WO2023011316A1 - 数据传输方法、电子设备、芯片和存储介质 - Google Patents

数据传输方法、电子设备、芯片和存储介质 Download PDF

Info

Publication number
WO2023011316A1
WO2023011316A1 PCT/CN2022/108661 CN2022108661W WO2023011316A1 WO 2023011316 A1 WO2023011316 A1 WO 2023011316A1 CN 2022108661 W CN2022108661 W CN 2022108661W WO 2023011316 A1 WO2023011316 A1 WO 2023011316A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
channel
layer
data
access layer
Prior art date
Application number
PCT/CN2022/108661
Other languages
English (en)
French (fr)
Inventor
张景云
朱旭东
金猛
赵曜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011316A1 publication Critical patent/WO2023011316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to the technical field of communications, and in particular to data transmission methods, electronic equipment, chips and storage media.
  • wireless short-distance communication technology is more and more widely used in various fields.
  • mobile phones can realize end-to-end connection with smart TVs through wireless short-distance communication technology, and project screens to smart TVs.
  • various wireless short-distance communication technologies are independent of each other.
  • two electronic devices When two electronic devices are connected, usually only one wireless short-distance communication technology can be selected for connection according to the preset requirements of the application program.
  • the quality of service provided by the communication link established by two electronic devices (such as specific bandwidth, code rate, delay, etc.) is a fixed value negotiated and agreed by both parties.
  • the same service usually has different requirements for the quality of service of the communication link at different stages (for example, in the video projection service, the stage of playing standard-definition video and playing high-definition video). Therefore, the existing data transmission method may not be able to meet various data transmission requirements of the business.
  • the application provides a data transmission method, an electronic device, a chip and a storage medium, which are used to solve the problem that the existing data transmission method cannot meet the various data transmission requirements of the business.
  • the embodiment of the present application provides a data transmission method applied to an electronic device, the electronic device includes a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer The first access layer and the second access layer support different data transmission capabilities.
  • the method includes: the basic application layer requests the basic service layer to establish a business channel for the communication business of the application program.
  • the basic service layer establishes a transmission channel group for the communication service, and the transmission channel group includes a first service channel and/or a second service channel, and the first service channel corresponds to the first Access layer, the second service channel corresponds to the second access layer.
  • the electronic device transmits the service data of the communication service through the transmission channel group.
  • the electronic device establishes a transmission channel group for the communication service, and transmits service data for the communication service through the transmission channel group. Since the transmission channel group is established on the basic service layer of the communication protocol used by the electronic equipment, in the process of transmitting business data, when the business requirements change or the data transmission capability of the electronic equipment improves, the basic service layer can adapt Specifically, one or more service channels in the transmission channel group are used to transmit service data, so as to meet the needs of services at different stages.
  • the transmission channel group includes only a plurality of service channels, during the process of service data transmission, even if one service channel fails, there is no need to reconfigure the transmission channel group, and the service data can still be transmitted.
  • the first access layer is the Starlight basic SLB access layer
  • the first service channel is the SLB service channel
  • the SLB access layer supports high-bandwidth data transmission capabilities.
  • the second access layer is the Starlight low-power SLE access layer
  • the second service channel is the SLE service channel.
  • the SLE access layer supports low-power data transmission capabilities.
  • the basic service layer when the communication service supports multi-link transmission, the basic service layer establishes a transmission channel group for the communication service, including: when the communication service supports multi-link transmission, when the first access When the resources of the layer support the communication service, the basic service layer allocates the first service channel for the transmission channel group of the communication service. And/or, when the communication service supports multi-link transmission, when the resources of the second access layer support the communication service, the basic service layer allocates the second service channel for the transmission channel group of the communication service.
  • the electronic device when the transmission channel group includes the first service channel and the second service channel, transmits the service data of the communication service through the transmission channel group, including: the electronic device transmits the service data of the communication service through the first service channel and the second service channel The channel transmits service data; or, the electronic device transmits service data solely through the first service channel; or, the electronic device transmits service data solely through the second service channel.
  • the electronic device may use only one service channel in the transmission channel to transmit service data, or use multiple service channels in the transmission channel group to transmit service data simultaneously, The details are determined according to the preset transmission policy.
  • the electronic device transmits service data through the first service channel and the second service channel, including: the basic service layer acquires target service data from the basic application layer, and the target service data is service data carrying a port number Port, the Port maps all service channels in the transport channel group.
  • the basic service layer processes the target service data to obtain the target service data carrying the first TCID and the target service data carrying the second TCID, wherein the first TCID is the identifier of the first service channel, and the second TCID is the identifier of the second service channel .
  • the basic service layer sends the target service data carrying the first TCID to the first access layer, and sends the target service data carrying the second TCID to the second access layer.
  • the first access layer transmits the target service data carrying the first TCID to the peer device, and the second access layer transmits the target service data carrying the second TCID to the peer device.
  • the electronic device transmits service data through the first service channel, including: the basic service layer acquires target service data from the basic application layer, and the target service data is service data carrying a port number Port; The target service data carrying the first TCID is obtained.
  • the basic service layer sends the target service data carrying the first TCID to the first access layer.
  • the first access layer sends the target service data carrying the first TCID to the peer device.
  • the method before the basic service layer obtains the target business data from the basic application layer, the method further includes: the basic application layer receives the business data sent by the application program, and adds a Port to the business data to obtain the target business data.
  • the transmission channel group includes one service channel or multiple service channels
  • the operation of the basic application layer is the same (that is, add the service data to the service data). Port), and then the basic service layer decides the specific business channel used in the transmission process. Based on this, when the basic service layer adjusts the service channel used in the communication process (such as creating, disconnecting or switching the service channel), the user does not need to input control operations again, which can improve user experience.
  • the method further includes: the transmission channel group includes the original service channel, and the original service channel is any one of the first service channel and the second service channel One, when the basic service layer determines to switch to the target service channel to process the communication service, and the access layer corresponding to the target service channel can provide services for the communication service, the basic service layer updates the transmission channel group, and the updated transmission channel group It also includes the target service channel; and, switching the service data to the target service channel for transmission.
  • the target service channel is the second service channel; when the transmission channel group before updating includes the second service channel, the target service channel is the first service channel.
  • the basic service layer switches the service data to the target service channel for transmission, including: the basic service layer disconnects the original service channel in the transmission channel group, and switches the service data to the target service channel.
  • the basic service layer determines to switch to the target service channel to process communication services, including: the electronic device enters a low power consumption mode, or the power of the electronic device is lower than a preset value, and accordingly, the target service channel is the second The service channel, the second service channel supports data transmission capability with low power consumption.
  • the basic service layer determines to switch to the target service channel to process the communication service, including: the service quality requirement of the communication service is improved, or the service capability of the corresponding access layer of the target service channel is improved, correspondingly, the target service channel
  • the channel is a first service channel, and the first service channel supports a high-bandwidth data transmission capability.
  • the embodiment of the present application provides a data transmission device, which includes a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer, and the first The access layer and the second access layer support different data transmission capabilities.
  • the basic application layer is used to request the basic service layer to establish a business channel for the communication business of the application program.
  • the basic service layer is used for, in the case that the communication service supports multi-link transmission, the basic service layer establishes a transmission channel group for the communication service, and the transmission channel group includes a first service channel and/or a second service channel, and the first service channel A service channel corresponds to the first access layer, and the second service channel corresponds to the second access layer.
  • the transmission channel group is used for electronic equipment to transmit service data.
  • the access layer is used to transmit service data by using the first access layer and/or the second access layer.
  • an embodiment of the present application provides an electronic device, where the electronic device is configured as the data transmission method shown in the foregoing first aspect and each embodiment in the first aspect.
  • the embodiment of the present application provides a chip, the chip includes a processor, and the processor executes the computer program stored in the memory, so as to realize the data transmission method shown in the first aspect and the various embodiments in the first aspect .
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the above-mentioned first aspect and various embodiments in the first aspect can be implemented. out the data transfer method.
  • an embodiment of the present application provides a computer program product, which, when running on an electronic device, enables the electronic device to implement the data transmission method shown in the first aspect and the various embodiments in the first aspect.
  • the embodiment of the present application provides a data transmission method applied to an electronic device, the electronic device includes a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer layer, the first access layer and the second access layer support different data transmission capabilities.
  • the method includes: the basic application layer requests the basic service layer to establish a service channel for the communication service of the application program; in the case that the communication service supports multi-link transmission, the basic service layer establishes a service channel for the communication service, and the service channel can map the first A logical link and a second logical link, the first logical link is a link of the first access layer, and the second logical link is a link of the second access layer.
  • the electronic device transmits the service data of the communication service to the peer device through the first access layer and/or the second access layer corresponding to the service channel.
  • the service channel corresponding to the service can map the first logical link and the second logical link.
  • the electronic device can use one or more of the two logical links to simultaneously transmit service data according to service requirements or its own data transmission capabilities, so as to meet the data transmission requirements of services at different stages.
  • the service channel can map the first logical link and the second logical link, including: the service channel maps the first logical link and the second logical link at the same time; or, the service channel transmits different service data stages, mapping the first logical link and the second logical link respectively.
  • the service channel is mapped to multiple logical links at the same time, during the process of service data transmission, even if one logical link fails, the service data can still be transmitted.
  • the first access layer is the starlight basic SLB access layer
  • the first logical link is an SLB logical link
  • the SLB access layer supports high-bandwidth data transmission capabilities.
  • the second access layer is the Starlight low-power SLE access layer
  • the second logical link is the SLE logical link.
  • the SLE access layer supports low-power data transmission capabilities.
  • the electronic device when the service channel maps the first logical link and the second logical link at the same time, the electronic device communicates with the peer device through the first access layer and/or the second access layer corresponding to the service channel Transmitting business data of communication services, including: the electronic device sends the business data in the business channel to the first logical link and the second logical link respectively, so as to transmit the business data through the first access layer and the second access layer at the same time or, the electronic device sends the service data in the service channel to the first logical link, so as to transmit the service data through the first access layer; or, the electronic device sends the service data in the service channel to the second logical link, To transmit service data through the second access layer.
  • the electronic device can use only one logical link to transmit service data, or can use two logical links to transmit service data at the same time, depending on the preset The set transmission strategy is determined.
  • the electronic device sends the service data in the service channel to the first logical link and the second logical link, so as to simultaneously transmit the service data through the first access layer and the second access layer, including:
  • the basic service layer obtains target business data from the basic application layer, and the target business data is business data carrying a port number Port.
  • the basic service layer adds a service channel identifier TCID to the target service data, and sends the first service data in the target service data carrying the TCID to the first access layer, and sends the second service data in the target service data carrying the TCID to the Second access layer.
  • the first access layer adds the first logical link identifier LCID to the first service data, and sends the first service data carrying the first LCID to the peer device; and, the second access layer adds the second service data to the second service data. LCID, and send second service data carrying the second LCID to the peer device.
  • the electronic device sends the service data in the service channel to the first logical link, so as to transmit the service data through the first access layer, including: the basic service layer obtains the target service data from the basic application layer, the The target service data is the service data carrying the port number Port.
  • the basic service layer adds a TCID to the target service data, and sends the target service data carrying the TCID to the first access layer.
  • the first access layer adds the first LCID to the target service data carrying the TCID, and sends the target service data carrying the first LCID to the peer device.
  • the method before the basic service layer obtains the target business data from the basic application layer, the method further includes: the basic application layer receives the business data sent by the application program; the basic application layer adds a Port to the business data to obtain the target business data .
  • the operation of the basic application layer is the same (that is, adding a Port to the service data), and then the decision is made by the basic service layer The specific service channel used in the transmission process. Based on this, when the basic service layer adjusts the service channel used in the communication process (such as creating, disconnecting or switching the service channel), the user does not need to input control operations again, which can improve user experience.
  • the service channel maps the first logical link and the second logical link respectively at different stages of transmitting service data, including: the service channel maps the original logical link, and the basic service layer determines to switch to the target logical link
  • the basic service layer establishes the mapping relationship between the service channel and the target logical link; switches the service data to the target logical link for transmission.
  • switching the service data to the target logical link for transmission includes: releasing the original logical link, and switching the service data to the target logical link for transmission.
  • determining to switch to the target logical link to process communication services includes: the electronic device enters a low power consumption mode, or the power of the electronic device is lower than a preset value, and accordingly, the target logical link is the second logical link link, the second logical link supports data transmission capability with low power consumption.
  • determining to switch to the target logical link to process the communication service includes: the service quality requirement of the communication service is improved, or the service capability of the target logical link is improved, and accordingly, the target service channel is the first logical link , the first logical link supports a high-bandwidth data transmission capability.
  • the embodiment of the present application provides a data transmission device, which includes a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer, and the first The access layer and the second access layer support different data transmission capabilities.
  • the basic application layer is used to request the basic service layer to establish a business channel for the communication business of the application program.
  • the basic service layer is used to establish a service channel for the communication service when the communication service supports multi-link transmission.
  • the service channel can map the first logical link and the second logical link, and the first logical link
  • the link is a link of the first access layer
  • the second logical link is a link of the second access layer.
  • the electronic device transmits the service data of the communication service to the peer device through the first access layer and/or the second access layer corresponding to the service channel.
  • the access layer is used to establish logical links and transmit business data.
  • an embodiment of the present application provides an electronic device configured as the seventh aspect and the data transmission method shown in each embodiment of the seventh aspect.
  • the embodiment of the present application provides a chip, the chip includes a processor, and the processor executes the computer program stored in the memory, so as to realize the data transmission method shown in the seventh aspect and the various embodiments in the seventh aspect .
  • the embodiment of the present application is a computer-readable storage medium
  • the computer-readable storage medium stores a computer program
  • the above-mentioned seventh aspect and the various embodiments in the seventh aspect can be implemented. out the data transfer method.
  • the embodiment of the present application provides a computer program product.
  • the computer program product runs on the electronic device, the electronic device implements the data transmission method shown in the seventh aspect and the various embodiments in the seventh aspect. .
  • FIG. 1 is a schematic diagram of a wireless short-distance communication system provided by an embodiment of the present application
  • FIG. 2A is a first schematic diagram of a communication domain provided by an embodiment of the present application.
  • FIG. 2B is a second schematic diagram of the communication domain provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless short-distance communication protocol architecture provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of a data transmission method provided by an embodiment of Solution 1 of the present application.
  • FIG. 5 is a schematic diagram of a transmission channel group provided by an embodiment of Solution 1 of the present application.
  • Fig. 6 is a flowchart of a data transmission method provided by another embodiment of Solution 1 of the present application.
  • Fig. 7 is a flowchart of a data transmission method provided by another embodiment of Solution 1 of the present application.
  • FIG. 8 is a flow chart of a data transmission method provided by an embodiment of Solution 2 of the present application.
  • FIG. 9 is a schematic diagram of the mapping relationship between service channels and logical links provided by an embodiment of Solution 2 of the present application.
  • FIG. 10 is a process for establishing a logical link and a service channel provided by an embodiment of Solution 2 of the present application;
  • Fig. 11 is the process of establishing logical links and service channels provided by another embodiment of Solution 2 of the present application.
  • Fig. 12 is the process of establishing logical links and service channels provided by another embodiment of Solution 2 of the present application.
  • Fig. 13 is the process of establishing logical links and service channels provided by another embodiment of Solution 2 of the present application.
  • Fig. 14 is a flowchart of a data transmission method provided by another embodiment of Solution 2 of the present application.
  • FIG. 15 is a schematic diagram of the reconfiguration process of the service channel provided by an embodiment of Solution 2 of the present application.
  • Fig. 16 is a flow chart of a data transmission method provided by another embodiment of Solution 2 of the present application.
  • FIG. 17 is a schematic diagram of the reconfiguration process of the service channel provided by another embodiment of Solution 2 of the present application.
  • Fig. 18 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • association relationship of objects means that there may be three kinds of relationships.
  • a and/or B may mean that A exists alone, A and B exist simultaneously, and B exists independently.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more.
  • wireless short-distance communication technology is more and more widely used in smart cockpits, smart homes, smart phones, smart manufacturing and other fields.
  • mobile phones can achieve end-to-end connection with smart TVs through wireless short-distance communication technology, and can project screens to smart TVs.
  • BT Bluetooth
  • WiFi Wireless Fidelity
  • UWB Ultra Wide Band
  • WiFi, UWB and other technologies support high-bandwidth communication, and the data transmission speed is relatively fast; while BT, NFC, ZigBee and other technologies support small bandwidth, low power consumption, and low-speed communication, which helps to save equipment power.
  • the current wireless short-distance communication technologies are independent of each other, and when two electronic devices are connected, usually only one wireless short-distance communication technology can be selected for connection according to the preset requirements of the application program.
  • the quality of service (such as specific bandwidth, code rate, delay, etc.) provided by the communication link established by the connection of two electronic devices is a fixed value negotiated and agreed by both parties.
  • the same service (specifically, communication service) may have different requirements on the service quality of the communication link at different stages. For example, when a mobile phone is casting a video to a smart TV, when the video to be cast is a low-definition video (such as a standard-definition video), the screen-casting service has lower requirements on the bandwidth of the communication link.
  • the screen projection service has higher requirements on the communication link bandwidth. It can be seen that the existing wireless short-distance communication technology may fail to meet various data transmission requirements of services.
  • the embodiment of the present application provides a new data transmission method based on the wireless short-distance communication protocol framework of the Sparklink Alliance, so as to meet various data transmission requirements of the business to a certain extent.
  • Fig. 1 is a schematic diagram of a wireless short-distance communication system to which data transmission methods provided by various embodiments of the present application are applicable.
  • the system includes a first electronic device (referred to as the first device) and a second electronic device (referred to as the second device), and the first device and the second device are connected through the sparklink alliance.
  • the wireless short-range communication protocol framework establishes the connection.
  • the electronic equipment may be electronic equipment in various fields.
  • large-screen devices in the smart home field artificial intelligence (AI) speakers, high fidelity (HiFi) speakers, temperature sensors, humidity sensors, etc.
  • mobile phones tablet computers, wearable devices, augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, notebook computers, ultra-mobile personal computers (ultra-mobile personal computer, UMPC) in the field of smart terminals , netbook, personal digital assistant (personal digital assistant, PDA), etc.
  • the embodiment of the present application does not impose any limitation on the specific type of the electronic device.
  • the wireless short-distance communication technologies provided in the embodiments of the present application include sparklink-basic (SLB) technology and sparkLink-low energy (SLE) technology.
  • SLB sparklink-basic
  • SLE sparkLink-low energy
  • the SLB access layer communicates through the SLB technology and supports high-bandwidth and high-speed data transmission, but consumes high power.
  • the SLE access layer communicates through SLE technology, supports low power consumption, small bandwidth, and low-speed data transmission, and helps save device power.
  • the SLB technology divides electronic devices into management nodes (ie, Grant nodes, referred to as G nodes) and terminal nodes (ie, Terminal nodes, referred to as T nodes).
  • G nodes management nodes
  • T nodes terminal nodes
  • a G node can manage at least one T node, and the G node and the T node are connected to jointly complete specific communication functions.
  • Transmission channel is the channel of the basic service layer, which can undertake multiple port (port) mapping on the upper side, and can realize the mapping of multiple transmission channels to the same or different logical channels on the lower side.
  • Transmission channels include control channels and service channels.
  • Service channels are used to transmit service-related data, such as service control instructions and media streams.
  • the control channel is the basis for establishing different service channels between devices. During the process of establishing a service channel between devices, the two electronic devices negotiate parameters required for establishing the service channel on the control channel.
  • Various services can use the same control channel to establish different service channels, and these services can be services of the same application program or services of different application programs.
  • the parameters required to establish the service channel include transmission modes (such as flow mode, flow control mode, retransmission mode, basic mode, etc.), parameters in different transmission modes, and transmission channel identification (transmission channel identification, TCID ) number and the port port of the transmission channel mapping, etc.
  • transmission modes such as flow mode, flow control mode, retransmission mode, basic mode, etc.
  • transmission channel identification transmission channel identification, TCID
  • a logical channel is a channel of the access layer, on which one or more transmission channels can be mapped. In some embodiments, it may also be called a logical channel.
  • a communication system composed of a G node and all T nodes connected to it is called a communication domain.
  • a cockpit domain controller cockpit domain controller
  • vehicle-mounted devices such as microphones, speakers, mobile phones, etc.
  • CDC and vehicle equipment are connected to jointly complete the cockpit entertainment function.
  • CDC forms a communication domain with all vehicle-mounted devices.
  • an electronic device may be in multiple communication domains.
  • the CDC, the microphone, the speaker and the mobile phone form a communication domain 1, wherein the CDC is the node G, and the microphone, the speaker and the mobile phone are the point T.
  • the mobile phone and the wireless headset form the communication domain 2, wherein the mobile phone is a G node, and the wireless headset is a T node.
  • the mobile phone is in communication domain 1 and communication domain 2 at the same time.
  • the wireless short-distance communication protocol framework applicable to the data transmission method provided by the embodiment of the present application will be described below.
  • Various application programs are usually stored in the electronic device, such as a setting application, a multi-screen collaborative application, a screen projection application, an audio application, a video application, a gallery application, a camera application, a navigation application, a map application, an email client, a game application, and the like.
  • a setting application e.g., a setting application, a multi-screen collaborative application, a screen projection application, an audio application, a video application, a gallery application, a camera application, a navigation application, a map application, an email client, a game application, and the like.
  • the communication function can be realized by using the wireless short-distance communication protocol framework provided by this embodiment.
  • Fig. 3 is a schematic diagram of a wireless short-distance communication protocol architecture provided by an embodiment of the present application.
  • the protocol architecture includes a basic application layer, a basic service layer, and a starlight access layer (also referred to as an access layer).
  • the basic application layer and the basic service layer can be collectively referred to as the Host protocol architecture.
  • the basic application layer defines various frameworks common to different applications, and each framework defines its own corresponding message format and application rules.
  • the basic application layer has developed a framework for various possible and general application scenarios. For example, common frameworks such as basic communication framework, common perception framework, common video framework, common audio framework, common data framework, and onboard control framework.
  • common frameworks such as basic communication framework, common perception framework, common video framework, common audio framework, common data framework, and onboard control framework.
  • the basic communication framework is used to set the mode of device discovery and discovery (such as broadcast mode, polling mode, etc.), set the filtering policy (for example, in the audio business scenario, only for electronic devices that support audio devices), set Levels can be found, etc.
  • the basic communication framework is also used to trigger control channel selection according to service requirements (that is, to select an SLB control channel or an SLE control channel according to service requirements), and to allocate a port number Port for services.
  • the general perception framework is used to detect user operations, device power information, signal strength, etc.
  • the user operation may include a touch instruction input by the user on the screen of the electronic device, an air control gesture input by the user, a voice control instruction, and the like.
  • the signal strength includes WiFi signal strength, cellular signal strength or Bluetooth signal strength, SLB signal strength and SLE signal strength, etc.
  • the general video framework is used to process data related to video services, such as encoding and decoding video data.
  • the general audio framework is used to process data related to audio services, such as encoding and decoding audio data.
  • the general data framework is used to encrypt and decrypt data, etc.
  • the in-vehicle control framework is used to process data related to in-vehicle control services.
  • service characteristics include application identification (application identification, AID) and service quality (quality of service, QoS).
  • QoS quality of service
  • QoS includes code rate, time delay, sampling rate and bit width, etc.
  • the basic service layer includes control plane and data plane.
  • the control plane includes functional modules such as device discovery module, service management module, channel management module, QoS management module, security management module, multi-domain coordination module, measurement management module, and 5G fusion module.
  • the data plane includes channel control data, broadcast data, service management data, real-time data and reliable data, etc., and also includes transmission control adaptation protocol, transmission control protocol/internet protocol (transmission control protocol/internet protocol, TCP/IP), transparent protocol etc.
  • the module including the transmission control adaptation protocol in the data plane is referred to as a transmission control module.
  • some data on the data plane (such as the channel control data in the dashed box in Figure 3) is usually not included in the initial protocol architecture, but is gradually generated and stored during the process of using the protocol architecture by the electronic device.
  • the device discovery module is mainly used to discover peripheral devices and announce the information of the device itself, to discover and be discovered through broadcast/unicast data links, to determine device information, etc.
  • the device information includes information such as a domain name of the device, a media access control (media access control, MAC) address, a device role, a device model, and a device capability (such as a wireless connection type and a supported communication protocol).
  • the device discovery module can specifically be used to broadcast the device information of the electronic device itself, and scan for electronic devices that meet business requirements. It should be understood that for wireless short-distance communication services, different service requirements generally correspond to different types of electronic equipment. For example, when a mobile phone is performing screen projection, the device discovery module of the mobile phone needs to scan large-screen devices that have a screen projection function, such as TVs, projectors, etc., instead of scanning other electronic devices that do not support screen projection, such as mobile phones or wireless earphones. .
