WO2020211538A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2020211538A1
WO2020211538A1 PCT/CN2020/076672 CN2020076672W WO2020211538A1 WO 2020211538 A1 WO2020211538 A1 WO 2020211538A1 CN 2020076672 W CN2020076672 W CN 2020076672W WO 2020211538 A1 WO2020211538 A1 WO 2020211538A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
terminal
information
access network
network device
Prior art date
Application number
PCT/CN2020/076672
Other languages
English (en)
French (fr)
Inventor
杨晨晨
晋英豪
谭巍
杨水根
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020211538A1 publication Critical patent/WO2020211538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • the process of establishing a packet data unit (PDU) session is the process of configuring wireless and wired resources for user plane data transmission.
  • the establishment of a PDU session involves the process from the terminal (user equipment, UE) to the data network (data network,
  • the multiple network elements between DNs are an end-to-end configuration process.
  • a terminal when data is transmitted between terminals, a terminal first forwards user plane data to the base station through the air interface, the base station then forwards the user plane data to the user plane function (UPF), and UPF then forwards the data to the data network Unit (data network, DN), DN forwards the data to UPF, and UPF forwards the data to the base station, and the base station finally forwards the data to another terminal through the air interface.
  • UPF user plane function
  • DN data network Unit
  • UPF data network Unit
  • UPF data network Unit
  • the sending-side terminal and the receiving-side terminal access the same base station, or access the same access and mobility management function (AMF)/UPF, they still need to send
  • the data from the side terminal is sent to the core network, and then forwarded by the core network back to the base station, and the base station sends the data to the receiving terminal.
  • This increases the number of hops and delays in data transmission, and increases the load and resource overhead of the core network. There is redundancy in the transmission process.
  • This application provides a data transmission method and device to solve the problem of redundancy in the transmission process when user plane data is transmitted between terminals.
  • a data transmission method provided by the present application includes: a first radio access network device receiving user plane data sent by a first terminal on a resource of a first PDU session, where the user plane data is the first Sent by one terminal to the second terminal.
  • the first radio access network device sends the user plane data to the second terminal on the resources of the second PDU session based on the direct data transmission channel, where the first radio access network device is the first terminal
  • both ends of the direct data transmission channel are respectively connected to the entity used by the first PDU session and the entity used by the second PDU session.
  • the first radio access network device may allocate resources for the first PDU session by the first radio access network device and the first radio access network device for the second PDU session
  • the data between the allocated resources is directly transmitted on the channel
  • the user plane data sent by the first terminal on the resources of the first PDU session is forwarded to the resources of the second PDU session
  • the first PDU session is forwarded to the resources of the first PDU session.
  • the two terminals send the user plane data, so that direct data transmission at the access network can be realized.
  • the embodiment of the present application can reduce the number of hops in the data transmission process, thereby reducing the time delay of data transmission, reducing the load and resource overhead of the core network, and reducing data transmission redundancy.
  • the first radio access network device may receive data sent by the core network device.
  • the instruction information includes first information, or the instruction information includes first information and second information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with the The second PDU session of the second terminal performs direct data transmission at the access network, and the second information is used to instruct the first radio access network device to access the resources of the second PDU session The data at the network is directly transmitted.
  • the first radio access network device can establish a direct data transmission channel for the first PDU session and the second PDU session according to the instruction information sent by the core network device, thereby improving the accuracy of establishing a direct data transmission channel, and thus Improve the accuracy of direct data transmission at the access network.
  • the first radio access network device may also send the indication information to at least one of the first terminal and the second terminal.
  • the first terminal and the second terminal can determine based on the first information that the first PDU session can directly transmit data at the access network with the second PDU session of the second terminal, thereby improving data transmission. Accuracy.
  • the first radio access network device may include a centralized unit (centralized unit, CU). Before the first radio access network device receives the user plane data sent by the first terminal on the resources of the first PDU session, the method further includes: the CU is the first PDU session and the second PDU session A first direct data transmission channel is established. Both ends of the first direct data transmission channel are respectively connected to entities of the first protocol layer used by the first PDU session and entities of the first protocol layer used by the second PDU session.
  • the first protocol layer is any protocol layer of the CU.
  • the first PDU session and the second PDU session may also share an entity of the first protocol layer, and the first data direct transmission channel may be the same entity.
  • the CU establishes a direct data transmission channel between the first protocol layer entity used by the first PDU session and the first protocol layer entity used by the second PDU session, so that the data sent by the first terminal is After the first protocol layer of the first PDU session is processed, it can be directly forwarded to the first protocol layer of the second PDU session for processing, so that the data is sent to the second terminal on the resources of the second PDU session.
  • the number of hops in the data transmission process can reduce the time delay of data transmission, reduce the load and resource overhead of the core network, and reduce data transmission redundancy.
  • the CU may include a control plane (CU-control plane, CU-CP) and a user plane (CU-user plane, CU-UP).
  • the method further includes: after the CU-UP receives the indication information, it is the first A PDU session and the second PDU session establish the first data direct transmission channel, and both ends of the first data direct transmission channel are respectively connected to the entity of the second protocol layer used by the first PDU session and the An entity of the second protocol layer used by the second PDU session, where the second protocol layer is any protocol layer of the CU-UP.
  • the first PDU session and the second PDU session may also share an entity of the second protocol layer, and the first data direct transmission channel may be the shared entity.
  • the CU of the first radio access network device adopts a separate CU-CP and CU-UP architecture, the CU can specifically use CU-UP when establishing direct data transmission channels for the first PDU session and the second PDU session. carried out.
  • the first radio access network device may include a CU and a first distribution unit DU connected to the CU, and both the first terminal and the second terminal access the The first DU.
  • the method further includes: the CU sends the indication information to the first DU.
  • the first DU establishes a second data direct transmission channel for the first PDU session and the second PDU session, and both ends of the second data direct transmission channel are respectively connected to the The entity of the third protocol layer used by the first PDU session and the entity of the third protocol layer used by the second PDU session, where the third protocol layer is any protocol layer of the first DU.
  • the first PDU session and the second PDU session may also share an entity of the third protocol layer, and the second data direct transmission channel may be the same entity.
  • the DU can also establish a direct data transmission channel for the first PDU session and the second PDU session.
  • the DU establishes a direct data transmission channel between the third protocol layer entity used in the first PDU session and the third protocol layer entity used in the second PDU session, so that the data sent by the first terminal passes through the first terminal.
  • the third protocol layer of a PDU session After the third protocol layer of a PDU session is processed, it can be directly forwarded to the third protocol layer of the second PDU session for processing, so that the data is sent to the second terminal on the resources of the second PDU session, and the data transmission can be reduced by the above method
  • the number of hops in the process can reduce the time delay of data transmission, reduce the load and resource overhead of the core network, and reduce data transmission redundancy.
  • the first radio access network device may include a CU, and a first DU and a second DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and A second CU-UP, wherein the first CU-UP is connected to the first DU, the second CU-UP is connected to the second DU, and the first terminal accesses the first DU , The second terminal accesses the second DU.
  • the first radio access network device includes a CU and a first DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and a second CU-UP, wherein the first A DU is respectively connected to the first CU-UP and the second CU-UP, and both the first terminal and the second terminal access the first DU.
  • the method further includes: the CU-CP sends third information to the first CU-UP
  • the third information refers to downlink user plane channel information of the second PDU session at the second CU-UP, or the third information refers to the second CU-UP as the first 2.
  • the first CU-UP allocates the third information as the uplink user plane channel information of the PDU session to the first PDU session, and both ends of the direct data transmission channel are respectively connected to the first CU-UP and In the second CU-UP, the two ends of the direct data transmission channel are respectively connected to the entity used in the first PDU session and the entity used in the second PDU session refers to the two ends of the direct data transmission channel respectively Connecting the first CU-UP and the second CU-UP.
  • the first CU-UP assigns the downlink user plane channel information of the second PDU session at the second CU-UP as the uplink user plane channel information of the PDU session to the first PDU session, so that the first terminal is in the first PDU session.
  • the first CU-UP may use the uplink user plane channel information of the first PDU session (that is, the downlink user plane channel information of the second PDU session at the second CU-UP)
  • the user plane data is routed to the resources of the second PDU session of the second CU-UP, so that the second CU-UP can send the user plane data to the second terminal on the resources of the second PDU session, which can reduce
  • the number of hops in the data transmission process can reduce the time delay of data transmission, reduce the load and resource overhead of the core network, and reduce data transmission redundancy.
  • the first radio access network device includes a CU, and a first DU and a second DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and a second DU.
  • Two CU-UPs wherein the first CU-UP is connected to the first DU, the second CU-UP is connected to the second DU, and the first terminal accesses the first DU, The second terminal accesses the second DU.
  • the first radio access network device includes a CU and a first DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and a second CU-UP, wherein the first A DU is respectively connected to the first CU-UP and the second CU-UP, and both the first terminal and the second terminal access the first DU.
  • the method further includes: the CU-CP sends third information to the first CU-UP
  • the third information refers to downlink user plane channel information of the second PDU session at the second CU-UP, or the third information refers to the second CU-UP as the first 2.
  • the first CU-UP allocates the third information as the uplink user plane channel information of the direct data transmission channel to the first PDU session, and both ends of the direct data transmission channel are respectively connected to the first PDU session.
  • CU-UP and the second CU-UP the two ends of the direct data transmission channel are respectively connected to the entity used by the first PDU session and the entity used by the second PDU session refers to the direct data transmission channel The two ends of are respectively connected to the first CU-UP and the second CU-UP.
  • the first CU-UP allocates the downlink user plane channel information of the second PDU session at the second CU-UP as the uplink user plane channel information of the direct data transmission channel to the first PDU session, thereby
  • the first CU-UP can directly transmit the uplink user plane channel information of the channel according to the data of the first PDU session (that is, the second PDU session is in the second CU-UP
  • the downlink user plane channel information at the location route the user plane data to the resources of the second PDU session of the second CU-UP, so that the second CU-UP can send the data to the second terminal on the resources of the second PDU session
  • the number of hops in the data transmission process can be reduced through the above method, thereby reducing the time delay of data transmission, reducing the load and resource overhead of the core network, and reducing data transmission redundancy.
  • a data transmission method includes: a core network device determines that a first terminal and a second terminal can directly transmit data at an access network, wherein the first terminal and the second terminal The terminals all access the first wireless access network device.
  • the core network device sends instruction information to the first radio access network device, where the instruction information carries first information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with the The second PDU session of the second terminal performs direct data transmission at the access network.
  • the core network instructs the first wireless access network device to be the first PDU session of the first terminal and the second terminal of the second terminal when determining that the first terminal and the second terminal can directly transmit data at the access network.
  • the second PDU session establishes a direct data transmission channel, so that the first radio access network device can forward the user plane data sent by the first terminal on the resources of the first PDU session to the second PDU session on the direct data transmission channel.
  • the user plane data is sent to the second terminal on the resources of the first PDU session, so that direct data transmission at the access network can be realized.
  • the embodiment of the present application can reduce the number of hops in the data transmission process, thereby reducing the time delay of data transmission, reducing the load and resource overhead of the core network, and reducing data transmission redundancy.
  • the indication information carries second information
  • the second information is used to instruct the first radio access network device to perform access network operations on the resources of the second PDU session. Data is transmitted directly.
  • the core network device may also release the PDU session resource allocated by the core network device for the first PDU session.
  • the core network device since the first PDU session and the second PDU session can directly transmit data at the access network through the direct data transmission channel, the core network device releases the PDU allocated by the core network device for the first PDU session Session resources can save the load and resource overhead of core network equipment.
  • the core network device may not release the PDU session resource allocated by the core network device for the first PDU session.
  • a data transmission method provided by the present application includes: a first terminal receives instruction information sent by a first radio access network device, and the instruction information is used to indicate that the first PDU session of the first terminal and the second terminal.
  • the second PDU session performs direct data transmission at the access network
  • the first wireless access network device is the wireless access network device accessed by the first terminal and the second terminal.
  • the first terminal encapsulates the user plane data based on the instruction information, and the user plane data is sent by the first terminal to the second terminal.
  • the first terminal sends user plane data to the first wireless access network device.
  • the first terminal when the first terminal sends user plane data to the second terminal, it may not need to add the IP address of the second terminal to the IP packet header of the sent user plane data. In this way, the complexity of data packaged by the first terminal can be reduced, thereby reducing the time delay of data transmission.
  • the IP header of the user plane data may include at least one of the following information: IP protocol version number, header length, service type, total length of user plane data, user plane data identification , The identifier used to indicate whether to fragment, the fragment offset, the time to live, the protocol identifier used to distinguish the upper layer protocol, the header checksum, and the source port IP address.
  • the indication information may include the first information, or the indication information may also include the first information and the second information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with the second terminal.
  • the second PDU session in the second PDU session performs direct data transmission at the access network, and the second information is used to instruct the first radio access network device to perform direct data transmission at the access network on the resources of the second PDU session.
  • a data transmission method provided by the present application includes: a second terminal receives instruction information sent by a first radio access network device, where the instruction information is used to indicate that the first PDU session of the first terminal and the second terminal The second PDU session performs direct data transmission at the access network, and the first wireless access network device is the wireless access network device accessed by the first terminal and the second terminal.
  • the second terminal decapsulates the user plane data based on the instruction information.
  • the first terminal sends user plane data to the first wireless access network device.
  • the second terminal may skip the process of parsing the destination IP address in the IP packet header. In this way, the complexity of parsing the data by the second terminal can be reduced, thereby reducing the delay of data transmission.
  • the IP header of the user plane data may include at least one of the following information: IP protocol version number, header length, service type, total length of user plane data, user plane data identification , The identifier used to indicate whether to fragment, the fragment offset, the time to live, the protocol identifier used to distinguish the upper layer protocol, the header checksum, and the source port IP address.
  • the indication information may include the first information, or the indication information may also include the first information and the second information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with the second terminal.
  • the second PDU session in the second PDU session performs direct data transmission at the access network, and the second information is used to instruct the first radio access network device to perform direct data transmission at the access network on the resources of the second PDU session.
  • the present application provides a data transmission method, which is applied to a communication system, and the communication system includes a first wireless access network device, a second wireless access network device, a first terminal, and a second wireless access network device.
  • a terminal wherein the first terminal accesses the first radio access network device, and the second terminal accesses the second radio access network device.
  • the first radio access network device obtains first information and second information, the first information is used to indicate that the first PDU session of the first terminal can be used with the second PDU session of the second terminal
  • the second information refers to the downlink user plane channel information of the second PDU session at the second radio access network device, or the second information refers to the User plane channel information used for direct data transmission allocated by the second radio access network device for the second PDU session, where the second PDU session is any PDU session in the first PDU session set.
  • the first radio access network device adjusts the uplink user plane channel information of the first PDU session based on the second information.
  • the first radio access network device receives the first user plane data sent by the first terminal on the resource of the first PDU session.
  • the first radio access network device directly transmits the first user plane data of the first PDU session to the second radio access network device.
  • the first radio access network device is based on the downlink user plane channel information of the second radio access network device at the second radio access network device based on the second PDU session, or the second radio access network device allocates for the second PDU session
  • the user plane channel information of the direct data transmission adjusts the uplink user plane channel information of the first PDU session, so that when the first radio access network device receives the data of the first terminal on the resources of the first PDU session,
  • the uplink user plane channel information of the first PDU session (that is, the downlink user plane channel information of the second PDU session at the second radio access network device, or the data allocated by the second radio access network device for the second PDU session) Directly transmitted user plane channel information) routes the data to the resources of the second PDU session of the second radio access network device, so that the second radio access network device can report to the second terminal on the resources of the second PDU session
  • the data can be transmitted directly
  • the first radio access network device adjusting the uplink user plane channel information of the first PDU session based on the second information may include: the first radio access network device adjusting The second information is allocated to the first PDU session as uplink user plane channel information of the PDU session; or, the first radio access network device uses the second information as the uplink user plane for direct data transmission Channel information is allocated to the first PDU session.
  • the first access network changes the data routing path by modifying the uplink user plane channel information of the first PDU session.
  • the second information is allocated to the first PDU session as the uplink user plane channel information.
  • the data can be routed to the resources of the second PDU session of the second radio access network device without the core network device for forwarding, thereby reducing the number of data transmission hops and delays, and reducing the core network Resources and signaling overhead.
  • acquiring the first information and the second information by the first wireless access network device may include: the first wireless access network device receiving the data sent by the second wireless access network device The first information and the second information; or, the first radio access network device receives the first information and the second information sent by a core network device.
  • the second radio access network device can send the first information and the third information to the first radio access network device through the Xn interface, or the core network device can be the first radio access network device through the NG interface.
  • the device and the second wireless access network device transmit the first information and the second information.
  • the first radio access network device may also send third information and fourth information to the second radio access network device or the core network device, and the third information is used to indicate
  • the third PDU session of the second terminal can directly transmit data at the access network with the fourth PDU session of the first terminal, and the fourth information is that the fourth PDU session is in the first wireless Downlink user plane channel information at the access network device, or the fourth information refers to user plane channel information allocated by the first radio access network device for the fourth PDU session for direct data transmission.
  • the first radio access network device sends the third information and the fourth information to the second radio access network device or the core network device to indicate that the second radio access network device is the third PDU session and the fourth
  • the PDU session establishes a direct data transmission channel, so that the third session and the fourth PDU session can directly transmit data between different radio access network devices.
  • the first radio access network device may receive the second user plane data of the third PDU session directly transmitted by the second radio access network device; the first radio access network device The network access device sends the second user plane data to the first terminal on the resources of the fourth PDU session.
  • the present application provides a data transmission method, which is applied to a communication system, and the communication system includes a core network device, a first wireless access network device, a second wireless access network device, and a first wireless access network device.
  • a terminal and a second terminal wherein the first terminal accesses the first radio access network device, and the second terminal accesses the second radio access network device.
  • the core network device obtains first information and second information, the first information is used to indicate that the first PDU session of the first terminal can access the network with the second PDU session of the second terminal
  • the data at the location is directly transmitted
  • the second information is the downlink user plane channel information at the second radio access network device in the second PDU session, or the second information refers to the second radio access network User plane channel information used for direct data transmission allocated by the device for the second PDU session
  • the core network device sends the first information and the second information to the first radio access network device.
  • the core network device may transmit the first information and the second information for the first radio access network device and the second radio access network device through the NG interface.
  • the core network device acquiring the first information and the second information may include: the core network device determining that the first terminal and the second terminal can perform data between the access network Direct transmission; the core network device determines the first information and the second information.
  • the core network device can determine the first information and the second information by itself.
  • acquiring the first information and the second information by the core network device may include: the core network device receiving the first information and the first information sent by the second radio access network device Second information.
  • the core network device may also receive the first information and the second information sent by the second access network.
  • the core network device may also receive third information and fourth information sent by the first access network, where the third information is used to indicate the third PDU of the second terminal
  • the session can directly transmit data at the access network with the fourth PDU session of the first terminal, and the fourth information is the downlink user plane of the fourth PDU session at the first radio access network device Channel information, or the fourth information refers to the user plane channel information allocated by the first radio access network device for the fourth PDU session for direct data transmission; the core network device sends the 2.
  • the wireless access network device sends the third information and the fourth information.
  • the core network device may release PDU session resources allocated by the core network device for at least one of the first PDU session and the second PDU session.
  • the core network device since the first PDU session and the second PDU session can realize the direct data transmission between different access networks, the core network device can release the core network device as the first PDU session and the second PDU session. At least one allocated PDU session resource, thereby saving the load and resource overhead of the core network device.
  • the core network device may not release the PDU session resources allocated by the core network device for at least one of the first PDU session and the second PDU session.
  • the data can be forwarded to the core network according to the PDU session resources allocated by the core network device for the first PDU session, and the core network device The data is forwarded to the second terminal, thereby improving the accuracy of data transmission.
  • the second terminal fails to transmit data to the first terminal through the direct data transmission channel
  • the data may be forwarded to the core network according to the PDU session resources allocated by the core network device for the second PDU session, and the core network device can forward the data to the first terminal.
  • the terminal forwards the data, which can improve the accuracy of data transmission.
  • the present application provides a data transmission device.
  • the data transmission device may be a communication device, or a chip or chipset in the communication device, where the communication device may be a wireless access network device or a core network device or Terminal Equipment.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor or a communication interface; the device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes all the storage units.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored in the storage unit to Make the radio access network device perform the corresponding function in the first aspect or the fifth aspect or the sixth aspect, or make the core network device perform the corresponding function in the second or sixth aspect described above, or make the terminal device perform the above-mentioned first aspect
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip or a chipset, or may be in the communication device A storage unit (for example, read-only memory, random access memory, etc.) located outside the chip or chipset.
  • this application provides a wireless access network device, including a processor, a communication interface, and a memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes the data transmission described in the first aspect or any one of the first aspects.
  • this application provides a core network device, including a processor, a communication interface, and a memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes the data transmission described in the second aspect or any one of the second aspects. Method, or the data transmission method described in the sixth aspect or the sixth aspect.
  • this application provides a terminal device, including a processor, a transceiver, and a memory.
  • the transceiver is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes the data transmission described in the third aspect or any one of the third aspects.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • FIG. 1 is a schematic diagram of a user plane data routing path of a radio access network device based on a centralized architecture provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a connection relationship between an AMF/UPF and a radio access network device according to an embodiment of the application;
  • 4A is a schematic structural diagram of a radio access network device divided into CU and DU according to an embodiment of the application;
  • FIG. 4B is a schematic diagram of a connection relationship between CU, DU, 5GC, and other wireless access network equipment provided by an embodiment of this application;
  • FIG. 5 is a schematic structural diagram of a wireless access network device divided into CU-CP, CU-UP, and DU according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of a PDU session establishment process and a data transmission process for UE1 to send user plane data to UE2 according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of a user plane data routing path of a radio access network device based on the CU-CP, CU-UP, and DU architecture provided by an embodiment of the application;
  • FIG. 8 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a process of establishing a direct data transmission channel provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a user plane data routing path provided by an embodiment of this application.
  • FIG. 11A is a schematic diagram of a scenario in which a first terminal and a second terminal access a first wireless access network device according to an embodiment of the application;
  • FIG. 11B is a schematic diagram of another scenario where a first terminal and a second terminal access a first radio access network device according to an embodiment of the application;
  • FIG. 12 is a schematic flowchart of a process of establishing a direct data transmission channel provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another user plane data routing path provided by an embodiment of this application.
  • 14A is a schematic flowchart of a process for establishing a direct data transmission channel provided by an embodiment of the application
  • 14B is a schematic diagram of a user plane data routing path provided by an embodiment of this application.
  • 15A is a schematic diagram of a scenario in which a first terminal and a second terminal access a first radio access network device according to an embodiment of the application;
  • 15B is a schematic diagram of another scenario in which a first terminal and a second terminal access a first radio access network device according to an embodiment of the application;
  • 15C is a schematic diagram of another scenario in which a first terminal and a second terminal access a first radio access network device according to an embodiment of the application;
  • 15D is a schematic diagram of another scenario in which a first terminal and a second terminal access a first radio access network device according to an embodiment of the application;
  • 16 is a schematic flowchart of a process of establishing a direct data transmission channel provided by an embodiment of the application
  • FIG. 17 is a schematic diagram of a user plane data routing path provided by an embodiment of this application.
  • 19 is a schematic diagram of a first terminal and a second terminal respectively accessing different wireless access network devices according to an embodiment of the application;
  • 20 is a schematic flowchart of a process for establishing a direct data transmission channel provided by an embodiment of the application
  • 21 is a schematic flowchart of another process of establishing a direct data transmission channel provided by an embodiment of the application.
  • 22A is a schematic structural diagram of a radio access network device provided by an embodiment of this application.
  • 22B is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • 22C is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • 22D is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • 22E is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • 22F is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • FIG. 22G is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • 22H is a schematic structural diagram of another radio access network device provided by an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 25 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the embodiments of this application provide a data transmission method, which can be applied to 5G (fifth generation mobile communication system) systems, such as an access network using new radio access technology (New RAT); cloud wireless Communication systems such as cloud radio access network (CRAN).
  • 5G next generation mobile communication system
  • New RAT new radio access technology
  • CRAN cloud radio access network
  • the 5G system can be a non-roaming scenario or a roaming scenario.
  • the 5G system can be used for a service-oriented architecture or an interface-based architecture, which is not specifically limited here. It should be understood that the embodiments of the present application may also be applicable to future communications (for example, 6G or other networks).
  • the architecture of the communication system to which the data transmission method provided in the embodiments of the present application is applicable may include network open function network elements, policy control function network elements, data management network elements, application function network elements, core network access and mobility management function networks.
  • Element session management function network element, terminal equipment, wireless access network equipment, user plane function network element and data network.
  • Core network access and mobility management function network elements and terminal equipment can be connected through N1 interface
  • core network access and mobility management function network elements and wireless access network equipment can be connected through N2 interface
  • wireless access Network equipment and user plane function network elements can be connected through N3 interface
  • session management function network element and user plane function network elements can be connected through N4 interface
  • user plane function network element and data network can be connected through N6 interface ,
  • N6 interface For example, as shown in Figure 2.
  • the network elements in the communication system may be, but not limited to, the network elements in the 5G architecture.
  • the terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device may be: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (MID), wearable device, virtual reality (VR) device, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, smart grid (smart grid) ), the wireless terminal in transportation safety, the wireless terminal in the smart city, or the wireless terminal in the smart home.
  • MID mobile internet device
  • VR virtual reality
  • AR augmented Augmented reality
  • wireless terminals in industrial control industrial control
  • wireless terminals in self-driving self-driving
  • wireless terminals in remote medical surgery smart grid (smart grid)
  • smart grid smart grid
  • the wireless access network device may be an access network (access network, AN), which provides wireless access services to the terminal device.
  • the wireless access network device is a device that connects the terminal device to a wireless network in the communication system.
  • the radio access network device is a node in the radio access network, which may also be referred to as a base station, or may also be referred to as a radio access network (RAN) node (or device).
  • the radio access network equipment may be a 5G base station (next generation NodeB, gNB), or may also be a next generation evolved NodeB (ng-eNB).
  • the data network such as a data network (DN) can be the Internet, an IP Multi-media Service (IMS) network, a local network (ie a local network, such as a mobile edge computing (mobile edge computing) computing, MEC) network) and so on.
  • the data network includes an application server, and the application server provides business services for the terminal device by performing data transmission with the terminal device.
  • IMS IP Multi-media Service
  • MEC mobile edge computing
  • the core network access and mobility management function network element can be used to manage the access control and mobility of the terminal device. In practical applications, it includes the long term evolution (LTE) network
  • LTE long term evolution
  • the mobility management function in the mobility management entity (MME) in the framework and the access management function is added, which can be specifically responsible for the registration of the terminal equipment, mobility management, tracking area update process, reachability detection, Session management function network element selection, mobile state transition management, etc.
  • the core network access and mobility management function network element may be an AMF (access and mobility management function) network element.
  • the core network access and mobility management function network elements may still be AMF network elements or have other names, which are not limited by this application.
  • the core network access and mobility management function network element is an AMF network element, the AMF may provide Namf service.
  • the user plane function network element can be used for packet routing and forwarding, supporting uplink classifiers to route service flows to instances of data networks, supporting branch points to support multi-homed packet data unit (PDU) sessions , User plane quality of service (QoS) processing, downlink data packet buffering, and downlink data notification triggering.
  • PDU packet data unit
  • QoS User plane quality of service
  • the user plane function network element may be a UPF (user plane function) network element.
  • future communications such as 6G, the user plane function network element may still be a UPF network element, or there may be other
  • the name is not limited in this application.
  • the session management function network element can be used to be responsible for the session management of the terminal device (including the establishment, modification and release of the session), the selection and reselection of the user plane function network element, and the internet protocol of the terminal device. , IP) address allocation, QoS control, etc.
  • the session management function network element may be an SMF (session management function) network element.
  • SMF session management function
  • future communications such as 6G
  • the session management function network element may still be an SMF network element, or there may be other The name is not limited in this application.
  • the SMF can provide the Nsmf service.
  • the policy control function network element can be used to be responsible for policy control decision-making, to provide functions such as service data flow and application detection, gating control, QoS, and flow-based charging control.
  • the policy control function network element may be a PCF (policy control function) network element.
  • the policy control function network element may still be a PCF network element, or there may be other The name is not limited in this application.
  • the PCF network element may provide Npcf service.
  • the main function of the application function network element is to interact with the 3rd generation partnership project (the 3rd generation partnership project, 3GPP) core network to provide services to affect service flow routing, access network capability opening, policy control, etc.
  • the application function network element may be an AF (application function) network element.
  • the application function network element may still be an AF network element or have other names.
  • the application is not limited.
  • the AF network element may provide Naf services.
  • the data management network element may be used to manage subscription data of the terminal device, registration information related to the terminal device, and the like.
  • the data management network element may be a unified data management network element (unified data management, UDM).
  • UDM unified data management network element
  • future communications such as 6G
  • the data management network element may still be a UDM network element, or Other names are not limited in this application.
  • the UDM network element may provide Nudm services.
  • the network open function network element can be used to enable 3GPP to safely provide network service capabilities to third-party AF (for example, Service Capability Server (SCS), Application Server (AS), etc.).
  • third-party AF for example, Service Capability Server (SCS), Application Server (AS), etc.
  • the network opening function network element may be NEF (network exposure function).
  • NEF network exposure function
  • future communications such as 6G
  • the network opening function network element may still be a NEF network element or have other names. This application is not limited.
  • the NEF may provide Nnef services to other network function network elements.
  • system architecture can also include other network elements, such as network slice selection function (NSSF), network function storage function (NRF), authentication server function (authentication server function, AUSF) Wait, I won't list them all here.
  • NSSF network slice selection function
  • NRF network function storage function
  • authentication server function authentication server function, AUSF
  • the above network elements can also be referred to as functional entities. They can be network elements implemented on dedicated hardware, software instances running on dedicated hardware, or instances of virtualized functions on a suitable platform, for example, the above
  • the virtualization platform may be a cloud platform.
  • the interface between AMF/UPF and wireless access network equipment is NG port (NG-C/NG-U port), and different wireless access network equipment is connected through Xn port.
  • NG-C/NG-U port The interface between AMF/UPF and wireless access network equipment
  • Xn port The interface between AMF/UPF and wireless access network equipment
  • the radio access network device as a gNB or ng-eNB as an example, the connection relationship between the AMF/UPF and the radio access network device, as well as different AMF/UPF and the radio access network device can be shown in FIG. 3.
  • the radio access network device in the embodiment of the present application can split the radio access network device into two parts according to the protocol stack function: a centralized unit (CU) and a distributed unit (DU) .
  • one radio access network device may include one CU and at least one DU, as shown in FIG. 4A.
  • the CU is connected to at least one DU and can be used to manage or control the at least one DU.
  • This structure can disassemble the protocol layer of the wireless access network equipment in the communication system, in which part of the protocol layer functions are implemented in the CU, and the remaining part or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the protocol layer of gNB includes the radio resource control (radio resource control, RRC) layer, the service data adaptation protocol (SDAP) layer, and the packet data aggregation protocol (packet data).
  • the convergence protocol (PDCP) layer radio link control (RLC) layer, media access control (MAC) layer, and physical layer.
  • the CU may be used to implement the functions of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU may be used to implement the functions of the RLC layer, the MAC layer, and the physical layer.
  • the embodiment of the present application does not specifically limit the protocol stack included in the CU and DU.
  • CU and DU can be connected by F1 interface
  • CU and other wireless access network equipment can be connected by Xn interface
  • CU and 5G core network (5G Core, 5GC) can be connected by NG interface, as shown in Figure 4B.
  • the CU in the embodiment of the present application may be further divided into a control plane (CU-control plane, CU-CP) network element and at least one user plane (CU-user plane, CU-UP) network element.
  • CU-CP can be used for control plane management
  • CU-UP can be used for user plane data transmission.
  • the interface between CU-CP and CU-UP can be E1 port.
  • the interface between CU-CP and DU can be F1-C, which is used for the transmission of control plane signaling.
  • the interface between CU-UP and DU can be F1-U, which is used for user plane data transmission.
  • CU-UP and CU-UP can be connected through the Xn-U port for user plane data transmission.
  • the structure of gNB may be as shown in FIG. 5.
  • UE1 Before sending user plane data to UE2, UE1 sends a PDU session establishment request to gNB, where the PDU session establishment request is used to request establishment of PDU session 1 of UE1.
  • S602 The gNB forwards the PDU session establishment request sent by the UE1 to the AMF.
  • core network elements such as AMF, UPF, and DN allocate core network resources (for example, uplink user plane data channel address, etc.) for PDU session 1.
  • core network resources for example, uplink user plane data channel address, etc.
  • the AMF sends a PDU session establishment response to the gNB to notify the gNB core network element of the core network resources allocated for the PDU session 1.
  • the gNB After receiving the PDU session establishment response information from AMF, the gNB allocates resources for PDU session 1, such as configuring service data adaptation protocol (service data adaptation) for one or more data radio bearers (DRB) of PDU session 1.
  • service data adaptation service data adaptation protocol
  • SDAP Secure Digital
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC Medium Access Control
  • PHY Physical layer
  • the gNB sends relevant configuration parameters to UE1, and the relevant configuration parameters are parameters of resources allocated by the gNB for PDU session 1.
  • the UE1 configures the corresponding DRB based on the received parameters, for example, configures the SDAP layer, PDCP layer, RLC layer, MAC layer, and PHY layer entities for each DRB.
  • PDU session 1 from UE1 to DN is successfully established.
  • UE1 transmits the user plane data to be sent to UE2 on the resource of PDU session 1, the user plane data is sent to the gNB via the air interface, the gNB sends the user plane data to the UPF, and the UPF sends the data to the DN.
  • the DN resolves the destination node (UE2) of the user plane data. If the PDU session 2 for receiving the user plane data of the UE2 has not been established, step S609 is executed. Among them, UE2 can be in a connected state or in an idle state. Further, if the UE2 is in an idle state, before performing step S609, the core network device and the radio access network device may initiate paging in sequence, and the UE2 receives the paging and establishes an RRC connection with the gNB.
  • the DN triggers the AMF to establish the PDU session 2, allocates core network resources for the PDU session 2, and sends a PDU session establishment request to the gNB.
  • the PDU session establishment request is used to request the establishment of the PDU session 2.
  • the gNB After receiving the UE2 PDU session establishment request from AMF, the gNB allocates resources for PDU session 2, such as configuring service data adaptation protocol (service data adaptation) for one or more data radio bearers (DRB) of PDU session 2.
  • service data adaptation service data adaptation protocol
  • DRB data radio bearers
  • protocol SDAP
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC Medium Access Control
  • PHY Physical layer
  • the gNB sends relevant configuration parameters to UE2, and the relevant configuration parameters are parameters of resources allocated by the gNB for PDU session 2.
  • UE2 configures corresponding DRB based on the received parameters, for example, configures SDAP layer, PDCP layer, RLC layer, MAC layer, and PHY layer entities for each DRB.
  • the PDU session 2 of UE2 is successfully established.
  • the DN transmits user plane data to be sent to UE2 on the resources of the PDU session 2.
  • the DN can parse out the destination node (UE2) of the user plane data, and route the user plane data to the UPF related to the UE2 on the resource of the PDU session 2 for receiving the user plane data of the UE2.
  • the UPF routes the user plane data from UE1 to the gNB according to the established downlink user plane channel of PDU session 2, and the gNB then forwards it to UE2.
  • the process of establishing a PDU session is a process of configuring core network resources and access network resources for user plane data transmission.
  • the establishment of a PDU session involves multiple network elements from the UE to the DN.
  • UE1 and UE2 access the same radio access network device
  • UE1 and UE2 perform user plane data transmission
  • UE1's PDU session 1 and UE2's PDU session 2 are established
  • UE1 first enters PDU session 1.
  • the user plane data is sent to the gNB on the resource of the PDU, and the gNB forwards the user plane data on the resource of PDU session 1 to UPF.
  • the UPF then forwards the user plane data on the resource of PDU session 1 to the DN.
  • the data is forwarded to UPF on the resources of PDU session 2, and UPF forwards the user plane data on the resources of PDU session 2 to gNB, and gNB finally forwards the user plane data on the resources of PDU session 2 to UE2, as shown in Figure 1. Show.
  • UE1 when two terminals access different DUs of the same radio access network device (assuming UE1 accesses gNB-DU1, UE2 accesses gNB- DU2), when UE1 and UE2 are transmitting user plane data, after UE1's PDU session 1 and UE2's PDU session 2 are established, UE1 first sends the user plane data to gNB-DU1 on the resources of PDU session 1, and then gNB-DU1 The user plane data is forwarded to gNB-CU or gNB-CU-UP, gNB-CU or gNB-CU-UP then forwards the user plane data to UPF on the resources of PDU session 1, and UPF then forwards the user plane data to the PDU session The resource of 1 is forwarded to the DN.
  • the DN then forwards the user plane data on the resources of PDU session 2 to UPF, and UPF forwards the user plane data on the resources of PDU session 2 to gNB-CU or gNB-CU-UP, gNB-CU or gNB-CU- UP forwards the data to gNB-DU2, and gNB-DU2 finally forwards the user plane data to UE2 on the resources of PDU session 2, as shown in Figure 7.
  • the present application provides a data transmission method and device to solve the problem of redundancy in the transmission process when two terminals perform user plane data transmission in the prior art, which causes a large transmission delay.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • Embodiment 1 The first terminal and the second terminal access the same radio access network device, that is, the first radio access network device.
  • the data transmission method provided by the embodiment of the present application may be as shown in FIG. 8.
  • the first radio access network device receives user plane data sent by the first terminal on the resources of the first PDU session, where the user plane data is sent by the first terminal to the second terminal.
  • the first PDU session may be established first.
  • the process of establishing the first PDU session refer to step S601 to step S607 in the PDU session establishment process shown in FIG. 6 for details, which will not be repeated here.
  • the first radio access network device sends the user plane data to the second terminal on the resources of the second PDU session based on the direct data transmission channel, where the first radio access network device is the first For a wireless access network device that a terminal and the second terminal access together, both ends of the direct data transmission channel are respectively connected to the entity used in the first PDU session and the entity used in the second PDU session.
  • the first terminal and the second terminal may also be the same terminal, that is, the first PDU session and the second PDU session are two sessions of the first terminal.
  • the first terminal and the second terminal access the same wireless access network device (ie, the first wireless access network device).
  • the first wireless access network device When the first terminal transmits user plane data to the second terminal, the first wireless access The network equipment can directly forward the user plane data to the second terminal based on the direct data transmission channel, so that direct data transmission at the access network can be realized.
  • the first radio access network device transfers the user plane data on the resources of the first PDU session.
  • the user plane data is forwarded to the core network element (such as UPF, etc.), and then the core network element forwards the user plane data to the DN on the resources of the first PDU session, and the DN receives the user plane data of the first terminal Then forward the user plane data to the core network element (such as UPF, etc.) on the resources of the second PDU session, and the core network element forwards the user plane data to the first radio access network device on the resources of the second PDU session , The first radio access network device forwards the user plane data to the second terminal.
  • the first radio access network device can directly use the data after receiving the user plane data of the first terminal.
  • the transmission channel forwards the user plane data to the second terminal at the access network.
  • the user plane data of the first terminal may not pass through the core network.
  • the network element, DN, etc. forward, thereby reducing the number of data transmission hops, thereby reducing the data transmission delay, reducing the redundancy of the data transmission process, and also reducing the load and resource overhead of the core network.
  • a direct data transmission channel may be established before the first radio access network device receives the user plane data sent by the first terminal on the resources of the first PDU session.
  • the direct data transmission channel can be specifically established through the following steps A1 to A3:
  • the core network device determines that the first terminal and the second terminal can directly transmit data at the access network.
  • the first terminal may send the identification or address of the destination node to the core network device on the resources of the first PDU session (that is, the identification or address of the second terminal). ), so that the core network device can determine that the first terminal and the second terminal can directly transmit data at the access network.
  • the core network device sends instruction information to the first radio access network device.
  • the indication information may include first information, and the first information is used to indicate that the first PDU session of the first terminal can directly transmit data at the access network with the second PDU session of the second terminal .
  • the first radio access network device receives the instruction information sent by the core network device.
  • the first information may include the identifier of the second PDU session and the terminal list, to indicate that the second PDU session can directly transmit data at the access network with a terminal corresponding to any terminal identifier in the terminal list, where ,
  • the terminal list includes at least the identity of UE1.
  • the first information may also include a PDU session list of any terminal in the terminal list, and the PDU session list of the terminal may include the identifier of at least one PDU session of the terminal, which may indicate that the second PDU session can be connected to the PDU session list.
  • the PDU session corresponding to the identifier of any PDU session is directly transmitted at the access network.
  • the PDU session list of UE1 may include the identifier of the first PDU session.
  • a PDU session may include multiple quality of service (QoS) flows, so the first information may also include the quality of service (QoS) flow list of any PDU session in the PDU session list. It means that the second PDU session can directly transmit data at the access network with a QoS flow corresponding to any QoS flow identifier in the QoS flow list, where the QoS flow list may include at least one QoS flow identifier of the PDU session.
  • QoS quality of service
  • the indication information may be as shown in Table 1.
  • PDU Session ID Whether it can directly transmit data with other terminal's PDU session >Terminal List (UE List) >>Terminal identification (RAN UE NGAP ID) >>>PDU Session List (PDU Session List) >>>>The PDU Session ID of a terminal (PDU Session ID) >>>>QoS Flow List (QoS Flow List) >>>>>QoS Flow Indicator (QoS Flow Indicator)
  • the terminal list may include an identifier of a terminal (ie, the first terminal), and the PDU session list of the identifier of the first terminal may also include an identifier of a PDU session (ie, the first PDU session).
  • the indication information may also carry second information, and the second information is used to instruct the first radio access network device to directly transmit data at the access network on the resources of the second PDU session.
  • the second information may be an explicit indication, for example, as an information element added to the first information.
  • the second information when the second information is "0", it indicates not to perform direct data transmission at the access network on the resources of the second PDU session, and when it is "1", it indicates that access is performed on the resources of the second PDU session.
  • the data at the network is directly transmitted.
  • the second information when the second information is "0", it can also indicate that the data at the access network is directly transmitted on the resources of the second PDU session, and when the second information is "1", it indicates not to perform the data on the resources of the second PDU session.
  • the data at the access network is directly transmitted.
  • the first information when the first information carries the second information, it can indicate that the data at the access network is directly transmitted on the resources of the second PDU session, and when the first information does not carry the second information, it can indicate that the Direct data transmission at the access network is performed on the resources of the second PDU session.
  • the indication information may be as shown in Table 2, and the second information may indicate whether the second session can directly transmit data with the PDU session of the terminal in the UE List.
  • PDU Session ID >Second Information >Terminal List (UE List) >>Terminal identification (RAN UE NGAP ID) >>>PDU Session List (PDU Session List) >>>>The PDU Session ID of a terminal (PDU Session ID) >>>>QoS Flow List (QoS Flow List) >>>>>QoS Flow Indicator (QoS Flow Indicator)
  • the indication information may also be as shown in Table 3.
  • the second information may indicate whether the second session can directly transmit data with the first PDU session of the first terminal.
  • PDU Session ID >Terminal List (UE List)
  • Table 1 to Table 3 are only exemplary descriptions, and do not specifically limit the expression form of the first information and the second information, and the included information.
  • the second information may also be implicitly indicated through the first information.
  • the first radio access network device may be instructed to directly transmit data at the access network on the resources of the second PDU session, and vice versa.
  • the first radio access network device does not directly transmit data at the access network on the resources of the second PDU session.
  • the PDU session resource setting request carries the first information, it can instruct the first radio access network device not to directly transmit data at the access network on the resources of the second PDU session, and vice versa, it can instruct all
  • the first radio access network device performs direct data transmission at the access network on the resources of the second PDU session.
  • the first radio access network device establishes the direct data transmission channel for the first PDU session and the second PDU session.
  • the direct data transmission channel can also be established through the following steps B1 to B3:
  • the first wireless access network device determines that the first terminal and the second terminal can directly transmit data at the access network.
  • the first terminal when the first terminal requests the establishment of the first PDU session, it indicates which other terminal the first terminal wants to transmit data to on the resources of the first PDU session. For example, the first terminal sends a PDU session to the first radio access network device.
  • the establishment request may carry the identification of the first PDU session and the identification of the second terminal, which are used to indicate that the first PDU session needs to directly transmit data at the access network with the second terminal.
  • the identification of the terminal can be a unique identification such as an employee ID in a private network or an enterprise network, an employee code in a private network or an enterprise network, etc., which can be identified by the terminal and gNB, or the identification of the terminal can also be a unique identification of the terminal. Therefore, after receiving the PDU session establishment request, the first radio access network device can determine that the first terminal directly transmits data at the access network with the second terminal on the resources of the first PDU session.
  • the first radio access network device determines the indication information.
  • the instruction information can refer to the specific content of the instruction information in step A1 to step A3, which will not be repeated here.
  • the first radio access network device establishes the direct data transmission channel for the first PDU session and the second PDU session.
  • the first wireless access network device may also send the first information to the first terminal, and/or the first wireless access network device may send the first information to the second terminal information.
  • the first terminal may send data to the second terminal through the first wireless access network device based on the first information.
  • the first terminal may send data to the second terminal through the first wireless access network device.
  • the terminal sends user plane data, it does not need to add the destination port address (that is, the IP address of the second terminal) to the IP header of the user plane data.
  • the IP header of the user plane data can include the following At least one item of information: IP protocol version number, header length, service type, total length of the user plane data, identification of the user plane data, identification for indicating whether to fragment, fragment offset, Time to live, protocol identification used to distinguish upper-layer protocols, header checksum, source port IP address. In this way, the complexity of data packaged by the first terminal can be reduced, thereby reducing the time delay of data transmission.
  • the second terminal may receive the data sent by the first terminal through the first wireless access network device based on the first information. For example, the second terminal may receive the data sent by the first terminal through the first wireless access network.
  • the process of parsing the destination port address of the IP header of the user plane data can be skipped. In this way, the complexity of parsing the data by the second terminal can be reduced, thereby reducing the delay of data transmission.
  • the first radio access network device may have a centralized architecture, and when the first radio access network device establishes the direct data transmission channel, it may be used in the first PDU session and the second PDU
  • the protocol layer entities of the session (such as SDAP layer entity, PDCP layer entity, RLC layer entity, MAC layer entity, physical layer entity, etc.) establish a direct data transmission channel, and the two endpoints of the established data direct transmission channel are respectively
  • the third protocol layer may be, but is not limited to, SDAP layer, PDCP layer, RLC layer, MAC layer, physical layer, and so on.
  • the following takes a gNB in which the first radio access network device is a centralized architecture as an example to describe in detail the process of establishing a direct data transmission channel.
  • the process of establishing a direct data transmission channel can be shown in Figure 9.
  • S901 UE1 (ie, the first terminal) establishes PDU session 1 (ie, the first PDU session).
  • step S601 the process of establishing the PDU session 1 can be specifically referred to step S601 to step S607 in the PDU session establishment process shown in FIG. 6, which will not be repeated here.
  • a core network device determines that UE1 and UE2 (that is, the second terminal) can directly transmit data at the access network.
  • UE1 can send the identity or address of the destination node (ie, the identity or address of UE2) to the core network device or DN on the resources of PDU session 1, so that the core network device or DN can determine that UE1 and UE2 can access the network. Data is directly transmitted at the place.
  • the destination node ie, the identity or address of UE2
  • the core network device or DN can determine that UE1 and UE2 can access the network.
  • Data is directly transmitted at the place.
  • the gNB accessed by UE1 and UE2 may also determine that UE1 and UE2 can directly transmit data at the access network. For example, when UE1 requests to establish PDU session 1, it indicates that UE1 is to transmit data to other terminals on the resources of PDU session 1. For example, when UE1 sends a PDU session establishment request to gNB, it can carry the identity of PDU session 1 and UE2’s Identifier, used to indicate that PDU session 1 needs to directly transmit data at the access network with UE2.
  • the identification of the terminal can be a unique identification such as an employee ID in a private network or an enterprise network, an employee code in a private network or an enterprise network, etc., which can be identified by the terminal and gNB, or the identification of the terminal can also be a unique identification of the terminal. Therefore, after receiving the PDU session establishment request, the gNB can determine that UE1 and UE2 are directly transmitting data at the access network on the resources of PDU session 1. Therefore, in specific implementation, step S902 may not be executed, but step S903 is directly executed after step S901 is executed.
  • the AMF sends a PDU Session Resource Setup Request (PDU Session Resource Setup Request) to the gNB.
  • PDU Session Resource Setup Request is used to request the gNB to allocate resources for UE2’s PDU Session 2 (ie PDU Session 2) so that UE2 can receive User plane data of UE1.
  • the core network element and the gNB can initiate paging in sequence.
  • UE2 receives the page and establishes an RRC connection with the gNB.
  • the PDU session resource setting request signaling can carry first information to inform the gNB that the PDU session 2 established for UE2 is related to which PDU session of UE1 or other terminals
  • the gNB establishes a direct transmission channel for the PDU session that can directly transmit data at the access network according to the association relationship (for example, the association relationship shows that the PDU session 2 of UE2 and the PDU session 1 of UE1 can directly transmit data, then the gNB Establish a direct data transmission channel for PDU session 1 and PDU session 2 for direct data transmission.
  • the first information please refer to Table 1.
  • the PDU session resource setting request may also carry second information, and the second information may refer to Table 2 or Table 3.
  • the PDU session resource setting request carries the PDU session identifier (PDU Session ID) and the parameters such as the QoS Flow list included in the corresponding PDU session (PDU Session).
  • PDU Session ID PDU session identifier
  • PDU Session the parameters such as the QoS Flow list included in the corresponding PDU session
  • one or more information elements are added to the PDU session resource setting request to indicate that the first PDU session of the first radio access network device UE1 can communicate with the first PDU session of UE2.
  • the second PDU session is for direct data transmission at the access network.
  • one or more indication information elements are added to the PDU session resource setting request to indicate whether the first radio access network device needs to perform on the resources of the second PDU session of UE2.
  • the data at the access network is directly transmitted.
  • the AMF may not retain the uplink user plane channel information allocated for the PDU session 1.
  • AMF can also retain the uplink user plane channel information allocated for PDU session 1, so that when UE1 and UE2 fail to directly transmit data at gNB, UE1
  • the user plane data of the UE1 can be forwarded to the UE2 via gNB-core network element-DN-core network element-gNB, so as to improve the success rate of data transmission.
  • the uplink user plane channel information (NG UL UP Transport Layer Information) of the PDU session can include, but is not limited to: user plane transport layer information (UP Transport Layer Information), transport layer address (Transport Layer Address), GPRS tunnel protocol-tunnel Endpoint identifier (GPRS tunnelling protocol-tunnel endpoint identifier, GTP-TEID) and so on.
  • the user plane transport layer information is used to provide the user plane transport layer information associated with the PDU session between the wireless access network device and the UPF, which can specifically correspond to the internet protocol (IP) address and the GTP tunnel endpoint identifier symbol.
  • IP internet protocol
  • the transport layer address can be an IP address.
  • GTP-TEID may be the GTP tunnel endpoint identifier for the user plane transmission between the radio access network device and the UPF.
  • the gNB configures PDU session resources for PDU session 2. For example, gNB configures the SDAP layer entity, PDCP layer entity, MAC layer entity, and RLC layer at the access network for the DRB of PDU session 2.
  • the entity, the PHY layer entity allocates downlink user plane channel information (including the port IP address at the gNB, GTP-TEID, etc.) for the PDU session 2. It should be understood that it is not excluded that the gNB does not reconfigure the SDAP layer entity, PDCP layer entity, MAC layer entity, RLC layer entity, etc. at the access network for the DRB of PDU session 2.
  • the DRB of PDU session 2 can share the SDAP layer entity, PDCP layer entity, and MAC at the access network of the DRB of PDU session 1.
  • Layer entity, RLC layer entity, etc. the gNB may allocate the same SDAP layer entity, PDCP layer entity, MAC layer entity, RLC layer entity, etc., to the DRB of PDU session 2 and the DRB of PDU session 1.
  • the gNB may allocate resources such as SDAP layer entity, PDCP layer entity, MAC layer entity, and RLC layer entity at the access network of the DRB of PDU session 1 to the DRB of PDU session 2.
  • the gNB when the gNB configures the SDAP, PDCP, MAC, RLC, PHY layer and other entities at the access network for the DRB of PDU session 2, it can use the protocol layer entities of PDU session 1 and PDU session 2 (such as SDAP layer entity, PDCP layer entity, RLC layer entity, MAC layer entity, physical layer entity, etc.) establish a direct data transmission channel, and the two end points of the established data direct transmission channel are a certain protocol layer entity used by PDU session 1. And the PDU session uses the protocol layer entity of 2.
  • the protocol layer can be RRC layer, SDAP layer, PDCP layer, RLC layer, MAC layer, physical layer, etc.
  • the gNB configures the SDAP layer entity at the access network for the DRB of PDU session 2
  • it can establish a direct data transmission channel between the SDAP layer entity of PDU session 1 and the SDAP layer entity of PDU session 2.
  • the gNB sends RRC Connection Reconfiguration signaling to UE2.
  • the RRC Connection Reconfiguration signaling can carry parameters of PDU session resources configured by the gNB for PDU session 2 (such as SDAP parameters, PDCP parameters, MAC parameters, RLC parameters, PHY layer parameters, etc.), indication information.
  • the indication information may include the first information, or may include the first information and the second information.
  • the gNB can convert the UE identification and other information in the first information into an identification that can be recognized by UE2, and the similarities in the embodiments of the present application will not be repeated.
  • the UE2 After receiving the RRC Connection Reconfiguration signaling, the UE2 configures PDU session resources for PDU session 2 (for example, UE2 configures the configuration of the SDAP, PDCP, and MAC entities of the DRB at the terminal for PDU session 2) .
  • UE2 After the configuration is completed, UE2 sends an RRC Connection Reconfiguration Complete signaling to the gNB to feedback the completion of the PDU session resource configuration to the gNB, and waits to receive the data sent by the UE1 directly transmitted by the gNB according to the instruction information .
  • the gNB sends a PDU Session Resource Setup Response (PDU Session Resource Setup Response) signaling to the AMF to feed back the completion of the PDU session resource configuration to the AMF.
  • PDU Session Resource Setup Response PDU Session Resource Setup Response
  • the gNB may not feed back the downlink user plane channel information (NG-UDL UP Transport Layer Information) allocated for the PDU session 2 to the AMF.
  • the gNB can feed back the downlink user plane channel information allocated for PDU session 2 to the AMF. Therefore, when UE1 and UE2 fail to directly transmit data at the gNB, the user plane data of UE1 can be forwarded to UE2 via gNB-core network element-DN-core network element-gNB, and then forwarded by gNB to UE2, so as to improve the data transmission. Success rate.
  • the core network element (such as AMF, UPF, etc.) updates the indication information.
  • the AMF may release the uplink user plane channel information (NG UL UP Transport Layer Information) of the corresponding NG port allocated for the PDU session 1.
  • the AMF may not release the uplink user plane channel information (NG UL UP Transport Layer Information) of the corresponding NG port allocated for the PDU session 1.
  • the user plane data of UE1 can be forwarded to UE2 via gNB-core network element-DN-core network element-gNB, and then forwarded by gNB to UE2, so as to improve the data transmission. Success rate.
  • the AMF sends a PDU Session Resource Modify Request (PDU Session Resource Modify Request) to the gNB.
  • PDU Session Resource Modify Request may carry updated indication information.
  • the gNB can change the PDU session resources already configured at the gNB according to the updated indication information.
  • the gNB sends an RRC connection reconfiguration (RRC Connection Reconfiguration) to the UE1, and the RRC connection reconfiguration may carry updated indication information.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • UE1 sends an RRC Connection Reconfiguration Complete (RRC Connection Reconfiguration Complete) to gNB, notifying gNB that UE1 has received updated indication information.
  • RRC Connection Reconfiguration Complete RRC Connection Reconfiguration Complete
  • UE1 After UE1 receives the instruction information, it can send data to UE2 via gNB according to the instruction information. For example, when UE1 sends user plane data to UE2 via gNB, it does not need to add UE2's IP to the header of the user plane data sent. address. In this way, the complexity of UE1 packing data can be reduced, thereby reducing the delay of data transmission.
  • the gNB sends a PDU Session Resource Modify Response (PDU Session Resource Modify Response) to the AMF.
  • PDU Session Resource Modify Response PDU Session Resource Modify Response
  • gNB and/or UE2 may fail to configure PDU session resources as requested due to resource utilization, memory occupancy, etc., so the core network element can update the indication information, so it can be performed after step S908 , Execute step S909 to step S913. In other embodiments, after step S908 is executed, step S909 to step S913 may not be executed.
  • UE2 can also send user plane data to UE1, which can be implemented in any of the following two ways:
  • Method 1 UE2's PDU session 3 can be established, and a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • the user plane data is sent to the gNB, and the gNB transmits the user plane data of UE2 to the resources of PDU session 4 through the direct data transmission channel between PDU session 3 and PDU session 4, and sends it to UE1 on the resources of PDU session 4 The user plane data.
  • Method 2 UE2 can also send user plane data to gNB on the resources of PDU session 2.
  • gNB can use the direct data transmission channel between PDU session 1 and PDU session 2, or the protocol layer shared by PDU session 1 and PDU session 2. , Transmit the user plane data of UE2 to the resources of PDU session 1, and send the user plane data to UE1 on the resources of PDU session 1.
  • gNB establishes a direct data transmission channel between the protocol layer entities of PDU session 1 and PDU session 2, so that when gNB receives user plane data sent by UE1, it can forward it through the data direct transmission channel between protocol layer entities. To UE2, alternatively, it can also be forwarded to UE2 through a protocol layer entity shared by PDU session 1 and PDU session 2, so that direct data transmission between UE1 and UE2 can be realized. For example, suppose the gNB establishes a direct data transmission channel between the PDCP layer entities of PDU session 1 and PDU session 2. After receiving the user plane data from UE1 to UE2, the gNB sequentially passes through the physical data of PDU session 1.
  • the user plane data is processed by the PDCP layer of PDU session 1, and the processed user data is directly transmitted through the data transmission channel between the PDCP layer entities of PDU session 1 and PDU session 2.
  • the plane data is forwarded to the PDCP layer of PDU session 2, and then processed through the PDCP layer, RLC layer, MAC layer, and physical layer of PDU session 2 in turn, and then the processed user plane data is forwarded to UE2, as shown in Figure 10.
  • the first radio access network device may adopt an architecture that realizes function separation, and the architecture of the first radio access network device after function separation may be as shown in FIG. 4A or FIG. 4B.
  • the first radio access network device uses the architecture shown in Figure 4A or Figure 4B to achieve functional separation, taking the first radio access network device as a gNB as an example, the first terminal and the second terminal access the first
  • the first terminal and the second terminal respectively access different gNB-DUs of the first wireless access network device.
  • the first terminal accesses gNB-DU1.
  • the second terminal accesses gNB-DU2, as shown in Figure 11A.
  • Another scenario is that the first terminal and the second terminal access the same DU of the first radio access network device, for example, the first terminal and the second terminal access the same gNB-DU, as shown in FIG. 11B.
  • the direct data transmission channel may be established by the gNB-CU.
  • the gNB-CU may receive the indication information sent by the core network device, and establish a first data direct transmission channel for the first PDU session and the second PDU session, and the first data direct transmission channel
  • the two endpoints are the first protocol layer entity used by the first PDU session PDU session 1 and the first protocol layer entity used by the second PDU session PDU session 2, and the first protocol layer is the gNB- Any protocol layer of CU.
  • the first protocol layer may be, but is limited to, SDAP layer, PDCP layer, and so on.
  • gNB-CU can be used to implement the functions of the RRC layer, SDAP layer and PDCP layer, and gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • FIG. 11A the process of establishing a direct data transmission channel is described in detail.
  • the process of establishing a direct data transmission channel can be shown in Figure 12.
  • step S1201 to S1203 please refer to step S901 to step S903 for details. It should be noted that the receiving device in step S1203 is different from step S903.
  • the receiving device in step S1203 is gNB-CU, and the receiving device in S903 is gNB.
  • gNB configures PDU session resources for PDU session 2. Specifically, after the gNB-CU receives the PDU session resource setting request, it configures the SDAP layer entity and PDCP layer entity for PDU session 2, and gNB-DU2 (that is, the DU accessed by UE2) configures the RLC layer entity and MAC layer for PDU session 2. Entity and physical layer entity. In addition, when gNB-DU2 configures RLC layer entities, MAC layer entities, and physical layer entities for PDU session 2, direct data transmission can be established between the first protocol layer entity of PDU session 1 and the first protocol layer entity of PDU session 2. Channel, where the first protocol layer can be the SDAP layer and the PDCP layer.
  • the gNB-CU can establish a direct data transmission channel between the SDAP layer entity of PDU session 1 and the SDAP layer entity of PDU session 2.
  • the gNB-CU may also establish a direct data transmission channel between the PDCP layer entity of PDU session 1 and the PDCP layer entity of PDU session 2.
  • step S1205 to S1207 can refer to step S905 to step S907. It should be noted that the sending device in step S1205 is different from step S905. The sending device in step S1205 is gNB-DU2, and the sending device in S905 is gNB. The receiving device in step S1207 is different from that in step S907. The receiving device in step S1207 is gNB-DU2, and the receiving device in S907 is gNB.
  • the gNB-DU2 sends an uplink RRC message transfer (UL RRC Message Transfer) to the CU.
  • UL RRC Message Transfer uplink RRC message transfer
  • step S908 For S1209 to S1211, please refer to step S908 to step S910. It should be noted that the sending device in step S1209 is different from step S908.
  • the sending device in step S1209 is gNB-CU, and the sending device in S908 is gNB.
  • the receiving device in step S1211 is different from step S910. In step S1211, the receiving device is gNB-CU, and in S910, the receiving device is gNB.
  • the gNB-CU sends a downlink RRC signaling forwarding (DL RRC Message Transfer) message to the gNB-DU1, where the DL RRC Message Transfer message may carry updated indication information.
  • DL RRC Message Transfer downlink RRC signaling forwarding
  • step S913 For S1213 to S1214, please refer to step S911 to step S912. It should be noted that the sending device in step S1213 is different from step S911.
  • the sending device in step S1213 is gNB-DU1, and the sending device in S911 is gNB.
  • the receiving device in step S1214 is different from that in step S912.
  • the receiving device in step S1214 is gNB-DU1, and the receiving device in S912 is gNB.
  • the gNB-DU1 sends an uplink RRC message forwarding message to the gNB-CU, where the uplink RRC message forwarding message is used to notify the gNB-CU that the UE1 has received updated indication information.
  • step S1216 may refer to step S913. It should be noted that the sending device in step S1216 is different from step S913.
  • the sending device in step S1216 is gNB-CU, and the sending device in S913 is gNB.
  • UE2 can also send user plane data to UE1, which can be implemented in any of the following two ways:
  • Method 1 UE2's PDU session 3 can be established, and a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • steps S1202 to S1216 so that UE2 can use the resources of PDU session 3.
  • Send user plane data to gNB-CU gNB-CU transmits the user plane data of UE2 to the resources of PDU session 4 through the direct data transmission channel between PDU session 3 and PDU session 4, and on the resources of PDU session 4 Send the user plane data to UE1.
  • Method 2 UE2 can also send user plane data to gNB-CU on the resources of PDU session 2.
  • gNB-CU can use the direct data transmission channel between PDU session 1 and PDU session 2, or PDU session 1 and PDU session 2.
  • the shared protocol layer transmits the user plane data of UE2 to the resources of PDU session 1, and sends the user plane data to UE1 on the resources of PDU session 1.
  • gNB-CU establishes a direct data transmission channel between the first protocol layer entities of PDU session 1 and PDU session 2, so that when gNB receives user plane data sent by UE1, it can pass the data between protocol layer entities.
  • the direct transmission channel is forwarded to UE2, so that direct data transmission between UE1 and UE2 can be realized.
  • gNB-CU establishes a direct data transmission channel between the PDCP layer entities of PDU Session 1 and PDU Session 2, then gNB-DU1 (that is, the first DU) receives the user plane data sent by UE1 to UE2, The user plane data is processed through the physical layer, MAC layer, and RLC layer of PDU session 1 in turn, and the processed user plane data is sent to gNB-CU, and gNB-CU will receive the user plane data through the PDCP layer of PDU session 1.
  • the processed user plane data is forwarded to the PDCP layer of PDU session 2 for processing through the direct data transmission channel between the PDCP layer entities of PDU session 1 and PDU session 2, and the processed user plane data is sent to gNB-DU2 and gNB-DU2 process the received data through the RLC layer, MAC layer, and physical layer of PDU session 2 in sequence, and then forward the processed user plane data to UE2, as shown in FIG. 13.
  • the first radio access network device when the first radio access network device establishes a direct data transmission channel, it can be implemented in the following two ways:
  • the direct data transmission channel may be established by gNB-CU.
  • gNB-CU establishing data when the first terminal and the second terminal respectively access different DUs of the first radio access network device.
  • the process of direct transmission channel may be established by gNB-CU.
  • UE2 can also send user plane data to UE1. Specifically, refer to the method for UE2 to send user plane data to UE1 in the method shown in FIG. 12, which will not be repeated here.
  • the direct data transmission channel may be established by gNB-DU1.
  • the gNB-CU may receive the indication information sent by the core network device, and send the indication information to gNB-DU1.
  • the gNB-DU1 can establish a second direct data transmission channel for the first PDU session and the second PDU session, and the two end points of the second direct data transmission channel are the
  • the second protocol layer entity used by the first PDU session and the second protocol layer entity used by the second PDU session, and the second protocol layer is any protocol layer of the gNB-DU1.
  • the first protocol layer may be, but is not limited to, an RLC layer, a MAC layer, a physical layer, and the like.
  • gNB-CU can be used to implement the functions of the RRC layer, SDAP layer and PDCP layer, and gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • FIG. 11B the process of establishing a direct data transmission channel is described in detail. The process of establishing a direct data transmission channel can be shown in Figure 14A.
  • Step S1401 to step S1416 for details, please refer to step S1201 to step S1216, which will not be repeated here.
  • the gNB configures PDU session resources for PDU session 2, which can be specifically implemented in the following manner: After receiving the PDU session resource setting request, gNB-CU configures RRC layer entities, SDAP layer entities and The PDCP layer entity, gNB-DU (that is, the DU accessed by UE1 and UE2) configures RLC layer entity, MAC layer entity, and physical layer entity for PDU session 2.
  • direct data transmission can be established between the second protocol layer entity of PDU session 1 and the second protocol layer entity of PDU session 2.
  • the channel, where the second protocol layer may be an RLC layer or a MAC layer or a physical layer.
  • the gNB-DU can establish a direct data transmission channel between the MAC layer entity of PDU session 1 and the MAC layer entity of PDU session 2.
  • the gNB-DU may establish a direct data transmission channel between the RLC layer entity of PDU session 1 and the RLC layer entity of PDU session 2.
  • the gNB-DU may establish a direct data transmission channel between the physical layer entity of PDU session 1 and the physical layer entity of PDU session 2.
  • the actions performed by gNB-DU1 or gNB-DU2 in steps S1201 to S1216 are all performed by gNB-DU in steps S1401 to S1416.
  • UE2 can also send user plane data to UE1, which can be specifically implemented in any of the following two ways:
  • Method 1 UE2's PDU session 3 can be established, and a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • the user plane data is sent to the gNB-DU.
  • the gNB-DU transmits the user plane data of UE2 to the resources of PDU session 4 through the direct data transmission channel between PDU session 3 and PDU session 4.
  • the user plane data is sent to UE1.
  • Method 2 UE2 can also send user plane data to gNB-DU on the resources of PDU session 2.
  • gNB-DU can use the direct data transmission channel between PDU session 1 and PDU session 2, or PDU session 1 and PDU session 2.
  • the shared protocol layer transmits the user plane data of UE2 to the resources of PDU session 1, and sends the user plane data to UE1 on the resources of PDU session 1.
  • gNB-DU establishes a direct data transmission channel between the second protocol layer entities of PDU session 1 and PDU session 2, so that when gNB receives user plane data sent by UE1, it can pass the data between protocol layer entities.
  • the direct transmission channel is forwarded to UE2, so that direct data transmission between UE1 and UE2 can be realized.
  • gNB-DU establishes a direct data transmission channel between the MAC layer entities of PDU session 1 and PDU session 2
  • gNB-DU receives the user plane data sent by UE1 to UE2, and then passes the user plane data through PDU in turn
  • the physical layer and MAC layer of session 1 are processed, and the processed user plane data is forwarded to the MAC layer of PDU session 2 through the data transmission channel between the MAC layer entities of PDU session 1 and PDU session 2 for processing.
  • the user plane data processed by the MAC layer of PDU session 2 is forwarded to UE2 after being processed at the physical layer of PDU session 2, as shown in FIG. 14B.
  • gNB-DU After receiving the user plane data sent by UE1 to UE2, gNB-DU passes the user plane data through the physical layer and MAC layer of PDU session 1 in turn. Processing, the MAC can send the data to the physical layer of PDU session 2 for processing, and send it to UE2 on the resource of PDU2.
  • the first radio access network device may also adopt the architecture shown in FIG. 5 to achieve functional separation.
  • the first radio access network device adopts the architecture shown in FIG. 5 to achieve functional separation
  • the first scenario is that the first terminal and the second terminal access the same gNB-DU of the first radio access network device, and the gNB-DU is connected to a gNB-CU-UP.
  • the PDU session resource is established on the gNB-CU-UP, as shown in Figure 15A.
  • the second scenario is that the first terminal and the second terminal respectively access different DUs of the first radio access network device.
  • the third scenario is that the first terminal and the second terminal respectively access different gNB-DUs of the first radio access network device. It is assumed that the first terminal accesses gNB-DU1 and the second terminal accesses gNB-DU2. And gNB-DU1 and gNB-DU2 are connected to different gNB-CU-UPs, gNB-DU1 is connected to gNB-CU-UP1, and gNB-DU2 is connected to gNB-CU-UP2, as shown in Figure 15C.
  • the fourth scenario is that the first terminal and the second terminal respectively access the same gNB-DU of the first radio access network device, and the gNB-DU is connected to gNB-CU-UP1 and gNB-CU-UP2.
  • the PDU session resource of the terminal and the PDU session resource of the second terminal are established on gNB-CU-UP1 and gNB-CU-UP2, respectively. It is assumed that the PDU session resource of the first terminal is established on gNB-CU-UP1, and the PDU session resource of the second terminal is established on gNB-CU-UP1.
  • the PDU session resource is established in gNB-CU-UP2, as shown in Figure 15D.
  • the direct data transmission channel may be established by gNB-CU-UP1.
  • the gNB-CU-CP may receive the indication information, and send the indication information to gNB-CU-UP1.
  • the gNB-CU-UP1 may establish the first data direct transmission channel for the first PDU session and the second PDU session.
  • the direct data transmission channel may be established by the gNB-CU-UP.
  • the gNB-CU-UP establishes a direct data transmission channel when the first terminal and the second terminal access the same gNB-DU.
  • gNB-CU can be used to implement the functions of the RRC layer, SDAP layer and PDCP layer, and gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • FIG. 15B the process of establishing a direct data transmission channel will be described in detail.
  • the process of establishing a direct data transmission channel can be shown in Figure 16.
  • the receiving device in S1603 is gNB-CU-CP, and the receiving device in step S1203 is gNB-CU.
  • gNB-CU-CP sends a Bearer Context Modification Request to gNB-CU-UP to instruct gNB-CU-UP to configure PDU session resources for UE2 at gNB-CU-UP (e.g. for UE2’s PDU session 2 configures SDAP layer entity, PDCP entity, downlink user plane channel information, etc.).
  • the bearer context modification request may carry indication information.
  • gNB-CU-UP when gNB-CU-UP configures SDAP layer entities and PDCP layer entities for PDU session 2, it can be established between the first protocol layer entity of PDU session 1 and the first protocol layer entity of PDU session 2 according to the instruction information Direct data transmission channel, where the first protocol layer can be the SDAP layer or the PDCP layer.
  • the first protocol layer can be the SDAP layer or the PDCP layer.
  • gNB-CU-UP can establish a direct data transmission channel between the PDCP layer entity of PDU session 1 and the PDCP layer entity of PDU session 2.
  • gNB-CU-UP can establish a direct data transmission channel between the SDAP layer entity of PDU session 1 and the SDAP layer entity of PDU session 2.
  • S1605 The gNB-CU-UP sends a Bearer Context Modification Response (Bearer Context Modification Response) to the gNB-CU-CP.
  • Bearer Context Modification Response Bearer Context Modification Response
  • gNB-CU-UP may not feed back to gNB-CU-CP the downlink user plane channel allocated by gNB-CU-UP for the NG port Information (NG DL UP Transport Layer Information) or downlink user plane channel information (S1 DL UP Transport Layer Information) allocated to the S1 port, so that gNB-CU-CP does not feed back to AMF that gNB-CU-UP is allocated for NG port Downlink user plane channel information (NG DL UP Transport Layer Information) or downlink user plane channel information (S1 DL UP Transport Layer Information) allocated to the S1 port by gNB-CU-UP; or, gNB-CU-UP can send to gNB-CU -CP feedbacks the downlink user plane channel information (NG DL UP Transport Layer Information) or the downlink user plane channel information (S1 DL UP Transport Layer Information) allocated for the NG port, but the gNB-CU-CP does not send
  • gNB-CU-UP can also feed back to gNB-CU-CP the downlink user plane channel information allocated by gNB-CU-UP for PDU session 2 Therefore, gNB-CU-CP can feed back to AMF the downlink user plane channel information (NG DL UP Transport Layer Information) allocated by gNB-CU-UP for the NG port or the downlink user plane channel allocated by gNB-CU-UP for the S1 port Information (S1 DL UP Transport Layer Information).
  • NG DL UP Transport Layer Information the downlink user plane channel information allocated by gNB-CU-UP for the NG port or the downlink user plane channel allocated by gNB-CU-UP for the S1 port Information (S1 DL UP Transport Layer Information).
  • the user plane data of UE1 can be forwarded to UE2 via gNB-core network element-DN-core network element-gNB, and then forwarded by gNB to UE2. Improve the success rate of data transmission.
  • the gNB-CU-CP updates the indication information according to the bearer context modification response sent by the gNB-CU-UP.
  • the gNB-CU-UP may fail to successfully establish some PDU sessions due to factors such as high load and low available memory. Therefore, after step S1605 is performed, step S1606 can be performed.
  • step S1606 may not be executed, that is, after step S1605 is executed, step S1607 may be executed.
  • gNB-CU-CP sends a user context modification request (UE Context Modification Request) to gNB-DU2 (ie the second DU) to instruct gNB-DU2 to configure PDU session resources for UE2’s PDU session 2 (for example, UE2’s PDU) Session 2 configures RLC layer entities, MAC layer entities, and PHY layer entities, etc.).
  • UE Context Modification Request UE Context Modification Request
  • Session 2 configures RLC layer entities, MAC layer entities, and PHY layer entities, etc.
  • the gNB-DU2 sends a user context modification response (UE Context Modification Response) to the gNB-CU-CP.
  • UE Context Modification Response UE Context Modification Response
  • gNB-CU-CP sends downlink RRC signaling forwarding (DL RRC Message Transfer) to gNB-DU2, and downlink RRC signaling forwarding can carry RRC Connection Reconfiguration related parameters (such as those configured for PDU Session 2). SDAP, PDCP, RLC, MAC and PHY layer entity parameters, etc.), and can also carry updated indication information.
  • Step S1610 to step S1616 for details, please refer to step S1205 to step S1211, which will not be repeated here.
  • the receiving device in step S1208 is different from the receiving device in step S1613
  • the receiving device in S1613 is gNB-CU-CP
  • the receiving device in step S1208 is gNB-CU.
  • Step S1209 is different from the sending device in step S1614.
  • the sending device in S1614 is gNB-CU-CP
  • the sending device in step S1209 is gNB-CU.
  • Step S1211 is different from the receiving device in step S1616.
  • the receiving device in S1616 is gNB-CU-CP
  • the receiving device in step S1211 is gNB-CU.
  • the gNB-CU-CP sends a Bearer Context Modification Request (Bearer Context Modification Request) to the gNB-CU-UP, and the Bearer Context Modification Request may carry updated indication information.
  • Bearer Context Modification Request Bearer Context Modification Request
  • gNB-CU-UP can change the UE1 PDU session resource that has been configured at gNB-CU-UP according to the updated indication information. For example, for PDU session 1, which can directly transmit data at gNB-CU-UP, gNB-CU-UP can release the downlink user plane channel information of the NG port allocated for PDU session 1. For another example, if the gNB-CU-UP establishes a direct data transmission channel of the PDCP layer entity for PDU session 1 and PDU session 2, then the SDAP entity resources that have been configured for PDU session 1 can be released.
  • S1618 The gNB-CU-UP sends a Bearer Context Modification Response (Bearer Context Modification Response) to the gNB-CU-CP.
  • Bearer Context Modification Response Bearer Context Modification Response
  • gNB-CU-UP may not feed back to gNB-CU-CP the downlink user plane channel information (NG DL UP) allocated for the NG port.
  • NG DL UP downlink user plane channel information
  • the gNB-CU-CP may not feed back the downlink user plane channel allocated by the gNB-CU-UP for the NG port to the AMF Information (NG DL UP Transport Layer Information) or downlink user plane channel information (S1 DL UP Transport Layer Information) allocated to the S1 port by gNB-CU-UP; or, gNB-CU-UP can feed back to gNB-CU-CP as Downlink user plane channel information (NG DL UP Transport Layer Information) allocated to the NG port or downlink user plane channel information (S1 DL UP Transport Layer Information) allocated to the S1 port.
  • NG DL UP Transport Layer Information Downlink user plane channel information allocated to the NG port
  • S1 DL UP Transport Layer Information downlink user plane channel information allocated to the S1 port.
  • gNB-CU-CP does not feed back gNB- to AMF CU-UP is the downlink user plane channel information allocated by the NG port (NG DL UP Transport Layer Information) or gNB-CU-UP is the downlink user plane channel information allocated by the S1 port (S1 DL UP Transport Layer Information); or, gNB- CU-UP may not allocate the downlink user plane channel information of the NG port or the downlink user plane channel information of the S1 port to the PDU session 1. Therefore, gNB-CU-CP does not feed back the downlink user plane channel information of the NG port (NG DL UP Transport Layer Information) or downlink user plane channel information (S1 DL UP Transport Layer Information) of the S1 port.
  • Steps S1619 to S1626 for details, please refer to steps S1607 to S1614, and details are not repeated here.
  • UE2 can also send user plane data to UE1, which can be implemented in any of the following two ways:
  • Method 1 UE2's PDU session 3 can be established, and a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • a direct data transmission channel can be established between PDU session 3 and UE1's PDU session 4.
  • the user plane data is sent to gNB-CU-UP.
  • gNB-CU-UP transmits the user plane data of UE2 to the resources of PDU session 4 through the direct data transmission channel between PDU session 3 and PDU session 4.
  • the user plane data is sent to UE1 on the resources of session 4.
  • Method 2 UE2 can also send user plane data to gNB-CU-UP on the resources of PDU session 2.
  • gNB-CU-UP can use the direct data transmission channel between PDU session 1 and PDU session 2, or PDU session 1
  • the protocol layer shared with PDU session 2 transmits the user plane data of UE2 to the resources of PDU session 1, and sends the user plane data to UE1 on the resources of PDU session 1.
  • gNB-CU-UP establishes a direct data transmission channel between the first protocol layer entities of PDU session 1 and PDU session 2, so that when gNB receives user plane data sent by UE1, it can pass the protocol layer entity
  • the direct transmission channel of the data is forwarded to UE2, so that direct data transmission between UE1 and UE2 can be realized.
  • gNB-CU-UP establishes a direct data transmission channel between the PDCP layer entities of PDU Session 1 and PDU Session 2
  • gNB-DU1 i.e.
  • the first DU receives the user plane data sent by UE1 to UE2,
  • the user plane data is processed through the physical layer, MAC layer, and RLC layer of PDU session 1 in turn, and the processed user plane data is sent to gNB-CU-UP, and gNB-CU-UP will receive the user plane data through
  • the processed user plane data is forwarded to the PDCP layer of PDU session 2 through the direct data transmission channel between the PDCP layer entities of PDU session 1 and PDU session 2 for processing, and the processed
  • the user plane data is sent to gNB-DU2, and gNB-DU2 processes the received data through the RLC layer, MAC layer, and physical layer of PDU session 2 in turn, and then forwards the processed user plane data to UE2, as shown in Figure 17. Shown.
  • the gNB-CU-UP1 may establish a direct data transmission channel.
  • the gNB-CU-CP may receive the indication information, and send third information to the gNB-CU-UP1.
  • the third information means that the second PDU session is in the gNB-
  • the downlink user plane channel information at the CU-UP2, or the third information refers to the user plane channel information allocated by the gNB-CU-UP2 for the second PDU session for direct data transmission.
  • the gNB-CU-UP1 may allocate the third information as uplink user plane channel information of the PDU session to the first PDU session.
  • the above method modifies the uplink user plane channel information of the first PDU session, so that when gNB-CU-UP1 receives the user plane data of the first terminal forwarded by gNB-DU1, the user plane data can be routed to gNB-CU-UP1 according to the third information.
  • CU-UP2 can thus be forwarded by gNB-CU-UP2 to gNB-DU2, and then forwarded by gNB-DU2 to the second terminal, so as to realize the direct data transmission between the first terminal and the second terminal at the access network.
  • the gNB-CU-CP may receive the indication information, and send third information to the gNB-CU-UP1, where the third information refers to the second PDU session in the gNB -Downlink user plane channel information at CU-UP2, or the third information refers to user plane channel information allocated by the gNB-CU-UP2 for the second PDU session for direct data transmission.
  • the gNB-CU-UP1 may allocate the third information as uplink user plane channel information of the direct data transmission channel to the first PDU session.
  • a new user plane channel information for direct data transmission is newly allocated for the first PDU session, and the user plane channel information for direct data transmission is the third information, so that gNB-CU-UP1 receives the first DU forwarding
  • the user plane data can be directly transmitted to gNB-CU-UP2 according to the third information, so that it can be forwarded by gNB-CU-UP2 to gNB-DU2, and then by gNB-DU2 to The second terminal realizes the direct data transmission between the first terminal and the second terminal at the access network.
  • gNB-CU can be used to implement the functions of the RRC layer, SDAP layer and PDCP layer, and gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • gNB-DU can be used to implement the functions of the RLC layer, MAC layer and physical layer as an example.
  • scenario 3 shown in FIG. 15C the process of establishing a direct data transmission channel will be described in detail.
  • the process of establishing a direct data transmission channel can be shown in Figure 18.
  • Step S1801 to step S1826 for details, please refer to step S1601 to step S1626, which will not be repeated here. It should be noted that the receiving device in step S1804 is different from the receiving device in step S1604.
  • the receiving device in S1604 is gNB-CU-UP
  • the receiving device in step S1804 is gNB-CU-UP2
  • step S1804 gNB-CU-CP sends gNB-CU-UP to gNB-CU-UP.
  • the bearer context modification request sent by CU-UP2 carries third information, the third information is the downlink user plane channel information of PDU session 1 at gNB-CU-UP1, or the third information refers to the gNB-CU-UP1 User plane channel information allocated for PDU session 1 for direct data transmission.
  • gNB-CU-UP2 can establish a direct data transmission channel between PDU session 1 and PDU session 2 according to the third information, and both ends of the direct data transmission channel are connected to the first CU-UP and all
  • the second CU-UP that is, the two ends of the direct data transmission channel are respectively connected to the entity used in the first PDU session and the entity used in the second PDU session means that the two ends of the direct data transmission channel are respectively connected to the first CU-UP and the first CU-UP.
  • Two CU-UP E.g.
  • the gNB-CU-UP2 allocates the third information as the uplink user plane channel information of the direct data transmission channel to the PDU session 2.
  • gNB-CU-UP2 assigns the third information as the uplink user plane channel information of the PDU session to PDU session 2. That is, gNB-CU-UP2 modifies the core network element as the uplink user plane channel information of PDU session 2 to the first Three information.
  • gNB-CU-UP2 receives the data sent by UE2 on the resource of PDU2, it can route the data to the resource of PDU session 1 in gNB-CU-UP1, and can send the data on the resource of PDU1 To UE1.
  • Step S1805 is different from the sending device in step S1605.
  • the sending device in S1605 is gNB-CU-UP
  • the sending device in step S1805 is gNB-CU-UP2.
  • Step S1817 is different from the receiving device in step S1617.
  • the receiving device in S1617 is gNB-CU-UP
  • the receiving device in step S1817 is gNB-CU-UP1.
  • Step S1818 is different from the sending device in step S1618.
  • the sending device in S1618 is gNB-CU-UP
  • the sending device in step S1817 is gNB-CU-UP1.
  • the bearer context modification request sent by gNB-CU-CP to gNB-CU-UP1 in step S1817 may carry fourth information, and the fourth information is the downlink user plane channel information of PDU session 2 at gNB-CU-UP2.
  • the fourth information refers to user plane channel information allocated for PDU session 2 by the gNB-CU-UP2 for direct data transmission.
  • the gNB-CU-UP1 can establish a direct data transmission channel between the PDU session 1 and the PDU session 2 according to the fourth information.
  • the gNB-CU-UP1 allocates the fourth information as the uplink user plane channel information of the direct data transmission channel to the PDU session 1.
  • gNB-CU-UP1 assigns the fourth information as the uplink user plane channel information of the PDU session to PDU session 1. That is, gNB-CU-UP1 modifies the core network element as the uplink user plane channel information of PDU session 1 to the first Four information.
  • gNB-CU-UP1 when gNB-CU-UP1 receives the data sent by UE1 on the resource of PDU1, it can route the data to the resource of PDU session 2 in gNB-CU-UP2, and can send the data on the resource of PDU2. To UE2.
  • the occupied PDU session resources may be different from when UE2 sends data to UE1.
  • UE2 sends data to UE1 it occupies the PDU2 resource of UE2 and the PDU1 resource of UE1. That is, gNB-CU-UP2 can be based on the downlink user plane channel information of PDU session 1 at gNB-CU-UP1, or the user plane channel information allocated by gNB-CU-UP1 for PDU session 1 for direct data transmission.
  • a direct data transmission channel is established between PDU Session 1 and PDU Session 2.
  • UE2 When UE2 sends data to UE1, UE2 can send data on the resources of PDU2, and gNB-CU-UP2 routes the data to PDU1 in gNB-CU-UP1 In terms of resources, gNB-CU-UP1 sends the data to UE1 on the resources of PDU1.
  • gNB-CU-UP1 can be based on the downlink user plane channel information of PDU session 3 at gNB-CU-UP2, or the user plane channel information allocated by gNB-CU-UP2 for PDU session 3 for direct data transmission.
  • a direct data transmission channel is established between PDU session 4 and PDU session 3.
  • UE1 sends data to UE2, UE1 can send data on the resources of PDU4, and gNB-CU-UP1 routes the data to PDU3 in gNB-CU-UP2 In terms of resources, gNB-CU-UP2 sends the data to UE1 on the resources of PDU3.
  • the two terminals are under different gNB-DUs, and the two gNB-DUs are also under different gNB-CU-UPs.
  • One terminal sends user plane data to another terminal through the NG port.
  • the E1 port signaling establishes a direct data transmission channel between the two gNB-CU-UPs, so that the data of the two terminals are directly transmitted between the two gNB-CU-UPs through Xn-U.
  • the gNB-CU-UP1 may establish a direct data transmission channel.
  • the first terminal and second terminal of the four scenarios shown in Figure 15D are all connected to the same gNB. -DU, and the first terminal and the second terminal shown in step S1801 to step S1826 are connected to gNB-DU1 and gNB-DU2, respectively. Therefore, in the fourth scenario shown in FIG.
  • step S1801 to step S1826 The actions of the gNB-DU1 and gNB-DU2 can be executed by the gNB-DU accessed by the first terminal and the second terminal, and will not be repeated here.
  • two terminals are under the same gNB-DU and gNB-DUs are under different gNB-CU-UPs.
  • One terminal sends user plane data to the other terminal through the NG port and
  • the E1 port signaling establishes a direct data transmission channel between the two gNB-CU-UPs, so that the data of the two terminals can be directly transmitted between the two gNB-CU-UPs via Xn-U.
  • Embodiment 2 The first terminal (UE1) and the second terminal (UE2) may respectively access different radio access network equipment.
  • the first terminal accesses the first radio access network equipment (gNB1)
  • the second terminal accesses Enter the second wireless access network device (gNB2), as shown in Figure 19.
  • the first radio access network device establishes a direct data transmission channel, it can be implemented in the following two ways.
  • the first wireless access network device may establish a direct data transmission channel between the first wireless access network device and the second wireless access network device for the first terminal and the second terminal through the Xn interface.
  • the following takes a gNB in which the first radio access network device and the second radio access network device are of a centralized architecture as an example, and the process of establishing a direct data transmission channel is specifically described in detail.
  • the process of establishing a direct data transmission channel can be shown in Figure 20.
  • step S2001 and step S2002 please refer to step S901 and step S902, which will not be repeated here.
  • the AMF sends a PDU session resource setting request to gNB2 (ie, the second radio access network device), so that gNB2 configures PDU session resources for PDU session 2 of UE2, so that UE2 can receive user plane data from UE1.
  • gNB2 ie, the second radio access network device
  • the core network element and gNB2 can initiate paging in sequence.
  • UE2 receives the page and establishes an RRC connection with gNB2.
  • the PDU session resource setting request signaling can carry indication information to inform gNB2 that the PDU session 2 established for UE2 is associated with which PDU session of UE1 or other terminals , GNB2 establishes a direct transmission channel for PDU sessions that can directly transmit data at the access network according to the association relationship (for example, the association relationship shows that UE2’s PDU session 2 and UE1’s PDU session 1 can directly transmit data, then gNB2 is PDU Session 1 and PDU Session 2 establish a direct data transmission channel) for direct data transmission.
  • the PDU session resource setting request may also carry second information.
  • the PDU session resource setting request carries the PDU session identifier (PDU Session ID) and the parameters such as the QoS Flow list included in the corresponding PDU session (PDU Session).
  • PDU Session ID PDU session identifier
  • PDU Session ID the parameters such as the QoS Flow list included in the corresponding PDU session
  • one or more information elements are added to the PDU session resource setting request to indicate that the first PDU session of the second radio access network device UE1 can communicate with the second PDU session of UE2.
  • the PDU session performs direct data transmission at the access network.
  • one or more indication elements (Indication) may be added to the PDU session resource setting request to indicate whether the second radio access network device is on the resources of the second PDU session of UE2. Direct data transmission at the access network is required.
  • UPF may not feed back the uplink user plane channel information allocated for PDU session 2 to AMF, so AMF does not feed back to gNB2 UPF allocates uplink user plane channel information for PDU session 2; alternatively, UPF can feed back the uplink user plane channel information allocated for PDU session 2 to AMF, but AMF does not feedback the uplink user plane channel allocated by UPF for PDU session 2 to gNB2 Information; or, UPF may not allocate uplink user plane channel information for PDU session 2, so that AMF does not feed back the uplink user plane channel information of PDU session 2 to gNB2.
  • AMF can also feedback UPF to gNB2 to allocate uplink user plane channel information for PDU session 2, so that direct data transmission between UE1 and UE2 at gNB fails.
  • the user plane data of UE2 can be forwarded to UE1 via gNB2-core network element-DN-core network element-gNB1, and then the user plane data of UE2 can be forwarded to UE1 by gNB1, so as to improve the success rate of data transmission.
  • the uplink user plane channel information (NG UL UP Transport Layer Information) of the PDU session can include, but is not limited to: user plane transport layer information (UP Transport Layer Information), transport layer address (Transport Layer Address), GPRS tunnel protocol-tunnel Endpoint identifier (GPRS tunnelling protocol-tunnel endpoint identifier, GTP-TEID) and so on.
  • the user plane transport layer information is used to provide the NG user plane transport layer information associated with the PDU session of the NG-RAN node-AMF pair, which can specifically correspond to the internet protocol IP address and the GTP tunnel endpoint identifier .
  • the transport layer address can be an IP address.
  • GTP-TEID may be the GTP tunnel endpoint identifier for user plane transmission between the NG-RAN node and the UPF.
  • gNB2 requests UE2 to configure corresponding SRB and DRB resources for PDU session 2, and at the same time forwards the indication information to UE2. It should be understood that, before forwarding to UE2, gNB2 can convert the PDU identification and UE identification in the first information received by gNB2 into corresponding identifications that can be recognized by UE2.
  • UE2 feeds back the successfully established SRB and DRB resources to gNB2.
  • the gNB2 updates the indication information according to the feedback of the UE2.
  • gNB2 sends the updated indication information to gNB1 to inform gNB1 that UE2's PDU2 can directly transmit data with UE1's PDU1, and at the same time, gNB2 uses it as the downlink user plane channel information allocated by PDU2 (for example, DL UP TNL Information; Or, DL Direct UP TNL Information; or, DL Forwarding UP TNL Information) is sent to gNB1 for direct data transmission.
  • PDU2 downlink user plane channel information allocated by PDU2
  • gNB1 requests UE1 to modify the established or/and re-establish SRB, DRB for the PDU session indicated by the updated indication information. For example, gNB1 can allocate the downlink user plane channel information allocated by gNB2 to PDU2 as uplink user plane channel information allocation Give PDU1. And forward the updated instruction information to UE1.
  • gNB1 can convert the PDU identifier and UE identifier in the first information received by gNB1 into corresponding identifiers that can be recognized by UE1.
  • the UE1 reports to the gNB that the established or/and re-established SRB and DRB have been successfully modified.
  • gNB1 feeds back to gNB2 the successfully established PDU session that can be directly transferred, and will allocate downlink user plane channel information for the corresponding PDU session (for example, DL UP TNL Information; or DL Direct UP TNL Information; or DL Forwarding UP TNL Information) is sent to gNB2 for direct data transmission. Therefore, gNB2 can allocate the downlink user plane channel information allocated by gNB1 to PDU1 as uplink user plane channel information to PDU2.
  • downlink user plane channel information for the corresponding PDU session for example, DL UP TNL Information; or DL Direct UP TNL Information; or DL Forwarding UP TNL Information
  • the gNB2 feeds back to the AMF a successfully established PDU session capable of direct transmission.
  • the occupied PDU session resources may be different from when UE2 sends data to UE1.
  • UE2 sends data to UE1, it occupies the PDU2 resource of UE2 and the PDU1 resource of UE1. That is, gNB2 can establish data direct between PDU session 1 and PDU session 2 according to the downlink user plane channel information of PDU session 1 at gNB1, or the user plane channel information allocated by gNB1 for PDU session 1 for direct data transmission.
  • UE2 when UE2 sends data to UE1, UE2 can send data on the resource of PDU2, gNB2 routes the data to the resource of PDU1 in gNB1, and gNB1 sends the data to UE1 on the resource of PDU1.
  • gNB1 can establish data direct transmission between PDU session 4 and PDU session 3 according to the downlink user plane channel information of PDU session 3 at gNB2, or the user plane channel information allocated by gNB2 for PDU session 3 for direct data transmission.
  • UE1 can send data on the resource of PDU4
  • gNB1 routes the data to the resource of PDU3 in gNB2
  • gNB2 sends the data to UE1 on the resource of PDU3.
  • the data when user plane data is transmitted between terminals under different gNBs, the data can be transmitted directly between the two gNBs without being forwarded by the core network, which can reduce the number of data transmission hops and delays, and reduce core network resources and Signaling overhead.
  • the action performed by gNB1 in the method shown in FIG. 20 may specifically be the CU or CU-CP or CU of gNB1.
  • -UP or DU execution for example, the CU of gNB1 or the CU-CP of gNB1 in step S2007 receives the indication information from gNB2 and the user plane channel information, the CU of gNB1 or the CU-CP of gNB1 in step S2008 receives from step S2007
  • the instruction information of gNB2 and the user plane channel information inform the CU-UP of gNB1 or the DU of gNB1, the CU-UP of gNB1 or the DU of gNB1 establishes a direct data transmission channel based on the received user plane channel information, and the received instruction information is UE1 reconfigures DRB resources and user plane channel information and feeds it back to gNB1's CU or gNB1
  • step 2010 gNB1's CU or gNB1's CU-CP feeds back to gNB2 the successfully established PDU session that can be directly transferred, and The downlink user plane channel information allocated for the corresponding PDU session is sent to gNB2 for direct data transmission, and so on.
  • the action performed by gNB2 may be specifically executed by the CU or CU-CP or CU-UP or DU of gNB2.
  • the CU of gNB2 or the CU-CP of gNB2 in step S2003 receives information from AMF, and the CU of gNB2 in step S2004 Or the CU-CP of gNB2 sends an RRC message to UE2 to configure the corresponding DRB resources, the CU-UP of gNB2 or the DU of gNB2 configures the corresponding DRB resources and user plane channel information for UE2 and feeds them back to the CU or CU-CP, in step S2006
  • the CU of gNB2 or the CU-CP of gNB2 updates the indication information, the CU-UP of gNB2 or the DU of gNB2 reconfigures the corresponding user plane channel information for UE2 and feeds it back to the CU or CU-CP, and so on.
  • gNB1 and gNB2 may have different functionally separated architectures.
  • both gNB1 and gNB2 can be a centralized architecture; or, gNB1 can be the architecture shown in Figure 4A or Figure 5, and gNB2 can be a centralized architecture; or, gNB1 can be a centralized architecture, and gNB2 can be as shown in Figure 4A Or the architecture shown in Figure 5; or, both gNB1 and gNB2 can be the architecture shown in Figure 4A; or, both gNB1 and gNB2 can be the architecture shown in Figure 5; or, gNB1 can be the architecture shown in Figure 4A
  • gNB2 may be the architecture shown in FIG. 5; alternatively, gNB1 may be the architecture shown in FIG. 5, and gNB2 may be the architecture shown in FIG. 4A. and many more.
  • the first wireless access network device can establish direct data transmission between the first wireless access network device and the second wireless access network device for the first terminal and the second terminal through NG interface signaling aisle.
  • the following takes a gNB in which the first radio access network device and the second radio access network device are of a centralized architecture as an example, and the process of establishing a direct data transmission channel is specifically described in detail.
  • the process of establishing a direct data transmission channel can be shown in Figure 21.
  • step S2101 to step S2105 For details of step S2101 to step S2105, please refer to step S2001 to step S2005, which will not be repeated here.
  • AMF can also use gNB1 in S2101 for the downlink user plane channel information of the PDU Session1 allocated by UE1 (for example, DL UP TNL Information) is used as the uplink user plane channel information (for example, UL UP TNL Information) of UE2's PDU Session2 and is allocated to gNB2, gNB2 and other PDU Sessions of UE2 are allocated downlink user plane channel information (for example, DL UP TNL Information).
  • DL UP TNL Information downlink user plane channel information of the PDU Session1 allocated by UE1
  • uplink user plane channel information for example, UL UP TNL Information
  • gNB2 and other PDU Sessions of UE2 are allocated downlink user plane channel information (for example, DL UP TNL Information).
  • AMF may also assign the downlink user plane channel information (for example, DL UP TNL Information) of PDU Session 1 allocated by gNB1 for UE1 in S2101 as the uplink user plane channel information used for direct data transmission channel of UE2's PDU Session 2 to gNB2 .
  • downlink user plane channel information for example, DL UP TNL Information
  • step S2106 the gNB2 feeds back to the AMF the successfully established PDU session capable of direct transmission.
  • Step S2107 the core network element updates the instruction information.
  • Step S2108 AMF sends a request to gNB1 so that gNB1 can modify or/and establish PDU session resources for UE1.
  • the request carries the updated second information to inform the terminal UE1 under the gNB1 whether the data to be transmitted in the PDU session of the terminal UE1 can be directly transmitted between different base stations. If the data can be directly transferred between different base stations, the request should also carry indication information to inform the PDU Session 1 established by the gNB1 for the UE 1 which PDU Session 1 of the UE 2 or other terminals is associated with.
  • the AMF uses the downlink user plane channel information (e.g., DL UP TNL Information) of the PDU Session 2 allocated for UE2 in step S2103 as the uplink of UE1’s PDU Session 1
  • User plane channel information for example, UL UP TNL Information
  • gNB1 gNode B1
  • gNB1 gNode B1
  • other PDU Sessions of UE1 are allocated downlink user plane channel information (for example, DL UP TNL Information).
  • the AMF may also assign the downlink user plane channel information (for example, DL UP TNL Information) of the PDU Session 2 allocated by the gNB2 to the UE2 in step S2103 as the uplink user plane channel information of the PDU Session 1 used for the direct data transmission channel of the UE1.
  • the downlink user plane channel information for example, DL UP TNL Information
  • Step S2109 to step S2110 for details, please refer to step S2008 to step S2009, which will not be repeated here.
  • step S2111 the gNB1 feeds back to the AMF the successfully established PDU session capable of direct transmission.
  • the data when user plane data is transmitted between terminals under different gNBs, the data can be transmitted directly between the two gNBs without being forwarded by the core network, which can reduce the number of data transmission hops and delays, and reduce core network resources and Signaling overhead.
  • the action performed by gNB1 in the method shown in FIG. 21 may specifically be the CU or CU-CP or CU of gNB1.
  • -UP or DU execution for example, the CU of gNB1 or the CU-CP of gNB1 in step S2108 receives the indication information and user plane channel information from the AMF, the CU of gNB1 or the CU-CP of gNB1 in step S2109 receives from The instruction information of gNB2 and the user plane channel information inform the CU-UP of gNB1 or the DU of gNB1, the CU-UP of gNB1 or the DU of gNB1 establishes a direct data transmission channel based on the received user plane channel information, and the received instruction information is UE1 reconfigures DRB resources and user plane channel information and feeds it back to the CU of gNB1 or CU-CP of g
  • step 2111 the CU of gNB1 or CU-CP of gNB1 feeds back to AMF the successfully established PDU session for direct transmission, and The downlink user plane channel information allocated for the corresponding PDU session is sent to the AMF for direct data transmission, and so on.
  • the action performed by gNB2 may be specifically executed by the CU or CU-CP or CU-UP or DU of gNB2.
  • the CU of gNB2 or the CU-CP of gNB2 in step S2103 receives information from AMF, and the CU of gNB2 in step S2104 Or the CU-CP of gNB2 sends an RRC message to UE2 to configure the corresponding DRB resources, the CU-UP of gNB2 or the DU of gNB2 configures the corresponding DRB resources and user plane channel information for UE2 and feeds them back to the CU or CU-CP, in step S2106
  • the CU of gNB2 or the CU-CP of gNB2 sends the successfully established PDU session that can be directly transmitted backed by the CU-UP of gNB2 or the DU of gNB2, and the downlink user plane channel information allocated for the corresponding PDU session is sent to AMF for data Direct transmission, etc.
  • gNB1 and gNB2 may have different functionally separated architectures.
  • both gNB1 and gNB2 can be a centralized architecture; or, gNB1 can be the architecture shown in Figure 4A or Figure 5, and gNB2 can be a centralized architecture; or, gNB1 can be a centralized architecture, and gNB2 can be as shown in Figure 4A Or the architecture shown in Figure 5; or, both gNB1 and gNB2 can be the architecture shown in Figure 4A; or, both gNB1 and gNB2 can be the architecture shown in Figure 5; or, gNB1 can be the architecture shown in Figure 4A
  • gNB2 may be the architecture shown in FIG. 5; alternatively, gNB1 may be the architecture shown in FIG. 5, and gNB2 may be the architecture shown in FIG. 4A. and many more.
  • the embodiments of the present application provide a communication device.
  • the communication device may be specifically used to implement the method executed by the first radio access network device in the embodiment shown in FIG. 8.
  • the device may be
  • the first radio access network device itself may also be a chip or a chip set in the first radio access network device or a part of the chip used to perform related method functions.
  • the structure of the communication device may be as shown in FIG. 22A, including a first transceiving unit 2201, a second transceiving unit 2202, and a processing unit 2203.
  • the first transceiving unit 2201 is used to transmit data between the wireless access network device and the first terminal; the second transceiving unit 2202 is used to transmit data between the wireless access network device and the second terminal Data is transmitted between the first terminal and the second terminal, where both the first terminal and the second terminal access the wireless access network device; the processing unit 2203 is configured to control the first transceiver unit 2201 to receive the first terminal
  • the user plane data sent on the resources of the first PDU session, the user plane data is sent by the first terminal to the second terminal; and controlling the second transceiver unit 2202 based on the direct data transmission channel
  • the user plane data is sent to the second terminal on the resources of the second PDU session, and both ends of the direct data transmission channel are respectively connected to the entity used by the first PDU session and the entity used by the second PDU session .
  • the wireless access network device may further include a fourth transceiving unit 2204; the fourth transceiving unit 2204 is used to transmit data between the wireless access network device and the core network device;
  • the processing unit 2203 is further configured to: before receiving the user plane data sent by the first terminal on the resources of the first PDU session, control the fourth transceiver unit 2204 to receive the instruction information sent by the core network device, the instruction
  • the information includes first information, or the indication information includes first information and second information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with the second terminal.
  • the second PDU session performs direct data transmission at the access network, and the second information is used to instruct the radio access network device to perform direct data transmission at the access network on the resources of the second PDU session.
  • the radio access network device may include a CU, the processing unit 2203 is deployed in the CU, and the fourth transceiving unit 2204 may also be deployed in the CU.
  • the wireless access network device may further include a first DU, and the first transceiving unit 2201 and the second transceiving unit 2202 can be deployed in the first DU, as shown in FIG. 22B.
  • the radio access network device may further include a first DU and a second DU, the first transceiver unit 2201 may be deployed in the first DU, and the second transceiver unit 2202 may be deployed in the second DU, as shown in FIG. 22C.
  • the processing unit 2203 is further configured to: before controlling the first communication interface to receive the user plane data sent by the first terminal on the resources of the first PDU session, provide the first PDU session and the second The second PDU session establishes a first direct data transmission channel, and both ends of the first direct data transmission channel are respectively connected to the entity of the first protocol layer used by the first PDU session and the first protocol layer used by the second PDU session.
  • a protocol layer entity, the first protocol layer is any protocol layer of the CU.
  • the CU may include a CU-CP and a CU-UP; the fourth transceiver unit 2204 may be deployed on the CU-CP, and the processing unit 2203 may be deployed on the CU-UP.
  • the processing unit 2203 is further configured to: before controlling the first communication interface to receive the user plane data sent by the first terminal on the resources of the first PDU session, provide the first PDU session and the second The second PDU session establishes the first data direct transmission channel, and both ends of the first data direct transmission channel are respectively connected to the entity of the second protocol layer used by the first PDU session and all the entities used by the second PDU session.
  • the second protocol layer is any protocol layer of the CU-UP.
  • the radio access network device may further include a first DU, and the first transceiving unit 2201 and the second transceiving unit 2202 can be deployed in the first DU, as shown in FIG. 22D.
  • the radio access network device may further include a first DU and a second DU, the first transceiver unit 2201 may be deployed in the first DU, and the second transceiver unit 2202 may be deployed in the second DU, as shown in FIG. 22E.
  • the radio access network device includes a CU and a first DU connected to the CU, the first terminal and the second terminal both access the first DU, and
  • the transceiver unit 2201 and the second transceiver unit 2202 may be deployed in the first DU, as shown in FIG.
  • the fourth transceiver unit 2204 may be deployed in the CU, and the processing unit 2203 may be deployed in the first DU;
  • the unit 2203 is further configured to: before controlling the first communication interface to receive the user plane data sent by the first terminal on the resources of the first PDU session, provide the first PDU session and the second PDU session A second data direct transmission channel is established, and both ends of the second data direct transmission channel are respectively connected to entities of the third protocol layer used by the first PDU session and the third protocol layer used by the second PDU session Entity, the third protocol layer is any protocol layer of the first DU.
  • the radio access network device includes a CU, and a first DU and a second DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and a second CU- UP, wherein the first CU-UP is connected to the first DU, the second CU-UP is connected to the second DU, the first terminal accesses the first DU, and the first DU Two terminals access the second DU, the first transceiving unit 2201 can be deployed in the first DU, and the second transceiving unit 2202 can be deployed in the second DU, as shown in FIG. 22G; or, the first radio access network device It includes a CU and a first DU connected to the CU.
  • the CU includes a CU-CP, a first CU-UP, and a second CU-UP, where the first DU is connected to the first CU-UP and the The second CU-UP is connected, the first terminal and the second terminal are both connected to the first DU, the first transceiving unit 2201 and the second transceiving unit 2202 can be deployed in the first DU, as shown in FIG.
  • the fourth transceiving unit 2204 may be deployed in the CU-CP, and the processing unit 2203 is deployed in the first CU-UP; the CU-CP further includes a third transceiving unit 2205; the third transceiving unit 2205; The unit 2205 is configured to send the first CU-UP to the first CU-UP before the processing unit 2203 controls the first transceiving unit 2201 to receive the user plane data sent by the first terminal on the resources of the first PDU session Three information, the third information refers to the downlink user plane channel information of the second PDU session at the second CU-UP, or the third information refers to the second CU-UP The user plane channel information allocated by the second PDU session for direct data transmission; the processing unit 2203 is further configured to: allocate the third information as uplink user plane channel information of the PDU session to the first PDU Session, the two ends of the direct data transmission channel are respectively connected to the first CU-UP and the second CU-UP, and the two ends of the direct data transmission channel are
  • the radio access network device includes a CU, and a first DU and a second DU connected to the CU, and the CU includes a CU-CP, a first CU-UP, and a second CU- UP, wherein the first CU-UP is connected to the first DU, the second CU-UP is connected to the second DU, the first terminal accesses the first DU, and the first DU Two terminals access the second DU, the first transceiving unit 2201 can be deployed in the first DU, and the second transceiving unit 2202 can be deployed in the second DU, as shown in FIG. 22G; or, the first radio access network device It includes a CU and a first DU connected to the CU.
  • the CU includes a CU-CP, a first CU-UP, and a second CU-UP, where the first DU is connected to the first CU-UP and the The second CU-UP is connected, the first terminal and the second terminal are both connected to the first DU, the first transceiving unit 2201 and the second transceiving unit 2202 can be deployed in the first DU, as shown in FIG.
  • the fourth transceiving unit 2204 may be deployed in the CU-CP, and the processing unit 2203 is deployed in the first CU-UP; the CU-CP further includes a third transceiving unit 2205; the third transceiving unit 2205; The unit 2205 is configured to send the first CU-UP to the first CU-UP before the processing unit 2203 controls the first transceiver unit 2201 to receive the user plane data sent by the first terminal on the resources of the first PDU session.
  • the third information refers to the downlink user plane channel information of the second PDU session at the second CU-UP, or the third information refers to the second CU-UP User plane channel information allocated for the second PDU session for direct data transmission; the processing unit 2203 is further configured to: allocate the third information as the uplink user plane channel information of the direct data transmission channel For the first PDU session, both ends of the direct data transmission channel are respectively connected to the first CU-UP and the second CU-UP, and both ends of the direct data transmission channel are respectively connected to the first
  • the entity used by the PDU session and the entity used by the second PDU session refer to that the two ends of the direct data transmission channel are respectively connected to the first CU-UP and the second CU-UP.
  • the processing unit 2203 is further configured to perform at least one of the following actions: control the first transceiving unit 2201 to send the instruction information to the first terminal; control the second transceiving unit 2202 to send the instruction information to the first terminal; The second terminal sends the instruction information.
  • the embodiment of the present application also provides a communication device.
  • the structure of the communication device may be as shown in FIG. 23, including a transceiver unit 2301 and a processing unit 2302.
  • the remote interference management device can be specifically used to implement the method executed by the core network device in the embodiment shown in FIG. 8.
  • the device can be the core network device itself, or the chip or chip in the core network device. A chip set or part of a chip used to perform related method functions.
  • the processing unit 2302 is configured to determine that the first terminal and the second terminal can directly transmit data at the access network, where both the first terminal and the second terminal are connected to the first wireless access network device.
  • the transceiver unit 2301 is configured to send instruction information to the first wireless access network device, the instruction information carries first information, and the first information is used to indicate the first packet data unit PDU of the first terminal
  • the session can directly transmit data at the access network with the second PDU session of the second terminal.
  • the indication information carries second information
  • the second information is used to instruct the first radio access network device to perform direct data transmission at the access network on the resources of the second PDU session.
  • the processing unit 2302 is further configured to release the PDU session resource allocated by the core network device for the first PDU session.
  • the communication device may be specifically used to implement the method executed by the first terminal in the embodiment shown in FIG. 8.
  • the device may be the first terminal itself, or the chip or chip in the first terminal. A part of a group or chip used to perform related method functions.
  • the transceiver unit 2301 is configured to receive instruction information sent by a first wireless access network device, where the instruction information is used to indicate a first packet data unit PDU session of the first terminal and a second PDU session of the second terminal Perform direct data transmission at the access network, the first wireless access network device is the wireless access network device accessed by the first terminal and the second terminal; the processing unit 2302 is configured to be based on the instruction Information encapsulates user plane data, the user plane data is sent by the first terminal to the second terminal; the transceiver unit 2301 is further configured to send the user plane data to the first wireless access network device.
  • the IP header of the user plane data may include at least one of the following information: IP protocol version number, header length, service type, total length of the user plane data, and the user plane data
  • IP protocol version number IP version number
  • header length IP version number
  • service type IP protocol version number
  • total length of the user plane data IP protocol version number
  • user plane data The identifier, the identifier used to indicate whether to fragment, the fragment offset, the time to live, the protocol identifier used to distinguish the upper layer protocol, the header checksum, and the source port IP address.
  • the indication information includes first information, or the indication information includes first information and second information, and the first information is used to indicate that the first PDU session of the first terminal can communicate with The second PDU session of the second terminal performs direct data transmission at the access network, and the second information is used to instruct the first radio access network device to perform on the resources of the second PDU session The data at the access network is directly transmitted.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the communication device may be as shown in FIG. 24, and the device may be a wireless access network device or a chip in a wireless access network device.
  • the device may include a processor 2401, multiple communication interfaces 2402, and a memory 2403.
  • the processing unit 2203 may be a processor 2401.
  • the first transceiving unit 2201, the second transceiving unit 2202, the fourth transceiving unit 2204, and the third transceiving unit 2205 may be the communication interface 2402.
  • the processor 2401 may be a central processing unit (CPU), or a digital processing unit, or the like.
  • the communication interface 2402 may be a transceiver, an interface circuit such as a transceiver circuit, etc., or a transceiver chip, and so on.
  • the device also includes a memory 2403, which is used to store programs executed by the processor 2401.
  • the memory 2403 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory 2403 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 2401 is configured to execute the program code stored in the memory 2403, and is specifically configured to execute the actions of the above-mentioned processing unit 2203, which will not be repeated in this application.
  • the multiple communication interfaces 2402 are respectively used to perform the operations of the first transceiving unit 2201, the second transceiving unit 2202, the fourth transceiving unit 2204, and the third transceiving unit 2205, which will not be repeated in this application.
  • connection medium between the aforementioned communication interface 2402, the processor 2401, and the memory 2403 is not limited in the embodiment of the present application.
  • the memory 2403, the processor 2401, and the communication interface 2402 are connected by a bus 2404.
  • the bus is represented by a thick line in FIG. 24.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in FIG. 24 to indicate, but it does not mean that there is only one bus or one type of bus.
  • the communication device may be as shown in FIG. 25, and the device may be a core network device or a chip in a core network device, or may be the first terminal or a chip in the first terminal.
  • the device may include a processor 2501, a communication interface 2502, and a memory 2503.
  • the processing unit 2302 may be a processor 2501.
  • the transceiver unit 2301 may be a communication interface 2502.
  • the processor 2501 may be a CPU, or a digital processing unit, and so on.
  • the communication interface 2502 may be a transceiver, an interface circuit such as a transceiver circuit, etc., or a transceiver chip, and so on.
  • the device also includes a memory 2503, which is used to store programs executed by the processor 2501.
  • the memory 2503 may be a non-volatile memory, such as HDD or SSD, etc., or may also be a volatile memory, such as RAM.
  • the memory 2503 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 2501 is configured to execute the program code stored in the memory 2503, and is specifically configured to execute the actions of the above-mentioned processing unit 2302, which will not be repeated in this application.
  • the communication interface 2502 is specifically used to perform the actions of the above-mentioned transceiver unit 2301, which will not be repeated in this application.
  • connection medium between the aforementioned communication interface 2502, processor 2501, and memory 2503 is not limited in the embodiment of the present application.
  • the memory 2503, the processor 2501, and the communication interface 2502 are connected by a bus 2504.
  • the bus is represented by a thick line in FIG. 25.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 25, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which contains a program required to execute the above-mentioned processor.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种数据传输方法及装置,用以解决终端间进行用户面数据传输时传输过程冗余的问题。该方法包括:第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给第二终端的;所述第一无线接入网设备基于数据直接传输通道在第二PDU会话的资源上向第二终端发送所述用户面数据。其中,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体。

Description

一种数据传输方法及装置
本申请要求在2019年04月18日提交中国专利局、申请号为201910313314.X、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
分组数据单元(packet data unit,PDU)会话的建立过程是为用户面的数据传输配置无线和有线资源的过程,PDU会话的建立涉及到从终端(user equipment,UE)到数据网络(data network,DN)之间的多个网元,是一个端到端的配置过程。
因此,终端间进行数据传输时,一个终端首先将用户面数据通过空口转发给基站,基站再将用户面数据转发给用户面管理功能(user plane function,UPF),UPF再将数据转发给数据网络单元(data network,DN),DN再将数据转发给UPF,UPF再将数据转发至基站,基站最终将数据通过空口转发给另一个终端,以UE1向UE2传输数据为例,参阅图1所示的端到端的数据传输路径。
终端间进行用户面数据传输时,即使发送侧终端与接收侧终端接入的是同一基站,或者接入同一接入和移动管理功能(access and mobility management function,AMF)/UPF,依然需要将发送侧终端的数据发送至核心网,再由核心网转发回基站,基站再将数据发送给接收侧终端,这增加了数据传输的跳数和时延,增加了核心网的负载和资源开销,数据传输过程存在冗余。
发明内容
本申请提供了一种数据传输方法及装置,用以解决终端间进行用户面数据传输时传输过程冗余的问题。
第一方面,本申请提供的一种数据传输方法,包括:第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给第二终端的。所述第一无线接入网设备基于数据直接传输通道在第二PDU会话的资源上向第二终端发送所述用户面数据,其中,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体。
本申请实施例中第一无线接入网设备可以在所述第一无线接入网设备为所述第一PDU会话所分配资源以及所述第一无线接入网设备为所述第二PDU会话所分配资源之间的数据直接传输通道上,将第一终端在第一PDU会话的资源上发送的用户面数据转发到第二PDU会话的资源上,并在第一PDU会话的资源上向第二终端发送该用户面数据,从而可以实现接入网处的数据直接传输。相比于现有技术中,终端间进行用户面数据传输时,即使发送侧终端与接收侧终端接入的是同一基站,或者接入同一AMF/UPF,依然需要将 发送侧终端的数据发送至核心网,再由核心网转发回基站,基站再将数据发送给接收侧终端,本申请实施例中第一终端可以将数据发送至无线接入网设备,然后无线接入网设备转发给第二终端,可见本申请实施例可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
在一种可能的设计中,在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述第一无线接入网设备可以接收核心网设备发送的指示信息,该指示信息包括第一信息,或者,该指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。上述设计中,第一无线接入网设备可以根据核心网设备发送的指示信息为第一PDU会话以及第二PDU会话建立数据直接传输通道,从而可以提高建立数据直接传输通道的准确性,进而可以提高接入网处数据直接传输的准确性。
在一种可能的设计中,所述第一无线接入网设备还可以向所述第一终端和第二终端中的至少一个发送所述指示信息。通过上述设计,第一终端和第二终端中的至少一个可以根据第一信息确定第一PDU会话能够与第二终端的第二PDU会话进行接入网处的数据直接传输,从而可以提高数据传输的准确性。
在一种可能的设计中,所述第一无线接入网设备可以包括集中单元(centralized unit,CU)。在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:所述CU为所述第一PDU会话以及所述第二PDU会话建立第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第一协议层的实体以及所述第二PDU会话使用的第一协议层的实体,所述第一协议层为所述CU的任一协议层。或者,所述第一PDU会话以及所述第二PDU会话也可以共用第一协议层的一个实体,则第一数据直接传输通道可以为共用的该实体。
上述设计中,CU通过在所述第一PDU会话使用的第一协议层实体以及所述第二PDU会话使用的第一协议层实体之间建立数据直接传输通道,使得第一终端发送的数据在经过第一PDU会话的第一协议层处理后可以直接转发至第二PDU会话的第一协议层进行处理,从而在第二PDU会话的资源上向第二终端发送该数据,通过上述方式可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
在一种可能的设计中,所述CU可以包括控制面(CU-control plane,CU-CP)以及用户面(CU-user plane,CU-UP)。在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:所述CU-UP在接收到所述指示信息后为所述第一PDU会话以及所述第二PDU会话建立所述第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第二协议层的实体以及所述第二PDU会话使用的第二协议层的实体,所述第二协议层为所述CU-UP的任一协议层。或者,所述第一PDU会话以及所述第二PDU会话也可以共用第二协议层的一个实体,则第一数据直接传输通道可以为共用的该实体。上述设计中,若第一无线接入网设备的CU采用CU-CP以及CU-UP分离的架构,CU在为第一PDU会话以及第二PDU会话建立数据直接传输通道时具体可以由CU-UP执行。
在一种可能的设计中,所述第一无线接入网设备可以包括CU、以及与所述CU相连的第一分布单元DU,所述第一终端以及所述第二终端均接入所述第一DU。在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:所述CU向所述第一DU发送所述指示信息。所述第一DU在接收到所述指示信息后为所述第一PDU会话以及所述第二PDU会话建立第二数据直接传输通道,所述第二数据直接传输通道的两端分别连接所述第一PDU会话使用的第三协议层的实体以及所述第二PDU会话使用的第三协议层的实体,所述第三协议层为所述第一DU的任一协议层。或者,所述第一PDU会话以及所述第二PDU会话也可以共用第三协议层的一个实体,则第二数据直接传输通道可以为共用的该实体。
通过上述设计,若第一终端和第二终端接入统一个DU,也可以由DU为第一PDU会话以及第二PDU会话建立数据直接传输通道。上述设计中,DU通过在第一PDU会话使用的第三协议层实体以及所述第二PDU会话使用的第三协议层实体之间建立数据直接传输通道,使得第一终端发送的数据在经过第一PDU会话的第三协议层处理后可以直接转发至第二PDU会话的第三协议层进行处理,从而在第二PDU会话的资源上向第二终端发送该数据,通过上述方式可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
在一种可能的设计中,所述第一无线接入网设备可以包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU。或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU。在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:所述CU-CP向所述第一CU-UP发送第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息。所述第一CU-UP将所述第三信息作为PDU会话的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
上述设计中,第一CU-UP通过将第二PDU会话在第二CU-UP处的下行用户面通道信息作为PDU会话的上行用户面通道信息分配给第一PDU会话,从而第一终端在第一PDU会话的资源上发送用户面数据时,第一CU-UP可以根据第一PDU会话的上行用户面通道信息(即第二PDU会话在第二CU-UP处的下行用户面通道信息)将该用户面数据路由到第二CU-UP的第二PDU会话的资源上,从而第二CU-UP可以在第二PDU会话的资源上向第二终端发送该用户面数据,通过上述方式可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
在一种可能的设计中,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一 CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU。或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU。在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:所述CU-CP向所述第一CU-UP发送第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息。所述第一CU-UP将所述第三信息作为所述数据直接传输通道的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
上述设计中,第一CU-UP通过将第二PDU会话在第二CU-UP处的下行用户面通道信息作为所述数据直接传输通道的上行用户面通道信息分配给第一PDU会话,从而第一终端在第一PDU会话的资源上发送用户面数据时,第一CU-UP可以根据第一PDU会话的数据直接传输通道的上行用户面通道信息(即第二PDU会话在第二CU-UP处的下行用户面通道信息)将该用户面数据路由到第二CU-UP的第二PDU会话的资源上,从而第二CU-UP可以在第二PDU会话的资源上向第二终端发送该用户面数据,通过上述方式可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
第二方面,本申请提供的一种数据传输方法,包括:核心网设备确定第一终端与第二终端能够在接入网处进行数据直接传输,其中,所述第一终端与所述第二终端均接入第一无线接入网设备。所述核心网设备向所述第一无线接入网设备发送指示信息,所述指示信息携带第一信息,所述第一信息用于表示所述第一终端的第一PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输。
本申请实施例中核心网在确定第一终端与第二终端能够在接入网处进行数据直接传输时指示第一无线接入网设备为第一终端的第一PDU会话以及第二终端的第二PDU会话建立数据直接传输通道,从而第一无线接入网设备可以在该数据直接传输通道上,将第一终端在第一PDU会话的资源上发送的用户面数据转发到第二PDU会话的资源上,并在第一PDU会话的资源上向第二终端发送该用户面数据,从而可以实现接入网处的数据直接传输。相比于现有技术中,终端间进行用户面数据传输时,即使发送侧终端与接收侧终端接入的是同一基站,或者接入同一AMF/UPF,依然需要将发送侧终端的数据发送至核心网,再由核心网转发回基站,基站再将数据发送给接收侧终端,本申请实施例中第一终端可以将数据发送至无线接入网设备,然后无线接入网设备转发给第二终端,可见本申请实施例可以减少数据传输过程中的跳数,从而可以降低数据传输的时延,以及减少核心网的负载和资源开销,降低数据传输冗余。
在一种可能的设计中,所述指示信息携带第二信息,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
在一种可能的设计中,所述核心网设备还可以释放所述核心网设备为所述第一PDU 会话分配的PDU会话资源。上述设计中,由于第一PDU会话与第二PDU会话可以通过数据直接传输通道在接入网处进行数据直接传输,因此核心网设备释放所述核心网设备为所述第一PDU会话分配的PDU会话资源可以节省核心网设备的负载和资源开销。
在一种可能的设计中,所述核心网设备也可以不释放所述核心网设备为所述第一PDU会话分配的PDU会话资源。通过上述设计中,若第一终端通过数据直接传输通道向第二终端传输数据失败,可以根据核心网设备为所述第一PDU会话分配的PDU会话资源将数据转发至核心网,由核心网设备向第二终端转发数据,从而可以提高数据传输的准确率。
第三方面,本申请提供的一种数据传输方法,包括:第一终端接收第一无线接入网设备发送的指示信息,指示信息用于表示第一终端的第一PDU会话与第二终端的第二PDU会话进行接入网处的数据直接传输,第一无线接入网设备为第一终端与第二终端接入的无线接入网设备。第一终端基于指示信息封装用户面数据,用户面数据是第一终端发送给第二终端的。第一终端向第一无线接入网设备发送用户面数据。本申请实施例中,第一终端在向第二终端发送用户面数据时,可以不用在发送的用户面数据的IP报文头处添加所述第二终端的IP地址。通过这种方式,可以降低第一终端打包数据的复杂度,从而可以降低数据传输的时延。
在一种可能的设计中,用户面数据的IP报文头可以包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、用户面数据的总长度、用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。
在一种可能的设计中,指示信息可以包括第一信息,或者,指示信息也可以包括第一信息和第二信息,第一信息用于表示第一终端的第一PDU会话能够与第二终端的第二PDU会话进行接入网处的数据直接传输,第二信息用于指示第一无线接入网设备在第二PDU会话的资源上进行接入网处的数据直接传输。
第四方面,本申请提供的一种数据传输方法,包括:第二终端接收第一无线接入网设备发送的指示信息,指示信息用于表示第一终端的第一PDU会话与第二终端的第二PDU会话进行接入网处的数据直接传输,第一无线接入网设备为第一终端与第二终端接入的无线接入网设备。第二终端基于指示信息对用户面数据进行解封装。第一终端向第一无线接入网设备发送用户面数据。本申请实施例中,第二终端在接收到第一终端的用户面数据后,可以跳过解析IP报文头处目的IP地址的过程。通过这种方式,可以降低第二终端解析数据的复杂度,从而可以降低数据传输的时延。
在一种可能的设计中,用户面数据的IP报文头可以包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、用户面数据的总长度、用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。
在一种可能的设计中,指示信息可以包括第一信息,或者,指示信息也可以包括第一信息和第二信息,第一信息用于表示第一终端的第一PDU会话能够与第二终端的第二PDU会话进行接入网处的数据直接传输,第二信息用于指示第一无线接入网设备在第二PDU会话的资源上进行接入网处的数据直接传输。
第五方面,本申请提供的一种数据传输方法,所述方法应用于通信系统中,所述通信系统包括第一无线接入网设备、第二无线接入网设备、第一终端以及第二终端,其中,所 述第一终端接入所述第一无线接入网设备,所述第二终端接入所述第二无线接入网设备。包括:所述第一无线接入网设备获取第一信息以及第二信息,所述第一信息用于表示所述第一终端的第一PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输,所述第二信息是指第二PDU会话在所述第二无线接入网设备处的下行用户面通道信息,或者,所述第二信息是指所述第二无线接入网设备为所述第二PDU会话分配的用于数据直接传输的用户面通道信息,所述第二PDU会话为所述第一PDU会话集合中的任一PDU会话。所述第一无线接入网设备基于所述第二信息调整所述第一PDU会话的上行用户面通道信息。所述第一无线接入网设备在所述第一PDU会话的资源上接收所述第一终端发送的第一用户面数据。所述第一无线接入网设备向所述第二无线接入网设备直传所述第一PDU会话的所述第一用户面数据。
本申请实施例中第一无线接入网设备基于第二PDU会话在第二无线接入网设备处的下行用户面通道信息、或者第二无线接入网设备为第二PDU会话分配的用于数据直接传输的用户面通道信息调整所述第一PDU会话的上行用户面通道信息,从而第一无线接入网设备在第一PDU会话的资源上接收到第一终端的数据时,可以将根据第一PDU会话的上行用户面通道信息(即第二PDU会话在第二无线接入网设备处的下行用户面通道信息、或者第二无线接入网设备为第二PDU会话分配的用于数据直接传输的用户面通道信息)将该数据路由到第二无线接入网设备的第二PDU会话的资源上,从而第二无线接入网设备可以在第二PDU会话的资源上向第二终端发送该数据,通过上述方式,处于不同gNB下的终端间进行用户面数据传输时,数据可在两gNB间直传,不需要由核心网转发,从而可以减少数据传输跳数和时延,降低核心网资源和信令开销。
在一种可能的设计中,所述第一无线接入网设备基于所述第二信息调整所述第一PDU会话的上行用户面通道信息,可以包括:所述第一无线接入网设备将所述第二信息作为PDU会话的上行用户面通道信息分配给所述第一PDU会话;或者,所述第一无线接入网设备将所述第二信息作为用于数据直接传输的上行用户面通道信息分配给所述第一PDU会话。上述设计中,第一接入网通过修改第一PDU会话的上行用户面通道信息,来改变数据的路由路径,具体的,通过将第二信息作为PDU会话的上行用户面通道信息分配给第一PDU会话,或者,将第二信息作为用于数据直接传输的上行用户面通道信息分配给第一PDU会话,从而第一无线接入网设备在接收到第一终端在第一PDU会话的资源上发送的数据后,可以将该数据路由到第二无线接入网设备的第二PDU会话的资源上,而不需要核心网设备进行转发,从而可以减少数据传输跳数和时延,降低核心网资源和信令开销。
在一种可能的设计中,所述第一无线接入网设备获取第一信息以及第二信息,可以包括:所述第一无线接入网设备接收所述第二无线接入网设备发送的所述第一信息以及所述第二信息;或者,所述第一无线接入网设备接收核心网设备发送的所述第一信息以及所述第二信息。上述设计中,第二无线接入网设备可以通过Xn接口向第一无线接入网设备发送第一信息以及第三信息,或者,也可以由核心网设备通过NG接口为第一无线接入网设备以及第二无线接入网设备传输第一信息以及第二信息。
在一种可能的设计中,所述第一无线接入网设备还可以向所述第二无线接入网设备或核心网设备发送第三信息以及第四信息,所述第三信息用于表示所述第二终端的第三PDU会话能够与所述第一终端的第四PDU会话进行接入网处的数据直接传输,所述第四信息 为所述第四PDU会话在所述第一无线接入网设备处的下行用户面通道信息,或者,所述第四信息是指所述第一无线接入网设备为所述第四PDU会话分配的用于数据直接传输的用户面通道信息。上述设计中,第一无线接入网设备通过向第二无线接入网设备或核心网设备发送第三信息以及第四信息,以指示第二无线接入网设备为第三PDU会话以及第四PDU会话建立数据直接传输通道,从而可以实现第三会话以及第四PDU会话在不同无线接入网设备处间进行数据直接传输。
在一种可能的设计中,所述第一无线接入网设备可以接收所述第二无线接入网设备直传的所述第三PDU会话的第二用户面数据;所述第一无线接入网设备在所述第四PDU会话的资源上向所述第一终端发送所述第二用户面数据。
第六方面,本申请提供的一种数据传输方法,所述方法应用于通信系统中,所述通信系统包括核心网设备、第一无线接入网设备、第二无线接入网设备、第一终端以及第二终端,其中,所述第一终端接入所述第一无线接入网设备,所述第二终端接入所述第二无线接入网设备。包括:所述核心网设备获取第一信息以及第二信息,所述第一信息用于表示所述第一终端的第一PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输,所述第二信息为第二PDU会话所述第二无线接入网设备处的下行用户面通道信息,或者,所述第二信息是指所述第二无线接入网设备为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;所述核心网设备向所述第一无线接入网设备发送所述第一信息以及所述第二信息。本申请实施例中核心网设备可以通过NG接口为第一无线接入网设备以及第二无线接入网设备传输第一信息以及第二信息。
在一种可能的设计中,所述核心网设备获取第一信息以及第二信息,可以包括:所述核心网设备确定所述第一终端与所述第二终端能够在接入网间进行数据直接传输;所述核心网设备确定所述第一信息以及所述第二信息。上述设计中,核心网设备可以由自身确定第一信息以及第二信息。
在一种可能的设计中,所述核心网设备获取第一信息以及第二信息,可以包括:所述核心网设备接收所述第二无线接入网设备发送的所述第一信息以及所述第二信息。上述设计中,核心网设备也可以接收第二接入网发送的第一信息以及第二信息。
在一种可能的设计中,所述核心网设备还可以接收所述第一接入网发送的第三信息以及第四信息,所述第三信息用于表示所述第二终端的第三PDU会话能够与所述第一终端的第四PDU会话进行接入网处的数据直接传输,所述第四信息为所述第四PDU会话在所述第一无线接入网设备处的下行用户面通道信息,或者,所述第四信息是指所述第一无线接入网设备为所述第四PDU会话分配的用于数据直接传输的用户面通道信息;所述核心网设备向所述第二无线接入网设备发送所述第三信息以及所述第四信息。
在一种可能的设计中,所述核心网设备可以释放所述核心网设备为所述第一PDU会话和第二PDU会话中的至少一个分配的PDU会话资源。上述设计中,由于第一PDU会话与第二PDU会话可以实现不同接入网间的数据直接传输,因此核心网设备可以释放所述核心网设备为所述第一PDU会话和第二PDU会话中的至少一个分配的PDU会话资源,从而可以节省核心网设备的负载和资源开销。
在一种可能的设计中,所述核心网设备也可以不释放所述核心网设备为所述第一PDU会话和第二PDU会话中的至少一个分配的PDU会话资源。通过上述设计中,若第一终端通过数据直接传输通道向第二终端传输数据失败,可以根据核心网设备为所述第一PDU 会话分配的PDU会话资源将数据转发至核心网,由核心网设备向第二终端转发数据,从而可以提高数据传输的准确率。同样,若第二终端通过数据直接传输通道向第一终端传输数据失败,可以根据核心网设备为所述第二PDU会话分配的PDU会话资源将数据转发至核心网,由核心网设备向第一终端转发数据,从而可以提高数据传输的准确率。
第七方面,本申请提供一种数据传输装置,该数据传输装置可以是通信装置,也可以是通信装置内的芯片或芯片组,其中,通信装置可以是无线接入网设备或者核心网设备或者终端设备。该装置可以包括处理单元和收发单元。当该装置是通信装置时,该处理单元可以是处理器或者通信接口;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使无线接入网设备执行上述第一方面或第五方面或第六方面中相应的功能、或者使核心网设备执行上述第二方面或第六方面中相应的功能、或者使终端设备执行上述第三方面或第四方面或第五方面或第六方面中相应的功能。当该装置是网络设备内的芯片或芯片组时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使无线接入网设备执行上述第一方面或第五方面或第六方面中相应的功能、或者使核心网设备执行上述第二方面或第六方面中相应的功能、或者使终端设备执行上述第三方面或第四方面或第五方面或第六方面中相应的功能,该存储单元可以是该芯片或芯片组内的存储单元(例如,寄存器、缓存等),也可以是该通信装置内的位于该芯片或芯片组外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,本申请提供了一种无线接入网设备,包括:处理器、通信接口和存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一所述的数据传输方法、或者上述第五方面或第五方面中任一所述的数据传输方法、或者上述第六方面或第六方面中任一所述的数据传输方法。
第九方面,本申请提供了一种核心网设备,包括:处理器、通信接口和存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第二方面或第二方面中任一所述的数据传输方法、或者上述第六方面或第六方面中任一所述的数据传输方法。
第十方面,本申请提供了一种终端设备,包括:处理器、收发器和存储器。收发器用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第三方面或第三方面中任一所述的数据传输方法、或者上述第四方面或第四方面中任一所述的数据传输方法、或者上述第五方面或第五方面中任一所述的数据传输方法、或者上述第六方面或第六方面中任一所述的数据传输方法。
第十一方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十二方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例提供的一种基于集中式架构的无线接入网设备的用户面数据路由路径的示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的一种AMF/UPF和无线接入网设备的连接关系的示意图;
图4A为本申请实施例提供的一种划分为CU和DU的无线接入网设备的结构示意图;
图4B为本申请实施例提供的一种CU、DU、5GC、其他无线接入网设备的连接关系的示意图;
图5为本申请实施例提供的一种划分为CU-CP、CU-UP和DU的无线接入网设备的结构示意图;
图6为本申请实施例提供的一种UE1向UE2发送用户面数据的PDU会话建立过程和数据传输流程的示意图;
图7为本申请实施例提供的一种基于CU-CP、CU-UP和DU架构的无线接入网设备的用户面数据路由路径的示意图;
图8为本申请实施例提供的一种数据传输方法的流程示意图;
图9为本申请实施例提供的一种建立数据直接传输通道过程的示意图;
图10为本申请实施例提供的一种用户面数据路由路径的示意图;
图11A为本申请实施例提供的一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图11B为本申请实施例提供的另一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图12为本申请实施例提供的一种建立数据直接传输通道流程的流程示意图;
图13为本申请实施例提供的另一种用户面数据路由路径的示意图;
图14A为本申请实施例提供的一种建立数据直接传输通道流程的流程示意图;
图14B为本申请实施例提供的一种用户面数据路由路径的示意图;
图15A为本申请实施例提供的一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图15B为本申请实施例提供的另一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图15C为本申请实施例提供的另一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图15D为本申请实施例提供的另一种第一终端和第二终端接入第一无线接入网设备的场景示意图;
图16为本申请实施例提供的一种建立数据直接传输通道流程的流程示意图;
图17为本申请实施例提供的一种用户面数据路由路径的示意图;
图18为本申请实施例提供的另一种建立数据直接传输通道流程的流程示意图;
图19为本申请实施例提供的一种第一终端和第二终端分别接入不同无线接入网设备的示意图;
图20为本申请实施例提供的一种建立数据直接传输通道流程的流程示意图;
图21为本申请实施例提供的另一种建立数据直接传输通道流程的流程示意图;
图22A为本申请实施例提供的一种无线接入网设备的结构示意图;
图22B为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22C为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22D为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22E为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22F为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22G为本申请实施例提供的另一种无线接入网设备的结构示意图;
图22H为本申请实施例提供的另一种无线接入网设备的结构示意图;
图23为本申请实施例提供的一种通信装置的结构示意图;
图24为本申请实施例提供的一种通信装置的结构示意图;
图25为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本申请实施例提供一种数据传输方法,该方法可以适用于5G(第五代移动通信系统)系统,如采用新型无线接入技术(new radio access technology,New RAT)的接入网;云无线接入网(cloud radio access network,CRAN)等通信系统。其中,5G系统可以为非漫游场景,也可以为漫游场景。5G系统可以用于服务化的架构,也可以用于基于接口的架构,这里不做具体限定。应理解,本申请实施例也可以适用于在未来通信(例如6G或者其他的网络中)等。
本申请实施例提供的数据传输方法所适用通信系统的架构中可以包括网络开放功能网元、策略控制功能网元、数据管理网元、应用功能网元、核心网接入和移动性管理功能网元、会话管理功能网元、终端设备、无线接入网设备、用户面功能网元和数据网络。核心网接入和移动性管理功能网元与终端设备之间可以通过N1接口相连,核心网接入和移动性管理功能网元与无线接入网设备之间可以通过N2接口相连,无线接入网设备与用户面功能网元之间可以通过N3接口相连,会话管理功能网元与用户面功能网元之间可以通过N4接口相连,用户面功能网元与数据网络之间可以通过N6接口相连,例如,如图2所示。接口名称只是一个示例说明,本申请实施例对此不作具体限定。其中,通信系统中的网元可以但不限于是5G架构中的网元。下面以5G架构中的网元为例对所述通信系统中的各个网元的功能进行描述:
所述终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,所述终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,所述终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
所述无线接入网设备可以为接入网(access network,AN),向所述终端设备提供无线接入服务。所述无线接入网设备是所述通信系统中将所述终端设备接入到无线网络的设备。所述无线接入网设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。无线接入网设备可以是5G基站(next generation NodeB,gNB),或者也可以是下一代演进的基站(next generation evolved NodeB,ng-eNB)。
所述数据网络,例如数据网络(data network,DN),可以是因特网(Internet)、IP多媒体业务(IP Multi-media Service,IMS)网络、区域网络(即本地网络,例如移动边缘计算(mobile edge computing,MEC)网络)等。所述数据网络中包括应用服务器,所述应用服务器通过与所述终端设备进行数据传输,为所述终端设备提供业务服务。
所述核心网接入和移动性管理功能网元,可用于对所述终端设备的接入控制和移动性进行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责所述终端设备的注册、移动性管理、跟踪区更新流程、可达性检测、会话管理功能网元的选择、移动状态转换管理等。例如,在5G中,所述核心网接入和移动性管理功能网元可以是AMF(access and mobility management function)网元。在未来通信,如6G中,所述核心网接入和移动性管理功能网元仍可以是AMF网元,或有其它的名称,本申请不做限定。当所述核心网接入和移动性管理功能网元是AMF网元时,所述AMF可以提供Namf服务。
所述用户面功能网元,可用于分组路由和转发、支持上行链路分类器以将业务流路由到数据网络的实例、支持分支点以支持多宿主分组数据单元(packet data unit,PDU)会话、用户平面的服务质量(quality of service,QoS)处理、下行数据包缓冲和下行数据通知触发等。例如,在5G中,所述用户面功能网元可以是UPF(user plane function)网元,在未来通信,如6G中,所述用户面功能网元仍可以是UPF网元,或有其它的名称,本申请不做限定。
所述会话管理功能网元,可用于负责所述终端设备的会话管理(包括会话的建立、修改和释放),用户面功能网元的选择和重选、所述终端设备的互联网协议(internet protocol,IP)地址分配、QoS控制等。例如,在5G中,所述会话管理功能网元可以是SMF(session management function)网元,在未来通信,如6G中,所述会话管理功能网元仍可以是SMF网元,或有其它的名称,本申请不做限定。当会话管理功能网元是SMF网元时,所述SMF可以提供Nsmf服务。
所述策略控制功能网元,可用于负责策略控制决策、提供基于业务数据流和应用检测、门控、QoS和基于流的计费控制等功能等。例如,在5G中,所述策略控制功能网元可以是PCF(policy control function)网元,在未来通信,如6G中,所述策略控制功能网元仍可以是PCF网元,或有其它的名称,本申请不做限定。当所述策略控制功能网元是PCF网元,所述PCF网元可以提供Npcf服务。
所述应用功能网元,主要功能是与第三代合作伙伴计划(the 3rd generation partnership project,3GPP)核心网交互来提供服务,来影响业务流路由、接入网能力开放、策略控制等。例如,在5G中,所述应用功能网元可以是AF(application function)网元,在未来通信,如6G中,所述应用功能网元仍可以是AF网元,或有其它的名称,本申请不做限定。 当所述应用功能网元是AF网元时,所述AF网元可以提供Naf服务。
所述数据管理网元,可用于管理所述终端设备的签约数据、与所述终端设备相关的注册信息等。例如,在5G中,所述数据管理网元可以是统一数据管理网元(unified data management,UDM),在未来通信,如6G中,所述数据管理网元仍可以是UDM网元,或有其它的名称,本申请不做限定。当所述数据管理网元是UDM网元时,所述UDM网元可以提供Nudm服务。
所述网络开放功能网元,可用于使3GPP能够安全地向第三方的AF(例如,业务能力服务器(Services Capability Server,SCS)、应用服务器(Application Server,AS)等)提供网络业务能力等。例如,在5G中,所述网络开放功能网元可以是NEF(network exposure function),在未来通信,如6G中,所述网络开放功能网元仍可以是NEF网元,或有其它的名称,本申请不做限定。当所述网络开放功能网元是NEF时,所述NEF可以向其他网络功能网元提供Nnef服务。
另外系统架构还可以包括其他网元,如网络切片选择功能网元(network slice selection function,NSSF)、网络功能存储功能网元(NF repository function,NRF)、认证服务器功能网元(authentication server function,AUSF)等等,这里不再一一列举。
以上各个网元也可以称为功能实体,既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
AMF/UPF和无线接入网设备间的接口为NG口(NG-C/NG-U口),不同无线接入网设备间通过Xn口连接。以无线接入网设备为gNB或者ng-eNB为例,AMF/UPF和无线接入网设备、以及不同AMF/UPF和无线接入网设备的连接关系可以如图3所示。
示例性的,本申请实施例中的无线接入网设备可以根据协议栈功能将无线接入网设备拆分为两个部分:集中单元(centralized unit,CU)和分布单元(distributed unit,DU)。其中,一个无线接入网设备可以包含一个CU、以及至少一个DU,如图4A所示。CU与至少一个DU连接,可以用于管理或者控制该至少一个DU。这种结构可以将通信系统中无线接入网设备的协议层拆开,其中部分协议层功能在CU中实现,剩下部分或全部协议层功能分布在DU中实现,由CU集中控制DU。以无线接入网设备为gNB为例,gNB的协议层包括无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层。其中,示例性的,CU可以用于实现RRC层、SDAP层和PDCP层的功能,DU可以用于实现RLC层、MAC层和物理层的功能。本申请实施例不对CU、DU包括的协议栈做具体限定。CU和DU之间可以采用F1接口进行连接,CU与其他的无线接入网设备采用Xn接口连接,CU与5G核心网(5G Core,5GC)之间采用NG接口连接,如图4B所示。
示例性的,本申请实施例中的CU可以进一步分为一个控制面(CU-control plane,CU-CP)网元和至少一个用户面(CU-user plane,CU-UP)网元。其中,CU-CP可以用于控制面管理,CU-UP可以用于用户面数据传输。CU-CP与CU-UP之间的接口可以为E1口。CU-CP与DU之间的接口可以为F1-C,用于控制面信令的传输。CU-UP与DU之间的接口可以为F1-U,用于用户面数据传输。CU-UP与CU-UP之间可以通过Xn-U口进行 连接,进行用户面数据传输。例如,以gNB为例,gNB的结构可以如图5所示。
下面以gNB下有UE1和UE2两个终端为例,对UE1向UE2发送用户面数据的PDU会话建立和数据传输流程进行说明,如图6所示。
S601,UE1在向UE2发送用户面数据之前,向gNB发送PDU会话建立请求,该PDU会话建立请求用于请求建立UE1的PDU会话1。
S602,gNB将UE1发送的PDU会话建立请求转发给AMF。
S603,AMF、UPF等核心网网元以及DN为PDU会话1分配核心网资源(例如上行用户面数据通道地址等等)。
S604,AMF向gNB发送PDU会话建立响应,以通知gNB核心网网元为PDU会话1分配的核心网资源。
S605,gNB收到AMF的PDU会话建立响应信息后,为PDU会话1分配资源,如为PDU会话1的一个或多个数据无线承载(data radio bearer,DRB)配置服务数据适应协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC,)层、介质访问控制层(MAC,Medium Access Control)层和物理(PHY,Physical layer)层等实体,为PDU会话1分配下行用户面通道地址等。
S606,gNB将相关配置参数发给UE1,相关配置参数为gNB为PDU会话1分配的资源的参数。
S607,UE1基于收到的参数配置相应的DRB,例如为各个DRB配置SDAP层、PDCP层、RLC层、MAC层和PHY层实体等。
UE1到DN的PDU会话1成功建立。
S608,UE1在PDU会话1的资源上传输要发给UE2的用户面数据,用户面数据经空口发送至gNB,gNB将用户面数据发送至UPF,UPF将数据发送至DN。
DN解析出用户面数据的目的节点(UE2),若UE2的接收用户面数据的PDU会话2还未建立,则执行步骤S609。其中,UE2可以处于连接态,也可以处于空闲态。进一步的,若UE2处于空闲态,在执行步骤S609之前,核心网设备、无线接入网设备可以依次发起寻呼,UE2收到寻呼,与gNB建立RRC连接。
S609,DN触发AMF建立PDU会话2,为PDU会话2分配核心网资源,并将向gNB发送PDU会话建立请求,该PDU会话建立请求用于请求建立PDU会话2。
S610,gNB收到AMF的UE2 PDU会话建立请求后,为PDU会话2分配资源,如为PDU会话2的一个或多个数据无线承载(data radio bearer,DRB)配置服务数据适应协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC,)层、介质访问控制层(MAC,Medium Access Control)层和物理(PHY,Physical layer)层等实体,为PDU会话2分配下行用户面通道地址等。
S611,gNB将相关配置参数发给UE2,相关配置参数为gNB为PDU会话2分配的资源的参数。
S612,UE2基于收到的参数配置相应的DRB,例如为各个DRB配置SDAP层、PDCP层、RLC层、MAC层和PHY层实体等。
UE2的PDU会话2成功建立。
S613,DN在PDU会话2的资源上传输要发送给UE2的用户面数据。示例性的,DN可以解析出用户面数据的目的节点(UE2),并在UE2的用于接收用户面数据的PDU会话2的资源上将用户面数据路由至与UE2相关的UPF。UPF将来自UE1的用户面数据根据已建立的PDU会话2的下行用户面通道路由给gNB,gNB进而转发给UE2。
从图6可以看出,PDU会话的建立过程是为用户面的数据传输配置核心网资源和接入网资源的过程,PDU会话的建立涉及到从UE到DN之间的多个网元。
若两个终端(例如UE1和UE2)接入同一个无线接入网设备,UE1和UE2进行用户面数据传输时,UE1的PDU会话1以及UE2的PDU会话2建立后,UE1首先在PDU会话1的资源上将用户面数据发送给gNB,gNB再将用户面数据在PDU会话1的资源上转发给UPF,UPF再将用户面数据在PDU会话1的资源上转发给DN,DN再将用户面数据在PDU会话2的资源上转发给UPF,UPF再将用户面数据在PDU会话2的资源上转发至gNB,gNB最终将用户面数据在PDU会话2的资源上转发给UE2,如图1所示。
类似的,对于图4A或图4B或图5所示的分离式基站架构,若两个终端接入同一个无线接入网设备的不同DU(假设UE1接入gNB-DU1,UE2接入gNB-DU2),UE1和UE2进行用户面数据传输时,UE1的PDU会话1以及UE2的PDU会话2建立后,UE1首先在PDU会话1的资源上将用户面数据发送给gNB-DU1,gNB-DU1再将用户面数据转发给gNB-CU或gNB-CU-UP,gNB-CU或gNB-CU-UP再在PDU会话1的资源上将用户面数据转发给UPF,UPF再将用户面数据在PDU会话1的资源上转发给DN。DN再将用户面数据在PDU会话2的资源上转发给UPF,UPF再将用户面数据在PDU会话2的资源上转发至gNB-CU或gNB-CU-UP,gNB-CU或gNB-CU-UP将数据转发给gNB-DU2,gNB-DU2最终将用户面数据在PDU会话2的资源上转发给UE2,如图7所示。
从上述过程可知,两个终端间进行用户面数据传输时,即使两个终端接入同一无线接入网,还需要将终端的用户数据发送至DN,再由DN转发回无线接入网,无线接入网再将用户面数据发送给目的端终端,这增加了数据传输的跳数和时延,增加了核心网的负载和资源开销,存在数据传输冗余。
基于此,本申请提供一种数据传输方法及装置,用以解决现有技术中存在的两个终端进行用户面数据传输时传输过程冗余,造成传输时延较大的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
下面结合具体场景对本申请实施例进行详细说明。
实施例一:第一终端和第二终端接入同一无线接入网设备,即第一无线接入网设备。
本申请实施例提供的数据传输方法可以如图8所示。
S801,第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给第二终端的。
在具体实施中,在步骤S801之前,可以先建立第一PDU会话。示例性的,建立第一PDU会话的过程具体可以参阅图6所示PDU会话建立流程中的步骤S601~步骤S607,这里不再重复赘述。
S802,所述第一无线接入网设备基于数据直接传输通道在第二PDU会话的资源上向第二终端发送所述用户面数据,其中,所述第一无线接入网设备为所述第一终端与所述第二终端共同接入的无线接入网设备,数据直接传输通道的两端分别连接第一PDU会话使 用的实体以及第二PDU会话使用的实体。
在一些实施例中,第一终端和第二终端也可以是同一个终端,即第一PDU会话与第二PDU会话为第一终端的两个会话。
本申请实施例中,第一终端以及第二终端接入同一无线接入网设备(即第一无线接入网设备),第一终端向第二终端传输用户面数据时,第一无线接入网设备可以基于数据直接传输通道直接向第二终端转发该用户面数据,从而可以实现接入网处的数据直接传输。相比于现有技术中,第一终端将用户面数据在第一PDU会话的资源上发送给第一无线接入网设备后,第一无线接入网设备在第一PDU会话的资源上将该用户面数据转发给核心网网元(如UPF等),再由核心网网元在第一PDU会话的资源上将该用户面数据转发给DN,DN在接收到第一终端的用户面数据后在第二PDU会话的资源上向核心网网元(如UPF等)转发该用户面数据,核心网网元将用户面数据在第二PDU会话的资源上转发给第一无线接入网设备,由第一无线接入网设备将该用户面数据转发给第二终端的方式,本申请实施例中第一无线接入网设备在接收到第一终端的用户面数据后,可以通过数据直接传输通道在接入网处将该用户面数据转发给第二终端,可见,当第一终端和第二终端接入同一无线接入网设备时,第一终端的用户面数据可以不用经过核心网网元、DN等进行转发,从而可以减少数据传输的跳数,进而可以降低数据传输的时延,降低数据传输过程的冗余,并且,还可以降低核心网的负载和资源开销。
在一些实施例中,在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,可以先建立数据直接传输通道。数据直接传输通道具体可以通过如下步骤A1~步骤A3建立:
A1,核心网设备确定第一终端与第二终端能够在接入网处进行数据直接传输。作为一种示例性说明,第一终端在向第二终端发送用户面数据之前,可以在第一PDU会话的资源上向核心网设备发送目的节点的标识或地址(即第二终端的标识或地址),从而核心网设备可以确定第一终端和第二终端能够在接入网处进行数据直接传输。
A2,核心网设备向所述第一无线接入网设备发送指示信息。
其中,该指示信息可以包括第一信息,所述第一信息用于表示所述第一终端的第一PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输。对应的,第一无线接入网设备接收核心网设备发送的指示信息。
示例性的,第一信息可以包括第二PDU会话的标识与终端列表,用以表示第二PDU会话可以与终端列表中的任一终端标识对应的终端进行接入网处的数据直接传输,其中,终端列表至少包括UE1的标识。
进一步的,第一信息中还可以包括终端列表中任一终端的PDU会话列表,该终端的PDU会话列表可以包括该终端的至少一个PDU会话的标识,可以表示第二PDU会话可以与PDU会话列表中任一PDU会话的标识对应的PDU会话进行接入网处的数据直接传输。例如,UE1的PDU会话列表中可以包括第一PDU会话的标识。
此外,一个PDU会话可以包含多个服务质量(quality of service,QoS)流,因此第一信息中还可以包括PDU会话列表中任一PDU会话的服务质量(quality of service,QoS)流列表,可以表示第二PDU会话可以与QoS流列表中任一QoS流标识对应QoS流进行接入网处的数据直接传输,其中,QoS流列表可以包括该PDU会话的至少一个QoS流的标识。
在一种示例性说明中,指示信息可以如表1所示。
表1
第二会话的标识(PDU Session ID)
是否能与其他终端的PDU会话进行数据直接传输
>终端列表(UE List)
>>终端标识(RAN UE NGAP ID)
>>>PDU会话列表(PDU Session List)
>>>>某终端的PDU会话标识(PDU Session ID)
>>>>QoS流列表(QoS Flow List)
>>>>>QoS流标识(QoS Flow Indicator)
作为一种可能的实现方式,终端列表中可以包括一个终端(即第一终端)的标识,第一终端的标识的PDU会话列表中也可以包括一个PDU会话(即第一PDU会话)的标识。
此外,指示信息还可以携带第二信息,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
一种示例性说明中,所述第二信息可以为一种显性指示,例如作为一个信元加在第一信息中。例如,第二信息为“0”时指示不在所述第二PDU会话的资源上进行接入网处的数据直接传输,为“1”时指示在所述第二PDU会话的资源上进行接入网处的数据直接传输。当然,第二信息为“0”时也可以指示在所述第二PDU会话的资源上进行接入网处的数据直接传输,为“1”时指示不在所述第二PDU会话的资源上进行接入网处的数据直接传输。或者,当第一信息中携带第二信息时可以指示在所述第二PDU会话的资源上进行接入网处的数据直接传输,当第一信息中不携带第二信息时可以指示不在所述第二PDU会话的资源上进行接入网处的数据直接传输。
一种示例性说明中,指示信息可以如表2所示,第二信息可以表示第二会话是否能与UE List中终端的PDU会话进行数据直接传输。
表2
第二会话的标识(PDU Session ID)
>第二信息
>终端列表(UE List)
>>终端标识(RAN UE NGAP ID)
>>>PDU会话列表(PDU Session List)
>>>>某终端的PDU会话标识(PDU Session ID)
>>>>QoS流列表(QoS Flow List)
>>>>>QoS流标识(QoS Flow Indicator)
另一种示例性说明中,指示信息也可以如表3所示,第二信息可以表示第二会话是否能与第一终端的第一PDU会话进行数据直接传输。
表3
第二会话的标识(PDU Session ID)
>终端列表(UE List)
>>第一终端标识(RAN UE NGAP ID)
>>>PDU会话列表(PDU Session List)
>>>>第一终端的第一PDU会话标识(PDU Session ID)
>>>>第二信息
>>>>QoS流列表(QoS Flow List)
>>>>>QoS流标识(QoS Flow Indicator)
应理解,这里表1~表3仅是一种示例性说明,并不对第一信息、第二信息的表现形式、包括的信息等进行具体限定。
另一种示例性说明中,第二信息也可以通过第一信息来隐式指示。例如,当PDU会话资源设置请求携带第一信息时可以指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输,反之则可以指示所述第一无线接入网设备不在所述第二PDU会话的资源上进行接入网处的数据直接传输。或者,当PDU会话资源设置请求携带第一信息时,可以指示所述第一无线接入网设备不在所述第二PDU会话的资源上进行接入网处的数据直接传输,反之则可以指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
A3,第一无线接入网设备为所述第一PDU会话以及所述第二PDU会话建立所述数据直接传输通道。
或者,数据直接传输通道也可以通过如下步骤B1~步骤B3建立:
B1,第一无线接入网设备确定第一终端与第二终端能够在接入网处进行数据直接传输。
例如,第一终端请求建立第一PDU会话时,就表明第一终端在第一PDU会话的资源上要向其他哪个终端进行数据传输,如第一终端向第一无线接入网设备发送PDU会话建立请求时可以携带第一PDU会话的标识与第二终端的标识,用于表明第一PDU会话需要与第二终端进行接入网处的数据直接传输。其中,终端的标识可为私网或企业网中员工工号、私网或企业网中员工代号等特有标识,可被终端和gNB识别,或者终端的标识也可以为终端的唯一标识等。从而,第一无线接入网设备在收到PDU会话建立请求后,可以确定第一终端在第一PDU会话的资源上和第二终端进行接入网处的数据直接传输。
B2,第一无线接入网设备确定指示信息。其中,该指示信息可以参阅步骤A1~步骤A3中指示信息的具体内容,这里不再重复赘述。
B3,第一无线接入网设备为所述第一PDU会话以及所述第二PDU会话建立所述数据直接传输通道。
此外,所述第一无线接入网设备还可以向所述第一终端发送所述第一信息,和/或,所述第一无线接入网设备向所述第二终端发送所述第一信息。
从而,所述第一终端可以基于所述第一信息通过第一无线接入网设备向所述第二终端发送数据,示例性的,第一终端在通过第一无线接入网设备向第二终端发送用户面数据时,可以不用在发送的用户面数据的IP报文头处添加目的端口地址(即所述第二终端的IP地址),因此,用户面数据的IP报文头可以包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、所述用户面数据的总长度、所述用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。通过这种方式,可以降低第一终端打包数据的复杂度,从而可以降低数据传输的时延。
所述第二终端可以基于所述第一信息通过第一无线接入网设备接收所述第一终端发送的数据,示例性的,第二终端在接收到第一终端通过第一无线接入网设备发送的用户面数据后,可以跳过解析用户面数据的IP报文头的目的端口地址的过程。通过这种方式,可以降低第二终端解析数据的复杂度,从而可以降低数据传输的时延。
在一些实施例中,第一无线接入网设备可以是集中式架构,则第一无线接入网设备建立所述数据直接传输通道时,可以在所述第一PDU会话以及所述第二PDU会话的协议层实体(如SDAP层实体、PDCP层实体、RLC层实体、MAC层实体、物理层实体等等)间建立数据直接传输通道,建立的数据直接传输通道的两个端点分别为所述第一PDU会话使用的第三协议层实体以及所述第二PDU会话使用的第三协议层实体,所述第三协议层为所述第一无线接入网设备的任一协议层。示例性的,第三协议层可以但不限于为SDAP层、PDCP层、RLC层、MAC层、物理层等。
为了更好地理解本申请实施例,下面以第一无线接入网设备为集中式架构的gNB为例,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图9所示。
S901,UE1(即第一终端)建立PDU会话1(即第一PDU会话)。
在具体实施中,建立PDU会话1的过程具体可以参阅图6所示PDU会话建立流程中的步骤S601~步骤S607,这里不再重复赘述。
S902,核心网设备(如AMF、SMF、UPF等网元)确定UE1与UE2(即第二终端)能够在接入网处进行数据直接传输。
具体的,UE1可以在PDU会话1的资源上向核心网设备或者DN发送目的节点的标识或地址(即UE2的标识或地址),从而核心网设备或者DN可以确定UE1和UE2能够在接入网处进行数据直接传输。
一种可能的实现方式中,也可以由UE1、UE2接入的gNB确定UE1和UE2能够在接入网处进行数据直接传输。例如,UE1请求建立PDU会话1时,就表明UE1在PDU会话1的资源上要向其他哪个终端进行数据传输,如第UE1向gNB发送PDU会话建立请求时可以携带PDU会话1的标识与UE2的标识,用于表明PDU会话1需要与UE2进行接入网处的数据直接传输。其中,终端的标识可为私网或企业网中员工工号、私网或企业网中员工代号等特有标识,可被终端和gNB识别,或者终端的标识也可以为终端的唯一标识等。从而,gNB在收到PDU会话建立请求后,可以确定UE1在PDU会话1的资源上和UE2进行接入网处的数据直接传输。因此,在具体实施时也可以不执行步骤S902,而是在执行步骤S901之后,直接执行步骤S903。
S903,AMF向gNB发送PDU会话资源设置请求(PDU Session Resource Setup Request),该PDU会话资源设置请求用于请求gNB为UE2的PDU会话2(即PDU会话2)分配资源,以使UE2接收来自于UE1的用户面数据。
具体实施中,若UE2为空闲态,则核心网网元和gNB可以依次发起寻呼。UE2收到寻呼,与gNB建立RRC连接。
若UE1和UE2间需要进行接入网处的数据直接传输,PDU会话资源设置请求信令中可以携带第一信息,以告知gNB为UE2建立的PDU会话2与UE1或者其他终端的哪些PDU会话相关联,gNB并根据关联关系为可进行接入网处的数据直接传输的PDU会话建立直传通道(例如,关联关系显示UE2的PDU会话2和UE1的PDU会话1可进行数据 直接传输,则gNB为PDU会话1和PDU会话2建立数据直接传输通道),以进行数据直接传输。第一信息,可以参阅表1所示。此外,PDU会话资源设置请求还可以携带第二信息,第二信息可以参阅表2或表3所示。
现有3GPP标准TS38.413协议15.3.0版本中,PDU会话资源设置请求中携带PDU会话的标识(PDU Session ID)以及相应PDU会话(PDU Session)中所包含的QoS Flow列表等参数。本实施例在3GPP标准的基础上,在PDU会话资源设置请求中增加一个或多个信元,即第一信息,以指示第一无线接入网设备UE1的第一PDU会话能够与UE2的第二PDU会话进行接入网处的数据直接传输。此外,在PDU会话资源设置请求中再增加一个或多个指示信元(Indication),即第二信息,以指示在第一无线接入网设备在UE2的第二PDU会话的资源上是否要进行接入网处的数据直接传输。
一种实现方式中,若PDU会话2可与PDU会话1在gNB处进行数据直接传输,AMF可以不保留为PDU会话1分配的上行用户面通道信息。当然,若PDU会话2可与PDU会话1在gNB处进行数据直接传输,AMF也可以保留为PDU会话1分配的上行用户面通道信息,从而UE1和UE2在gNB处进行数据直接传输失败时,UE1的用户面数据可以经由gNB-核心网网元-DN-核心网网元-gNB,再由gNB将UE1的用户面数据转发给UE2,以可以提高数据传输的成功率。
其中,PDU会话的上行用户面通道信息(NG UL UP Transport Layer Information)可以但不限于包括:用户面传输层信息(UP Transport Layer Information)、传输层地址(Transport Layer Address)、GPRS隧道协议-隧道端点标识(GPRS tunnelling protocol-tunnel endpoint identifier,GTP-TEID)等等。其中,用户面传输层信息,用于提供无线接入网设备与UPF处的与PDU会话相关联的用户面传输层信息,具体可以对应于网络协议(internet protocol,IP)地址和GTP隧道端点标识符。传输层地址,可以为IP地址。GTP-TEID,可以是无线接入网设备和UPF之间的用户面传输的GTP隧道端点标识符。
S904,gNB收到PDU会话资源设置请求后,为PDU会话2配置PDU会话资源,如,gNB为PDU会话2的DRB配置接入网处的SDAP层实体、PDCP层实体、MAC层实体、RLC层实体、PHY层实体,为PDU会话2分配下行用户面通道信息(包括gNB处的端口IP地址,GTP-TEID等)等。应当理解,不排除gNB不为PDU会话2的DRB重新配置接入网处的SDAP层实体、PDCP层实体、MAC层实体、RLC层实体等。
在一些实施例中,由于PDU会话2的数据与PDU会话1的数据可以进行直传,PDU会话2的DRB可以共用PDU会话1的DRB的接入网处的SDAP层实体、PDCP层实体、MAC层实体、RLC层实体等。示例性的,gNB可以为PDU会话2的DRB和PDU会话1的DRB分配相同的SDAP层实体、PDCP层实体、MAC层实体、RLC层实体等。或者,gNB可以将为PDU会话1的DRB的接入网处的SDAP层实体、PDCP层实体、MAC层实体、RLC层实体等资源分配给PDU会话2的DRB。
在另一些实施例中,gNB在为PDU会话2的DRB配置接入网处的SDAP、PDCP、MAC、RLC、PHY层等实体时,可以在PDU会话1以及PDU会话2的协议层实体(如SDAP层实体、PDCP层实体、RLC层实体、MAC层实体、物理层实体等等)间建立数据直接传输通道,建立的数据直接传输通道的两个端点分别为PDU会话1使用的某协议层实体以及PDU会话使用2的该协议层实体,该协议层可以为RRC层、SDAP层、PDCP层、RLC层、MAC层、物理层等。如,gNB在为PDU会话2的DRB配置接入网处的SDAP 层实体时,可以在PDU会话1的SDAP层实体与PDU会话2的SDAP层实体间建立数据直接传输通道。
S905,gNB向UE2发送RRC连接重配置(RRC Connection Reconfiguration)信令,该RRC Connection Reconfiguration信令可以携带gNB为PDU会话2配置的PDU会话资源的参数(如接入网处SDAP参数、PDCP参数、MAC参数、RLC参数、PHY层参数等)、指示信息。其中,指示信息中可以包括第一信息,或者可以包括第一信息和第二信息。
应当理解,gNB在将指示信息转发给UE2之前,可将第一信息中的UE标识等信息转换成UE2可识别的标识,本申请实施例类似之处不再赘述。
S906,UE2收到RRC连接重配置(RRC Connection Reconfiguration)信令后,为PDU会话2配置PDU会话资源(如,UE2为PDU会话2配置终端处的DRB的SDAP、PDCP、MAC实体的配置等)。
S907,配置完成后,UE2向gNB发送RRC连接重配置完成(RRC Connection Reconfiguration Complete)信令,以向gNB反馈PDU会话资源配置完成情况,并按照指示信息等待接收由gNB直传的UE1发送的数据。
S908,gNB向AMF发送PDU会话资源设置响应(PDU Session Resource Setup Response)信令,以向AMF反馈PDU会话资源配置完成情况。
在具体实施中,对于可在gNB处进行数据直接传输的PDU会话2,gNB可以不向AMF反馈为PDU会话2分配的下行用户面通道信息(NG-U DL UP Transport Layer Information)。当然,对于在gNB可以进行数据直接传输的PDU会话2,gNB可以向AMF反馈为PDU会话2分配的下行用户面通道信息。从而UE1和UE2在gNB处进行数据直接传输失败时,UE1的用户面数据可以经由gNB-核心网网元-DN-核心网网元-gNB,然后由gNB转发给UE2,以可以提高数据传输的成功率。
S909,核心网网元(如AMF、UPF等)更新指示信息。
在具体实施中,对于在gNB可以进行数据直接传输的PDU会话1,AMF可以释放已为该PDU会话1分配的相应的NG口的上行用户面通道信息(NG UL UP Transport Layer Information)。当然,对于在gNB可以进行数据直接传输的PDU会话1,AMF可以不释放已为该PDU会话1分配的相应的NG口的上行用户面通道信息(NG UL UP Transport Layer Information)。从而UE1和UE2在gNB处进行数据直接传输失败时,UE1的用户面数据可以经由gNB-核心网网元-DN-核心网网元-gNB,然后由gNB转发给UE2,以可以提高数据传输的成功率。
S910,AMF向gNB发送PDU会话资源修改请求(PDU Session Resource Modify Request),该PDU会话资源修改请求可以携带更新后的指示信息。
在具体实施中,gNB可以根据更新后的指示信息更改gNB处已经配置的PDU会话资源。
S911,gNB向UE1发送RRC连接重配置(RRC Connection Reconfiguration),该RRC连接重配置可以携带更新后的指示信息。
S912,UE1向gNB发送RRC连接重配置完成(RRC Connection Reconfiguration Complete),告知gNB UE1收到更新后的指示信息。
UE1在接收到指示信息后,可以根据指示信息通过gNB向UE2发送数据,示例性的,UE1在通过gNB向UE2发送用户面数据时,可以不用在发送的用户面数据的包头处添加 UE2的IP地址。通过这种方式,可以降低UE1打包数据的复杂度,从而可以降低数据传输的时延。
S913,gNB向AMF发送PDU会话资源修改响应(PDU Session Resource Modify Response)。
在一些实施例中,gNB和/或UE2可能由于资源利用率,内存占用率等原因未能按照请求配置PDU会话资源,所以核心网网元可以对指示信息进行更新,因此可以在执行步骤S908之后,执行步骤S909~步骤S913。而在另一些实施例中,在执行步骤S908之后,也可以不执行步骤S909~步骤S913。
在图9所示方法中,UE2也可以向UE1发送用户面数据,具体可以通过如下两种方式中的任一方式实现:
方式一,可以建立UE2的PDU会话3,并可以在PDU会话3与UE1的PDU会话4之间建立数据直接传输通道,具体过程可以参阅步骤S902~步骤S913,从而UE2可以在PDU会话3的资源上向gNB发送用户面数据,gNB通过PDU会话3与PDU会话4之间的数据直接传输通道将UE2的用户面数据传输到PDU会话4的资源上,并在PDU会话4的资源上向UE1发送该用户面数据。
方式二,UE2也可以在PDU会话2的资源上向gNB发送用户面数据,gNB可以通过PDU会话1与PDU会话2之间的数据直接传输通道,或者PDU会话1与PDU会话2共用的协议层,将UE2的用户面数据传输到PDU会话1的资源上,并在PDU会话1的资源上向UE1发送该用户面数据。
通过上述方式,gNB通过在PDU会话1以及PDU会话2的协议层实体间建立数据直接传输通道,使得gNB在接收到UE1发送的用户面数据时,可以通过协议层实体间的数据直接传输通道转发给UE2,或者,也可以通过PDU会话1以及PDU会话2共用的协议层实体转发给UE2,从而可以实现UE1以及UE2间的数据直接传输。例如,假设gNB在PDU会话1以及PDU会话2的PDCP层实体间建立数据直接传输通道,则gNB在接收到UE1发送给UE2的用户面数据后,将该用户面数据依次经过PDU会话1的物理层、MAC层、RLC层进行处理,再将该用户面数据经过PDU会话1的PDCP层处理后,通过PDU会话1以及PDU会话2的PDCP层实体间的数据直接传输通道将该处理后的用户面数据转发给PDU会话2的PDCP层,然后依次经过PDU会话2的PDCP层、RLC层、MAC层、物理层进行处理,然后将处理后的用户面数据转发给UE2,如图10所示。
在另一些实施例中,第一无线接入网设备可以采用实现功能分离后的架构,第一无线接入网设备实现功能分离后的架构可以如图4A或图4B所示。当第一无线接入网设备采用如图4A或图4B所示的实现功能分离后的架构时,以第一无线接入网设备为gNB为例,第一终端和第二终端接入第一无线接入网设备的场景有两种,一种场景是,第一终端和第二终端分别接入第一无线接入网设备的不同gNB-DU,例如,第一终端接入gNB-DU1,第二终端接入gNB-DU2,如图11A所示。另一种场景是,第一终端和第二终端接入第一无线接入网设备的同一DU,例如,第一终端、第二终端接入同一gNB-DU,如图11B所示。
在图11A所示的场景一中,第一无线接入网设备建立数据直接传输通道时,可以是由gNB-CU建立数据直接传输通道。具体的,gNB-CU可以接收核心网设备发送的所述指示信息,且为所述第一PDU会话以及所述第二PDU会话建立第一数据直接传输通道,所述第一数据直接传输通道的两个端点分别为所述第一PDU会话PDU会话1使用的第一协议 层实体以及所述第二PDU会话PDU会话2使用的第一协议层实体,所述第一协议层为所述gNB-CU的任一协议层。示例性的,第一协议层可以但限于为SDAP层、PDCP层等等。
为了更好地理解本申请实施例,下面以gNB-CU可以用于实现RRC层、SDAP层和PDCP层的功能,gNB-DU可以用于实现RLC层、MAC层和物理层的功能为例,结合图11A所示的场景一,建立数据直接传输通道的过程,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图12所示。
S1201~S1203,具体可以参阅步骤S901~步骤S903。需要说明的是,步骤S1203与步骤S903的接收设备不同,步骤S1203中接收设备是gNB-CU,S903中接收设备是gNB。
S1204,gNB为PDU会话2配置PDU会话资源。具体的,gNB-CU接收到PDU会话资源设置请求后,为PDU会话2配置SDAP层实体和PDCP层实体,gNB-DU2(即UE2接入的DU)为PDU会话2配置RLC层实体、MAC层实体和物理层实体。并且,gNB-DU2为PDU会话2配置RLC层实体、MAC层实体和物理层实体时,可以在PDU会话1的第一协议层实体与PDU会话2的第一协议层实体之间建立数据直接传输通道,其中,第一协议层可以为SDAP层和PDCP层。如,gNB-CU可以在PDU会话1的SDAP层实体与PDU会话2的SDAP层实体之间建立数据直接传输通道。或者,gNB-CU也可以在PDU会话1的PDCP层实体与PDU会话2的PDCP层实体之间建立数据直接传输通道。
S1205~S1207可以参阅步骤S905~步骤S907。需要说明的是,步骤S1205与步骤S905的发送设备不同,步骤S1205中发送设备是gNB-DU2,S905中发送设备是gNB。步骤S1207与步骤S907的接收设备不同,步骤S1207中接收设备是gNB-DU2,S907中接收设备是gNB。
S1208,gNB-DU2向CU发送上行RRC消息转发(UL RRC Message Transfer)。
S1209~S1211,可以参阅步骤S908~步骤S910。需要说明的是,步骤S1209与步骤S908的发送设备不同,步骤S1209中发送设备是gNB-CU,S908中发送设备是gNB。步骤S1211与步骤S910的接收设备不同,步骤S1211中接收设备是gNB-CU,S910中接收设备是gNB。
S1212,gNB-CU向gNB-DU1发送下行RRC信令转发(DL RRC Message Transfer)消息,所述DL RRC Message Transfer消息可以携带更新后的指示信息。
S1213~S1214,可以参阅步骤S911~步骤S912。需要说明的是,步骤S1213与步骤S911的发送设备不同,步骤S1213中发送设备是gNB-DU1,S911中发送设备是gNB。步骤S1214与步骤S912的接收设备不同,步骤S1214中接收设备是gNB-DU1,S912中接收设备是gNB。
S1215,gNB-DU1向gNB-CU发送上行RRC消息转发消息,所述上行RRC消息转发消息用于向gNB-CU通知UE1收到更新后的指示信息。
S1216可以参阅步骤S913。需要说明的是,步骤S1216与步骤S913的发送设备不同,步骤S1216中发送设备是gNB-CU,S913中发送设备是gNB。
在图12所示方法中,UE2也可以向UE1发送用户面数据,具体可以通过如下两种方式中的任一方式实现:
方式一,可以建立UE2的PDU会话3,并可以在PDU会话3与UE1的PDU会话4之间建立数据直接传输通道,具体过程可以参阅步骤S1202~S1216,从而UE2可以在PDU会话3的资源上向gNB-CU发送用户面数据,gNB-CU通过PDU会话3与PDU会话4之 间的数据直接传输通道将UE2的用户面数据传输到PDU会话4的资源上,并在PDU会话4的资源上向UE1发送该用户面数据。
方式二,UE2也可以在PDU会话2的资源上向gNB-CU发送用户面数据,gNB-CU可以通过PDU会话1与PDU会话2之间的数据直接传输通道,或者PDU会话1与PDU会话2共用的协议层,将UE2的用户面数据传输到PDU会话1的资源上,并在PDU会话1的资源上向UE1发送该用户面数据。
通过上述方式,gNB-CU通过在PDU会话1以及PDU会话2的第一协议层实体间建立数据直接传输通道,使得gNB在接收到UE1发送的用户面数据时,可以通过协议层实体间的数据直接传输通道转发给UE2,从而可以实现UE1以及UE2间的数据直接传输。例如,假设gNB-CU在PDU会话1以及PDU会话2的PDCP层实体间建立数据直接传输通道,则gNB-DU1(即第一DU)在接收到UE1发送给UE2的用户面数据后,将该用户面数据依次经过PDU会话1的物理层、MAC层、RLC层进行处理,并将处理后的用户面数据发送给gNB-CU,gNB-CU将接收到用户面数据经过PDU会话1的PDCP层处理后,通过PDU会话1以及PDU会话2的PDCP层实体间的数据直接传输通道将该处理后的用户面数据转发给PDU会话2的PDCP层进行处理,并将处理后的用户面数据发送给gNB-DU2,gNB-DU2将接收到的数据依次经过PDU会话2的RLC层、MAC层、物理层进行处理,然后将处理后的用户面数据转发给UE2,如图13所示。
在图11B所示的场景二中,第一无线接入网设备建立数据直接传输通道时,可以通过如下两种方式实现:
第一种实现方式中,可以是由gNB-CU建立数据直接传输通道,具体过程可以参阅第一终端和第二终端分别接入第一无线接入网设备的不同DU时,gNB-CU建立数据直接传输通道的过程。
在第一种实现方式中,UE2也可以向UE1发送用户面数据,具体的,可以参阅图12所示方法中UE2向UE1发送用户面数据的方法,这里不再重复赘述。
第二种实现方式中,可以是由gNB-DU1建立数据直接传输通道。具体的,gNB-CU可以接收核心网设备发送的所述指示信息,且向gNB-DU1发送指示信息。该gNB-DU1在接收到所述指示信息后可以为所述第一PDU会话以及所述第二PDU会话建立第二数据直接传输通道,所述第二数据直接传输通道的两个端点为所述第一PDU会话使用的第二协议层实体以及所述第二PDU会话使用的第二协议层实体,所述第二协议层为所述gNB-DU1的任一协议层。示例性的,第一协议层可以但不限于为RLC层、MAC层、物理层等。
为了更好地理解本申请实施例,下面以gNB-CU可以用于实现RRC层、SDAP层和PDCP层的功能,gNB-DU可以用于实现RLC层、MAC层和物理层的功能为例,结合图11B所示的场景二,建立数据直接传输通道的过程,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图14A所示。
步骤S1401~步骤S1416,具体可以参阅步骤S1201~步骤S1216,这里不再重复赘述。需要说明的是,步骤S1204中gNB为PDU会话2配置PDU会话资源,具体可以通过如下方式实现:gNB-CU接收到PDU会话资源设置请求后,为PDU会话2配置RRC层实体、SDAP层实体和PDCP层实体,gNB-DU(即UE1和UE2接入的DU)为PDU会话2配置RLC层实体、MAC层实体和物理层实体。并且,gNB-DU为PDU会话2配置RLC层实 体、MAC层实体和物理层实体时,可以在PDU会话1的第二协议层实体与PDU会话2的第二协议层实体之间建立数据直接传输通道,其中,第二协议层可以为RLC层或者MAC层或者物理层。如,gNB-DU可以在PDU会话1的MAC层实体与PDU会话2的MAC层实体之间建立数据直接传输通道。或者,gNB-DU可以在PDU会话1的RLC层实体与PDU会话2的RLC层实体之间建立数据直接传输通道。或者,gNB-DU可以在PDU会话1的物理层实体与PDU会话2的物理层实体之间建立数据直接传输通道。并且,步骤S1201~步骤S1216中由gNB-DU1或gNB-DU2执行的动作,在步骤S1401~步骤S1416中均由gNB-DU执行。
在图14A所示方法中,UE2也可以向UE1发送用户面数据,具体可以通过如下两种方式中的任一方式实现:
方式一,可以建立UE2的PDU会话3,并可以在PDU会话3与UE1的PDU会话4之间建立数据直接传输通道,具体过程可以参阅步骤S1402~步骤S1416,从而UE2可以在PDU会话3的资源上向gNB-DU发送用户面数据,gNB-DU通过PDU会话3与PDU会话4之间的数据直接传输通道将UE2的用户面数据传输到PDU会话4的资源上,并在PDU会话4的资源上向UE1发送该用户面数据。
方式二,UE2也可以在PDU会话2的资源上向gNB-DU发送用户面数据,gNB-DU可以通过PDU会话1与PDU会话2之间的数据直接传输通道,或者PDU会话1与PDU会话2共用的协议层,将UE2的用户面数据传输到PDU会话1的资源上,并在PDU会话1的资源上向UE1发送该用户面数据。
通过上述方式,gNB-DU通过在PDU会话1以及PDU会话2的第二协议层实体间建立数据直接传输通道,使得gNB在接收到UE1发送的用户面数据时,可以通过协议层实体间的数据直接传输通道转发给UE2,从而可以实现UE1以及UE2间的数据直接传输。
例如,假设gNB-DU在PDU会话1以及PDU会话2的MAC层实体间建立数据直接传输通道,则gNB-DU在接收到UE1发送给UE2的用户面数据后,将该用户面数据依次经过PDU会话1的物理层、MAC层进行处理,并将处理后的用户面数据通过PDU会话1以及PDU会话2的MAC层实体间的数据直接传输通道转发给PDU会话2的MAC层进行处理,在将经过PDU会话2的MAC层处理后的用户面数据在PDU会话2的物理层处理后转发给UE2,如图14B所示。
又例如,假设PDU会话1以及PDU会话2共用MAC层实体,则gNB-DU在接收到UE1发送给UE2的用户面数据后,将该用户面数据依次经过PDU会话1的物理层、MAC层进行处理,该MAC可以将该数据发送到PDU会话2的物理层进行处理,并在PDU2的资源上发送给UE2。
又一些实施例中,第一无线接入网设备还可以采用图5所示的实现功能分离后的架构。当第一无线接入网设备采用图5所示的实现功能分离后的架构时,第一终端(UE1)和第二终端(UE2)接入第一无线接入网设备的场景有四种,第一种场景是,第一终端和第二终端接入第一无线接入网设备的同一gNB-DU,且该gNB-DU与一个gNB-CU-UP相连,第一终端和第二终端的PDU会话资源建立在该gNB-CU-UP上,如图15A。第二种场景是,第一终端和第二终端分别接入第一无线接入网设备的不同DU,假设第一终端接入gNB-DU1,第二终端接入gNB-DU2,且gNB-DU1以及gNB-DU2与同一个gNB-CU-UP相连,如图15B。第三种场景是,第一终端和第二终端分别接入第一无线接入网设备的不 同gNB-DU,假设第一终端接入gNB-DU1,第二终端接入gNB-DU2。且gNB-DU1以及gNB-DU2与不同gNB-CU-UP相连,gNB-DU1与gNB-CU-UP1相连,gNB-DU2与gNB-CU-UP2相连,如图15C。第四种场景是,第一终端和第二终端分别接入第一无线接入网设备的同一gNB-DU,且该gNB-DU与gNB-CU-UP1和gNB-CU-UP2相连,第一终端的PDU会话资源和第二终端的PDU会话资源分别建立在gNB-CU-UP1和gNB-CU-UP2上,假设第一终端的PDU会话资源建立在gNB-CU-UP1上,第二终端的PDU会话资源建立在gNB-CU-UP2,如图15D。
在图15A所示的场景一中,第一无线接入网设备建立数据直接传输通道时,可以是由gNB-CU-UP1建立数据直接传输通道。具体的,具体的,gNB-CU-CP可以接收所述指示信息,并向gNB-CU-UP1发送所述指示信息。gNB-CU-UP1在接收到所述指示信息后可以为所述第一PDU会话以及所述第二PDU会话建立所述第一数据直接传输通道。图15A所示的场景一中第一无线接入网设备建立数据直接传输通道的过程,具体可以参阅图11B所示的场景二中第一无线接入网设备建立数据直接传输通道的过程,这里不再重复赘述。
在图15B所示的场景二中,第一无线接入网设备建立数据直接传输通道时,可以是由gNB-CU-UP建立数据直接传输通道。具体过程可以参阅第一终端、第二终端接入同一gNB-DU时,gNB-CU-UP建立数据直接传输通道的过程。
为了更好地理解本申请实施例,下面以gNB-CU可以用于实现RRC层、SDAP层和PDCP层的功能,gNB-DU可以用于实现RLC层、MAC层和物理层的功能为例,结合图15B所示的场景二,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图16所示。
步骤S1601~步骤S1603,具体可以参阅步骤S1201~步骤S1203,这里不再重复赘述。需要说明的是,步骤S1203与步骤S1603中接收设备不同,S1603中接收设备是gNB-CU-CP,步骤S1203中接收设备是gNB-CU。
S1604,gNB-CU-CP向gNB-CU-UP发送承载上下文修改请求(Bearer Context Modification Request),以指示gNB-CU-UP为UE2在gNB-CU-UP处配置PDU会话资源(如为UE2的PDU会话2配置SDAP层实体、PDCP实体、下行用户面通道信息等)。承载上下文修改请求可以携带指示信息。
具体实施中,gNB-CU-UP为PDU会话2配置SDAP层实体和PDCP层实体时,可以根据指示信息在PDU会话1的第一协议层实体与PDU会话2的第一协议层实体之间建立数据直接传输通道,其中,第一协议层可以为SDAP层或者PDCP层。如,gNB-CU-UP可以在PDU会话1的PDCP层实体与PDU会话2的PDCP层实体之间建立数据直接传输通道。如,gNB-CU-UP可以在PDU会话1的SDAP层实体与PDU会话2的SDAP层实体之间建立数据直接传输通道。
S1605,gNB-CU-UP向gNB-CU-CP发送承载上下文修改响应(Bearer Context Modification Response)。
具体实施中,对于可在gNB-CU-UP处进行数据直接传输的PDU会话2,gNB-CU-UP可以不向gNB-CU-CP反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information),从而,gNB-CU-CP不向AMF反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者gNB-CU-UP为S1口分配的 下行用户面通道信息(S1 DL UP Transport Layer Information);或者,gNB-CU-UP可以向gNB-CU-CP反馈为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information或者为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information),但是,gNB-CU-CP不向AMF反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information或者gNB-CU-UP为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information;或者,gNB-CU-UP也可以不为PDU会话2分配NG口的下行用户面通道信息或者S1口的下行用户面通道信息,从而,gNB-CU-CP不向AMF反馈NG口的下行用户面通道信息(NG DL UP Transport Layer Information或者S1口的下行用户面通道信息(S1 DL UP Transport Layer Information。
当然,对于在gNB-CU-UP处可以进行数据直接传输的PDU会话2,gNB-CU-UP也可以向gNB-CU-CP反馈gNB-CU-UP为PDU会话2分配的下行用户面通道信息,从而,gNB-CU-CP可以向AMF反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者gNB-CU-UP为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information)。从而UE1和UE2在gNB-CU-UP处进行数据直接传输失败时,UE1的用户面数据可以经由gNB-核心网网元-DN-核心网网元-gNB,然后由gNB转发给UE2,以可以提高数据传输的成功率。
S1606,gNB-CU-CP根据gNB-CU-UP发送的承载上下文修改响应,更新指示信息。
具体实施中,gNB-CU-UP可能由于自身负载过高、可用内存少等因素未能成功建立某些PDU会话,因此可以在执行完步骤S1605后,可以执行步骤S1606。
或者,具体实施中,也可以不执行步骤S1606,即在执行完步骤S1605后,可以执行步骤S1607。
S1607,gNB-CU-CP向gNB-DU2(即第二DU)发送用户上下文修改请求(UE Context Modification Request),以指示gNB-DU2为UE2的PDU会话2配置PDU会话资源(如为UE2的PDU会话2配置RLC层实体、MAC层实体和PHY层实体等)。
S1608,gNB-DU2向gNB-CU-CP发送用户上下文修改响应(UE Context Modification Response)。
S1609,gNB-CU-CP向gNB-DU2发送下行RRC信令转发(DL RRC Message Transfer),下行RRC信令转发可以携带RRC连接重配置(RRC Connection Reconfiguration)相关参数(如为PDU会话2配置的SDAP,PDCP,RLC,MAC和PHY层实体参数等),并且还可以携带更新后的指示信息。
步骤S1610~步骤S1616,具体可以参阅步骤S1205~步骤S1211,这里不再重复赘述。需要说明的是,步骤S1208与步骤S1613中接收设备不同,S1613中接收设备是gNB-CU-CP,步骤S1208中接收设备是gNB-CU。步骤S1209与步骤S1614中发送设备不同,S1614中发送设备是gNB-CU-CP,步骤S1209中发送设备是gNB-CU。步骤S1211与步骤S1616中接收设备不同,S1616中接收设备是gNB-CU-CP,步骤S1211中接收设备是gNB-CU。
S1617,gNB-CU-CP向gNB-CU-UP发送承载上下文修改请求(Bearer Context Modification Request),该承载上下文修改请求可以携带更新后的指示信息。
具体实施中,gNB-CU-UP可以根据更新后的指示信息更改gNB-CU-UP处已经配置的UE1PDU会话资源,例如,对于在gNB-CU-UP处可以进行数据直接传输的PDU会话1,gNB-CU-UP可以释放为PDU会话1分配的NG口的下行用户面通道信息。再例如,若 gNB-CU-UP为PDU会话1以及PDU会话2建立了PDCP层实体的数据直接传输通道,则可以释放已为PDU会话1配置的SDAP实体资源等。
S1618,gNB-CU-UP向gNB-CU-CP发送承载上下文修改响应(Bearer Context Modification Response)。
具体实施中,对于在gNB-CU-UP处可以进行数据直接传输的PDU会话1,gNB-CU-UP可以不向gNB-CU-CP反馈为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information),从而,gNB-CU-CP可以不向AMF反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者gNB-CU-UP为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information);或者,gNB-CU-UP可以向gNB-CU-CP反馈为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information),但是,gNB-CU-CP不向AMF反馈gNB-CU-UP为NG口分配的下行用户面通道信息(NG DL UP Transport Layer Information)或者gNB-CU-UP为S1口分配的下行用户面通道信息(S1 DL UP Transport Layer Information);或者,gNB-CU-UP也可以不为PDU会话1分配NG口的下行用户面通道信息或者S1口的下行用户面通道信息,从而,gNB-CU-CP不向AMF反馈NG口的下行用户面通道信息(NG DL UP Transport Layer Information)或者S1口的下行用户面通道信息(S1 DL UP Transport Layer Information)。
步骤S1619~步骤S1626,具体可以参阅步骤S1607步骤~S1614,这里不再重复赘述。
在图16所示方法中,UE2也可以向UE1发送用户面数据,具体可以通过如下两种方式中的任一方式实现:
方式一,可以建立UE2的PDU会话3,并可以在PDU会话3与UE1的PDU会话4之间建立数据直接传输通道,具体过程可以参阅步骤S1602~步骤S1626,从而UE2可以在PDU会话3的资源上向gNB-CU-UP发送用户面数据,gNB-CU-UP通过PDU会话3与PDU会话4之间的数据直接传输通道将UE2的用户面数据传输到PDU会话4的资源上,并在PDU会话4的资源上向UE1发送该用户面数据。
方式二,UE2也可以在PDU会话2的资源上向gNB-CU-UP发送用户面数据,gNB-CU-UP可以通过PDU会话1与PDU会话2之间的数据直接传输通道,或者PDU会话1与PDU会话2共用的协议层,将UE2的用户面数据传输到PDU会话1的资源上,并在PDU会话1的资源上向UE1发送该用户面数据。
通过上述方式,gNB-CU-UP通过在PDU会话1以及PDU会话2的第一协议层实体间建立数据直接传输通道,使得gNB在接收到UE1发送的用户面数据时,可以通过协议层实体间的数据直接传输通道转发给UE2,从而可以实现UE1以及UE2间的数据直接传输。例如,假设gNB-CU-UP在PDU会话1以及PDU会话2的PDCP层实体间建立数据直接传输通道,则gNB-DU1(即第一DU)在接收到UE1发送给UE2的用户面数据后,将该用户面数据依次经过PDU会话1的物理层、MAC层、RLC层进行处理,并将处理后的用户面数据发送给gNB-CU-UP,gNB-CU-UP将接收到用户面数据经过PDU会话1的PDCP层处理后,通过PDU会话1以及PDU会话2的PDCP层实体间的数据直接传输通道将该处理后的用户面数据转发给PDU会话2的PDCP层进行处理,并将处理后的用户面数据发送给gNB-DU2,gNB-DU2将接收到的数据依次经过PDU会话2的RLC层、MAC层、 物理层进行处理,然后将处理后的用户面数据转发给UE2,如图17所示。
在图15C所示的场景三中,第一无线接入网设备建立数据直接传输通道时,可以由gNB-CU-UP1建立数据直接传输通道。
一种实现方式中,gNB-CU-CP可以接收所述指示信息,并向所述gNB-CU-UP1发送第三信息,所述第三信息是指所述第二PDU会话在所述gNB-CU-UP2处的下行用户面通道信息,或者,所述第三信息是指所述gNB-CU-UP2为所述第二PDU会话分配的用于数据直接传输的用户面通道信息。gNB-CU-UP1可以将所述第三信息作为PDU会话的上行用户面通道信息分配给所述第一PDU会话。上述方式通过修改第一PDU会话的上行用户面通道信息,使得gNB-CU-UP1接收gNB-DU1转发的第一终端的用户面数据时,可以根据第三信息将该用户面数据路由到gNB-CU-UP2,从而可以由gNB-CU-UP2转发给gNB-DU2,再由gNB-DU2转发给第二终端,以实现第一终端与第二终端在接入网处的数据直接传输。
另一种实现方式中,gNB-CU-CP可以接收所述指示信息,并向所述gNB-CU-UP1发送第三信息,所述第三信息是指所述第二PDU会话在所述gNB-CU-UP2处的下行用户面通道信息,或者,所述第三信息是指所述gNB-CU-UP2为所述第二PDU会话分配的用于数据直接传输的用户面通道信息。所述gNB-CU-UP1可以将所述第三信息作为所述数据直接传输通道的上行用户面通道信息分配给所述第一PDU会话。上述方式通过为第一PDU会话新分配一个用于数据直接传输的用户面通道信息,并且该用于数据直接传输的用户面通道信息为第三信息,使得gNB-CU-UP1接收第一DU转发的第一终端的用户面数据时,可以根据第三信息将该用户面数据直接传输到gNB-CU-UP2,从而可以由gNB-CU-UP2转发给gNB-DU2,再由gNB-DU2转发给第二终端,以实现第一终端与第二终端在接入网处的数据直接传输。
为了更好地理解本申请实施例,下面以gNB-CU可以用于实现RRC层、SDAP层和PDCP层的功能,gNB-DU可以用于实现RLC层、MAC层和物理层的功能为例,结合图15C所示的场景三,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图18所示。
步骤S1801~步骤S1826,具体可以参阅步骤S1601~步骤S1626,这里不再重复赘述。需要说明的是,步骤S1804与步骤S1604中接收设备不同,S1604中接收设备是gNB-CU-UP,步骤S1804中接收设备是gNB-CU-UP2,并且步骤S1804中gNB-CU-CP向gNB-CU-UP2发送的承载上下文修改请求中携带第三信息,第三信息为PDU会话1在gNB-CU-UP1处的下行用户面通道信息,或者,第三信息是指所述gNB-CU-UP1为PDU会话1分配的用于数据直接传输的用户面通道信息。
具体实施中,gNB-CU-UP2可以根据第三信息在PDU会话1与PDU会话2之间建立数据直接传输通道,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,即数据直接传输通道的两端分别连接第一PDU会话使用的实体以及第二PDU会话使用的实体是指数据直接传输通道的两端分别连接第一CU-UP以及第二CU-UP。例如。gNB-CU-UP2将第三信息作为所述数据直接传输通道的上行用户面通道信息分配给PDU会话2。或者,gNB-CU-UP2将第三信息作为PDU会话的上行用户面通道信息分配给PDU会话2,即gNB-CU-UP2将核心网网元为PDU会话2的上行用户面通道信息修改为第三信息。从而,gNB-CU-UP2在接收到UE2在PDU2的资源上发送数据时,可以将该数据路由到gNB-CU-UP1中PDU会话1的资源上,并可以将该数据在PDU1的资源上发送 给UE1。
步骤S1805与步骤S1605中发送设备不同,S1605中发送设备是gNB-CU-UP,步骤S1805中发送设备是gNB-CU-UP2。步骤S1817与步骤S1617中接收设备不同,S1617中接收设备是gNB-CU-UP,步骤S1817中接收设备是gNB-CU-UP1。步骤S1818与步骤S1618中发送设备不同,S1618中发送设备是gNB-CU-UP,步骤S1817中发送设备是gNB-CU-UP1。其中,步骤S1817中gNB-CU-CP向gNB-CU-UP1发送的承载上下文修改请求中可以携带第四信息,第四信息为PDU会话2在gNB-CU-UP2处的下行用户面通道信息,或者,第四信息是指所述gNB-CU-UP2为PDU会话2分配的用于数据直接传输的用户面通道信息。
具体实施中,gNB-CU-UP1可以根据第四信息在PDU会话1与PDU会话2之间建立数据直接传输通道。例如。gNB-CU-UP1将第四信息作为所述数据直接传输通道的上行用户面通道信息分配给PDU会话1。或者,gNB-CU-UP1将第四信息作为PDU会话的上行用户面通道信息分配给PDU会话1,即gNB-CU-UP1将核心网网元为PDU会话1的上行用户面通道信息修改为第四信息。从而,gNB-CU-UP1在接收到UE1在PDU1的资源上发送数据时,可以将该数据路由到gNB-CU-UP2中PDU会话2的资源上,并可以将该数据在PDU2的资源上发送给UE2。
需要说明的是,UE1向UE2发送数据时,与UE2向UE1发送数据时,占用的PDU会话资源可以不同。如,UE2向UE1发送数据时,占用UE2的PDU2资源和UE1的PDU1资源。即gNB-CU-UP2可以根据PDU会话1在gNB-CU-UP1处的下行用户面通道信息,或者,gNB-CU-UP1为PDU会话1分配的用于数据直接传输的用户面通道信息,在PDU会话1与PDU会话2之间建立数据直接传输通道,UE2向UE1发送数据时,UE2可以在PDU2的资源上发送数据,gNB-CU-UP2将该数据路由到gNB-CU-UP1中PDU1的资源上,gNB-CU-UP1将该数据在PDU1的资源上发送给UE1。
UE1向UE2发送数据时,占用UE2的PDU3资源和UE1的PDU4资源。即gNB-CU-UP1可以根据PDU会话3在gNB-CU-UP2处的下行用户面通道信息,或者,gNB-CU-UP2为PDU会话3分配的用于数据直接传输的用户面通道信息,在PDU会话4与PDU会话3之间建立数据直接传输通道,UE1向UE2发送数据时,UE1可以在PDU4的资源上发送数据,gNB-CU-UP1将该数据路由到gNB-CU-UP2中PDU3的资源上,gNB-CU-UP2将该数据在PDU3的资源上发送给UE1。
通过上述方式,在图5所示gNB架构,两终端在不同gNB-DU下,且两gNB-DU也在不同gNB-CU-UP下,一个终端向另一个终端发送用户面数据,通过NG口和E1口信令在两gNB-CU-UP间建立数据直接传输通道,使两终端的数据在两gNB-CU-UP间通过Xn-U进行直传。
在图15D所示的场景四中,第一无线接入网设备建立数据直接传输通道时,可以由gNB-CU-UP1建立数据直接传输通道。具体过程参照以上对图15C所示的场景三的描述,具体步骤可参阅步骤S1801~步骤S1826,需要说明的是,图15D所示的场景四种第一终端和第二终端都连接到了同一gNB-DU上,而步骤S1801~步骤S1826中所示的第一终端和第二终端分别连接到了gNB-DU1和gNB-DU2上,因此,在图15D所示的场景四中,步骤S1801~步骤S1826中gNB-DU1和gNB-DU2的动作可以由第一终端和第二终端接入的gNB-DU执行,这里不再重复赘述。通过上述方式,基于图5所示的gNB架构,两终端在同一gNB-DU下,且gNB-DU在不同gNB-CU-UP下,一个终端向另一个终端发送用户面 数据,通过NG口和E1口信令在两gNB-CU-UP间建立数据直接传输通道,使两终端的数据在两gNB-CU-UP间可以通过Xn-U进行直传。
实施例二:第一终端(UE1)和第二终端(UE2)可能分别接入不同的无线接入网设备,如第一终端接入第一无线接入网设备(gNB1),第二终端接入第二无线接入网设备(gNB2),如图19所示。在该场景下,第一无线接入网设备建立数据直接传输通道时,可以通过如下两种方式实现。
第一种实现方式中,第一无线接入网设备可以通过Xn接口为第一终端和第二终端在第一无线接入网设备以及第二无线接入网设备之间建立数据直接传输通道。
为了更好地理解本申请实施例,下面以第一无线接入网设备、第二无线接入网设备为集中式架构的gNB为例,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图20所示。
步骤S2001和步骤S2002,具体可以参阅步骤S901和步骤S902,这里不再重复赘述。
S2003,AMF向gNB2(即第二无线接入网设备)发送PDU会话资源设置请求,以使gNB2为UE2的PDU会话2配置PDU会话资源,以使UE2接收来自于UE1的用户面数据。
具体实施中,若UE2为空闲态,则核心网网元和gNB2可以依次发起寻呼。UE2收到寻呼,与gNB2建立RRC连接。
若UE1和UE2间需要进行接入网处的数据直接传输,PDU会话资源设置请求信令中可以携带指示信息,以告知gNB2为UE2建立的PDU会话2与UE1或者其他终端的哪些PDU会话相关联,gNB2并根据关联关系为可进行接入网处的数据直接传输的PDU会话建立直传通道(例如,关联关系显示UE2的PDU会话2和UE1的PDU会话1可进行数据直接传输,则gNB2为PDU会话1和PDU会话2建立数据直接传输通道),以进行数据直接传输。指示信息,可以参阅表1所示。此外,PDU会话资源设置请求还可以携带第二信息。
现有3GPP标准TS38.413协议15.3.0版本中,PDU会话资源设置请求中携带PDU会话的标识(PDU Session ID)以及相应PDU会话(PDU Session)中所包含的QoS Flow列表等参数。本实施例在3GPP标准的基础上,在PDU会话资源设置请求中增加一个或多个信元,即指示信息,以指示第二无线接入网设备UE1的第一PDU会话能够与UE2的第二PDU会话进行接入网处的数据直接传输。此外,还可以在PDU会话资源设置请求中再增加一个或多个指示信元(Indication),即第二信息,以指示在第二无线接入网设备在UE2的第二PDU会话的资源上是否要进行接入网处的数据直接传输。
一种实现方式中,若PDU会话2可与PDU会话1在两个gNB间进行数据直接传输,UPF可以不向AMF反馈为PDU会话2分配的上行用户面通道信息,从而,AMF不向gNB2反馈UPF为PDU会话2分配的上行用户面通道信息;或者,UPF可以向AMF反馈为PDU会话2分配的上行用户面通道信息,但是,AMF不向gNB2反馈UPF为PDU会话2分配的上行用户面通道信息;或者,UPF也可以不为PDU会话2分配上行用户面通道信息,从而,AMF不向gNB2反馈PDU会话2的上行用户面通道信息。
当然,若PDU会话2可与PDU会话1在gNB处进行数据直接传输,AMF也可以向gNB2反馈UPF为PDU会话2分配上行用户面通道信息,从而UE1和UE2在gNB处进行数据直接传输失败时,UE2的用户面数据可以经由gNB2-核心网网元-DN-核心网网元 -gNB1,再由gNB1将UE2的用户面数据转发给UE1,以可以提高数据传输的成功率。
其中,PDU会话的上行用户面通道信息(NG UL UP Transport Layer Information)可以但不限于包括:用户面传输层信息(UP Transport Layer Information)、传输层地址(Transport Layer Address)、GPRS隧道协议-隧道端点标识(GPRS tunnelling protocol-tunnel endpoint identifier,GTP-TEID)等等。其中,用户面传输层信息,用于提供与NG-RAN节点-AMF对的PDU会话相关联的NG用户平面传输层信息,具体可以对应于网络协议(internet protocol)IP地址和GTP隧道端点标识符。传输层地址,可以为IP地址。GTP-TEID,可以是NG-RAN节点和UPF之间的用户平面传输的GTP隧道端点标识符。
S2004,gNB2请求UE2为PDU会话2配置相应SRB,DRB资源,同时将指示信息转发给UE2。应当理解,gNB2在转发给UE2之前,可将gNB2收到的第一信息中的PDU标识,UE标识等信息转换成UE2可识别的相应标识。
S2005,UE2向gNB2反馈成功建立的SRB,DRB资源。
S2006,gNB2根据UE2的反馈,更新指示信息。
S2007,gNB2将更新后的指示信息发送给gNB1,以告知gNB1UE2的PDU2可以与UE1的PDU1进行数据直接传输,同时,gNB2将其为PDU2分配的下行用户面通道信息(例如,DL UP TNL Information;或者,DL Direct UP TNL Information;或者,DL Forwarding UP TNL Information)发送给gNB1,以进行数据直接传输。
S2008,gNB1请求UE1为更新后的指示信息指示的PDU会话修改已建立的或/和重新建立SRB,DRB,例如,gNB1可以将gNB2为PDU2分配的下行用户面通道信息作为上行用户面通道信息分配给PDU1。并将更新后的指示信息转发给UE1。
应当理解,gNB1在将更新后的指示信息转发给UE1之前,可将gNB1收到的第一信息中的PDU标识,UE标识等信息转换成UE1可识别的相应标识。
S2009,UE1向gNB反馈成功修改已建立的或/和重新建立的SRB,DRB。
S2010,gNB1向gNB2反馈成功建立的可进行直传的PDU会话,并将为相应PDU会话分配的下行用户面通道信息(例如,DL UP TNL Information;或者,DL Direct UP TNL Information;或者,DL Forwarding UP TNL Information)发送给gNB2,以进行数据直接传输。从而,gNB2可以将gNB1为PDU1分配的下行用户面通道信息作为上行用户面通道信息分配给PDU2。
S2011,gNB2向AMF反馈成功建立的可进行直传的PDU会话。
需要说明的是,UE1向UE2发送数据时,与UE2向UE1发送数据时,占用的PDU会话资源可以不同。如,UE2向UE1发送数据时,占用UE2的PDU2资源和UE1的PDU1资源。即gNB2可以根据PDU会话1在gNB1处的下行用户面通道信息,或者,gNB1为PDU会话1分配的用于数据直接传输的用户面通道信息,在PDU会话1与PDU会话2之间建立数据直接传输通道,UE2向UE1发送数据时,UE2可以在PDU2的资源上发送数据,gNB2将该数据路由到gNB1中PDU1的资源上,gNB1将该数据在PDU1的资源上发送给UE1。
UE1向UE2发送数据时,占用UE2的PDU3资源和UE1的PDU4资源。即gNB1可以根据PDU会话3在gNB2处的下行用户面通道信息,或者,gNB2为PDU会话3分配的用于数据直接传输的用户面通道信息,在PDU会话4与PDU会话3之间建立数据直接传输通道,UE1向UE2发送数据时,UE1可以在PDU4的资源上发送数据,gNB1将该数 据路由到gNB2中PDU3的资源上,gNB2将该数据在PDU3的资源上发送给UE1。
通过上述方式,处于不同gNB下的终端间进行用户面数据传输时,数据可在两gNB间直传,不需要由核心网转发,从而可以减少数据传输跳数和时延,降低核心网资源和信令开销。
基于图20所示的方法,对于如图4A或图5所示的无线接入网设备的架构,图20所示方法中gNB1所执行的动作具体可以是由gNB1的CU或CU-CP或CU-UP或DU执行,例如,步骤S2007中gNB1的CU或gNB1的CU-CP接收来自gNB2的指示信息以及用户面通道信息、步骤S2008中gNB1的CU或gNB1的CU-CP将步骤S2007中接收来自gNB2的指示信息以及用户面通道信息告知gNB1的CU-UP或gNB1的DU,gNB1的CU-UP或gNB1的DU基于收到的用户面通道信息建立数据直接传输通道,基于收到的指示信息为UE1重新配置DRB资源和用户面通道信息并反馈给gNB1的CU或gNB1的CU-CP,步骤2010中gNB1的CU或gNB1的CU-CP向gNB2反馈成功建立的可进行直传的PDU会话,并将为相应PDU会话分配的下行用户面通道信息发送给gNB2,以进行数据直接传输,等等。gNB2所执行的动作具体可以是由gNB2的CU或CU-CP或CU-UP或DU执行,例如,步骤S2003中gNB2的CU或gNB2的CU-CP接收来自AMF的信息,步骤S2004中gNB2的CU或gNB2的CU-CP向UE2发送RRC消息以配置相应DRB资源,gNB2的CU-UP或gNB2的DU为UE2配置相应的DRB资源和用户面通道信息并反馈给CU或CU-CP,步骤S2006中gNB2的CU或gNB2的CU-CP更新指示信息,gNB2的CU-UP或gNB2的DU为UE2重新配置相应用户面通道信息并反馈给CU或CU-CP,等等。
在具体实施中,gNB1和gNB2可能具有不同的功能分离后的架构。例如,gNB1和gNB2都可以是集中式架构;或者,gNB1可以是如图4A或图5所示的架构,gNB2可以是集中式架构;或者,gNB1可以是集中式架构,gNB2可以是如图4A或图5所示的架构;还或者,gNB1和gNB2都可以是图4A所示的架构;还或者,gNB1和gNB2都可以是图5所示的架构;还或者,gNB1可以是如图4A所示的架构,gNB2可以是如图5所示的架构;还或者,gNB1可以是如图5所示的架构,gNB2可以是如图4A所示的架构。等等。
第二种实现方式中,第一无线接入网设备可以通过NG接口信令为第一终端和第二终端在第一无线接入网设备以及第二无线接入网设备之间建立数据直接传输通道。
为了更好地理解本申请实施例,下面以第一无线接入网设备、第二无线接入网设备为集中式架构的gNB为例,对建立数据直接传输通道的过程进行具体详细描述。建立数据直接传输通道的过程可以如图21所示。
步骤S2101~步骤S2105,具体可以参阅步骤S2001~步骤S2005,这里不再赘述。需要说明的是,在步骤S2103中,若UE1的PDU Session1与UE2的PDU Session2可进行数据直接传输,则AMF还可以将S2101中gNB1为UE1分配的PDU Session1的下行用户面通道信息(例如,DL UP TNL Information)作为UE2的PDU Session2的上行用户面通道信息(例如,UL UP TNL Information)分配给gNB2,gNB2并为UE2的其他PDU Session分配下行用户面通道信息(例如,DL UP TNL Information)。或者,AMF还可以将S2101中gNB1为UE1分配的PDU Session1的下行用户面通道信息(例如,DL UP TNL Information)作为UE2的PDU Session2的用于数据直接传输通道的上行用户面通道信息分配给gNB2。
步骤S2106,gNB2向AMF反馈成功建立的可进行直传的PDU会话。
步骤S2107,核心网网元更新指示信息。
步骤S2108,AMF向gNB1发送请求,以使gNB1为UE1修改或/和建立PDU会话资源。请求中携带更新后的第二信息,以告知gNB1其下的终端UE1的PDU会话所要传输的数据是否可在不同基站之间进行数据直接传输。若数据可以在不同基站间进行直传,请求中还要携带指示信息,以告知gNB1为UE1建立的PDU Session1与UE2或者其他终端的哪些PDU Session相关联。若UE1的PDU Session1与UE2的PDU Session2可进行数据直接传输,则AMF将步骤S2103中gNB2为UE2分配的PDU Session2的下行用户面通道信息(例如,DL UP TNL Information)作为UE1的PDU Session1的上行用户面通道信息(例如,UL UP TNL Information)分配给gNB1,gNB1并为UE1的其他PDU Session分配下行用户面通道信息(例如,DL UP TNL Information)。或者,AMF还可以将步骤S2103中gNB2为UE2分配的PDU Session2的下行用户面通道信息(例如,DL UP TNL Information)作为UE1的PDU Session1的用于数据直接传输通道的上行用户面通道信息分配给gNB1。
步骤S2109~步骤S2110,具体可以参阅步骤S2008~步骤S2009,这里不再赘述。
步骤S2111,gNB1向AMF反馈成功建立的可进行直传的PDU会话。
通过上述方式,处于不同gNB下的终端间进行用户面数据传输时,数据可在两gNB间直传,不需要由核心网转发,从而可以减少数据传输跳数和时延,降低核心网资源和信令开销。
基于图21所示的方法,对于如图4A或图5所示的无线接入网设备的架构,图21所示方法中gNB1所执行的动作具体可以是由gNB1的CU或CU-CP或CU-UP或DU执行,例如,步骤S2108中gNB1的CU或gNB1的CU-CP接收来自AMF的指示信息以及用户面通道信息、步骤S2109中gNB1的CU或gNB1的CU-CP将步骤S2007中接收来自gNB2的指示信息以及用户面通道信息告知gNB1的CU-UP或gNB1的DU,gNB1的CU-UP或gNB1的DU基于收到的用户面通道信息建立数据直接传输通道,基于收到的指示信息为UE1重新配置DRB资源和用户面通道信息并反馈给gNB1的CU或gNB1的CU-CP,步骤2111中gNB1的CU或gNB1的CU-CP向AMF反馈成功建立的可进行直传的PDU会话,并将为相应PDU会话分配的下行用户面通道信息发送给AMF,以进行数据直接传输,等等。gNB2所执行的动作具体可以是由gNB2的CU或CU-CP或CU-UP或DU执行,例如,步骤S2103中gNB2的CU或gNB2的CU-CP接收来自AMF的信息,步骤S2104中gNB2的CU或gNB2的CU-CP向UE2发送RRC消息以配置相应DRB资源,gNB2的CU-UP或gNB2的DU为UE2配置相应的DRB资源和用户面通道信息并反馈给CU或CU-CP,步骤S2106中gNB2的CU或gNB2的CU-CP将gNB2的CU-UP或gNB2的DU反馈的成功建立的可进行直传的PDU会话,为相应PDU会话分配的下行用户面通道信息发送给AMF,以进行数据直接传输,等等。
在具体实施中,gNB1和gNB2可能具有不同的功能分离后的架构。例如,gNB1和gNB2都可以是集中式架构;或者,gNB1可以是如图4A或图5所示的架构,gNB2可以是集中式架构;或者,gNB1可以是集中式架构,gNB2可以是如图4A或图5所示的架构;还或者,gNB1和gNB2都可以是图4A所示的架构;还或者,gNB1和gNB2都可以是图5所示的架构;还或者,gNB1可以是如图4A所示的架构,gNB2可以是如图5所示的架构;还或者,gNB1可以是如图5所示的架构,gNB2可以是如图4A所示的架构。等等。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,通信装置具体可以用于实现图8所述的实施例中第一无线接入网设备执行的方法,该装置可以是第一无 线接入网设备本身,也可以是第一无线接入网设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。该通信装置的结构可以如图22A所示,包括第一收发单元2201、第二收发单元2202以及处理单元2203。其中,所述第一收发单元2201,用于所述无线接入网设备与第一终端之间传输数据;所述第二收发单元2202,用于所述无线接入网设备与第二终端之间传输数据,其中,所述第一终端与所述第二终端均接入所述无线接入网设备;所述处理单元2203,用于控制所述第一收发单元2201接收所述第一终端在第一PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给所述第二终端的;以及,控制所述第二收发单元2202基于数据直接传输通道在第二PDU会话的资源上向所述第二终端发送所述用户面数据,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体。
一种实现方式中,所述无线接入网设备还可以包括第四收发单元2204;所述第四收发单元2204,用于所述无线接入网设备与核心网设备之间传输数据;所述处理单元2203,还用于:在接收第一终端在第一PDU会话的资源上发送的用户面数据之前,控制所述第四收发单元2204接收所述核心网设备发送的指示信息,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
一种实现方式中,所述无线接入网设备可以包括CU,所述处理单元2203部署在所述CU,所述第四收发单元2204也可以部署在所述CU。所述无线接入网设备还可以包括第一DU,第一收发单元2201和第二收发单元2202可以部署在第一DU,如图22B。或,所述无线接入网设备还可以包括第一DU和第二DU,第一收发单元2201可以部署在第一DU,第二收发单元2202可以部署在第二DU,图22C所示。所述处理单元2203,还用于:在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第一协议层的实体以及所述第二PDU会话使用的所述第一协议层的实体,所述第一协议层为所述CU的任一协议层。
示例性的,所述CU可以包括CU-CP以及CU-UP;所述第四收发单元2204可以部署在所述CU-CP,所述处理单元2203部署在所述CU-UP。所述处理单元2203,还用于:在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立所述第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第二协议层的实体以及所述第二PDU会话使用的所述第二协议层的实体,所述第二协议层为所述CU-UP的任一协议层。所述无线接入网设备还可以包括第一DU,第一收发单元2201和第二收发单元2202可以部署在第一DU,如图22D。或,所述无线接入网设备还可以包括第一DU和第二DU,第一收发单元2201可以部署在第一DU,第二收发单元2202可以部署在第二DU,图22E所示。
另一种实现方式中,所述无线接入网设备包括CU、以及与所述CU相连的第一DU,所述第一终端以及所述第二终端均接入所述第一DU,第一收发单元2201和第二收发单元2202可以部署在第一DU,如图22F;所述第四收发单元2204可以部署在所述CU,所述 处理单元2203部署在所述第一DU;所述处理单元2203,还用于:在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立第二数据直接传输通道,所述第二数据直接传输通道的两端分别连接所述第一PDU会话使用的第三协议层的实体以及所述第二PDU会话使用的所述第三协议层的实体,所述第三协议层为所述第一DU的任一协议层。
另一种实现方式中,所述无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU,第一收发单元2201可以部署在第一DU,第二收发单元2202可以部署在第二DU,图22G所示;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU,第一收发单元2201以及第二收发单元2202可以部署在第一DU,图22H所示;所述第四收发单元2204可以部署在所述CU-CP,所述处理单元2203部署在所述第一CU-UP;所述CU-CP还包括第三收发单元2205;所述第三收发单元2205,用于在处理单元2203控制所述第一收发单元2201接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,向所述第一CU-UP发送所述第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;所述处理单元2203,还用于:将所述第三信息作为PDU会话的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
另一种实现方式中,所述无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU,第一收发单元2201可以部署在第一DU,第二收发单元2202可以部署在第二DU,图22G所示;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU,第一收发单元2201以及第二收发单元2202可以部署在第一DU,图22H所示;所述第四收发单元2204可以部署在所述CU-CP,所述处理单元2203部署在所述第一CU-UP;所述CU-CP还包括第三收发单元2205;所述第三收发单元2205,用于在所述处理单元2203控制所述第一收发单元2201接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,向所述第一CU-UP发送所述第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;所述处理单元2203,还用于:将所述第三信息作为所述数据直接传输通道的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一 CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
示例性的,所述处理单元2203还用于执行如下动作中的至少一个:控制所述第一收发单元2201向所述第一终端发送所述指示信息;控制所述第二收发单元2202向所述第二终端发送所述指示信息。
基于与方法实施例的同一发明构思,本申请实施例还提供一种通信装置。该通信装置的结构可以如图23所示,包括收发单元2301、处理单元2302。
一种具体实施方式中,远程干扰管理装置具体可以用于实现图8所述的实施例中核心网设备执行的方法,该装置可以是核心网设备本身,也可以是核心网设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,处理单元2302,用于确定第一终端与第二终端能够在接入网处进行数据直接传输,其中,所述第一终端与所述第二终端均接入第一无线接入网设备;收发单元2301,用于向所述第一无线接入网设备发送指示信息,所述指示信息携带第一信息,所述第一信息用于表示所述第一终端的第一分组数据单元PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输。
示例性的,所述指示信息携带第二信息,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
所述处理单元2302,还用于:释放所述核心网设备为所述第一PDU会话分配的PDU会话资源。
另一种具体实施方式中,通信装置具体可以用于实现图8所述的实施例中第一终端执行的方法,该装置可以是第一终端本身,也可以是第一终端中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,收发单元2301,用于接收第一无线接入网设备发送的指示信息,所述指示信息用于表示所述第一终端的第一分组数据单元PDU会话与第二终端的第二PDU会话进行接入网处的数据直接传输,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备;处理单元2302,用于基于所述指示信息封装用户面数据,所述用户面数据是所述第一终端发送给第二终端的;所述收发单元2301,还用于向所述第一无线接入网设备发送所述用户面数据。
示例性的,所述用户面数据的IP报文头可以包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、所述用户面数据的总长度、所述用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。
示例性的,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图24所示,该装置可以是无线接入网设备或者无线接入网设备中的芯片。该装置可以包括处理器2401,多个通信接口2402,存储器2403。其中,处理单元2203可以为处理器2401。第一收发单元2201、第二收发单元2202、第四收发单元2204、第三收发单元2205可以为通信接口2402。
处理器2401,可以是一个中央处理单元(central processing unit,CPU),或者为数字处理单元等等。通信接口2402可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器2403,用于存储处理器2401执行的程序。存储器2403可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器2403是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器2401用于执行存储器2403存储的程序代码,具体用于执行上述处理单元2203的动作,本申请在此不再赘述。
多个通信接口2402,分别用于执行上述第一收发单元2201、第二收发单元2202、第四收发单元2204、第三收发单元2205的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口2402、处理器2401以及存储器2403之间的具体连接介质。本申请实施例在图24中以存储器2403、处理器2401以及通信接口2402之间通过总线2404连接,总线在图24中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
另一种可能的方式中,通信装置可以如图25所示,该装置可以是核心网设备或者核心网设备中的芯片,或者,可以是第一终端或者第一终端中的芯片。该装置可以包括处理器2501,通信接口2502,存储器2503。其中,处理单元2302可以为处理器2501。收发单元2301可以为通信接口2502。
处理器2501,可以是一个CPU,或者为数字处理单元等等。通信接口2502可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器2503,用于存储处理器2501执行的程序。存储器2503可以是非易失性存储器,比如HDD或SSD等,还可以是volatile memory,例如RAM。存储器2503是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器2501用于执行存储器2503存储的程序代码,具体用于执行上述处理单元2302的动作,本申请在此不再赘述。
通信接口2502,具体用于执行上述收发单元2301的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口2502、处理器2501以及存储器2503之间的具体连接介质。本申请实施例在图25中以存储器2503、处理器2501以及通信接口2502之间通过总线2504连接,总线在图25中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一无线接入网设备接收第一终端在第一分组数据单元PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给第二终端的;
    所述第一无线接入网设备基于数据直接传输通道在第二PDU会话的资源上向所述第二终端发送所述用户面数据,其中,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体。
  2. 如权利要求1所述的方法,其特征在于,所述第一无线接入网设备包括集中单元CU;
    在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述CU为所述第一PDU会话以及所述第二PDU会话建立第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第一协议层的实体以及所述第二PDU会话使用的所述第一协议层的实体,所述第一协议层为所述CU的任一协议层。
  3. 如权利要求2所述的方法,其特征在于,所述CU包括控制面CU-CP以及用户面CU-UP;
    在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述CU-UP为所述第一PDU会话以及所述第二PDU会话建立所述第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第二协议层的实体以及所述第二PDU会话使用的所述第二协议层的实体,所述第二协议层为所述CU-UP的任一协议层。
  4. 如权利要求1所述的方法,其特征在于,所述第一无线接入网设备包括CU、以及与所述CU相连的第一分布单元DU,所述第一终端以及所述第二终端均接入所述第一DU;
    在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述第一DU为所述第一PDU会话以及所述第二PDU会话建立第二数据直接传输通道,所述第二数据直接传输通道的两端分别连接所述第一PDU会话使用的第三协议层的实体以及所述第二PDU会话使用的所述第三协议层的实体,所述第三协议层为所述第一DU的任一协议层。
  5. 如权利要求1所述的方法,其特征在于,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU;
    在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述CU-CP向所述第一CU-UP发送第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;
    所述第一CU-UP将所述第三信息作为所述第一PDU会话的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
  6. 如权利要求1所述的方法,其特征在于,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU;
    在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述CU-CP向所述第一CU-UP发送第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;
    所述第一CU-UP将所述第三信息作为所述数据直接传输通道的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
  7. 如权利要求1至6任一项所述的方法,其特征在于,在第一无线接入网设备接收第一终端在第一PDU会话的资源上发送的用户面数据之前,所述方法还包括:
    所述第一无线接入网设备接收核心网设备发送的指示信息,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一无线接入网设备向所述第一终端和所述第二终端中的至少一个发送所述指示信息。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    核心网设备确定第一终端与第二终端能够在接入网处进行数据直接传输,其中,所述第一终端与所述第二终端均接入第一无线接入网设备;
    所述核心网设备向所述第一无线接入网设备发送指示信息,所述指示信息携带第一信息,所述第一信息用于表示所述第一终端的第一分组数据单元PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输。
  10. 如权利要求9所述的方法,其特征在于,所述指示信息携带第二信息,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述核心网设备释放所述核心网设备为所述第一PDU会话分配的PDU会话资源。
  12. 一种数据传输方法,其特征在于,所述方法包括:
    第一终端接收第一无线接入网设备发送的指示信息,所述指示信息用于表示所述第一终端的第一分组数据单元PDU会话与第二终端的第二PDU会话进行接入网处的数据直接传输,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备;
    所述第一终端基于所述指示信息封装用户面数据,所述用户面数据是所述第一终端发送给第二终端的;
    所述第一终端向所述第一无线接入网设备发送所述用户面数据。
  13. 如权利要求12所述的方法,其特征在于,所述用户面数据的网络协议IP报文头包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、所述用户面数据的总长度、所述用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。
  14. 如权利要求12或13所述的方法,其特征在于,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  15. 一种无线接入网设备,其特征在于,所述无线接入网设备包括第一通信接口、第二通信接口以及处理器;
    所述第一通信接口,用于所述无线接入网设备与第一终端之间传输数据;
    所述第二通信接口,用于所述无线接入网设备与第二终端之间传输数据,其中,所述第一终端与所述第二终端均接入所述无线接入网设备;
    所述处理器,用于控制所述第一通信接口接收所述第一终端在第一分组数据单元PDU会话的资源上发送的用户面数据,所述用户面数据是所述第一终端发送给所述第二终端的;以及,控制所述第二通信接口基于数据直接传输通道在第二PDU会话的资源上向所述第二终端发送所述用户面数据,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体。
  16. 如权利要求15所述的无线接入网设备,其特征在于,所述无线接入网设备包括集中单元CU,所述处理器部署在所述CU;
    所述处理器,还用于:
    在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第一协议层的实体以 及所述第二PDU会话使用的所述第一协议层的实体,所述第一协议层为所述CU的任一协议层。
  17. 如权利要求16所述的无线接入网设备,其特征在于,所述CU包括控制面CU-CP以及用户面CU-UP;所述处理器部署在所述CU-UP;
    所述处理器,还用于:
    在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立所述第一数据直接传输通道,所述第一数据直接传输通道的两端分别连接所述第一PDU会话使用的第二协议层的实体以及所述第二PDU会话使用的所述第二协议层的实体,所述第二协议层为所述CU-UP的任一协议层。
  18. 如权利要求15所述的无线接入网设备,其特征在于,所述无线接入网设备包括CU、以及与所述CU相连的第一分布单元DU,所述第一终端以及所述第二终端均接入所述第一DU;所述处理器部署在所述第一DU;所述第一通信接口以及所述第二通信接口均部署在所述第一DU;
    所述处理器,还用于:
    在控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,为所述第一PDU会话以及所述第二PDU会话建立第二数据直接传输通道,所述第二数据直接传输通道的两端分别连接所述第一PDU会话使用的第三协议层的实体以及所述第二PDU会话使用的所述第三协议层的实体,所述第三协议层为所述第一DU的任一协议层。
  19. 如权利要求15所述的无线接入网设备,其特征在于,所述无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU;
    所述处理器部署在所述第一CU-UP;所述第一通信接口部署在所述第一DU;所述第二通信接口部署在所述第二DU;
    所述CU-CP还包括第三通信接口;
    所述第三通信接口,用于在所述处理器控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,向所述第一CU-UP发送所述第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;
    所述处理器,还用于:
    将所述第三信息作为所述第一PDU会话的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二 CU-UP。
  20. 如权利要求15所述的无线接入网设备,其特征在于,所述无线接入网设备包括CU、以及与所述CU相连的第一DU和第二DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一CU-UP与所述第一DU相连,所述第二CU-UP与所述第二DU相连,所述第一终端接入所述第一DU,所述第二终端接入所述第二DU;或者,所述第一无线接入网设备包括CU、以及与所述CU相连的第一DU,所述CU包括CU-CP、第一CU-UP以及第二CU-UP,其中,所述第一DU分别与第一CU-UP和所述第二CU-UP相连,所述第一终端以及所述第二终端均接入所述第一DU;
    所述处理器部署在所述第一CU-UP;所述第一通信接口部署在所述第一DU;所述第二通信接口部署在所述第二DU;
    所述CU-CP还包括第三通信接口;
    所述第三通信接口,用于在所述处理器控制所述第一通信接口接收所述第一终端在第一PDU会话的资源上发送的用户面数据之前,向所述第一CU-UP发送所述第三信息,所述第三信息是指所述第二PDU会话在所述第二CU-UP处的下行用户面通道信息,或者,所述第三信息是指所述第二CU-UP为所述第二PDU会话分配的用于数据直接传输的用户面通道信息;
    所述处理器,还用于:
    将所述第三信息作为所述数据直接传输通道的上行用户面通道信息分配给所述第一PDU会话,所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP,所述数据直接传输通道的两端分别连接所述第一PDU会话使用的实体以及所述第二PDU会话使用的实体是指所述数据直接传输通道的两端分别连接所述第一CU-UP以及所述第二CU-UP。
  21. 如权利要求15至20任一项所述的无线接入网设备,其特征在于,所述无线接入网设备还包括第四通信接口;
    所述第四通信接口,用于所述无线接入网设备与核心网设备之间传输数据;
    所述处理器,还用于:
    在接收第一终端在第一PDU会话的资源上发送的用户面数据之前,控制所述第四通信接口接收所述核心网设备发送的指示信息,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  22. 如权利要求21所述的无线接入网设备,其特征在于,所述处理器还用于执行如下动作中的至少一个:
    控制所述第一通信接口向所述第一终端发送所述指示信息;
    控制所述第二通信接口向所述第二终端发送所述指示信息。
  23. 一种核心网设备,其特征在于,所述核心网设备包括:
    处理器,用于确定第一终端与第二终端能够在接入网处进行数据直接传输,其中,所述第一终端与所述第二终端均接入第一无线接入网设备;
    通信接口,用于向所述第一无线接入网设备发送指示信息,所述指示信息携带第一信 息,所述第一信息用于表示所述第一终端的第一分组数据单元PDU会话能够与所述第二终端的第二PDU会话进行接入网处的数据直接传输。
  24. 如权利要求23所述的核心网设备,其特征在于,所述指示信息携带第二信息,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  25. 如权利要求23或24所述的核心网设备,其特征在于,所述处理器,还用于:
    释放所述核心网设备为所述第一PDU会话分配的PDU会话资源。
  26. 一种终端设备,其特征在于,所述终端设备为第一终端,所述终端设备包括:
    收发器,用于接收第一无线接入网设备发送的指示信息,所述指示信息用于表示所述第一终端的第一分组数据单元PDU会话与第二终端的第二PDU会话进行接入网处的数据直接传输,所述第一无线接入网设备为所述第一终端与所述第二终端接入的无线接入网设备;
    处理器,用于基于所述指示信息封装用户面数据,所述用户面数据是所述第一终端发送给第二终端的;
    所述收发器,还用于向所述第一无线接入网设备发送所述用户面数据。
  27. 如权利要求26所述的终端设备,其特征在于,所述用户面数据的网络协议IP报文头包括如下信息中的至少一项:IP协议版本号、头部长度、服务类型、所述用户面数据的总长度、所述用户面数据的标识、用于指示是否分片的标识、分片偏移、生存时间、用来区分上层协议的协议标识、头部校验和、源端口IP地址。
  28. 如权利要求26或27所述的终端设备,其特征在于,所述指示信息包括第一信息,或者,所述指示信息包括第一信息和第二信息,所述第一信息用于表示所述第一终端的所述第一PDU会话能够与所述第二终端的所述第二PDU会话进行接入网处的数据直接传输,所述第二信息用于指示所述第一无线接入网设备在所述第二PDU会话的资源上进行接入网处的数据直接传输。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序或指令,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求1至8任一项所述的方法;或者,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求9至11任一项所述的方法;或者,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求12至14任一项所述的方法。
PCT/CN2020/076672 2019-04-18 2020-02-25 一种数据传输方法及装置 WO2020211538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910313314.XA CN111836402A (zh) 2019-04-18 2019-04-18 一种数据传输方法及装置
CN201910313314.X 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020211538A1 true WO2020211538A1 (zh) 2020-10-22

Family

ID=72836833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076672 WO2020211538A1 (zh) 2019-04-18 2020-02-25 一种数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN111836402A (zh)
WO (1) WO2020211538A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430592A (zh) * 2020-10-29 2022-05-03 华为技术有限公司 一种通信方法及对应装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428731A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 路由优化方法及系统、服务网关
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
CN109041078A (zh) * 2017-06-09 2018-12-18 华为技术有限公司 一种业务数据传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415243A (zh) * 2007-10-19 2009-04-22 鼎桥通信技术有限公司 用户数据传输方法和用户数据传输系统
CN101965064B (zh) * 2009-07-23 2014-07-16 中兴通讯股份有限公司 分组数据聚合协议数据的传输方法与装置
DE112018002337T5 (de) * 2017-05-05 2020-01-16 Sony Corporation Kommunikationsvorrichtung, infrastrukturausrüstung, drahtloses kommunikationsnetzwerk und verfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428731A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 路由优化方法及系统、服务网关
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system
CN109041078A (zh) * 2017-06-09 2018-12-18 华为技术有限公司 一种业务数据传输方法及装置

Also Published As

Publication number Publication date
CN111836402A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
JP6988004B2 (ja) 集中型ユニットと分散型ユニットのアーキテクチャにおける通信方法および通信デバイス
CN112153098B (zh) 一种应用迁移方法及装置
US11224079B2 (en) Method and apparatus for operating wireless communication system having separated mobility management and session management
US20190335365A1 (en) Network Handover Method and Related Device
US10390259B2 (en) Data forwarding in a mobile communications network system with centralized gateway apparatus controlling distributed gateway elements
WO2016127926A1 (en) Systems and methods for evolved packet core cluster and session handling
KR102469973B1 (ko) 통신 방법 및 장치
WO2020057401A1 (zh) 一种网元选择方法及装置
CN110324246B (zh) 一种通信方法及装置
WO2017201722A1 (zh) 一种通信控制的方法及相关网元
US10945180B2 (en) Mobility management method, apparatus, and system
US20220408162A1 (en) Multicast service transmission method and apparatus
US20150055461A1 (en) Gateway Selection for Mobile Communications Network Architecture Optimization
KR20170133793A (ko) 이동통신 코어 망에서의 시그널링 방법 및 그 시스템
WO2021097858A1 (zh) 一种通信方法及装置
WO2018202008A1 (zh) 一种会话管理方法、网络设备和通信系统
WO2019154160A1 (zh) 一种通信方法及装置
WO2017139921A1 (zh) 基于流控制传输协议sctp的通信方法、装置和系统
WO2020211538A1 (zh) 一种数据传输方法及装置
JP6050720B2 (ja) コアネットワークにおけるゲートウェイのセッション情報を移行させるシステム及び方法
WO2017152387A1 (zh) 语音业务处理方法和装置
WO2021168862A1 (zh) 一种通信方法及设备
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置
WO2021190513A1 (zh) 一种数据传输方法、装置及系统
WO2023143212A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791009

Country of ref document: EP

Kind code of ref document: A1