WO2023011546A1 - 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒 - Google Patents

一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒 Download PDF

Info

Publication number
WO2023011546A1
WO2023011546A1 PCT/CN2022/110035 CN2022110035W WO2023011546A1 WO 2023011546 A1 WO2023011546 A1 WO 2023011546A1 CN 2022110035 W CN2022110035 W CN 2022110035W WO 2023011546 A1 WO2023011546 A1 WO 2023011546A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
carbon quantum
soluble carbon
ultraviolet
quantum dots
Prior art date
Application number
PCT/CN2022/110035
Other languages
English (en)
French (fr)
Inventor
刘应亮
胡广齐
陈聪聪
Original Assignee
广东碳紫科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东碳紫科技有限公司 filed Critical 广东碳紫科技有限公司
Publication of WO2023011546A1 publication Critical patent/WO2023011546A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the invention relates to the technical field of nanometer materials, in particular to an oil-soluble carbon quantum dot, a preparation method thereof and an anti-ultraviolet masterbatch prepared therefrom.
  • UV radiation can cause darkening and erythema of human skin, and even cause melanoma and DNA damage in severe cases, which may induce skin cancer.
  • Ultraviolet rays that cause harm to the human body are mainly ultraviolet A (UVA: wavelength 320nm to 400nm) and ultraviolet B (UVB: wavelength 230nm to 320nm).
  • UVA wavelength 320nm to 400nm
  • UVB wavelength 230nm to 320nm
  • sunscreen products on the market are generally made of resins added with UV absorbers through stretching, weaving or hot pressing into films.
  • the UV absorbers used mainly include chemical absorbers, physical shielding agents and natural UV absorbers.
  • Three categories Chemical absorbents (such as: benzophenones, benzotriazoles, etc.) have certain toxicity, and are banned or strictly limited to be used in industrial products that contact the human body and food, and their applications are greatly restricted.
  • this type of ultraviolet Absorbers are easily damaged by long-term ultraviolet radiation, which will eventually lead to a significant decrease in the UV absorption efficiency of the product.
  • UV shielding agents have a strong UV shielding effect, but there are a series of problems such as high cost, poor compatibility with matrix resins, potential toxicity, and low visible light transmittance, which hinder their commercial application.
  • Natural UV absorbers are extracted from plants, which are safe and environmentally friendly. However, due to their small content in plants, they are difficult to purify, difficult to carry out large-scale production, and cannot be widely used. To sum up, it can be seen that the existing three types of UV absorbers have obvious defects and are difficult to be popularized and applied on a large scale.
  • the object of the present invention is to provide a kind of oil-soluble carbon quantum dot and its preparation method and anti-ultraviolet masterbatch prepared therefrom.
  • a preparation method of oil-soluble carbon quantum dots comprises the following steps: dispersing methyl methacrylate and triethylenetetramine in an organic solvent, adding a surfactant, and performing solvothermal reaction to obtain oil-soluble carbon quantum dots.
  • a preparation method of oil-soluble carbon quantum dots comprises the following steps: dispersing methyl methacrylate and triethylenetetramine in an organic solvent, then adding a surfactant, performing a solvothermal reaction, and naturally cooling to room temperature, Perform microporous filtration, wash the filtrate with xylene, centrifuge, take the organic layer and dialyze it with methanol, then carry out rotary evaporation concentration and freeze-drying to obtain oil-soluble carbon quantum dots.
  • the molar ratio of methyl methacrylate to triethylenetetramine is 1:1.2 ⁇ 1:1.7.
  • the solvothermal reaction is carried out at 200°C to 240°C, and the reaction time is 6h to 10h.
  • the organic solvent is at least one of toluene and xylene.
  • the surfactant is at least one of sodium glycocholate, sodium lauryl sulfate, sodium dioctyl sulfonate dibutyrate, sodium dioctyl sulfosuccinate, and polysorbate.