  • the device discovery module also supports SLB/SLE mutual discovery, that is, in the process of using SLB technology to communicate with the peer device, it can be found that the peer device has enabled the SLE communication function, or, when using the SLE technology and During the communication process of the peer device, it can be found that the peer device has enabled the SLB communication function.
  • the service management module is used to provide an abstract data structure model for the control instruction and small data transmission of the basic application layer, and provide methods for operating the data structure such as reading, writing, notification, and indication.
  • the channel management module is used to manage the transmission channel of the basic service layer, including the establishment, maintenance and release of the transmission channel, and supports the transmission of data through the default transmission channel, or dynamically allocates the transmission channel to transmit data.
  • the channel management module is also used to manage the establishment and maintenance of the cross-layer mapping relationship, including managing the mapping relationship between the Port of the basic application layer and the TCID of the basic service layer, and the TCID of the basic service layer and the TCID of the access layer.
  • the mapping relationship between TCID and Port is the mapping relationship between basic service layer data and basic application layer data.
  • the mapping relationship between TCID and LCID is the mapping relationship between basic service layer data and access layer data.
  • the QoS management module is used to manage the QoS request static table of the service, and negotiate QoS with the peer. Different services usually have different QoS request static tables.
  • the QoS request static table includes parameters such as transmission delay, code rate, retransmission rate, transmission bandwidth requirements, service type, and bit width.
  • the security management module is used to manage the secure connection of the basic service layer, including identity authentication, air interface communication security protection, secret key update, privacy protection, application layer transmission security, password requirements, secure storage of device information, secure execution, security protection and security management, etc.
  • the multi-domain coordination module is used to control and implement information interaction between communication domains in the scenario where electronic devices are in multiple communication domains, to avoid mutual interference between multiple domains, and to protect the load balance between domains.
  • the multi-domain coordination module needs to manage the establishment of interactive channels between multiple G nodes corresponding to multiple communication domains, maintain the list of neighbor G nodes and basic information; coordinate between multiple domains resources, joint positioning, mobility management, and load balancing.
  • the measurement management module is used to measure the distance between the machine and other electronic devices, the orientation of the machine relative to other electronic devices, etc. according to the received signal strength indication (RSSI) and preset algorithms.
  • the measurement management module is also used to configure the measurement period, report measurement events and measurement results to the basic application layer, schedule measurement resources, control measurement power, etc.
  • the 5G fusion module is used to establish a channel for 5G remote management capabilities, and realize devices with cellular 5G remote control functions through authentication and authentication mechanisms.
  • the 5G fusion module enables each node device to have the ability to allow the 5G edge core network to perceive and control. For example, when the G node has the ability to connect to the core network, but the T node does not have the ability to connect to the core network, the 5G core network can issue control instructions to the T node through the G node, so that the T node can also be controlled by the 5G core network. control.
  • the starlight access layer includes the SLB access layer and the SLE access layer. Both the SLB access layer and the SLE access layer include the data link layer and the physical layer.
  • the data link layer includes a link control layer and a media access layer, and the link control layer provides services for the basic service layer.
  • the link control layer is used to perform necessary numbering (such as adding serial number SN), segmenting, encryption, integrity protection and other operations on the upper layer business data (that is, the data of the basic service layer), and convert the generated chain
  • the channel control layer protocol data unit (logical channel profile data unit, LC PDU) is sent to the media access layer.
  • the media access layer multiplexes and encapsulates different LC PDUs mainly based on the amount of scheduled resources, and generates a media access layer protocol data unit (media access profile data unit, MAC PDU).
  • the media access layer is responsible for decapsulating the data and delivering it to different logical channels.
  • the link control layer can perform necessary decryption, reorganization, sorting and other operations on the data, and deliver the business data to the basic service layer in sequence.
  • the physical layer is used to provide data transmission services to the data link layer, specifically including the following functions: correctness check of transmission information and indication to the data link layer, forward error correction (FEC) encoding/ Decoding, hybrid automatic repeat request (HARQ) soft combining, rate matching of transmission information to corresponding physical resources, mapping of encoded transmission information to corresponding physical resources, physical layer control information and physical layer data Modulation and demodulation of information, synchronization of frequency and time, radio characteristic measurement and indication to the data link layer, multiple-input multiple-output antenna processing, beamforming, radio frequency processing, etc.
  • FEC forward error correction
  • HARQ hybrid automatic repeat request
  • the services of the basic application layer can communicate with the peer end through the SLB technology or communicate with the peer end through the SLE technology according to different business requirements.
  • the SLB technology is usually used to process services with large bandwidth transmission requirements, such as wireless projection services, video call services, etc., and the data throughput during transmission is usually high.
  • SLE technology is usually used to process services with small bandwidth transmission requirements, such as audio playback services for wireless earphones, mobile phone control services for smart home devices, etc.
  • the data throughput is usually low, and the transmission rate and power consumption are also low. lower.
  • some services support multi-link transmission, while some services do not support multi-link transmission, which is determined according to the configuration of the service itself.
  • video transmission services referred to as video services
  • video streams since video streams generally require high bandwidth during transmission, they are usually configured to be transmitted on the SLB access layer, and do not support the transmission on the SLE access layer. upload. That is to say, the video service does not support multi-link transmission.
  • the service supports multi-link transmission means that the service itself supports the transmission of data on multiple different access layers, including: the service uses multiple different access layers to transmit data at the same time, or the service independently Data is transmitted independently using any of several different access layers.
  • the service can transmit data on the SLB access layer and the SLE access layer at the same time, or use the SLB access layer or Use SLE alone to transfer data.
  • this embodiment provides a data transmission method that can increase the data transmission rate.
  • the data transmission method provided in this embodiment includes the following two technical solutions: 1. data transmission based on transmission channel groups; 2. data transmission based on the mapping relationship between service channels and different logical links. The two schemes are described below respectively.
  • Fig. 4 is a flowchart of a data transmission method provided by an embodiment of the present application, showing a process in which the basic application layer and the basic service layer establish transmission channel groups for services and transmit data through the transmission channel groups. Specifically, the following steps S401-S409 are included.
  • the basic application layer obtains the AID and QoS of the service.
  • the electronic device executes corresponding services by running application programs, and different application programs have the same or different types of services, such as audio services, video services, and data transmission services.
  • different businesses have different requirements for data transmission service quality. Some businesses require high-fidelity, low-latency, and high-speed data during transmission, and some businesses require low power consumption of devices during data transmission. Therefore, different applications configure different QoS for their different services.
  • the application program needs to send its service characteristics to the basic application layer, including the AID and QoS of the service.
  • the basic application layer also allocates port ports for each business, and applies for business channels to the basic service layer with AID, QoS and Port at the same time.
  • the basic application layer sends a transmission channel establishment request to the channel management module of the basic service layer, and the transmission channel establishment request includes the AID, QoS and Port of the service.
  • the transmission channel establishment request is used to request the basic service layer to establish a transmission channel, which may be a single transmission channel or a transmission channel group.
  • the channel management module of the basic service layer allocates a transmission channel group for the service according to the transmission channel establishment request.
  • the channel management module when the service does not support multi-link transmission (that is, only supports transmission on one link), the channel management module only allocates a separate service channel for the service according to AID, QoS and Port (for example, SLB service channel , or SLE service channel), without configuring a transport channel group for it.
  • AID for example, SLB service channel , or SLE service channel
  • the channel management module allocates a transmission channel group for the service according to AID, QoS and Port, and the transmission channel group includes at least one service channel.
  • the transmission channel group includes the first service channel and/or the second service channel.
  • the first service channel and the second service channel correspond to the first logical link and the second logical link respectively, and the first logical link and the second logical link correspond to different first access layers and second access layers respectively .
  • the electronic device may perform multiple services at the same time.
  • the channel management module allocates a transmission channel group to a new service
  • the link of the electronic device may have been occupied by other services. Therefore, even if the service itself supports multi-chain
  • electronic equipment may not necessarily be able to provide multiple transmission links for this service. Therefore, the number of service channels in the transmission channel group needs to be specifically determined according to the service status and traffic status on each link of the electronic device.
  • the channel management module configures the SLB service channel and the SLE service channel respectively for the transmission channel group of the service .
  • the channel management module assigns a transmission channel group to the service, and configures both SLB service channels and SLE service channels in the transmission channel group.
  • Condition 1 The configuration of the service itself supports multi-link transmission.
  • video transmission services namely, video services
  • video streams since video streams generally require high bandwidth during transmission, they are usually configured to be transmitted on the SLB access layer, and do not support Transmission on the SLE access layer. That is to say, the configuration of the video service itself does not support multi-link transmission.
  • Condition 2 The resources of the SLB access layer and the SLE access layer support providing services to the business at the same time.
  • adding a logical link refers to adding a new logical link on the basis of maintaining an existing logical link.
  • service 1 has already occupied part of the resources of the SLB access layer.
  • service 2 can preempt the resources of the SLB access layer.
  • condition 2 when the resources of the SLB access layer/SLE access layer support a new logical link, multiple logical links can be established and reserved at the same time, or only the logical links for high-priority services can be reserved road.
  • service 1 has already occupied part of the resources of the SLB access layer.
  • the electronic device has service 2 to be processed, if the remaining resources of the SLB access layer are sufficient to provide services for service 2, and the service 2 Priority is higher than business 1. Then, the SLB access layer can maintain the logical link of service 1 and service 2 at the same time, or disconnect the logical link of service 1 and establish the logical link of service 2.
  • the SLB access layer can maintain the logical links of service 1 and service 2 at the same time, or only maintain the logical link of service 1 without establishing a logical link for service 2.
  • the channel management module when the SLB access layer is occupied by high-priority services and the link resources are insufficient, the channel management module only configures the SLE service channel TCIDy to the transmission channel group of the service.
  • the channel management module when the SLE access layer is occupied by high-priority services and the link resources are insufficient, the channel management module only configures the SLB service channel TCIDx to the transmission channel group of the service.
  • the channel management module assigns the transmission channel group to the business, indicating that the Group ID (such as Group A, Group B and Group C, etc.) of the transmission channel group and the TCID of the service channel in the transmission channel group are determined, and the transmission channel group and the group The internal business channel has not been established successfully.
  • the business channel should be established according to the following steps.
  • the channel management module of the basic service layer establishes a transmission channel group.
  • the basic service layer After determining the Group ID, the basic service layer establishes the transmission channel group corresponding to the Group ID. Exemplarily, as shown in FIG. 5, for Group A, the basic service layer needs to establish an SLB service channel and an SLE service channel for it. For Group B, the basic service layer only needs to establish an SLB service channel for it. For Group C, the basic service layer only needs to establish an SLE service channel for it.
  • the starlight access layer includes an SLB access layer and an SLE access layer.
  • the SLB access layer corresponds to the SLB control channel in the basic service layer, and is used to establish SLB service channels for different services
  • the SLE access layer corresponds to the SLE control channel in the basic service layer, and is used to establish SLE service channels for different services.
  • SLB and/or SLE control channels established by other services may already exist in the basic service layer. In some other embodiments, there is no established SLB and/or SLE control channel in the basic service layer. At this time, the basic application layer needs to notify the basic service layer to create a new SLB and/or SLE control channel.
  • an SLB service channel TCIDx is established between the basic service layer and the SLB access layer.
  • an SLE service channel TCIDy is established between the basic service layer and the SLE access layer.
  • the channel management module of the basic service layer sends the establishment result of the transmission channel group to the basic application layer.
  • each service channel may be established successfully or fail to be established.
  • the service channel TCIDx may fail to be established.
  • the service channel TCIDy will fail to be established.
  • the establishment result of the transmission channel group may include the following four situations.
  • Case 2 The service channel TCIDx is established successfully, but the service channel TCIDy fails to be established, and the transmission channel group is successfully established.
  • Case 3 The service channel TCIDx fails to be established, but the service channel TCIDy and the transmission channel group are successfully established.
  • the basic application layer uses the transmission channel group to send the service data corresponding to the service to the transmission control module.
  • the basic application layer After receiving the service data sent by the application program, the basic application layer adds the service port number Port to the service data, and the Port maps all service channels in the transmission channel group. Then send the business data to the transmission control module of the basic service layer.
  • the Port maps TCIDx and TCIDy at the same time.
  • the Port only maps TCIDx.
  • the Port is only mapped to TCIDy.
  • the transmission control module adds a transmission channel identifier in the transmission channel group to the service data.
  • the transmission control module adds a corresponding service channel identifier to the service data carrying the Port according to the mapping relationship between the port and the service channel. For example, when the Port is only mapped to TCIDx, the transmission control module adds the TCIDx identifier to the service data carrying the Port. When the Port only maps the TCIDy, the transmission control module adds the TCIDy identifier to the service data carried by the Port. When the transmission channel group includes both TCIDx and TCIDy, TCID is added to the service data according to the transmission strategy.
  • the transmission strategy can control the transmission control module to use one or more service channels in the transmission channel group to transmit data.
  • the transmission strategy may be split transmission or redundant transmission.
  • offload transmission refers to transmitting a part of all business data of the current service through the SLB service channel, and transmitting another part through the SLE service channel, and the two parts of service data are different.
  • Redundant transmission means that a part of all business data of the current business is transmitted through the SLB service channel, and the other part is transmitted through the SLE service channel, and the two parts of the business data are all or partly the same.
  • TCIDx is added to part of the data for transmission through the SLB service channel
  • TCIDy is added to another part of the data for transmission through the SLE service channel, and the two parts of service data are different.
  • the proportion of service data on the SLB access layer and the SLE access layer can be determined according to the bandwidth, the status of existing services (such as video clarity, etc.), and the traffic status of the SLB access layer and the SLE access layer. Sure.
  • the transmission control module when it transmits service data through multiple links, it does not support transmission in the basic mode and transparent transmission mode. This is because in the basic mode, data transmission does not perform grouping or retransmission at the basic service layer, and does not require an acknowledgment (ack) from the peer end. In the transparent transmission mode, the basic service layer will not perform any processing on the data packet. These two modes do not support the addition of sequence numbers (sequence number, SN) in business data. Therefore, after the peer device receives service data without an SN, it cannot sort them, which will cause data confusion.
  • sequence numbers sequence number, SN
  • the transmission control module sends the service data carrying the SLB service channel identifier TCIDx to the SLB access layer, so as to send it to the peer device through the SLB access layer.
  • the transmission control module sends the service data carrying the SLE service channel identifier TCIDy to the SLE access layer, so as to send it to the peer device through the SLE access layer.
  • the multi-channel transmission channel group provided by the embodiment of the present application supports the transmission of different data frames at multiple different access layers (the SLB access layer and the SLE access layer respectively), and also supports redundant Transmission can increase the transmission rate of business data, reduce the delay of business data, and improve the reliability of business data.
  • the SLB access layer and the SLE access layer respectively
  • redundant Transmission can increase the transmission rate of business data, reduce the delay of business data, and improve the reliability of business data.
  • business data can still be transmitted.
  • the business can also be switched between the SLB access layer and the SLE access layer according to the needs of the electronic equipment, including: (1) switching the business data from the SLE access layer to the SLB access layer for transmission; (2) switch the service data from the SLB access layer to the SLE access layer for transmission. Each of them will be described below.
  • the basic The transmission channel group established by the service layer for the service includes only one SLE service channel, and the service only uses the SLE service channel to transmit service data to the peer end through the SLE access layer.
  • the QoS requirement of the service increases, the current SLE service channel may not be able to meet the service requirement.
  • the data transmission capability of the electronic equipment has been improved, still using the SLE service channel to transmit service data will not be able to improve the service data transmission quality.
  • the SLB access layer recovers to be able to provide services for the service, the service data is switched from the SLE access layer to the SLB access layer for transmission.
  • Fig. 6 is a flow chart of a data transmission method provided by another embodiment of the present application, involving the process of switching service data from the SLE access layer to the SLB access layer for transmission.
  • the SLB switching requirement is: the current service increases the QoS requirement.
  • the QoS requirements of the audio playback service will increase, and the application will use the new QoS requirements are sent to the basic application layer.
  • the basic application layer receives the new QoS requirements, if the new QoS requirements are higher than the original QoS requirements, if the current service supports transmission on the SLB access layer and the SLE access layer at the same time, the basic application layer requests The channel management module adds an SLB service channel TCIDx in the transmission channel group.
  • the SLB switching requirement is: the capability that the basic service layer can provide (this embodiment is called the Spark service requirement, which can be represented by the Spark-link QoS index (SLQI) mark) improve.
  • the Spark service requirement which can be represented by the Spark-link QoS index (SLQI) mark
  • the basic service layer cannot provide the SLB access layer with a higher starlight service quality (represented by SLQI-A) to the high-definition audio playback service, while The SLE access layer with a lower SLQI (represented by SLQI-B) is provided to the service. After the application agrees to SLQI-B, it transmits service data at the SLE access layer.
  • the SLB access layer Due to the small bandwidth of the SLE access layer, media streams of high-definition audio may be congested during transmission, resulting in poor audio playback quality. For this reason, in this embodiment, during the execution of the high-definition audio playback service, if the service occupying the SLB access layer in the early stage ends, the SLB access layer will be vacant, and the channel management module will establish an SLB service channel for the service. The business is switched from the SLE access layer to the SLB access layer, so as to transmit service data through the high-bandwidth SLB access layer, increase the data transmission rate, and improve the playback quality of high-definition audio.
  • the SLB switching requirement is: the QoS management module detects that the air interface quality of the SLE is poor and the bit error rate is high.
  • QoS is the quality of service sent by the application program, and various parameters therein define the service quality expected by the business.
  • the SLQI is the service quality of the communication link that the basic service layer can actually provide for the service. Because a protocol architecture may handle multiple services at the same time, the remaining transmission resources are insufficient. Therefore, the basic service layer can sometimes meet the expectations of the services, and sometimes cannot meet the expectations of the services. Therefore, after the basic service layer obtains the QoS of the service, it needs to negotiate with the peer device according to the remaining transmission resources to determine the actual service quality that can be provided for the service, that is, to determine the SLQI. Therefore, SLQI may be the same as QoS, or may be worse than the service quality defined by QoS, or may be better than the service quality defined by QoS.
  • the SLB control channel currently exists in the basic service layer, and the basic service layer can directly execute step S605 to establish the SLB service channel based on the SLB control channel.
  • the SLB control channel does not currently exist in the basic service layer, therefore, the basic service layer needs to establish the SLB control channel first.
  • the specific establishment process please refer to steps S602-S605.
  • the channel management module of the basic service layer sends a first notification message to the device discovery module, where the first notification message is used to instruct the device discovery module to scan for SLB devices.
  • the channel management module may determine whether to instruct the device discovery module to scan the SLB device according to whether the SLB access layer has a high-priority service, or whether the remaining resources of the SLB access layer support the service and other factors.
  • the device discovery module scans the SLB device.
  • the device discovery module sends an SLB device discovery notification to the channel management module.
  • the SLB device discovery notification is used to indicate that the device discovery module finds that the peer device corresponding to the current service supports the SLB communication function.
  • S605. Establish a SLB default logical link between the channel management module and the peer device corresponding to the current service to form an SLB control channel.
  • the SLB control channel is the default channel on the SLB default logical link (also can be understood as the default channel). After the SLB default logical link is established, the basic service layer will automatically generate the SLB control channel. The ID of the channel is also the default ID.
  • the logical links not specifically described are dedicated logical links for processing specific communication services.
  • the channel management module establishes the SLB service channel TCIDx through the SLB control channel, wherein TCIDx and TCIDy belong to the same transmission channel group.
  • the SLB control channel is the basis for establishing different SLB service channels between devices.
  • the two electronic devices negotiate parameters required for establishing the SLB service channel on the SLB control channel.
  • the channel management module sends an SLQI capability adjustment request to the basic application layer.
  • the channel management module after the channel management module creates a new SLB service channel for the service, the actual data transmission quality provided by the channel management module for the service will also change. For example, the data transmission quality SLQI-B provided by the SLE access layer is changed to the data transmission quality SLQI-A provided by the SLB access layer. Therefore, the channel management module needs to send an SLQI capability adjustment request to the basic application layer, requesting to adjust the SLQI provided for this service to SLQI-A.
  • the basic application layer after receiving the SLQI capability adjustment request, the basic application layer needs to send the request to the application of the service to ask whether the application agrees to transmit service data under the data transmission capability corresponding to the SLQI. After the application program agrees, the basic application layer can send the SLQI capability adjustment completion notification to the channel management module.
  • the basic application layer decides locally whether to agree to transmit service data under the data transmission capability corresponding to the SLQI without asking the application program.
  • the channel management module disconnects the SLE service channel TCIDy.
  • S609 is an optional step, and the electronic device may not execute S609 after executing S608. That is to say, after the SLB service channel TCIDx is successfully established, the channel management module may not disconnect the SLE service channel TCIDy, and keep the TCIDx and TCIDy in the transmission channel group existing simultaneously.
  • the basic application layer sends service data to the transmission control module, the service data carries a Port, and the Port maps all service channels in the transmission channel group.
  • the transmission control module may first execute S609 and then execute S610, or may first execute S610 and then execute S609.
  • the transmission control module adds a service channel identifier TCIDx corresponding to the Port to the service data.
  • the transmission control module sends the service data carrying the TCIDx to the SLB access layer.
  • the electronic device can switch the service data from the SLE access layer to the SLB access layer for transmission, thereby improving the communication between devices. data transfer rate.
  • the user is not aware of the link switching process, which helps to improve user experience.
  • the transmission channel group established by the service layer for the service sometimes includes only one SLB service channel, and the service only uses the SLB access layer to transmit service data to the peer end through the SLB service channel. Due to the high power consumption of the SLB access layer, long-term use will cause the battery power of the device to deplete too quickly.
  • the basic service layer can switch the business data of this service from the SLB access layer to the SLE access layer for transmission, so as to reduce the power consumption of the device and increase the service life of the device.
  • Fig. 7 is a flow chart of a data transmission method provided by another embodiment of the present application, involving the process of switching service data from the SLB access layer to the SLE access layer for transmission.
  • the basic application layer transmits service data through the SLB service channel TCIDx in the transmission channel group, when an SLE switching requirement occurs, the basic application layer sends an SLE service channel establishment request to the channel management module of the basic service layer.
  • the SLE switching requirement is: the battery power is lower than a preset value (for example, 20% of full charge), or the electronic device is switched to a power saving mode, and the like.
  • step S706 to establish the SLE service channel based on the SLE control channel.
  • the basic service layer needs to establish the SLE control channel first, and then perform step S706 to establish the SLE service channel. Please refer to steps S702-S705 for the specific establishment process.
  • the channel management module of the basic service layer sends a second notification message to the device discovery module, where the second notification message is used to instruct the device discovery module to scan for SLE devices.
  • the channel management module may determine whether to instruct the device discovery module to scan for SLE devices according to factors such as whether the SLE access layer has a high-priority service, or whether the remaining resources of the SLE access layer support the service.
  • the device discovery module scans the SLE device.
  • the device discovery module sends an SLE device discovery notification to the channel management module.
  • the SLE device discovery notification is used to indicate that the device discovery module finds that the peer device corresponding to the current service supports the SLE communication function.
  • the SLE control channel is the default channel on the SLE logical link (it can also be understood as the default channel). After the SLE logical link is established, the basic service layer will automatically generate the SLE control channel.
  • the SLE control channel id is also the default id.
  • the channel management module establishes the SLE service channel TCIDy through the SLE control channel, wherein TCIDx and TCIDy belong to the same transmission channel group.
  • the SLE control channel is the basis for establishing different SLE service channels between devices.
  • the two devices negotiate parameters required for establishing the SLE service channel on the SLE control channel.
  • the channel management module sends an SLQI capability adjustment request to the basic application layer.
  • the channel management module After the channel management module creates a new SLB service channel for the service, the actual data transmission quality provided by the channel management module to the service will also change. That is, the data transmission quality SLQI-A provided by the SLB access layer is changed to the data transmission quality SLQI-B provided by the SLE access layer. Therefore, the channel management module needs to send an SLQI capability adjustment request to the basic application layer, requesting to adjust the SLQI provided for this service to SLQI-B.
  • the channel management module disconnects the SLB service channel TCIDx.
  • S709 is an optional step, and the electronic device may not execute S609 after executing S708. That is to say, after the SLE service channel TCIDy is successfully established, the channel management module may not disconnect the SLB service channel TCIDx, and keep the TCIDx and TCIDy in the transmission channel group existing simultaneously.
  • the basic application layer sends service data to the transmission control module.
  • the service data carries a Port, and the port maps all service channels in the transmission channel group.
  • the order of S708 and S709 is not limited in this embodiment, and the transmission control module may first execute S708 and then S709, or may first execute S709 and then S708.
  • the transmission control module adds the SLE service channel identifier TCIDy corresponding to the Port to the service data.
  • the transmission control module sends the service data carrying the TCIDy to the SLE access layer.
  • the electronic device can switch the service data from the SLB access layer to the SLE Access layer transmission, thereby reducing the power consumption of the device and increasing the service life of the device.
  • the user is not aware of the link switching process, which helps to improve user experience.
  • a SLB default logical link will be established between the SLB access layer of the first device and the SLB access layer of the second device, and The SLB default logical link corresponds to a default SLB control channel and a default SLB service management channel at the basic service layer.
  • an SLE default logical link will be established between the SLE access layer of the first device and the SLE access layer of the second device.
  • the default SLE logical link corresponds to a default SLE control channel and a default SLE service management channel.
  • communication services can be processed according to user requirements.
  • the first device can share pictures, files, audio or video, etc. with the second device according to user requirements.
  • the process of transmitting service data from the first device to the second device will be described below with reference to FIG. 8 .
  • Fig. 8 is a flowchart of a data transmission method provided by an embodiment of the present application, showing a process in which a first device transmits data to a second device through a one-to-two mapping relationship between a service channel and a logical link.
  • the steps performed by the first device specifically include the following steps S801-S808.
  • the basic application layer obtains the AID and QoS of the service.
  • the application program In the process of establishing a service (specifically, a communication service), the application program needs to send its service characteristics to the basic application layer, and the service characteristics include the AID and QoS of the service.
  • the basic application layer determines the port number Port1 where the service is on the first device, and the port number Port2 where the service is on the second device.
  • the basic application layer of the first device negotiates with the basic service layer of the second device through the default SLB service management channel or SLE service management channel to determine the port numbers of the service on the two devices.
  • the first device and the second device determine the port number of the service on the first device as Port1, and determine the port number of the service on the second device as Port2.
  • the basic application layer sends a service channel establishment request to the channel management module of the basic service layer, and the service channel establishment request carries AID, QoS, Port1 and Port2 of the service.
  • the channel management module establishes the service channel TCID1, and determines the mapping relationship between TCID1 and the SLB logical link LCIDx and/or the SLE logical link LCIDy. For details of this step, refer to Figure 10 to Figure 13 .
  • mapping relationship between TCID1 and LCIDx and LCIDy includes:
  • the first mapping relationship TCID1 only maps LCIDx (see the mapping relationship between TCID-B and SLB logical link in FIG. 9 ). Based on the first mapping relationship, the first device may transmit the service data in TCID1 to the second device through LCIDx.
  • the second mapping relationship TCID1 only maps LCIDy (refer to the mapping relationship between TCID-C and SLE logical link in FIG. 9 ). Based on the second mapping relationship, the first device may transmit the service data in TCID1 to the second device through LCIDy.
  • the third mapping relationship TCID1 maps LCIDx and LCIDy at the same time (refer to the mapping relationship between TCID-A and SLB logical link and SLE logical link in FIG. 9 ). Based on the third mapping relationship, the first device can either transmit the service data in TCID1 to the second device through LCIDx, or transmit the service data in TCID1 to the second device through LCIDy.
  • the channel management module sends a service channel establishment success notification to the basic application layer, which is used to notify the basic application layer that the service channel TCID1 corresponding to Port1 has been successfully established.
  • the channel management module sends the mapping relationship between TCID1 and LCIDx and/or LCIDy to the transmission control module.
  • channel management module may first execute S805 and then S806, or may first execute S806 and then S805, which is not limited in this embodiment.
  • the basic application layer sends service data to the transmission control module, and the service data carries Port1.
  • the first device When the first device processes communication services, its basic application layer usually assigns a port number Port to each communication service. Different communication services can be transmitted through the same service channel or through different service channels. .
  • a service channel When a service channel only processes service data corresponding to one port, the port is independently mapped to the service channel, for example, Port1 is independently mapped to TCID1.
  • the Port1 identifier may be added to the service data, or may not be added.
  • a service channel processes service data corresponding to multiple ports at the same time, multiple ports map to one service channel at the same time, for example, Port1, Port2, and Port3 map to TCID1 at the same time. Then, when the basic application layer sends business data to the basic service layer, the port number corresponding to the business must be added to the business data, otherwise the basic service layer will not be able to distinguish each business data.
  • the transmission control module adds the TCID1 identifier to the service data according to the mapping relationship between Port1 and TCID1, and controls the transmission of the service data according to the mapping relationship between TCID1 and LCIDx and/or LCIDy and the transmission policy.
  • the transmission control module When TCID1 is mapped to LCIDx, the transmission control module sends the service data to the SLB access layer, so that the SLB access layer adds the LCIDx identifier to the service data, and sends the service data to the second device.
  • the transmission control module When TCID1 is mapped to LCIDy, the transmission control module sends the service data to the SLE access layer, so that the SLE access layer adds the LCIDy identifier to the service data, and sends the service data to the second device.
  • the transmission control module transmits service data according to the following steps S808a-S808e based on the mapping relationship and transmission strategy.
  • the transmission control module adds a TCID1 identifier to the service data according to the mapping relationship between Port1 and TCID1.
  • the service data can be divided into first service data and second service data.
  • the transmission control module sends the first service data to the SLB access layer.
  • the SLB access layer adds the LCIDx identifier to the first service data, and sends the first service data to the second device.
  • the transmission control module sends the second service data to the SLE access layer.
  • the SLE access layer adds the LCIDy identifier to the second service data, and sends the second service data to the second device.
  • the transmission strategy may also be split transmission or redundant transmission.
  • shunt transmission refers to transmitting a part of all service data of the current service (that is, the first service data) through LCIDx, and transmitting another part (that is, the second service data) through LCIDy, and the two parts of service data are different.
  • the redundant transmission means that the first service data is transmitted through LCIDx, and the second service data is transmitted through LCIDy, and the two parts of service data are all or partly the same.
  • the proportion of service data on LCIDx and LCIDy can be determined by the transmission control module according to the bandwidth, the status of existing services (such as the definition of video, etc.), the traffic status of the SLB access layer and the SLE access layer.
  • the transmission control module when the transmission control module simultaneously transmits service data through LCIDx and LCIDy, it does not support transmission in the basic mode and transparent transmission mode. This is because in the basic mode, data transmission does not perform grouping or retransmission at the basic service layer, and does not require an acknowledgment (ack) from the peer end. In the transparent transmission mode, the basic service layer will not perform any processing on the data packet. These two modes do not support the addition of sequence numbers (sequence number, SN) in business data. Therefore, after the peer device receives service data without an SN, it cannot sort them, which will cause data confusion.
  • sequence numbers sequence number, SN
  • the data transmission method provided by the embodiment of the present application can simultaneously map a service channel to the SLB logical link and the SLE logical link. Therefore, the method provided in this embodiment can pass through the SLB access layer and the SLE access layer. Simultaneous transmission of service data can increase the transmission rate of service data, reduce the delay of service data, and improve the reliability of service data. In addition, during the data transmission process, even if a logical link fails, there is no need for the upper layer application to control the protocol architecture to re-establish the logical link, and the business data can still be transmitted.
  • the channel management module Before the channel management module establishes a service channel, it first requests the access layer to establish at least one logical link, and then the service channel corresponding to the logical link can be established at the basic service layer.
  • the logical link may be an SLB logical link LCIDx and/or an SLE logical link LCIDy.
  • the SLB access layer when the remaining resources of the SLB access layer support providing services for the communication service, the SLB access layer establishes LCIDx for the communication service. It includes: when the remaining resources of the SLB access layer support a new logical link, no matter whether the priority of the service is higher than the priority of the existing service in the SLB access layer, an SLB logical link is established for the service .
  • the remaining resources of the SLB access layer do not support adding a new logical link, only when the priority of the service is higher than the priority of the existing service in the SLB access layer, the logic of the existing service is disconnected. link, and establish an SLB logical link for the high-priority service.
  • the SLB access The layer may also not establish an SLB logical link for the newly added service.
  • the establishment condition of the SLE logical link refers to the establishment condition of the SLB logical link, which will not be described again in this embodiment.
  • the establishment results of LCIDx and LCIDy may include the following cases 1 to 4 due to factors such as access layer quality and QoS negotiation.
  • each of the following embodiments is only an exemplary description of the establishment process of LCIDx, LCIDy and TCID1, and there is no limitation on the sequence of establishment of LCIDx and LCIDy.
  • each of the following embodiments does not limit the timing of establishing TCID1 and the target logical link corresponding to TCID1 during the establishment of TCID1.
  • the first device can negotiate with the second device to establish a service channel through a default control channel corresponding to the logical link.
  • Fig. 10 is a process for establishing a logical link and a service channel provided by an embodiment of the present application, which specifically includes the following steps S1001-S1016, which can be divided into the following four parts.
  • the channel management module of the first device generates a service channel identifier TCID1.
  • the channel management module of the first device sends an SLB logical link establishment request to the SLB access layer of the first device, and the request carries TCID1 and QoS of the service.
  • S1003 perform QoS negotiation between the SLB access layer of the first device and the SLB access layer of the second device, and establish an SLB logical link LCIDx.
  • the SLB access layer of the first device sends a notification of LCIDx establishment success to the channel management module of the first device.
  • the channel management module of the first device sends a service channel establishment request to the channel management module of the second device through the SLB control channel, and the service channel establishment request carries TCID1 and LCIDx.
  • the channel management module of the second device generates a service channel identifier TCID2.
  • the service channel is the concept of the basic service layer.
  • the basic service layer of the first device needs to set the first service channel (such as TCID1) for the service, and the basic service channel of the second device
  • the service layer needs to set up a second service channel (such as TCID2) for this service, and the identifiers of the first service channel and the second service channel may be the same or different.
  • the first device and the second device transmit service data corresponding to the service according to the correspondence between TCID1, LCIDx and TCID2. Therefore, after receiving the service channel establishment request sent by the first device, the channel management module of the second device needs to locally generate the identifier TCID2 of the second service channel.
  • the second device After the second device generates the service channel identifier TCID2, it also needs to establish a mapping relationship between Port2 and TCID2, and send the mapping relationship to the basic application layer of the second device.
  • the channel management module of the second device sends a service channel establishment success notification to the channel management module of the first device through the SLB control channel.
  • the service channel establishment success notification includes the mapping relationship among TCID1, LCIDx and TCID2, and is used to notify that the service channel between the first device and the second device has been successfully established.
  • the channel management module After the service channel TCID1 is successfully established, the channel management module also needs to establish a mapping relationship between Port1 and TCID1, and send the mapping relationship to the basic application layer.
  • the channel management module of the first device stores the mapping relationship among TCID1, LCIDx and TCID2.
  • mapping relationship among TCID1, LCIDx and TCID2 means that TCID1 corresponds to TCID2, and both TCID1 and TCID2 are mapped to LCIDx.
  • the channel management module of the second device stores the mapping relationship among TCID1, LCIDx and TCID2.
  • the channel management module of the first device sends an SLE logical link establishment request to the SLE access layer of the first device, and the request carries TCID1 and QoS of the service.
  • the request is used to request the SLE access layer to establish the SLE logical link LCIDy corresponding to TCID1.
  • S1011 perform QoS negotiation between the SLE access layer of the first device and the SLE access layer of the second device, and establish an SLE logical link LCIDy.
  • the SLB access layer of the first device sends a notification of LCIDy establishment success to the channel management module of the first device.
  • the notification carries the mapping relationship between TCID1 and LCIDy, and is used to notify the channel management module that the SLE logical link LCIDy corresponding to TCID1 has been established successfully.
  • the channel management module of the first device updates the logical link between TCID1 and TCID2 to LCIDx and LCIDy.
  • TCID1 corresponds to TCID2
  • both TCID1 and TCID2 are mapped to LCIDx and LCIDy.
  • the channel management module of the first device sends a service channel reconfiguration request to the channel management module of the second device through the SLB control channel/SLE control channel, for requesting to update the logical link between TCID1 and TCID2 to LCIDx and LCIDy .
  • the channel management module of the second device updates the logical link between TCID1 and TCID2 to LCIDx and LCIDy according to the service channel reconfiguration request.
  • the channel management module of the second device sends a service channel reconfiguration response message to the channel management module of the first device through the SLB control channel/SLE control channel, which is used to notify the first device that the second device side has configured the TCID1 and TCID2
  • the logical links between are updated to LCIDx and LCIDy.
  • the first electronic device can establish a one-to-two mapping relationship between TCID1 and LCIDx and LCIDy, and use the SLB access layer and the SLE access layer to communicate with the second device at the same time based on the mapping relationship .
  • Fig. 11 is a flow of establishing a logical link and a service channel provided by another embodiment of the present application, which specifically includes the following steps S1101-S1112, which can be divided into the following three parts.
  • the channel management module of the first device generates a service channel identifier TCID1.
  • the channel management module of the first device sends an SLB logical link establishment request to the SLB access layer of the first device, and the request carries TCID1 and QoS of the service.
  • S1103 perform QoS negotiation between the SLB access layer of the first device and the SLB access layer of the second device, and establish an SLB logical link LCIDx.
  • the SLB access layer of the first device sends a notification of LCIDx establishment success to the channel management module of the first device.
  • the channel management module of the first device sends a service channel establishment request to the channel management module of the second device through the SLB control channel, and the service channel establishment request carries TCID1 and LCIDx.
  • the channel management module of the second device generates a service channel identifier TCID2.
  • the second device After the second device generates the service channel identifier TCID2, it also needs to establish a mapping relationship between Port2 and TCID2, and send the mapping relationship to the basic application layer.
  • the channel management module of the second device sends a service channel establishment success notification to the channel management module of the first device through the SLB control channel.
  • the service channel establishment success notification includes the mapping relationship among TCID1, LCIDx and TCID2, and is used to notify that the service channel between the first device and the second device has been successfully established.
  • the channel management module After the service channel TCID1 is successfully established, the channel management module also needs to establish a mapping relationship between Port1 and TCID1, and send the mapping relationship to the basic application layer.
  • the channel management module of the first device stores the mapping relationship among TCID1, LCIDx and TCID2.
  • the channel management module of the second device stores the mapping relationship among TCID1, LCIDx and TCID2.
  • the channel management module of the first device sends an SLE logical link establishment request to the SLE access layer of the first device.
  • the SLE logical link request carries TCID1 and the QoS of the service, and the request is used to request the SLE access layer to establish the SLE logical link LCIDy corresponding to TCID1.
  • S1111 perform QoS negotiation between the SLE access layer of the first device and the SLE access layer of the second device, and establish an SLE logical link LCIDy.
  • S1112 after the SLB access layer of the first device fails to establish LCIDy, sends a notification of LCIDy establishment failure to the channel management module of the first device.
  • the notification carries TCID1 and is used to notify the channel management module that the SLE logical link corresponding to TCID1 has failed to be established.
  • the first device can establish a one-to-one mapping relationship between TCID1 and LCIDx, and based on the mapping relationship, the first device can use the SLB access layer to communicate with the second device.
  • Fig. 12 is a flow of establishing a logical link and a service channel provided by another embodiment of the present application, which specifically includes the following steps S1201-S1212, which can be divided into the following three parts.
  • the channel management module of the first device generates a service channel identifier TCID1.
  • the channel management module of the first device sends an SLB logical link establishment request to the SLB access layer of the first device, where the request carries TCID1 and QoS of the service.
  • the channel management module of the first device sends an SLE logical link establishment request to the SLE access layer of the first device, and the request carries TCID1 and QoS of the service.
  • the request is used to request the SLE access layer to establish the SLE logical link LCIDy corresponding to TCID1.
  • S1206 perform QoS negotiation between the SLE access layer of the first device and the SLE access layer of the second device, and successfully establish the SLE logical link LCIDy.
  • the SLB access layer of the first device sends an LCIDy establishment success notification to the channel management module of the first device.
  • the notification carries the mapping relationship between TCID1 and LCIDy, and is used to notify the channel management module that the SLE logical link LCIDy corresponding to TCID1 has been established successfully.
  • the channel management module of the first device sends a service channel establishment request to the channel management module of the second device through the SLE control channel, where the service channel establishment request carries TCID1 and LCIDy.
  • the channel management module of the second device generates a service channel identifier TCID2.
  • the second device After the second device generates the service channel identifier TCID2, it also needs to establish a mapping relationship between Port2 and TCID2, and send the mapping relationship to the basic application layer.
  • the channel management module of the second device sends a service channel establishment success notification to the channel management module of the first device through the SLE control channel.
  • the service channel establishment success notification includes the mapping relationship among TCID1, LCIDy and TCID2, and is used to notify that the service channel between the first device and the second device has been successfully established.
  • the channel management module After the service channel TCID1 is successfully established, the channel management module also needs to establish a mapping relationship between Port1 and TCID1, and send the mapping relationship to the basic application layer.
  • the channel management module of the first device stores the mapping relationship among TCID1, LCIDy and TCID2.
  • the channel management module of the second device stores the mapping relationship among TCID1, LCIDy and TCID2.
  • the first device can establish a one-to-one mapping relationship between TCID1 and LCIDy, and based on the mapping relationship, the first device can use the SLE access layer to communicate with the second device.
  • Fig. 13 is a flow of establishing a logical link and a service channel provided by another embodiment of the present application, which specifically includes the following steps S1301-S1307, which can be divided into the following two parts.
  • the channel management module of the first device generates a service channel identifier TCID1.
  • the channel management module of the first device sends an SLB logical link establishment request to the SLB access layer of the first device, and the request carries TCID1 and the QoS of the service.
  • the channel management module of the first device sends an SLE logical link establishment request to the SLE access layer of the first device.
  • the SLE logical link request carries TCID1 and the QoS of the service, and the request is used to request the SLE access layer to establish the SLE logical link LCIDy corresponding to TCID1.
  • S1306 perform QoS negotiation between the SLE access layer of the first device and the SLE access layer of the second device, and establish an SLE logical link LCIDy.
  • the notification carries TCID1 and is used to notify the channel management module that the SLE logical link corresponding to TCID1 has failed to be established.
  • the electronic device can switch the service data to another access layer according to service requirements, including: (1) transfer the service data to another access layer Switch from the SLE access layer to the SLB access layer for transmission; (2) Switch the service data from the SLB access layer to the SLE access layer for transmission.
  • service requirements including: (1) transfer the service data to another access layer Switch from the SLE access layer to the SLB access layer for transmission; (2) Switch the service data from the SLB access layer to the SLE access layer for transmission.
  • the basic service layer Currently, only the SLE logical link is configured for this service. Therefore, the service currently uses the SLE access layer where the SLE logical link is located to transmit service data to the peer device.
  • the current SLE access layer may not be able to meet the service requirement.
  • the data transmission capability of the electronic device is improved, still using the SLE access layer to transmit service data will not be able to improve the service data transmission quality.
  • the SLB access layer recovers to be able to provide services for the service
  • the SLB logical link is reconfigured for the service, and the service data is switched from the SLE access layer to the SLB access layer for transmission.
  • Fig. 14 is a flow chart of a data transmission method provided by another embodiment of the present application, involving the process of switching service data from the SLE access layer to the SLB access layer for transmission.
  • the basic application layer sends an SLB logical link switching request to the channel management module of the basic service layer after detecting an SLB switching requirement.
  • the SLB switching requirement is: the current service increases the QoS requirement.
  • the QoS requirements For example, when the mobile phone controls the wireless headset to play standard-definition audio through the SLE access layer, if the user switches the audio quality from standard-definition to high-definition on the mobile phone side, the QoS requirements of the audio playback service will increase, and the application will update the new The QoS requirements are sent to the basic application layer. After the basic application layer receives the new QoS requirements, if the new QoS requirements are higher than the original QoS requirements, if the current service supports transmission on the SLB access layer and the SLE access layer at the same time, the basic application layer requests The channel management module switches the service to the SLB access layer for transmission.
  • the SLB switching requirement is: the SLQI improvement that the basic service layer can provide.
  • the basic service layer cannot provide the SLB access layer with a higher SLQI (such as SLQI-A) to the high-definition audio playback service, but provides the service
  • An SLE access layer with a lower SLQI (eg SLQI-B) is provided. After the application agrees to SLQI-B, it transmits service data at the SLE access layer.
  • the channel management module can establish an SLB for the service Logical link LCIDx, so as to switch the service from the SLE access layer to the SLB access layer, so as to transmit service data through the high-bandwidth SLB access layer, improve the data transmission rate, and improve the playback quality of high-definition audio.
  • the SLB switching requirement is: the QoS management module detects that the air interface quality of the SLE is poor and the bit error rate is high.
  • step S1406 there is currently an SLB logical link in the basic service layer, and after S1401, the basic service layer can directly execute step S1406 based on the SLB logical link. In other cases, there is currently no SLB logical link in the basic service layer. Therefore, after S1401, the basic service layer needs to establish an SLB logical link first. Please refer to steps S1402-S1405 for the specific establishment process.
  • the channel management module of the basic service layer sends a first notification message to the device discovery module, where the first notification message is used to instruct the device discovery module to scan for SLB devices.
  • the channel management module can determine whether the service currently instructs the device discovery module to scan the SLB device according to whether the SLB access layer has a high-priority service, or whether the remaining resources of the SLB access layer support the service.
  • the device discovery module scans the SLB device.
  • the device discovery module sends an SLB device discovery notification to the channel management module.
  • the SLB device discovery notification is used to indicate that the device discovery module finds that the peer device corresponding to the current service supports the SLB communication function.
  • the channel management module sends an SLQI capability adjustment request to the basic application layer.
  • the channel management module after the channel management module creates a new SLB logical link for the service, the actual data transmission quality that the channel management module can provide for the service will also change. That is, the data transmission quality SLQI-B provided by the SLE access layer is changed to the data transmission quality SLQI-A provided by the SLB access layer. Therefore, the channel management module needs to send an SLQI capability adjustment request to the basic application layer, requesting to adjust the SLQI provided for this service to SLQI-A.
  • the basic application layer After agreeing to the SLQI capability adjustment request, the basic application layer sends a notification of successful SLQI capability adjustment to the channel management module. For details, refer to S608, which will not be described again in this embodiment.
  • the channel management module switches the logical link mapped to the service channel TCID1 from LCIDy to LCIDx.
  • the first device Since the data transmission process is an interactive service between two devices, and the two devices interact through a logical link. Therefore, the first device not only needs to locally switch the logical link of the service from LCIDy to LCIDx, but also needs to notify the second device to switch the service channel from LCIDy to LCIDx.
  • the channel management module of the first device after switching the logical link mapped by TCID1 from LCIDy to LCIDx, the channel management module of the first device sends a first reconfiguration request to the channel management module of the second device for The second device is requested to switch the logical channel mapped to the service channel TCID2 for processing the service from LCIDy to LCIDx.
  • the channel management module of the second device After completing the switching, the channel management module of the second device sends a first reconfiguration response message to the channel management module of the first device, which is used to notify the second device that the logical link of TCID2 has been switched successfully.
  • the channel management module sends the mapping relationship between TCID1 and LCIDx to the transmission control module.
  • the transmission control module after receiving the mapping relationship between TCID1 and LCIDx, deletes the locally stored mapping relationship between TCID1 and LCIDy.
  • the transmission control module may not delete the mapping relationship between TCID1 and LCIDy, so that TCID1 maps LCIDx and LCIDy at the same time.
  • the basic application layer sends service data to the transmission control module, where the service data carries the Port1 identifier.
  • the transmission control module adds a TCID1 identifier to the service data according to the mapping relationship between Prot1 and TCID1.
  • the transmission control module sends the service data carrying TCID1 to the SLB access layer according to the mapping relationship between TCID1 and LCIDx. Specifically, after the SLB access layer adds the LCIDx identifier to the service data, it sends it to the peer device.
  • the channel management module sends an LCIDy release notification to the SLE access layer.
  • the channel management module releases the LCIDy.
  • the SLE access layer sends an LCIDy release response message to the channel management module, where the response message is used to notify that the LCIDy release is successful.
  • S1413-S1415 are optional steps, and the electronic device may not execute S1413-S1415 after executing S1412. That is to say, during the process of the electronic device using LCIDx to transmit service data, the electronic device may not disconnect LCIDy.
  • the electronic device can switch the service data from the SLE access layer to the SLB access layer for transmission, thereby improving the communication between devices. data transfer rate.
  • the user is not aware of the link switching process, which helps to improve user experience.
  • the basic service layer currently only supports services because the SLE access layer is occupied by high-priority SLB logical links are configured. Therefore, the service currently uses the SLB access layer to transmit service data to the peer device.
  • the basic service layer can switch the business data of this service from the SLB access layer to the SLE access layer for transmission, so as to reduce the power consumption of the device and increase the service life of the device.
  • Fig. 16 is a flow chart of a data transmission method provided by another embodiment of the present application, which involves the process of switching service data from the SLB access layer to the SLE access layer for transmission.
  • the basic application layer sends an SLE logical link switching request to the channel management module of the basic service layer when detecting an SLE switching requirement.
  • the SLE switching requirement is: the battery power is lower than a preset value (for example, 20% of full charge), or the electronic device is switched to a power saving mode, and the like.
  • the basic service layer can directly execute step S1606 after S1601 instead of executing S1602-S1605.
  • the basic service layer needs to establish an SLE logical link after S1601. For the specific establishment process, refer to steps S1602-S1605.
  • the channel management module of the basic service layer sends a second notification message to the device discovery module, where the second notification message is used to notify the device discovery module to scan for SLE devices.
  • the channel management module can determine whether to notify the device discovery module to scan for SLE devices according to whether the SLE access layer has high-priority services, or whether the remaining resources of the SLE access layer support the services and other factors.
  • the device discovery module scans the SLE device.
  • the device discovery module sends an SLE device discovery notification to the channel management module.
  • the SLE device discovery notification is used to indicate that the device discovery module finds that the peer device corresponding to the current service supports the SLE communication function.
  • the channel management module controls the SLE access layer to establish an SLE logical link with the peer device corresponding to the current service.
  • the channel management module sends an SLQI capability adjustment request to the basic application layer.
  • the channel management module After the channel management module creates a new SLE logical link for the service, the quality of data transmission actually provided by the first device to the service will also change. That is, the data transmission quality SLQI-A provided by the SLB access layer is changed to the data transmission quality SLQI-B provided by the SLE access layer. Therefore, the channel management module needs to send an SLQI capability adjustment request to the basic application layer, requesting to adjust the SLQI provided for this service to SLQI-B.
  • the basic application layer After agreeing to the SLQI capability adjustment request, the basic application layer sends a notification of successful SLQI capability adjustment to the channel management module. For details, refer to S608, which will not be described again in this embodiment.
  • the channel management module switches the logical link mapped to the service channel TCID1 from LCIDx to LCIDy.
  • the channel management module of the first device switches the logical link mapped to the service channel TCID1 by LCIDx
  • the channel management module of the second device After reaching LCIDy, send a second reconfiguration request to the channel management module of the second device, for requesting the second device to switch the logical link mapped to the service channel TCID2 from LCIDx to LCIDy.
  • the channel management module of the second device After the switchover is completed, sends a second reconfiguration response message to the channel management module of the first device, which is used to notify the second device that the logical link mapped to TCID2 has been successfully reconfigured.
  • the channel management module sends the mapping relationship between TCID1 and LCIDy to the transmission control module.
  • the transmission control module may delete the locally stored mapping relationship between TCID1 and LCIDx.
  • the transmission control module may not delete the mapping relationship between TCID1 and LCIDx, so that TCID1 maps LCIDx and LCIDy at the same time.
  • the basic application layer sends service data to the transmission control module, where the service data carries the Port1 identifier.
  • the transmission control module adds TCID1 to the service data according to the mapping relationship between Prot1 and TCID1.
  • the transmission control module sends the service data carrying TCID1 to the SLE access layer according to the mapping relationship between TCID1 and LCIDy. Specifically, after the SLE access layer adds LCIDy to the service data, it sends it to the peer device.
  • the channel management module sends an LCIDx release notification to the SLB access layer.
  • the channel management module releases the LCIDx.
  • the SLE access layer sends an LCIDx release response message to the channel management module, where the response message is used to notify that the LCIDx release is successful.
  • S1613-S1614 are optional steps, and the electronic device may not execute S1613-S1615 after executing S1612. That is to say, during the process of the electronic device using LCIDy to transmit service data, the electronic device may not disconnect LCIDx.
  • the electronic device can switch the service data from the SLB access layer to the SLE
  • the access layer is used for transmission, thereby reducing the power consumption of the device and increasing the service life of the device.
  • both the user and the upper-layer application program are unaware, which helps to improve user experience.
  • the embodiments of the present application further provide the following technical solutions.
  • a data transmission device including a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer, and the first access layer and the second access layer support Different data transmission capabilities.
  • the basic application layer is used to request the basic service layer to establish a business channel for the communication business of the application program.
  • the basic service layer is used for, in the case that the communication service supports multi-link transmission, the basic service layer establishes a transmission channel group for the communication service, and the transmission channel group includes a first service channel and/or a second service channel, and the first service channel A service channel corresponds to the first access layer, and the second service channel corresponds to the second access layer.
  • the access layer is used to transmit service data based on the transmission channel group.
  • the first access layer is the Starlight basic SLB access layer
  • the first service channel is the SLB service channel
  • the SLB access layer supports high-bandwidth data transmission capabilities.
  • the second access layer is the Starlight low-power SLE access layer
  • the second service channel is the SLE service channel.
  • the SLE access layer supports low-power data transmission capabilities.
  • the basic service layer is also used, when the communication service supports multi-link transmission, when the resources of the first access layer support the communication service and are not prioritized by other services that have a higher priority than the communication service When the service is occupied, the basic service layer allocates the first service channel for the transmission channel group of the communication service. And/or, when the communication service supports multi-link transmission, when the resources of the second access layer support the communication service and are not occupied by other services with a higher priority than the communication service, the basic service The layer allocates a second service channel for the transmission channel group of the communication service.
  • the basic service layer is also used to transmit business data through the first business channel and the second business channel; or, the electronic device transmits business data through the first business channel alone; or, the electronic device transmits business data through the second business channel alone business data.
  • the basic service layer is also used to obtain target service data from the basic application layer, the target service data is service data carrying a port number Port, and the Port maps all service channels in the transmission channel group. And, process the target service data to obtain the target service data carrying the first TCID and the target service data carrying the second TCID, wherein the first TCID is the identifier of the first service channel, and the second TCID is the identifier of the second service channel. And, sending the target service data carrying the first TCID to the first access layer, and sending the target service data carrying the second TCID to the second access layer.
  • the access layer is further configured to transmit the target service data carrying the first TCID through the first access layer, and transmit the target service data carrying the second TCID through the second access layer.
  • the basic service layer is also used to obtain target service data from the basic application layer, where the target service data is service data carrying a port number Port. And, process the target service data carrying the Port to obtain the target service data carrying the first TCID. And, sending the target service data carrying the first TCID to the first access layer.
  • the first access layer is further configured to send the target service data carrying the first TCID to the peer device.
  • the basic application layer is also used to receive the business data sent by the application program, and add a Port to the business data to obtain the target business data.
  • the basic application layer is also used to include the original service channel in the transmission channel group, and the original service channel is any one of the first service channel and the second service channel, and the basic service layer determines to switch to the target service channel for processing communication service, and the access layer corresponding to the target service channel can provide services for the communication service, the basic service layer updates the transmission channel group, and the updated transmission channel group also includes the target service channel; and, switches the business data to Target business channel transmission.
  • the target service channel is the second service channel
  • the target service channel is the first service channel.
  • the basic service layer is also used to disconnect the original service channel in the transmission channel group, and switch the service data to the target service channel.
  • determining to switch to the target service channel to process the communication service includes: the electronic device enters a low power consumption mode, or the power of the electronic device is lower than a preset value, and accordingly, the target service channel is the second service channel, and the second The service channel supports data transmission capability with low power consumption.
  • determining to switch to the target service channel to process the communication service includes: the service quality requirement of the communication service is improved, or the service capability of the access layer of the target service channel is improved, and accordingly, the target service channel is the first service channel,
  • the first service channel supports high-bandwidth data transmission capabilities.
  • a data transmission device comprising: a basic application layer, a basic service layer, and an access layer; the access layer includes a first access layer and a second access layer, and the first access layer and the second access layer support different Data transfer capability.
  • the basic application layer is used to request the basic service layer to establish a business channel for the communication business of the application program.
  • the basic service layer is used to establish a service channel for the communication service when the communication service supports multi-link transmission.
  • the service channel can map the first logical link and the second logical link, and the first logical link is the second logical link.
  • a link of the access layer, and the second logical link is a link of the second access layer.
  • the access layer is used to establish a logical link, and transmit the service data of the communication service to the peer device through the first logical link and/or the second logical link.
  • the service channel can map the first logical link and the second logical link, including: the service channel maps the first logical link and the second logical link at the same time; or, the service channel transmits service data at different stages, Map the first logical link and the second logical link respectively.
  • the first access layer is the Starlight basic SLB access layer
  • the first logical link is the SLB service channel
  • the SLB access layer supports high-bandwidth data transmission capabilities.
  • the second access layer is the Starlight low-power SLE access layer
  • the second logical link is the SLE logical link.
  • the SLE access layer supports low-power data transmission capabilities.
  • the access layer is also used to transmit service data through the first access layer and the second access layer at the same time; or, The service data is only transmitted through the first access layer; or, the service data is only transmitted through the second access layer.
  • the basic service layer is also used to obtain target service data from the basic application layer, where the target service data is service data carrying a port number Port. And, add a service channel identifier TCID to the target service data, and send the first service data in the target service data carrying the TCID to the first access layer, and send the second service data in the target service data carrying the TCID to the first access layer. Second access layer.
  • the first access layer is further configured to add a first logical link identifier LCID to the first service data, and send the first service data carrying the first LCID to the peer device.
  • the second access layer is further configured to add a second LCID to the second service data, and send the second service data carrying the second LCID to the peer device.
  • the basic service layer is also used to obtain target service data from the basic application layer, where the target service data is service data carrying a port number Port. And, the basic service layer adds a TCID to the target service data, and sends the target service data carrying the TCID to the first access layer.
  • the first access layer is further configured to add the first LCID to the target service data carrying the TCID, and send the target service data carrying the first LCID to the peer device.
  • the basic application layer is also used to receive business data sent by the application; and, add a Port to the business data.
  • the basic service layer is also used to map the original logical link on the business channel, and when the basic service layer determines to switch to the target logical link to process communication services, the basic service layer establishes the business channel and the target logical link mapping relationship; and, switch the service data to the target logical link for transmission.
  • the target logical link is the second logical link; when the original logical link is the second logical link, the target logical link is the first logical link.
  • the basic service layer is also used to release the original logical link and switch the service data to the target logical link for transmission.
  • determining to switch to the target logical link to process communication services includes: the electronic device enters a low power consumption mode, or the power of the electronic device is lower than a preset value, and accordingly, the target logical link is the second logical link , the second logical link supports data transmission capability with low power consumption.
  • determining to switch to the target logical link to process the communication service includes: the service quality requirement of the communication service is improved, or the service capability of the target logical link is improved, correspondingly, the target service channel is the first logical link, and the second A logical link supports high bandwidth data transfer capability.
  • the embodiment of the present application also provides yet another data transmission device, the device includes a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the data transmission methods in the foregoing embodiments are implemented.
  • An embodiment of the present application further provides an electronic device, the electronic device includes the wireless short-distance communication protocol framework provided in the foregoing embodiments, and is configured to execute the data transmission method shown in the foregoing embodiments.
  • the embodiment of the present application also provides a chip, as shown in FIG. 18 , the chip includes a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the data transmission methods in the above-mentioned embodiments are implemented.
  • An embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the data transmission methods provided in the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer program product, where the program product includes a computer program, and when the computer program is run by an electronic device, the electronic device is enabled to implement the data transmission method provided in the foregoing embodiments.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • each framework or module is only a logical function division, and there may be other division methods in actual implementation, for example, multiple frameworks or modules can be combined or integrated into another system , or some features can be ignored, or not implemented.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • references to "one embodiment” or “some embodiments” or the like in the specification of the present application means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了数据传输方法、电子设备、芯片和存储介质,涉及通信技术领域。该方法应用于电子设备,该电子设备包括基础应用层、基础服务层和接入层;接入层包括第一接入层和第二接入层,第一接入层和第二接入层支持不同的数据传输能力。该方法包括:基础应用层请求基础服务层为应用程序的通信业务建立业务通道。在通信业务支持多链路传输的情况下,基础服务层为该通信业务建立传输通道组,传输通道组包括第一业务通道和/或第二业务通道,第一业务通道对应第一接入层,第二业务通道对应第二接入层。该电子设备通过该传输通道组传输该通信业务的业务数据。在本实施例提供的技术方案能够满足通信业务的各种数据传输需求。

Description

数据传输方法、电子设备、芯片和存储介质
本申请要求于2021年08月02日提交国家知识产权局、申请号为202110883114.5、申请名称为“一种数据传输方法、电子设备、芯片和存储介质”的中国专利申请的优先权,以及要求于2021年09月14日提交国家知识产权局、申请号为202111076936.9、申请名称为“数据传输方法、电子设备、芯片和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及数据传输方法、电子设备、芯片和存储介质。
背景技术
随着物联网技术的发展,无线短距通信技术在各个领域中的应用均越来越广泛。例如,在智慧家居领域中,手机可以通过无线短距通信技术与智能电视实现端到端连接,向智能电视投屏等。
目前,各个无线短距通信技术之间是相互独立的,两个电子设备在连接时,通常只能根据应用程序预设的需求从中选择一种无线短距通信技术进行连接。两个电子设备建立的通信链路所提供的服务质量(如特定带宽、码率、时延等)是双方协商约定的固定数值。但是,同一业务在不同阶段(如在视频投屏业务中,播放标清视频和播放高清视频的阶段)通常对通信链路的服务质量有不同的需求。因此,现有的数据传输方法可能会出现无法满足业务的各种数据传输需求的情况。
发明内容
本申请提供数据传输方法、电子设备、芯片和存储介质,用于解决现有的数据传输方法无法满足业务的各种数据传输需求的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种数据传输方法,应用于电子设备,该电子设备包括基础应用层、基础服务层和接入层;该接入层包括第一接入层和第二接入层,该第一接入层和该第二接入层支持不同的数据传输能力。
该方法包括:基础应用层请求基础服务层为应用程序的通信业务建立业务通道。在该通信业务支持多链路传输的情况下,基础服务层为该通信业务建立传输通道组,该传输通道组包括第一业务通道和/或第二业务通道,该第一业务通道对应第一接入层,该第二业务通道对应第二接入层。电子设备通过该传输通道组传输该通信业务的业务数据。
在本申请实施例提供的方法中,对于支持多链路传输的通信业务,电子设备为该通信业务建立传输通道组,并通过传输通道组为该通信业务传输业务数据。由于该传输通道组是在电子设备所使用的通信协议的基础服务层建立的,因此,在传输业务数据的过程中,当业务需求变化或者电子设备的数据传输能力提高之后,基础服务层可以适应性的采用传输通道组中的某一条或者多条业务通道来传输业务数据,从而满足业务在不同阶段的需求。
此外,当传输通道组中仅包括多条业务通道时,在业务数据传输过程中,即使有一条业务通道故障,也无需重新配置传输通道组,业务数据仍可继续传输。
在一些实施例中,第一接入层为星闪基础SLB接入层,第一业务通道为SLB业务通道,SLB接入层支持高带宽的数据传输能力。第二接入层为星闪低功耗SLE接入层,第二业务通道为SLE业务通道,SLE接入层支持低功耗的数据传输能力。通过本申请实施例提供的方法,电子设备能够为向通信业务提供高带宽和/或低功耗的数据传输能力。
在一些实施例中,在该通信业务支持多链路传输的情况下,基础服务层为通信业务建立传输通道组,包括:在该通信业务支持多链路传输的情况下,当第一接入层的资源支持为该通信业务服务时,基础服务层为该通信业务的传输通道组分配第一业务通道。和/或,在该通信业务支持多链路传输的情况下,当第二接入层的资源支持为该通信业务服务时,基础服务层为该通信业务的传输通道组分配第二业务通道。
在一些实施例中,在传输通道组包括第一业务通道和第二业务通道的情况下,电子设备通过传输通道组传输通信业务的业务数据,包括:电子设备通过第一业务通道和第二业务通道传输业务数据;或者,电子设备单独通过第一业务通道传输业务数据;或者,电子设备单独通过第二业务通道传输业务数据。
也就是,当传输通道组中包括多个业务通道时,电子设备可以仅使用该传输通道中的一个业务通道传输业务数据,也可以使用该传输通道组中的多个业务通道同时传输业务数据,具体根据预设的传输策略确定。
在一些实施例中,电子设备通过第一业务通道和第二业务通道传输业务数据,包括:基础服务层从基础应用层处获取目标业务数据,目标业务数据为携带端口号Port的业务数据,该Port映射传输通道组内的所有业务通道。基础服务层处理目标业务数据,得到携带第一TCID的目标业务数据及携带第二TCID的目标业务数据,其中,第一TCID是第一业务通道的标识,第二TCID是第二业务通道的标识。基础服务层向第一接入层发送携带第一TCID的目标业务数据,以及,向第二接入层发送携带第二TCID的目标业务数据。第一接入层向对端设备传输携带第一TCID的目标业务数据,第二接入层向对端设备传输携带第二TCID的目标业务数据。
在一些实施例中,电子设备通过第一业务通道传输业务数据,包括:基础服务层从基础应用层处获取目标业务数据,目标业务数据为携带端口号Port的业务数据;基础服务层处理携带Port的目标业务数据,得到携带第一TCID的目标业务数据。基础服务层向第一接入层发送携带第一TCID的目标业务数据。第一接入层向对端设备发送携带第一TCID的目标业务数据。
在一些实施例中,在基础服务层从基础应用层处获取目标业务数据之前,该方法还包括:基础应用层接收应用程序发送的业务数据,并给业务数据添加Port,得到目标业务数据。
通过上述实施例可知,无论传输通道组中包括一个业务通道,还是包括多个业务通道,电子设备在使用传输通道组传输业务数据时,基础应用层的操作都是相同的(即给业务数据添加Port),随后由基础服务层决策传输过程中具体所使用的业务通道。基于此,当基础服务层调整通信过程中所使用的业务通道(如新建、断开或者切换业务通道)时,无需用户再输入控制操作,能够提高用户体验。
在一些实施例中,在电子设备通过传输通道组传输业务数据的过程中,该方法还包括:传输通道组包括原业务通道,该原业务通道为第一业务通道和第二业务通道中的任一个, 基础服务层在确定切换到目标业务通道处理通信业务,且目标业务通道对应的接入层能够为该通信业务提供服务的情况下,基础服务层更新传输通道组,更新后的传输通道组还包括目标业务通道;以及,将业务数据切换至目标业务通道传输。
其中,当更新前的传输通道组中包括第一业务通道时,目标业务通道为第二业务通道;当更新前的传输通道组中包括第二业务通道时,目标业务通道为第一业务通道。
在一些实施例中,基础服务层将业务数据切换至目标业务通道传输,包括:基础服务层断开传输通道组中的原业务通道,并将业务数据切换至目标业务通道。
在一些实施例中,基础服务层确定切换到目标业务通道处理通信业务,包括:电子设备进入低功耗模式,或者,电子设备的电量低于预设值,相应地,目标业务通道为第二业务通道,第二业务通道支持低功耗的数据传输能力。
在一些实施例中,基础服务层确定切换到目标业务通道处理通信业务,包括:通信业务的服务质量需求提高,或者,目标业务通道的对应的接入层的服务能力提高,相应地,目标业务通道为第一业务通道,第一业务通道支持高带宽的数据传输能力。
第二方面,本申请实施例提供一种数据传输装置,该装置包括基础应用层、基础服务层和接入层;该接入层包括第一接入层和第二接入层,该第一接入层和该第二接入层支持不同的数据传输能力。
基础应用层用于,请求基础服务层为应用程序的通信业务建立业务通道。
基础服务层用于,在该通信业务支持多链路传输的情况下,基础服务层为该通信业务建立传输通道组,该传输通道组包括第一业务通道和/或第二业务通道,该第一业务通道对应第一接入层,该第二业务通道对应第二接入层。该传输通道组用于电子设备传输业务数据。
接入层用于,使用第一接入层和/或第二接入层传输业务数据。
第三方面,本申请实施例提供一种电子设备,该电子设备被配置为上述第一方面以及第一方面中各个实施例示出的数据传输方法。
第四方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器执行存储器中存储的计算机程序,以实现如上述第一方面以及第一方面中各个实施例示出的数据传输方法。
第五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面以及第一方面中各个实施例示出的数据传输方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备实现如上述第一方面以及第一方面中各个实施例示出的数据传输方法。
可以理解的是,上述第二方面至第六方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
第七方面,本申请实施例提供一种数据传输方法,应用于电子设备,该电子设备包括基础应用层、基础服务层和接入层;接入层包括第一接入层和第二接入层,第一接入层和第二接入层支持不同的数据传输能力。
该方法包括:基础应用层请求基础服务层为应用程序的通信业务建立业务通道;在通 信业务支持多链路传输的情况下,基础服务层为该通信业务建立业务通道,该业务通道能够映射第一逻辑链路和第二逻辑链路,第一逻辑链路为第一接入层的链路,第二逻辑链路为第二接入层的链路。电子设备通过业务通道对应的第一接入层和/或第二接入层向对端设备传输通信业务的业务数据。
在本申请实施例提供的方法中,对于支持多链路传输的通信业务,该业务对应的业务通道能够映射第一逻辑链路和第二逻辑链路。电子设备可以根据业务需求或者自身的数据传输能力,使用这两条逻辑链路中的一条或者多条同时传输业务数据,从而满足业务在不同阶段的数据传输需求。
在一些实施例中,业务通道能够映射第一逻辑链路和第二逻辑链路,包括:业务通道同时映射第一逻辑链路和第二逻辑链路;或者,业务通道在传输业务数据的不同阶段,分别映射第一逻辑链路和第二逻辑链路。当业务通道同时映射多条逻辑链路时,在业务数据传输过程中,即使有一条逻辑链路故障,业务数据仍可继续传输。
在一些实施例中,第一接入层为星闪基础SLB接入层,第一逻辑链路为SLB逻辑链路,SLB接入层支持高带宽的数据传输能力。第二接入层为星闪低功耗SLE接入层,第二逻辑链路为SLE逻辑链路,SLE接入层支持低功耗的数据传输能力。
在一些实施例中,在业务通道同时映射第一逻辑链路和第二逻辑链路的情况下,电子设备通过业务通道对应的第一接入层和/或第二接入层向对端设备传输通信业务的业务数据,包括:电子设备将业务通道内的业务数据分别发送给第一逻辑链路和第二逻辑链路,以同时通过第一接入层和第二接入层传输业务数据;或者,电子设备将业务通道内的业务数据发送给第一逻辑链路,以通过第一接入层传输业务数据;或者,电子设备将业务通道内的业务数据发送给第二逻辑链路,以通过第二接入层传输业务数据。
也就是,当业务通道同时映射第一逻辑链路和第二逻辑链路时,电子设备可以仅使用一条逻辑链路传输业务数据,也可以同时使用两条逻辑链路传输业务数据,具体根据预设的传输策略确定。
在一些实施例中,电子设备将业务通道内的业务数据分别发送给第一逻辑链路和第二逻辑链路,以同时通过第一接入层和第二接入层传输业务数据,包括:基础服务层从基础应用层处获取目标业务数据,该目标业务数据为携带端口号Port的业务数据。基础服务层为目标业务数据添加业务通道标识TCID,并将携带TCID的目标业务数据中的第一业务数据发送给第一接入层,将携带TCID的目标业务数据中的第二业务数据发送给第二接入层。第一接入层为第一业务数据添加第一逻辑链路标识LCID,并向对端设备发送携带第一LCID的第一业务数据;以及,第二接入层为第二业务数据添加第二LCID,并向对端设备发送携带第二LCID的第二业务数据。
在一些实施例中,电子设备将业务通道内的业务数据发送给第一逻辑链路,以通过第一接入层传输业务数据,包括:基础服务层从基础应用层处获取目标业务数据,该目标业务数据为携带端口号Port的业务数据。基础服务层为目标业务数据添加TCID,并将携带TCID的目标业务数据发送给第一接入层。第一接入层给携带TCID的目标业务数据添加第一LCID,并向对端设备发送携带第一LCID的目标业务数据。
在一些实施例中,基础服务层从基础应用层处获取目标业务数据之前,该方法还包括:基础应用层接收应用程序发送的业务数据;基础应用层给该业务数据添加Port,获得目标 业务数据。
通过上述实施例可知,无论业务通道映射一条或是多条逻辑链路,在业务数据传输过程中,基础应用层的操作都是相同的(即给业务数据添加Port),随后由基础服务层决策传输过程中具体所使用的业务通道。基于此,当基础服务层调整通信过程中所使用的业务通道(如新建、断开或者切换业务通道)时,无需用户再输入控制操作,能够提高用户体验。
在一些实施例中,业务通道在传输业务数据的不同阶段,分别映射第一逻辑链路和第二逻辑链路,包括:业务通道映射原逻辑链路,基础服务层在确定切换到目标逻辑链路处理通信业务的情况下,基础服务层建立业务通道与目标逻辑链路的映射关系;将业务数据切换至目标逻辑链路传输。其中,当原逻辑链路为第一逻辑链路时,目标逻辑链路为第二逻辑链路;当原逻辑链路为第二逻辑链路时,目标逻辑链路为第一逻辑链路。
在一些实施例中,将业务数据切换至目标逻辑链路传输,包括:释放原逻辑链路,并将业务数据切换至目标逻辑链路传输。
在一些实施例中,确定切换到目标逻辑链路处理通信业务,包括:电子设备进入低功耗模式,或者,电子设备的电量低于预设值,相应地,目标逻辑链路为第二逻辑链路,第二逻辑链路支持低功耗的数据传输能力。
在一些实施例中,确定切换到目标逻辑链路处理通信业务,包括:通信业务的服务质量需求提高,或者,目标逻辑链路的服务能力提高,相应地,目标业务通道为第一逻辑链路,第一逻辑链路支持高带宽的数据传输能力。
第八方面,本申请实施例提供一种数据传输装置,该装置包括基础应用层、基础服务层和接入层;该接入层包括第一接入层和第二接入层,该第一接入层和该第二接入层支持不同的数据传输能力。
基础应用层用于,请求基础服务层为应用程序的通信业务建立业务通道。
基础服务层用于,在该通信业务支持多链路传输的情况下,基础服务层为该通信业务建立业务通道,该业务通道能够映射第一逻辑链路和第二逻辑链路,第一逻辑链路为第一接入层的链路,第二逻辑链路为第二接入层的链路。电子设备通过业务通道对应的第一接入层和/或第二接入层向对端设备传输通信业务的业务数据。
接入层用于,建立逻辑链路和传输业务数据。
第九方面,本申请实施例提供一种电子设备,该电子设备被配置为上述第七方面以及第七方面中各个实施例示出的数据传输方法。
第十方面,本申请实施例提供一种芯片,该芯片包括处理器,该处理器执行存储器中存储的计算机程序,以实现如上述第七方面以及第七方面中各个实施例示出的数据传输方法。
第十一方面,本申请实施例一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第七方面以及第七方面中各个实施例示出的数据传输方法。
第十二方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备实现如上述第七方面以及第七方面中各个实施例示出的数据传输方法。
可以理解的是,上述第八方面至第十二方面的有益效果可以参见上述第七方面中的相关描述,在此不再赘述。
附图说明
图1是本申请实施例提供的无线短距通信系统的示意图;
图2A是本申请实施例提供的通信域的示意图一;
图2B是本申请实施例提供的通信域的示意图二;
图3是本申请实施例提供的无线短距通信协议架构的示意图;
图4是本申请方案一的一个实施例提供的数据传输方法的流程图;
图5是本申请方案一的一个实施例提供的传输通道组的示意图;
图6是本申请方案一的另一个实施例提供的数据传输方法的流程图;
图7是本申请方案一的又一个实施例提供的数据传输方法的流程图;
图8是本申请方案二的一个实施例提供的数据传输方法的流程图;
图9是本申请方案二的一个实施例提供的业务通道和逻辑链路的映射关系的示意图;
图10是本申请方案二的一个实施例提供的逻辑链路和业务通道的建立流程;
图11是本申请方案二另一个实施例提供的逻辑链路和业务通道的建立流程;
图12是本申请方案二又一个实施例提供的逻辑链路和业务通道的建立流程;
图13是本申请方案二再一个实施例提供的逻辑链路和业务通道的建立流程;
图14是本申请方案二另一个实施例提供的数据传输方法的流程图;
图15是本申请方案二的一个实施例提供的业务通道的重配置过程示意图;
图16是本申请方案二又一个实施例提供的数据传输方法的流程图;
图17是本申请方案二另一个实施例提供的业务通道的重配置过程示意图;
图18是本申请的一个实施例提供的电子设备的结构示意图。
具体实施方式
下面结合附图对本申请实施例提供的技术方案进行说明。
应理解,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
随着物联网技术的发展,无线短距通信技术在智能座舱、智慧家居、智能手机、智能制造等领域中的应用越来越广泛。例如,手机可以通过无线短距通信技术与智能电视实现端到端连接,向智能电视投屏等。
目前,常用的无线短距通信技术包括蓝牙(bluetooth,BT)、无线保真(wireless fidelity,WiFi)、超宽带(ultra wide band,UWB)等。其中,WiFi、UWB等技术支持高带宽通信,对数据的传输速度较快;而BT、NFC、ZigBee等技术支持小带宽、低功耗、低速率通信,有助于节约设备电量。
但是,目前的各个无线短距通信技术之间是相互独立的,两个电子设备在连接时,通常只能根据应用程序预设的需求从中选择一种无线短距通信技术进行连接。两个电子设备连接建立的通信链路所提供的服务质量(如特定带宽、码率、时延等)是双方协商约定的固定数值。但是,同一业务(具体指通信业务)在不同阶段可能对通信链路的服务质量有不同的需求。例如,手机在向智能电视投屏播放视频的过程中,当被投屏的视频是低清晰度视频(例如标清视频)时,投屏业务对通信链路带宽的要求较低。而当用户将视频调整为高晰度视频(例如高清视频)后,投屏业务对通信链路带宽的要求就提高了。由此可见,现有的无线短距通信技术可能会出现无法满足业务的各种数据传输需求的情况。
为此,本申请实施例基于星闪联盟(sparklink alliance)的无线短距通信协议架构提供新的数据传输方法,以在一定程度上满足业务的各种数据传输需求。
图1是本申请中各个实施例提供的数据传输方法所适用的无线短距通信系统的示意图。参见图1所示,该系统中包括第一电子设备(简称第一设备)和第二电子设备(简称第二设备),第一设备和第二设备之间通过星闪联盟(sparklink alliance)的无线短距通信协议架构建立连接。
在本实施例中,电子设备可以是各个领域的电子设备。例如,智慧家居领域的大屏设备、人工智能(artificial intelligence,AI)音箱、高保真(high fidelity,HiFi)音箱、温度传感器、湿度传感器等。以及,智能终端领域的手机、平板电脑、可穿戴设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等。以及,智能制造领域的机械臂、摄像头、操纵杆、监控器、传感器、物流车、智能货架等。本申请实施例对电子设备的具体类型不作任何限制。
为了便于理解本申请,下面对本申请实施例涉及的一些名词或者术语进行解释说明。
(1)SLB/SLE接入层
本申请实施例提供的无线短距通信技术包括星闪基础(sparklink-basic,SLB)技术和星闪低功耗(sparkLink-low energy,SLE)技术。SLB接入层通过SLB技术通信,支持高带宽、高速率的数据传输,但功耗较高。SLE接入层通过SLE技术通信,支持低功耗、小带宽、低速率的数据传输,有助于节约设备电量。
(2)G节点/T节点
在本实施例中,SLB技术将电子设备分为管理节点(即Grant节点,简称G节点)和终端节点(即Terminal节点,简称T节点)。一个G节点能够管理至少一个T节点,G节点和T节点连接以共同完成特定的通信功能。
(3)传输通道
传输通道(transmission channel,TC)是基础服务层的通道,对上可承接多个端口(port)映射,对下可以实现多个传输通道映射到同一或者不同的逻辑通道。
传输通道包括控制通道和业务通道。业务通道用于传输业务相关的数据,例如业务的控制指令、媒体流等。控制通道是设备间建立不同业务通道的基础。在设备间建立业务通道的过程中,两个电子设备在控制通道上协商建立业务通道所需的参数。各个业务之间可以使用同一控制通道建立不同的业务通道,这些业务可以是同一应用程序的业务,也可以是不同应用程序的业务。
在本实施例中,建立业务通道所需的参数包括传输模式(如流模式、流控模式、重传模式、基础模式等)以及不同传输模式下的参数、传输通道标识(transmission channel identification,TCID)号和传输通道映射的端口port等。
(4)逻辑链路
逻辑链路(logical channel,LC)是接入层的通道,对上可承接一个或者多个传输通道的映射。在一些实施例中,也可以称为逻辑通道。
(5)通信域
一个G节点以及其连接的所有T节点共同组成的通信系统称为一个通信域。示例性的,参见图2A所示,以智能汽车场景为例,座舱域控制器(cockpit domain controller,CDC)可以作为G节点,各类车载设备(如麦克风、音箱、手机等)可以作为T节点,CDC和车载设备连接以共同完成座舱娱乐功能。此时,CDC与所有车载设备组成了一个通信域。
在一些实施例中,电子设备可能会处于多个通信域中。例如,参见图2B所示,CDC与麦克风、音箱和手机组成了通信域1,其中,CDC为G节点,麦克风、音箱和手机为T点。手机和无线耳机组成了通信域2,其中,手机为G节点,无线耳机为T节点。手机同时处于通信域1和通信域2中。
下面对本申请实施例提供的数据传输方法所适用的无线短距通信协议架构进行说明。
电子设备中通常存储有各种应用程序,例如设置应用、多屏协同应用、投屏应用、音频应用、视频应用、图库应用、相机应用、导航应用、地图应用、email客户端、游戏应用等。各个应用程序在运行过程中,若所提供的业务需要与其他电子设备进行无线短距离通信,使用本实施例提供无线短距通信协议架构即可实现通信功能。
图3是本申请实施例提供的无线短距通信协议架构的示意图。参见图3所示,该协议架构包括基础应用层、基础服务层和星闪接入层(也可称作接入层)。其中,基础应用层和基础服务层可以统称为Host协议架构。
基础应用层定义了不同应用程序通用的各种框架,每种框架定义了各自相应的消息格式和应用规则。为了实现不同平台下不同设备的通信,基础应用层为各种可能的、有通用意义的应用场景都制定了框架。例如,基础通信框架、通用感知框架、通用视频框架、通用音频框架、通用数据框架和车载控制框架等通用框架。基础应用层在接收到业务需求之后,选择对应的框架处理对应的业务。
基础通信框架用于,设置设备发现与被发现的模式(例如广播模式、轮询模式等),设置过滤策略(如在音频业务场景下,仅对支持音频设备的电子设备进行设备发现),设置可发现等级等。此外,基础通信框架还用于根据业务需求触发控制通道选择(即根据业务需求选择SLB控制通道或者SLE控制通道),以及为业务分配端口号Port。
通用感知框架用于,检测用户操作、设备电量信息、信号强度等。用户操作可以包括用户在电子设备的屏幕上输入的触摸指令、用户输入的隔空控制手势、语音控制指令等。信号强度包括WiFi信号强度、蜂窝信号强度或者蓝牙信号强度、SLB信号强度以及SLE信号强度等。
通用视频框架用于,处理视频业务相关的数据,例如对视频数据进行编解码等。
通用音频框架用于,处理音频业务相关的数据,例如对音频数据进行编解码等。
通用数据框架用于,对数据进行加密解密等。
车载控制框架用于,处理车载控制业务相关的数据。
应理解,不同的应用程序通常有不同的业务特征,该业务特征包括应用标识(application identification,AID)和服务质量(quality of service,QoS)。其中,QoS包括码率、时延、采样率和位宽等。基础应用层在检测到应用程序的业务特征之后,能够根据该业务特征选择对应的功能模块处理该业务,控制基础服务层建立业务通道等。
基础服务层包括控制面和数据面。其中,控制面包括设备发现模块、服务管理模块、通道管理模块、QoS管理模块、安全管理模块、多域协调模块、测量管理模块、5G融合模块等功能模块。数据面包括信道控制数据、广播数据、服务管理数据、实时数据和可靠数据等,还包括传输控制适配协议、传输控制协议/网际互联协议(transmission control protocol/internet protocol,TCP/IP)、透传协议等。
需要说明的是,本实施例将数据面中包括传输控制适配协议的模块称作传输控制模块。另外,数据面的一些数据(如图3中虚线框内的信道控制数据等)通常不会包括在初始的协议架构中,而是在电子设备使用该协议架构的过程中逐渐产生并存储的。
设备发现模块,主要用于发现周边设备以及向外公告设备本身的信息、通过广播/单播数据链路进行设备发现与被发现、确定设备信息等。在本实施例中,设备信息包括设备的域名、媒体访问控制(media access control,MAC)地址、设备角色、设备型号、设备能力(例如无线连接类型、支持的通信协议)等信息。
在进行设备发现的过程中,设备发现模块具体可以用于广播电子设备自身的设备信息,扫描满足业务需求的电子设备。应理解,对于无线短距通信业务,不同的业务需求通常对应不同类型的电子设备。例如,在手机进行投屏时,手机的设备发现模块需要扫描具备投屏显示功能的大屏设备,例如电视、投影仪等,而不扫描其他手机或者无线耳机等不支持投屏显示的电子设备。
此外,在本实施例中,设备发现模块还支持SLB/SLE互发现,即在使用SLB技术与对端设备通信的过程中,能够发现对端设备开启SLE通信功能,或者,在使用SLE技术与对端设备通信的过程中,能够发现对端设备开启SLB通信功能。
服务管理模块,用于为基础应用层的控制指令和小数据发送提供抽象化的数据结构模型,以及,提供读、写、通知、指示等操作数据结构的方法。
通道管理模块,用于管理基础服务层的传输通道,包括传输通道的建立、维护与释放,支持通过默认传输通道传输数据,或者动态分配传输通道以传输数据。
此外,通道管理模块,还用于管理跨层映射关系的建立与维护,其中包括管理基础应用层的Port与基础服务层的TCID之间的映射关系,以及基础服务层的TCID与接入层的逻辑链路标识(logical channel identifier,LCID)之间的映射关系。其中,TCID与Port之间的映射关系,是基础服务层数据和基础应用层数据之间的映射关系。TCID与LCID之间的映射关系,是基础服务层数据和接入层数据之间的映射关系。
QoS管理模块,用于管理业务的QoS请求静态表,以及与对端协商QoS。不同的业务通常有不同的QoS请求静态表,其中,QoS请求静态表中包括传输时延、码率、重传率、传输带宽要求、业务类型、位宽等参数。通过QoS管理,可以缓解电子设备与对端通信过程中的网络延迟与阻塞等问题,提高通信质量。
安全管理模块,用于管理基础服务层的安全连接,其中包括身份鉴权、空口通信安全 保护、秘钥更新、隐私保护、应用层传输安全、口令要求、设备信息的安全存储、安全执行、安全防护和安全管理等。
多域协调模块,在电子设备处于多个通信域的场景下,用于控制实现通信域之间的信息交互,避免多域之间的相互干扰,保护域之间的负载平衡。当电子设备同时处于多个通信域时,多域协调模块需要管理多个通信域对应的多个G节点之间的交互通道的建立,维护邻居G节点列表以及基本信息;协调多个域之间的资源、进行联合定位、移动性管理、实现负载均衡。
测量管理模块,用于根据接收信号的强度(received signal strength indication,RSSI)和预设的算法,测量本机与其他电子设备的距离、本机相对于其他电子设备的方位等。此外,测量管理模块还用于配置测量周期,向基础应用层上报测量事件和测量结果,以及调度测量资源、控制测量功率等。
5G融合模块,用于建立5G远端管理能力的通道,通过鉴权和认证机制,实现具有蜂窝5G远端控制功能的设备。也就是说,5G融合模块使各个节点设备具有能够让5G边缘核心网感知控制的能力。比如,在G节点具有连接核心网的能力,而T节点不具有连接核心网的能力的情况下,5G核心网可以通过G节点向T节点下发控制指令,使得T节点也可以被5G核心网控制。
在本实施例中,星闪接入层包括SLB接入层和SLE接入层。无论是SLB接入层,还是SLE接入层,均包括数据链路层和物理层。数据链路层包括链路控制层和媒体接入层,链路控制层为基础服务层提供服务。
在发送端,链路控制层用于对上层业务数据(即基础服务层的数据)进行必要的编号(如添加序列号SN)、分段、加密、完整性保护等操作,并将生成的链路控制层协议数据单元(logical channel profile data unit,LC PDU)发送给媒体接入层。媒体接入层主要基于调度的资源量,对不同LC PDU进行复用封装,生成媒体接入层协议数据单元(media access profile data unit,MAC PDU)。
在接收端,媒体接入层负责对数据进行解封装并递交到不同的逻辑通道。链路控制层可以对数据进行必要的解密、重组、排序等操作,并将业务数据按序递交给基础服务层。
物理层用于向数据链路层提供数据传输服务,具体包括以下功能:传输信息的正确性校验并指示给数据链路层、传输信息的前向纠错(forward error correction,FEC)编码/解码、混合自动重传请求(hybrid automatic repeat request,HARQ)软合并、传输信息到对应的物理资源的速率匹配、编码后的传输信息到对应的物理资源的映射、物理层控制信息和物理层数据信息的调制和解调、频率和时间的同步、无线特性测量并指示给数据链路层、多输入多输出天线处理、波束赋形、射频处理等。
基于上述本实施例提供的无线短距通信协议架构,基础应用层的业务根据不同的业务需求,可以通过SLB技术与对端通信,或通过SLE技术与对端通信。其中,SLB技术通常用于处理具有大带宽传输需求的业务,例如无线投屏业务、视频通话业务等,传输过程中数据吞吐量通常较高。SLE技术通常用于处理具有小带宽传输需求的业务,例如无线耳机的音频播放业务等,手机对智能家居设备的控制业务等,传输过程中数据吞吐量通常较低,同时传输速率和功耗也较低。
在应用程序所提供的业务中,有的业务是支持多链路传输的,而有的业务是不支持多 链路传输的,具体根据业务自身配置确定。例如,对于视频传输业务(简称视频业务),由于视频流在传输过程中所需的带宽通常较高,因此其通常是被配置为在SLB接入层上传输,而不支持在SLE接入层上传输。也就是说,视频业务不支持多链路传输。
在本实施例中,业务支持多链路传输是指业务自身支持在多个不同的接入层上传输数据,其中包括:业务同时使用多个不同的接入层共同传输数据,或者,业务单独使用多个不同的接入层中任一个独立传输数据。例如,当业务支持在SLB接入层和SLE接入层上进行多链路传输数据时,业务既可以在SLB接入层和SLE接入层同时传输数据,也可以单独使用SLB接入层或者单独使用SLE传输数据。
对于支持多链路传输的业务(例如音频业务),本实施例提供数据传输方法,能够提高数据传输的速率。本实施例提供的数据传输方法包括如下两种技术方案:一、基于传输通道组传输数据;二、基于业务通道与不同逻辑链路的映射关系传输数据。下面分别对这两个方案进行说明。
一、基于传输通道组传输数据
图4是本申请的一个实施例提供的数据传输方法的流程图,示出了基础应用层和基础服务层为业务建立传输通道组,并通过传输通道组传输数据的过程。具体包括如下步骤S401-S409。
S401,基础应用层获取到业务的AID和QoS。
电子设备通过运行应用程序执行对应的业务,不同的应用程序具有相同或者不同类型的业务,例如音频业务、视频业务、数据传输业务等。此外,不同的业务对数据传输服务质量的需求不同,有的业务要求数据在传输过程中高保真、低时延、高速率,有的业务要求数据在传输过程中保持设备低功耗。因此,不同的应用程序均对其不同业务配置了不同的QoS。应用程序在建立业务的过程中,需要向基础应用层发送其业务特征,其中包括业务的AID和QoS。此外,基础应用层还为各个业务分配端口port,并且同时以AID、QoS和Port向基础服务层申请业务通道。
S402,基础应用层向基础服务层的通道管理模块发送传输通道建立请求,该传输通道建立请求中包括业务的AID、QoS和Port。
该传输通道建立请求用于请求基础服务层建立传输通道,可以是单独的传输通道,也可以是传输通道组。
S403,当业务支持多链路传输时,基础服务层的通道管理模块根据传输通道建立请求,为该业务分配传输通道组。
需要说明的是,当业务不支持多链路传输(即仅支持在一条链路上传输)时,通道管理模块仅根据AID、QoS和Port为该业务分配一个单独的业务通道(例如SLB业务通道,或者SLE业务通道),而不为其配置传输通道组。
而当业务支持多链路传输时,通道管理模块根据AID、QoS和Port为该业务分配传输通道组,该传输通道组中包括至少一个业务通道。例如,该传输通道组中包括第一业务通道和/或第二业务通道。第一业务通道和第二业务通道分别对应第一逻辑链路和第二逻辑链路,第一逻辑链路和第二逻辑链路分别对应不相同的第一接入层和第二接入层。
以本申请实施例提供的无线短距通信协议架构为例,通道管理模块可以为该业务分配Group ID=gx的传输通道组,该传输通道组内的业务通道可以是TCIDx和/或TCIDy,其中, TCIDx为SLB业务通道,SLB业务通道对应SLB接入层;TCIDy为SLE业务通道,SLE业务通道对应SLE接入层。
应理解,电子设备可能会同时执行多项业务,通道管理模块在向某项新业务分配传输通道组时,电子设备的链路可能已被其他业务占用,因此,即使该项业务本身支持多链路传输,电子设备实际也不一定能够向该业务提供多个传输链路。因此,传输通道组内业务通道的数量,具体需要根据电子设备各个链路上的业务状态和流量状态确定。
在一些实施例中,当SLB接入层和SLE接入层当前的业务状态和流量状态同时支持向业务提供服务时,通道管理模块向该业务的传输通道组分别配置SLB业务通道和SLE业务通道。
也就是说,当一个业务同时满足如下条件1和条件2时,通道管理模块给该业务分配传输通道组,并给传输通道组内同时配置SLB业务通道和SLE业务通道。
条件1:业务本身的配置支持多链路传输。
在一些实施例中,对于视频传输业务(即视频业务),由于视频流在传输过程中所需的带宽通常较高,因此其通常是被配置为在SLB接入层上传输,而不支持在SLE接入层上传输。也就是说,视频业务本身的配置不支持多链路传输。
条件2:SLB接入层和SLE接入层的资源同时支持向业务提供服务。
对于条件2,可选的,当SLB接入层/SLE接入层的资源不支持新增一条逻辑链路时,高优先级业务可以抢占使用SLB接入层/SLE接入层的资源。在本申请实施例中,新增一条逻辑链路是指在维持已有逻辑链路的基础上新增。
例如,对于SLB接入层,目前业务1已占用SLB接入层的一部分资源,当电子设备有待处理的业务2时,若SLB接入层的剩余资源不足以向业务2提供服务,且业务2的优先级高于业务1,此时,业务2可以抢占SLB接入层的资源。
对于条件2,可选的,当SLB接入层/SLE接入层的资源支持新增一条逻辑链路时,可以同时建立保留多个逻辑链路,也可以仅保留高优先级业务的逻辑链路。
例如,对于SLB接入层,目前业务1已占用SLB接入层的一部分资源,当电子设备有待处理的业务2时,若SLB接入层的剩余资源足以向业务2提供服务,且业务2的优先级高于业务1。那么,SLB接入层可以同时维护业务1和业务2的逻辑链路,也可以断开业务1的逻辑链路并建立业务2的逻辑链路。
再例如,对于SLE接入层,目前业务1已占用SLE接入层的一部分资源,当电子设备有待处理的业务2时,若SLB接入层的剩余资源足以向业务2提供服务,且业务2的优先级低于业务1。那么,SLB接入层可以同时维护业务1和业务2的逻辑链路,也可以仅维护业务1的逻辑链路,而不为业务2建立逻辑链路。
在另一些实施例中,在SLB接入层被高优先级业务占用且链路资源不足的情况下,通道管理模块仅向该业务的传输通道组配置SLE业务通道TCIDy。
在又一些实施例中,在SLE接入层被高优先级业务占用且链路资源不足的情况下,通道管理模块通道管理模块仅向该业务的传输通道组配置SLB业务通道TCIDx。
应理解,通道管理模块向业务分配传输通道组,表示确定了传输通道组的Group ID(例如Group A、Group B和Group C等)以及传输通道组内业务通道的TCID,而传输通道组以及组内的业务通道并没有建立成功。具体要根据如下步骤建立业务通道。
S404,基础服务层的通道管理模块建立传输通道组。
基础服务层在确定Group ID之后,建立该Group ID对应的传输通道组。示例性的,参见图5所示,对于Group A,基础服务层需要为其建立SLB业务通道和SLE业务通道。对于Group B,基础服务层仅需要为其建立SLB业务通道。对于Group C,基础服务层仅需要为其建立SLE业务通道。
基于前文描述可知,业务通道需要在控制通道上协商建立。在本申请实施例提供的无线短距通信协议架构中,星闪接入层包括SLB接入层和SLE接入层。其中,SLB接入层对应基础服务层中的SLB控制通道,用于为不同业务建立SLB业务通道;SLE接入层对应基础服务层中的SLE控制通道,用于为不同业务建立SLE业务通道。
在一些实施例中,基础服务层中可能已经存在其他业务建立的SLB和/或SLE控制通道。而在另一些实施例中,基础服务层中没有已建立的SLB和/或SLE控制通道,此时,基础应用层需要通知基础服务层去新建SLB和/或SLE控制通道。
因此,在基础服务层存在SLB控制通道的基础上,基础服务层与SLB接入层之间建立SLB业务通道TCIDx。在基础服务层存在SLE控制通道的基础上,基础服务层与SLE接入层之间建立SLE业务通道TCIDy。
S405,基础服务层的通道管理模块向基础应用层发送传输通道组建立结果。
应理解,虽然基础服务层为当前业务的传输通道组分配了业务通道,但是各个业务通道有可能建立成功,也有可能建立失败。例如,对于SLB接入层,在参数(如QoS)协商失败、消息发送超时或者SLB逻辑链路建立失败的情况下,会出现业务通道TCIDx建立失败的情况。同理,对于SLE接入层,在参数(如QoS)协商失败、消息发送超时或者SLE逻辑链路建立失败的情况下,会出现业务通道TCIDy建立失败的情况。
以基础服务层需要建立的传输通道组中包括TCIDx和TCIDy为例,传输通道组的建立结果可能包括以下4种情况。
情况1:业务通道TCIDx和TCIDy均建立成功,传输通道组建立成功。
情况2:业务通道TCIDx建立成功,但业务通道TCIDy建立失败,传输通道组建立成功。
情况3:业务通道TCIDx建立失败,但业务通道TCIDy建立成功,传输通道组建立成功。
情况4:业务通道TCIDx和TCIDy均建立失败,传输通道组建立失败。
在传输通道组建立之后,通道管理模块将建立成功的传输通道组标识(如Group ID=gx)发送给基础应用层。
S406,在传输通道组建立成功的情况下,基础应用层使用传输通道组向传输控制模块发送业务对应的业务数据。
基础应用层接收到应用程序发送的业务数据之后,在业务数据中添加业务的端口号Port,该Port映射传输通道组内的所有业务通道。随后将业务数据发送给基础服务层的传输控制模块。
当传输通道组内的业务通道包括TCIDx和TCIDy时,Port同时映射TCIDx和TCIDy。当该传输通道组内的业务通道仅包括TCIDx时,Port仅映射TCIDx。当该传输通道组内的业务通道仅包括TCIDy时,Port仅映射TCIDy。
S407,传输控制模块给业务数据添加传输通道组内的传输通道标识。
具体地,传输控制模块根据端口和业务通道的映射关系,给携带Port的业务数据添加对应的业务通道标识。例如,当Port仅映射TCIDx,传输控制模块给携带Port的业务数据添加TCIDx标识。当Port仅映射TCIDy时,传输控制模块给携带Port业务数据添加TCIDy标识。当传输通道组内既包括TCIDx又包括TCIDy时,根据传输策略给业务数据添加TCID。该传输策略可以控制传输控制模块使用传输通道组内的一个或者多个业务通道传输数据。
在本实施例中,该传输策略可以为分流传输,也可以为冗余传输。其中,分流传输是指将当前业务所有业务数据的一部分通过SLB业务通道传输,将另一部分通过SLE业务通道传输,这两部分业务数据不相同。而冗余传输是指,将当前业务所有业务数据的一部分通过SLB业务通道传输,将另一部分通过SLE业务通道传输,而两部分业务数据全部相同或者部分相同。例如,当传输控制模块分流传输业务数据时,给一部分数据添加TCIDx以通过SLB业务通道传输,而给另一部分数据添加TCIDy以通过SLE业务通道传输,并且这两部分业务数据不相同。
在分流传输时,SLB接入层和SLE接入层上业务数据的比例可以根据带宽、已存在业务的状态(如视频的清晰度等)、SLB接入层和SLE接入层的流量状态来确定。
此外,需要说明的是,当传输控制模块通过多链路传输业务数据时,不支持采用基础模式和透传模式进行传输。这是由于在基础模式下,数据传输在基础服务层不进行分组,也不进行重传,不需要对端的确认(ack)。在透传模式基础服务层不会对数据包进行任何处理。这两个模式不支持在业务数据中添加剂序列号(sequence number,SN)。因此,对端设备在收到无SN的业务数据之后,无法对其进行排序,会造成数据混乱。
S408,传输控制模块将携带SLB业务通道标识TCIDx的业务数据发送给SLB接入层,以通过SLB接入层发送给对端设备。
S409,传输控制模块将携带SLE业务通道标识TCIDy的业务数据发送给SLE接入层,以通过SLE接入层发送给对端设备。
综上所述,本申请实施例提供的包括多通道的传输通道组支持在多个不同的接入层(分别为SLB接入层和SLE接入层)传输不同的数据帧,也支持冗余传输,能够提高业务数据的传输速率,降低业务数据的时延,以及提高业务数据的可靠性。此外,在数据传输过程中,即使有一条链路故障,也无需重新配置传输通道组,业务数据仍可继续传输。
业务在使用传输通道组传输业务数据的过程中,也可以根据电子设备的需求在SLB接入层和SLE接入层之间进行切换,其中包括:(一)将业务数据由SLE接入层切换至SLB接入层传输;(二)将业务数据由SLB接入层切换至SLE接入层传输。下面分别对其进行说明。
(一)将业务数据由SLE接入层切换至SLB接入层传输
基于前文描述可知,尽管有的业务本身的配置支持多链路传输,但是,由于SLB接入层被高优先级业务占用、SLB接入层的剩余资源不足以向该业务提供服务等原因,基础服务层为该业务建立的传输通道组仅包括一条SLE业务通道,该业务仅通过该SLE业务通道,使用SLE接入层向对端传输业务数据。但是,当业务出现QoS需求提高等情况时,当前的SLE业务通道可能无法满足业务需求。或者,在业务的QoS需求未改变,但电子设备的数据传输能力提高后,仍使用SLE业务通道传输业务数据将无法提高业务数据的传 输质量。为此,本申请实施例可以在SLB接入层恢复至能够向该业务提供服务的情况下,将业务数据从SLE接入层切换至SLB接入层传输。
图6是本申请另一个实施例提供的数据传输方法的流程图,涉及将业务数据从SLE接入层切换至SLB接入层传输的过程。
S601,基础应用层在通过传输通道组中的SLE业务通道TCIDy传输业务数据的过程中,当出现SLB切换需求时,基础应用层向基础服务层的通道管理模块发送SLB业务通道建立请求。
在一些实施例中,SLB切换需求为:当前业务提高了QoS需求。例如,在手机通过SLE业务通道控制无线耳机播放标清音频的过程中,若用户在手机侧将音频的质量由标清切换为高清之后,音频播放业务的QoS需求将会提高,应用程序会将新的QoS需求发送给基础应用层。基础应用层在接收到新的QoS需求之后,在新的QoS需求高于原来的QoS需求的情况下,若当前业务同时支持在SLB接入层和SLE接入层上传输,则基础应用层请求通道管理模块在该传输通道组内的新增一条SLB业务通道TCIDx。
在另一些实施例中,SLB切换需求为:基础服务层所能提供的能力(本实施例称之为星闪业务需求,可用星闪服务质量标识(spark-link QoS index,SLQI)标识表示)提高。例如,手机控制无线耳机播放高清音频时,高清音频播放业务的QoS需求较高。但是,由于基础服务层的SLB接入层被其他业务占用等原因,基础服务层无法向该高清音频播放业务提供具有较高星闪服务质量(可用SLQI-A表示)的SLB接入层,而是向该业务提供了具有较低SLQI(可用SLQI-B表示)的SLE接入层。应用程序在同意SLQI-B之后,在SLE接入层传输业务数据。
由于SLE接入层的带宽较小,高清音频的媒体流在传输过程中可能会出现拥塞,导致音频播放质量不佳。为此,在本实施例中,在高清音频播放业务执行的过程中,若前期占用SLB接入层的业务结束,则SLB接入层会空置,通道管理模块为该业务建立SLB业务通道,将业务由SLE接入层切换至SLB接入层,以通过高带宽的SLB接入层传输业务数据,提高数据传输速率,提高高清音频的播放质量。
在其他一些实施例中,SLB切换需求为:QoS管理模块检测到SLE的空口质量较差,误码率较高。
需要说明的是,QoS是应用程序发送的服务质量,其中的各项参数定义了业务所期望的服务质量。而SLQI是基础服务层实际能够为该业务提供的通信链路的服务质量。由于一个协议架构可能会同时处理多个业务,出现剩余传输资源不足的情况,因此,基础服务层有时候可以满足业务的期望,有时候不能满足业务的期望。所以,基础服务层在获取到业务的QoS之后,需要根据剩余传输资源与对端设备协商确定实际能够向该业务所提供的服务质量,即确定SLQI。因此,SLQI可能与QoS相同,也可能比QoS所定义的服务质量差,也有可能比QoS所定义的服务质量好。
在一些情况下,基础服务层中当前是存在SLB控制通道的,基础服务层基于该SLB控制通道即可直接执行步骤S605建立SLB业务通道。而在另一些情况下,基础服务层中当前不存在SLB控制通道,因此,基础服务层需要先建立SLB控制通道。具体建立过程请参见步骤S602-S605。
S602,基础服务层的通道管理模块向设备发现模块发送第一通知消息,该第一通知消 息用于指示设备发现模块扫描SLB设备。
示例性的,通道管理模块可以根据SLB接入层是否有高优先级业务,或者,SLB接入层的剩余资源是否支持该业务等因素,来确定是否指示设备发现模块扫描SLB设备。
S603,设备发现模块扫描SLB设备。
S604,设备发现模块向通道管理模块发送SLB设备发现通知。
在本实施例中,SLB设备发现通知用于表示,设备发现模块发现当前业务对应的对端设备支持SLB通信功能。
S605,通道管理模块与当前业务对应的对端设备之间建立SLB默认逻辑链路,形成SLB控制通道。
需要说明的是,SLB控制通道是SLB默认逻辑链路上的缺省通道(也可以理解为默认通道),在SLB默认逻辑链路建立完成之后,基础服务层会自动生成SLB控制通道,SLB控制通道的标识也是默认的标识。
需要说明的是,在本实施例中,除默认逻辑链路之外,未进行特别说明的逻辑链路均为专有逻辑链路,用于处理具体的通信业务。
S606,通道管理模块通过SLB控制通道建立SLB业务通道TCIDx,其中,TCIDx和TCIDy属于同一传输通道组。
需要说明的是,SLB控制通道是设备间建立不同SLB业务通道的基础。在设备间建立业务通道的过程中,两个电子设备在SLB控制通道上协商建立SLB业务通道所需的参数。
S607,通道管理模块向基础应用层发送SLQI能力调整请求。
在一些实施例中,在通道管理模块为该业务新建了SLB业务通道之后,通道管理模块向该业务实际提供的数据传输质量也会发生变化。例如,由SLE接入层所提供的数据传输质量SLQI-B,变更为SLB接入层所能提供的数据传输质量SLQI-A。因此,通道管理模块需要向基础应用层发送SLQI能力调整请求,请求将向该业务提供的SLQI调整为SLQI-A。
S608,基础应用层在同意SLQI能力调整请求之后,向通道管理模块发送SLQI能力调整完成通知。
在一些实施例中,基础应用层在接收到SLQI能力调整请求之后,需要将该请求发送给该业务的应用程序,以询问应用程序是否同意在该SLQI对应的数据传输能力下传输业务数据。在应用程序同意之后,基础应用层才能够向通道管理模块发送SLQI能力调整完成通知。
在另一些实施例中,基础应用层在接收到SLQI能力调整请求之后,在本地决策是否同意在该SLQI对应的数据传输能力下传输业务数据,无需询问应用程序。
S609,通道管理模块断开SLE业务通道TCIDy。
需要说明的是,S609是一个可选的步骤,电子设备在执行完S608之后,也可以不执行S609。也就是说,在SLB业务通道TCIDx建立成功之后,通道管理模块也可以不断开SLE业务通道TCIDy,保持传输通道组内的TCIDx和TCIDy同时存在。
S610,基础应用层向传输控制模块发送业务数据,该业务数据中携带Port,该Port映射传输通道组内的所有业务通道。
此外,需要说明的是,本实施例对S609和S610的顺序不进行限制,传输控制模块可以先执行S609再执行S610,也可以先执行S610再执行S609。
S611,传输控制模块在业务数据中添加Port对应的业务通道标识TCIDx。
S612,传输控制模块向SLB接入层发送携带TCIDx的业务数据。
应理解,尽管应用的业务数据由SLB业务通道切换至了SLE业务通道传输,但该业务仍然在原来的传输通道组内。
通过本申请实施例提供的方法,在电子设备和当前业务对应的对端设备进行SLE通信的过程中,电子设备能够将业务数据从SLE接入层切换至SLB接入层传输,从而提高设备间的数据传输速率。此外,链路切换过程中,用户是无感知的,有助于提高用户体验。
(二)将业务数据由SLB接入层切换至SLE接入层传输
基于前文描述可知,尽管有的业务本身的配置支持多链路传输,但是,由于SLE接入层被高优先级业务占用,SLE接入层的剩余资源不足以向该业务提供服务等原因,基础服务层为业务建立的传输通道组中有时候仅包括一条SLB业务通道,该业务仅通过该SLB业务通道使用SLB接入层向对端传输业务数据。由于SLB接入层的功耗较大,长时间使用会导致设备电池电量损耗过快,因此,在电子设备有低功耗需求时,且SLE接入层恢复至能够向该业务提供服务的情况下,基础服务层可以将该业务的业务数据从SLB接入层切换至SLE接入层传输,以降低设备的功耗,提高设备使用时长。
图7是本申请又一个实施例提供的数据传输方法的流程图,涉及将业务数据从SLB接入层切换至SLE接入层传输的过程。
S701,基础应用层在通过传输通道组中的SLB业务通道TCIDx传输业务数据的过程中,当出现SLE切换需求时,基础应用层向基础服务层的通道管理模块发送SLE业务通道建立请求。
示例性的,SLE切换需求为:电池电量低于预设值(例如满充电量的20%),或者电子设备切换为了省电模式等。
在一些情况下,基础服务层中当前是存在SLE控制通道的,基础服务层基于该SLE控制通道即可直接执行步骤S706建立SLE业务通道。而在另一些情况下,基础服务层中当前不存在SLE控制通道,因此,基础服务层需要先建立SLE控制通道,随后再执行步骤S706建立SLE业务通道。具体建立过程请参见步骤S702-S705。
S702,基础服务层的通道管理模块向设备发现模块发送第二通知消息,该第二通知消息用于指示设备发现模块扫描SLE设备。
示例性的,通道管理模块可以根据SLE接入层是否有高优先级业务,或者,SLE接入层的剩余资源是否支持该业务等因素,来确定是否指示设备发现模块扫描SLE设备。
S703,设备发现模块扫描SLE设备。
S704,设备发现模块向通道管理模块发送SLE设备发现通知。
在本实施例中,SLE设备发现通知用于表示,设备发现模块发现当前业务对应的对端设备支持SLE通信功能。
S705,通道管理模块与当前业务对应的对端设备之间建立SLE逻辑链路,形成SLE控制通道。
需要说明的是,SLE控制通道是SLE逻辑链路上的缺省通道(也可以理解为默认通道),在SLE逻辑链路建立完成之后,基础服务层会自动生成SLE控制通道,SLE控制通道的标识也是默认的标识。
S706,通道管理模块通过SLE控制通道建立SLE业务通道TCIDy,其中,TCIDx和TCIDy属于同一传输通道组。
需要说明的是,SLE控制通道是设备间建立不同SLE业务通道的基础。在设备间建立业务通道的过程中,两个设备是在SLE控制通道上协商建立SLE业务通道所需的参数。
S707,通道管理模块向基础应用层发送SLQI能力调整请求。
在通道管理模块为业务新建了SLB业务通道之后,通道管理模块向该业务实际提供的数据传输质量也会发生变化。即由SLB接入层所能提供的数据传输质量SLQI-A,变更为SLE接入层所提供的数据传输质量SLQI-B。因此,通道管理模块需要向基础应用层发送SLQI能力调整请求,请求将向该业务提供的SLQI调整为SLQI-B。
S708,基础应用层在同意SLQI能力调整请求之后,向通道管理模块发送SLQI能力调整完成通知。具体可参见S608,本实施例在此不进行赘述。
S709,通道管理模块断开SLB业务通道TCIDx。
需要说明的是,S709是一个可选的步骤,电子设备在执行完S708之后,也可以不执行S609。也就是说,在SLE业务通道TCIDy建立成功之后,通道管理模块也可以不断开SLB业务通道TCIDx,保持传输通道组内的TCIDx和TCIDy同时存在。
S710,基础应用层向传输控制模块发送业务数据,该业务数据携带Port,该port映射传输通道组内的所有业务通道。
应理解,尽管应用的业务数据由SLB业务通道切换至了SLE业务通道传输,但仍该业务仍然在原来的传输通道组内。
此外,需要说明的是,本实施例对S708和S709的顺序不进行限制,传输控制模块可以先执行S708再执行S709,也可以先执行S709再执行S708。
S711,传输控制模块在业务数据中添加Port对应的SLE业务通道标识TCIDy。
S712,传输控制模块向SLE接入层发送携带TCIDy的业务数据。
通过本申请实施例提供的方法,在电子设备和对端设备进行SLB接入层通信的过程中,在电子设备出现低功耗需求时,电子设备能够将业务数据从SLB接入层切换至SLE接入层传输,从而减少设备的功耗,提高设备的使用时长。此外,链路切换过程中,用户是无感知的,有助于提高用户体验。
二、基于业务通道与不同逻辑链路之间的映射关系传输数据
需要说明的是,第一设备和第二设备之间在进行设备发现与连接之后,第一设备的SLB接入层和第二设备SLB接入层之间会建立一条SLB默认逻辑链路,且该SLB默认逻辑链路在基础服务层对应有默认的SLB控制通道和默认的SLB服务管理通道。此外,第一设备的SLE接入层和第二设备SLE接入层之间还会建立一条SLE默认逻辑链路,该SLE默认逻辑链路在基础服务层对应有默认的SLE控制通道和默认的SLE服务管理通道。
第一设备和第二设备建立连接之后,即可根据用户需求处理通信业务,例如,第一设备根据用户需求,向第二设备分享图片、文件、音频或者视频等。下面结合图8所示,对第一设备向第二设备传输业务数据的过程进行说明。
图8是本申请的一个实施例提供的数据传输方法的流程图,示出了第一设备通过业务通道与逻辑链路之间一对二的映射关系向第二设备传输数据的过程。在本实施例中,第一设备所执行的步骤具体包括如下S801-S808。
S801,基础应用层获取到业务的AID和QoS。
应用程序在建立业务(具体指通信业务)的过程中,需要向基础应用层发送其业务特征,该业务特征包括业务的AID和QoS。
S802,基础应用层确定业务在第一设备的端口号Port1,和业务在第二设备的端口号Port2。
第一设备基础应用层在获取到业务的AID和QoS之后,通过默认的SLB服务管理通道或者SLE服务管理通道,和第二设备的基础服务层协商确定业务在两个设备的端口号。在一个示例中,第一设备和第二设备将该业务在第一设备的端口号确定为Port1,将业务在第二设备的端口号确定为Port2。
S803,基础应用层向基础服务层的通道管理模块发送业务通道建立请求,该业务通道建立请求中携带业务的AID、QoS、Port1和Port2。
S804,通道管理模块建立业务通道TCID1,并确定TCID1与SLB逻辑链路LCIDx和/或SLE逻辑链路LCIDy的映射关系。该步骤具体请参见图10~图13所示。
在本实施例中,TCID1与LCIDx和LCIDy的映射关系包括:
第一映射关系:TCID1仅映射LCIDx(可参见图9中的TCID-B与SLB逻辑链路的映射关系)。基于该第一映射关系,第一设备可以将TCID1内的业务数据通过LCIDx传输给第二设备。
第二映射关系:TCID1仅映射LCIDy(可参见图9中的TCID-C与SLE逻辑链路的映射关系)。基于该第二映射关系,第一设备可以将TCID1内的业务数据通过LCIDy传输给第二设备。
第三映射关系:TCID1同时映射LCIDx和LCIDy(可参见图9中的TCID-A与SLB逻辑链路和SLE逻辑链路的映射关系)。基于该第三映射关系,第一设备可以既可以将TCID1内的业务数据通过LCIDx传输给第二设备,也可以将TCID1内的业务数据通过LCIDy传输给第二设备。
S805,通道管理模块向基础应用层发送业务通道建立成功通知,用于向基础应用层通知Port1对应的业务通道TCID1已建立成功。
S806,通道管理模块向传输控制模块发送TCID1与LCIDx和/或LCIDy的映射关系。
需要说明的是,通道管理模块可以先执行S805再执行S806,也可以先执行S806再执行S805,本实施例对此不进行限制。
S807,基础应用层向传输控制模块发送业务数据,该业务数据携带Port1。
以第一设备为例,第一设备在处理通信业务时,其基础应用层通常给每个通信业务分配一个端口号Port,不同的通信业务可以通过同一业务通道传输,也可以通过不同业务通道传输。当一个业务通道仅处理一个端口对应的业务数据时,该端口单独映射该业务通道,例如Port1单独映射TCID1。基于此,基础应用层在向基础服务层发送该端口对应的业务数据时,可以在业务数据中添加Port1标识,也可以不添加。而当一个业务通道同时处理多个端口对应的业务数据时,多个Port同时映射一个业务通道,例如Port1、Port2和Port3同时映射TCID1。那么,基础应用层在向基础服务层发送业务数据时,必须在业务数据中添加业务对应的端口号,否则基础服务层将无法区分各个业务数据。
S808,传输控制模块根据Port1和TCID1的映射关系,为业务数据添加TCID1标识, 并根据TCID1与LCIDx和/或LCIDy的映射关系,以及传输策略控制传输业务数据。
当TCID1映射LCIDx时,传输控制模块将业务数据发送给SLB接入层,以由SLB接入层给业务数据添加LCIDx标识,并将业务数据发送给第二设备。
当TCID1映射LCIDy时,传输控制模块将业务数据发送给SLE接入层,以由SLE接入层给业务数据添加LCIDy标识,并将业务数据发送给第二设备。
当TCID1同时映射LCIDx和LCIDy时,传输控制模块基于该映射关系和传输策略,根据如下步骤S808a~S808e传输业务数据。
S808a,传输控制模块根据Port1和TCID1的映射关系,为业务数据添加TCID1标识。该业务数据可以分为第一业务数据和第二业务数据。
S808b,传输控制模块向SLB接入层发送第一业务数据。
S808c,SLB接入层给第一业务数据添加LCIDx标识,并向第二设备发送第一业务数据。
S808d,传输控制模块向SLE接入层发送第二业务数据。
S808e,SLE接入层给第二业务数据添加LCIDy标识,并向第二设备发送第二业务数据。
在本实施例中,该传输策略也可以为分流传输或者冗余传输。其中,分流传输是指将当前业务所有业务数据的一部分(即第一业务数据)通过LCIDx传输,将另一部分(即第二业务数据)通过LCIDy传输,这两部分业务数据不相同。而冗余传输是指,将第一业务数据通过LCIDx传输,将第二业务数据通过LCIDy传输,而这两部分业务数据全部相同或者部分相同。
在分流传输时,LCIDx和LCIDy上业务数据的比例可以由传输控制模块根据带宽、已存在业务的状态(如视频的清晰度等)、SLB接入层和SLE接入层的流量状态来确定。
此外,需要说明的是,当传输控制模块通过LCIDx和LCIDy同时传输业务数据时,不支持采用基础模式和透传模式进行传输。这是由于在基础模式下,数据传输在基础服务层不进行分组,也不进行重传,不需要对端的确认(ack)。在透传模式基础服务层不会对数据包进行任何处理。这两个模式不支持在业务数据中添加剂序列号(sequence number,SN)。因此,对端设备在收到无SN的业务数据之后,无法对其进行排序,会造成数据混乱。
综上所述,本申请实施例提供的数据传输方法可以将一个业务通道同时映射SLB逻辑链路和SLE逻辑链路,因此,本实施例提供的方法可以通过SLB接入层和SLE接入层同时传输业务数据,能够提高业务数据的传输速率,降低业务数据的时延,以及提高业务数据的可靠性。此外,在数据传输过程中,即使有一条逻辑链路故障,也无需上层应用控制该协议架构重新建立逻辑链路,业务数据仍可继续传输。
下面对S804中涉及的,通道管理模块建立业务通道TCID1,并确定TCID1与LCIDx和/或LCIDy的映射关系的过程进行说明。
通道管理模块在建立业务通道之前,首先要请求接入层建立至少一条逻辑链路,随后才能在基础服务层建立与该逻辑链路对应的业务通道。在本实施例中,该逻辑链路可以是SLB逻辑链路LCIDx和/或SLE逻辑链路LCIDy。
可选的,在SLB接入层的剩余资源支持为通信业务提供服务时,SLB接入层为该通信 业务建立LCIDx。其中包括:当SLB接入层的剩余资源支持新增一条逻辑链路时,无论该业务的优先级是否高于SLB接入层中已有业务的优先级,均为该业务建立SLB逻辑链路。而当SLB接入层的剩余资源不支持新增一条逻辑链路时,仅在该业务的优先级是否高于SLB接入层中已有业务的优先级时,断开该已有业务的逻辑链路,并为该高优先级业务建立SLB逻辑链路。
在一种可能的实施方式中,当SLB接入层的剩余资源不支持新增一条逻辑链路,即使新增业务的优先级高于SLB接入层中已有业务的优先级,SLB接入层也可以不针对该新增业务建立SLB逻辑链路。
可选的,SLE逻辑链路的建立条件可参见SLB逻辑链路的建立条件,本实施例在此不再赘述。
在建立逻辑链路的过程中,受接入层质量、QoS协商等因素的影响,LCIDx和LCIDy的建立结果可能包括如下情况1~情况4。
情况1:SLB逻辑链路LCIDx建立成功,SLE逻辑链路LCIDy建立成功。
情况2:SLB逻辑链路LCIDx建立成功,SLE逻辑链路LCIDy建立失败。
情况3:SLB逻辑链路LCIDx建立失败,SLE逻辑链路LCIDy建立成功。
情况4:SLB逻辑链路LCIDx建立失败,SLE逻辑链路LCIDy建立失败。
下面分别针对上述情况1-情况4,以及各个情况下业务通道的建立过程进行说明。
需要说明的是,以下各个实施例仅是对LCIDx、LCIDy以及TCID1建立过程进行的示例性说明,其对LCIDx、LCIDy建立的先后顺序不进行限制。此外,以下各个实施例对TCID1的建立时机,以及TCID1建立过程中TCID1对应的目标逻辑链路也不进行限制。在至少一条逻辑链路建立成功之后,第一设备即可与第二设备通过该逻辑链路对应的默认控制通道协商建立业务通道。
情况1:SLB逻辑链路LCIDx建立成功,SLE逻辑链路LCIDy建立成功。
图10是本申请的一个实施例提供的逻辑链路和业务通道的建立流程,具体包括如下步骤S1001-S1016,可以划分为如下4部分内容。
(1)SLB逻辑链路LCIDx建立成功
S1001,第一设备的通道管理模块生成业务通道标识TCID1。
S1002,第一设备的通道管理模块向第一设备的SLB接入层发送SLB逻辑链路建立请求,该请求携带TCID1和业务的QoS。
S1003,第一设备的SLB接入层和第二设备的SLB接入层之间,进行QoS协商,建立SLB逻辑链路LCIDx。
S1004,第一设备的SLB接入层在LCIDx建立成功之后,向第一设备的通道管理模块发送LCIDx建立成功通知。
(2)建立业务通道成功
S1005,第一设备的通道管理模块通过SLB控制通道向第二设备的通道管理模块发送业务通道建立请求,该业务通道建立请求携带TCID1和LCIDx。
S1006,第二设备的通道管理模块生成业务通道标识TCID2。
需要说明的是,业务通道是基础服务层的概念,在处理某项业务的过程中,第一设备的基础服务层需要针对该项业务设置第一业务通道(如TCID1),第二设备的基础服务层 需要针对该项业务设置第二业务通道(如TCID2),第一业务通道和第二业务通道的标识可以相同,也可以不同。第一设备和第二设备根据TCID1、LCIDx和TCID2之间的对应关系,传输该业务对应的业务数据。因此,第二设备的通道管理模块在接收到第一设备发送的业务通道建立请求之后,需要先在本地生成第二业务通道的标识TCID2。
此外,第二设备在生成业务通道标识TCID2之后,还需要建立Port2和TCID2之间的映射关系,并将该映射关系发送给第二设备的基础应用层。
S1007,第二设备的通道管理模块通过SLB控制通道向第一设备的通道管理模块发送业务通道建立成功通知。
该业务通道建立成功通知中包括TCID1、LCIDx和TCID2之间的映射关系,用于通知第一设备和第二设备之间的业务通道已建立成功。
在业务通道TCID1建立成功之后,通道管理模块还需建立Port1和TCID1的映射关系,并将该映射关系发送给基础应用层。
S1008,第一设备的通道管理模块存储TCID1、LCIDx和TCID2之间的映射关系。
其中,TCID1、LCIDx和TCID2之间的映射关系是指,TCID1对应TCID2,且TCID1和TCID2均映射LCIDx。
S1009,第二设备的通道管理模块存储TCID1、LCIDx和TCID2之间的映射关系。
(3)SLE逻辑链路LCIDy建立成功
S1010,第一设备的通道管理模块向第一设备的SLE接入层发送SLE逻辑链路建立请求,该请求携带TCID1和业务的QoS。该请求用于请求SLE接入层建立TCID1对应的SLE逻辑链路LCIDy。
S1011,第一设备的SLE接入层和第二设备的SLE接入层之间,进行QoS协商,建立SLE逻辑链路LCIDy。
S1012,第一设备的SLB接入层在LCIDy建立成功之后,向第一设备的通道管理模块发送LCIDy建立成功通知。该通知中携带TCID1和LCIDy之间的映射关系,用于通知通道管理模块TCID1对应的SLE逻辑链路LCIDy已建立成功。
(4)重配置业务通道和逻辑链路之间的映射关系
S1013,第一设备的通道管理模块将TCID1和TCID2之间的逻辑链路更新为LCIDx和LCIDy。
通道管理模块将TCID1和TCID2之间的逻辑链路更新为LCIDx和LCIDy后,TCID1对应TCID2,TCID1和TCID2均映射LCIDx和LCIDy。
S1014,第一设备的通道管理模块通过SLB控制通道/SLE控制通道向第二设备的通道管理模块发送业务通道重配置请求,用于请求将TCID1和TCID2之间的逻辑链路更新为LCIDx和LCIDy。
S1015,第二设备的通道管理模块根据业务通道重配置请求,将TCID1和TCID2之间的逻辑链路更新为LCIDx和LCIDy。
S1016,第二设备的通道管理模块通过SLB控制通道/SLE控制通道向第一设备的通道管理模块发送业务通道重配置响应消息,用于向第一设备通知第二设备侧已将TCID1和TCID2之间的逻辑链路更新为LCIDx和LCIDy。
基于上述步骤S1001~S1016,第一电子设备即可建立TCID1与LCIDx和LCIDy之间 一对二的映射关系,并基于该映射关系同时使用SLB接入层和SLE接入层同时与第二设备通信。
情况2:SLB逻辑链路LCIDx建立成功,SLE逻辑链路LCIDy建立失败。
图11是本申请的另一个实施例提供的逻辑链路和业务通道的建立流程,具体包括如下步骤S1101-S1112,可以划分为如下3部分内容。
(1)SLB逻辑链路LCIDx建立成功
S1101,第一设备的通道管理模块生成业务通道标识TCID1。
S1102,第一设备的通道管理模块向第一设备的SLB接入层发送SLB逻辑链路建立请求,该请求携带TCID1和业务的QoS。
S1103,第一设备的SLB接入层和第二设备的SLB接入层之间,进行QoS协商,建立SLB逻辑链路LCIDx。
S1104,第一设备的SLB接入层在LCIDx建立成功之后,向第一设备的通道管理模块发送LCIDx建立成功通知。
(2)建立业务通道成功
S1105,第一设备的通道管理模块通过SLB控制通道向第二设备的通道管理模块发送业务通道建立请求,该业务通道建立请求携带TCID1和LCIDx。
S1106,第二设备的通道管理模块生成业务通道标识TCID2。
此外,第二设备在生成业务通道标识TCID2之后,还需要建立Port2和TCID2之间的映射关系,并将该映射关系发送给基础应用层。
S1107,第二设备的通道管理模块通过SLB控制通道向第一设备的通道管理模块发送业务通道建立成功通知。该业务通道建立成功通知中包括TCID1、LCIDx和TCID2之间的映射关系,用于通知第一设备和第二设备之间的业务通道已建立成功。
在业务通道TCID1建立成功之后,通道管理模块还需建立Port1和TCID1的映射关系,并将该映射关系发送给基础应用层。
S1108,第一设备的通道管理模块存储TCID1、LCIDx和TCID2之间的映射关系。
S1109,第二设备的通道管理模块存储TCID1、LCIDx和TCID2之间的映射关系。
(3)SLE逻辑链路LCIDy建立失败
S1110,第一设备的通道管理模块向第一设备的SLE接入层发送SLE逻辑链路建立请求。SLE逻辑链路请求携带TCID1和业务的QoS,该请求用于请求SLE接入层建立TCID1对应的SLE逻辑链路LCIDy。
S1111,第一设备的SLE接入层和第二设备的SLE接入层之间,进行QoS协商,建立SLE逻辑链路LCIDy。
S1112,第一设备的SLB接入层在LCIDy建立失败之后,向第一设备的通道管理模块发送LCIDy建立失败通知。该通知中携带TCID1,用于通知通道管理模块TCID1对应的SLE逻辑链路已建立失败。
基于上述步骤S1101~S1112,第一设备即可建立TCID1与LCIDx之间一对一的映射关系,基于该映射关系,第一设备可以使用SLB接入层与第二设备通信。
情况3:SLB逻辑链路LCIDx建立失败,SLE逻辑链路LCIDy建立成功。
图12是本申请的又一个实施例提供的逻辑链路和业务通道的建立流程,具体包括如 下步骤S1201-S1212,可以划分为如下3部分内容。
(1)SLB逻辑链路LCIDx建立失败
S1201,第一设备的通道管理模块生成业务通道标识TCID1。
S1202,第一设备的通道管理模块向第一设备的SLB接入层发送SLB逻辑链路建立请求,该请求携带TCID1和业务的QoS。
S1203,第一设备的SLB接入层和第二设备的SLB接入层之间,根据QoS建立SLB逻辑链路LCIDx。
S1204,第一设备的SLB接入层在LCIDx建立失败之后,向第一设备的通道管理模块发送LCIDx建立失败通知。
(2)SLE逻辑链路LCIDy建立成功
S1205,第一设备的通道管理模块向第一设备的SLE接入层发送SLE逻辑链路建立请求,该请求携带TCID1和业务的QoS。该请求用于请求SLE接入层建立TCID1对应的SLE逻辑链路LCIDy。
S1206,第一设备的SLE接入层和第二设备的SLE接入层之间,进行QoS协商,成功建立SLE逻辑链路LCIDy。
S1207,第一设备的SLB接入层向第一设备的通道管理模块发送LCIDy建立成功通知。该通知中携带TCID1和LCIDy之间的映射关系,用于通知通道管理模块TCID1对应的SLE逻辑链路LCIDy已建立成功。
(3)建立业务通道成功
S1208,第一设备的通道管理模块通过SLE控制通道向第二设备的通道管理模块发送业务通道建立请求,该业务通道建立请求携带TCID1和LCIDy。
S1209,第二设备的通道管理模块生成业务通道标识TCID2。
此外,第二设备在生成业务通道标识TCID2之后,还需要建立Port2和TCID2之间的映射关系,并将该映射关系发送给基础应用层。
S1210,第二设备的通道管理模块通过SLE控制通道向第一设备的通道管理模块发送业务通道建立成功通知。该业务通道建立成功通知中包括TCID1、LCIDy和TCID2之间的映射关系,用于通知第一设备和第二设备之间的业务通道已建立成功。
在业务通道TCID1建立成功之后,通道管理模块还需建立Port1和TCID1的映射关系,并将该映射关系发送给基础应用层。
S1211,第一设备的通道管理模块存储TCID1、LCIDy和TCID2之间的映射关系。
S1212,第二设备的通道管理模块存储TCID1、LCIDy和TCID2之间的映射关系。
基于上述步骤S1201~S1212,第一设备即可建立TCID1与LCIDy之间一对一的映射关系,基于该映射关系,第一设备可以使用SLE接入层与第二设备通信。
情况4:SLB逻辑链路LCIDx建立失败,SLE逻辑链路LCIDy建立失败。
图13是本申请的再一个实施例提供的逻辑链路和业务通道的建立流程,具体包括如下步骤S1301-S1307,可以划分为如下2部分内容。
(1)SLB逻辑链路LCIDx建立失败
S1301,第一设备的通道管理模块生成业务通道标识TCID1。
S1302,第一设备的通道管理模块向第一设备的SLB接入层发送SLB逻辑链路建立请 求,该请求携带TCID1和业务的QoS。
S1303,第一设备的SLB接入层和第二设备的SLB接入层之间,根据QoS建立SLB逻辑链路LCIDx。
S1304,第一设备的SLB接入层在LCIDx建立失败之后,向第一设备的通道管理模块发送LCIDx建立失败通知。
(2)SLE逻辑链路LCIDy建立失败
S1305,第一设备的通道管理模块向第一设备的SLE接入层发送SLE逻辑链路建立请求。SLE逻辑链路请求携带TCID1和业务的QoS,该请求用于请求SLE接入层建立TCID1对应的SLE逻辑链路LCIDy。
S1306,第一设备的SLE接入层和第二设备的SLE接入层之间,进行QoS协商,建立SLE逻辑链路LCIDy。
S1307,第一设备的SLB接入层在LCIDy建立失败之后,向第一设备的通道管理模块发送LCIDy建立失败通知。该通知中携带TCID1,用于通知通道管理模块TCID1对应的SLE逻辑链路已建立失败。
应理解,在第一设备和第二设备之间的SLB逻辑链路LCIDx和SLE逻辑链路LCIDy均建立失败的情况下,第一设备无法建立业务通道。
对于支持多链路传输的业务,在其仅通过一个接入层传输业务数据的情况下,电子设备可以根据业务需求将业务数据切换至另一接入层,其中包括:(一)将业务数据由SLE接入层切换至SLB接入层传输;(二)将业务数据由SLB接入层切换至SLE接入层传输。下面分别对其进行说明。
(一)将业务数据由SLE接入层切换至SLB接入层传输
基于前文描述可知,尽管有的业务本身支持多链路传输,但是,由于SLB接入层被高优先级业务占用、SLB接入层的剩余资源不足以向该业务提供服务等原因,基础服务层当前仅为该业务配置了SLE逻辑链路。因此,该业务当前使用SLE逻辑链路所在的SLE接入层向对端设备传输业务数据。但是,当业务出现QoS需求提高等情况时,当前的SLE接入层可能无法满足业务需求。或者,在业务的QoS需求未改变,但电子设备的数据传输能力提高后,仍使用SLE接入层传输业务数据将无法提高业务数据的传输质量。为此,本申请实施例可以在SLB接入层恢复至能够向该业务提供服务的情况下,为该业务重新配置SLB逻辑链路,将业务数据从SLE接入层切换至SLB接入层传输。
图14是本申请另一个实施例提供的数据传输方法的流程图,涉及将业务数据从SLE接入层切换至SLB接入层传输的过程。
S1401,基础应用层在使用SLB逻辑链路LCIDy传输业务数据的过程中,在检测到SLB切换需求后,向基础服务层的通道管理模块发送SLB逻辑链路切换请求。
在一些实施例中,SLB切换需求为:当前业务提高了QoS需求。例如,在手机通过SLE接入层控制无线耳机播放标清音频的过程中,若用户在手机侧将音频的质量由标清切换为高清之后,音频播放业务的QoS需求将会提高,应用程序会将新的QoS需求发送给基础应用层。基础应用层在接收到新的QoS需求之后,在新的QoS需求高于原来的QoS需求的情况下,若当前业务同时支持在SLB接入层和SLE接入层上传输,则基础应用层请求通道管理模块将业务切换至SLB接入层进行传输。
在另一些实施例中,SLB切换需求为:基础服务层所能提供的SLQI提高。例如,手机控制无线耳机播放高清音频时,高清音频播放业务的QoS需求较高。但是,由于基础服务层的SLB接入层被其他业务占用等原因,基础服务层无法向该高清音频播放业务提供具有较高SLQI(如SLQI-A)的SLB接入层,而是向该业务提供了一条具有较低SLQI(如SLQI-B)的SLE接入层。应用程序在同意SLQI-B之后,在SLE接入层传输业务数据。
由于SLE接入层的带宽较小,高清音频的媒体流在传输过程中可能会出现拥塞,导致音频播放质量不佳。为此,在本实施例中,在高清音频播放业务执行的过程中,若前期占用SLB接入层的业务结束,则SLB接入层资源会出现空余,通道管理模块即可为该业务建立SLB逻辑链路LCIDx,从而将业务由SLE接入层切换至SLB接入层,从而通过高带宽的SLB接入层传输业务数据,提高数据传输速率,提高高清音频的播放质量。
在其他一些实施例中,SLB切换需求为:QoS管理模块检测到SLE的空口质量较差,误码率较高。
在一些情况下,基础服务层中当前是存在SLB逻辑链路的,在S1401之后,基础服务层基于该SLB逻辑链路即可直接执行步骤S1406。而在另一些情况下,基础服务层中当前不存在SLB逻辑链路,因此,基础服务层在S1401之后,需要先建立SLB逻辑链路。具体建立过程请参见步骤S1402-S1405。
S1402,基础服务层的通道管理模块向设备发现模块发送第一通知消息,该第一通知消息用于指示设备发现模块扫描SLB设备。
示例性的,通道管理模块可以根据SLB接入层是否有高优先级业务,或者,SLB接入层的剩余资源是否支持该业务等因素,来确定业务当前是否指示设备发现模块扫描SLB设备。
S1403,设备发现模块扫描SLB设备。
S1404,设备发现模块向通道管理模块发送SLB设备发现通知。
在本实施例中,SLB设备发现通知用于表示,设备发现模块发现当前业务对应的对端设备支持SLB通信功能。
S1405,通道管理模块与当前业务对应的对端设备之间建立SLB逻辑链路LCIDx。
S1406,通道管理模块向基础应用层发送SLQI能力调整请求。
在一些实施例中,在通道管理模块为该业务新建了SLB逻辑链路之后,通道管理模块向该业务实际能够提供的数据传输质量也会发生变化。即由SLE接入层所提供的数据传输质量SLQI-B,变更为SLB接入层所能提供的数据传输质量SLQI-A。因此,通道管理模块需要向基础应用层发送SLQI能力调整请求,请求将向该业务提供的SLQI调整为SLQI-A。
S1407,基础应用层在同意SLQI能力调整请求之后,向通道管理模块发送SLQI能力调整成功通知。具体可参见S608,本实施例在此不再赘述。
S1408,通道管理模块将业务通道TCID1映射的逻辑链路由LCIDy切换至LCIDx。
由于数据传输过程是两个设备之间的交互业务,且这两个设备之间是通过逻辑链路交互的。因此,第一设备不仅需要在本地将该业务的逻辑链路由LCIDy切换至LCIDx后,也需要通知第二设备将业务通道由LCIDy切换至LCIDx。
在一个示例中,参见图15所示,第一设备的通道管理模块在将TCID1映射的逻辑链路由LCIDy切换至LCIDx后,向第二设备的通道管理模块发送第一重配置请求,用于请 求第二设备将处理该业务的业务通道TCID2所映射的逻辑通道由LCIDy切换至LCIDx。第二设备的通道管理模块在完成切换之后,向第一设备的通道管理模块发送第一重配置响应消息,用于通知第二设备TCID2的逻辑链路已切换成功。
S1409,通道管理模块向传输控制模块发送TCID1和LCIDx的映射关系。
在一些实施例中,传输控制模块在接收到TCID1和LCIDx的映射关系之后,将本地原来存储的TCID1和LCIDy的映射关系删除。
在另一些实施例中,传输控制模块在接收到TCID1和LCIDx的映射关系之后,也可以不删除TCID1和LCIDy的映射关系,使TCID1同时映射LCIDx和LCIDy。
S1410,基础应用层向传输控制模块发送业务数据,该业务数据携带Port1标识。
S1411,传输控制模块根据Prot1与TCID1的映射关系给业务数据添加TCID1标识。
S1412,传输控制模块根据TCID1和LCIDx的映射关系,向SLB接入层发送携带TCID1业务数据。具体地,SLB接入层给该业务数据添加LCIDx标识之后,将其发送给对端设备。
S1413,通道管理模块向SLE接入层发送LCIDy释放通知。
S1414,通道管理模块释放LCIDy。
S1415,SLE接入层向通道管理模块发送LCIDy释放响应消息,该响应消息用于通知LCIDy释放成功。
需要说明的是,S1413~S1415是可选的步骤,电子设备在执行完S1412之后,也可以不执行S1413~S1415。也就是说,在电子设备使用LCIDx传输业务数据的过程中,电子设备也可以不断开LCIDy。
通过本申请实施例提供的方法,在电子设备和当前业务对应的对端设备进行SLE通信的过程中,电子设备能够将业务数据从SLE接入层切换至SLB接入层传输,从而提高设备间的数据传输速率。此外,链路切换过程中,用户是无感知的,有助于提高用户体验。
(二)将业务数据由SLB接入层切换至SLE接入层传输
基于前文描述可知,尽管有的业务本身支持多链路传输,但是,由于SLE接入层被高优先级业务占用,其剩余资源不足以向该业务提供服务等原因,基础服务层当前仅为业务配置了SLB逻辑链路。因此,该业务目前使用SLB接入层向对端设备传输业务数据。但是,由于SLB接入层的功耗较大,长时间使用会导致设备电量损耗过快,因此,在电子设备有低功耗需求,且SLE接入层恢复至能够向该业务提供服务的情况下,基础服务层可以将该业务的业务数据从SLB接入层切换至SLE接入层传输,以降低设备的功耗,提高设备使用时长。
图16是本申请又一个实施例提供的数据传输方法的流程图,涉及将业务数据从SLB接入层切换至SLE接入层传输的过程。
S1601,基础应用层在通过SLB逻辑链路LCIDx传输业务数据的过程中,当检测到SLE切换需求时,基础应用层向基础服务层的通道管理模块发送SLE逻辑链路切换请求。
示例性的,SLE切换需求为:电池电量低于预设值(例如满充电量的20%),或者电子设备切换为了省电模式等。
在一些情况下,基础服务层中当前是存在SLE逻辑链路的,基础服务层基于该SLE逻辑链路即可在S1601之后直接执行步骤S1606,而不执行S1602~S1605。而在另一些情况下,基础服务层中当前不存在SLE逻辑链路,因此,基础服务层在S1601之后需要先建 立SLE逻辑链路。具体建立过程请参见步骤S1602-S1605。
S1602,基础服务层的通道管理模块向设备发现模块发送第二通知消息,该第二通知消息用于通知设备发现模块扫描SLE设备。
示例性的,通道管理模块可以根据SLE接入层是否有高优先级业务,或者,SLE接入层的剩余资源是否支持该业务等因素,来确定业务来确定是否通知设备发现模块扫描SLE设备。
S1603,设备发现模块扫描SLE设备。
S1604,设备发现模块向通道管理模块发送SLE设备发现通知。
在本实施例中,SLE设备发现通知用于表示,设备发现模块发现当前业务对应的对端设备支持SLE通信功能。
S1605,通道管理模块控制SLE接入层与当前业务对应的对端设备之间建立SLE逻辑链路。
S1606,通道管理模块向基础应用层发送SLQI能力调整请求。
在通道管理模块为业务新建了SLE逻辑链路之后,第一设备能够向该业务实际提供的数据传输质量也会发生变化。即由SLB接入层所能提供的数据传输质量SLQI-A,变更为SLE接入层所提供的数据传输质量SLQI-B。因此,通道管理模块需要向基础应用层发送SLQI能力调整请求,请求将向该业务提供的SLQI调整为SLQI-B。
S1607,基础应用层在同意SLQI能力调整请求之后,向通道管理模块发送SLQI能力调整成功通知。具体可参见S608,本实施例在此不再赘述。
S1608,通道管理模块将业务通道TCID1映射的逻辑链路由LCIDx切换至LCIDy。
在一个示例中,参见图17所示,以本端设备是第一设备,对端设备是第二设备为例,第一设备的通道管理模块在将业务通道TCID1映射的逻辑链路由LCIDx切换至LCIDy之后,向第二设备的通道管理模块发送第二重配置请求,用于请求第二设备将业务通道TCID2映射的逻辑链路由LCIDx切换至LCIDy。第二设备的通道管理模块在完成切换之后,向第一设备的通道管理模块发送第二重配置响应消息,用于通知第二设备TCID2映射的逻辑链路已重配置成功。
S1609,通道管理模块向传输控制模块发送TCID1和LCIDy的映射关系。
在一些实施例中,传输控制模块在接收到TCID1和LCIDy的映射关系之后,可以将本地原来存储的TCID1和LCIDx的映射关系删除。
在另一些实施例中,传输控制模块在接收到TCID1和LCIDy的映射关系之后,也可以不删除TCID1和LCIDx的映射关系,使TCID1同时映射LCIDx和LCIDy。
S1610,基础应用层向传输控制模块发送业务数据,该业务数据携带Port1标识。
S1611,传输控制模块根据Prot1与TCID1的映射关系给业务数据添加TCID1。
S1612,传输控制模块根据TCID1和LCIDy的映射关系,向SLE接入层发送携带TCID1的业务数据。具体地,SLE接入层给该业务数据添加LCIDy之后,将其发送给对端设备。
S1613,通道管理模块向SLB接入层发送LCIDx释放通知。
S1614,通道管理模块释放LCIDx。
S1615,SLE接入层向通道管理模块发送LCIDx释放响应消息,该响应消息用于通知LCIDx释放成功。
需要说明的是,S1613~S1614是可选的步骤,电子设备在执行完S1612之后,也可以不执行S1613~S1615。也就是说,在电子设备使用LCIDy传输业务数据的过程中,电子设备也可以不断开LCIDx。
通过本申请实施例提供的方法,在电子设备和对端设备使用SLB接入层通信的过程中,在电子设备出现低功耗需求时,电子设备能够将业务数据从SLB接入层切换至SLE接入层进行传输,从而减少设备的功耗,提高设备的使用时长。此外,在接入层切换过程中,用户以及上层应用程序均是无感知的,有助于提高用户体验。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
基于上述各个实施例提供的数据传输方法,本申请实施例还提供如下技术方案。
一种数据传输装置,包括基础应用层、基础服务层和接入层;该接入层包括第一接入层和第二接入层,该第一接入层和该第二接入层支持不同的数据传输能力。
基础应用层用于,请求基础服务层为应用程序的通信业务建立业务通道。
基础服务层用于,在该通信业务支持多链路传输的情况下,基础服务层为该通信业务建立传输通道组,该传输通道组包括第一业务通道和/或第二业务通道,该第一业务通道对应第一接入层,该第二业务通道对应第二接入层。
接入层用于,基于传输通道组传输业务数据。
可选的,第一接入层为星闪基础SLB接入层,第一业务通道为SLB业务通道,SLB接入层支持高带宽的数据传输能力。第二接入层为星闪低功耗SLE接入层,第二业务通道为SLE业务通道,SLE接入层支持低功耗的数据传输能力。通过本申请实施例提供的方法,电子设备能够为向通信业务提供高带宽或者低功耗的数据传输能力。
可选的,基础服务层还用于,在通信业务支持多链路传输的情况下,当第一接入层的资源支持为该通信业务服务,且未被优先级高于该通信业务的其他业务占用时,基础服务层为该通信业务的传输通道组分配第一业务通道。和/或,在该通信业务支持多链路传输的情况下,当第二接入层的资源支持为该通信业务服务,且未被优先级高于该通信业务的其他业务占用时,基础服务层为该通信业务的传输通道组分配第二业务通道。
可选的,基础服务层还用于,通过第一业务通道和第二业务通道传输业务数据;或者,电子设备单独通过第一业务通道传输业务数据;或者,电子设备单独通过第二业务通道传输业务数据。
可选的,基础服务层还用于,从基础应用层处获取目标业务数据,目标业务数据为携带端口号Port的业务数据,该Port映射传输通道组内的所有业务通道。以及,处理目标业务数据,得到携带第一TCID的目标业务数据及携带第二TCID的目标业务数据,其中,第一TCID是第一业务通道的标识,第二TCID是第二业务通道的标识。以及,向第一接入层发送携带第一TCID的目标业务数据,以及,向第二接入层发送携带第二TCID的目标业务数据。
接入层还用于,通过第一接入层传输携带第一TCID的目标业务数据,通过第二接入层传输携带第二TCID的目标业务数据。
可选的,基础服务层还用于,从基础应用层处获取目标业务数据,目标业务数据为携带端口号Port的业务数据。以及,处理携带Port的目标业务数据,得到携带第一TCID的 目标业务数据。以及,向第一接入层发送携带第一TCID的目标业务数据。
第一接入层还用于,向对端设备发送携带第一TCID的目标业务数据。
可选的,基础应用层还用于,接收应用程序发送的业务数据,并给业务数据添加Port,得到目标业务数据。
可选的,基础应用层还用于,在传输通道组包括原业务通道,该原业务通道为第一业务通道和第二业务通道中的任一个,基础服务层在确定切换到目标业务通道处理通信业务,且目标业务通道对应的接入层能够为该通信业务提供服务的情况下,基础服务层更新传输通道组,更新后的传输通道组还包括目标业务通道;以及,将业务数据切换至目标业务通道传输。其中,当更新前的传输通道组中包括第一业务通道时,目标业务通道为第二业务通道;当更新前的传输通道组中包括第二业务通道时,目标业务通道为第一业务通道。
可选的,基础服务层还用于,断开传输通道组中的原业务通道,并将业务数据切换至目标业务通道。
可选的,确定切换到目标业务通道处理通信业务,包括:电子设备进入低功耗模式,或者,电子设备的电量低于预设值,相应地,目标业务通道为第二业务通道,第二业务通道支持低功耗的数据传输能力。
可选的,确定切换到目标业务通道处理通信业务,包括:通信业务的服务质量需求提高,或者,目标业务通道的接入层的服务能力提高,相应地,目标业务通道为第一业务通道,第一业务通道支持高带宽的数据传输能力。
一种数据传输装置,包括:基础应用层、基础服务层和接入层;接入层包括第一接入层和第二接入层,第一接入层和第二接入层支持不同的数据传输能力。
基础应用层用于,请求基础服务层为应用程序的通信业务建立业务通道。
基础服务层用于,在通信业务支持多链路传输的情况下,为该通信业务建立业务通道,该业务通道能够映射第一逻辑链路和第二逻辑链路,第一逻辑链路为第一接入层的链路,第二逻辑链路为第二接入层的链路。
接入层用于,建立逻辑链路,通过第一逻辑链路和/或第二逻辑链路向对端设备传输该通信业务的业务数据。
可选的,业务通道能够映射第一逻辑链路和第二逻辑链路,包括:业务通道同时映射第一逻辑链路和第二逻辑链路;或者,业务通道在传输业务数据的不同阶段,分别映射第一逻辑链路和第二逻辑链路。
可选的,第一接入层为星闪基础SLB接入层,第一逻辑链路为SLB业务通道,SLB接入层支持高带宽的数据传输能力。第二接入层为星闪低功耗SLE接入层,第二逻辑链路为SLE逻辑链路,SLE接入层支持低功耗的数据传输能力。
可选的,在业务通道同时映射第一逻辑链路和第二逻辑链路的情况下,接入层还用于,同时通过第一接入层和第二接入层传输业务数据;或者,仅通过第一接入层传输业务数据;或者,仅通过第二接入层传输业务数据。
可选的,基础服务层还用于,从基础应用层处获取目标业务数据,该目标业务数据为携带端口号Port的业务数据。以及,为目标业务数据添加业务通道标识TCID,并将携带TCID的目标业务数据中的第一业务数据发送给第一接入层,将携带TCID的目标业务数据中的第二业务数据发送给第二接入层。
第一接入层还用于,为第一业务数据添加第一逻辑链路标识LCID,并向对端设备发送携带第一LCID的第一业务数据。
第二接入层还用于,为第二业务数据添加第二LCID,并向对端设备发送携带第二LCID的第二业务数据。
可选的,基础服务层还用于,从基础应用层处获取目标业务数据,该目标业务数据为携带端口号Port的业务数据。以及,基础服务层为目标业务数据添加TCID,并将携带TCID的目标业务数据发送给第一接入层。
第一接入层还用于,给携带TCID的目标业务数据添加第一LCID,并向对端设备发送携带第一LCID的目标业务数据。
可选的,基础应用层还用于接收应用程序发送的业务数据;以及,给该业务数据添加Port。
可选的,基础服务层还用于,在业务通道映射原逻辑链路,且基础服务层在确定切换到目标逻辑链路处理通信业务的情况下,基础服务层建立业务通道与目标逻辑链路的映射关系;以及,将业务数据切换至目标逻辑链路传输。其中,当原逻辑链路为第一逻辑链路时,目标逻辑链路为第二逻辑链路;当原逻辑链路为第二逻辑链路时,目标逻辑链路为第一逻辑链路。
可选的,基础服务层还用于,释放原逻辑链路,并将业务数据切换至目标逻辑链路传输。
可选的,确定切换到目标逻辑链路处理通信业务,包括:电子设备进入低功耗模式,或者,电子设备的电量低于预设值,相应地,目标逻辑链路为第二逻辑链路,第二逻辑链路支持低功耗的数据传输能力。
可选的,确定切换到目标逻辑链路处理通信业务,包括:通信业务的服务质量需求提高,或者,目标逻辑链路的服务能力提高,相应地,目标业务通道为第一逻辑链路,第一逻辑链路支持高带宽的数据传输能力。
本申请实施例还提供又一种数据传输装置,该装置包括处理器和存储器,存储器中存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例中数据传输方法。
本申请实施例还提供一种电子设备,该电子设备包括上述各实施例提供的无线短距通信协议架构,并且被配置为执行上述各个实施例中示出的数据传输方法。
本申请实施例还提供一种芯片,参见图18所示,该芯片包括处理器和存储器,该存储器中存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例中数据传输方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例中提供的数据传输方法。
本申请实施例还提供一种计算机程序产品,该程序产品包括计算机程序,当该计算机程序被电子设备运行时,使得电子设备实现上述各实施例中提供的数据传输方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在本申请所提供的实施例中,各个框架或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个框架或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种数据传输方法,其特征在于,应用于电子设备,所述电子设备包括基础应用层、基础服务层和接入层;所述接入层包括第一接入层和第二接入层,所述第一接入层和所述第二接入层支持不同的数据传输能力;所述方法包括:
    所述基础应用层请求所述基础服务层为应用程序的通信业务建立业务通道;
    在所述通信业务支持多链路传输的情况下,所述基础服务层为所述通信业务建立传输通道组,所述传输通道组包括第一业务通道和/或第二业务通道,所述第一业务通道对应所述第一接入层,所述第二业务通道对应所述第二接入层;
    所述电子设备通过所述传输通道组传输所述通信业务的业务数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一接入层为星闪基础SLB接入层,所述第一业务通道为SLB业务通道,所述SLB接入层支持高带宽的数据传输能力;
    所述第二接入层为星闪低功耗SLE接入层,所述第二业务通道为SLE业务通道,所述SLE接入层支持低功耗的数据传输能力。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述通信业务支持多链路传输的情况下,所述基础服务层为所述通信业务建立传输通道组,包括:
    在所述通信业务支持多链路传输的情况下,当所述第一接入层的资源支持为所述通信业务服务时,所述基础服务层为所述通信业务的传输通道组分配所述第一业务通道;
    和/或,
    在所述通信业务支持多链路传输的情况下,当所述第二接入层的资源支持为所述通信业务服务时,所述基础服务层为所述通信业务的传输通道组分配所述第二业务通道。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,在所述传输通道组包括所述第一业务通道和所述第二业务通道的情况下,所述电子设备通过所述传输通道组传输所述通信业务的业务数据,包括:
    所述电子设备通过所述第一业务通道和所述第二业务通道传输所述业务数据;或者,
    所述电子设备单独通过所述第一业务通道传输所述业务数据;或者,
    所述电子设备单独通过所述第二业务通道传输所述业务数据。
  5. 根据权利要求4所述的方法,其特征在于,所述电子设备通过所述第一业务通道和所述第二业务通道传输所述业务数据,包括:
    所述基础服务层从所述基础应用层处获取目标业务数据,所述目标业务数据为携带端口号Port的所述业务数据,所述Port映射所述传输通道组内的所有业务通道;
    所述基础服务层处理所述目标业务数据,得到携带第一TCID的所述目标业务数据及携带第二TCID的所述目标业务数据,其中,所述第一TCID是所述第一业务通道的标识,所述第二TCID是所述第二业务通道的标识;
    所述基础服务层向所述第一接入层发送携带所述第一TCID的所述目标业务数据,以及,向所述第二接入层发送所述携带所述第二TCID的所述目标业务数据;
    所述第一接入层向对端设备传输携带所述第一TCID的所述目标业务数据,所述第二接入层向所述对端设备传输携带所述第二TCID的所述目标业务数据。
  6. 根据权利要求4所述的方法,其特征在于,所述电子设备通过所述第一业务通道 传输所述业务数据,包括:
    所述基础服务层从所述基础应用层处获取目标业务数据,所述目标业务数据为携带端口号Port的所述业务数据,所述Port映射所述传输通道组内的所有业务通道;
    所述基础服务层处理携带Port的所述目标业务数据,得到携带第一TCID的所述目标业务数据;
    所述基础服务层向所述第一接入层发送携带所述第一TCID的所述目标业务数据;
    所述第一接入层向对端设备发送携带所述第一TCID的所述目标业务数据。
  7. 根据权利要求5或6所述的方法,其特征在于,所述基础服务层从所述基础应用层处获取目标业务数据之前,所述方法还包括:
    所述基础应用层接收所述应用程序发送的所述业务数据;
    所述基础应用层给所述业务数据添加Port,得到所述目标业务数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在所述电子设备通过所述传输通道组传输所述业务数据的过程中,所述方法还包括:
    所述传输通道组包括原业务通道,所述原业务通道为所述第一业务通道和所述第二业务通道中的任一个,所述基础服务层在确定切换到目标业务通道处理所述通信业务,且所述目标业务通道对应的接入层能够为所述通信业务提供服务的情况下,所述基础服务层更新所述传输通道组,更新后的所述传输通道组还包括所述目标业务通道;
    将所述业务数据切换至所述目标业务通道传输;
    其中,当更新前的所述传输通道组中包括所述第一业务通道时,所述目标业务通道为所述第二业务通道;当更新前的所述传输通道组中包括所述第二业务通道时,所述目标业务通道为所述第一业务通道。
  9. 根据权利要求8所述的方法,其特征在于,将所述业务数据切换至所述目标业务通道传输,包括:断开所述传输通道组中的所述原业务通道,并将所述业务数据切换至所述目标业务通道。
  10. 根据权利要求8或9所述的方法,其特征在于,
    确定切换到目标业务通道处理所述通信业务,包括:所述电子设备进入低功耗模式,或者,所述电子设备的电量低于预设值,相应地,所述目标业务通道为所述第二业务通道,所述第二业务通道支持低功耗的数据传输能力。
  11. 根据权利要求8或9所述的方法,其特征在于,
    确定切换到目标业务通道处理所述通信业务,包括:所述通信业务的服务质量需求提高,或者,所述目标业务通道对应的接入层的服务能力提高,相应地,所述目标业务通道为所述第一业务通道,所述第一业务通道支持高带宽的数据传输能力。
  12. 一种电子设备,其特征在于,所述电子设备被配置为执行权利要求1-11任一项所述的数据传输方法。
  13. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器执行存储器中存储的计算机程序,以实现如权利要求1-11任一项所述的数据传输方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-11任一项所述的数据传输方法。
  15. 一种数据传输方法,其特征在于,应用于电子设备,所述电子设备包括基础应用层、 基础服务层和接入层;所述接入层包括第一接入层和第二接入层,所述第一接入层和所述第二接入层支持不同的数据传输能力;所述方法包括:
    所述基础应用层请求所述基础服务层为应用程序的通信业务建立业务通道;
    在所述通信业务支持多链路传输的情况下,所述基础服务层为所述通信业务建立业务通道,所述业务通道能够映射第一逻辑链路和第二逻辑链路,所述第一逻辑链路为所述第一接入层的链路,所述第二逻辑链路为所述第二接入层的链路;
    所述电子设备通过所述业务通道对应的所述第一接入层和/或所述第二接入层向对端设备传输所述通信业务的业务数据。
  16. 根据权利要求15所述的方法,其特征在于,所述业务通道能够映射第一逻辑链路和第二逻辑链路,包括:
    所述业务通道同时映射所述第一逻辑链路和所述第二逻辑链路;或者,
    所述业务通道在传输业务数据的不同阶段,分别映射所述第一逻辑链路和所述第二逻辑链路。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述第一接入层为星闪基础SLB接入层,所述第一逻辑链路为SLB逻辑链路,所述SLB接入层支持高带宽的数据传输能力;
    所述第二接入层为星闪低功耗SLE接入层,所述第二逻辑链路为SLE逻辑链路,所述SLE接入层支持低功耗的数据传输能力。
  18. 根据权利要求16所述的方法,其特征在于,在所述业务通道同时映射所述第一逻辑链路和所述第二逻辑链路的情况下,所述电子设备通过所述业务通道对应的所述第一接入层和/或所述第二接入层向对端设备传输所述通信业务的业务数据,包括:
    所述电子设备将所述业务通道内的所述业务数据分别发送给所述第一逻辑链路和所述第二逻辑链路,以同时通过所述第一接入层和所述第二接入层传输所述业务数据;或者,
    所述电子设备将所述业务通道内的所述业务数据发送给所述第一逻辑链路,以通过所述第一接入层传输所述业务数据;或者,
    所述电子设备将所述业务通道内的所述业务数据发送给所述第二逻辑链路,以通过所述第二接入层传输所述业务数据。
  19. 根据权利要求18所述的方法,其特征在于,所述电子设备将所述业务通道内的所述业务数据分别发送给所述第一逻辑链路和所述第二逻辑链路,以同时通过所述第一接入层和所述第二接入层传输所述业务数据,包括:
    所述基础服务层从所述基础应用层处获取目标业务数据,所述目标业务数据为携带端口号Port的所述业务数据;
    所述基础服务层为所述目标业务数据添加业务通道标识TCID,并将携带TCID的所述目标业务数据中的第一业务数据发送给所述第一接入层,将携带TCID的所述目标业务数据中的第二业务数据发送给所述第二接入层;
    所述第一接入层为所述第一业务数据添加第一逻辑链路标识LCID,并向对端设备发送携带第一LCID的所述第一业务数据;以及,所述第二接入层为所述第二业务数据添加第二LCID,并向对端设备发送携带第二LCID的所述第二业务数据。
  20. 根据权利要求18所述的方法,其特征在于,所述电子设备将所述业务通道内的 所述业务数据发送给所述第一逻辑链路,以通过所述第一接入层传输所述业务数据,包括:
    所述基础服务层从所述基础应用层处获取目标业务数据,所述目标业务数据为携带端口号Port的所述业务数据;
    所述基础服务层为所述目标业务数据添加TCID,并将携带TCID的所述目标业务数据发送给所述第一接入层;
    所述第一接入层给携带TCID的所述目标业务数据添加第一LCID,并向对端设备发送携带第一LCID的所述目标业务数据。
  21. 根据权利要求19或20所述的方法,其特征在于,所述基础服务层从所述基础应用层处获取目标业务数据之前,所述方法还包括:
    所述基础应用层接收所述应用程序发送的所述业务数据;
    所述基础应用层给所述业务数据添加Port,获得所述目标业务数据。
  22. 根据权利要求15-21任一项所述的方法,其特征在于,所述业务通道在传输业务数据的不同阶段,分别映射第一逻辑链路和第二逻辑链路,包括:
    所述业务通道映射原逻辑链路,基础服务层在确定切换到目标逻辑链路处理所述通信业务的情况下,所述基础服务层建立所述业务通道与所述目标逻辑链路的映射关系;
    将所述业务数据切换至所述目标逻辑链路传输;
    其中,当所述原逻辑链路为所述第一逻辑链路时,所述目标逻辑链路为所述第二逻辑链路;当所述原逻辑链路为所述第二逻辑链路时,所述目标逻辑链路为所述第一逻辑链路。
  23. 根据权利要求22所述的方法,其特征在于,将所述业务数据切换至所述目标逻辑链路传输,包括:释放原逻辑链路,并将所述业务数据切换至所述目标逻辑链路传输。
  24. 根据权利要求22或23所述的方法,其特征在于,
    确定切换到目标逻辑链路处理所述通信业务,包括:所述电子设备进入低功耗模式,或者,所述电子设备的电量低于预设值,相应地,所述目标逻辑链路为所述第二逻辑链路,所述第二逻辑链路支持低功耗的数据传输能力。
  25. 根据权利要求22或23所述的方法,其特征在于,
    确定切换到目标逻辑链路处理所述通信业务,包括:所述通信业务的服务质量需求提高,或者,所述目标逻辑链路的服务能力提高,相应地,所述目标业务通道为所述第一逻辑链路,所述第一逻辑链路支持高带宽的数据传输能力。
  26. 一种电子设备,其特征在于,所述电子设备被配置为执行权利要求15-25任一项所述的数据传输方法。
  27. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器执行存储器中存储的计算机程序,以实现如权利要求15-25任一项所述的数据传输方法。
  28. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求15-25任一项所述的数据传输方法。
PCT/CN2022/108661 2021-08-02 2022-07-28 数据传输方法、电子设备、芯片和存储介质 WO2023011316A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110883114 2021-08-02
CN202110883114.5 2021-08-02
CN202111076936.9A CN115701727A (zh) 2021-08-02 2021-09-14 数据传输方法、电子设备、芯片和存储介质
CN202111076936.9 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023011316A1 true WO2023011316A1 (zh) 2023-02-09

Family

ID=85142605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108661 WO2023011316A1 (zh) 2021-08-02 2022-07-28 数据传输方法、电子设备、芯片和存储介质

Country Status (2)

Country Link
CN (1) CN115701727A (zh)
WO (1) WO2023011316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135602A (zh) * 2023-04-25 2023-11-28 荣耀终端有限公司 手写笔多连接场景的数据交互方法、手写笔及蓝牙系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113207A1 (zh) * 2015-12-30 2017-07-06 华为技术有限公司 一种业务消息传输方法、第一终端及网络侧设备
CN109952773A (zh) * 2017-05-05 2019-06-28 联发科技股份有限公司 使用sdap报头处理as/nas反射qos并确保在5g通信系统中重映射期间顺序传送分组
CN110915257A (zh) * 2017-07-14 2020-03-24 瑞典爱立信有限公司 在混合业务环境中的链路自适应的方法和设备
CN110972197A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 数据传输方法、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113207A1 (zh) * 2015-12-30 2017-07-06 华为技术有限公司 一种业务消息传输方法、第一终端及网络侧设备
CN109952773A (zh) * 2017-05-05 2019-06-28 联发科技股份有限公司 使用sdap报头处理as/nas反射qos并确保在5g通信系统中重映射期间顺序传送分组
CN110915257A (zh) * 2017-07-14 2020-03-24 瑞典爱立信有限公司 在混合业务环境中的链路自适应的方法和设备
CN110972197A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 数据传输方法、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN LIN, LU LI, YUMING GE: "Analysis of the communication standardization and industry development of internet of vehicles", DIANXIN KEXUE - TELECOMMUNICATIONS SCIENCE, RENMIN YOUDIAN CHUBANSHE, BEIJING, CN, vol. 36, no. 4, 20 April 2020 (2020-04-20), CN , pages 15 - 26, XP093033501, ISSN: 1000-0801, DOI: 10.11959/j.issn.1000−0801.2020122 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135602A (zh) * 2023-04-25 2023-11-28 荣耀终端有限公司 手写笔多连接场景的数据交互方法、手写笔及蓝牙系统

Also Published As

Publication number Publication date
CN115701727A (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
EP3782401B1 (en) Client device, network control node and upf for transmission and reception of streams of data packets in multi-connectivity
WO2018202153A1 (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
US20220201539A1 (en) Method for obtaining data radio bearer identifier and base station
US20220408162A1 (en) Multicast service transmission method and apparatus
WO2019157968A1 (zh) 一种通信方法、装置及系统
WO2020119224A1 (zh) 无线资源控制连接管理方法及终端
JP2010504660A (ja) 無線ネットワークにおける連結制御方法
WO2021135650A1 (zh) 通信方法及装置
EP3618375A1 (en) Communication method and device
WO2022171017A1 (zh) 一种通信方法、装置及系统
US20240172084A1 (en) Data transmission method and apparatus
CN114731723A (zh) 一种通信方法及装置
WO2023011316A1 (zh) 数据传输方法、电子设备、芯片和存储介质
CN114080057A (zh) 一种计算承载的应用方法及装置
US20240049116A1 (en) Method for transmitting and receiving data and device for same in short-range wireless communication system
CN109246756A (zh) 数据分流方法和装置
WO2023040590A1 (zh) 通道配置方法及装置
CN113630738A (zh) 一种侧行链路通信方法及装置
WO2023088009A1 (zh) 一种数据传输的方法及通信装置
WO2022257811A1 (zh) 数据传输方法、装置和存储介质
WO2021238318A1 (zh) 一种通信方法及装置
WO2020211538A1 (zh) 一种数据传输方法及装置
WO2022242387A1 (zh) 一种基于无线短距通信协议架构的装置及电子设备
WO2023011231A1 (zh) 配置用于传输业务的通道的方法及装置
KR102044523B1 (ko) 근거리 무선 통신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE