電層414aの一部は、ソース電極及びドレイン電極の一方として機能し、導電層414bの一部は、ソース電極及びドレイン電極の他方として機能する。また、導電層414a、導電層414b、及び絶縁層422を覆って、絶縁層104が設けられている。
絶縁層104上には、画素電極として機能する下部電極111が設けられる。下部電極111は、絶縁層104上に設けられ、絶縁層104に設けられた開口において、導電層414bと電気的に接続されている。ここでは省略するが、下部電極111上には、EL層及び共通電極を積層することができる。
〔構成例2〕
図11Bには、一対のゲート電極を有するトランジスタ410aを示す。図11Bに示すトランジスタ410aは、導電層415、及び絶縁層416を有する点で、図11Aと主に相違している。
導電層415は、絶縁層421上に設けられている。また、導電層415及び絶縁層421を覆って、絶縁層416が設けられている。半導体層411は、少なくともチャネル形成領域411iが、絶縁層416を介して導電層415と重なるように設けられている。
図11Bに示すトランジスタ410aにおいて、導電層413の一部が第1のゲート電極として機能し、導電層415の一部が第2のゲート電極として機能する。またこのとき、絶縁層412の一部が第1のゲート絶縁層として機能し、絶縁層416の一部が第2のゲート絶縁層として機能する。
ここで、第1のゲート電極と、第2のゲート電極とを電気的に接続する場合、図示しない領域において、絶縁層412及び絶縁層416に設けられた開口部を介して導電層413と導電層415とを電気的に接続すればよい。また、第2のゲート電極と、ソース又はドレインとを電気的に接続する場合、図示しない領域において、絶縁層422、絶縁層412、及び絶縁層416に設けられた開口部を介して、導電層414a又は導電層414bと、導電層415とを電気的に接続すればよい。
画素150を構成するトランジスタの全てに、LTPSトランジスタを適用する場合、図11Aで例示したトランジスタ410、又は図11Bで例示したトランジスタ410aを適用することができる。このとき、画素150を構成する全てのトランジスタに、トランジスタ410aを用いてもよいし、全てのトランジスタにトランジスタ410を適用してもよいし、トランジスタ410aと、トランジスタ410とを組み合わせて用いてもよい。
〔構成例3〕
以下では、半導体層にシリコンが適用されたトランジスタと、半導体層に金属酸化物が適用されたトランジスタの両方を有する構成の例について説明する。
図11Cに、トランジスタ410a及びトランジスタ450を含む、断面図を示している。
トランジスタ410aについては、上記構成例1を援用できる。なお、ここではトランジスタ410aを用いる例を示したが、トランジスタ410とトランジスタ450とを有する構成としてもよいし、トランジスタ410、トランジスタ410a、トランジスタ450の全てを有する構成としてもよい。
トランジスタ450は、半導体層に金属酸化物を適用したトランジスタである。図11Cに示す構成は、例えばトランジスタ450が画素150のトランジスタM1に対応し、トランジスタ410aがトランジスタM2に対応する例である。すなわち、図11Cは、トランジスタ410aのソース及びドレインの一方が、下部電極111と電気的に接続されている例である。
また、図11Cには、トランジスタ450が一対のゲートを有する例を示している。
トランジスタ450は、導電層455、絶縁層422、半導体層451、絶縁層452、導電層453等を有する。導電層453の一部は、トランジスタ450の第1のゲートとして機能し、導電層455の一部は、トランジスタ450の第2のゲートとして機能する。このとき、絶縁層452の一部はトランジスタ450の第1のゲート絶縁層として機能し、絶縁層422の一部は、トランジスタ450の第2のゲート絶縁層として機能する。
導電層455は、絶縁層412上に設けられている。絶縁層422は、導電層455を覆って設けられている。半導体層451は、絶縁層422上に設けられている。絶縁層452は、半導体層451及び絶縁層422を覆って設けられている。導電層453は、絶縁層452上に設けられ、半導体層451及び導電層455と重なる領域を有する。
また、絶縁層426が絶縁層452及び導電層453を覆って設けられている。絶縁層426上には、導電層454a及び導電層454bが設けられる。導電層454a及び導電層454bは、絶縁層426及び絶縁層452に設けられた開口部において、半導体層451と電気的に接続されている。導電層454aの一部は、ソース電極及びドレイン電極の一方として機能し、導電層454bの一部は、ソース電極及びドレイン電極の他方として機能する。また、導電層454a、導電層454b、及び絶縁層426を覆って、絶縁層104が設けられている。
ここで、トランジスタ410aと電気的に接続する導電層414a及び導電層414bは、導電層454a及び導電層454bと、同一の導電膜を加工して形成することが好ましい。図11Cでは、導電層414a、導電層414b、導電層454a、及び導電層454bが、同一面上に(すなわち絶縁層426の上面に接して)形成され、且つ、同一の金属元素を含む構成を示している。このとき、導電層414a及び導電層414bは、絶縁層426、絶縁層452、絶縁層422、及び絶縁層412に設けられた開口を介して、低抵抗領域411nと電気的に接続する。これにより、作製工程を簡略化できるため好ましい。
また、トランジスタ410aの第1のゲート電極として機能する導電層413と、トランジスタ450の第2のゲート電極として機能する導電層455とは、同一の導電膜を加工して形成することが好ましい。図11Cでは、導電層413と導電層455とが、同一面上に(すなわち絶縁層412の上面に接して)形成され、且つ、同一の金属元素を含む構成を示している。これにより、作製工程を簡略化できるため好ましい。
図11Cでは、トランジスタ450の第1のゲート絶縁層として機能する絶縁層452が、半導体層451の端部を覆う構成としたが、図11Dに示すトランジスタ450aのように、絶縁層452が、導電層453と上面形状が一致又は概略一致するように加工されていてもよい。
なお、本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、又は一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、又は、上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という。
なお、ここではトランジスタ410aが、トランジスタM2に対応し、画素電極と電気的に接続する例を示したが、これに限られない。例えば、トランジスタ450又はトランジスタ450aが、トランジスタM2に対応する構成としてもよい。このとき、トランジスタ410aは、トランジスタM1、トランジスタM3、又はその他のトランジスタに対応する。
上記画素回路を有し、且つ上記実施の形態の発光デバイス構造とすることで、表示装置は画像のきれ、画像のするどさ、高い彩度、及び高いコントラスト比のいずれか一又は複数を備えることができる。上記画素回路のトランジスタに流れうるリーク電流が極めて低く、上記実施の形態の発光デバイス間の横リーク電流が極めて低い構成となり、表示装置は黒表示時に生じうる光漏れ等が限りなく少なくなり好ましい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態6)
本実施の形態では、受光デバイス(受光素子とも記す)を有する表示装置について説明する。
画素部では発光デバイスに加えて受光デバイスを有してもよく、受光機能を備えた表示装置を提供できる。受光機能を有する表示装置は、画像を表示しながら、対象物の接触又は近接を検出することができる。受光デバイスが位置する領域を受光部と記し、受光部は、受光デバイスを制御するスイッチング素子も有する。スイッチング素子によって制御された受光デバイスは、光源からの光を受光する機能を備え、受光した光を電気信号に変換することができる。
さらに表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、残りの副画素で画像を表示してもよい。
図12A、図12B、図12Cに示す画素150は、副画素110G、副画素110B、副画素110R、及び受光部S(図中、R、G、B、Sと付す)を有し、さらに補助配線を有する。図12A、図12B、図12Cでは補助配線151の一部である第2の配線層151bを示す。図12A、図12B、図12Cでは、各副画素等の区別を簡単にするため、各領域内にR、G、B、Sの符号を付している。
図12Aに示す画素150は、ストライプ配列が適用され、副画素110G、副画素110B、副画素110R、及び受光部S(図中、R、G、B、Sと付す)を囲むように第2の配線層151bが設けられている。
図12Bに示す画素は、マトリクス配列が適用され、副画素110G、副画素110B、副画素110R、及び受光部Sを囲むように第2の配線層151bが設けられている。
図12Cに示す画素150は、1つの副画素(副画素110B)の隣に、3つの副画素(副画素110R、副画素110G、受光部S)が縦に3つ並んだ配列が適用され、副画素110G、副画素110B、副画素110R、及び受光部Sを囲むように第2の配線層151bが設けられている。
なお、副画素のレイアウトは図12A乃至図12Cの構成に限られない。第2の配線層151bのレイアウトは図12A乃至図12Cの構成に限られない。
受光部Sの受光面積が他の副画素の発光面積よりも小さい場合、撮像範囲が狭くなり、撮像結果のボケの抑制、及び解像度の向上が可能となる。そのため本発明の一態様の表示装置は、高精細又は高解像度の撮像を行うことが可能である。例えば、受光部Sを用いて、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、又は顔等を用いた個人認証のための撮像を行うことができる。
また、受光部Sは、タッチセンサ(ダイレクトタッチセンサともいう)又はニアタッチセンサ(ホバーセンサ、ホバータッチセンサ、非接触センサ、タッチレスセンサともいう)等に用いることができる。
タッチセンサ又はニアタッチセンサは、対象物(指、手、又はペン等)の近接もしくは接触を検出することができる。タッチセンサは、表示装置と、対象物とが、直接接することで、対象物を検出できる。また、ニアタッチセンサは、対象物が表示装置に接触しなくても、当該対象物を検出することができる。例えば、表示装置と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、表示装置に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、表示装置に汚れ、又は傷がつくリスクを低減することができる、又は対象物が表示装置に付着した汚れ(例えば、ゴミ、又はウィルス等)に直接触れずに、表示装置を操作することが可能となる。
なお、高精細な撮像を行う場合、受光部Sは、表示装置が有する全ての画素に設けられていることが好ましい。一方で、タッチセンサ又はニアタッチセンサ等に用いる場合は、受光部Sは指紋等を撮像する場合と比較して高い精度が求められないため、表示装置が有する一部の画素に設けられていればよい。表示装置が有する受光部Sの数を、副画素110R等の数よりも少なくすることで、検出速度を高めることができる。
図12Dに、受光デバイスを有する副画素(PIX1)の画素回路の一例を示す。
図12Dに示す画素回路は、受光デバイスPD、トランジスタM11、トランジスタM12、トランジスタM13、トランジスタM14、及び容量素子C2を有する。ここでは、受光デバイスPDとして、フォトダイオードを用いた例を示している。
受光デバイスPDは、アノードが配線V1と電気的に接続し、カソードがトランジスタM11のソース又はドレインの一方と電気的に接続する。トランジスタM11は、ゲートが配線TXと電気的に接続し、ソース又はドレインの他方が容量素子C2の一方の電極、トランジスタM12のソース又はドレインの一方、及びトランジスタM13のゲートと電気的に接続する。トランジスタM12は、ゲートが配線RESと電気的に接続し、ソース又はドレインの他方が配線V2と電気的に接続する。トランジスタM13は、ソース又はドレインの一方が配線V3と電気的に接続し、ソース又はドレインの他方がトランジスタM14のソース又はドレインの一方と電気的に接続する。トランジスタM14は、ゲートが配線SEと電気的に接続し、ソース又はドレインの他方が配線OUT1と電気的に接続する。
配線V1、配線V2、及び配線V3には、それぞれ定電位が供給される。受光デバイスPDを駆動させる場合には、配線V2に、配線V1の電位よりも高い電位を供給する。トランジスタM12は、配線RESに供給される信号により制御され、トランジスタM13のゲートに接続するノードの電位を、配線V2に供給される電位にリセットする機能を有する。トランジスタM11は、配線TXに供給される信号により制御され、受光デバイスPDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM13は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM14は、配線SEに供給される信号により制御され、上記ノードの電位に応じた出力を配線OUT1に電気的に接続された外部回路で読み出すための選択トランジスタとして機能する。
トランジスタM11、トランジスタM12、トランジスタM13、及びトランジスタM14には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタ(OSトランジスタ)を適用することが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア密度の小さいOSトランジスタは、極めて小さいオフ電流を実現することができる。
また、トランジスタM11乃至トランジスタM14に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコン又は多結晶シリコン等の結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
また、トランジスタM11乃至トランジスタM14のうち、一以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
なお、図12Dにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、0.01Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減する駆動をアイドリングストップ(IDS)駆動と呼称してもよい。
また、上記のリフレッシュレートに応じて、タッチセンサ、又はニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、又はニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、又はニアタッチセンサの応答速度を高めることが可能となる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態7)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウム又は亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズ等が含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルト等から選ばれた一種、又は複数種が含まれていてもよい。
また、金属酸化物は、スパッタリング法、MOCVD法等のCVD法、又はALD法等により形成することができる。
<結晶構造の分類>
酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(poly crystal)等が挙げられる。
なお、膜又は基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法又はSeemann−Bohlin法ともいう。
例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中又は基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜又は基板は非晶質状態であるとは言えない。
また、膜又は基板の結晶構造は、極微電子線回折(NBED:Nano Beam Electron Diffraction)法によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、等が含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、又はCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つ又は複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が複数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタン等から選ばれた一種、又は複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°又はその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成等により変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形等の格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化すること等によって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下等を引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成等によって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損等)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OS又は非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つ又は複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。又は、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物等が主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物等が主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つ又は複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコン又は炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコン又は炭素の濃度と、酸化物半導体との界面近傍のシリコン又は炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。又は、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態8)
上述した表示装置の作製方法の一例について、図13乃至図17等を参照して説明する。図中、左側に画素150に関する領域を示し、右側に補助配線151に関する領域を示す。
[作製方法例1]
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、CVD法、真空蒸着法、PLD法、又はALD法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、又は熱CVD法等がある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜、樹脂膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、又はナイフコート等の方法により形成することができる。これらは湿式の成膜方法である。
表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法等により薄膜を加工してもよい。また、メタルマスク等を用いた成膜方法により、薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、又はこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、又はArFレーザ光等を用いることもできる。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、X線等を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線又は電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビーム等のビームを走査することにより露光を行う場合には、レジストマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、又はサンドブラスト法等を用いることができる。
〔基板の準備〕
図示しないが、基板を用意する。基板としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、又は有機樹脂基板等を用いることができる。また、シリコン、炭化シリコン等を材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等の半導体基板を用いることができる。
基板として、上記半導体基板又は絶縁性基板上に、トランジスタ等の半導体素子を含む画素回路が形成された基板を用意すると好ましい。当該画素回路以外に、ゲート線駆動回路(ゲートドライバ)、又はソース線駆動回路(ソースドライバ)等が形成された基板を用いてもよい。また、上記に加えて演算回路、又は記憶回路等が形成された基板を用いてもよい。
〔絶縁層102の形成〕
図13Aに示すように、上述した基板に絶縁層102を形成する。絶縁層102としては、無機材料、又は有機材料を用いることができる。有機材料は絶縁層104の上面の平坦性を確保できるため好ましい。有機材料として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等から選ばれた一又は二以上を用いることができる。二以上を用いる場合は、選ばれた有機材料を積層すればよい。
図13Aに示すように、絶縁層102はコンタクトホール158を有する。当該コンタクトホール158は、フォトリソグラフィ法等により形成することができる。
〔導電層160、第1の配線層151aの形成〕
図13Aに示すように、絶縁層102上及びコンタクトホール158に導電層160及び第1の配線層151aを形成する。すなわち導電層160及び第1の配線層151aは同一の被形成面に、同一工程を経て形成されたものである。具体的には、絶縁層102上及びコンタクトホール158に形成された導電膜を加工して、導電層160及び第1の配線層151aを得ることができる。
導電層160は画素回路のトランジスタと電気的に接続され、下部電極111とも電気的に接続される。また導電層160は、絶縁層102上で延伸形状に加工することができ、信号線、電源線、又は走査線等として機能させることができる。また導電層160は配線として機能させることなく、トランジスタと下部電極111とを電気的に接続させるための導電層としてもよい。第1の配線層151aは、補助配線151の下層配線層として機能させることができ、絶縁層102上で延伸形状又は格子形状等に加工する。第1の配線層151aは開口率に影響しないため、広い面積となるような形状を有してもよい。ただし、第1の配線層151aは導電層160と接しないようにする。
導電層160及び第1の配線層151aはアルミニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、及びネオジム等から選ばれた一又は二以上の金属材料、並びにこれらを適宜組み合わせた合金等を用いることができる。第1の配線層151aが補助配線の下層配線層として機能するため、抵抗率の低い金属材料を用いると好ましい。
導電層160及び第1の配線層151aは、上記金属材料を有する単層構造を有しても、上記金属材料を有する積層構造を有してもよい。
〔絶縁層104の形成〕
図13Aに示すように、絶縁層102上に絶縁層104を形成する。絶縁層104としては、無機材料、又は有機材料を用いることができる。有機材料は絶縁層104の上面の平坦性を確保できるため好ましい。有機材料として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等から選ばれた一又は二以上を用いることができる。二以上を用いる場合は、選ばれた有機材料を積層すればよい。
絶縁層104はコンタクトホール159を有する。当該コンタクトホール159は、フォトリソグラフィ法等により形成することができ、当該コンタクトホール159から導電層160の一部が露出する。当該コンタクトホール159は、コンタクトホール158と重ならず、絶縁層102の平坦な上面に設けられた導電層160と重なる位置に設けるとよい。当該コンタクトホール159がコンタクトホール158と重なる場合、コンタクトホール159の方がコンタクトホール158よりも大きいとよい。
〔導電層161、樹脂層163、導電層162の形成〕
図13Aに示すように、コンタクトホール159に導電層161を形成し、その後樹脂層163を形成し、その後導電層162を形成する。導電層161、樹脂層163、及び導電層162を形成することなく、下部電極111及び第2の配線層151bを形成しても構わない。
絶縁層104及びコンタクトホール159上に導電層161となる導電膜を成膜する。絶縁層104の上面は当該導電膜の被形成面であり、当該上面に平坦性があると導電膜が切断されにくく好ましい。導電層161はアルミニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、及びネオジム等から選ばれた一又は二以上の金属材料、並びにこれらを適宜組み合わせた合金等を用いることができる。
上記導電膜を形成後、当該導電膜の表面が凹部を有する場合、当該凹部には有機材料として樹脂を有する層(樹脂層と記す)163を形成するとよい。樹脂層163によって、絶縁層104、コンタクトホール159、及び導電層161に起因する凹凸を低減することができる。
樹脂層163として、感光性の樹脂を用いることが好ましい。このとき、まず樹脂膜を成膜したのち、レジストマスクを介して樹脂膜を露光し、その後現像処理を行うことにより、樹脂層163を形成することができる。さらに好ましくは、樹脂層163の上面の高さを調整するために、アッシング等により樹脂層163の上部をエッチングしてもよい。
また、樹脂層163として、非感光性の樹脂を用いる場合には、樹脂膜を成膜した後に、アッシング等により樹脂膜の上部をエッチングすることで、樹脂層163を形成することができる。アッシングは、導電層161となる導電膜の表面が露出するまで実施する。アッシング等により樹脂層163の膜厚を最適なものにすることができる。
続いて、樹脂層163上に導電層162となる導電膜を成膜する。導電層162は導電層161として示した金属等から選ばれた一又は二以上を有するとよい。
〔下部電極111、及び第2の配線層151bの形成〕
図13Aに示すように、導電層161となる導電膜、及び導電層162となる導電膜を覆って、下部電極111及び第2の配線層151bとなる導電膜を形成する。下部電極111は、陽極又は陰極の機能を有するものであり、金属、合金、電気伝導性化合物、及びこれらの混合物等を適宜用いることができる。下部電極111に用いることのできる具体的な材料は、下部電極に係る説明を参照することができる。第2の配線層151bは下部電極111と同じ材料を用いて形成されるとよい。
その後、三層の導電膜上に、フォトリソグラフィ法によりレジストマスクを形成し、各導電膜の不要な部分をエッチングにより除去する。その後、レジストマスクを除去することで、導電層161、導電層162、下部電極111及び第2の配線層151bを同一のレジストマスクを用いて同一のエッチング工程で形成することができる。樹脂層163等により下部電極111及び第2の配線層151bは平坦な上面を有することができる。
なお、導電層161と導電層162とを同一のレジストマスクを用いて同一のエッチング工程で形成したが、導電層161と導電層162とを別のレジストマスクを用いて個別に加工してもよい。このとき、上面視において導電層162が導電層161の輪郭よりも内側に包含されるように、導電層161と導電層162を加工することが好ましい。
また、導電層162と下部電極111等とを同一のレジストマスクを用いて同一のエッチング工程で形成したが、導電層162と下部電極111等とを別のレジストマスクを用いて個別に加工してもよい。このとき、上面視において下部電極111が導電層162等の輪郭よりも内側に包含されるように、導電層162と下部電極111等を加工することが好ましい。
〔有機化合物膜112fRの成膜〕
図13Bに示すように、下部電極111及び第2の配線層151bを覆って、赤色発光可能な有機化合物膜112fRを成膜する。有機化合物膜112fRは発光デバイスの各機能層が積層されたものである。赤色発光可能な有機化合物膜から成膜するが、本発明の一態様では緑色発光可能な有機化合物から成膜してもよい。また本発明の一態様では青色発光可能な有機化合物から成膜してもよい。
有機化合物膜112fRは、シングル構造であってもタンデム構造であってもよい。有機化合物膜112fRをタンデム構造とする場合、第1の発光ユニットと第2の発光ユニットとの間には、電荷発生層を有するとよい。
電荷発生層には、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む層を用いることができる。また、電荷発生層には、電子輸送性材料とドナー性材料とを含む層を用いることができる。
電子輸送性材料として上述した電子注入層に用いる材料を適用してもよい。電荷発生層は後にエッチング等により加工されるため、電子注入層に用いる材料のうちアルカリ金属及びアルカリ土類金属を含まない材料が好ましく、例えばドーパントを含む有機化合物を用いるとよい。有機化合物にはNBPhenを用い、ドーパントにはAgを用いることができる。
有機化合物膜112fRが有する機能層は真空蒸着法により成膜することができる。なお、これに限られず、有機化合物膜112fRが有する機能層は、スパッタリング法、又はインクジェット法等により成膜することもできる。
なお、図13Bでは、有機化合物膜112fRは第2の配線層151bを覆うように形成するが、第2の配線層151bを覆わなくともよい。これにより、第2の配線層151bが、有機化合物膜112fRに接するのを防ぐことができ、さらに有機化合物膜112fRを除去するときの除去剤が下部電極111、及び第2の配線層151bの表面に触れることがなく好ましい。
また、有機化合物膜112fRは、ファインメタルマスクを用いて作り分けて成膜してもよい。この場合、有機化合物膜112fRは、下部電極111Rだけを覆うように形成するとよい。これにより、第2の配線層151bが、有機化合物膜112fRに接するのを防ぐことができ、さらに有機化合物膜112fRを除去するときの除去剤が下部電極111、及び第2の配線層151bの表面に触れることがなく好ましい。
有機化合物膜112fRは各機能層を有し、下部電極111より順に例えば正孔注入層、正孔輸送層、発光層、電子輸送層を少なくとも有する積層体をなすとよい。
なお、機能層の一として電子輸送層上に位置する電子注入層がある。本実施の形態では、電子注入層を共通層とするため、追って形成する。共通層は、発光層と共通電極との間に位置する機能層であればいずれでもよい。勿論、共通層を設けずに、全ての機能層を副画素毎に分断してもよい。
有機化合物膜112fRの最上層に位置する電子輸送層は、フォトリソグラフィ法を用いた加工プロセスに曝される。そのため、電子輸送層は高い耐熱性を有する材料を用いるとよい。高い耐熱性を有する材料として、例えばガラス転移点が110℃以上165℃以下、好ましくは120℃以上135℃以下の材料を用いるとよい。
また加工に曝される電子輸送層を積層構造としてもよい。積層構造として、第1の電子輸送層上に第2の電子輸送層が積層した構造がある。加工の際、第1の電子輸送層は第2の電子輸送層で覆われている期間があるため、第1の電子輸送層は第2の電子輸送層よりも耐熱性が低くてもよい。例えば、第2の電子輸送層にガラス転移点が110℃以上165℃以下、好ましくは120℃以上135℃以下の材料を用い、第1の電子輸送層のガラス転移点は、第2の電子輸送層のガラス転移点よりも低い、例えば100℃以上155℃以下、好ましくは110℃以上125℃以下の材料を用いることができる。
有機化合物膜112fRの最上層を発光層とすることも考えられるが、当該加工によるダメージが発光層に入り、信頼性が著しく損なわれる場合がある。そこで本発明の一態様の表示装置を作製する際には、発光層よりも上方に機能層(例えば、電子輸送層等)を形成した後に、上記加工を実施するとよい。
〔マスク膜144Rの成膜〕
さらに有機化合物膜上にはマスク層等を形成すると好ましい。マスク層により加工によるダメージが発光層へ入ることを抑制することもできる。当該方法を適用することで、信頼性の高い表示パネルを提供することができる。なお、本明細書等において、マスク層とは、有機化合物膜の上方に位置し、製造工程中において、当該有機化合物膜を保護する機能を有する。そこで図13Cに示すように、有機化合物膜112fRを覆ってマスク膜144Rを成膜する。
マスク膜144Rは、有機化合物膜112fRのエッチング処理時に、有機化合物膜112fRとのエッチング選択比が大きい膜を用いるとよい。またマスク膜144Rを積層する場合があるが、マスク膜144Rは、後述する上層のマスク膜(具体的にはマスク膜146R)等とのエッチング選択比が大きい膜を用いるとよい。さらに、マスク膜144Rを除去する際、有機化合物膜112fRへのダメージを与えにくいウェットエッチング法で除去可能な膜を用いるとよい。
マスク膜144Rとしては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜等の無機膜を好適に用いることができる。マスク膜144Rは、スパッタリング法、蒸着法、CVD法、ALD法等の各種成膜方法により形成することができる。
特に、ALD法は被形成層に対する成膜ダメージが小さいため、有機化合物膜112fR上に直接形成するマスク膜144Rは、ALD法を用いて形成することが好ましい。
マスク膜144Rとしては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、又は該金属材料を含む合金材料を用いることができる。特に、アルミニウム又は銀等の低融点材料を用いることが好ましい。
また、マスク膜144Rとしては、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)等の金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)等を用いることができる。又はシリコンを含むインジウムスズ酸化物等を用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一又は複数)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、又はイットリウムから選ばれた一種又は複数種とすることが好ましい。
また、マスク膜144Rは、無機材料を有してもよい。無機材料として、酸化アルミニウム、酸化ハフニウム、酸化シリコン等の酸化物、窒化シリコン、窒化アルミニウム等の窒化物、又は酸化窒化シリコン等の酸窒化物を用いることができる。このような無機材料は、スパッタリング法、CVD法、又はALD法等の成膜方法を用いて形成することができる。
また、マスク膜144Rは、有機材料を有してもよい。例えば、有機材料として、有機化合物膜112fRに対して、化学的に安定な溶媒に溶解しうる材料を用いてもよい。特に、水又はアルコールに溶解する材料を、マスク膜144Rに好適に用いることができる。マスク膜144Rを成膜する際には、水又はアルコール等の溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL層への熱的なダメージを低減することができ、好ましい。
マスク膜144Rの形成には湿式の成膜方法を用いることができる。
マスク膜144Rとしては、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、又はアルコール可溶性のポリアミド樹脂等の有機樹脂を用いることができる。また、マスク膜144Rに、パーフルオロポリマー等のフッ素樹脂を用いてもよい。
〔マスク膜146Rの成膜〕
図13Cに示すように、マスク膜144R上に、マスク膜146Rを成膜する。本実施の形態ではマスク膜を積層するが、単層のマスク膜としてマスク膜144Rのみ又はマスク膜146Rのみを用いて有機化合物膜112fRを保護することも可能である。
マスク膜146Rは、後にマスク膜144Rをエッチングする際のハードマスクとして用いるとよい。マスク膜146Rの加工後、マスク膜144Rが露出する。したがって、マスク膜146Rをハーフ度マスクに用いる場合、マスク膜144Rとマスク膜146Rとは、互いにエッチングの選択比の大きい膜の組み合わせを選択するとよい。
マスク膜146Rは、様々な材料の中から、マスク膜144Rのエッチング条件、及びマスク膜146Rのエッチング条件に応じて、選択することができる。例えば、上記マスク膜144Rに用いることのできる膜の中から選択することができ、マスク膜144Rと異なる材料を選ぶことができる。
例えば、マスク膜146Rとして、酸化物膜又は酸化窒化物膜を用いることができる。代表的な酸化物膜又は酸窒化物膜は、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、又は酸化窒化ハフニウム等がある。
また、マスク膜146Rとしては、例えば窒化物膜を用いることができる。代表的な窒化物膜は、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、又は窒化ゲルマニウム等がある。
マスク膜144Rとマスク膜146Rの組み合わせとして、例えばマスク膜144RとしてALD法により形成した酸化アルミニウム、酸化ハフニウム、酸化シリコン等の無機材料を用い、マスク膜146Rとして、スパッタリング法により形成した、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)等の、インジウムを含む金属酸化物を用いることができる。
また、上記マスク膜144Rと組み合わされるマスク膜146Rには、タングステン、モリブデン、銅、アルミニウム、チタン、及びタンタル等から選ばれた一又は二以上の金属、並びに当該金属を含む合金を用いることもできる。ハードマスクとしてマスク膜146Rを形成する場合、上記金属又は合金を用いるとよい。ハードマスクとしてマスク膜146Rを形成する場合、マスク膜146Rの膜厚はマスク膜144Rの膜厚より大きくするとよい。
〔レジストマスク143の形成〕
図14Aに示すように、マスク膜146R上であって、下部電極111Rと重なる位置に、レジストマスク143を形成する。このとき、下部電極111G、下部電極111B、及び補助配線151と重なる位置にはレジストマスクを形成しない。
レジストマスク143は、ポジ型のレジスト材料、又はネガ型のレジスト材料等、感光性の樹脂を含むレジスト材料を用いることができる。
レジスト材料の溶媒に有機化合物膜112fRを溶解する材料を用いる場合であって、マスク膜146Rを設けずに、且つマスク膜144Rにピンホール等の欠陥が存在するとき、有機化合物膜112fR等が溶解してしまう恐れがある。この場合は、レジストマスク143を形成する際に、マスク膜144R上にマスク膜146Rが位置することで、このような不具合が生じることを防ぐことができる。
レジスト材料の溶媒に、有機化合物膜112fRを溶解しない材料を用いる場合では、マスク膜146Rを設けずに、マスク膜144R上に直接、レジストマスク143を形成してもよい場合がある。
〔マスク膜146Rのエッチング〕
図14Bに示すように、マスク膜146Rの、レジストマスク143に覆われない一部をエッチングにより除去し、マスク層147Rを形成する。
マスク膜146Rのエッチングの際、マスク膜144Rが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。マスク膜146Rのエッチングは、ウェットエッチング又はドライエッチングにより行うことができる。
〔レジストマスク143の除去〕
図14Bに示すように、レジストマスク143を除去する。レジストマスク143の除去は、有機化合物膜112fRがマスク膜144Rに覆われた状態で行われる。
レジストマスク143の除去は、ウェットエッチング又はドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143を除去することが好ましい。
再掲するが、レジストマスク143の除去は、有機化合物膜112fRがマスク膜144Rに覆われた状態で行われるため、有機化合物膜112fRへ加工ダメージが入ることが抑制されている。特に、酸素が有機化合物膜112fRに触れると、特性に悪影響を及ぼす場合があるため、上記酸素ガスを用いたエッチングを行う場合には、有機化合物膜112fRがマスク膜144Rに覆われた状態で行うとよい。また、レジストマスク143をウェットエッチングにより除去する場合であっても、有機化合物膜112fRが薬液に触れないため、有機化合物膜112fRが溶解してしまうことを防ぐことができる。
〔マスク膜144Rのエッチング〕
図14Cに示すように、マスク層147Rをハードマスクとして用いて、マスク膜144Rの一部をエッチングにより除去し、マスク層145Rを形成する。
マスク膜144Rのエッチングは、ウェットエッチング又はドライエッチングにより行うことができる。
〔有機化合物膜112fRのエッチング〕
図15Aに示すように、マスク層145Rに覆われない有機化合物膜112fRの一部をエッチングにより除去し、有機化合物層112Rを形成する。有機化合物層112Rは赤色が射出される発光デバイスの有機化合物層となる。
有機化合物膜112fRのエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。上述したように酸素が有機化合物膜112fRに触れると、特性に悪影響を及ぼす場合があるためである。具体的には有機化合物膜112fRが変質する場合があるが、酸素を主成分に含まないエッチングガスを用いると、変質を抑制することができ、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、H又はHe等の希ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いてもよい。
なお、有機化合物膜112fRのエッチングは上記に限られず、他のガスを用いたドライエッチングにより行ってもよいし、ウェットエッチングにより行ってもよい。
エッチング後、有機化合物層112Rの端面のテーパ角は45度以上90度未満を満たすと好ましい。
なお、有機化合物膜112fRのエッチングの際に、絶縁層104が露出する。そのため、スリット118と重なる領域の絶縁層104には凹部が形成されることがある。なお、凹部を形成したくない場合、絶縁層104に有機化合物膜112fRのエッチング処理に対して耐性が高い膜を用いることが好ましい。例えば絶縁層104として無機材料を有する絶縁膜を用いるとよい。
〔緑色用有機化合物膜112fGの成膜からエッチング〕
図15Bに示すように、有機化合物膜112fRの成膜からエッチングを参照し、マスク層145G及びマスク層147Gを用いて有機化合物層112Gを形成する。有機化合物層112Gの端面のテーパ角は45度以上90度未満を満たすと好ましい。有機化合物層112Gは緑色が射出される発光デバイスの有機化合物層となる。
〔青色用有機化合物膜112fBの成膜からエッチング〕
図15Bに示すように、有機化合物膜112fRの成膜からエッチングを参照し、マスク層145B及びマスク層147Bを用いて有機化合物層112Bを形成する。有機化合物層112Bの端面のテーパ角は45度以上90度未満を満たすと好ましい。有機化合物層112Bは緑色が射出される発光デバイスの有機化合物層となる。
有機化合物層112R、有機化合物層112G、有機化合物層112Bに共通する事項を説明する場合には、有機化合物層112と呼称して説明する。有機化合物層112の最表面には、少なくとも耐熱性の高い機能層、例えば電子輸送層が位置するとよい。
第2の配線層151b上には有機化合物膜が配されず、第2の配線層151bが露出する。
また、有機化合物層112の間にはスリット118が形成される。すなわちフォトリソグラフィ法を用いて加工する工程を経て得られた有機化合物層112は、図15Bの矢印で示すスリット118の幅を、8μm以下、3μm以下、2μm以下、又は1μm以下とすることができる。スリット118の幅は各副画素間の距離に対応する。各副画素間の距離が狭まることで、高い精細度と、高い開口率を有する表示装置を提供することができる。
スリット118で示すように、隣接する有機化合物層112は離間しており、電流のリーク経路(リークパス)が分断され、リーク電流(サイドリーク、サイドリーク電流ともいう)を抑制することができる。これにより、発光デバイスにおいて、輝度を高めること、コントラストを高めること、表示品位を高めること、電力効率を高めること、又は消費電力を低減すること、等ができる。
隣接する有機化合物層112の端面どうしは、スリット118を間にして向かい合う形状を有するとよい。なおメタルマスクを用いて形成された有機化合物層では、その端面どうしは向かい合うことができない。よって上記端面どうしが向かい合う形状を有する有機化合物層は、メタルマスクを用いて形成された有機化合物層との違いとなる。
なお、有機化合物膜のエッチングの際に、絶縁層104が露出する。そのため、スリット118と重なる領域の絶縁層104には凹部が形成されることがある。なお、凹部を形成したくない場合、絶縁層104に有機化合物膜のエッチングに対して耐性の高い膜を用いることが好ましい。例えば絶縁層104として無機材料を有する絶縁膜を用いるとよい。
〔マスク層の除去〕
図15Cに示すように、マスク層147を除去し、マスク層145の上面を露出させる。
〔絶縁膜125fの形成〕
図16Aに示すように、マスク層145、及び第2の配線層151bを覆って、絶縁膜125fを成膜する。
絶縁膜125fは、有機化合物層112に水等の不純物が拡散することを防ぐバリア層として機能する。絶縁膜125fは、段差被覆性に優れたALD法により形成すると、有機化合物層112の側面を好適に被覆することができるため好ましい。
絶縁膜125fは、マスク層145及びマスク層147と同じ膜を用いると、後の工程のエッチング処理時に、容易に同時除去でき好ましい。例えば、絶縁膜125f、マスク層145、及びマスク層147として、ALD法により形成した酸化アルミニウム、酸化ハフニウム、及び酸化シリコン等から選ばれた一又は二以上の無機材料を用いることが好ましい。
なお、絶縁膜125fに用いることのできる材料はこれに限られない。例えば上記マスク層145に用いることのできる材料を適宜用いることができる。
〔絶縁層126の形成〕
図16Aに示すように、スリット118と重なる領域等に、絶縁層126を形成する。絶縁層126は、樹脂層163と同様の方法により形成することができる。例えば、感光性の樹脂を形成した後に、露光及び現像を行うことで、絶縁層126を形成することができる。全体に樹脂を形成した後に、アッシング等により樹脂の一部をエッチングすることで、絶縁層126を形成してもよい。
ここでは、絶縁層126をスリット118の幅よりも大きな幅を有する構成を示す。なお、第2の配線層151bの上面の一部が露出するように、絶縁層126を設ける。
〔絶縁膜125f、マスク層145のエッチング〕
図16Bに示すように、絶縁膜125f、及びマスク層145に対して、絶縁層126に覆われない部分をエッチングにより除去し、有機化合物層112の上面の一部を露出させる。これにより、絶縁層126と重なる領域では、絶縁層125、マスク層145が残存する。絶縁層126の中央部は絶縁層126の端部より上に位置し、中央部は端部より盛り上がった領域を有するとよい。絶縁層126の上面は、有機化合物層112の上面より上に位置すると好ましい。さらに絶縁層126の端部はテーパ形状を有するとよい。
絶縁膜125f、及びマスク層145のエッチングは同一工程で行うことが好ましい。特に、マスク層145のエッチングは、有機化合物層112へのエッチングダメージの低いウェットエッチングにより行うことが好ましい。例えば、水酸化テトラメチルアンモニウム水溶液(TMAH)、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、又はこれらの混合液体を用いたウェットエッチングを用いることが好ましい。
絶縁膜125f、及びマスク層145の少なくとも一を、水又はアルコール等の溶媒に溶解させることで除去することが好ましい。ここで、絶縁膜125f、及びマスク層145を溶解しうるアルコールとしては、エチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、又はグリセリン等、様々なアルコールを用いることができる。
絶縁膜125f、及びマスク層145の一部を除去した後に、有機化合物層112等の内部に含まれる水、及び表面に吸着する水を除去するため、乾燥処理を行うことが好ましい。例えば、不活性ガス雰囲気又は減圧雰囲気下における加熱処理を行うことが好ましい。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。
絶縁膜125fの一部が除去されることで、第2の配線層151bの上面の一部が露出する。
〔共通層114の形成〕
図16Cに示すように、有機化合物層112、絶縁層125、マスク層145、及び絶縁層126等を覆って共通層114を成膜する。
共通層114には、上述した電子注入層に用いることができる材料を用いることができ、例えば、アルカリ金属、アルカリ土類金属、またはこれらの化合物がある。また上記材料として、有機化合物と、アルカリ金属又はアルカリ土類金属との複合材料がある。具体的には、フッ化リチウム(LiF)、又はNBPhenおよびAgを含む複合材料などを用いるとよい。
共通層114は、有機化合物膜112fR等と同様の方法で成膜することができる。上記複合材料を得るには、共蒸着を用いて成膜するとよい。
〔共通電極113の形成〕
図16Cに示すように、共通層114を覆って共通電極113を形成する。
共通電極113は、蒸着法又はスパッタリング法等の成膜方法により形成することができる。又は、蒸着法で形成した膜と、スパッタリング法で形成した膜を積層させてもよい。
共通電極113は、共通層114が成膜される領域を包含するように、共通電極113を形成することが好ましい。
第2の配線層151bと共通電極113との間に、共通層114が位置してもよい。このとき、共通層114としては、できるだけ電気抵抗の低い材料を用いることが好ましい。又は、できるだけ薄く形成することで、共通層114の厚さ方向の電気抵抗を低減することが好ましい。例えば、共通層114として、厚さ1nm以上5nm以下、好ましくは1nm以上3nm以下の電子注入性又は正孔注入性の材料を用いることで、第2の配線層151bと共通電極113との間の電気抵抗を無視できる程度に小さくできる。
第2の配線層151bと共通電極113との間に、共通層114が位置しなくともよい。
〔保護層の形成〕
図16Cに示すように、共通電極113上に、保護層121を形成する。保護層121に用いる無機絶縁膜の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
〔対向基板の形成〕
図17Aに示すように、接着層171を用いて、基板170を貼り合わせる。貼り合わせられる基板170を対向基板と記すことがある。表示装置を中空封止構造とする場合、シール材等を用いて基板170を貼り合わせるとよい。シール材を用いて基板を貼り合わせると空間が生じるが、当該空間は不活性ガス(窒素又はアルゴンを有するガス)で充填されているとよい。
接着層171には例えば、反応硬化型接着剤、光硬化型接着剤、熱硬化型接着剤又は/及び嫌気型接着剤等の有機材料を用いることができる。
具体的には、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等を含む接着剤を接着層171等に用いることができる。
図17Bに示すように、基板170には、遮光層152、着色層173R、着色層173G、及び着色層173Bが設けられている。遮光層152、は絶縁層126と重なる領域に設けられている。着色層173R、着色層173G、及び着色層173Bがそれぞれ、下部電極111R、111G、111Bと重なるように、基板170を貼り合わせるとよい。
着色層173R、着色層173G、着色層173Bは、インクジェット法、フォトリソグラフィ法を用いたエッチング処理等を経て、それぞれ所望の位置に形成することができる。具体的には、画素ごとに異なる着色層173(着色層173R、着色層173G、又は着色層173B)を形成することができる。
共通電極113側へ射出された光は、着色層173R、着色層173G、又は着色層173B(図示しない)により所定の波長域の光が吸収されることで着色され、基板170を介して外部に射出され、フルカラー表示が可能となる。
以上により、表示装置を作製することができる。
[作製方法例2]
メタルマスクを用いて作製する方法を図18及び図19等を参照して説明する。図中、左側に画素150に関する領域を示し、右側に補助配線151に関する領域を示す。
上記作製方法例1と同様に、下部電極111、及び第2の配線層151bまで形成する。図18Aに示すように、メタルマスク135Rを用いて、有機化合物膜112jRを形成する。メタルマスク135Rを用いるため、有機化合物膜112jRは赤色発光デバイスとなる領域のみに形成することができる。
図18Bに示すように、メタルマスク135Gを用いて、有機化合物膜112jGを形成する。メタルマスク135Gを用いるため、有機化合物膜112jGは緑色発光デバイスとなる領域のみに形成することができるが、有機化合物膜112jGは有機化合物膜112jRの一部と重なる領域を有する。すなわち、発光デバイスの境界では、有機化合物膜は、先に成膜された有機化合物膜の一部と重なる領域を有する。
図18Cに示すように、メタルマスク135Bを用いて、有機化合物膜112jBを形成する。メタルマスク135Bを用いるため、有機化合物膜112jBは青色発光デバイスとなる領域のみに形成することができるが、有機化合物膜112jBは有機化合物膜112jGの一部と重なる領域を有する。図示しないが、有機化合物膜112jBは有機化合物膜112jRの一部と重なる領域も有する。すなわち、発光デバイスの境界では、有機化合物膜は、先に成膜された有機化合物膜の一部と重なる領域を有する。
図19Aに示すように、マスク膜144及びマスク膜146を形成する。マスク膜144及びマスク膜146は、作製方法例1と同様に形成することができる。
図19Bに示すように、レジストマスク143R、143G、143Bを形成する。レジストマスク143R、143G、143Bは、作製方法例1と同様に形成することができる。
図19Cに示すように、レジストマスク143R、143G、143Bを用いて、有機化合物膜112jR、112jG、112jBをエッチングする。エッチング条件等は、作製方法例1と同様に形成することができる。すると、作製方法例1と同じように、スリット118の間をあけて有機化合物層112R、112G、112Bが形成される。
その後、作製方法例1と同様に、絶縁層126、共通層114、共通電極113、及び保護層121を形成する。最後、基板170等を貼り合わせて、表示装置を作製することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態9)
本実施の形態では、本発明の一態様の表示装置について図面を用いて説明する。
[表示装置の具体例]
上記実施の形態で示した表示装置と、FPC74とを有する表示モジュールDPを複数用いた大型の表示装置について、図20を用いて説明する。
図20Aには表示モジュールDPの上面図を示す。表示モジュールDPは、画素部103と隣接して可視光を透過する領域72と、可視光を遮る領域73とを有する。
図20B、図20Cには表示モジュールDPを4つ有する表示装置の斜視図を示す。複数の表示モジュールDPを一以上の方向(例えば、一列又はマトリクス状等)に並べることで、広い表示領域を有する大型の表示装置を作製することができる。
複数の表示モジュールDPを用いて大型の表示装置を作製する場合、1つの表示モジュールDPの大きさは大型である必要がない。したがって、表示モジュールDPを作製するための製造装置を大型化しなくてもよく、省スペース化が可能である。また、中小型の表示パネルの製造装置を用いることができ、表示装置の大型化のために新規な製造装置を利用しなくてもよいため、製造コストを抑えることができる。また、表示モジュールDPの大型化に伴う歩留まりの低下を抑制できる。
画素部103の外周は、配線等が引き回された非表示領域が位置してしまう。非表示領域は可視光を遮る領域73に相当する。複数の表示モジュールDPを重ねたとき、非表示領域等によって一つの画像が分離したように視認されてしまうことがある。
そこで、本発明の一態様では、表示モジュールDPに可視光を透過する領域72を設け、重なる関係を持つ2つの表示モジュールにおいて、下側に配置される表示モジュールDPの画素部103と、上側に配置される表示モジュールDPの可視光を透過する領域72とを重ねる。
このように可視光を透過する領域72を設けると、表示モジュールDPにおいて非表示領域を積極的に縮小する必要がない。ただし、重ねた状態の2つの表示モジュールDPでは、非表示領域が縮小され、好ましい。これにより、使用者から表示モジュールDPの継ぎ目が認識されにくい、大型の表示装置を実現することができる。
上側に位置する表示モジュールDPでは、非表示領域の少なくとも一部に可視光を透過する領域72を設けてもよい。当該可視光を透過する領域72を、下側に位置する表示モジュールDPの画素部103と重ねることができる。
また、下側に位置する表示モジュールDPの非表示領域の少なくとも一部は、上側に位置する表示モジュールDPの画素部103、又は可視光を遮る領域73と重なる。
表示モジュールDPの非表示領域が広いと、表示モジュールDPの端部と表示モジュールDP内の素子との距離が長くなり、表示モジュールDPの外部から侵入する不純物によって、素子が劣化することを抑制でき好ましい。
このように、表示装置に複数の表示モジュールDPが設けられる場合、隣接する表示モジュールDP間において画素部103が連続するため、広い面積の表示領域を提供できる。
画素部103には、複数の画素が含まれる。
可視光を透過する領域72には、表示モジュールDPを構成する一対の基板、及び当該一対の基板に挟持された表示素子を封止するための樹脂材料等が設けられていてもよい。このとき、可視光を透過する領域72に設けられる部材には、可視光に対して透光性を有する材料を用いる。
可視光を遮る領域73には、画素部103に含まれる画素と電気的に接続された配線等が設けられていてもよい。また、可視光を遮る領域73には、走査線駆動回路及び信号線駆動回路の一方又は双方が設けられていてもよい。また、可視光を遮る領域73には、FPC74と接続された端子、当該端子と接続された配線等が設けられていてもよい。
図20B、図20Cは、図20Aに示す表示モジュールDPを2×2のマトリクス状に(縦方向及び横方向にそれぞれ2つずつ)配置した例である。図20Bは、表示モジュールDPの表示面側の斜視図であり、図20Cは、表示モジュールDPの表示面とは反対側の斜視図である。
4つの表示モジュールDP(表示モジュールDPa、DPb、DPc、DPd)は、互いに重なる領域を有するように配置されている。具体的には、1つの表示モジュールDPが有する可視光を透過する領域72が、他の表示モジュールDPが有する画素部103の上(表示面側)に重なる領域を有するように、表示モジュールDPa、DPb、DPc、DPdが配置されている。また、1つの表示モジュールDPが有する可視光を遮る領域73が、他の表示モジュールDPの画素部103の上に重畳しないように、表示モジュールDPa、DPb、DPc、DPdが配置されている。4つの表示モジュールDPが重なる部分では、表示モジュールDPa上に表示モジュールDPbが重なり、表示モジュールDPb上に表示モジュールDPcが重なり、表示モジュールDPc上に表示モジュールDPdが重なっている。
表示モジュールDPa、DPbの短辺同士が互いに重なり、画素部103aの一部と、可視光を透過する領域72bの一部と、が重なっている。また、表示モジュールDPa、DPcの長辺同士が互いに重なり、画素部103aの一部と、可視光を透過する領域72cの一部と、が重なっている。
画素部103bの一部は、可視光を透過する領域72cの一部、及び可視光を透過する領域72dの一部と重なっている。また、画素部103cの一部は、可視光を透過する領域72dの一部と重なっている。
したがって、画素部103a乃至画素部103dがほぼ継ぎ目なく配置された領域を、表示領域79とすることができる。
ここで、表示モジュールDPは、可撓性を有していることが好ましい。例えば、表示モジュールDPを構成する一対の基板は可撓性を有することが好ましい。
これにより、例えば、図20B、図20Cに示すように、表示モジュールDPaのFPC74aの近傍を湾曲させ、FPC74aに隣接する表示モジュールDPbの画素部103bの下側に、表示モジュールDPaの一部、及びFPC74aの一部を配置することができる。その結果、FPC74aを表示モジュールDPbの裏面と物理的に干渉することなく配置することができる。また、表示モジュールDPaと表示モジュールDPbとを重ねて固定する場合に、FPC74aの厚さを考慮する必要がないため、可視光を透過する領域72bの上面と、表示モジュールDPaの上面との高さの差を低減できる。その結果、画素部103a上に位置する表示モジュールDPbの端部を目立たなくすることができる。
さらに、各表示モジュールDPに可撓性を持たせることで、表示モジュールDPbの画素部103bにおける上面の高さを、表示モジュールDPaの画素部103aにおける上面の高さと一致するように、表示モジュールDPbを緩やかに湾曲させることができる。そのため、表示モジュールDPaと表示モジュールDPbとが重なる領域近傍を除き、各表示領域の高さを揃えることが可能で、表示領域79に表示する映像の表示品位を高めることができる。
上記では、表示モジュールDPaと表示モジュールDPbの関係を例に説明したが、他の隣接する2つの表示モジュールDP間でも同様である。
なお、隣接する2つの表示モジュールDP間の段差を軽減するため、表示モジュールDPの厚さは薄いことが好ましい。例えば、表示モジュールDPの厚さは、1mm以下が好ましく、300μm以下がより好ましく、100μm以下がさらに好ましい。
表示モジュールDPは、走査線駆動回路及び信号線駆動回路の双方を内蔵することが好ましい。表示パネルとは別に駆動回路を配置する場合、駆動回路を備えるプリント基板、多くの配線及び端子等が、表示パネルの裏側(表示面側とは反対側)に配置される。そのため、表示装置全体の部品点数が膨大となり、表示装置の重量が増加することがある。表示モジュールDPが、走査線駆動回路及び信号線駆動回路の双方を有することで、表示装置の部品点数を削減し、表示装置の軽量化を図ることができる。これにより、表示装置の可搬性を高めることができる。
ここで、走査線駆動回路及び信号線駆動回路は、表示する画像のフレーム周波数に応じて、高い駆動周波数で動作することが求められる。特に信号線駆動回路は、走査線駆動回路と比較してさらに高い駆動周波数で動作することが求められる。そのため、信号線駆動回路に適用されるトランジスタのいくつかは、大きな電流を流す能力が求められる場合がある。一方、画素部に設けられるトランジスタのいくつかは、表示素子を駆動するために十分な耐圧性能が求められる場合がある。
そこで、駆動回路が有するトランジスタと、画素部が有するトランジスタと、の構造を作り分けることが好ましい。例えば、画素部に設けられるトランジスタの一つ又は複数に、高耐圧のトランジスタを適用し、駆動回路に設けられるトランジスタの一つ又は複数に、駆動周波数の高いトランジスタを適用する。
より具体的な構成としては、信号線駆動回路に適用する一つ又は複数のトランジスタに、画素部に適用するトランジスタよりもゲート絶縁層の薄いトランジスタを適用する。このように、2種類のトランジスタを作り分けることで、信号線駆動回路を、画素部が設けられる基板上に作りこむことができる。
また、走査線駆動回路、信号線駆動回路、及び画素部に適用する各トランジスタは、チャネルが形成される半導体に、金属酸化物を適用することが好ましい。
また、走査線駆動回路、信号線駆動回路、及び画素部に適用する各トランジスタは、チャネルが形成される半導体に、シリコンを適用することが好ましい。
また、走査線駆動回路、信号線駆動回路、及び画素部に適用する各トランジスタは、チャネルが形成される半導体に、金属酸化物を適用したものと、チャネルが形成される半導体に、シリコンを適用したものを組み合わせて適用することが好ましい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態10)
本実施の形態では、本発明の一態様の表示装置について図21を用いて説明する。
本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、ブレスレット型等の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイ等のVR向け機器、メガネ型のAR向け機器等、頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
図21Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置100と、FPC290と、を有する。
表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、画素部103を有する。画素部103は、表示モジュール280における画像を表示する領域であり、後述する画素部103に設けられる各画素からの光を視認できる領域である。
図21Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部103と、が積層されている。また、基板291上の画素部103と重ならない部分に、FPC290と接続するための端子部285(FPC端子部と記すことがある)が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部103は、周期的に配列した複数の画素150を有する。図21Bの右側に、1つの画素150の拡大図を示している。画素150は、発光色が互いに異なる発光デバイス11R、発光デバイス11G、発光デバイス11Bを有する。複数の発光デバイスは、図21Bに示すようにストライプ配列でレイアウトすることができる。また、デルタ配列、又は、ペンタイル配列等様々な発光デバイスの配列方法を適用することができる。
画素回路部283は、周期的に配列した複数のトランジスタ等を有する画素回路283aを備える。
1つの画素回路283aは、1つの画素150が有する発光デバイスの発光を制御する回路である。1つの画素回路283aは、1つの発光デバイスの発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソース又はドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方又は双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。
FPC290は、外部から回路部282にビデオ信号又は電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部103の下側に画素回路部283及び回路部282の一方又は双方が積層された構成とすることができるため、画素部103の開口率(有効表示面積比)を極めて高くすることができる。例えば画素部103の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素150を極めて高密度にレイアウトすることが可能で、画素部103の精細度を極めて高くすることができる。例えば、画素部103には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、又は30000ppi以下の精細度で、画素150がレイアウトされることが好ましい。
このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイ等のVR向け機器、又はメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な画素部103を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計等の装着型の電子機器の表示部に好適に用いることができる。
(実施の形態11)
本実施の形態では、本発明の一態様の電子機器について、図22及び図23を用いて説明する。
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用等のモニタ、デジタルサイネージ、パチンコ機等の大型ゲーム機等の比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、等が挙げられる。
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイ等のVR向け機器、メガネ型のAR向け機器、及び、MR向け機器等、頭部に装着可能なウェアラブル機器等が挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方又は双方を有する表示装置を用いることで、携帯型又は家庭用途等のパーソナルユースの電子機器において、臨場感及び奥行き感等をより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10等様々な画面比率に対応することができる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像等)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻等を表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラム又はデータを読み出す機能等を有することができる。
図22Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に画素部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
画素部7000に、本発明の一態様の画素部103を適用することができる。
図22Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。又は、画素部7000にタッチセンサを備えていてもよく、指等で画素部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キー又はタッチパネルにより、チャンネル及び音量の操作を行うことができ、画素部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデム等を備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士等)の情報通信を行うことも可能である。
図22Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、画素部7000が組み込まれている。
画素部7000に、本発明の一態様の画素部103を適用することができる。
図22C、図22Dに、デジタルサイネージの一例を示す。
図22Cに示すデジタルサイネージ7300は、筐体7301、画素部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、又は操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図22Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた画素部7000を有する。
図22C、図22Dにおいて、画素部7000に、本発明の一態様の画素部103を適用することができる。
画素部7000が広いほど、一度に提供できる情報量を増やすことができる。また、画素部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
画素部7000にタッチパネルを適用することで、画素部7000に画像又は動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報等の情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図22C、図22Dに示すように、デジタルサイネージ7300又はデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311又は情報端末機7411と無線通信により連携可能であることが好ましい。例えば、画素部7000に表示される広告の情報を、情報端末機7311又は情報端末機7411の画面に表示させることができる。また、情報端末機7311又は情報端末機7411を操作することで、画素部7000の表示を切り替えることができる。
また、デジタルサイネージ7300又はデジタルサイネージ7400に、情報端末機7311又は情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
図23Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の画素部103を適用することができる。
図23Bは、筐体6501のマイク6506側の端部を含む断面図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
103:画素部、151:補助配線、151a:第1の配線層、151b:第2の配線層、14:絶縁層、15:コンタクトホール、11R:発光デバイス、11G:発光デバイス、11B:発光デバイス、111R:下部電極、111G:下部電極、111B:下部電極、112R:有機化合物層、112G:有機化合物層、112B:有機化合物層、113:共通電極、153a:第3の配線層、153b:第4の配線層、154:ブリッジ配線

Claims (6)

  1.  第1の下部電極と、前記第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、
     第2の下部電極と、前記第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、
     前記第1の発光デバイスと前記第2の発光デバイスとが有する共通電極と、
     前記共通電極と電気的に接続された補助配線と、を有し、
     前記補助配線は、第1の配線層と、第2の配線層とを有し、
     前記第2の配線層は、絶縁層のコンタクトホールを介して前記第1の配線層と電気的に接続され、
     前記第2の配線層は、上面視において格子状を有する
     表示装置。
  2.  第1の下部電極と、前記第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、
     第2の下部電極と、前記第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、
     前記第1の発光デバイスと前記第2の発光デバイスとが有する共通電極と、
     前記共通電極と電気的に接続された補助配線と、を有し、
     前記補助配線は、第1の配線層と、第2の配線層とを有し、
     前記第2の配線層は、絶縁層のコンタクトホールを介して前記第1の配線層と電気的に接続され、
     前記第1の配線層は、上面視において格子状を有し、
     前記第1の下部電極、前記第2の下部電極及び前記第2の配線層はそれぞれ、前記絶縁層上に位置する領域を有する、
     表示装置。
  3.  第1の下部電極と、前記第1の下部電極上に位置する第1の有機化合物層と、を有する第1の発光デバイスと、
     第2の下部電極と、前記第2の下部電極上に位置する第2の有機化合物層と、を有する第2の発光デバイスと、
     前記第1の発光デバイスと前記第2の発光デバイスとが有する共通電極と、
     前記共通電極と電気的に接続された補助配線と、を有し、
     前記補助配線は、第1の配線層と、第2の配線層とを有し、
     前記第2の配線層は、絶縁層のコンタクトホールを介して前記第1の配線層と電気的に接続され、
     前記第1の配線層及び前記第2の配線層はそれぞれ、上面視において格子状を有し、
     前記第1の下部電極、前記第2の下部電極及び前記第2の配線層はそれぞれ、前記絶縁層上に位置する領域を有し、
     前記第2の配線層の幅は、前記第1の配線層の幅より小さい、
     表示装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第1の下部電極及び前記第2の下部電極の端部はそれぞれ、テーパ形状を有する、
     表示装置。
  5.  請求項1乃至請求項3のいずれか一において、
     前記第1の有機化合物層の端面のテーパ角は45度以上90度未満を満たす、
     表示装置。
  6.  請求項1乃至請求項3のいずれか一において、
     前記第2の有機化合物層の端面のテーパ角は45度以上90度未満を満たす、
     表示装置。
PCT/IB2022/056827 2021-08-05 2022-07-25 表示装置 WO2023012571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247005366A KR20240044438A (ko) 2021-08-05 2022-07-25 표시 장치
CN202280052018.9A CN117693782A (zh) 2021-08-05 2022-07-25 显示装置
JP2023539213A JPWO2023012571A1 (ja) 2021-08-05 2022-07-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129045 2021-08-05
JP2021-129045 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023012571A1 true WO2023012571A1 (ja) 2023-02-09

Family

ID=85154294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/056827 WO2023012571A1 (ja) 2021-08-05 2022-07-25 表示装置

Country Status (4)

Country Link
JP (1) JPWO2023012571A1 (ja)
KR (1) KR20240044438A (ja)
CN (1) CN117693782A (ja)
WO (1) WO2023012571A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318556A (ja) * 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
JP2004139970A (ja) * 2002-09-25 2004-05-13 Seiko Epson Corp 電気光学装置、マトリクス基板、及び電子機器
JP2007095515A (ja) * 2005-09-29 2007-04-12 Toppan Printing Co Ltd アクティブマトリクス駆動型有機エレクトロルミネッセンス表示装置
JP2007188895A (ja) * 2002-12-11 2007-07-26 Sony Corp 表示装置及び表示装置の製造方法
US20140183502A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting diode display
US20160190225A1 (en) * 2014-12-29 2016-06-30 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20160211316A1 (en) * 2015-01-16 2016-07-21 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20160351636A1 (en) * 2015-05-29 2016-12-01 Lg Display Co., Ltd. Organic light emitting display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085866A (ja) 2008-10-01 2010-04-15 Sony Corp アクティブマトリックス型表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318556A (ja) * 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
JP2004139970A (ja) * 2002-09-25 2004-05-13 Seiko Epson Corp 電気光学装置、マトリクス基板、及び電子機器
JP2007188895A (ja) * 2002-12-11 2007-07-26 Sony Corp 表示装置及び表示装置の製造方法
JP2007095515A (ja) * 2005-09-29 2007-04-12 Toppan Printing Co Ltd アクティブマトリクス駆動型有機エレクトロルミネッセンス表示装置
US20140183502A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting diode display
US20160190225A1 (en) * 2014-12-29 2016-06-30 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20160211316A1 (en) * 2015-01-16 2016-07-21 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20160351636A1 (en) * 2015-05-29 2016-12-01 Lg Display Co., Ltd. Organic light emitting display apparatus

Also Published As

Publication number Publication date
KR20240044438A (ko) 2024-04-04
CN117693782A (zh) 2024-03-12
JPWO2023012571A1 (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2022162494A1 (ja) 表示装置、及び表示装置の作製方法
WO2023012571A1 (ja) 表示装置
WO2023042027A1 (ja) 表示装置
WO2023052908A1 (ja) 表示装置
WO2023281345A1 (ja) 表示装置
WO2022175781A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2022263969A1 (ja) 表示装置
WO2023281344A1 (ja) 表示装置
US20240365602A1 (en) Display Apparatus, Display Module, Electronic Device, And Method For Manufacturing Display Apparatus
US20240324392A1 (en) Display Device And Method For Manufacturing Display Device
WO2022162485A1 (ja) 表示装置
US20240334796A1 (en) Display device, method for manufacturing display device, display module, and electronic device
WO2022162492A1 (ja) 表示装置
WO2022162491A1 (ja) 表示装置
TW202321887A (zh) 顯示裝置及顯示裝置的製造方法
KR20240093478A (ko) 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
KR20240101810A (ko) 표시 장치의 제작 방법
KR20240093558A (ko) 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
CN116783638A (zh) 显示装置
CN116848948A (zh) 显示装置的制造方法
CN117356169A (zh) 显示装置、显示模块、电子设备以及显示装置的制造方法
CN116710989A (zh) 显示装置
CN117099482A (zh) 显示装置、显示装置的制造方法、显示模块及电子设备
CN116745832A (zh) 显示装置及显示装置的制造方法
CN117016046A (zh) 显示装置及显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539213

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280052018.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852416

Country of ref document: EP

Kind code of ref document: A1