  • An oil-soluble carbon quantum dot is prepared by the above method.
  • An anti-ultraviolet masterbatch which comprises polyamide (PA) and the above-mentioned oil-soluble carbon quantum dots.
  • the mass percentage of oil-soluble carbon quantum dots in the UV-resistant masterbatch is 0.1%-10%.
  • the preparation method of above-mentioned anti-ultraviolet master batch comprises the following steps:
  • the polyamide resin with anti-ultraviolet function is formed into a film and granulated to obtain an anti-ultraviolet masterbatch.
  • the molar ratio of adipic acid and hexamethylenediamine in step 1) is 1:1.0 ⁇ 1:1.5.
  • An anti-ultraviolet film which comprises polyamide and the above-mentioned oil-soluble carbon quantum dots.
  • the mass percentage of oil-soluble carbon quantum dots in the UV-resistant film is 0.1%-10%.
  • the preparation method of above-mentioned anti-ultraviolet film comprises the following steps:
  • the molar ratio of adipic acid and hexamethylenediamine in step 1) is 1:1.0 ⁇ 1:1.5.
  • the beneficial effects of the present invention are: the oil-soluble carbon quantum dots of the present invention have excellent absorption effects on both UVA and UVB, and have good light stability and thermal stability, low biological toxicity, good compatibility with matrix resin,
  • the preparation method is simple and the production cost is low, and can be widely used in sun-proof and anti-aging products such as sun-proof clothes, sun-proof umbrellas, and anti-aging paints.
  • Fig. 1 is the ultraviolet-visible absorption spectrogram of the oil-soluble carbon quantum dot of embodiment 1.
  • Example 2 is a TEM image of the oil-soluble carbon quantum dots of Example 1.
  • Fig. 3 is the HRTEM figure of the oil-soluble carbon quantum dot of embodiment 1.
  • a kind of oil-soluble carbon quantum dot its preparation method comprises the following steps:
  • FIG. 1 The ultraviolet-visible absorption spectrum diagram of the oil-soluble carbon quantum dots prepared in this embodiment is shown in FIG. 1 , the transmission electron microscope (TEM) diagram is shown in FIG. 2 , and the high-resolution transmission electron microscope (HRTEM) diagram is shown in FIG. 3 .
  • TEM transmission electron microscope
  • HRTEM high-resolution transmission electron microscope
  • the oil-soluble carbon quantum dots of this embodiment have obvious absorption in the wavelength range of 200nm to 400nm, that is, in the UVA and UVB regions, the absorption peak I: ⁇ max ⁇ 300nm, and the light transmittance is about 5%.
  • the oil-soluble carbon quantum dots prepared in this example are close to circular, uniformly dispersed, and the particle size distribution range is narrow, with an average of about 3.6nm and a lattice spacing of 0.25nm.
  • a kind of oil-soluble carbon quantum dot its preparation method comprises the following steps:
  • the oil-soluble carbon quantum dots in this example have obvious absorption in the wavelength range of 200nm to 400nm, the absorption peak I: ⁇ max ⁇ 300nm, the light transmittance is about 5%, the absorption peak II: ⁇ max ⁇ 386nm, the light transmittance is about 7%, the oil-soluble carbon quantum dots are close to circular, uniformly dispersed, the particle size distribution range is narrow, the average is about 3.6nm, and the lattice spacing is 0.25nm.
  • a kind of oil-soluble carbon quantum dot its preparation method comprises the following steps:
  • the oil-soluble carbon quantum dots in this example have obvious absorption in the wavelength range of 200nm to 400nm, the absorption peak I: ⁇ max ⁇ 300nm, the light transmittance is about 5%, the absorption peak II: ⁇ max ⁇ 386nm, the light transmittance is about 7%, the oil-soluble carbon quantum dots are close to circular, uniformly dispersed, the particle size distribution range is narrow, the average is about 3.6nm, and the lattice spacing is 0.25nm. Comparative example:
  • a kind of carbon quantum dot, its preparation method comprises the following steps:
  • a kind of anti-ultraviolet masterbatch, its preparation method comprises the following steps:
  • the polyamide resin with anti-ultraviolet function is formed into a film and granulated to obtain pure PA masterbatch and anti-ultraviolet masterbatch 1-4 respectively.
  • Breaking strength and elongation at break test the masterbatch after making a sample strip with a size of 3mm ⁇ 3mm;
  • UV absorption efficiency After the masterbatch is made into a 1mm thick film, it is tested by a solar radiation spectrometer;
  • Aging is carried out in an aging box, and light with a wavelength range of 200nm to 800nm is selected for irradiation.
  • a kind of anti-ultraviolet masterbatch, its preparation method comprises the following steps:
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a kind of anti-ultraviolet masterbatch, its preparation method comprises the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供了一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒。油溶性碳量子点的制备方法包括以下步骤:将甲基丙烯酸甲酯和三乙烯四胺分散在有机溶剂中,再加入表面活性剂,进行溶剂热反应,即得油溶性碳量子点。油溶性碳量子点对UVA和UVB均具有优异的吸收效果,且其光稳定性和热稳定性好、生物毒性低、与基体树脂的相容性好、制备方法简单、生产成本低,可以广泛用于防晒衣、防晒伞、抗老化涂料等防晒抗老化产品。

Description

一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒 技术领域
本发明涉及纳米材料技术领域,具体涉及一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒。
背景技术
紫外线(UV)辐射会导致人体皮肤变得黝黑和出现红斑,严重的甚至还会引起黑色素瘤和DNA损伤,从而可能诱发皮肤癌。紫外线会对人体造成伤害的主要是紫外线A(UVA:波长320nm~400nm)和紫外线B(UVB:波长230nm~320nm)这两部分。据世界卫生组织报告,长期暴露在紫外线辐射下的人容易出现非黑色素瘤和黑色素瘤皮肤癌。因此,研究开发高效便捷的防晒产品(例如:防晒衣、防晒伞和防晒面罩等)具有十分重要的意义。
目前,市面上的防晒产品一般是由添加有紫外吸收剂的树脂经过拉伸编织或者热压成膜制成,使用的紫外吸收剂主要包括化学吸收剂、物理屏蔽剂和天然类紫外吸收剂这三类。化学吸收剂(例如:二苯甲酮类、苯并三唑类等)具有一定的毒性,被禁止或严格限量用于接触人体和食品的工业品,应用受到很大限制,此外,这类紫外吸收剂经过紫外线的长时间辐射极易被破坏,最终会导致产品的紫外吸收效率显著下降。物理屏蔽剂对UV的屏蔽作用很强,但存在成本高昂、与基体树脂的相容性较差、具有潜在毒性、可见光透过率较低等一系列问题,阻碍了其商业化应用。天然类紫外吸收剂是从植物中提取得到,安全环保,但由于其在植物中的含量很少,提纯难度较高,难以进行规模化生产,无法广泛推广应用。综上可知,现有的三大类紫外吸收剂都存在明显的缺陷,难以大规模推广应用。
因此,亟需开发一种紫外吸收效果好、成本低、生物毒性低的紫外吸收剂。
发明内容
本发明的目的在于提供一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒。
本发明所采取的技术方案是:
一种油溶性碳量子点的制备方法包括以下步骤:将甲基丙烯酸甲酯和三乙烯四胺分散在有机溶剂中,再加入表面活性剂,进行溶剂热反应,即得油溶性碳量子点。
优选的,一种油溶性碳量子点的制备方法包括以下步骤:将甲基丙烯酸甲酯和三乙烯四胺分散在有机溶剂中,再加入表面活性剂,进行溶剂热反应,自然冷却至室温,进行微孔过滤,取滤液用二甲苯进行洗涤,离心,取有机层用甲醇进行透析,再进行旋蒸浓缩和冷冻干 燥,即得油溶性碳量子点。
优选的,所述甲基丙烯酸甲酯、三乙烯四胺的摩尔比为1:1.2~1:1.7。
优选的,所述溶剂热反应在200℃~240℃下进行,反应时间为6h~10h。
优选的,所述有机溶剂为甲苯、二甲苯中的至少一种。
优选的,所述表面活性剂为甘氨胆酸钠、十二烷基硫酸钠、二丁酸二辛酯磺酸钠、二辛基琥珀酸磺酸钠、聚山梨酯中的至少一种。
一种油溶性碳量子点,其由上述方法制备得到。
一种防紫外母粒,其组成包括聚酰胺(PA)和上述油溶性碳量子点。
优选的,所述防紫外母粒中油溶性碳量子点的质量百分含量为0.1%~10%。
上述防紫外母粒的制备方法包括以下步骤:
1.将己二酸的甲醇溶液和己二胺的甲醇溶液混合,进行搅拌,再进行回流反应,再加入油溶性碳量子点,进行搅拌,再调节反应液的pH至7~8,冷却,结晶,分离,得到具有抗紫外线功能的聚酰胺树脂;
2.将具有抗紫外线功能的聚酰胺树脂成膜和造粒,即得防紫外母粒。
优选的,步骤1)所述己二酸、己二胺的摩尔比为1:1.0~1:1.5。
一种防紫外薄膜,其组成包括聚酰胺和上述油溶性碳量子点。
优选的,所述防紫外薄膜中油溶性碳量子点的质量百分含量为0.1%~10%。
上述防紫外薄膜的制备方法包括以下步骤:
1.将己二酸的甲醇溶液和己二胺的甲醇溶液混合,进行搅拌,再进行回流反应,再加入油溶性碳量子点,进行搅拌,再调节反应液的pH至7~8,冷却,结晶,分离,得到具有抗紫外线功能的聚酰胺树脂;
2.将具有抗紫外线功能的聚酰胺树脂成膜,即得防紫外薄膜。
优选的,步骤1)所述己二酸、己二胺的摩尔比为1:1.0~1:1.5。
本发明的有益效果是:本发明的油溶性碳量子点对UVA和UVB均具有优异的吸收效果,且其光稳定性和热稳定性好、生物毒性低、与基体树脂的相容性好、制备方法简单、生产成本低,可以广泛用于防晒衣、防晒伞、抗老化涂料等防晒抗老化产品。
附图说明
图1为实施例1的油溶性碳量子点的紫外-可见吸收光谱图。
图2为实施例1的油溶性碳量子点的TEM图。
图3为实施例1的油溶性碳量子点的HRTEM图。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种油溶性碳量子点,其制备方法包括以下步骤:
将0.4564g的甲基丙烯酸甲酯和1g的三乙烯四胺分散在20mL的二甲苯中,再加入0.6g的甘氨胆酸钠,超声5min,再将反应混合物转入聚四氟乙烯内衬的反应釜中,220℃反应8h,自然冷却至室温,反应液用孔径0.22μm的微孔过滤器过滤,取滤液用二甲苯进行洗涤,离心,取有机层用甲醇进行透析,再旋蒸浓缩和冷冻干燥,即得油溶性碳量子点。
性能测试:
本实施例制备的油溶性碳量子点的紫外-可见吸收光谱图如图1所示,透射电镜(TEM)图如图2所示,高分辨率透射电镜(HRTEM)如图3所示。
由图1可知:本实施例的油溶性碳量子点在波长200nm~400nm的范围内,即UVA和UVB区域均有明显的吸收,吸收峰Ⅰ:λ max≈300nm,透光率约为5%,吸收峰Ⅱ:λ max≈386nm,透光率约为7%,说明本实施例的油溶性碳量子点可以实现对波长200nm~400nm的紫外线的完全吸收。
由图2和图3可知:本实施例制备的油溶性碳量子点接近圆形,分散均匀,粒径分布范围较窄,平均在3.6nm左右,晶格间距为0.25nm。
实施例2:
一种油溶性碳量子点,其制备方法包括以下步骤:
将0.4564g的甲基丙烯酸甲酯和1g的三乙烯四胺分散在20mL的二甲苯中,再加入0.6g的十二烷基硫酸钠,超声5min,再将反应混合物转入聚四氟乙烯内衬的反应釜中,220℃反应8h,自然冷却至室温,反应液用孔径0.22μm的微孔过滤器过滤,取滤液用二甲苯进行洗涤,离心,取有机层用甲醇进行透析,再旋蒸浓缩和冷冻干燥,即得油溶性碳量子点。
性能测试:
经测试,本实施例的油溶性碳量子点在波长200nm~400nm的范围内均有明显的吸收,吸收峰Ⅰ:λ max≈300nm,透光率约为5%,吸收峰Ⅱ:λ max≈386nm,透光率约为7%,油溶性碳量子点接近圆形,分散均匀,粒径分布范围较窄,平均在3.6nm左右,晶格间距为0.25nm。
实施例3:
一种油溶性碳量子点,其制备方法包括以下步骤:
将0.4564g的甲基丙烯酸甲酯和1g的三乙烯四胺分散在20mL的二甲苯中,再加入0.6g的二丁酸二辛酯磺酸钠,超声5min,再将反应混合物转入聚四氟乙烯内衬的反应釜中,220℃反应8h,自然冷却至室温,反应液用孔径0.22μm的微孔过滤器过滤,取滤液用二甲苯进行洗涤,离心,取有机层用甲醇进行透析,再旋蒸浓缩和冷冻干燥,即得油溶性碳量子点。
性能测试:
经测试,本实施例的油溶性碳量子点在波长200nm~400nm的范围内均有明显的吸收,吸收峰Ⅰ:λ max≈300nm,透光率约为5%,吸收峰Ⅱ:λ max≈386nm,透光率约为7%,油溶性碳量子点接近圆形,分散均匀,粒径分布范围较窄,平均在3.6nm左右,晶格间距为0.25nm。对比例:
一种碳量子点,其制备方法包括以下步骤:
将0.4564g的甲基丙烯酸甲酯和1g的三乙烯四胺分散在20mL的二甲苯中,超声5min,再将反应混合物转入聚四氟乙烯内衬的反应釜中,220℃反应8h,自然冷却至室温,反应液用孔径0.22μm的微孔过滤器过滤,取滤液用二甲苯进行洗涤,离心,取有机层用甲醇进行透析,再旋蒸浓缩和冷冻干燥,即得碳量子点。
实施例4:
一种防紫外母粒,其制备方法包括以下步骤:
1)将2000mL质量分数20%的己二酸的甲醇溶液和2000mL质量分数50%的己二胺的甲醇溶液混合,60℃回流反应,配制5组这样的反应液,再分别加入0g实施例1的油溶性碳量子点、1g实施例1的油溶性碳量子点、6g实施例1的油溶性碳量子点、9g实施例1的油溶性碳量子点和9g对比例的碳量子点,进行搅拌,再调节反应液的pH至7.3,冷却,结晶,分离,得到具有抗紫外线功能的聚酰胺树脂;
2)将具有抗紫外线功能的聚酰胺树脂成膜和造粒,分别得到纯PA母粒和防紫外母粒1~4。
性能测试:
纯PA母粒和防紫外母粒1~4的性能测试结果如下表所示:
表1 纯PA母粒和防紫外母粒1~4的性能测试结果
Figure PCTCN2022110035-appb-000001
Figure PCTCN2022110035-appb-000002
注:
断裂强度和断裂伸长率:将母粒制成大小规格为3mm×3mm的样条后再进行测试;
紫外吸收效率:将母粒制成1mm厚的薄膜后再采用太阳光辐射光谱仪进行测试;
老化在老化箱中进行,选用波长范围为200nm~800nm的光进行照射。
由表1可知:对比纯PA母粒,掺入碳量子点的母粒的拉伸性能和抗紫外性能均大大增强,且掺入实施例1的油溶性碳量子点(属于经过表面活性剂修饰的碳量子点)的母粒的拉伸性能和抗紫外性能最佳,说明表面活性剂的加入不仅可以保护碳量子点,提高其光稳定性和热稳定性,同时还可以增长碳量子点的表面基团,使碳量子点能够牢牢镶嵌在PA中,减少迁移率,增强复合材料紫外吸收效率的稳定性,制得的母粒不仅拥有高效的紫外吸收效率,还拥有优异的稳定性。
实施例5:
一种防紫外母粒,其制备方法包括以下步骤:
1)将2000mL质量分数20%的己二酸的甲醇溶液和2000mL质量分数50%的己二胺的甲醇溶液混合,60℃回流反应,配制3组这样的反应液,再分别加入1g实施例2的油溶性碳量子点、6g实施例2的油溶性碳量子点和9g实施例2的油溶性碳量子点,进行搅拌,再调节反应液的pH至7.3,冷却,结晶,分离,得到具有抗紫外线功能的聚酰胺树脂;
2)将具有抗紫外线功能的聚酰胺树脂成膜和造粒,分别得到防紫外母粒5~7。
性能测试:
防紫外母粒5~7的性能测试结果如下表所示:
表2 防紫外母粒5~7的性能测试结果
Figure PCTCN2022110035-appb-000003
由表2可知:对比纯PA母粒,掺入实施例2的油溶性碳量子点的母粒的拉伸性能和抗紫外性能均大大增强,且随着实施例2的油溶性碳量子点的添加量增加效果愈加显著。
实施例6:
一种防紫外母粒,其制备方法包括以下步骤:
1)将2000mL质量分数20%的己二酸的甲醇溶液和2000mL质量分数50%的己二胺的甲醇溶液混合,60℃回流反应,配制3组这样的反应液,再分别加入1g实施例3的油溶性碳量子点、6g实施例3的油溶性碳量子点和9g实施例3的油溶性碳量子点,进行搅拌,再调节反应液的pH至7.3,冷却,结晶,分离,得到具有抗紫外线功能的聚酰胺树脂;
2)将具有抗紫外线功能的聚酰胺树脂成膜和造粒,分别得到防紫外母粒8~10。
性能测试:
防紫外母粒8~10的性能测试结果如下表所示:
表3 防紫外母粒8~10的性能测试结果
Figure PCTCN2022110035-appb-000004
Figure PCTCN2022110035-appb-000005
由表3可知:对比纯PA母粒,掺入实施例2的油溶性碳量子点的母粒的拉伸性能和抗紫外性能均大大增强,且随着实施例2的油溶性碳量子点的添加量增加效果愈加显著。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种油溶性碳量子点的制备方法,其特征在于,包括以下步骤:将甲基丙烯酸甲酯和三乙烯四胺分散在有机溶剂中,再加入表面活性剂,进行溶剂热反应,即得油溶性碳量子点。
  2. 根据权利要求1所述的油溶性碳量子点的制备方法,其特征在于:所述甲基丙烯酸甲酯、三乙烯四胺的摩尔比为1:1.2~1:1.7。
  3. 根据权利要求1或2所述的油溶性碳量子点的制备方法,其特征在于:所述溶剂热反应在200℃~240℃下进行,反应时间为6h~10h。
  4. 根据权利要求1或2所述的油溶性碳量子点的制备方法,其特征在于:所述有机溶剂为甲苯、二甲苯中的至少一种。
  5. 根据权利要求1或2所述的油溶性碳量子点的制备方法,其特征在于:所述表面活性剂为甘氨胆酸钠、十二烷基硫酸钠、二丁酸二辛酯磺酸钠、二辛基琥珀酸磺酸钠、聚山梨酯中的至少一种。
  6. 一种油溶性碳量子点,其特征在于,其由权利要求1~5中任意一项所述的方法制备得到。
  7. 一种防紫外母粒,其特征在于,其组成包括聚酰胺和权利要求6所述的油溶性碳量子点。
  8. 根据权利要求7所述的防紫外母粒,其特征在于:所述防紫外母粒中油溶性碳量子点的质量百分含量为0.1%~10%。
  9. 一种防紫外薄膜,其特征在于,其组成包括聚酰胺和权利要求6所述的油溶性碳量子点。
  10. 根据权利要求9所述的防紫外薄膜,其特征在于:所述防紫外薄膜中油溶性碳量子点的质量百分含量为0.1%~10%。
PCT/CN2022/110035 2021-08-04 2022-08-03 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒 WO2023011546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110893481.3A CN113683077B (zh) 2021-08-04 2021-08-04 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒
CN202110893481.3 2021-08-04

Publications (1)

Publication Number Publication Date
WO2023011546A1 true WO2023011546A1 (zh) 2023-02-09

Family

ID=78578837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110035 WO2023011546A1 (zh) 2021-08-04 2022-08-03 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒

Country Status (2)

Country Link
CN (1) CN113683077B (zh)
WO (1) WO2023011546A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683077B (zh) * 2021-08-04 2023-05-05 广东碳紫科技有限公司 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361334A1 (en) * 2014-06-16 2015-12-17 Postech Academy-Industry Foundation Process for preparing carbon quantum dots using emulsion
CN106521679A (zh) * 2016-11-22 2017-03-22 广州居安照明科技有限公司 碳点@无机氧化物在制备防紫外线产品中的应用
CN106916587A (zh) * 2017-03-20 2017-07-04 上海大学 油溶性碳量子点(OCDs)、PMMA@OOCDs、其制备方法及其应用
WO2018095442A1 (zh) * 2016-11-22 2018-05-31 华南农业大学 量子点及其复合材料在制备防紫外线产品中的应用
CN109971469A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 碳量子点的制备方法
CN110734051A (zh) * 2019-10-14 2020-01-31 汕头大学 一类油溶性碳量子点及其制备方法
CN113683077A (zh) * 2021-08-04 2021-11-23 广东碳紫科技有限公司 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103386258A (zh) * 2013-06-29 2013-11-13 浙江工业大学 一种含改性碳纳米管的聚酰胺复合纳滤膜的制备方法
US20170050851A1 (en) * 2015-08-18 2017-02-23 Transfert Plus, Société En Commandite Method for manufacturing carbon quantum dots
CN106829917A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 一种碳量子点及其应用
CN106753352B (zh) * 2016-11-15 2019-05-17 山西大学 一种氮掺杂的荧光碳量子点及其制备方法和应用
CN106867528B (zh) * 2017-03-23 2020-01-14 中国科学院长春光学精密机械与物理研究所 一种碳纳米点及其制备方法、碳纳米点复合材料及其制备方法和发光led
CN108190859B (zh) * 2017-12-18 2021-04-30 复旦大学 一种金刚石型碳量子点和制备方法及其应用
CN108864802A (zh) * 2018-05-27 2018-11-23 复旦大学 一种光扩散功能涂层材料及其制备方法
JP2020007410A (ja) * 2018-07-04 2020-01-16 Gsアライアンス株式会社 炭素系量子ドットを含有する水性蛍光インク組成物
CN110228802B (zh) * 2019-07-10 2023-01-17 东北林业大学 一种碳量子点的制备方法
CN111591976A (zh) * 2020-06-04 2020-08-28 山东丰益泰和科技有限公司 一种具有阻垢性能的荧光碳量子点及其制备方法与应用
CN111750285B (zh) * 2020-07-24 2022-08-19 广东技术师范大学 一种基于uv-led芯片的护眼白光led器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361334A1 (en) * 2014-06-16 2015-12-17 Postech Academy-Industry Foundation Process for preparing carbon quantum dots using emulsion
CN106521679A (zh) * 2016-11-22 2017-03-22 广州居安照明科技有限公司 碳点@无机氧化物在制备防紫外线产品中的应用
WO2018095442A1 (zh) * 2016-11-22 2018-05-31 华南农业大学 量子点及其复合材料在制备防紫外线产品中的应用
CN106916587A (zh) * 2017-03-20 2017-07-04 上海大学 油溶性碳量子点(OCDs)、PMMA@OOCDs、其制备方法及其应用
CN109971469A (zh) * 2017-12-27 2019-07-05 Tcl集团股份有限公司 碳量子点的制备方法
CN110734051A (zh) * 2019-10-14 2020-01-31 汕头大学 一类油溶性碳量子点及其制备方法
CN113683077A (zh) * 2021-08-04 2021-11-23 广东碳紫科技有限公司 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒

Also Published As

Publication number Publication date
CN113683077A (zh) 2021-11-23
CN113683077B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Yu et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants
Amiri et al. Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells
Nakayama et al. Preparation and characterization of poly (l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability
Tavares et al. TiO2/PDMS nanocomposites for use on self-cleaning surfaces
WO2023011546A1 (zh) 一种油溶性碳量子点及其制备方法和由其制备的防紫外母粒
CN111606319B (zh) 碳纳米卷及其制备方法和应用以及碳纳米带
Wei et al. Phosphomolybdic acid-modified highly organized TiO2 nanotube arrays with rapid photochromic performance
Pal et al. Thermal stability and UV-shielding properties of polymethyl methacrylate and polystyrene modified with calcium carbonate nanoparticles
CN103496744B (zh) 还原态铵钨青铜纳米粒子的制备方法
Venkatareddy et al. UV–Visible light driven photocatalytic activities of CdS nanoparticles supported ZnO layers
Jin et al. The effects of polybenzimidazole and polyacrylic acid modified carbon black on the anti-UV-weathering and thermal properties of polyvinyl chloride composites
CN112080021A (zh) 一种纳米纤维素诱导二氧化钛复合紫外屏蔽材料制备方法
Sahoo et al. Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities
Palanisamy et al. ZnS quantum dots and Bi metals embedded with two dimensional β-Bi2O4 nanosheets for efficient UV-visible light driven photocatalysis
Skorenko et al. Thermal stability of ZnO nanoparticle bound organic chromophores
CN109465037A (zh) 一种降解水中微污染物的磁性CDs-MoS2-Fe3O4光催化材料的绿色合成方法
WO2019047387A1 (zh) 一种氧化钨-云母光致变色珠光颜料及其分散液的制备方法
Huang et al. Assembly and applications of the inorganic nanocrystals in polymer networks
Guo et al. SUPERCRITICAL SOLVOTHERMAL SYNTHESIS AND NEAR-INFRARED ABSORBING PROPERTIES OF Cs x WO 3
JP2017214235A (ja) 光輝材およびその利用
Liu et al. PEG-assisted hydrothermal synthesis of novel flower-like hierarchical BiVO4 with enhanced visible light photocatalytic activity
Mallakpour et al. An efficient preparation and characterization of nanocomposite films based on poly (vinyl chloride) and modified ZnO quantum dot with an optically active diacid containing amino acid as coupling agent
CN115433405A (zh) 一种耐老化光转换材料、耐老化光转换膜及其制备方法
Alhazime et al. Gamma induced changes in Makrofol/CdSe nanocomposite films
Sarwan et al. Synthesis of a marigold-like BiOCl nanocomposite with enhanced photocatalytic activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE