WO2021238318A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021238318A1
WO2021238318A1 PCT/CN2021/078791 CN2021078791W WO2021238318A1 WO 2021238318 A1 WO2021238318 A1 WO 2021238318A1 CN 2021078791 W CN2021078791 W CN 2021078791W WO 2021238318 A1 WO2021238318 A1 WO 2021238318A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
configuration
information
radio bearer
configuration information
Prior art date
Application number
PCT/CN2021/078791
Other languages
English (en)
French (fr)
Inventor
姚楚婷
徐海博
才宇
王君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021238318A1 publication Critical patent/WO2021238318A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the terminal device 1 as the transmitting end may request the base station serving the terminal device 1 to obtain the configuration information of the SL between the terminal device 1 and the terminal device 2 before sending information to the terminal device 2 as the receiving end. Then, the base station configures the sending configuration on the SL and the common configuration for configuring the receiving and sending for the terminal device 1 through the RRC message of the Uu port. After receiving the sending configuration and the common configuration, the terminal device 1 sends the common configuration to the terminal device 2 in a PC5-RRC message, and the terminal device 2 generates the receiving configuration of the terminal device 2 corresponding to the SL according to the common configuration.
  • V2X vehicle to everything
  • NR new radio
  • RRC radio resource control
  • the terminal device 2 accesses the network through the terminal device 1, that is, the information between the terminal device 2 and the network needs to be transferred through the terminal device 1.
  • the terminal device 2 is a remote terminal device
  • the terminal device 1 is a relay terminal device
  • the terminal device 1 provides a relay service for the terminal device 2.
  • the terminal device 1 fails to generate and receive the configuration, since the terminal device 1 is the common configuration obtained from the terminal device 2, the terminal device 1 must send the configuration failure information to the terminal device 2, and then, The terminal device 2 then sends the configuration failure information to the terminal device 1, and the terminal device 1 forwards the configuration failure information to the base station. It can be seen that this process causes repeated transmission of information and wastes transmission resources.
  • the embodiments of the present application provide a communication method and device for saving transmission resources.
  • a first communication method includes: obtaining first configuration information, where the first configuration information is used by a first terminal device to configure a first radio bearer, and the first radio bearer is the first radio bearer.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the first communication device is a terminal device, for example, the first terminal device.
  • a relay terminal device such as a terminal device that provides a relay service for a remote terminal device (such as a second terminal device) fails to configure
  • the relay terminal device can report to the network
  • the device sends the first configuration failure information, that is, the relay terminal device does not need to send the first configuration failure information to the remote terminal device, and the remote terminal device forwards the first configuration failure information to the network through the relay terminal device.
  • the forwarding process of the first configuration failure information is reduced, thereby saving transmission resources.
  • sending the first configuration failure information to the network device includes:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used to indicate the cause of the failure.
  • the first information element may be an existing information element in the RRC message, for example, the first information element is an information element used to indicate the cause of failure.
  • the original information element in the RRC message is used to carry the first configuration failure information, and there is no need to add a new information element in the RRC message, so that the RRC message can be better compatible with the existing technology.
  • the first information element may also be a newly added information element in the RRC message, and using the new information element to carry the first configuration failure information can increase the recognition of the first configuration failure information.
  • the first configuration failure information may occupy reserved bits in the first cell. In this way, there is no need to change the meaning of other bits of the original cell, which is more conducive to compatibility with the existing technology.
  • the method further includes:
  • the first terminal device may also send the second configuration information to the second terminal device. Failure information. After the second terminal device receives the second configuration failure information from the first terminal device, it can determine that the first terminal device has failed to configure the first radio bearer, so that the second terminal device may temporarily not communicate with the first terminal through the first radio bearer. Device communication.
  • the first configuration is obtained Information, including:
  • the network device can send configuration information, such as fourth configuration information, to the second terminal device, and the second terminal device sends the first configuration information to the second terminal device. This eliminates the need for the network device to send configuration information to the first terminal device, which is helpful To reduce the burden on network equipment.
  • the first configuration information includes a first common configuration
  • the first common configuration includes the following One or more: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • the first configuration is obtained Information, including:
  • the network device can send configuration information, such as second configuration information, to the first terminal device.
  • the second terminal device can determine the identification of the logical channel corresponding to the first radio bearer and other information, so that the first terminal device can obtain the first terminal device by synthesizing the information. Configuration information.
  • the second configuration information comes from the network device, so if the second terminal device fails to configure the first radio bearer according to the first configuration information, the second terminal device can send the first configuration failure information to the network device, and the first The configuration failure information can be regarded as the response information of the second configuration information, and this execution process is more in line with the general process.
  • the first information is that the second terminal device is based on the fourth optional implementation manner from the network device. Based on configuration information, the fourth configuration information is used by the second terminal device to configure the first radio bearer.
  • the network device can also send fourth configuration information to the second terminal device.
  • the second terminal device can determine the identification of the logical channel of the first radio bearer based on the fourth configuration information. information. In this manner, the network device can configure the first terminal device and the second terminal device, so that the configuration process is more unified, and there is no need for the terminal device to regenerate corresponding configuration information, and the requirements for the terminal device are lower.
  • the first information further includes all The QFI corresponding to the first radio bearer, and/or the corresponding relationship between the identifier corresponding to the Uu port and the identifier corresponding to the PC5 port of the first radio bearer.
  • the embodiment of the present application does not limit the content included in the first information, as long as the first terminal device can configure the first radio bearer according to the first information and the second configuration information.
  • the second configuration information includes a receiving configuration and a second common configuration, where the receiving configuration includes a PDCP reordering timer, and the second common configuration includes one or more of the following: SDAP corresponding The SN length of QFI, PDCP and RLC, or, whether to use header compression.
  • the Before configuration information it also includes:
  • the terminal device can send information for requesting configuration of the first radio bearer to the network device.
  • the second terminal device should actually be the sender of information, that is, it is the second terminal device that sends information to the first terminal device.
  • the first terminal device sends the second information to the network device so that the network device regards the first terminal device as the sender of the information, and the network device will take the first radio bearer
  • the configuration information is sent to the first terminal device.
  • the network device may determine the configuration information of the first radio bearer according to the QoS information, so that the configured first radio bearer can better meet the requirements of the first radio bearer. 2. Demand for terminal equipment.
  • obtaining first configuration information includes:
  • the network device can directly send the first configuration information to the second terminal device.
  • the first configuration information includes The first transmission configuration and the first common configuration, where,
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the method further includes:
  • the network device sends the configuration information (for example, the first configuration information) to the first terminal device.
  • the first radio bearer is a radio bearer between the first terminal device and the second terminal device, and the second terminal device also needs to be configured with the first radio bearer. Therefore, the first terminal device may send the third configuration information to the second terminal device, so that the second terminal device can configure the first radio bearer.
  • a second communication method includes: receiving second configuration failure information from a first terminal device, where the second configuration failure information is used to indicate that the first terminal device fails to configure the first radio bearer ,
  • the first radio bearer is a radio bearer between the first terminal device and the second terminal device, the first terminal device provides a relay service for the second terminal device, and the first terminal device It is the data receiving end of the data transmission process performed by the first radio bearer, and the second terminal device is the data sending end of the data transmission process; it does not send instructions to the network device to indicate the first terminal device Configuring the failure information of the first radio bearer.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the second communication device is the second terminal device.
  • the first terminal device may also send the second configuration information to the second terminal device. Failure information. After the second terminal device receives the second configuration failure information from the first terminal device, it can determine that the first terminal device has failed to configure the first radio bearer, so that the second terminal device may temporarily not communicate with the first terminal through the first radio bearer. Device communication. In addition, after receiving the second configuration failure information, the second terminal device will not trigger the forwarding of the second configuration failure information to the network device, so as to avoid repeated transmission of the configuration failure information.
  • the method further includes:
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the method further includes:
  • the identifier of the logical channel The identifier of the logical channel.
  • the first configuration information includes a first common configuration
  • the first common configuration includes the following One or more: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • the method further includes:
  • the first information further includes the QFI corresponding to the first radio bearer, and/or, The corresponding relationship between the identifier corresponding to the Uu port and the identifier corresponding to the PC5 port of the first radio bearer.
  • the method further includes:
  • the third configuration information is used by the second terminal device to configure the first radio bearer, and the third configuration information includes part of the first configuration information Or the entire content, the first configuration information is used by the first terminal device to configure the first radio bearer.
  • the method further includes:
  • the ninth aspect of the second aspect may be In an optional implementation manner, the second terminal device cannot communicate with the network device through the Uu port.
  • the second terminal device is not provided with a Uu port, or the second terminal device is not within the coverage of the network device, etc.
  • this is only an application scenario, even if the second terminal device can communicate with the network device through the Uu port, the technical solution of the embodiment of the present application can also be applied.
  • a third communication method includes: receiving first configuration failure information from a first terminal device; determining, according to the first configuration failure information, that the first terminal device fails to configure the first radio bearer,
  • the first radio bearer is a radio bearer between the first terminal device and the second terminal device, the first terminal device provides a relay service for the second terminal device, and the first terminal device is The data receiving end of the data transmission process performed by the first radio bearer, and the second terminal device is the data sending end of the data transmission process.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the third communication device is a network device.
  • the network device is an access network device.
  • receiving the first configuration failure information from the first terminal device includes:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used for Indicates the reason for the failure.
  • the method further includes:
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the method further include:
  • the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration Including a PDCP reordering timer, the second common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the method further includes:
  • Receive second information from the first terminal device where the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the first terminal device, and the second information QoS information is included, and the QoS information is used to indicate the QoS of the radio bearer that is requested to be configured between the second terminal device and the first terminal device.
  • the method further includes:
  • the first configuration information includes a first transmission configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • a fourth communication method comprising: a second terminal device determines that a link between the first terminal device and the second terminal device fails, and the second terminal device is not in a network coverage area Inside; the second terminal device does not send information to the network device for indicating link failure.
  • the method may be executed by a fourth communication device, and the fourth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the fourth communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the fourth communication device is the second terminal device.
  • the second terminal device determines that the side link fails, it does not send information indicating the link failure to the network device. Therefore, the second terminal device does not need to generate information indicating the link failure, thereby reducing the second The power consumption of the terminal device. Moreover, because the side link between the first terminal device and the second terminal device has been problematic, if the second terminal device sends the information indicating the link failure to the first terminal device through the side link, it may also The transmission may fail, so the useless function of the second terminal device is also reduced by the method provided in the embodiment of the present application.
  • the method further includes:
  • the second terminal device sends a request message to the first terminal device to request to reestablish the link.
  • the technical solution of the embodiment of the present application is applied to a scenario where two terminal devices are directly connected, that is, not used in a relay scenario, then the first terminal device and the second terminal device need to communicate normally.
  • the second terminal device may request to rebuild the side link, so that the first terminal device and the second terminal device can resume normal communication as much as possible.
  • the first terminal device provides a relay service for the second terminal device, and the method further includes:
  • the second terminal device reselects a terminal device that can provide a relay service for the second terminal device.
  • the first terminal device provides a relay service for the second terminal device. Then, if the side link between the first terminal device and the second terminal device fails, the first terminal device can also access the network device through other terminal devices, so the second terminal device can re-select the second terminal device as the second terminal device.
  • the terminal device is a terminal device that provides a relay service, so that the second terminal device can resume communication as soon as possible.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is configured to execute the foregoing first aspect or the method in any optional implementation manner of the first aspect.
  • the first communication device may include a module for executing the method in the first aspect or any optional implementation of the first aspect, for example, a processing module, and optionally, a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, such as a first terminal device.
  • the first communication device is the first terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor (or a processing circuit).
  • the sending module may be realized by a transmitter
  • the receiving module may be realized by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the first communication device is the first terminal device, and the processing module, the sending module, and the receiving module are used as examples for the introduction. in,
  • the processing module is configured to obtain first configuration information, where the first configuration information is used by a first terminal device to configure a first radio bearer, and the first radio bearer is one of the first terminal device and the second terminal device In the radio bearer between, the second terminal device is a data sending end;
  • the processing module is further configured to configure the first radio bearer according to the first configuration information
  • the sending module is configured to send first configuration failure information to the network device when the processing module fails to configure the first radio bearer.
  • the sending module is configured to send the first configuration failure information to the network device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used to indicate the cause of the failure.
  • the sending module is further configured to send the second terminal device to the second terminal device. 2. Configuration failure information, where the second configuration failure information is used to indicate that the first terminal device fails to configure the first radio bearer.
  • the processing module Used to obtain the first configuration information in the following manner:
  • the first configuration information includes a first common configuration
  • the first common configuration includes the following One or more: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • the processing module Used to obtain the first configuration information in the following manner:
  • the first information is that the second terminal device receives information from the network device according to the fourth Based on configuration information, the fourth configuration information is used by the second terminal device to configure the first radio bearer.
  • the first information further includes all The QFI corresponding to the first radio bearer, and/or the corresponding relationship between the identifier corresponding to the Uu port and the identifier corresponding to the PC5 port of the first radio bearer.
  • the second configuration information includes a receiving configuration and a second common configuration, where the receiving configuration includes a PDCP reordering timer, and the second common configuration includes one or more of the following: SDAP corresponding The SN length of QFI, PDCP and RLC, or, whether to use header compression.
  • the receiving module is further configured to receive QoS information from the second terminal device before the processing module obtains the first configuration information, where the QoS information is used to indicate that a request is made between the second terminal device and the The QoS of the radio bearer configured between the first terminal devices;
  • the sending module is further configured to send second information to the network device, where the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the first terminal device, and
  • the second information includes the QoS information.
  • the processing module is configured to obtain the first configuration information in the following manner:
  • the first configuration information includes The first transmission configuration and the first common configuration, where,
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the sending module further Used to send third configuration information to the second terminal device, where the third configuration information is used by the second terminal device to configure the first radio bearer, and the third configuration information includes the first configuration information Part or all of the content.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is configured to execute the foregoing second aspect or the method in any optional implementation manner of the second aspect.
  • the second communication device may include a module for executing the method in the second aspect or any optional implementation of the second aspect, for example, a processing module, and optionally, a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, such as a second terminal device.
  • the second communication device is the second terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor (or a processing circuit).
  • the sending module may be realized by a transmitter
  • the receiving module may be realized by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the second communication device is continued to be a second terminal device, and the processing module, the sending module, and the receiving module are used as examples for the introduction. in,
  • the receiving module is configured to receive second configuration failure information from a first terminal device, where the second configuration failure information is used to indicate that the first terminal device fails to configure a first radio bearer, and the first radio bearer is The wireless bearer between the first terminal device and the second terminal device, the first terminal device provides a relay service for the second terminal device, and the first terminal device uses the first wireless bearer The data receiving end of the data transmission process, and the second terminal device is the data sending end of the data transmission process;
  • the sending module is configured not to send information used to indicate that the first terminal device fails to configure the first radio bearer to the network device.
  • the receiving module is further configured to receive fourth configuration information from the network device, where the fourth configuration information is used for the The second terminal device configures the first radio bearer.
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the processing module is configured to select a logical channel for the first radio bearer
  • the sending module is further configured to send first configuration information to the first terminal device, where the first configuration information is used by the first terminal device to configure the first radio bearer, and the first configuration information Including the identifier of the logical channel corresponding to the first radio bearer.
  • the first configuration information includes a first common configuration
  • the first common configuration includes the following One or more: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • the processing module is further configured to select a logical channel for the first radio bearer
  • the sending module is further configured to send first information to the first terminal device, where the first information includes the identifier of the logical channel corresponding to the first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or, The corresponding relationship between the identifier corresponding to the Uu port and the identifier corresponding to the PC5 port of the first radio bearer.
  • the receiving module is further configured to receive third configuration information from the first terminal device, where the third configuration information is used to The second terminal device configures the first radio bearer, the third configuration information includes part or all of the first configuration information, and the first configuration information is used by the first terminal device to configure the first radio bearer.
  • a wireless bearer is further configured to receive third configuration information from the first terminal device, where the third configuration information is used to The second terminal device configures the first radio bearer, the third configuration information includes part or all of the first configuration information, and the first configuration information is used by the first terminal device to configure the first radio bearer.
  • a wireless bearer is further configured to receive third configuration information from the first terminal device, where the third configuration information is used to The second terminal device configures the first radio bearer, the third configuration information includes part or all of the first configuration information, and the first configuration information is used by the first terminal device to configure the first radio bearer.
  • the sending module is further configured to send QoS information to the first terminal device, and the The QoS information is used to indicate the QoS of the radio bearer requested to be configured between the second terminal device and the first terminal device.
  • the ninth aspect of the sixth aspect may be In an optional implementation manner, the second terminal device cannot communicate with the network device through the Uu port.
  • a communication device is provided, for example, the communication device is the aforementioned third communication device.
  • the third communication device is configured to execute the foregoing third aspect or the method in any optional implementation manner of the third aspect.
  • the third communication device may include a module for executing the method in the third aspect or any optional implementation of the third aspect, for example, a processing module, and optionally, a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the network device is an access network device, such as a base station.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor (or a processing circuit).
  • the sending module may be realized by a transmitter
  • the receiving module may be realized by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the third communication device is a communication device
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the processing module, the sending module, and the receiving module are taken as examples for introduction. in,
  • the receiving module is configured to receive first configuration failure information from a first terminal device
  • the processing module is configured to determine, according to the first configuration failure information, that the first terminal device fails to configure a first radio bearer, and the first radio bearer is a connection between the first terminal device and the second terminal device A radio bearer, the first terminal device provides a relay service for the second terminal device, and the first terminal device is a data receiving end of a data transmission process performed by the first radio bearer, and the first terminal device The second terminal device is the data sending end of the data transmission process.
  • the receiving module is configured to receive the first configuration failure information from the first terminal device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used for Indicates the reason for the failure.
  • the sending module is configured to send a fourth Configuration information, where the fourth configuration information is used by the second terminal device to configure the first radio bearer.
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the sending module And is also used to send second configuration information to the first terminal device, where the second configuration information is used by the first terminal device to configure the first radio bearer.
  • the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration Including a PDCP reordering timer, the second common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the receiving module is further configured to receive the information from the first terminal device Second information, the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the first terminal device, and the second information includes QoS information, and the QoS information is used In the instruction to request the QoS of the radio bearer configured between the second terminal device and the first terminal device.
  • the processing module is further configured to determine first configuration information according to the QoS information, where the first configuration information is used by the first terminal device to configure the first radio bearer;
  • the sending module is further configured to send the first configuration information to the first terminal device.
  • the first configuration information includes a first transmission configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • a communication device is provided, for example, the communication device is the fourth communication device as described above.
  • the fourth communication device is configured to execute the foregoing fourth aspect or the method in any optional implementation manner of the fourth aspect.
  • the fourth communication device may include a module for executing the method in the fourth aspect or any optional implementation of the fourth aspect, for example, a processing module, and optionally, a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or the same functional module, but can implement different functions.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, for example, a second terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor (or a processing circuit).
  • the sending module may be realized by a transmitter
  • the receiving module may be realized by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the fourth communication device is a communication device
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the processing module, the sending module, and the receiving module are taken as examples for introduction. in,
  • the processing module is configured to determine that the link between the first terminal device and the second terminal device fails, and the second terminal device is not within the network coverage;
  • the sending module is used for not sending information for indicating link failure to the network device.
  • the sending module is further configured to send a request message to the first terminal device to request to reestablish the link.
  • the first terminal device provides a relay service for the second terminal device
  • the processing module is further configured to reselect
  • the second terminal device is a terminal device that provides a relay service.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor (or processing circuit) and a communication interface (or interface circuit), and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the foregoing first aspect or the methods described in various possible implementation manners of the first aspect.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the foregoing first aspect or the methods described in various possible implementation manners of the first aspect.
  • the first communication device when the processor executes the computer instructions stored in the memory, the first communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, such as a first terminal device.
  • the communication interface is implemented, for example, by a transceiver (or, a transmitter and a receiver) in the communication device, for example, the transceiver is implemented by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor (or processing circuit) and a communication interface (or interface circuit), and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the foregoing second aspect or the methods described in various possible implementation manners of the second aspect.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the foregoing second aspect or the methods described in various possible implementation manners of the second aspect.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the foregoing second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, such as a second terminal device.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the third communication device as described above.
  • the communication device includes a processor (or processing circuit) and a communication interface (or interface circuit), and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the foregoing third aspect or the methods described in various possible implementation manners of the third aspect.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the foregoing third aspect or the methods described in various possible implementation manners of the third aspect.
  • the third communication device is caused to execute the foregoing third aspect or the method in any one of the possible implementation manners of the third aspect.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the network device is an access network device, such as a base station.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the communication device.
  • the transceiver is realized by the antenna, feeder, and Codec and other implementations.
  • the third communication device is a chip set in a communication device, the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the fourth communication device as described above.
  • the communication device includes a processor (or processing circuit) and a communication interface (or interface circuit), and the communication interface can be used to communicate with other devices or equipment.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the foregoing fourth aspect or the methods described in various possible implementation manners of the fourth aspect.
  • the fourth communication device may not include a memory, and the memory may be located outside the fourth communication device.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the foregoing fourth aspect or the methods described in various possible implementation manners of the fourth aspect.
  • the fourth communication device when the processor executes the computer instructions stored in the memory, the fourth communication device is caused to execute the foregoing fourth aspect or the method in any one of the possible implementation manners of the fourth aspect.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device, such as a second terminal device.
  • the communication interface is implemented by, for example, the transceiver (or transmitter and receiver) in the communication device, for example, the transceiver is implemented by the antenna, feeder, and Codec and other implementations.
  • the fourth communication device is a chip set in a communication device
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a first communication system in a thirteenth aspect, includes the communication device described in the fifth aspect or the communication device described in the ninth aspect, and includes the communication device described in the sixth aspect or the communication device described in the tenth aspect.
  • a second communication system includes the communication device according to the eighth aspect or the communication device according to the twelfth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer can execute the first aspect or the first aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer executes the second aspect or the second aspect described above.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer can execute the third aspect or the third aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer can execute the fourth aspect or the fourth aspect.
  • a computer program product containing instructions is provided, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the first aspect or the first aspect. Any one of the methods described in the optional implementation mode.
  • a computer program product containing instructions is provided, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the above-mentioned second aspect or the second aspect Any one of the methods described in the optional implementation mode.
  • a computer program product containing instructions is provided, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the third aspect or the third aspect.
  • a computer program product containing instructions is provided, the computer program product is used to store a computer program, and when the computer program runs on a computer, the computer executes the fourth aspect or the fourth aspect.
  • the relay terminal device does not need to send configuration failure information to the remote terminal device, and the remote terminal device forwards the configuration failure information to the network through the relay terminal device, reducing the configuration failure information forwarding process , Thereby saving transmission resources.
  • Figure 1A is a schematic diagram of V2X
  • Figure 1B is a schematic diagram of a mobile phone and smart glasses communicating through a side link
  • Figure 2 is a schematic diagram of a terminal device providing a relay service for another terminal device
  • Figure 3 is a flowchart of a network device providing configuration information for a remote terminal device in a relay scenario
  • FIG. 4 is a flowchart of the first communication method provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a third communication method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of reporting to the network when the remote terminal device determines that the side link fails in the relay scenario
  • FIG. 8 is a flowchart of a fourth communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a first terminal device according to an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a second terminal device according to an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 12 is another schematic block diagram of a second terminal device according to an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • 15 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 16 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station), mobile station (mobile station), remote station (remote station), access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • wireless terminal equipment mobile terminal equipment
  • mobile terminal equipment device-to-device communication
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point AP
  • remote terminal remote
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is the general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices introduced above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal equipment.
  • vehicle-mounted terminal equipment is, for example, also called on-board unit (OBU). ).
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for implementing the functions of the terminal is a terminal device as an example to describe the technical solutions provided by the embodiments of the present application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • RSU roadside unit
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include the evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or the long term evolution-advanced (LTE-A), or may also include the fifth-generation mobile Communication technology (the 5th generation, 5G) NR system (also referred to as NR system) next generation node B (next generation node B, gNB) or may also include cloud radio access network (cloud radio access network, Cloud RAN) system Centralized unit (CU) and distributed unit (DU) in, the embodiment of this application is not limited.
  • NodeB or eNB or e-NodeB, evolutional Node B in the LTE system or the long term evolution-advanced (LTE-A)
  • 5G 5th generation
  • NR system next generation node B
  • cloud radio access network cloud radio access network
  • Cloud RAN Centralized unit
  • DU distributed unit
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF), session management functions (SMF) or user plane functions in the 5G system. function, UPF), etc., or include the mobility management entity (MME) in the 4G system.
  • AMF access and mobility management functions
  • SMF session management functions
  • UPF user plane functions
  • MME mobility management entity
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • first and second mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects. , Priority or importance, etc.
  • first configuration information and the second configuration information are only for distinguishing different configuration information, and do not indicate the difference in the size, content, priority, or importance of the two configuration information.
  • the side link refers to the transmission link between two terminal devices.
  • Figure 1A is a schematic diagram of V2X.
  • Two vehicles can be regarded as two terminal devices, namely terminal device 1 and terminal device. 2.
  • the two terminal devices can communicate through the side-line link, and the base station can allocate resources for side-line communication to the two terminal devices.
  • FIG. 1B which is a schematic diagram of communication between a mobile phone and smart glasses through a sidewalk link.
  • the smart glasses are, for example, augmented reality (AR)/virtual reality (VR) glasses.
  • AR augmented reality
  • VR virtual reality
  • the terminal device such as the vehicle in FIG. 1A, or the mobile phone or smart glasses in FIG. 1B
  • the access network device such as the base station in FIG. 1A or FIG. 1B
  • the terminal device 2 accesses the network through the terminal device 1, that is, the information between the terminal device 2 and the network needs to be transferred through the terminal device 1.
  • the terminal device 2 is a remote terminal device
  • the terminal device 1 is a relay terminal device
  • the terminal device 1 provides a relay service for the terminal device 2.
  • Relay refers to that the information sent by the terminal device 2 to the network is sent to the access network device through the terminal device 1, and the information sent by the network to the terminal device 2 is also sent to the terminal device 2 through the terminal device 1.
  • the terminal device 2 is in an out of coverage (OOC) state, or the terminal device 2 is a terminal device that does not have a Uu function (for example, the terminal device 2 is not provided with a Uu port).
  • OOC out of coverage
  • Figure 2 includes terminal equipment 1, terminal equipment 2, access network equipment, and core network equipment.
  • the access network equipment is the access network equipment accessed by the terminal equipment 1, and the core network equipment serves the access network equipment. Core network equipment.
  • the information between the terminal device 2 and the access network device can be transferred through the terminal device 1.
  • the access network device in FIG. 2 is, for example, a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • the 4th generation mobile communication technology the 4th generation, 4G
  • the 5G system it corresponds to the access network equipment in 5G, such as gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the access network equipment in FIG. 2 can also correspond to network equipment in future mobile communication systems.
  • Figure 2 takes the access network device as a base station as an example.
  • the access network device may also be a device such as an RSU.
  • the core network in FIG. 2 is, for example, AMF, or may also be other core network equipment.
  • the terminal device 2 should configure the terminal device 2 and the terminal device 1.
  • the side link between the two can be configured by the terminal device 2 by itself.
  • the terminal device 2 may pre-store a set of configurations or multiple sets of configurations, and the terminal device 2 may configure the side link according to a set of pre-stored configurations.
  • this method is not flexible enough, and the pre-stored configuration of the terminal device 2 may not meet the requirements of the current link. Therefore, in this scenario, the terminal device 2 can also be configured by the base station.
  • the configuration process is introduced below, and the flow of the process can be referred to FIG. 3.
  • a PC5-signal (signal, S) connection is established between the terminal device 1 and the terminal device 2.
  • the base station sends the common configuration and the transmission configuration to the terminal device 2, and the terminal device 2 receives the transmission configuration and the common configuration from the base station.
  • the transmission configuration and the common configuration are the configuration of the terminal device 2 corresponding to the side link between the terminal device 2 and the terminal device 1.
  • the terminal device 2 can request the base station to issue the configuration corresponding to the side link, and the base station can send the common configuration and the sending configuration to the terminal device 2.
  • the terminal device 2 sends the common configuration to the terminal device 1, and the terminal device 1 receives the common configuration from the terminal device 2.
  • the terminal device 1 can generate the receiving configuration of the terminal device 1 corresponding to the side link according to the received common configuration.
  • the failure of the terminal device 1 to generate the receiving configuration is taken as an example.
  • the terminal device 1 sends the configuration failure information to the terminal device 2, and the terminal device 2 receives the configuration failure information from the terminal device 1.
  • the terminal device 2 sends the configuration failure information to the base station, and the base station receives the configuration failure information from the terminal device 2.
  • the terminal device 2 sends the configuration failure information to the terminal device 1, and the terminal device 1 then forwards the configuration failure information to the base station.
  • the terminal device 2 fails to generate and receive the configuration, since the terminal device 2 is the common configuration obtained from the terminal device 1, the terminal device 2 should send the configuration failure information to the terminal device 1, and then The terminal device 1 then sends the configuration failure information to the terminal device 2, and the terminal device 2 forwards the configuration failure information to the base station. It can be seen that this process causes repeated transmission of information and wastes transmission resources.
  • the relay terminal device may send the first configuration failure information to the network device, that is, the relay The terminal device does not need to send the first configuration failure information to the remote terminal device, and the remote terminal device forwards the first configuration failure information to the network through the relay terminal device, which reduces the forwarding process of the first configuration failure information, thereby saving The transmission resources.
  • the technical solutions provided by the embodiments of this application can be applied to 4G systems, such as LTE systems, or can be applied to 5G systems, such as NR systems, or can also be applied to next-generation mobile communication systems or other similar communication systems, specifically No restrictions.
  • the technical solutions provided by the embodiments of this application can be applied to device-to-device (D2D) scenarios, such as NR-D2D scenarios, etc., or can be applied to V2X scenarios, such as NR-V2X scenarios, etc., for example, applicable In the Internet of Vehicles, such as V2X, vehicle-to-vehicle (V2V), etc., or can be used in fields such as intelligent driving, assisted driving, or intelligent networked vehicles.
  • D2D device-to-device
  • V2X vehicle-to-vehicle
  • V2V vehicle-to-vehicle
  • terminal devices such as mobile phones, smart watches, smart bracelets, smart wireless headsets, or smart glasses.
  • other terminal devices except mobile phones need not be equipped with a Uu port.
  • smart watches or smart glasses may not be equipped with a Uu port.
  • These terminal devices without a Uu port can access the network through a mobile phone.
  • smart glasses enable users to watch VR videos on mobile phones or even cloud VR videos on the glasses through side-line communication with mobile phones.
  • smart wireless earphones that enable users to listen to music on the phone through the smart wireless earphones through side-line communication with the mobile phone.
  • the network signal is not enough to support communication. Then the terminal equipment located in the basement can be connected to the network through the terminal equipment located upstairs to establish a communication link and expand the coverage of the existing network.
  • the second terminal device is, for example, a terminal device that cannot communicate with the network device through a Uu port.
  • the second terminal device is not covered by the network device, or the second terminal device is not provided with a Uu port. .
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 4, which is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the scenario shown in FIG. 2 is a relay scenario, or the embodiment of the present application may not be used in a relay scenario, but a scenario where two terminal devices are directly connected.
  • the first terminal device can be connected to the second terminal device.
  • the terminal device communicates, the second terminal device is in the OOC state, or the second terminal device is not equipped with a Uu port, and the first terminal device is in the network coverage (in coverage, IC) state, the network device serving the first terminal device can Provide configuration information for the second terminal device.
  • the method executed by the network device and the terminal device is taken as an example. This is because the embodiment of this application is applied to the network architecture shown in FIG. 2 as an example. Therefore, the network device described below may be the access network device in the network architecture shown in FIG. 2, and the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2. The second terminal device described herein may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device and the second terminal device establish a PC5-S connection. After the PC5-S connection is established, the first terminal device and the second terminal device can communicate through the side link.
  • the network device sends fourth configuration information to the second terminal device, and correspondingly, the second terminal device receives the fourth configuration information from the network device.
  • the second terminal device Before performing S42, for example, the second terminal device wants to send information to the first terminal device, the second terminal device may send a second request message to the network device to request the network device to configure the connection between the first terminal device and the second terminal device. Wireless bearer.
  • the network device After receiving the second request message from the second terminal device, the network device may send fourth configuration information to the second terminal device.
  • the fourth configuration information is used to configure the radio bearer between the first terminal device and the second terminal device, for example This radio bearer is called the fourth radio bearer.
  • the fourth configuration information is the configuration of the second terminal device corresponding to the first radio bearer, or in other words, the second terminal device may configure the first radio bearer according to the fourth configuration information.
  • the first radio bearer is, for example, a sidelink data radio bearer (SLRB), or can also be a signaling control channel (signaling control channel, SCCH), or an SL-signal can also be introduced between terminal devices.
  • SLRB sidelink data radio bearer
  • SCCH signaling control channel
  • an SL-signal can also be introduced between terminal devices.
  • the first radio bearer may also be an SL-SRB.
  • the network device may send the fourth configuration information to the second terminal device through the RRC connection between the network device and the second terminal device.
  • a dedicated radio bearer for example, called a second radio bearer
  • a dedicated radio bearer for example, called a second radio bearer
  • the second radio bearer is used to transmit the relay information of the second terminal device (that is, the information sent by the second terminal device to the network device, or the information sent by the network device to the second terminal device)
  • the third radio bearer is also used to transmit the relay information of the second terminal device.
  • the network device may also send the fourth configuration information to the first terminal device through the third radio bearer, and the first terminal device can determine according to the third radio bearer that the fourth configuration information needs to be forwarded to the second terminal device, then the first terminal device The device may send the fourth configuration information to the second terminal device through the second radio bearer.
  • the fourth configuration information includes, for example, a transmission configuration (for example, referred to as a third transmission configuration) and a common configuration (for example, referred to as a third common configuration).
  • a transmission configuration for example, referred to as a third transmission configuration
  • a common configuration for example, referred to as a third common configuration.
  • the so-called sending configuration refers to the configuration related to the sending process
  • the so-called common configuration refers to the configuration related to the sending process and/or the receiving process.
  • the third transmission configuration may include one or more of the following: packet data convergence protocol (PDCP) discard timer (discard timer), robust header compression (RoHC) compression profile ( profile) configuration, whether the header of the service data adaptation protocol (service data adaptation protocol, SDAP) appears (or the information about whether the header of the SDAP appears), and the quality of service flow identity (qos flow identity, QFI) on the SL Mapping relationship, or transmission type (for example, broadcast, unicast, or multicast), etc.
  • PDCP packet data convergence protocol
  • discard timer discard timer
  • RoHC robust header compression
  • profile profile
  • whether the header of the service data adaptation protocol (service data adaptation protocol, SDAP) appears or the information about whether the header of the SDAP appears
  • QFI quality of service flow identity
  • transmission type for example, broadcast, unicast, or multicast
  • the third transmission configuration may include PDCP discard timer; or, the third transmission configuration may include the RoHC compression profile configuration; or, the third transmission configuration may include whether the SDAP header is present; or, the third transmission configuration may include the The QFI mapping relationship; or, the third transmission configuration may include the transmission type (for example, broadcast, unicast, or multicast); or, the third transmission configuration may include various combinations of the foregoing configurations, for example, the third transmission configuration may include PDCP discard timer, whether the RoHC compression profile configuration and SDAP header appear, the mapping relationship with QFI on SL, and the transmission type, etc.
  • the third transmission configuration can also include other information, such as about SDAP, or PDCP, or radio link control (RLC), or media access control (MAC). ), or physical layer (PHY) transmission side configuration information, etc., or the third transmission configuration does not include any of the above items, but includes other information.
  • the PDCP discard timer can be used to determine the timeliness of the PDCP service data unit (service data unit, SDU) on the transmitting side.
  • RoHC compression profile configuration can be used to determine whether the sending side supports compression configuration.
  • the information about whether the header of SDAP appears or not can be used to determine the relevant configuration of SDAP.
  • the mapping relationship with the QFI on the SL can be used for the sending side to determine the configuration corresponding to the service flow on the SL.
  • the transmission type such as broadcast, unicast, or multicast, can be used for the transmission type configured on the sending side.
  • the third common configuration may include one or more of the following: QFI corresponding to SDAP, PDCP and radio link control (radio link control, RLC) sequence number (sequence number, SN) length, whether to use header compression, or, Logic Channel ID (Logic Channel ID, LCID).
  • the third common configuration may include the QFI corresponding to SDAP; or, the third common configuration may include the sequence number (SN) length of PDCP and RLC; or, the third command configuration may include LCID; or, the third command
  • the configuration may include various combinations of the above configurations.
  • the third common configuration may include the QFI corresponding to SDAP, the SN length of PDCP and RLC, the LCID, and whether to use header compression, and so on.
  • the third common configuration can also include other information, such as about SDAP, or PDCP, or RLC, or MAC, or the same configuration information on both sides of the PHY, or the third common configuration Does not include any of the above, but includes other information.
  • the QFI corresponding to the SDAP can be used to indicate the QFI corresponding to the SDAP configuration.
  • the SN length of PDCP and RLC can be used to indicate the number of bits occupied by the SN of PDCP and RLC data packets.
  • the second terminal device configures the first radio bearer according to the fourth configuration information.
  • the second terminal device configures the first radio bearer according to the third transmission configuration and the third common configuration.
  • the second terminal device may configure the transmission parameters of the first radio bearer according to the third transmission configuration and/or the third common configuration.
  • the first radio bearer is a two-way radio bearer
  • the second terminal device can also obtain the receiving configuration of the second terminal device corresponding to the first radio bearer according to the third common configuration (for example, referred to as the fourth receiving configuration), and according to the fourth common configuration
  • the receiving configuration configures the receiving parameters of the first radio bearer, so that the second terminal device can receive information from the first terminal device through the first radio bearer.
  • the first radio bearer needs to correspond to the corresponding logical channel at the media access control (MAC) layer, and which logical channel it corresponds to can be determined by the second terminal device, so the second terminal device can be the first wireless
  • the bearer allocates a logical channel, and determines the logical channel ID (logic channel ID, LCID) of the logical channel.
  • the logical channel corresponding to the first radio bearer may also be directly configured by the network device, for example, configured through the fourth configuration information.
  • the network device will send the number of the first radio bearer corresponding to the fourth configuration information together with the fourth configuration information.
  • the second terminal device may communicate with multiple terminal devices, and there may be more than one network device sending configuration information to the second terminal device (for example, the second terminal device always obtains the correspondence through the network device corresponding to the terminal device that communicates with its PC5 port. Transmission configuration), or even if there is only one network device, but the network device may have duplicate numbers on the Uu port for the configured wireless bearers of different terminal devices corresponding to the PC5 port communication.
  • the network device issues one configuration information.
  • another terminal device such as a third terminal device, the network issues another configuration information.
  • These two configuration information are used to configure two radio bearers for two different terminal devices.
  • the numbers set by the network equipment for the two radio bearers corresponding to the two configuration information may be the same, which will cause confusion for the second terminal equipment; When the bearer is numbered on the Uu port, there may be duplication.
  • the network device issues two configuration information, and one configuration information is used to configure the wireless bearer for direct communication between the second terminal device and the first terminal device.
  • the other configuration information is used to configure the radio bearer of the second terminal device to connect to the network through the first terminal device, and the network device may set the same number for the two radio bearers corresponding to the two configuration information, which will lead to The second terminal device is confused.
  • the second terminal device can set the number on the PC5 port of the first radio bearer corresponding to the fourth configuration information, that is, the radio bearer configured with the same configuration information will correspond to the Uu port number.
  • the serial number and the serial number of PC5, and these two serial numbers correspond to each other.
  • the second terminal device may not set the number on the PC5 port of the first radio bearer corresponding to the fourth configuration information, as long as the second terminal device can distinguish different configuration information from the network device corresponding to different radio bearers. .
  • the second terminal device sends the first configuration information to the first terminal device, and correspondingly, the first terminal device receives the first configuration information from the second terminal device.
  • the first configuration information is the configuration of the first terminal device corresponding to the first radio bearer, or in other words, the first terminal device may configure the first radio bearer according to the first configuration information.
  • the first configuration information includes, for example, a common configuration (for example, referred to as a first common configuration).
  • the first common configuration is the same as the third common configuration, or in other words, the first common configuration is the third common configuration.
  • the first configuration information may also include the LCID of the logical channel allocated by the second terminal device or the network device to the first radio bearer.
  • the first configuration information may also include the number of the first wireless bearer on the PC5 port, or include the correspondence between the number of the first wireless bearer on the PC5 port and the number of the first wireless bearer on the Uu port.
  • the second terminal device may also send the type information of the first radio bearer to the first terminal device, and the first terminal device receives the type information from the second terminal device.
  • the type information of the first radio bearer may indicate that the first radio bearer is in acknowledge mode (AM) or unacknowledged mode (UM), or the type information of the first radio bearer may indicate that the first radio bearer is One-way radio bearer or two-way radio bearer, or the type information of the first radio bearer may indicate that the first radio bearer is AM or UM, and that the first radio bearer is one-way radio bearer or two-way radio bearer.
  • AM may indicate that the first radio bearer supports the automatic repeat-request (ARQ) protocol
  • UM may indicate that the first radio bearer does not support the ARQ protocol.
  • the so-called unidirectional radio bearer means that the first radio bearer can only transmit in one direction.
  • only the second terminal device can send information to the first terminal device through the first radio bearer, and the first terminal device cannot pass the first radio bearer.
  • the so-called two-way radio bearer means that the first radio bearer can transmit in both directions.
  • the second terminal device can send information to the first terminal device through the first radio bearer, and the first terminal device can also transmit information to the second terminal through the first radio bearer. The device sends information.
  • the first terminal device configures the first radio bearer according to the first configuration information.
  • the first terminal device may generate the receiving configuration of the first terminal device corresponding to the first radio bearer according to the first common configuration included in the first configuration information, for example, referred to as the first receiving configuration.
  • the first terminal device may configure the receiving parameters of the first radio bearer according to the first receiving configuration, so that the first terminal device can receive information from the second terminal device through the first radio bearer.
  • the first terminal device fails to generate the first receiving configuration, or the first terminal device fails to configure the first radio bearer according to the first configuration information, it can continue to perform S48; or, if the first terminal device successfully generates the first receiving configuration, In other words, the first terminal device successfully configures the first radio bearer according to the first configuration information, and the first radio bearer is a unidirectional radio bearer, the process ends; or, if the first terminal device generates the first receiving configuration successfully, or the first radio bearer If a terminal device successfully configures the first radio bearer according to the first configuration information, and the first radio bearer is a two-way radio bearer, it can continue to perform S46.
  • the first terminal device sends a third request message to the network device, and correspondingly, the network device receives the third request message from the first terminal device.
  • the third request message is used to request the transmission configuration of the first terminal device corresponding to the first radio bearer.
  • the first terminal device may request the network device to obtain the transmission configuration of the first terminal device corresponding to the first radio bearer.
  • the third request message may also include a QFI.
  • the QFI is, for example, the quality of service (QoS) requirement of the second terminal device for the first radio bearer, and the network device may determine the first terminal device according to the QFI Corresponds to the sending configuration of the first radio bearer.
  • the QFI is, for example, sent by the second terminal device to the first terminal device.
  • the network device sends a first message to the first terminal device, and correspondingly, the first terminal device receives the first message from the network device.
  • the first message may include the transmission configuration of the first terminal device corresponding to the first radio bearer, for example, the transmission configuration is referred to as the first transmission configuration.
  • the first sending configuration may be determined by the network device according to the QFI.
  • the network device may also refer to other factors when determining the first sending configuration, which is not limited in the embodiment of the present application.
  • the first terminal device After receiving the first sending configuration, the first terminal device can configure the sending parameters of the first radio bearer according to the first sending configuration, so that the first terminal device can send information to the second terminal device through the first radio bearer.
  • the radio bearer can have the function of two-way transmission.
  • S46 and S47 are optional steps, which are represented by dotted lines in FIG. 4.
  • the first terminal device sends the first configuration failure information to the network device, and correspondingly, the network device receives the first configuration failure information from the first terminal device.
  • the first configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • the first configuration failure information can be carried in an RRC message and sent to the network device.
  • the RRC message can reuse the existing RRC message, or it can be a newly added embodiment of this application dedicated to sending the first configuration failure information.
  • RRC message If the first configuration failure information is carried in an RRC message, the first configuration failure information can be carried by existing information elements in the RRC message, or new information elements can be added to the RRC message to carry the first configuration Failure information.
  • the first terminal device may send an RRC message to the network device, the RRC message may include a first information element, and the first configuration failure information may occupy bits in the first information element, or in other words, the first information element may carry the first information element.
  • a configuration failure information for example, the first information element may use one or more bits to carry the first configuration failure information.
  • the first cell may be an existing cell in the RRC message.
  • the first cell is a cell used to indicate the cause of failure.
  • the first cell is an sl-failure cell, and the original one in the RRC message is used
  • the first information element may also be a newly added information element in the RRC message, and using the new information element to carry the first configuration failure information can increase the recognition of the first configuration failure information.
  • the first configuration failure information may occupy reserved bits in the first cell.
  • the first cell is the sl-failure cell.
  • the cell currently includes 4 bits, of which 2 bits are already occupied. These 2 bits are used to indicate radio link failure (RLF). For events and configuration failure events, the remaining 2 bits of these 4 bits are reserved bits.
  • the first configuration failure information can occupy one or two of the two reserved bits. For example, the first configuration failure information occupies one of the two reserved bits. If the value of this bit is "1", it means the terminal The device has sent the first configuration failure information to the network device, and if the bit value is "0", it means that the terminal device has not sent the first configuration failure information to the network device. In this way, there is no need to change the meaning of other bits of the original cell, which is more conducive to compatibility with the existing technology.
  • the first cell may be an existing cell
  • the embodiment of the present application may also make some improvements to the existing cell.
  • the first cell is a sl-failure cell
  • the cell currently includes 4 bits
  • the embodiment of the present application can change the number of bits included in the cell, for example, reduce the number of bits included in the cell to 2 , 2 bits will correspond to 4 values (or 4 states), and each value can indicate a kind of information.
  • the value of these 2 bits is "00" to indicate an RLF event, and the value of "01" can indicate a configuration failure event.
  • the value of these two bits is "10" may indicate the first configuration failure information, that is, if the value of these two bits is "10", it means that the terminal device has sent the first configuration failure information to the network device.
  • the state where the value of these two bits is "11" can continue to be reserved to indicate other information. In this way, the number of bits of the existing cell can be reduced, and the signaling overhead can be reduced.
  • the embodiment of the present application can also extend the number of bits of the first cell, for example, add one or more bits to the first cell to carry the first configuration Failure information.
  • the first configuration failure information may also include the information of the first radio bearer.
  • the information of the first radio bearer is, for example, the SL-DRB ID or Uu DRB ID of the first radio bearer, or the information of the first radio bearer also It may be the address of the terminal device corresponding to the first radio bearer on the side link, for example, the (layer 2, L2) destination address of the second terminal device.
  • the first configuration information is not sent by the network device to the first terminal device, but sent by the second terminal device to the first terminal device, if the configuration of the first terminal device fails, it is also It may be specified that the first terminal device sends the first configuration failure information to the network device, in this way, to reduce the transmission of information back and forth.
  • the first terminal device sends second configuration failure information to the second terminal device, and correspondingly, the second terminal device receives the second configuration failure information from the first terminal device.
  • the second configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • the first terminal device may also send the second configuration information to the second terminal device. Failure information. After the second terminal device receives the second configuration failure information from the first terminal device, it can determine that the first terminal device has failed to configure the first radio bearer, so that the second terminal device may temporarily not communicate with the first terminal through the first radio bearer. Device communication.
  • the second terminal device after receiving the second configuration failure information, the second terminal device will not trigger the forwarding of the second configuration failure information to the network device, so as to avoid repeated transmission of the configuration failure information.
  • S48 can occur before S49, or S48 can occur after S49, or S48 and S49 can occur simultaneously.
  • S49 is an optional step, which is represented by a dotted line in FIG. 4.
  • the first terminal device may send the first configuration failure information to the network device, that is, the first terminal device does not need to send the first configuration to the second terminal device.
  • the second terminal device forwards the first configuration failure information to the network through the first terminal device, which reduces the forwarding process of the first configuration failure information, thereby saving transmission resources.
  • the transmission delay is also reduced.
  • an embodiment of the present application provides a second communication method.
  • FIG. 5 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the scenario shown in FIG. 2 is a relay scenario, or the embodiment of the present application may not be used in a relay scenario, but a scenario where two terminal devices are directly connected.
  • the first terminal device can be connected to the second terminal device.
  • Terminal device communication the second terminal device is in the OOC state, or the second terminal device is not equipped with a Uu port, and the first terminal device is in the network coverage state, the network device serving the first terminal device can provide the second terminal device Configuration information.
  • the method executed by the network device and the terminal device is taken as an example. This is because the embodiment of this application is applied to the network architecture shown in FIG. 2 as an example. Therefore, the network device described below may be the access network device in the network architecture shown in FIG. 2, and the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2. The second terminal device described herein may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device and the second terminal device establish a PC5-S connection. After the PC5-S connection is established, the first terminal device and the second terminal device can communicate through the side link.
  • the network device sends fourth configuration information to the second terminal device, and correspondingly, the second terminal device receives the fourth configuration information from the network device.
  • the fourth configuration information includes, for example, a transmission configuration (for example, referred to as a third transmission configuration) and a common configuration (for example, referred to as a third common configuration).
  • the so-called sending configuration refers to the configuration related to the sending process
  • the so-called common configuration refers to the configuration related to the sending process and/or the receiving process.
  • the fourth configuration information may further include a receiving configuration (for example, referred to as a fourth receiving configuration).
  • the so-called receiving configuration refers to the configuration related to the receiving process.
  • the fourth receiving configuration may include a PDCP reordering timer (reordering timer), and of course may also include other parameters.
  • the second terminal device configures the first radio bearer.
  • the second terminal device configures the first radio bearer according to the fourth configuration information.
  • the second terminal device may configure the transmission parameters of the first radio bearer according to the third transmission configuration and/or the third common configuration, so that the second terminal device can send information to the first terminal device through the first radio bearer.
  • the first radio bearer is a two-way radio bearer
  • the fourth configuration information further includes a fourth receiving configuration
  • the second terminal device may also configure the receiving parameters of the first radio bearer according to the third common configuration and/or the fourth receiving configuration , So that the second terminal device can receive the information from the first terminal device through the first radio bearer.
  • the first radio bearer needs to correspond to the corresponding logical channel at the MAC layer, and which logical channel it corresponds to can be determined by the second terminal device. Therefore, the second terminal device can allocate a logical channel for the first radio bearer and determine the logical channel The LCID.
  • the logical channel corresponding to the MAC layer of the first radio bearer may also be directly configured by the network device, for example, sent to the second terminal device through the fourth configuration information.
  • the second terminal device can set the number on the PC5 port of the first radio bearer corresponding to the fourth configuration information, that is, the radio bearer configured with the same configuration information will correspond to the Uu port number.
  • the serial number and the serial number of PC5, and these two serial numbers correspond to each other.
  • the second terminal device may not set the number on the PC5 port of the first radio bearer corresponding to the fourth configuration information, as long as the second terminal device can distinguish different configuration information from the network device corresponding to different radio bearers. .
  • the second terminal device may also set the QFI and the number on the PC5 port of the first radio bearer or, if the second terminal device does not set the number on the PC5 port for the first radio bearer, the second terminal device may also set the corresponding relationship between the QFI and the number on the Uu port of the first radio bearer.
  • the QFI is, for example, the QoS requirement of the second terminal device for the first radio bearer.
  • the network device sends the second configuration information to the first terminal device, and correspondingly, the first terminal device receives the second configuration information from the network device.
  • the second configuration information includes, for example, a receiving configuration (for example, referred to as a second receiving configuration) and a common configuration (for example, referred to as a second common configuration).
  • the so-called receiving configuration refers to the configuration related to the receiving process
  • the so-called common configuration refers to the configuration related to the sending process and/or the receiving process.
  • the second receiving configuration may include a PDCP reordering timer (reordering timer), and of course, may also include other parameters.
  • the second configuration information may further include a transmission configuration (for example, referred to as a second transmission configuration).
  • the first radio bearer needs to correspond to a corresponding logical channel at the MAC layer, which can be sent by the second terminal device through the first information.
  • the logical channel corresponding to the MAC layer of the first radio bearer may also be directly configured by the network device, for example, sent to the first terminal device through the second configuration information.
  • S52 may be executed before S54, or S52 may be executed after S54, or S52 and S54 may be executed simultaneously.
  • the second terminal device sends the first information to the first terminal device, and correspondingly, the first terminal device receives the first information from the second terminal device.
  • the first information includes, for example, the LCID of the logical channel corresponding to the first radio bearer.
  • the LCID is determined by the second terminal device in S53, or used to indicate that the first radio bearer has been configured to prevent the first terminal device from interacting with the second terminal. The device does not know whether the configuration of the other party is complete.
  • the LCID corresponding to the first radio bearer may also be configured by the network device. For example, the network device may send the second configuration information to the first terminal device, so the first information does not include the LCID.
  • the first information may further include a first correspondence, or a second correspondence, or a first correspondence and a second correspondence.
  • the first correspondence is, for example, the correspondence between the number of the first wireless bearer on the Uu port and the number of the first wireless bearer on the PC5 port;
  • the second correspondence is, for example, between the QFI and the number of the first wireless bearer on the PC5 port The corresponding relationship between QFI and the number of the first radio bearer on the Uu port.
  • the first terminal device obtains first configuration information according to the second configuration information and the first information.
  • the first configuration information may include second configuration information and first information.
  • the first terminal device configures the first radio bearer according to the first configuration information.
  • the first terminal device may configure the transmission parameters of the first radio bearer according to the first common configuration and/or the first transmission configuration included in the first configuration information, so that the first terminal device can transmit data to the second radio bearer through the first radio bearer.
  • the terminal device sends information. If the first configuration information also includes the first receiving configuration, the first terminal device can configure the receiving parameters of the first radio bearer according to the first receiving configuration and/or the first common configuration, so that the first terminal device can pass through the first wireless
  • the bearer receives information from the second terminal device.
  • the process ends; or if the first terminal device fails to configure the first radio bearer according to the first configuration information, continue to perform S58.
  • the first terminal device sends the first configuration failure information to the network device, and correspondingly, the network device receives the first configuration failure information from the first terminal device.
  • the first configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • the second configuration information is sent by the network device to the first terminal device, if the configuration of the first terminal device fails, the first configuration failure information is equivalent to the first terminal device sending the network device to the network device.
  • the response information sent is more natural in terms of the process and conforms to the execution habits of the device.
  • the first terminal device sends second configuration failure information to the second terminal device, and correspondingly, the second terminal device receives the second configuration failure information from the first terminal device.
  • the second configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • the second configuration information is not sent by the second terminal device to the first terminal device, but sent by the network device to the first terminal device, if the configuration of the first terminal device fails, it can also be specified that the first terminal device also Send the second configuration failure information to the second terminal device.
  • the second terminal device After the second terminal device receives the second configuration failure information from the first terminal device, it can determine that the first terminal device has failed to configure the first radio bearer, so that the second terminal device may temporarily not communicate with the first terminal through the first radio bearer. Device communication.
  • the second terminal device after receiving the second configuration failure information, the second terminal device will not trigger the forwarding of the second configuration failure information to the network device, so as to avoid repeated transmission of the configuration failure information.
  • S58 can occur before S59, or S58 can occur after S59, or S58 and S59 can occur simultaneously.
  • S59 is an optional step, which is represented by a dotted line in FIG. 5.
  • the first terminal device may send the first configuration failure information to the network device, that is, the first terminal device does not need to send the first configuration to the second terminal device.
  • the second terminal device forwards the first configuration failure information to the network through the first terminal device, which reduces the forwarding process of the first configuration failure information, thereby saving transmission resources.
  • the transmission delay is also reduced.
  • the network device can send the configuration information corresponding to the first radio bearer to the two terminal devices, without the need for the terminal device to generate additional configuration information, which reduces the burden on the terminal device, and makes the application scope of the method provided in the embodiments of the present application wider. Extensive, for example, it can be applied to more low-cost terminal devices.
  • an embodiment of the present application provides a second communication method.
  • FIG. 6, is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the scenario shown in FIG. 2 is a relay scenario, or the embodiment of the present application may not be used in a relay scenario, but a scenario where two terminal devices are directly connected.
  • the first terminal device can be connected to the second terminal device.
  • Terminal device communication the second terminal device is in the OOC state, or the second terminal device is not equipped with a Uu port, and the first terminal device is in the network coverage state, the network device serving the first terminal device can provide the second terminal device Configuration information.
  • the method executed by the network device and the terminal device is taken as an example. This is because the embodiment of this application is applied to the network architecture shown in FIG. 2 as an example. Therefore, the network device described below may be the access network device in the network architecture shown in FIG. 2, and the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2. The second terminal device described herein may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device and the second terminal device establish a PC5-S connection. After the PC5-S connection is established, the first terminal device and the second terminal device can communicate through the side link.
  • the second terminal device sends QoS information to the first terminal device, and correspondingly, the first terminal device receives the QoS information from the second terminal device.
  • the QoS information may indicate the QoS requirement of the second terminal device for the first radio bearer.
  • the QoS information may include QFI, or may also include other information.
  • the second terminal device may send the QoS information to the first terminal device through a PC5-RRC message, or the second terminal device may also send the QoS information to the first terminal device through other messages.
  • the first terminal device sends the second information to the network device, and correspondingly, the network device receives the second information from the first terminal device.
  • the second information can be used to request configuration of a radio bearer between the first terminal device and the second terminal device, and the radio bearer is a two-way radio bearer.
  • this radio bearer is called the first radio bearer.
  • the first radio bearer For the introduction of content such as the implementation of the first radio bearer, reference may be made to related content in the embodiment shown in FIG. 4.
  • the terminal device can send information for requesting configuration of the first radio bearer to the network device.
  • the second terminal device should be the sender of information, that is, the second terminal device should send information to the first terminal device, as shown in the embodiment shown in FIG. 4 or shown in FIG. 5 This is the case in the embodiments, but in the embodiment shown in FIG. 4 or the embodiment shown in FIG. 5, the second terminal device sends a second request message to the network device to request the network device to configure the first radio bearer.
  • the first terminal device sends the second information to the network device so that the network device regards the first terminal device as the sender of the information, and the network device will take the first radio bearer
  • the configuration information is sent to the first terminal device. In this way, if a configuration failure occurs in the first terminal device, it can send information indicating the configuration failure to the network device, so that the execution of the entire process is more in line with the execution habits of the device.
  • the first terminal device in the embodiment of this application makes the network device consider the first terminal device as the sender of information, when the network device sends configuration information, it will send to the first terminal device the sending configuration corresponding to the first radio bearer. If the first terminal device configures the first radio bearer according to the sending configuration, the first terminal device can send information to the second terminal device. The actual information sending end should be the second terminal device. The second terminal device needs to send information to the first terminal device through the first radio bearer.
  • the second information needs to request the configuration of a two-way radio bearer, that is, ,
  • the first radio bearer needs to be a radio bearer capable of bidirectional transmission, so as to be able to meet the requirement of the second terminal device to send information to the first terminal device through the first radio bearer.
  • the second information may include the QoS information, because the second terminal device is the actual information sender, so the QoS requirement of the second terminal device for the first radio bearer should prevail.
  • the network device After receiving the QoS information, the network device can determine the configuration information of the first radio bearer according to the QoS information, so that the configured first radio bearer can better meet the requirements of the second terminal device.
  • the second information may also include information that the second terminal device is in an OOC state, or include information that the second terminal device is not provided with a Uu port.
  • the network where the second terminal device is located cannot configure the wireless bearer for the second terminal device.
  • the second terminal device can connect to the first terminal device Enter the network where the first terminal device is located, the network where the second terminal device is located can configure the radio bearer for the first terminal device, so in this case the second terminal device configures the wireless bearer through the network of the first terminal device Will make more sense.
  • the first terminal device can send the second information to the access network device, and if it is determined that the second terminal device is not currently in the OOC state Or it is determined that the second terminal device has a Uu port, the first terminal device may not send the second information to the access network device, that is, if the second terminal device is not currently in the OOC state or the second terminal device has a Uu port, Then the network where the second terminal device is located can be configured with a wireless bearer, etc., for the second terminal device.
  • the first terminal device may send the second information to the access network device to request the configuration of the radio bearer. If this is the case, the second information may include the information that the second terminal device is in the OOC state, or may not include the information that the second terminal device is in the OOC state.
  • the second information is, for example, sidelink UE information (SUI), or may also be other types of information.
  • SAI sidelink UE information
  • the network device determines first configuration information according to the second information.
  • the first configuration information is configuration information of the first terminal device corresponding to the first radio bearer, or in other words, the first terminal device can configure the first radio bearer according to the first configuration information.
  • the first configuration information includes, for example, a transmission configuration (for example, called a first transmission configuration) and a common configuration (for example, called a first common configuration).
  • a transmission configuration for example, called a first transmission configuration
  • a common configuration for example, called a first common configuration.
  • For the content included in the first transmission configuration refer to the introduction to the third transmission configuration in the embodiment shown in FIG. 4.
  • the content included in the first common configuration refer to the third common configuration in the embodiment shown in FIG. 4 Introduction to the configuration.
  • the first configuration information may further include a receiving configuration (for example, referred to as a first receiving configuration).
  • a receiving configuration for example, referred to as a first receiving configuration
  • the network device sends the first configuration information to the first terminal device, and correspondingly, the first terminal device receives the first configuration information from the network device.
  • the network device may send the first configuration information to the first terminal device through an RRC message.
  • the first terminal device configures the first radio bearer according to the first configuration information.
  • the first terminal device configures the first radio bearer according to the first transmission configuration and the first common configuration.
  • the first terminal device may configure the transmission parameters of the first radio bearer according to the first transmission configuration and/or the first common configuration, so that the first terminal device can send information to the second terminal device through the first radio bearer.
  • the first radio bearer is a two-way radio bearer, if the first configuration information does not include the first receiving configuration, the first terminal device can also obtain the first receiving configuration according to the first common configuration, and configure the first receiving configuration according to the first receiving configuration.
  • the receiving parameter of the radio bearer so that the first terminal device can receive information from the second terminal device through the first radio bearer.
  • the first terminal device may configure the receiving parameters of the first radio bearer according to the first receiving configuration and/or the first common configuration, so that the first terminal device can pass the first receiving configuration and/or the first common configuration.
  • the radio bearer receives information from the second terminal device.
  • the first terminal device fails to configure the first radio bearer according to the first configuration information, it can perform S68; or, if the first terminal device successfully configures the first radio bearer according to the first configuration information, it can perform S67; or, S67 and Whether the first terminal device is successfully configured is irrelevant. Regardless of the success or failure of the first terminal device to configure the first radio bearer according to the first configuration information, S67 can be executed. If this is the case, S66 can be executed before S67, or S66 can be executed before S67. Execute after S67, or execute S66 and S67 at the same time.
  • the first terminal device sends the third configuration information to the second terminal device, and correspondingly, the second terminal device receives the third configuration information from the first terminal device.
  • the third configuration information may be used for the second terminal device to configure the first radio bearer, or in other words, the second terminal device may configure the first radio bearer according to the third configuration information.
  • the third configuration information includes, for example, part or all of the content of the first configuration information.
  • the third configuration information may include the first common configuration, or the third configuration information may include the first common configuration and the first transmission configuration.
  • the second terminal device may configure the first radio bearer according to the third configuration information. For example, if the third configuration information includes the first common configuration, the second terminal device can obtain the receiving configuration of the second terminal device corresponding to the first radio bearer (for example, referred to as the third receiving configuration) according to the first common configuration, and the second terminal device The device may configure the receiving parameters of the first radio bearer according to the third receiving configuration, so that the second terminal device can receive the information from the first terminal device through the first radio bearer. For another example, if the third configuration information includes the first common configuration and the first sending configuration, the second terminal device can obtain the first receiving configuration according to the first common configuration and configure the first radio bearer according to the first receiving configuration. It is also possible to configure the sending parameters of the first radio bearer according to the first sending configuration, so that the second terminal device can send information to the first terminal device through the first radio bearer.
  • the third configuration information includes the first common configuration
  • the second terminal device can obtain the receiving configuration of the second terminal device corresponding to the first radio bearer (for example
  • the first terminal device sends the first configuration failure information to the network device, and correspondingly, the network device receives the first configuration failure information from the first terminal device.
  • the first configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • the first configuration failure information is equivalent to the first terminal device sending the network device to the network device.
  • the response information sent is more natural in terms of the process and conforms to the execution habits of the device.
  • the first terminal device sends second configuration failure information to the second terminal device, and correspondingly, the second terminal device receives the second configuration failure information from the first terminal device.
  • the second configuration failure information may indicate that the first terminal device fails to configure the first radio bearer.
  • S69 can be executed, so S69 is an optional step, which is represented by a dotted line in FIG. 6.
  • the first configuration information is not sent by the second terminal device to the first terminal device, but sent by the network device to the first terminal device, if the configuration of the first terminal device fails, the first terminal device can also be specified Send the second configuration failure information to the second terminal device.
  • the second terminal device After the second terminal device receives the second configuration failure information from the first terminal device, it can determine that the first terminal device has failed to configure the first radio bearer, so that the second terminal device may temporarily not communicate with the first terminal through the first radio bearer. Device communication.
  • the second terminal device after receiving the second configuration failure information, the second terminal device will not trigger the forwarding of the second configuration failure information to the network device, so as to avoid repeated transmission of the configuration failure information.
  • S68 can occur before S69, or S68 can occur after S69, or S68 and S69 can occur simultaneously.
  • the first terminal device may send the first configuration failure information to the network device, that is, the first terminal device does not need to send the first configuration to the second terminal device.
  • the second terminal device forwards the first configuration failure information to the network through the first terminal device, which reduces the forwarding process of the first configuration failure information, thereby saving transmission resources.
  • the transmission delay is also reduced.
  • the network device sends the first configuration information to the first terminal device, and the first terminal device sends the third configuration information to the second terminal device, which can also avoid the situation that the configuration information is transmitted back and forth between the terminal devices.
  • Configuration failure can be regarded as a case of side link failure, and there is another case of side link failure, namely RLF.
  • the second terminal device sends data to the first terminal device through the side link, and the first terminal device will send data to the second terminal device after receiving the data from the second terminal device.
  • the device sends feedback information, which may indicate that the data is received successfully or failed. Then, if the feedback information received by the second terminal device indicates that the corresponding data reception failed, the second terminal device can resend the data to the first terminal device through the side link, and the first terminal device can send the data to the first terminal device after receiving the data.
  • the second terminal device sends feedback information.
  • the second terminal device can re-send the data to the first terminal device through the side link again, and so on, until the first terminal device Until the reception is successful, or until the number of retransmissions is equal to the maximum number of times restricted by the ARQ mechanism. If the number of retransmissions has reached the maximum number of ARQ mechanism limits, and the data still fails to be sent, the second terminal device can consider that an RLF event has occurred; or, if the number of consecutive retransmissions of one or more data has reached the ARQ mechanism limit When the maximum number of times is transmission failure, the second terminal device can consider that an RLF event has occurred.
  • the second terminal device sends data to the first terminal device through the side link.
  • the feedback information may indicate that the data is received successfully, and if the reception fails, the feedback information is not sent to the second terminal device.
  • the second terminal device receives the feedback information, it indicates that the corresponding data is successfully received, and if the second terminal device does not receive the feedback information, it indicates that the corresponding data has failed to be received. If it is determined that the first terminal device fails to receive the data, the second terminal device can resend the data to the first terminal device through the side link.
  • the second terminal device After the first terminal device receives the data, if the reception is successful, the second terminal device sends the data to the second terminal device.
  • the device sends feedback information, the feedback information may indicate that the data is received successfully, and if the reception fails, the feedback information is not sent to the second terminal device. If the second terminal device still does not receive the feedback information, the second terminal device retransmits the data to the first terminal device through the side link again, and so on, until the first terminal device receives the data successfully, or until the retransmission
  • the number of transmissions is equal to the maximum number of times restricted by the ARQ mechanism.
  • the second terminal device can consider that an RLF event has occurred; or, if the number of consecutive retransmissions of one or more data has reached the ARQ mechanism limit When the maximum number of times is transmission failure, the second terminal device can consider that an RLF event has occurred.
  • the terminal device 1 provides the terminal device 2 with a relay service.
  • the terminal device 2 is the data sending end
  • the terminal device 1 is the data receiving end.
  • FIG. 7 below for the current processing flow of the terminal device 2 after an RLF event occurs.
  • a PC5-signal (signal, S) connection is established between the terminal device 1 and the terminal device 2.
  • the terminal device 1 determines that the side link between the terminal device 1 and the terminal device 2 has failed. For example, the terminal device 1 determines that an RLF event has occurred.
  • the terminal device 2 sends the link failure information to the terminal device 1, so as to forward the link failure information to the network device through the terminal device 1.
  • the terminal device 2 needs to send the link failure information to the network device, but the communication between the terminal device 2 and the network device needs to be relayed through the terminal device 1. Therefore, the terminal device 2 sends the link failure information to the terminal device 1. Device 1 then forwards it to the network device.
  • the terminal device 1 since the RLF event has occurred at this time, it indicates that the side link between the terminal device 1 and the terminal device 2 has been faulty and may not be able to communicate normally, so the terminal device 1 may not be able to receive the link from the terminal device 2. 7 indicates that S73 may fail to execute, and the terminal device 1 naturally cannot forward the link failure information to the network device. It can be seen that this causes the terminal device 2 to generate the link failure information in vain, which additionally increases the power consumption of the terminal device 2.
  • the embodiment of the present application provides a fourth communication method, by which the power consumption of the terminal device can be reduced.
  • This method can be applied to the network architecture shown in Figure 2, or the method can also be applied to a network architecture where two terminal devices are directly connected, that is, the first terminal device does not provide relay services for the second terminal device, and the first The terminal device also does not provide a relay service for the second terminal device, and the two terminal devices communicate through the side link.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example. Among them, the scenario shown in FIG.
  • the first terminal device can be connected to the second terminal device.
  • Terminal device communication the second terminal device is in the OOC state, or the second terminal device is not equipped with a Uu port, and the first terminal device is in the network coverage state, the network device serving the first terminal device can provide the second terminal device Configuration information.
  • the method executed by the network device and the terminal device is taken as an example. This is because the embodiment of this application is applied to the network architecture shown in FIG. 2 as an example. Therefore, the network device described below may be the access network device in the network architecture shown in FIG. 2, and the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2. The second terminal device described herein may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device and the second terminal device establish a PC5-S connection. After the PC5-S connection is established, the first terminal device and the second terminal device can communicate through the side link.
  • the second terminal device determines that the side link between the first terminal device and the second terminal device fails. For example, the second terminal device determines that an RLF event occurs on the side link.
  • the second terminal device is in the OOC state, or the second terminal device is not provided with a Uu port. If the second terminal device is within the coverage of the network device and the second terminal device has a Uu port, the second terminal device can send the information indicating the link failure to the network device through the Uu port. This situation is fine. It is not necessary to use the technical solutions provided in the embodiments of this application. If the second terminal device is in the OOC state, or the second terminal device is not provided with a Uu port, as long as either or both of these two conditions are met, the technical solution provided in the embodiment of the present application can be applied.
  • the second terminal device does not send information for indicating link failure to the network device.
  • Information used to indicate link failure such as an SL-RLF report.
  • the second terminal device determines that the side link fails, it does not send information indicating link failure to the network device. Therefore, the second terminal device does not need to generate information indicating link failure, thereby reducing The power consumption of the second terminal device.
  • the side link between the first terminal device and the second terminal device has been problematic, if the second terminal device sends the information indicating the link failure to the first terminal device through the side link, it may also The transmission may fail, so the useless function of the second terminal device is also reduced by the method provided in the embodiment of the present application.
  • the second terminal device determines that the connection with the network device fails.
  • the second terminal device may determine that the connection with the network device has failed.
  • S83 may be executed before S84, or S83 may be executed after S84, or S83 and S84 may be executed simultaneously.
  • S84 may not be executed, but S85 or S86 described later may be executed, or S84 to S86 may not be executed. Therefore, S84 to S86 are optional steps, which are represented by dashed lines in FIG. 8.
  • the second terminal device sends a first request message to the first terminal device, and correspondingly, the first terminal device receives the first request message from the second terminal device.
  • the first request message can be used to request the re-establishment of the side link.
  • the technical solution of the embodiment of the present application is applied to a scenario where two terminal devices are directly connected, that is, not used in a relay scenario, then the first terminal device and the second terminal device need to communicate normally.
  • the second terminal device may request to rebuild the side link, so that the first terminal device and the second terminal device can resume normal communication as much as possible.
  • the second terminal device reselects a terminal device that can provide a relay service for the second terminal device.
  • the first terminal device provides a relay service for the second terminal device. Then, if the side link between the first terminal device and the second terminal device fails, the first terminal device can also access the network device through other terminal devices, so the second terminal device can re-select the second terminal device as the second terminal device.
  • Terminal device A terminal device that provides relay services.
  • the second terminal device may send a broadcast message, which is used to request a relay service. If the terminal device that receives the broadcast message can provide a relay service for the second terminal device, it can send a response message to the second terminal device. After receiving the response message from other terminal devices, the second terminal device can establish a connection with the terminal device. Side link, so as to access the network through the terminal device. If multiple terminal devices have sent response messages to the second terminal device, the second terminal device can establish a side link with the terminal device that sent the first response message.
  • the first response message is, for example, the first Response messages received.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 is, for example, the first terminal device 900.
  • the first terminal device 900 is, for example, the first terminal device described in any one of the embodiment shown in FIG. 4 to the embodiment shown in FIG. 6.
  • the first terminal device 900 includes a processing module 910 and a receiving module 930.
  • the first terminal device 900 may further include a sending module 920.
  • the first terminal device 900 may be a terminal device, and may also be a chip applied to the terminal device or other combination devices, components, etc. having the functions of the first terminal device described above.
  • the transmitting module 920 may be a transmitter, the transmitter may include an antenna and a radio frequency circuit, etc., the receiving module 930 may be a receiver, and the receiver may include an antenna and a radio frequency circuit, etc., where the transmitter The transmitter and the receiver may be different modules, or the transmitter and the receiver may be set in the same functional module, which may be called a transceiver, and the processing module 910 may be a processor (or a processing circuit), for example
  • the baseband processor, the baseband processor may include one or more central processing units (central processing unit, CPU).
  • the sending module 920 may be a radio frequency unit, and the receiving module may also be a radio frequency unit, where the transmitter and receiver may be different modules, or, The transmitter and the receiver may be provided in the same functional module, the functional module may be a radio frequency unit, and the processing module 910 may be a processor (or a processing circuit), such as a baseband processor.
  • the sending module 920 may be the output interface of the chip (for example, a baseband chip), and the receiving module 930 may be the input interface of the chip (or, if the input interface and the output interface can be the same interface, then It is considered that the sending module 920 and the receiving module 930 are the same functional module, that is, the input and output interface of the chip, and the processing module 910 may be the processor (or processing circuit) of the chip system, and the processor may include one or more central processing units. .
  • processing module 910 in the embodiment of the present application may be implemented by a processor or processor-related circuit components (or processing circuits)
  • receiving module 930 may be implemented by a transceiver or transceiver-related circuit components
  • sending module 920 may be implemented by The transmitter or transmitter-related circuit components are implemented.
  • the processing module 910 may be used to perform all operations other than the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 4, such as S41 and S45, and/or to support the technology described herein Other processes.
  • the sending module 920 can be used to perform all the sending operations performed by the first terminal device in the embodiment shown in FIG. 4, such as S41, S46, S48, and S49, and/or other processes used to support the technology described herein .
  • the receiving module 930 may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 4, such as S41, S44, and S47, and/or other processes used to support the technology described herein.
  • the processing module 910 may be used to perform all operations other than the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 5, such as S51, S56, and S57, and/or to support Other processes of the described technology.
  • the sending module 920 may be used to perform all the sending operations performed by the first terminal device in the embodiment shown in FIG. 5, such as S51, S58, and S59, and/or other processes used to support the technology described herein.
  • the receiving module 930 may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 5, such as S51, S54, and S55, and/or other processes used to support the technology described herein.
  • the processing module 910 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 6, such as S61 and S66, and/or to support the operations described herein.
  • Other processes of technology can be used to perform all the sending operations performed by the first terminal device in the embodiment shown in FIG. 6, such as S61, S63, S67, S68, and S69, and/or for supporting the technology described herein Other processes.
  • the receiving module 930 may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 6, such as S61, S62, and S65, and/or other processes used to support the technology described herein.
  • the sending module 920 and the receiving module 930 may be a functional module, which can complete both the sending operation and the receiving operation.
  • the functional module can be called a transceiver module.
  • the transceiver module can be used to perform the Embodiments to all the sending operations and receiving operations performed by the first terminal device in any one of the embodiments shown in FIG.
  • the transceiver module can be considered as the receiving module; or, the sending module 920 and the receiving module 930 can also be two functional modules, and the transceiver module can also be regarded as the collective name of these two functional modules.
  • the sending module 920 is used to complete Sending operations, for example, the sending module 920 can be used to perform all the sending operations performed by the first terminal device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 6, and the receiving module 930 is used for To complete the receiving operation, for example, the receiving module 930 may be used to perform all the receiving operations performed by the first terminal device in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 6.
  • the processing module 910 is configured to obtain first configuration information, and the first configuration information is used by the first terminal device 900 to configure a first radio bearer, and the first radio bearer is the first terminal device 900 and the second terminal device
  • the second terminal device is the data sending end;
  • the processing module 910 is further configured to configure the first radio bearer according to the first configuration information
  • the sending module 920 is configured to send the first configuration failure information to the network device when the processing module 910 fails to configure the first radio bearer.
  • the sending module 920 is configured to send the first configuration failure information to the network device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used to indicate the cause of the failure.
  • the sending module 920 is further configured to send second configuration failure information to the second terminal device, where the second configuration failure information is used to instruct the first terminal device 900 to respond to the first The radio bearer configuration failed.
  • the processing module 910 is configured to obtain the first configuration information in the following manner:
  • the first configuration information from the second terminal device is received through the receiving module 930.
  • the first configuration information includes a first common configuration
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or, Whether to use header compression.
  • the processing module 910 is configured to obtain the first configuration information in the following manner:
  • the first information is obtained by the second terminal device according to fourth configuration information from the network device, and the fourth configuration information is used to configure the second terminal device The first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or, one of the identifier corresponding to the Uu port of the first radio bearer and the identifier corresponding to the PC5 port. Correspondence between.
  • the second configuration information includes a receiving configuration and a second common configuration, where the receiving configuration includes a PDCP reordering timer, and the second common configuration includes one or more of the following Item: The SN length of QFI, PDCP and RLC corresponding to SDAP, or whether to use header compression.
  • the receiving module 930 is further configured to receive QoS information from the second terminal device before the processing module 910 obtains the first configuration information.
  • the QoS information is used to indicate that the request is made between the second terminal device and the first terminal device.
  • QoS of radio bearers configured between 900;
  • the sending module 920 is further configured to send second information to the network device, where the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the first terminal device 900, and the The second information includes the QoS information.
  • the processing module 910 is configured to obtain the first configuration information in the following manner:
  • the receiving module 930 receives the first configuration information from the network device.
  • the first configuration information includes a first sending configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the sending module 920 is further configured to send third configuration information to the second terminal device, where the third configuration information is used by the second terminal device to configure the first radio bearer ,
  • the third configuration information includes part or all of the content of the first configuration information.
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the application.
  • the communication apparatus 1000 is, for example, the second terminal device 1000.
  • the second terminal device 1000 is, for example, the second terminal device described in any one of the embodiments shown in FIG. 4 to the embodiment shown in FIG. 6.
  • the second terminal device 1000 includes a sending module 1020 and a receiving module 1030.
  • the second terminal device may further include a processing module 1010.
  • the second terminal device 1000 may be a terminal device, and may also be a chip applied in the terminal device or other combination devices, components, etc. having the functions of the second terminal device described above.
  • the transmitting module 1020 may be a transmitter
  • the transmitter may include an antenna and a radio frequency circuit
  • the receiving module 1030 may be a receiver
  • the receiver may include an antenna and a radio frequency circuit, etc., where the transmitter The transmitter and the receiver may be different modules, or the transmitter and the receiver may be set in the same functional module.
  • the functional module may be called a transceiver, and the processing module 1010 may be a processor (or a processing circuit), for example Baseband processor.
  • the baseband processor may include one or more CPUs.
  • the sending module 1020 may be a radio frequency unit
  • the receiving module may also be a radio frequency unit, where the transmitter and receiver may be different modules, or, The transmitter and the receiver may be arranged in the same functional module
  • the functional module may be a radio frequency unit
  • the processing module 1010 may be a processor (or a processing circuit), such as a baseband processor.
  • the sending module 1020 may be the output interface of the chip (for example, a baseband chip), and the receiving module 1030 may be the input interface of the chip (or, if the input interface and the output interface can be the same interface, then It is considered that the sending module 1020 and the receiving module 1030 are the same functional module, that is, the input and output interface of the chip, and the processing module 1010 may be the processor (or processing circuit) of the chip system, and the processor may include one or more central processing units. .
  • processing module 1010 in the embodiment of the present application may be implemented by a processor or processor-related circuit components (or processing circuits)
  • receiving module 1030 may be implemented by a transceiver or transceiver-related circuit components
  • sending module 1020 may be implemented by The transmitter or transmitter-related circuit components are implemented.
  • the processing module 1010 may be used to perform all operations other than the transceiving operation performed by the second terminal device in the embodiment shown in FIG. 4, such as S41 and S43, and/or to support the technology described herein Other processes.
  • the sending module 1020 may be used to perform all the sending operations performed by the second terminal device in the embodiment shown in FIG. 4, such as S41 and S44, and/or other processes used to support the technology described herein.
  • the receiving module 1030 may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 4, such as S41, S42, and S49, and/or other processes used to support the technology described herein.
  • the processing module 1010 may be used to perform all operations other than the transceiving operations performed by the second terminal device in the embodiment shown in FIG. 5, such as S51 and S53, and/or to support the operations described herein.
  • Other processes of technology may be used to perform all the sending operations performed by the second terminal device in the embodiment shown in FIG. 5, such as S51 and S55, and/or other processes used to support the technology described herein.
  • the receiving module 1030 may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 5, such as S51, S52, and S59, and/or other processes used to support the technology described herein.
  • the processing module 1010 may be used to perform all operations other than the transceiving operation performed by the second terminal device in the embodiment shown in FIG. 6, such as S61, and/or to support the technology described herein.
  • the sending module 1020 may be used to perform all the sending operations performed by the second terminal device in the embodiment shown in FIG. 6, such as S61 and S62, and/or other processes used to support the technology described herein.
  • the receiving module 1030 may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 6, such as S61, S67, and S69, and/or other processes used to support the technology described herein.
  • the receiving module 1030 is configured to receive second configuration failure information from the first terminal device, where the second configuration failure information is used to indicate that the first terminal device fails to configure the first radio bearer, and the first radio bearer For the wireless bearer between the first terminal device and the second terminal device 1000, the first terminal device provides a relay service for the second terminal device 1000, and the first terminal device is configured to pass through the first wireless Bear the data receiving end of the data transmission process, and the second terminal device 1000 is the data sending end of the data transmission process;
  • the sending module 1020 is configured to not send information used to indicate that the first terminal device fails to configure the first radio bearer to the network device.
  • the receiving module 1030 is further configured to receive fourth configuration information from the network device, where the fourth configuration information is used by the second terminal device 1000 to configure the first radio bearer.
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the processing module 1010 is configured to select a logical channel for the first radio bearer
  • the sending module 1020 is further configured to send first configuration information to the first terminal device, where the first configuration information is used by the first terminal device to configure the first radio bearer, and the first configuration information includes The identifier of the logical channel corresponding to the first radio bearer.
  • the first configuration information includes a first common configuration
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or, Whether to use header compression.
  • the processing module 1010 is configured to select a logical channel for the first radio bearer
  • the sending module 1020 is further configured to send first information to the first terminal device, where the first information includes the identifier of the logical channel corresponding to the first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or, one of the identifier corresponding to the Uu port of the first radio bearer and the identifier corresponding to the PC5 port. Correspondence between.
  • the receiving module 1030 is further configured to receive third configuration information from the first terminal device, where the third configuration information is used by the second terminal device 1000 to configure the first radio bearer
  • the third configuration information includes part or all of the content of the first configuration information, and the first configuration information is used by the first terminal device to configure the first radio bearer.
  • the sending module 1020 is further configured to send QoS information to the first terminal device, where the QoS information is used to indicate that the request is between the second terminal device 1000 and the first terminal device.
  • the QoS of the configured radio bearer is further configured to send QoS information to the first terminal device, where the QoS information is used to indicate that the request is between the second terminal device 1000 and the first terminal device.
  • the QoS of the configured radio bearer is further configured to send QoS information to the first terminal device, where the QoS information is used to indicate that the request is between the second terminal device 1000 and the first terminal device.
  • the second terminal device 1000 cannot communicate with the network device through the Uu port.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the application.
  • the communication device 1100 is a network device 1100, for example.
  • the network device 1100 is, for example, the network device described in any one of the embodiment shown in FIG. 4 to the embodiment shown in FIG. 6.
  • the network device 1100 includes a processing module 1110 and a receiving module 1130.
  • the network device 1100 further includes a sending module 1120.
  • the network device 1100 may be a network device (for example, an access network device), or may be a chip applied to the network device or other combination devices or components having the functions of the network device described above.
  • the transmitting module 1120 may be a transmitter
  • the transmitter may include an antenna and a radio frequency circuit
  • the receiving module 1130 may be a receiver
  • the receiver may include an antenna and a radio frequency circuit, etc., where the transmitter and The receivers may be different modules, or the transmitter and the receiver may be set in the same functional module.
  • the functional module may be called a transceiver.
  • the processing module 1110 may be a processor (or a processing circuit), such as baseband processing.
  • the baseband processor can include one or more CPUs.
  • the sending module 1120 may be a radio frequency unit
  • the receiving module may also be a radio frequency unit, where the transmitter and receiver may be different modules, or the transmitter and receiver
  • the processor may be arranged in the same functional module, the functional module may be a radio frequency unit, and the processing module 1110 may be a processor (or a processing circuit), such as a baseband processor.
  • the sending module 1120 may be the output interface of the chip (such as a baseband chip), and the receiving module 1130 may be the input interface of the chip (or, if the input interface and the output interface can be the same interface, then it is considered that the transmission
  • the module 1120 and the receiving module 1130 are the same functional module, that is, the input and output interface of the chip.
  • the processing module 1110 may be a processor (or processing circuit) of the chip system, and the processor may include one or more central processing units.
  • processing module 1110 in the embodiment of the present application may be implemented by a processor or processor-related circuit components (or processing circuits)
  • receiving module 1130 may be implemented by a transceiver or transceiver-related circuit components
  • sending module 1120 may be implemented by The transmitter or transmitter-related circuit components are implemented.
  • the processing module 1110 may be used to perform all operations other than the transceiving operations performed by the network device in the embodiment shown in FIG. 4, such as the operation of determining the fourth configuration information, and/or to support the operations described herein Other processes of the technology.
  • the sending module 1120 may be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 4, such as S42 and S47, and/or other processes used to support the technology described herein.
  • the receiving module 1130 may be used to perform all receiving operations performed by the network device in the embodiment shown in FIG. 4, such as S46 and S48, and/or other processes used to support the technology described herein.
  • the processing module 1110 may be used to perform all operations performed by the network device in the embodiment shown in FIG. 5 except for the transceiving operation, such as the operation of determining the fourth configuration information, and/or to support the operations described herein.
  • the sending module 1120 may be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 5, such as S52 and S54, and/or other processes used to support the technology described herein.
  • the receiving module 1130 may be used to perform all receiving operations performed by the network device in the embodiment shown in FIG. 5, such as S58, and/or other processes used to support the technology described herein.
  • the processing module 1110 may be used to perform all operations performed by the network device in the embodiment shown in FIG. 6 except for the transceiving operations, such as S64, and/or other processes used to support the technology described herein.
  • the sending module 1120 may be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 6, such as S65, and/or other processes used to support the technology described herein.
  • the receiving module 1130 may be used to perform all receiving operations performed by the network device in the embodiment shown in FIG. 6, such as S63 and S68, and/or other processes used to support the technology described herein.
  • the receiving module 1130 is configured to receive the first configuration failure information from the first terminal device
  • the processing module 1110 is configured to determine, according to the first configuration failure information, that the first terminal device fails to configure the first radio bearer, and the first radio bearer is the wireless connection between the first terminal device and the second terminal device. Bearer, the first terminal device provides a relay service for the second terminal device, and the first terminal device is the data receiving end of the data transmission process performed by the first radio bearer, and the second terminal device The terminal device is the data sending end of the data transmission process.
  • the receiving module 1130 is configured to receive the first configuration failure information from the first terminal device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used for Indicates the reason for the failure.
  • the sending module 1120 is configured to send fourth configuration information to the second terminal device, where the fourth configuration information is used by the second terminal device to configure the first radio bearer.
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • the sending module 1120 is configured to send second configuration information to the first terminal device, where the second configuration information is used by the first terminal device to configure the first radio bearer.
  • the second configuration information includes a receiving configuration and a second common configuration, where the receiving configuration includes a PDCP reordering timer, and the second common configuration includes one or more of the following Item: The SN length of QFI, PDCP and RLC corresponding to SDAP, or whether to use header compression.
  • the receiving module 1130 is further configured to receive second information from the first terminal device, and the second information is used to request configuration of the second terminal device and the first terminal device.
  • a radio bearer for bidirectional transmission between devices, and the second information includes QoS information, and the QoS information is used to indicate the QoS of the radio bearer that is requested to be configured between the second terminal device and the first terminal device .
  • the processing module 1110 is further configured to determine first configuration information according to the QoS information, where the first configuration information is used by the first terminal device to configure the first radio bearer;
  • the sending module 1120 is configured to send the first configuration information to the first terminal device.
  • the first configuration information includes a first sending configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the application.
  • the communication apparatus 1200 is, for example, the second terminal device 1200.
  • the second terminal device 1200 is, for example, the second terminal device described in the embodiment shown in FIG. 8.
  • the second terminal device 1200 includes a sending module 1220 and a processing module 1210.
  • the second terminal device 1200 further includes a receiving module 1230.
  • the second terminal device 1200 may be a terminal device, and may also be a chip applied to the terminal device or other combination devices, components, etc. having the functions of the second terminal device described above.
  • the transmitting module 1220 may be a transmitter, the transmitter may include an antenna and a radio frequency circuit, etc., the receiving module 1230 may be a receiver, and the receiver may include an antenna and a radio frequency circuit, etc., where the transmitter The transmitter and the receiver may be different modules, or the transmitter and the receiver may be provided in the same functional module, which may be called a transceiver, and the processing module 1210 may be a processor (or a processing circuit), for example Baseband processor.
  • the baseband processor may include one or more CPUs.
  • the sending module 1220 may be a radio frequency unit, and the receiving module may also be a radio frequency unit, where the transmitter and receiver may be different modules, or, The transmitter and the receiver may be arranged in the same functional module, the functional module may be a radio frequency unit, and the processing module 1210 may be a processor (or a processing circuit), such as a baseband processor.
  • the sending module 1220 may be the output interface of the chip (for example, a baseband chip), and the receiving module 1230 may be the input interface of the chip (or, if the input interface and the output interface can be the same interface, then It is considered that the sending module 1220 and the receiving module 1230 are the same functional module, that is, the input and output interface of the chip, and the processing module 1210 may be the processor (or processing circuit) of the chip system, and the processor may include one or more central processing units. .
  • processing module 1210 in the embodiments of the present application may be implemented by a processor or processor-related circuit components (or processing circuits)
  • the receiving module 1230 may be implemented by a transceiver or transceiver-related circuit components
  • the sending module 1220 may be implemented by The transmitter or transmitter-related circuit components are implemented.
  • the processing module 1210 may be used to perform all operations other than the transceiving operations performed by the second terminal device in the embodiment shown in FIG. 8, such as S81, S82 to S84, and S86, and/or to support the text Other processes of the described technique.
  • the sending module 1220 may be used to perform all the sending operations performed by the second terminal device in the embodiment shown in FIG. 8, such as S81 and S85, and/or other processes used to support the technology described herein.
  • the receiving module 1230 may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 8, such as S81, and/or other processes used to support the technology described herein.
  • processing module 1210 is configured to determine that the link between the first terminal device and the second terminal device 1200 fails, and the second terminal device is not within the network coverage;
  • the sending module 1220 is used for not sending information for indicating link failure to the network device.
  • the sending module 1220 is further configured to send a request message to the first terminal device to request to reestablish the link.
  • the first terminal device provides a relay service for the second terminal device 1200
  • the processing module 1210 is further configured to reselect a terminal device that can provide the relay service for the second terminal device 1200.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication apparatus may be used to perform actions performed by a terminal device (for example, the first device may be a terminal device) in the foregoing method embodiment.
  • FIG. 13 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 13 only one memory and processor are shown in FIG. 13. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; alternatively, the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1310 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1310 as the sending unit, that is, the transceiver unit 1310 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1310 can be used to perform the sending and receiving operations on the first terminal device side in the embodiment shown in FIG. 4, and the processing unit 1320 is used to perform the first terminal device in the embodiment shown in FIG. In addition to operations other than send and receive operations.
  • the transceiving unit 1310 may be used to perform the sending and receiving operations on the second terminal device side in the embodiment shown in FIG. 4, and the processing unit 1320 may be used to perform the addition of Operations other than sending and receiving operations.
  • the transceiving unit 1310 may be used to perform the sending and receiving operations on the first terminal device side in the embodiment shown in FIG. 5, and the processing unit 1320 may be used to perform the addition of Operations other than sending and receiving operations.
  • the transceiving unit 1310 may be used to perform the sending and receiving operations on the second terminal device side in the embodiment shown in FIG. 5, and the processing unit 1320 may be used to perform the addition of Operations other than sending and receiving operations.
  • the transceiving unit 1310 can be used to perform the sending and receiving operations on the first terminal device side in the embodiment shown in FIG. Operations other than sending and receiving operations.
  • the transceiving unit 1310 may be used to perform the sending and receiving operations on the second terminal device side in the embodiment shown in FIG. 6 above, and the processing unit 1320 may be used to perform the addition of Operations other than sending and receiving operations.
  • the transceiving unit 1310 may be used to perform the sending and receiving operations on the second terminal device side in the embodiment shown in FIG. Operations other than sending and receiving operations.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device shown in FIG. 14 can be referred to.
  • the device can perform functions similar to the processing module 910 in FIG. 9.
  • the processing module 910 in the foregoing embodiment may be the processor 1410 in FIG. 14 and perform corresponding functions;
  • the sending module 920 in the foregoing embodiment may be the data sending processor 1420 in FIG. 14 and perform corresponding functions.
  • the receiving module 930 in the above-mentioned embodiment may be the receiving data processor 1430 in FIG. 14 and complete the corresponding function.
  • the processing module 1010 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions;
  • the sending module 1020 in the foregoing embodiment may be the sending data processor 1420 in FIG.
  • the receiving module 1030 in the foregoing embodiment may be the receiving data processor 1430 in FIG. 14 and complete the corresponding functions.
  • the processing module 1210 in the foregoing embodiment may be the processor 1410 in FIG. 14 and complete corresponding functions;
  • the sending module 1220 in the foregoing embodiment may be the sending data processor 1420 in FIG. 14 and complete Corresponding functions;
  • the receiving module 1230 in the foregoing embodiment may be the receiving data processor 1430 in FIG. 14 and completes the corresponding functions.
  • the channel encoder and the channel decoder are shown in FIG. 14, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1500 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1503 and an interface 1504.
  • the processor 1503 completes the functions of the aforementioned processing module 910
  • the interface 1504 completes the aforementioned functions of the sending module 920 and the receiving module 930.
  • the processor 1503 completes the functions of the aforementioned processing module 1010
  • the interface 1504 completes the aforementioned functions of the sending module 1020 and the receiving module 1030.
  • the processor 1503 completes the functions of the aforementioned processing module 1210, and the interface 1504 completes the aforementioned functions of the sending module 1220 and the receiving module 1230.
  • the modulation subsystem includes a memory 1506, a processor 1503, and a program stored in the memory 1506 and running on the processor. The processor 1503 executes the program on the terminal device side in the above method embodiment. Methods. It should be noted that the memory 1506 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1500, as long as the memory 1506 can be connected to the The processor 1503 is fine.
  • the device 1600 includes one or more radio frequency units, such as a remote radio unit (RRU) 1610 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1620 .
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1610 may be referred to as a transceiver module, and the transceiver module may include a sending module and a receiving module, or the transceiver module may be a module that can realize the functions of sending and receiving.
  • the transceiver module may correspond to the sending module 1120 and the receiving module 1130 in FIG. 11.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1611 and a radio frequency unit 1612.
  • the RRU 1610 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1620 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1610 and the BBU 1620 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1620 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 1110 in FIG. 11, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1620 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1620 also includes a memory 1621 and a processor 1622.
  • the memory 1621 is used to store necessary instructions and data.
  • the processor 1622 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1621 and the processor 1622 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a first communication system.
  • the first communication system may include the first terminal device involved in any one of the above-mentioned embodiment shown in FIG. 4 to the embodiment shown in FIG. 6, including the above-mentioned embodiment shown in FIG. 4 to FIG. 6
  • the first terminal device is, for example, the first terminal device 900 in FIG. 9, the second terminal device is, for example, the second terminal device 1000 in FIG. 10, and the network device is, for example, the network 1100 in FIG. 11.
  • the embodiment of the present application provides a second communication system.
  • the first communication system may include the second terminal device involved in the embodiment shown in FIG. 8 described above.
  • the second terminal device is, for example, the second terminal device 1200 in FIG. 12.
  • An embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment. The process related to the first terminal device in the embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment. The process related to the second terminal device in the embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 4 provided by the foregoing method embodiment. The process related to the network device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment. The process related to the first terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment. The process related to the second terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment. The process related to the network device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 6 provided by the foregoing method embodiment The process related to the first terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 6 provided by the foregoing method embodiment The process related to the second terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 6 provided by the foregoing method embodiment The process related to the network device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 8 provided by the foregoing method embodiment. The process related to the second terminal device in the embodiment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. The process related to the first terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. The process related to the second terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment The process related to the first terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment The process related to the second terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. The process related to the first terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. The process related to the second terminal device.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 8 provided by the above method embodiment The process related to the second terminal device.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium. Based on this understanding, the latter part of the technical solution of the present application can all be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which may be a personal computer). , A server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned computer-readable storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media may include random access memory (RAM), read-only memory (ROM), and electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • USB flash disk universal serial bus flash disk
  • mobile hard disk or other optical disk storage
  • disk storage A medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.
  • Embodiment 1 A communication method, including:
  • First configuration information is obtained, the first configuration information is used by the first terminal device to configure a first radio bearer, and the first radio bearer is a radio bearer between the first terminal device and the second terminal device, the The second terminal device is the data sending end;
  • sending first configuration failure information to a network device includes:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used to indicate the cause of the failure.
  • Embodiment 3 According to the method described in embodiment 1 or 2, the method further includes:
  • obtaining first configuration information includes:
  • the first configuration information includes a first common configuration
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN of PDCP and RLC Length, or, whether to use header compression.
  • Embodiment 6 Obtaining first configuration information according to the method described in any one of Embodiments 1 to 3 includes:
  • Embodiment 7 According to the method of embodiment 6, the first information is obtained by the second terminal device according to fourth configuration information from the network device, and the fourth configuration information is used for the first The second terminal device configures the first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or the identifier corresponding to the Uu port of the first radio bearer Correspondence with the corresponding logo on the PC5 port.
  • the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration includes a PDCP reordering timer
  • the second common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 10 The method according to any one of Embodiments 1 to 3, before obtaining the first configuration information, further includes:
  • obtaining first configuration information includes:
  • Embodiment 12 According to the method of embodiment 10 or embodiment 11, the first configuration information includes a first transmission configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 13 The method according to embodiment 11 or embodiment 12, the method further comprising:
  • Embodiment 14 A communication method, including:
  • Receive second configuration failure information from a first terminal device where the second configuration failure information is used to indicate that the first terminal device fails to configure a first radio bearer, and the first radio bearer is the first terminal device and The radio bearer between the second terminal equipment, the first terminal equipment provides the relay service for the second terminal equipment, and the first terminal equipment is the data transmission process through the first radio bearer A data receiving end, the second terminal device is a data sending end of the data transmission process;
  • Embodiment 15 The method according to embodiment 14, further comprising:
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 17 The method according to embodiment 15 or embodiment 16, further comprising:
  • the identifier of the logical channel The identifier of the logical channel.
  • the first configuration information includes a first common configuration
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN of PDCP and RLC Length, or, whether to use header compression.
  • Embodiment 19 The method according to embodiment 15 or embodiment 16, further comprising:
  • the first information further includes the QFI corresponding to the first radio bearer, and/or the identifier corresponding to the Uu port of the first radio bearer and the identifier corresponding to the PC5 port Correspondence between the corresponding identifiers.
  • Embodiment 21 The method according to embodiment 14, further comprising:
  • the third configuration information is used by the second terminal device to configure the first radio bearer, and the third configuration information includes part of the first configuration information Or the entire content, the first configuration information is used by the first terminal device to configure the first radio bearer.
  • Embodiment 22 The method according to embodiment 21, which further includes:
  • Embodiment 23 According to the method described in any one of Embodiment 14 to Embodiment 22, the second terminal device cannot communicate with the network device through the Uu port.
  • Embodiment 24 A communication method, including:
  • the first radio bearer is the radio bearer between the first terminal device and the second terminal device.
  • the terminal device provides a relay service for the second terminal device, and the first terminal device is the data receiving end of the data transmission process performed by the first radio bearer, and the second terminal device is the data The data sending end of the transmission process.
  • Embodiment 25 According to the method of embodiment 24, receiving the first configuration failure information from the first terminal device includes:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used for Indicates the reason for the failure.
  • Embodiment 26 The method according to embodiment 24 or embodiment 25, which further includes:
  • the fourth configuration information includes a third transmission configuration and a third common configuration, where:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 28 The method according to any one of Embodiments 24 to 26, and the method further includes:
  • the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration includes a PDCP reordering timer, and the second common configuration includes the following One or more: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • Embodiment 30 The method according to embodiment 24 or embodiment 25, wherein the method further includes:
  • Receive second information from the first terminal device where the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the first terminal device, and the second information QoS information is included, and the QoS information is used to indicate the QoS of the radio bearer that is requested to be configured between the second terminal device and the first terminal device.
  • Embodiment 31 The method according to embodiment 30, which further includes:
  • the first configuration information includes a first transmission configuration and a first common configuration, where:
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 33 A communication method, including:
  • the second terminal device determines that the link between the first terminal device and the second terminal device fails, and the second terminal device is not within the network coverage area;
  • the second terminal device does not send information for indicating link failure to the network device.
  • Embodiment 34 The method according to embodiment 33, which further includes:
  • the second terminal device sends a request message to the first terminal device to request to reestablish the link.
  • the first terminal device provides a relay service for the second terminal device, and the method further includes:
  • the second terminal device reselects a terminal device that can provide a relay service for the second terminal device.
  • a communication device including:
  • the processing module is configured to obtain first configuration information, where the first configuration information is used by the communication device to configure a first radio bearer, and the first radio bearer is a connection between the first terminal device and the second terminal device. Radio bearer, the second terminal device is a data sending end;
  • the processing module is further configured to configure the first radio bearer according to the first configuration information
  • the sending module is configured to send first configuration failure information to the network device when the processing module fails to configure the first radio bearer.
  • Embodiment 37 The communication device according to embodiment 36, wherein the sending module is configured to send the first configuration failure information to the network device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used to indicate the cause of the failure.
  • Embodiment 38 According to the communication device of embodiment 36 or embodiment 37, the sending module is further configured to send second configuration failure information to the second terminal device, and the second configuration failure information is used to indicate The communication device fails to configure the first radio bearer.
  • Embodiment 39 The communication device according to any one of Embodiment 36 to Embodiment 38, wherein the communication device further includes a receiving module, and the processing module is configured to obtain the first configuration information in the following manner:
  • Embodiment 40 The communication device according to embodiment 39, wherein the first configuration information includes a first common configuration, and the first common configuration includes one or more of the following: QFI corresponding to SDAP, PDCP and RLC SN length, or, whether to use header compression.
  • Embodiment 41 The communication device according to any one of Embodiment 36 to Embodiment 38, wherein the communication device further includes a receiving module, and the processing module is configured to obtain the first configuration information in the following manner:
  • Embodiment 42 The communication device according to embodiment 41, wherein the first information is obtained by the second terminal device according to fourth configuration information from the network device, and the fourth configuration information is used in the The second terminal device configures the first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or the first radio bearer corresponding to the Uu port Correspondence between the logo and the corresponding logo on the PC5 port.
  • the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration includes PDCP reordering timing
  • the second common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 45 The communication device according to any one of Embodiment 36 to Embodiment 38, wherein the communication device further includes a receiving module,
  • the receiving module is configured to receive QoS information from the second terminal device before the processing module obtains the first configuration information, where the QoS information is used to indicate that a request is made between the second terminal device and the communication QoS of radio bearers configured between devices;
  • the sending module is further configured to send second information to the network device, where the second information is used to request configuration of a radio bearer for bidirectional transmission between the second terminal device and the communication device, and the The second information includes the QoS information.
  • Embodiment 46 The communication device according to Embodiment 45, wherein the processing module is configured to obtain the first configuration information in the following manner:
  • Embodiment 47 The communication device according to embodiment 45 or embodiment 46, wherein the first configuration information includes a first transmission configuration and a first common configuration, wherein,
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 48 According to the communication device of embodiment 46 or embodiment 47, the sending module is further configured to send third configuration information to the second terminal device, and the third configuration information is used for the first terminal device.
  • the second terminal device configures the first radio bearer, and the third configuration information includes part or all of the content of the first configuration information.
  • a communication device including:
  • the receiving module is configured to receive second configuration failure information from the first terminal device, where the second configuration failure information is used to indicate that the first terminal device fails to configure the first radio bearer, and the first radio bearer is the A radio bearer between a first terminal device and the communication device, the first terminal device provides a relay service for the communication device, and the first terminal device is data performed through the first radio bearer
  • the data receiving end of the transmission process, and the communication device is the data sending end of the data transmission process;
  • the sending module is configured not to send information used to indicate that the first terminal device fails to configure the first radio bearer to the network device.
  • Embodiment 50 The communication device according to embodiment 49, wherein the receiving module is further configured to receive fourth configuration information from the network device, where the fourth configuration information is used by the communication device to configure the first A wireless bearer.
  • Embodiment 51 The communication device according to embodiment 50, wherein the fourth configuration information includes a third transmission configuration and a third common configuration, wherein:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 52 The communication device according to embodiment 50 or embodiment 51, wherein the communication device further includes a processing module,
  • the processing module is configured to select a logical channel for the first radio bearer
  • the sending module is further configured to send first configuration information to the first terminal device, where the first configuration information is used by the first terminal device to configure the first radio bearer, and the first configuration information Including the identifier of the logical channel corresponding to the first radio bearer.
  • Embodiment 53 The communication device according to embodiment 52, wherein the first configuration information includes a first common configuration, and the first common configuration includes one or more of the following: QFI corresponding to SDAP, PDCP and RLC SN length, or, whether to use header compression.
  • Embodiment 54 The communication device according to embodiment 50 or embodiment 51, wherein the communication device further includes a processing module,
  • the processing module is configured to select a logical channel for the first radio bearer
  • the sending module is further configured to send first information to the first terminal device, where the first information includes an identifier of a logical channel corresponding to the first radio bearer.
  • the first information further includes the QFI corresponding to the first radio bearer, and/or the identifier corresponding to the Uu port of the first radio bearer and the corresponding identifier in the PC5 Correspondence between the corresponding identities.
  • Embodiment 56 The communication device according to embodiment 49, wherein the receiving module is further configured to receive third configuration information from the first terminal device, and the third configuration information is used for the configuration of the communication device.
  • the third configuration information includes part or all of the first configuration information, and the first configuration information is used by the first terminal device to configure the first radio bearer.
  • Embodiment 57 The communication device according to embodiment 56, wherein the sending module is further configured to send QoS information to the first terminal device, where the QoS information is used to indicate that a request is made between the communication device and the first terminal device.
  • the QoS of a radio bearer configured between terminal devices.
  • Embodiment 58 the communication device according to any one of the embodiments 49 to 57, the communication device cannot communicate with the network device through the Uu port.
  • a communication device including:
  • the receiving module is configured to receive the first configuration failure information from the first terminal device
  • a processing module configured to determine, according to the first configuration failure information, that the first terminal device fails to configure a first radio bearer, and the first radio bearer is a radio bearer between the first terminal device and the second terminal device ,
  • the first terminal device provides a relay service for the second terminal device, and the first terminal device is the data receiving end of the data transmission process performed by the first radio bearer, and the second terminal The device is the data sending end of the data transmission process.
  • Embodiment 60 The communication device according to embodiment 59, wherein the receiving module is configured to receive the first configuration failure information from the first terminal device in the following manner:
  • the RRC message includes a first information element
  • the first configuration failure information occupies reserved bits in the first information element
  • the first information element is used for Indicates the reason for the failure.
  • Embodiment 61 The communication device according to embodiment 59 or embodiment 60, wherein the communication device further includes a sending module configured to send fourth configuration information to the second terminal device, where the fourth configuration information is used for The second terminal device configures the first radio bearer.
  • Embodiment 62 The communication device according to embodiment 61, wherein the fourth configuration information includes a third transmission configuration and a third common configuration, wherein:
  • the third transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the third common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • Embodiment 63 The communication device according to any one of Embodiment 59 to Embodiment 61, wherein the communication device further includes a sending module configured to send second configuration information to the first terminal device.
  • the second configuration information is used by the first terminal device to configure the first radio bearer.
  • Embodiment 64 The communication device according to embodiment 63, wherein the second configuration information includes a receiving configuration and a second common configuration, wherein the receiving configuration includes a PDCP reordering timer, and the second common configuration includes the following One or more of: SDAP corresponding QFI, PDCP and RLC SN length, or whether to use header compression.
  • Embodiment 65 According to the communication device of embodiment 63 or embodiment 65, the receiving module is further configured to receive second information from the first terminal device, and the second information is used to request configuration of the The second terminal device and the first terminal device are two-way transmission radio bearers, and the second information includes QoS information, and the QoS information is used to indicate that a request is made between the second terminal device and the first terminal device.
  • the QoS of the radio bearer configured between the terminal devices.
  • Embodiment 66 The communication device according to embodiment 65, wherein the communication device further includes a sending module,
  • the processing module is further configured to determine first configuration information according to the QoS information, where the first configuration information is used by the first terminal device to configure the first radio bearer;
  • the sending module is configured to send the first configuration information to the first terminal device.
  • Embodiment 67 The communication device according to embodiment 66, wherein the first configuration information includes a first transmission configuration and a first common configuration, wherein,
  • the first transmission configuration includes one or more of the following: PDCP discard timer, RoHC compression profile configuration, whether the header of SDAP appears, the mapping relationship with QFI on SL, or the transmission type;
  • the first common configuration includes one or more of the following: QFI corresponding to SDAP, SN length of PDCP and RLC, or whether header compression is used.
  • a communication device including:
  • a processing module configured to determine that the link between the first terminal device and the communication device fails, and the communication device is not within the network coverage
  • the sending module is used to not send the information used to indicate the link failure to the network device.
  • Embodiment 69 According to the communication device of embodiment 68, the sending module is further configured to send a request message to the first terminal device to request to reestablish the link.
  • Embodiment 70 According to the method of embodiment 68, the first terminal device provides a relay service for the communication device, and the processing module is further configured to reselect a relay service capable of providing the communication device Terminal Equipment.
  • Embodiment 71 A communication device, wherein the communication device includes a processor and a transceiver (or, a transmitter and a processor), and the processor and the transceiver (or, a transmitter and the processor) are coupled , Can perform the method described in any one of Embodiments 1 to 13, or perform the method described in any one of Embodiments 14 to 23, or perform the method described in any of Embodiments 33 to 33 Embodiment 35 The method described in any one of the embodiments.
  • Embodiment 72 A communication device, wherein the communication device includes a processor and a transceiver (or, a transmitter and a processor), and the processor and the transceiver (or, a transmitter and a processor) are coupled , The method described in any one of Embodiment 24 to Embodiment 32 can be executed.
  • Embodiment 73 A chip that includes a processor, and when the processor executes an instruction, the processor is used to execute the method described in any one of the foregoing Embodiments 1 to 13, or execute the method as described in the embodiment The method described in any one of embodiments 14 to 23, or the method described in any one of embodiments 33 to 35 is performed.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes an input and output circuit.
  • Embodiment 74 A chip including a processor, and when the processor executes an instruction, the processor is used to execute the method described in any one of the foregoing embodiment 24 to embodiment 32.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes an input and output circuit.
  • Embodiment 75 A communication system, wherein the communication system includes the communication device as described in any one of embodiments 36 to 48, including the implementation as described in any one of embodiments 49 to 58 The communication device described in the example, and the communication device described in any one of the embodiment 59 to the embodiment 67.
  • Embodiment 76 A communication system, wherein the communication system includes the communication device as described in any one of Embodiment 68 to Embodiment 70.
  • Embodiment 77 A computer-readable storage medium, wherein the computer-readable storage medium is used to store a computer program, and when the computer program is run on a computer, the computer is made to execute as in Embodiment 1 to Embodiment The method described in any one of the embodiments in 13, or the method described in any one of the embodiments 14 to 23, or the method described in any one of the embodiments 33 to 35 The method described.
  • Embodiment 78 A computer-readable storage medium, wherein the computer-readable storage medium is used to store a computer program, and when the computer program is run on a computer, the computer is caused to execute as in Embodiment 24 to Embodiment 32.
  • Embodiment 79 a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment described in any one of the embodiments 1 to 13 Method, or implement the method described in any one of Embodiments 14 to 23, or implement the method described in any one of Embodiments 33 to 35.
  • Embodiment 80 a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment described in any one of the embodiments 24 to 32 method.

Abstract

本申请涉及一种通信方法及装置。第一终端设备获得第一配置信息,第一配置信息用于第一终端设备配置第一无线承载,第一无线承载为第一终端设备和第二终端设备之间的无线承载,第二终端设备为数据发送端。第一终端设备根据第一配置信息配置第一无线承载。当第一无线承载配置失败时,第一终端设备向网络设备发送第一配置失败信息。中继终端设备无需向远端终端设备发送配置失败信息,再由远端终端设备通过该中继终端设备将配置失败信息转发给网络,减少了配置失败信息的转发过程,从而节省了传输资源。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年05月25日提交中国国家知识产权局、申请号为202010450671.3、申请名称为“一种提供辅助信息的方法及UE”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;以及,本申请要求在2020年07月24日提交中国国家知识产权局、申请号为202010724936.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在当前新空口(new radio,NR)系统的车到一切(vehicle to everything,V2X)技术中,引入了侧行链路(sidelink,SL)上的PC5-无线资源控制(radio resource control,RRC)连接,两个终端设备可以通过该连接传输信息。例如,作为发送端的终端设备1在要向作为接收端的终端设备2发送信息之前,可向服务于终端设备1的基站请求获得终端设备1和终端设备2之间的SL的配置信息。则该基站通过Uu口的RRC消息,为终端设备1配置SL上的发送配置以及用于配置收发的公共(common)配置。终端设备1在接收该发送配置和该common配置后,将该common配置通过在PC5-RRC消息上发送给终端设备2,终端设备2根据该common配置生成终端设备2对应于该SL的接收配置。
考虑一种场景,终端设备2通过终端设备1接入网络,即,终端设备2与网络之间的信息需要通过终端设备1中转。可理解为,终端设备2是远端(remote)终端设备,终端设备1是中继(relay)终端设备,终端设备1为终端设备2提供中继服务。那么对于如上的配置过程来说,如果终端设备1生成接收配置失败,则由于终端设备1是从终端设备2获得的common配置,因此终端设备1要向终端设备2发送配置失败的信息,接着,终端设备2再将配置失败的信息发送给终端设备1,由终端设备1将配置失败的信息转发给基站。可见,这个过程造成了信息的反复传输,浪费传输资源。
发明内容
本申请实施例提供一种通信方法及装置,用于节省传输资源。
第一方面,提供第一种通信方法,该方法包括:获得第一配置信息,所述第一配置信息用于第一终端设备配置第一无线承载,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;根据所述第一配置信息配置所述第一无线承载;当所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的 功能的其他部件。在下文的介绍过程中,以第一通信装置是终端设备为例,例如为第一终端设备。
在本申请实施例中,如果为远端终端设备(例如第二终端设备)提供中继服务的中继终端设备(例如也终端设备)发生配置失败的情况,则该中继终端设备可以向网络设备发送第一配置失败信息,即,该中继终端设备无需向远端终端设备发送第一配置失败信息,再由远端终端设备通过该中继终端设备将第一配置失败信息转发给网络,减少了第一配置失败信息的转发过程,从而节省了传输资源。
结合第一方面,在第一方面的第一种可选的实施方式中,向网络设备发送第一配置失败信息,包括:
向网络设备发送RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
第一信元可以是RRC消息中已有的信元,例如第一信元是用于指示失败原因的信元。使用RRC消息中原有的信元来承载第一配置失败信息,无需在RRC消息中增加新的信元,使得该RRC消息能够更好地与现有的技术兼容。或者,第一信元也可以是在RRC消息中新增的信元,使用新的信元来承载第一配置失败信息,能够增加第一配置失败信息的辨识度。作为一种可选的实施方式,第一配置失败信息可以占用第一信元中的预留比特。通过这种方式,无需更改原有信元的其他比特的含义,更有利于与现有技术兼容。
结合第一方面或第一方面的第一种可选的实施方式,在第一方面的第二种可选的实施方式中,所述方法还包括:
向所述第二终端设备发送第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备对所述第一无线承载配置失败。
第一终端设备除了向网络设备发送第一配置失败信息外,由于第一配置信息是第二终端设备发送给第一终端设备的,因此第一终端设备也可以向第二终端设备发送第二配置失败信息。第二终端设备接收来自第一终端设备的第二配置失败信息后,就能够确定第一终端设备对于第一无线承载配置失败,从而第二终端设备可以暂时不通过第一无线承载与第一终端设备通信。
结合第一方面或第一方面的第一种可选的实施方式或第一方面的第二种可选的实施方式,在第一方面的第三种可选的实施方式中,获得第一配置信息,包括:
接收来自所述第二终端设备的所述第一配置信息。
网络设备可以向第二终端设备发送配置信息,例如第四配置信息,第二终端设备再将第一配置信息发送给第二终端设备,从而无需网络设备向第一终端设备发送配置信息,有助于减轻网络设备的负担。
结合第一方面的第三种可选的实施方式,在第一方面的第四种可选的实施方式中,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
这里只是对第一公共配置所包括的信息的示例,本申请实施例并不限制第一公共配置所包括的信息。
结合第一方面或第一方面的第一种可选的实施方式或第一方面的第二种可选的实施方式,在第一方面的第五种可选的实施方式中,获得第一配置信息,包括:
接收来自所述网络设备的第二配置信息;
接收来自所述第二终端设备的第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识;
根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
网络设备可以向第一终端设备发送配置信息,例如第二配置信息,第二终端设备可以确定第一无线承载对应的逻辑信道的标识等信息,从而第一终端设备综合这些信息就能获得第一配置信息。在这种方式下,第二配置信息来自网络设备,从而如果第二终端设备根据第一配置信息配置第一无线承载失败,第二终端设备就可以向网络设备发送第一配置失败信息,第一配置失败信息可以看做是第二配置信息的响应信息,这种执行过程较为符合通用的过程。
结合第一方面的第五种可选的实施方式,在第一方面的第六种可选的实施方式中,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
网络设备除了可以向第一终端设备发送第二配置信息外,还可以向第二终端设备发送第四配置信息,第二终端设备根据第四配置信息可以确定第一无线承载的逻辑信道的标识等信息。在这种方式下,网络设备可以配置第一终端设备和第二终端设备,从而使得配置过程更为统一,无需终端设备再生成相应的配置信息,对终端设备的要求较低。
结合第一方面的第五种可选的实施方式或第一方面的第六种可选的实施方式,在第一方面的第七种可选的实施方式中,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
本申请实施例对于第一信息包括的内容不做限制,只要第一终端设备根据第一信息和第二配置信息能够配置第一无线承载即可。
结合第一方面的第五种可选的实施方式或第一方面的第六种可选的实施方式或第一方面的第七种可选的实施方式,在第一方面的第八种可选的实施方式中,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
这里只是对接收配置和第二公共配置所包括的信息的示例,本申请实施例并不限制接收配置和第二公共配置所包括的信息。
结合第一方面或第一方面的第一种可选的实施方式或第一方面的第二种可选的实施方式,在第一方面的第九种可选的实施方式中,在获得第一配置信息之前,还包括:
接收来自所述第二终端设备的QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS;
向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
一般来说,由哪个终端设备确定需要向对端发送信息,则该终端设备可以向网络设备发送用于请求配置第一无线承载的信息。在本申请实施例中,实际上第二终端设备应该是信息的发送端,即,是第二终端设备要向第一终端设备发送信息。而在本申请实施例中,可以认为第一终端设备通过向网络设备发送第二信息的方式,使得网络设备将第一终端设备认为是信息的发送端,则网络设备会将第一无线承载的配置信息发送给第一终端设备。这样,第一终端设备如果发生配置失败的情况,就可以向网络设备发送用于指示配置失败 的信息,使得整个流程的执行更为符合设备的执行习惯。因为第二终端设备是实际的信息发送端,因此应该以第二终端设备对于第一无线承载的QoS要求为准。则第二信息可以包括来自第二终端设备的QoS信息,网络设备在接收该QoS信息后,可以根据该QoS信息确定第一无线承载的配置信息,使得所配置的第一无线承载更能满足第二终端设备的需求。
结合第一方面的第九种可选的实施方式,在第一方面的第十种可选的实施方式中,获得第一配置信息,包括:
接收来自所述网络设备的所述第一配置信息。
因为第二终端设备请求网络设备配置无线承载,因此网络设备可以将第一配置信息直接发送给第二终端设备。
结合第一方面的第九种可选的实施方式或第一方面的第十种可选的实施方式,在第一方面的第十一种可选的实施方式中,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
这里只是对第一发送配置和第一公共配置所包括的信息的示例,本申请实施例并不限制第一发送配置和第一公共配置所包括的信息。
结合第一方面的第十种可选的实施方式或第一方面的第十一种可选的实施方式,在第一方面的第十二种可选的实施方式中,所述方法还包括:
向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
由于在这种方式下,网络设备是将配置信息(例如第一配置信息)发送给了第一终端设备。而第一无线承载是第一终端设备和第二终端设备之间的无线承载,第二终端设备也需要配置第一无线承载。因此第一终端设备可以将第三配置信息发送给第二终端设备,以供第二终端设备配置第一无线承载。
第二方面,提供第二种通信方法,该方法包括:接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端;不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第二通信装置是第二终端设备为例。
第一终端设备除了向网络设备发送第一配置失败信息外,由于第一配置信息是第二终端设备发送给第一终端设备的,因此第一终端设备也可以向第二终端设备发送第二配置失败信息。第二终端设备接收来自第一终端设备的第二配置失败信息后,就能够确定第一终端设备对于第一无线承载配置失败,从而第二终端设备可以暂时不通过第一无线承载与第 一终端设备通信。另外,第二终端设备在接收第二配置失败信息后,不会触发向网络设备转发第二配置失败信息,以避免了配置失败信息的重复传输。
结合第二方面,在第二方面的第一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
结合第二方面的第一种可选的实施方式,在第二方面的第二种可选的实施方式中,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第二方面的第一种可选的实施方式或第二方面的第二种可选的实施方式,在第二方面的第三种可选的实施方式中,所述方法还包括:
为所述第一无线承载选择逻辑信道;
向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
结合第二方面的第三种可选的实施方式,在第二方面的第四种可选的实施方式中,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第二方面的第一种可选的实施方式或第二方面的第二种可选的实施方式,在第二方面的第五种可选的实施方式中,所述方法还包括:
为所述第一无线承载选择逻辑信道;
向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识。
结合第二方面的第五种可选的实施方式,在第二方面的第六种可选的实施方式中,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
结合第二方面,在第二方面的第七种可选的实施方式中,所述方法还包括:
接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
结合第二方面的第七种可选的实施方式,在第二方面的第八种可选的实施方式中,所述方法还包括:
向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
结合第二方面或第二方面的第一种可选的实施方式至第二方面的第八种可选的实施方式中的任一种可选的实施方式,在第二方面的第九种可选的实施方式中,所述第二终端设备无法通过Uu口与网络设备通信。
例如,第二终端设备未设置Uu口,或第二终端设备未处于网络设备的覆盖范围内等。当然这只是一种应用场景,即使第二终端设备能够通过Uu口与网络设备通信,也能够适 用本申请实施例的技术方案。
关于第二方面或第二方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法包括:接收来自第一终端设备的第一配置失败信息;根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第三通信装置是网络设备为例。示例性地,所述网络设备为接入网设备。
结合第三方面,在第三方面的第一种可选的实施方式中,接收来自第一终端设备的第一配置失败信息,包括:
接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
结合第三方面或第三方面的第一种可选的实施方式,在第三方面的第二种可选的实施方式中,所述方法还包括:
向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
结合第三方面的第二种可选的实施方式,在第三方面的第三种可选的实施方式中,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第三方面或第三方面的第一种可选的实施方式或第三方面的第二种可选的实施方式,在第三方面的第四种可选的实施方式中,所述方法还包括:
向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
结合第三方面的第四种可选的实施方式,在第三方面的第五种可选的实施方式中,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第三方面或第三方面的第一种可选的实施方式,在第三方面的第六种可选的实施方式中,所述方法还包括:
接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的 QoS。
结合第三方面的第六种可选的实施方式,在第三方面的第七种可选的实施方式中,所述方法还包括:
根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
向所述第一终端设备发送所述第一配置信息。
结合第三方面的第七种可选的实施方式,在第三方面的第八种可选的实施方式中,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
关于第三方面或第三方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第四方面,提供第四种通信方法,该方法包括:第二终端设备确定第一终端设备与所述第二终端设备之间的链路失败,且所述第二终端设备未处于网络覆盖范围内;所述第二终端设备不向网络设备发送用于指示链路失败的信息。
该方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第四通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第四通信装置是第二终端设备为例。
第二终端设备在确定侧行链路失败时,不向网络设备发送用于指示链路失败的信息,因此第二终端设备也无需生成用于指示链路失败的信息,从而减小了第二终端设备的功耗。而且由于第一终端设备与第二终端设备之间的侧行链路已出现问题,第二终端设备如果通过该侧行链路向第一终端设备发送用于指示链路失败的信息,可能也会发送失败,因此通过本申请实施例提供的方式也减少了第二终端设备的无用功。
结合第四方面,在第四方面的第一种可选的实施方式中,所述方法还包括:
所述第二终端设备向所述第一终端设备发送请求消息,以请求重建所述链路。
例如,如果本申请实施例的技术方案应用于两个终端设备直连的场景,即,不用于中继场景,那么第一终端设备和第二终端设备需要正常通信。在这种情况下,如果该侧行链路失败,则第二终端设备可以请求重建该侧行链路,以使得第一终端设备和第二终端设备尽量能够恢复正常通信。
结合第四方面,在第四方面的第二种可选的实施方式中,所述第一终端设备为所述第二终端设备提供中继服务,所述方法还包括:
所述第二终端设备重新选择能够为所述第二终端设备提供中继服务的终端设备。
例如,如果本申请实施例的技术方案应用于中继场景,例如第一终端设备为第二终端设备提供中继服务。那么,如果第一终端设备与第二终端设备之间的侧行链路失败,则第一终端设备还可以通过其他终端设备再接入网络设备,因此第二终端设备可以重新选择能够为第二终端设备提供中继服务的终端设备,以使得第二终端设备能够尽快恢复通信。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第 一通信装置用于执行上述第一方面或第一方面的任一可选的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或第一方面的任一可选的实施方式中的方法的模块,例如包括处理模块,可选的,还可以包括收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备,例如第一终端设备。下面以第一通信装置是第一终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器(或者,处理电路)实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第五方面的介绍过程中,继续以所述第一通信装置是第一终端设备,以及,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述处理模块,用于获得第一配置信息,所述第一配置信息用于第一终端设备配置第一无线承载,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;
所述处理模块,还用于根据所述第一配置信息配置所述第一无线承载;
所述发送模块,用于当所述处理模块对所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
结合第五方面,在第五方面的第一种可选的实施方式中,所述发送模块用于通过如下方式向网络设备发送第一配置失败信息:
向网络设备发送RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
结合第五方面或第五方面的第一种可选的实施方式,在第五方面的第二种可选的实施方式中,所述发送模块,还用于向所述第二终端设备发送第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备对所述第一无线承载配置失败。
结合第五方面或第五方面的第一种可选的实施方式或第五方面的第二种可选的实施方式,在第五方面的第三种可选的实施方式中,所述处理模块用于通过如下方式获得第一配置信息:
通过所述接收模块接收来自所述第二终端设备的所述第一配置信息。
结合第五方面的第三种可选的实施方式,在第五方面的第四种可选的实施方式中,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第五方面或第五方面的第一种可选的实施方式或第五方面的第二种可选的实施方式,在第五方面的第四种可选的实施方式中,所述处理模块用于通过如下方式获得第一配置信息:
通过所述接收模块接收来自所述网络设备的第二配置信息;
通过所述接收模块接收来自所述第二终端设备的第一信息,所述第一信息包括所述第 一无线承载对应的逻辑信道的标识;
根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
结合第五方面的第五种可选的实施方式,在第五方面的第六种可选的实施方式中,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
结合第五方面的第五种可选的实施方式或第五方面的第六种可选的实施方式,在第五方面的第七种可选的实施方式中,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
结合第五方面的第五种可选的实施方式或第五方面的第六种可选的实施方式或第五方面的第七种可选的实施方式,在第五方面的第八种可选的实施方式中,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第五方面或第五方面的第一种可选的实施方式或第五方面的第二种可选的实施方式,在第五方面的第九种可选的实施方式中,
所述接收模块,还用于在所述处理模块获得第一配置信息之前,接收来自所述第二终端设备的QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS;
所述发送模块,还用于向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
结合第五方面的第九种可选的实施方式,在第五方面的第十种可选的实施方式中,所述处理模块用于通过如下方式获得第一配置信息:
通过所述接收模块接收来自所述网络设备的所述第一配置信息。
结合第五方面的第九种可选的实施方式或第五方面的第十种可选的实施方式,在第五方面的第十一种可选的实施方式中,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第五方面的第十种可选的实施方式或第五方面的第十一种可选的实施方式,在第五方面的第十二种可选的实施方式中,所述发送模块,还用于向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
关于第五方面或第五方面的各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或第二方面的任一可选的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或第二方面的任一可选的实施方式中的方 法的模块,例如包括处理模块,可选的,还可以包括收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备,例如第二终端设备。下面以第二通信装置是第二终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器(或者,处理电路)实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,继续以所述第二通信装置是第二终端设备,以及,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述接收模块,用于接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端;
所述发送模块,用于不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
结合第六方面,在第六方面的第一种可选的实施方式中,所述接收模块,还用于接收来自所述网络设备的第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
结合第六方面的第一种可选的实施方式,在第六方面的第二种可选的实施方式中,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第六方面的第一种可选的实施方式或第六方面的第二种可选的实施方式,在第六方面的第三种可选的实施方式中,
所述处理模块,用于为所述第一无线承载选择逻辑信道;
所述发送模块,还用于向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
结合第六方面的第三种可选的实施方式,在第六方面的第四种可选的实施方式中,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第六方面的第一种可选的实施方式或第六方面的第二种可选的实施方式,在第六方面的第五种可选的实施方式中,
所述处理模块,还用于为所述第一无线承载选择逻辑信道;
所述发送模块,还用于向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识。
结合第六方面的第五种可选的实施方式,在第六方面的第六种可选的实施方式中,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
结合第六方面,在第六方面的第七种可选的实施方式中,所述接收模块,还用于接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
结合第六方面的第七种可选的实施方式,在第六方面的第八种可选的实施方式中,所述发送模块,还用于向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
结合第六方面或第六方面的第一种可选的实施方式至第六方面的第八种可选的实施方式中的任一种可选的实施方式,在第六方面的第九种可选的实施方式中,所述第二终端设备无法通过Uu口与网络设备通信。
关于第六方面或第六方面的各种可选的实施方式所带来的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或第三方面的任一可选的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或第三方面的任一可选的实施方式中的方法的模块,例如包括处理模块,可选的,还可以包括收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。示例性地,所述网络设备为接入网设备,例如基站。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器(或者,处理电路)实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第三通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第七方面的介绍过程中,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述接收模块,用于接收来自第一终端设备的第一配置失败信息;
所述处理模块,用于根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
结合第七方面,在第七方面的第一种可选的实施方式中,所述接收模块用于通过如下 方式接收来自第一终端设备的第一配置失败信息:
接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
结合第七方面或第七方面的第一种可选的实施方式,在第七方面的第二种可选的实施方式中,所述发送模块,用于向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
结合第七方面的第二种可选的实施方式,在第七方面的第三种可选的实施方式中,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第七方面或第七方面的第一种可选的实施方式或第七方面的第二种可选的实施方式,在第七方面的第四种可选的实施方式中,所述发送模块,还用于向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
结合第七方面的第四种可选的实施方式,在第七方面的第五种可选的实施方式中,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
结合第七方面或第七方面的第一种可选的实施方式,在第七方面的第六种可选的实施方式中,所述接收模块,还用于接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
结合第七方面的第六种可选的实施方式,在第七方面的第七种可选的实施方式中,
所述处理模块,还用于根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
所述发送模块,还用于向所述第一终端设备发送所述第一配置信息。
结合第七方面的第七种可选的实施方式,在第七方面的第八种可选的实施方式中,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
关于第七方面或第七方面的各种可选的实施方式所带来的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第四通信装置。所述第四通信装置用于执行上述第四方面或第四方面的任一可选的实施方式中的方法。具体地,所述第四通信装置可以包括用于执行第四方面或第四方面的任一可选的实施方式中的方法的模块,例如包括处理模块,可选的,还可以包括收发模块。示例性地,收发模块可以 包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备,例如为第二终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器(或者,处理电路)实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第四通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第八方面的介绍过程中,以所述处理模块、所述发送模块和所述接收模块为例进行介绍。其中,
所述处理模块,用于确定第一终端设备与所述第二终端设备之间的链路失败,且所述第二终端设备未处于网络覆盖范围内;
所述发送模块,用于不向网络设备发送用于指示链路失败的信息。
结合第八方面,在第八方面的第一种可选的实施方式中,所述发送模块,还用于向所述第一终端设备发送请求消息,以请求重建所述链路。
结合第八方面,在第八方面的第二种可选的实施方式中,所述第一终端设备为所述第二终端设备提供中继服务,所述处理模块,还用于重新选择能够为所述第二终端设备提供中继服务的终端设备。
第九方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器(或者,处理电路)和通信接口(或者,接口电路),通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或第一方面的各种可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或第一方面的各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备,例如第一终端设备。
其中,如果第一通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器(或者,处理电路)和通信接口(或者,接口电路),通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或第二方面的各种可能的实施方式所描述的方法。或者,第二通信装置也可以不包括存储器,存储器可以位于第二通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或第二方面的各种可能的实施方式所 描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备,例如第二终端设备。
其中,如果第二通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十一方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器(或者,处理电路)和通信接口(或者,接口电路),通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或第三方面的各种可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或第三方面的各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第三通信装置执行上述第三方面或第三方面的任意一种可能的实施方式中的方法。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。示例性地,所述网络设备为接入网设备,例如基站。
其中,如果第三通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十二方面,提供一种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器(或者,处理电路)和通信接口(或者,接口电路),通信接口可用于与其他装置或设备进行通信。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第四方面或第四方面的各种可能的实施方式所描述的方法。或者,第四通信装置也可以不包括存储器,存储器可以位于第四通信装置外部。处理器、存储器和通信接口相互耦合,用于实现上述第四方面或第四方面的各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第四通信装置执行上述第四方面或第四方面的任意一种可能的实施方式中的方法。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备,例如第二终端设备。
其中,如果第四通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十三方面,提供第一通信系统,所述第一通信系统包括第五方面所述的通信装置或 第九方面所述的通信装置,包括第六方面所述的通信装置或第十方面所述的通信装置,以及包括第七方面所述的通信装置或第十一方面所述的通信装置。
第十四方面,提供第二通信系统,所述第二通信系统包括第八方面所述的通信装置或第十二方面所述的通信装置。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可选的实施方式中所述的方法。
第十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可选的实施方式中所述的方法。
第十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第三方面或第三方面的任意一种可选的实施方式中所述的方法。
第十八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第四方面或第四方面的任意一种可选的实施方式中所述的方法。
第十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可选的实施方式中所述的方法。
第二十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可选的施方式中所述的方法。
第二十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第三方面或第三方面的任意一种可选的实施方式中所述的方法。
第二十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第四方面或第四方面的任意一种可选的实施方式中所述的方法。
在本申请实施例中,中继终端设备无需向远端终端设备发送配置失败信息,再由远端终端设备通过该中继终端设备将配置失败信息转发给网络,减少了配置失败信息的转发过程,从而节省了传输资源。
附图说明
图1A为V2X的一种示意图;
图1B为手机与智能眼镜通过侧行链路通信的一种示意图;
图2为一个终端设备为另一个终端设备提供中继服务的示意图;
图3为中继场景中网络设备为远端终端设备提供配置信息的流程图;
图4为本申请实施例提供的第一种通信方法的流程图;
图5为本申请实施例提供的第二种通信方法的流程图;
图6为本申请实施例提供的第三种通信方法的流程图;
图7为中继场景中远端终端设备确定侧行链路失败时向网络上报的流程图;
图8为本申请实施例提供的第四种通信方法的流程图;
图9为本申请实施例提供的第一终端设备的一种示意性框图;
图10为本申请实施例提供的第二终端设备的一种示意性框图;
图11为本申请实施例提供的网络设备的一种示意性框图;
图12为本申请实施例提供的第二终端设备的另一种示意性框图;
图13为本申请实施例提供的一种通信装置的一种示意性框图;
图14为本申请实施例提供的一种通信装置的另一示意性框图;
图15为本申请实施例提供的一种通信装置的又一示意性框图;
图16为本申请实施例提供的一种通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、签约单元(subscriber unit)、签约站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如: 智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括5G系统中的访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)或用户面功能(user plane function,UPF)等,或者包括4G系统中的移动管理实体(mobility management entity,MME)等。在本申请实施例后文的介绍过程中,如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多 个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一配置信息和第二配置信息,只是为了区分不同的配置信息,而并不是表示这两个配置信息的信息量大小、内容、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
侧行链路指的是两个终端设备之间的传输链路,例如可参考图1A,为V2X的一种示意图,两个车辆可视为两个终端设备,分别为终端设备1和终端设备2,这两个终端设备可通过侧行链路通信,基站可以为这两个终端设备分配用于侧行通信的资源。另外还可参考图1B,为手机与智能眼镜通过侧行链路通信的示意图,该智能眼镜例如为增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)眼镜。其中,终端设备(例如图1A中的车辆,或图1B中的手机或智能眼镜)和接入网设备(例如图1A或图1B中的基站)之间是通过Uu口通信。
除此之外,再考虑一种场景,终端设备2通过终端设备1接入网络,即,终端设备2与网络之间的信息需要通过终端设备1中转。可理解为,终端设备2是远端(remote)终端设备,终端设备1是中继(relay)终端设备,终端设备1为终端设备2提供中继服务。中继是指,终端设备2发送给网络的信息,通过终端设备1发送给接入网设备,而网络发送给终端设备2的信息,也通过终端设备1发送给终端设备2。例如,终端设备2处于未被网络覆盖(out of coverage,OOC)状态,或者终端设备2是不具有Uu功能的终端设备(例如终端设备2没有设置Uu口)。可参考图2,为该场景的示意。图2包括终端设备1、终端设备2、接入网设备、以及核心网设备,该接入网设备是终端设备1接入的接入网设备,核心网设备是服务于该接入网设备的核心网设备。终端设备2与该接入网设备之间的信息可通过终端设备1中转。
图2中的接入网设备例如为基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图2中的接入网设备也可以对应未来的移动通信系统中的网络设备。图2以接入网设备是基站为例,实际上参考前文的介绍,接入网设备还可以是RSU等设备。另外,图2中的核心网例如为AMF,或者也可以是其他的核心网设备。
在该场景下,如果终端设备2不能通过Uu口与基站通信,例如终端设备2处于OOC状态,或者终端设备2没有设置Uu口等,那么终端设备2如果要配置终端设备2与终端设备1之间的侧行链路,可由终端设备2自行配置。例如终端设备2可以预存一套配置或多套配置,终端设备2可根据预存的一套配置来配置该侧行链路。但这种方式不够灵活,终端设备2预存的配置可能无法满足当前链路的需求。因此在该场景下,也可以由基站来配置终端设备2,下面介绍这种配置过程,该过程的流程可参考图3。
S31、终端设备1和终端设备2之间建立PC5-信号(signal,S)连接。
S32、基站向终端设备2发送common配置和发送配置,终端设备2接收来自基站的发送配置和common配置。该发送配置和common配置是终端设备2对应于终端设备2和终端设备1之间的侧行链路的配置。
例如,终端设备2要向终端设备1发送信息,则终端设备2可请求基站下发对应于该侧行链路的配置,则基站可以向终端设备2发送common配置和发送配置。
S33、终端设备2将common配置发送给终端设备1,终端设备1接收来自终端设备2的common配置。
S34、终端设备1配置失败。
终端设备1可根据接收的common配置生成终端设备1对应于该侧行链路的接收配置,这里以终端设备1生成接收配置失败为例。
S35、终端设备1向终端设备2发送配置失败的信息,终端设备2接收来自终端设备1的配置失败的信息。
S36、终端设备2向基站发送配置失败的信息,基站接收来自终端设备2的配置失败的信息。
其中,终端设备2将配置失败的信息发送给终端设备1,终端设备1再将配置失败的信息转发给基站。
可见,对于如上的配置过程来说,如果终端设备2生成接收配置失败,则由于终端设备2是从终端设备1获得的common配置,因此终端设备2要向终端设备1发送配置失败的信息,接着,终端设备1再将配置失败的信息发送给终端设备2,由终端设备2将配置失败的信息转发给基站。可见,这个过程造成了信息的反复传输,浪费传输资源。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,如果为远端终端设备提供中继服务的中继终端设备发生配置失败的情况,则该中继终端设备可以向网络设备发送第一配置失败信息,即,该中继终端设备无需向远端终端设备发送第一配置失败信息,再由远端终端设备通过该中继终端设备将第一配置失败信息转发给网络,减少了第一配置失败信息的转发过程,从而节省了传输资源。
本申请实施例提供的技术方案可以应用于4G系统中,例如LTE系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。另外本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于V2X场景,例如NR-V2X场景等,例如可应用于车联网,例如V2X、车与车(vehicle-to-vehicle,V2V)等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。
关于本申请实施例的一种应用场景,可参考图2。
例如,用户现在可拥有很多种终端设备,例如手机、智能手表、智能手环、智能无线耳机或智能眼镜等。在这些终端设备中,除手机外的其他终端设备是可以不设置Uu口的,例如智能手表或智能眼镜等都可以不设置Uu口,这些不设置Uu口的终端设备可以通过手机接入网络,进行受到网络控制的侧行通信,或者由手机对该终端设备在侧行链路的通信进行控制。如智能眼镜通过与手机进行侧行通信,使能用户在眼镜上观看手机上的VR视频,甚至是云端的VR视频。又如智能无线耳机通过与手机进行侧行通信,使能用户通过智能无线耳机收听手机上的音乐。
又例如,在有些场景下无网络覆盖,如地下室场景,在这种场景下,网络信号不足以支撑通信。那么位于地下室的终端设备可以通过位于楼上的终端设备与网络连接,建立通信链路,扩大现网的覆盖。
下面结合附图介绍本申请实施例所提供的方法。在如下介绍的本申请的各个实施例中,第二终端设备例如为不能通过Uu口与网络设备通信的终端设备,例如第二终端设备未被网络设备覆盖,或者第二终端设备未设置Uu口。
本申请实施例提供第一种通信方法,请参见图4,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。其中,图2所示的场景为中继场景,或者,本申请实施例也可不用于中继场景,而是用于两个终端设备直连的场景,例如,第一终端设备能够与第二终端设备通信,第二终端设备处于OOC状态,或第二终端设备未设置Uu口,而第一终端设备是处于网络覆盖(in coverage,IC)状态,则服务于第一终端设备的网络设备能够为第二终端设备提供配置信息。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本申请实施例是以应用在图2所示的网络架构为例。因此,下文中所述的网络设备可以是图2所示的网络架构中的接入网设备,下文中所述的第一终端设备可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端设备可以是图2所示的网络架构中的终端设备2。
S41、第一终端设备和第二终端设备建立PC5-S连接。在建立PC5-S连接后,第一终端设备和第二终端设备可通过侧行链路通信。
S42、网络设备向第二终端设备发送第四配置信息,相应的,第二终端设备接收来自网络设备的第四配置信息。
在执行S42之前,例如第二终端设备要向第一终端设备发送信息,则第二终端设备可向网络设备发送第二请求消息,以请求网络设备配置第一终端设备和第二终端设备之间的无线承载。网络设备接收来自第二终端设备的第二请求消息后,可向第二终端设备发送第四配置信息,第四配置信息用于配置第一终端设备和第二终端设备之间的无线承载,例如将该无线承载称为第四无线承载。第四配置信息是第二终端设备对应于第一无线承载的配置,或者说,第二终端设备可根据第四配置信息配置第一无线承载。第一无线承载例如为侧行链路数据无线承载(sidelink data radio bearer,SLRB),或者也可以是信令控制信道(signaling control channel,SCCH),或者也可以在终端设备之间引入SL-信令无线承载(signaling radio bearer,SRB),第一无线承载也可以是SL-SRB。
例如,网络设备可通过网络设备与第二终端设备之间的RRC连接向第二终端设备发送第四配置信息。或者,可预先在第一终端设备和第二终端设备之间建立专用的无线承载(例如称为第二无线承载),以及在第一终端设备和网络设备之间建立专用的无线承载(例如称为第三无线承载),第二无线承载用于传输第二终端设备的中继信息(即,第二终端设备发送给网络设备的信息,或,网络设备发送给第二终端设备的信息),第三无线承载也用于传输第二终端设备的中继信息。则网络设备也可以通过第三无线承载将第四配置信息发送给第一终端设备,第一终端设备根据第三无线承载就能确定第四配置信息需要转发给第二终端设备,则第一终端设备可通过第二无线承载将第四配置信息发送给第二终端设备。
第四配置信息例如包括发送配置(例如称为第三发送配置)和common配置(例如称为第三common配置)。所谓的发送配置,是指与发送过程相关的配置,所谓的common配置,是指与发送过程和/或接收过程相关的配置。
其中,第三发送配置可包括如下的一项或多项:分组数据汇聚协议(packet data convergence protocol,PDCP)丢弃定时器(discard timer),健壮性包头压缩(robust header compression,RoHC)压缩轮廓(profile)配置,服务数据适配协议(service data adaptation protocol,SDAP)的包头是否出现(或者说,SDAP的包头是否出现的信息),与SL上的服务质量流标识(qos flow identity,QFI)的映射关系,或,发送类型(例如是广播、单播 或组播)等。例如,第三发送配置可包括PDCP discard timer;或者,第三发送配置可包括RoHC压缩profile配置;或者,第三发送配置可包括SDAP的包头是否出现;或者,第三发送配置可包括与SL上的QFI的映射关系;或者,第三发送配置可包括发送类型(例如是广播、单播或组播);或者,第三发送配置可以包括上述配置的各种组合,如第三发送配置可包括PDCP discard timer,RoHC压缩profile配置和SDAP的包头是否出现,与SL上的QFI的映射关系,以及发送类型,等等。当然,除了如上各项之外,第三发送配置还可以包括其他信息,如关于SDAP,或PDCP,或无线链路控制(radio link control,RLC),或媒体接入控制(media access control,MAC),或物理层(PHY)的发送侧配置信息等,或者,第三发送配置不包括如上任一项,而是包括其他信息。其中,PDCP discard timer,可用于确定发送侧PDCP服务数据单元(service data unit,SDU)的时效性。RoHC压缩profile配置,可用于确定发送侧是否支持压缩配置。SDAP的包头是否出现的信息,可用于确定SDAP相关配置。与SL上的QFI的映射关系,可用于发送侧确定SL上的业务流对应的配置。发送类型,例如是广播、单播或组播等,可用于发送侧配置的发送类型。
第三common配置可包括如下的一项或多项:SDAP对应的QFI,PDCP和无线链路控制(radio link control,RLC)的序列号(sequence number,SN)长度,是否使用头压缩,或,逻辑信道ID(Logic Channel ID,LCID)。例如,第三common配置可包括SDAP对应的QFI;或者,第三common配置可包括PDCP和RLC的序列号(sequence number,SN)长度;或者,第三command配置可包括LCID;或者,第三command配置可包括上述配置的各种组合,如第三common配置可包括SDAP对应的QFI,PDCP和RLC的SN长度,LCID,以及是否使用头压缩,等等。当然,除了如上这几项之外,第三common配置还可以包括其他信息,如关于SDAP,或PDCP,或RLC,或MAC,或PHY的两侧相同的配置信息等,或者,第三common配置不包括如上任一项,而是包括其他信息。其中,SDAP对应的QFI,可用于指示对应SDAP配置的QFI。PDCP和RLC的SN长度,可用于指示PDCP与RLC数据包的SN所占的比特数。
S43、第二终端设备根据第四配置信息配置第一无线承载。
例如,第二终端设备根据第三发送配置和第三common配置来配置第一无线承载。例如,第二终端设备可以根据第三发送配置和/或第三common配置来配置第一无线承载的发送参数。如果第一无线承载为双向无线承载,则第二终端设备还可以根据第三common配置得到第二终端设备对应于第一无线承载的接收配置(例如称为第四接收配置),并根据第四接收配置来配置第一无线承载的接收参数,从而第二终端设备能够通过第一无线承载接收来自第一终端设备的信息。
另外,第一无线承载在媒体接入控制(media access control,MAC)层需对应相应的逻辑信道,而究竟对应哪个逻辑信道,可由第二终端设备决定,因此第二终端设备可以为第一无线承载分配逻辑信道,并确定该逻辑信道的逻辑信道ID(logic channel ID,LCID)。或者,第一无线承载对应的逻辑信道也可以由网络设备直接配置,如通过第四配置信息来配置。
对于来自网络设备的第四配置信息,在Uu口上,网络设备会与第四配置信息一并发送第四配置信息对应的第一无线承载的编号。但是例如第二终端设备可能跟多个终端设备通信,而向第二终端设备发送配置信息的可能不只一个网络设备(如第二终端设备始终通过与其PC5口通信的终端设备对应的网络设备获取对应的发送配置),或者即使只有一个 网络设备,但是网络设备在为所配置的对应PC5口通信的不同终端设备的无线承载在Uu口上编号时,可能是有重复的,例如对于第二终端设备,网络设备下发一个配置信息,对于另一终端设备,如第三终端设备,网络下发另一个配置信息,这两个配置信息用于配置针对两个不同的终端设备的两个无线承载,而网络设备为这两个配置信息对应的两个无线承载设置的编号可能是相同的,这就会导致第二终端设备产生混淆;或者,网络设备在为所配置的终端设备的不同的侧行无线承载在Uu口上编号时,可能是有重复的,例如对于第二终端设备,网络设备下发两个配置信息,一个配置信息用于配置第二终端设备与第一终端设备直连通信的无线承载,另一个配置信息用于配置第二终端设备通过第一终端设备连接网络的无线承载,而网络设备为这两个配置信息对应的两个无线承载设置的编号可能是相同的,这就会导致第二终端设备产生混淆。因此,第二终端设备在接收第四配置信息后,可以为第四配置信息对应的第一无线承载设置在PC5口上的编号,即,同一个配置信息所配置的无线承载就会对应Uu口的编号和PC5的编号,且这两个编号是彼此对应的。当然,第二终端设备也可以不为第四配置信息对应的第一无线承载设置在PC5口上的编号,只要第二终端设备能够区分开来自网络设备的不同的配置信息对应不同的无线承载即可。
S44、第二终端设备向第一终端设备发送第一配置信息,相应的,第一终端设备接收来自第二终端设备的第一配置信息。
第一配置信息是第一终端设备对应于第一无线承载的配置,或者说,第一终端设备可根据第一配置信息配置第一无线承载。
第一配置信息例如包括common配置(例如称为第一common配置),例如,第一common配置与第三common配置相同,或者说,第一common配置就是第三common配置。关于第一common配置所包括的内容,可参考前文对于第三common配置所包括的内容的介绍。另外,第一配置信息还可以包括第二终端设备或网络设备为第一无线承载分配的逻辑信道的LCID。以及,第一配置信息还可以包括第一无线承载在PC5口上的编号,或者,包括第一无线承载在PC5口上的编号与第一无线承载在Uu口上的编号之间的对应关系。
可选的,第二终端设备还可以将第一无线承载的类型信息发送给第一终端设备,则第一终端设备接收来自第二终端设备的该类型信息。第一无线承载的类型信息例如可以指示第一无线承载为确认模式(acknowledge mode,AM)或非确认模式(unacknowledge mode,UM),或者,第一无线承载的类型信息可以指示第一无线承载为单向无线承载或双向无线承载,或者,第一无线承载的类型信息可以指示第一无线承载为AM或UM,以及指示第一无线承载为单向无线承载或双向无线承载。
其中,AM可以表示第一无线承载支持自动重传请求(automatic repeat-request,ARQ)协议,UM可以表示第一无线承载不支持ARQ协议。所谓的单向无线承载,是指第一无线承载只能单向传输,例如只能第二终端设备通过第一无线承载向第一终端设备发送信息,而第一终端设备不能通过第一无线承载向第二终端设备发送信息。所谓的双向无线承载,是指第一无线承载可以双向传输,例如第二终端设备可以通过第一无线承载向第一终端设备发送信息,第一终端设备也可以通过第一无线承载向第二终端设备发送信息。
S45、第一终端设备根据第一配置信息配置第一无线承载。
例如,第一终端设备可以根据第一配置信息所包括的第一common配置生成第一终端设备对应于第一无线承载的接收配置,例如称为第一接收配置。第一终端设备可根据第一 接收配置来配置第一无线承载的接收参数,从而第一终端设备能够通过第一无线承载接收来自第二终端设备的信息。
如果第一终端设备生成第一接收配置失败,或者说第一终端设备根据第一配置信息配置第一无线承载失败,则可以继续执行S48;或者,如果第一终端设备生成第一接收配置成功,或者说第一终端设备根据第一配置信息配置第一无线承载成功,且第一无线承载为单向无线承载,则流程结束;或者,如果第一终端设备生成第一接收配置成功,或者说第一终端设备根据第一配置信息配置第一无线承载成功,且第一无线承载为双向无线承载,则可继续执行S46。
S46、第一终端设备向网络设备发送第三请求消息,相应的,网络设备接收来自第一终端设备的第三请求消息。第三请求消息用于请求第一终端设备对应于第一无线承载的发送配置。
因为第一终端设备根据第一配置信息只是生成了第一接收配置,如果第一无线承载为双向无线承载,则第一终端设备还需要获得第一终端设备对应于第一无线承载的发送配置,因此第一终端设备可以向网络设备请求获得第一终端设备对应于第一无线承载的发送配置。
可选的,第三请求消息还可以包括QFI,该QFI例如为第二终端设备对于第一无线承载的服务质量(quality of service,QoS)的要求,网络设备可根据该QFI确定第一终端设备对应于第一无线承载的发送配置。该QFI例如是第二终端设备发送给第一终端设备的。
S47、网络设备向第一终端设备发送第一消息,相应的,第一终端设备接收来自网络设备的第一消息。第一消息可以包括第一终端设备对应于第一无线承载的发送配置,例如将该发送配置称为第一发送配置。
例如,如果第三请求消息包括该QFI,则第一发送配置可以是网络设备根据该QFI确定的。当然网络设备在确定第一发送配置时还可以参考其他的因素,本申请实施例不做限制。
第一终端设备在接收第一发送配置后,可根据第一发送配置来配置第一无线承载的发送参数,从而第一终端设备能够通过第一无线承载向第二终端设备发送信息,这样第一无线承载就能够具有双向传输的功能。
其中,如果第一无线承载是单向无线承载,则不必执行S46和S47,因此S46和S47是可选的步骤,在图4中用虚线表示。
S48、第一终端设备向网络设备发送第一配置失败信息,相应的,网络设备接收来自第一终端设备的第一配置失败信息。第一配置失败信息可指示第一终端设备配置第一无线承载失败。
例如,第一配置失败信息可承载在RRC消息中发送给网络设备,该RRC消息可以复用目前已有的RRC消息,或者也可以是本申请实施例新增的专用于发送第一配置失败信息的RRC消息。如果第一配置失败信息承载在RRC消息中,则第一配置失败信息可通过RRC消息中的已有的信元承载,或者也可以在RRC消息中增加新的信元,用于承载第一配置失败信息。例如第一终端设备可以向网络设备发送RRC消息,RRC消息可包括第一信元,第一配置失败信息可占用第一信元中的比特(bit),或者说,第一信元可承载第一配置失败信息,例如第一信元可使用一个或多个比特承载第一配置失败信息。第一信元可以是RRC消息中已有的信元,例如第一信元是用于指示失败原因的信元,例如第一信元 为sl-失败(failure)信元,使用RRC消息中原有的信元来承载第一配置失败信息,无需在RRC消息中增加新的信元,使得该RRC消息能够更好地与现有的技术兼容。或者,第一信元也可以是在RRC消息中新增的信元,使用新的信元来承载第一配置失败信息,能够增加第一配置失败信息的辨识度。
作为一种可选的实施方式,第一配置失败信息可以占用第一信元中的预留(reserved)比特。例如第一信元为sl-failure信元,该信元目前可包括4个比特,其中的2个比特已被占用,这2个比特分别用于指示无线链路失败(radio link failure,RLF)事件和配置失败事件,这4个比特中剩余的2个比特为预留比特。那么第一配置失败信息可占用这2个预留比特中的一个或两个,例如第一配置失败信息占用这2个预留比特中的一个,如果该比特取值为“1”,表示终端设备向网络设备发送了第一配置失败信息,如果该比特取值为“0”,表示终端设备未向网络设备发送第一配置失败信息。通过这种方式,无需更改原有信元的其他比特的含义,更有利于与现有技术兼容。
或者,虽然第一信元可以是已有的信元,但本申请实施例也可以对已有的信元做一些改进。例如第一信元为sl-failure信元,该信元目前可包括4个比特,那么本申请实施例可以改变该信元包括的比特数,例如将该信元包括的比特数缩减为2个,2个比特会对应4中取值(或者说4种状态),每种取值可以指示一种信息。例如这2个比特的取值为“00”可指示RLF事件,取值为“01”可指示配置失败事件,这两种事件是目前已有的事件,另外,这两个比特的取值为“10”可指示第一配置失败信息,即,如果这两个比特的取值为“10”,则表示终端设备向网络设备发送了第一配置失败信息。这两个比特的取值为“11”的状态可以继续预留,以指示其他信息。通过这种方式,能够减少已有信元的比特数,减小信令开销。
或者,如果第一信元为已有的信元,本申请实施例也可以扩展第一信元的比特数,例如在第一信元中新增一个或多个比特,用于承载第一配置失败信息。
可选的,第一配置失败信息还可以包括第一无线承载的信息,第一无线承载的信息例如为第一无线承载的SL-DRB ID或者Uu DRB ID,或者,第一无线承载的信息还可以是第一无线承载在侧行链路上对应的终端设备的地址,例如第二终端设备的(layer 2,L2)目的地址。
在本申请实施例中,虽然第一配置信息不是网络设备发送给第一终端设备的,而是第二终端设备发送给第一终端设备的,但如果第一终端设备发生配置失败的情况,也可以规定第一终端设备向网络设备发送第一配置失败信息,通过这种方式以减少信息的来回传输。
S49、第一终端设备向第二终端设备发送第二配置失败信息,相应的,第二终端设备接收来自第一终端设备的第二配置失败信息。第二配置失败信息可指示第一终端设备配置第一无线承载失败。
第一终端设备除了向网络设备发送第一配置失败信息外,由于第一配置信息是第二终端设备发送给第一终端设备的,因此第一终端设备也可以向第二终端设备发送第二配置失败信息。第二终端设备接收来自第一终端设备的第二配置失败信息后,就能够确定第一终端设备对于第一无线承载配置失败,从而第二终端设备可以暂时不通过第一无线承载与第一终端设备通信。
另外,第二终端设备在接收第二配置失败信息后,不会触发向网络设备转发第二配置失败信息,以避免了配置失败信息的重复传输。
S48可以发生在S49之前,或者,S48可以发生在S49之后,或者,S48与S49可以同时发生。
其中,S49为可选的步骤,在图4中用虚线表示。
在本申请实施例中,如果第一终端设备发生配置失败的情况,则第一终端设备可以向网络设备发送第一配置失败信息,即,第一终端设备无需向第二终端设备发送第一配置失败信息,再由第二终端设备通过第一终端设备将第一配置失败信息转发给网络,减少了第一配置失败信息的转发过程,从而节省了传输资源。且由于第一配置失败信息无需在终端设备之间来回传输,也减小了传输时延。
为了解决相同的技术问题,本申请实施例提供第二种通信方法,请参见图5,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。其中,图2所示的场景为中继场景,或者,本申请实施例也可不用于中继场景,而是用于两个终端设备直连的场景,例如,第一终端设备能够与第二终端设备通信,第二终端设备处于OOC状态,或第二终端设备未设置Uu口,而第一终端设备是处于网络覆盖状态,则服务于第一终端设备的网络设备能够为第二终端设备提供配置信息。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本申请实施例是以应用在图2所示的网络架构为例。因此,下文中所述的网络设备可以是图2所示的网络架构中的接入网设备,下文中所述的第一终端设备可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端设备可以是图2所示的网络架构中的终端设备2。
S51、第一终端设备和第二终端设备建立PC5-S连接。在建立PC5-S连接后,第一终端设备和第二终端设备可通过侧行链路通信。
S52、网络设备向第二终端设备发送第四配置信息,相应的,第二终端设备接收来自网络设备的第四配置信息。
第四配置信息例如包括发送配置(例如称为第三发送配置)和common配置(例如称为第三common配置)。所谓的发送配置,是指与发送过程相关的配置,所谓的common配置,是指与发送过程和/或接收过程相关的配置。可选的,如果第一无线承载为双向无线承载,则第四配置信息还可以包括接收配置(例如称为第四接收配置)。所谓的接收配置,是指与接收过程相关的配置。例如第四接收配置可包括PDCP重排列定时器(reordering timer),当然还可以包括其他的参数。
关于S52的更多内容,可参考图4所示的实施例中对于S42的介绍。
S53、第二终端设备配置第一无线承载。
例如,第二终端设备根据第四配置信息来配置第一无线承载。例如,第二终端设备可以根据第三发送配置和/或第三common配置来配置第一无线承载的发送参数,从而第二终端设备能够通过第一无线承载向第一终端设备发送信息。如果第一无线承载为双向无线承载,且第四配置信息还包括第四接收配置,则第二终端设备还可以根据第三common配置和/或第四接收配置来配置第一无线承载的接收参数,从而第二终端设备能够通过第一无线承载接收来自第一终端设备的信息。
另外,第一无线承载在MAC层需对应相应的逻辑信道,而究竟对应哪个逻辑信道,可由第二终端设备决定,因此第二终端设备可以为第一无线承载分配逻辑信道,并确定该逻辑信道的LCID。或者,第一无线承载在MAC层对应的逻辑信道,也可以由网络设备直接配置,如通过第四配置信息发送给第二终端设备。
另外,第二终端设备在接收第四配置信息后,可以为第四配置信息对应的第一无线承载设置在PC5口上的编号,即,同一个配置信息所配置的无线承载就会对应Uu口的编号和PC5的编号,且这两个编号是彼此对应的。当然,第二终端设备也可以不为第四配置信息对应的第一无线承载设置在PC5口上的编号,只要第二终端设备能够区分开来自网络设备的不同的配置信息对应不同的无线承载即可。
或者,第二终端设备在接收第四配置信息后,如果第二终端设备为第一无线承载设置了PC5口上的编号,则第二终端设备也可以设置QFI与第一无线承载在PC5口上的编号之间的对应关系;或者,如果第二终端设备没有为第一无线承载设置PC5口上的编号,则第二终端设备也可以设置QFI与第一无线承载在Uu口上的编号之间的对应关系。该QFI例如为第二终端设备对于第一无线承载的QoS的要求。
关于S53的更多内容,可参考图4所示的实施例中对于S43的介绍。
S54、网络设备向第一终端设备发送第二配置信息,相应的,第一终端设备接收来自网络设备的第二配置信息。
第二配置信息例如包括接收配置(例如称为第二接收配置)和common配置(例如称为第二common配置)。所谓的接收配置,是指与接收过程相关的配置,所谓的common配置,是指与发送过程和/或接收过程相关的配置。例如第二接收配置可包括PDCP重排序定时器(reordering timer),当然还可以包括其他的参数。可选的,如果第一无线承载为双向无线承载,则第二配置信息还可以包括发送配置(例如称为第二发送配置)。
另外,第一无线承载在MAC层需对应相应的逻辑信道,可由第二终端设备通过第一信息发送。或者,第一无线承载在MAC层对应的逻辑信道,也可以由网络设备直接配置,如通过第二配置信息发送给第一终端设备。
关于S54的更多内容,可参考图4所示的实施例中对于S42的介绍,只需将S44中的“第四配置信息”替换为“第二配置信息”、“第三发送配置”替换为“第二发送配置”、以及将“第三common配置”替换为“第二common配置”,即可。
其中,S52可以在S54之前执行,或者S52在S54之后执行,或者S52与S54同时执行。
S55、第二终端设备向第一终端设备发送第一信息,相应的,第一终端设备接收来自第二终端设备的第一信息。
第一信息例如包括第一无线承载对应的逻辑信道的LCID,该LCID是第二终端设备在S53中确定的,或用于指示第一无线承载已配置完成,避免第一终端设备与第二终端设备不知道对方是否配置完成。或者,第一无线承载对应的LCID也可以由网络设备配置,例如网络设备可通过第二配置信息发送给第一终端设备,那么第一信息就不包括LCID。可选的,第一信息还可以包括第一对应关系,或包括第二对应关系,或包括第一对应关系和第二对应关系。第一对应关系例如为第一无线承载在Uu口上的编号与第一无线承载在PC5口上的编号之间的对应关系;第二对应关系例如为QFI与第一无线承载在PC5口上的编号之间的对应关系,或者为QFI与第一无线承载在Uu口上的编号之间的对应关系。
S56、第一终端设备根据第二配置信息和第一信息,获得第一配置信息。
例如,第一配置信息可包括第二配置信息和第一信息。
S57、第一终端设备根据第一配置信息配置第一无线承载。
例如,第一终端设备可以根据第一配置信息所包括的第一common配置和/或第一发送 配置来配置第一无线承载的发送参数,从而第一终端设备能够通过第一无线承载向第二终端设备发送信息。如果第一配置信息还包括第一接收配置,则第一终端设备可以根据第一接收配置和/或第一common配置来配置第一无线承载的接收参数,从而第一终端设备能够通过第一无线承载接收来自第二终端设备的信息。
如果第一终端设备根据第一配置信息配置第一无线承载成功,则流程结束;或者,如果第一终端设备根据第一配置信息配置第一无线承载失败,则继续执行S58。
S58、第一终端设备向网络设备发送第一配置失败信息,相应的,网络设备接收来自第一终端设备的第一配置失败信息。第一配置失败信息可指示第一终端设备配置第一无线承载失败。
在本申请实施例中,由于第二配置信息是网络设备发送给第一终端设备的,因此如果第一终端设备发生配置失败的情况,则第一配置失败信息相当于第一终端设备向网络设备发送的响应信息,在流程上来说更为自然,符合设备的执行习惯。
关于S58的更多内容,可参考对于图4所示的实施例中的S48的介绍。
S59、第一终端设备向第二终端设备发送第二配置失败信息,相应的,第二终端设备接收来自第一终端设备的第二配置失败信息。第二配置失败信息可指示第一终端设备配置第一无线承载失败。
虽然第二配置信息不是第二终端设备发送给第一终端设备的,而是网络设备发送给第一终端设备的,但如果第一终端设备发生配置失败的情况,也可以规定第一终端设备也向第二终端设备发送第二配置失败信息。第二终端设备接收来自第一终端设备的第二配置失败信息后,就能够确定第一终端设备对于第一无线承载配置失败,从而第二终端设备可以暂时不通过第一无线承载与第一终端设备通信。
另外,第二终端设备在接收第二配置失败信息后,不会触发向网络设备转发第二配置失败信息,以避免了配置失败信息的重复传输。
S58可以发生在S59之前,或者,S58可以发生在S59之后,或者,S58与S59可以同时发生。
其中,S59为可选的步骤,在图5中用虚线表示。
在本申请实施例中,如果第一终端设备发生配置失败的情况,则第一终端设备可以向网络设备发送第一配置失败信息,即,第一终端设备无需向第二终端设备发送第一配置失败信息,再由第二终端设备通过第一终端设备将第一配置失败信息转发给网络,减少了第一配置失败信息的转发过程,从而节省了传输资源。且由于第一配置失败信息无需在终端设备之间来回传输,也减小了传输时延。而且网络设备可以分别向两个终端设备发送对应于第一无线承载的配置信息,无需终端设备额外生成配置信息,减轻了终端设备的负担,也使得本申请实施例提供的方法的应用范围更为广泛,例如可以应用于更多低成本的终端设备。
为了解决相同的技术问题,本申请实施例提供第二种通信方法,请参见图6,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。其中,图2所示的场景为中继场景,或者,本申请实施例也可不用于中继场景,而是用于两个终端设备直连的场景,例如,第一终端设备能够与第二终端设备通信,第二终端设备处于OOC状态,或第二终端设备未设置Uu口,而第一终端设备是处于网络覆盖状态,则服务于第一终端设备的网络设备能够为第二终端设备提供配置信息。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本申请实施例是以应用在图2所示的网络架构为例。因此,下文中所述的网络设备可以是图2所示的网络架构中的接入网设备,下文中所述的第一终端设备可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端设备可以是图2所示的网络架构中的终端设备2。
S61、第一终端设备和第二终端设备建立PC5-S连接。在建立PC5-S连接后,第一终端设备和第二终端设备可通过侧行链路通信。
S62、第二终端设备向第一终端设备发送QoS信息,相应的,第一终端设备接收来自第二终端设备的QoS信息。
该QoS信息可指示第二终端设备对于第一无线承载的QoS的要求。例如该QoS信息可包括QFI,或者还可以包括其他的信息。
例如,第二终端设备可以通过PC5-RRC消息将该QoS信息发送给第一终端设备,或者第二终端设备也可以通过其他消息将该QoS信息发送给第一终端设备。
S63、第一终端设备向网络设备发送第二信息,相应的,网络设备接收来自第一终端设备的第二信息。第二信息可用于请求配置第一终端设备和第二终端设备之间的无线承载,且该无线承载为双向无线承载。例如将该无线承载称为第一无线承载。关于第一无线承载的实现方式等内容的介绍,可参考图4所示的实施例中的相关内容。
一般来说,由哪个终端设备确定需要向对端发送信息,则该终端设备可以向网络设备发送用于请求配置第一无线承载的信息。在本申请实施例中,实际上第二终端设备应该是信息的发送端,即,是第二终端设备要向第一终端设备发送信息,如图4所示的实施例或图5所示的实施例中都是如此,但图4所示的实施例或图5所示的实施例中,都是第二终端设备向网络设备发送第二请求消息,以请求网络设备配置第一无线承载。而在本申请实施例中,可以认为第一终端设备通过向网络设备发送第二信息的方式,使得网络设备将第一终端设备认为是信息的发送端,则网络设备会将第一无线承载的配置信息发送给第一终端设备。这样,第一终端设备如果发生配置失败的情况,就可以向网络设备发送用于指示配置失败的信息,使得整个流程的执行更为符合设备的执行习惯。
因为本申请实施例中是第一终端设备使得网络设备将第一终端设备认为是信息的发送端,网络设备在发送配置信息时,会向第一终端设备发送对应于第一无线承载的发送配置,第一终端设备根据该发送配置来配置第一无线承载,则第一终端设备就能向第二终端设备发送信息。而实际的信息发送端应该是第二终端设备,第二终端设备需要通过第一无线承载向第一终端设备发送信息,因此在本申请实施例中,第二信息需要请求配置双向无线承载,即,第一无线承载需要是能够进行双向传输的无线承载,从而能够满足第二终端设备通过第一无线承载向第一终端设备发送信息的需求。
可选的,第二信息可以包括所述的QoS信息,因为第二终端设备是实际的信息发送端,因此应该以第二终端设备对于第一无线承载的QoS要求为准。网络设备在接收该QoS信息后,可以根据该QoS信息确定第一无线承载的配置信息,使得所配置的第一无线承载更能满足第二终端设备的需求。
可选的,第二信息还可以包括第二终端设备处于OOC状态的信息,或者包括第二终端设备未设置Uu口的信息。当第二终端设备处于OOC状态或未设置Uu口时,第二终端设备所在的网络无法为第二终端设备配置无线承载,在这种情况下,第二终端设备如果能够通过第一终端设备接入第一终端设备所在的网络,则第二终端设备所在的网络就能为第 一终端设备配置无线承载等,因此在这种情况下第二终端设备通过第一终端设备的网络来配置无线承载会更有意义。那么,如果确定第二终端设备处于OOC状态或确定第二终端设备未设置Uu口,第一终端设备就可以向接入网设备发送第二信息,而如果确定第二终端设备当前未处于OOC状态或确定第二终端设备设置了Uu口,则第一终端设备可以不向接入网设备发送第二信息,即,如果第二终端设备当前未处于OOC状态或第二终端设备设置了Uu口,那么第二终端设备所在的网络能够为第二终端设备配置无线承载等,在这种情况下,即使第一终端设备不作为第二终端设备的中继设备,第二终端设备与第一终端设备之间的无线承载也可以通过第二终端设备所在的网络配置,是较为灵活的。或者,在本申请实施例中,无论第二终端设备当前处于OOC状态还是未处于OOC状态,第一终端设备都可以向接入网设备发送第二信息,以请求配置无线承载。如果是这种情况,则第二信息可以包括第二终端设备处于OOC状态的信息,或者也可以不包括第二终端设备处于OOC状态的信息。
第二信息例如为侧行链路UE信息(sidelink UE information,SUI),或者也可以是其他类型的信息。
S64、网络设备根据第二信息,确定第一配置信息。第一配置信息为第一终端设备对应于第一无线承载的配置信息,或者说,第一终端设备能够根据第一配置信息来配置第一无线承载。
第一配置信息例如包括发送配置(例如称为第一发送配置)和common配置(例如称为第一common配置)。关于第一发送配置包括的内容,可参考图4所示的实施例中对于第三发送配置的介绍,关于第一common配置包括的内容,可参考图4所示的实施例中对于第三common配置的介绍。
可选的,第一配置信息还可以包括接收配置(例如称为第一接收配置)。
S65、网络设备向第一终端设备发送第一配置信息,相应的,第一终端设备接收来自网络设备的第一配置信息。
例如,网络设备可通过RRC消息向第一终端设备发送第一配置信息。
S66、第一终端设备根据第一配置信息配置第一无线承载。
例如,第一终端设备根据第一发送配置和第一common配置来配置第一无线承载。例如,第一终端设备可以根据第一发送配置和/或第一common配置来配置第一无线承载的发送参数,从而第一终端设备能够通过第一无线承载向第二终端设备发送信息。由于第一无线承载为双向无线承载,如果第一配置信息不包括第一接收配置,则第一终端设备还可以根据第一common配置得到第一接收配置,并根据第一接收配置来配置第一无线承载的接收参数,从而第一终端设备能够通过第一无线承载接收来自第二终端设备的信息。或者,如果第一配置信息包括第一接收配置,则第一终端设备可以根据第一接收配置和/或第一common配置来配置第一无线承载的接收参数,从而第一终端设备能够通过第一无线承载接收来自第二终端设备的信息。
如果第一终端设备根据第一配置信息配置第一无线承载失败,则可执行S68;或者,如果第一终端设备根据第一配置信息配置第一无线承载成功,则可执行S67;或者,S67与第一终端设备是否配置成功无关,无论第一终端设备根据第一配置信息配置第一无线承载成功或失败,都可执行S67,如果是这种情况,则S66可以在S67之前执行,或者S66在S67之后执行,或者S66与S67同时执行。
S67、第一终端设备向第二终端设备发送第三配置信息,相应的,第二终端设备接收来自第一终端设备的第三配置信息。第三配置信息可用于第二终端设备配置第一无线承载,或者说,第二终端设备可根据第三配置信息配置第一无线承载。
第三配置信息例如包括第一配置信息的部分内容或全部内容。例如,第三配置信息可包括第一common配置,或者,第三配置信息可包括第一common配置和第一发送配置。
第二终端设备接收第三配置信息后,可根据第三配置信息来配置第一无线承载。例如,第三配置信息包括第一common配置,则第二终端设备可根据第一common配置得到第二终端设备对应于第一无线承载的接收配置(例如称为第三接收配置),第二终端设备可根据第三接收配置来配置第一无线承载的接收参数,从而第二终端设备能够通过第一无线承载接收来自第一终端设备的信息。又例如,第三配置信息包括第一common配置和第一发送配置,则第二终端设备除了可根据第一common配置得到第一接收配置,并根据第一接收配置来配置第一无线承载之外,还可以根据第一发送配置来配置第一无线承载的发送参数,从而第二终端设备能够通过第一无线承载向第一终端设备发送信息。
S68、第一终端设备向网络设备发送第一配置失败信息,相应的,网络设备接收来自第一终端设备的第一配置失败信息。第一配置失败信息可指示第一终端设备配置第一无线承载失败。
在本申请实施例中,由于第一配置信息是网络设备发送给第一终端设备的,因此如果第一终端设备发生配置失败的情况,则第一配置失败信息相当于第一终端设备向网络设备发送的响应信息,在流程上来说更为自然,符合设备的执行习惯。
关于S68的更多内容,可参考对于图4所示的实施例中的S48的介绍。
S69、第一终端设备向第二终端设备发送第二配置失败信息,相应的,第二终端设备接收来自第一终端设备的第二配置失败信息。第二配置失败信息可指示第一终端设备配置第一无线承载失败。
例如,如果执行了S67,则可执行S69,因此S69为可选的步骤,在图6中用虚线表示。虽然第一配置信息不是第二终端设备发送给第一终端设备的,而是网络设备发送给第一终端设备的,但如果第一终端设备发生配置失败的情况,也可以规定第一终端设备也向第二终端设备发送第二配置失败信息。第二终端设备接收来自第一终端设备的第二配置失败信息后,就能够确定第一终端设备对于第一无线承载配置失败,从而第二终端设备可以暂时不通过第一无线承载与第一终端设备通信。
另外,第二终端设备在接收第二配置失败信息后,不会触发向网络设备转发第二配置失败信息,以避免了配置失败信息的重复传输。
S68可以发生在S69之前,或者,S68可以发生在S69之后,或者,S68与S69可以同时发生。
在本申请实施例中,如果第一终端设备发生配置失败的情况,则第一终端设备可以向网络设备发送第一配置失败信息,即,第一终端设备无需向第二终端设备发送第一配置失败信息,再由第二终端设备通过第一终端设备将第一配置失败信息转发给网络,减少了第一配置失败信息的转发过程,从而节省了传输资源。且由于第一配置失败信息无需在终端设备之间来回传输,也减小了传输时延。而且网络设备将第一配置信息发送给第一终端设备,第一终端设备再将第三配置信息发送给第二终端设备,也可以避免配置信息在终端设备之间来回传输的情况。
如上介绍的都是终端设备配置无线承载,以及在发生配置失败情况后的处理方式。配置失败可以视为是侧行链路失败的一种情况,而侧行链路失败还有另一种情况,即RLF。
例如,对于适用ARQ机制的侧行链路来说,第二终端设备通过该侧行链路向第一终端设备发送数据,第一终端设备接收来自第二终端设备的数据后会向第二终端设备发送反馈信息,该反馈信息可指示该数据接收成功或接收失败。那么,如果第二终端设备接收的反馈信息表示相应的数据接收失败,第二终端设备可通过该侧行链路向第一终端设备重新发送该数据,第一终端设备接收该数据后可再向第二终端设备发送反馈信息,如果该反馈信息继续表示该数据接收失败,第二终端设备可再次通过该侧行链路向第一终端设备重新发送该数据,以此类推,直到第一终端设备接收成功为止,或者,直到重传次数等于ARQ机制所限制的最大次数为止。如果重传次数已达到ARQ机制限制的最大次数,该数据依然发送失败,则第二终端设备可以认为发生了RLF事件;或者,如果连续有一个或多个数据的重传次数在达到ARQ机制限制的最大次数时都是发送失败,则第二终端设备可以认为发生了RLF事件。
又例如,对于适用ARQ机制的侧行链路来说,第二终端设备通过该侧行链路向第一终端设备发送数据,第一终端设备接收来自第二终端设备的数据后,如果接收成功,则向第二终端设备发送反馈信息,该反馈信息可指示该数据接收成功,而如果接收失败,则不向第二终端设备发送反馈信息。那么,如果第二终端设备接收了反馈信息,则表示相应的数据接收成功,如果第二终端设备未接收反馈信息,则表示相应的数据接收失败。如果确定第一终端设备对数据接收失败,第二终端设备可通过该侧行链路向第一终端设备重新发送该数据,第一终端设备接收该数据后,如果接收成功,则向第二终端设备发送反馈信息,该反馈信息可指示该数据接收成功,而如果接收失败,则不向第二终端设备发送反馈信息。如果第二终端设备依然未接收反馈信息,则第二终端设备再次通过该侧行链路向第一终端设备重新发送该数据,以此类推,直到第一终端设备接收成功为止,或者,直到重传次数等于ARQ机制所限制的最大次数为止。如果重传次数已达到ARQ机制限制的最大次数,该数据依然发送失败,则第二终端设备可以认为发生了RLF事件;或者,如果连续有一个或多个数据的重传次数在达到ARQ机制限制的最大次数时都是发送失败,则第二终端设备可以认为发生了RLF事件。
继续考虑图2所示的场景,即,终端设备1为终端设备2提供中继服务。例如终端设备2为数据发送端,终端设备1为数据接收端,下面参考图7,为目前终端设备2在出现RLF事件后的处理流程。
S71、终端设备1和终端设备2之间建立PC5-信号(signal,S)连接。
S72、终端设备1确定终端设备1与终端设备2之间的侧行链路失败。例如,终端设备1确定发生了RLF事件。
S73、终端设备2向终端设备1发送链路失败的信息,以通过终端设备1将链路失败的信息转发给网络设备。
终端设备2是需要将链路失败的信息发送给网络设备,但终端设备2与网络设备的通信需要通过终端设备1中转,因此终端设备2将链路失败的信息发送给终端设备1,由终端设备1再转发给网络设备。
但由于此时已经发生了RLF事件,表明终端设备1和终端设备2之间的侧行链路已经出现了问题,可能无法正常通信,因此终端设备1可能无法接收来自终端设备2的链路失 败的信息,图7中的“×”表示S73可能会执行失败,则终端设备1自然也无法将该链路失败的信息转发给网络设备。可见,这导致终端设备2白白生成了该链路失败的信息,额外增加了终端设备2的功耗。
鉴于此,本申请实施例提供第四种通信方法,通过该方法,能够减小终端设备的功耗。请参见图8,为该方法的流程图。该方法可应用于图2所示的网络架构,或者,该方法也可应用于两个终端设备直连的网络架构,即,第一终端设备不为第二终端设备提供中继服务,第一终端设备也不为第二终端设备提供中继服务,两个终端设备通过侧行链路通信。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。其中,图2所示的场景为中继场景,或者,本申请实施例也可不用于中继场景,而是用于两个终端设备直连的场景,例如,第一终端设备能够与第二终端设备通信,第二终端设备处于OOC状态,或第二终端设备未设置Uu口,而第一终端设备是处于网络覆盖状态,则服务于第一终端设备的网络设备能够为第二终端设备提供配置信息。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例。因为本申请实施例是以应用在图2所示的网络架构为例。因此,下文中所述的网络设备可以是图2所示的网络架构中的接入网设备,下文中所述的第一终端设备可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端设备可以是图2所示的网络架构中的终端设备2。
S81、第一终端设备和第二终端设备建立PC5-S连接。在建立PC5-S连接后,第一终端设备和第二终端设备可通过侧行链路通信。
S82、第二终端设备确定第一终端设备与所述第二终端设备之间的侧行链路失败,例如,第二终端设备确定该侧行链路发生RLF事件。
另外,第二终端设备处于OOC状态,或者,第二终端设备未设置Uu口。如果第二终端设备处于网络设备的覆盖范围内,且第二终端设备具有Uu口,则第二终端设备都可以通过Uu口向网络设备发送用于指示链路失败的信息,这种情况就可以不必使用本申请实施例提供的技术方案。而如果第二终端设备处于OOC状态,或者第二终端设备未设置Uu口,这两个条件只要满足其中任一个或两个,就能够适用于本申请实施例提供的技术方案。
S83、第二终端设备不向网络设备发送用于指示链路失败的信息。用于指示链路失败的信息,例如为SL-RLF报告。
即,第二终端设备在确定侧行链路失败时,不向网络设备发送用于指示链路失败的信息,因此第二终端设备也无需生成用于指示链路失败的信息,从而减小了第二终端设备的功耗。而且由于第一终端设备与第二终端设备之间的侧行链路已出现问题,第二终端设备如果通过该侧行链路向第一终端设备发送用于指示链路失败的信息,可能也会发送失败,因此通过本申请实施例提供的方式也减少了第二终端设备的无用功。
S84、第二终端设备确定与网络设备的连接失败。
第二终端设备如果确定与所述第二终端设备之间的侧行链路失败,则可以确定与网络设备之间的连接失败。其中,S83可以在S84之前执行,或者S83在S84之后执行,或者S83与S84同时执行。
另外,也可以不执行S84,而是执行后文将介绍的S85或S86,或者,S84~S86都可以不必执行。因此S84~S86都是可选的步骤,在图8中用虚线表示。
S85、第二终端设备向第一终端设备发送第一请求消息,相应的,第一终端设备接收来自第二终端设备的第一请求消息。
第一请求消息可用于请求重建所述的侧行链路。例如,如果本申请实施例的技术方案应用于两个终端设备直连的场景,即,不用于中继场景,那么第一终端设备和第二终端设备需要正常通信。在这种情况下,如果该侧行链路失败,则第二终端设备可以请求重建该侧行链路,以使得第一终端设备和第二终端设备尽量能够恢复正常通信。
S86、第二终端设备重新选择能够为第二终端设备提供中继服务的终端设备。
例如,如果本申请实施例的技术方案应用于中继场景,例如第一终端设备为第二终端设备提供中继服务。那么,如果第一终端设备与第二终端设备之间的侧行链路失败,则第一终端设备还可以通过其他终端设备再接入网络设备,因此第二终端设备可以重新选择能够为第二终端设备提供中继服务的终端设备。
例如,第二终端设备可以发送广播消息,该广播消息用于请求中继服务。接收该广播消息的终端设备如果能够为第二终端设备提供中继服务,则可以向第二终端设备发送响应消息,第二终端设备接收来自其他终端设备的响应消息后,可以与该终端设备建立侧行链路,从而通过该终端设备接入网络。如果有多个终端设备都向第二终端设备发送了响应消息,则第二终端设备可以与发送第一响应消息的终端设备建立侧行链路,第一响应消息例如为第二终端设备第一个接收的响应消息。
通过本申请实施例提供的技术方案,能够尽量避免终端设备组装无用的SL-RLF报告,节约空口信令,是一种更有效的异常处理方式。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图9为本申请实施例提供的通信装置900的示意性框图。示例性地,通信装置900例如为第一终端设备900。示例性地,第一终端设备900例如为图4所示的实施例至图6所示的实施例中的任一个实施例所述的第一终端设备。
第一终端设备900包括处理模块910和接收模块930。可选的,第一终端设备900还可以包括发送模块920。示例性地,第一终端设备900可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述第一终端设备功能的组合器件、部件等。当第一终端设备900是终端设备时,发送模块920可以是发射器,发射器可以包括天线和射频电路等,接收模块930可以是接收器,接收器可以包括天线和射频电路等,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可称为收发器,处理模块910可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端设备900是具有上述第一终端设备功能的部件时,发送模块920可以是射频单元,接收模块也可以是射频单元,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可以是射频单元,处理模块910可以是处理器(或者,处理电路),例如基带处理器。当第一终端设备900是芯片系统时,发送模块920可以是芯片(例如基带芯片)的输出接口、接收模块930可以是芯片的输入接口(或者,如果输入接口和输出接口可以是同一接口,那么认为发送模块920和接收模块930是同一功能模块,即,芯片的输入输出接口)、处理模块910可以是芯片系统的处理器(或者,处理电路),处理器可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件(或者,处理电路)实现,接收模块930可以由收发器或收发器相关电路组件实现,发送模块920可以由发射器或发射器相关电路 组件实现。
例如,处理模块910可以用于执行图4所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S41和S45,和/或用于支持本文所描述的技术的其它过程。发送模块920可以用于执行图4所示的实施例中由第一终端设备所执行的全部发送操作,例如S41、S46、S48和S49,和/或用于支持本文所描述的技术的其它过程。接收模块930可以用于执行图4所示的实施例中由第一终端设备所执行的全部接收操作,例如S41、S44和S47,和/或用于支持本文所描述的技术的其它过程。
又例如,处理模块910可以用于执行图5所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S51、S56和S57,和/或用于支持本文所描述的技术的其它过程。发送模块920可以用于执行图5所示的实施例中由第一终端设备所执行的全部发送操作,例如S51、S58和S59,和/或用于支持本文所描述的技术的其它过程。接收模块930可以用于执行图5所示的实施例中由第一终端设备所执行的全部接收操作,例如S51、S54和S55,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块910可以用于执行图6所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作,例如S61和S66,和/或用于支持本文所描述的技术的其它过程。发送模块920可以用于执行图6所示的实施例中由第一终端设备所执行的全部发送操作,例如S61、S63、S67、S68和S69,和/或用于支持本文所描述的技术的其它过程。接收模块930可以用于执行图6所示的实施例中由第一终端设备所执行的全部接收操作,例如S61、S62和S65,和/或用于支持本文所描述的技术的其它过程。
另外,发送模块920和接收模块930可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,该功能模块可称为收发模块,例如收发模块可以用于执行图4所示的实施例至图6所示的实施例中的任一个实施例中由第一终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块是发送模块,而在执行接收操作时,可以认为收发模块是接收模块;或者,发送模块920和接收模块930也可以是两个功能模块,收发模块也可以视为这两个功能模块的统称,发送模块920用于完成发送操作,例如发送模块920可以用于执行图4所示的实施例至图6所示的实施例中的任一个实施例中由第一终端设备所执行的全部发送操作,接收模块930用于完成接收操作,例如接收模块930可以用于执行图4所示的实施例至图6所示的实施例中的任一个实施例中由第一终端设备所执行的全部接收操作。
其中,处理模块910,用于获得第一配置信息,所述第一配置信息用于第一终端设备900配置第一无线承载,所述第一无线承载为第一终端设备900和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;
处理模块910,还用于根据所述第一配置信息配置所述第一无线承载;
发送模块920,用于当处理模块910对所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
作为一种可选的实施方式,发送模块920用于通过如下方式向网络设备发送第一配置失败信息:
向网络设备发送RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
作为一种可选的实施方式,发送模块920,还用于向所述第二终端设备发送第二配置 失败信息,所述第二配置失败信息用于指示第一终端设备900对所述第一无线承载配置失败。
作为一种可选的实施方式,处理模块910用于通过如下方式获得第一配置信息:
通过接收模块930接收来自所述第二终端设备的所述第一配置信息。
作为一种可选的实施方式,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,处理模块910用于通过如下方式获得第一配置信息:
通过接收模块930接收来自所述网络设备的第二配置信息;
通过接收模块930接收来自所述第二终端设备的第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识;
根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
作为一种可选的实施方式,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
作为一种可选的实施方式,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
作为一种可选的实施方式,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,
接收模块930,还用于在处理模块910获得第一配置信息之前,接收来自所述第二终端设备的QoS信息,所述QoS信息用于指示请求在所述第二终端设备和第一终端设备900之间配置的无线承载的QoS;
发送模块920,还用于向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和第一终端设备900之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
作为一种可选的实施方式,处理模块910用于通过如下方式获得第一配置信息:
通过接收模块930接收来自所述网络设备的所述第一配置信息。
作为一种可选的实施方式,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,发送模块920,还用于向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
关于第一终端设备900所能实现的其他功能,可参考图4所示的实施例至图6所示的实施例中的任一个实施例的相关介绍,不多赘述。
图10为本申请实施例提供的通信装置1000的示意性框图。示例性地,通信装置1000 例如为第二终端设备1000。示例性地,第二终端设备1000例如为图4所示的实施例至图6所示的实施例中的任一个实施例所述的第二终端设备。
第二终端设备1000包括发送模块1020和接收模块1030。可选的,第二终端设备还可以包括处理模块1010。示例性地,第二终端设备1000可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述第二终端设备功能的组合器件、部件等。当第二终端设备1000是终端设备时,发送模块1020可以是发射器,发射器可以包括天线和射频电路等,接收模块1030可以是接收器,接收器可以包括天线和射频电路等,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可称为收发器,处理模块1010可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二终端设备1000是具有上述第二终端设备功能的部件时,发送模块1020可以是射频单元,接收模块也可以是射频单元,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可以是射频单元,处理模块1010可以是处理器(或者,处理电路),例如基带处理器。当第二终端设备1000是芯片系统时,发送模块1020可以是芯片(例如基带芯片)的输出接口、接收模块1030可以是芯片的输入接口(或者,如果输入接口和输出接口可以是同一接口,那么认为发送模块1020和接收模块1030是同一功能模块,即,芯片的输入输出接口)、处理模块1010可以是芯片系统的处理器(或者,处理电路),处理器可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件(或者,处理电路)实现,接收模块1030可以由收发器或收发器相关电路组件实现,发送模块1020可以由发射器或发射器相关电路组件实现。
例如,处理模块1010可以用于执行图4所示的实施例中由第二终端设备所执行的除了收发操作之外的全部操作,例如S41和S43,和/或用于支持本文所描述的技术的其它过程。发送模块1020可以用于执行图4所示的实施例中由第二终端设备所执行的全部发送操作,例如S41和S44,和/或用于支持本文所描述的技术的其它过程。接收模块1030可以用于执行图4所示的实施例中由第二终端设备所执行的全部接收操作,例如S41、S42和S49,和/或用于支持本文所描述的技术的其它过程。
又例如,处理模块1010可以用于执行图5所示的实施例中由第二终端设备所执行的除了收发操作之外的全部操作,例如S51和S53,和/或用于支持本文所描述的技术的其它过程。发送模块1020可以用于执行图5所示的实施例中由第二终端设备所执行的全部发送操作,例如S51和S55,和/或用于支持本文所描述的技术的其它过程。接收模块1030可以用于执行图5所示的实施例中由第二终端设备所执行的全部接收操作,例如S51、S52和S59,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块1010可以用于执行图6所示的实施例中由第二终端设备所执行的除了收发操作之外的全部操作,例如S61,和/或用于支持本文所描述的技术的其它过程。发送模块1020可以用于执行图6所示的实施例中由第二终端设备所执行的全部发送操作,例如S61和S62,和/或用于支持本文所描述的技术的其它过程。接收模块1030可以用于执行图6所示的实施例中由第二终端设备所执行的全部接收操作,例如S61、S67和S69,和/或用于支持本文所描述的技术的其它过程。
另外,关于发送模块1020和接收模块1030的实现方式,可参考对于发送模块920和接收模块930的实现方式的介绍。
其中,接收模块1030,用于接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备1000之间的无线承载,所述第一终端设备为第二终端设备1000提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,第二终端设备1000为所述数据传输过程的数据发送端;
发送模块1020,用于不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
作为一种可选的实施方式,接收模块1030,还用于接收来自所述网络设备的第四配置信息,所述第四配置信息用于第二终端设备1000配置所述第一无线承载。
作为一种可选的实施方式,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,
处理模块1010,用于为所述第一无线承载选择逻辑信道;
发送模块1020,还用于向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
作为一种可选的实施方式,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,
处理模块1010,用于为所述第一无线承载选择逻辑信道;
发送模块1020,还用于向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识。
作为一种可选的实施方式,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
作为一种可选的实施方式,接收模块1030,还用于接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于第二终端设备1000配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
作为一种可选的实施方式,发送模块1020,还用于向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在第二终端设备1000和所述第一终端设备之间配置的无线承载的QoS。
作为一种可选的实施方式,第二终端设备1000无法通过Uu口与网络设备通信。
关于第二终端设备1000所能实现的其他功能,可参考图4所示的实施例至图6所示的实施例中的任一个实施例的相关介绍,不多赘述。
图11为本申请实施例提供的通信装置1100的示意性框图。示例性地,通信装置1100 例如为网络设备1100。示例性地,网络设备1100例如为图4所示的实施例至图6所示的实施例中的任一个实施例所述的网络设备。
网络设备1100包括处理模块1110和接收模块1130。可选的,网络设备1100还包括发送模块1120。示例性地,网络设备1100可以是网络设备(例如,接入网设备),也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备1100是网络设备时,发送模块1120可以是发射器,发射器可以包括天线和射频电路等,接收模块1130可以是接收器,接收器可以包括天线和射频电路等,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可称为收发器,处理模块1110可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个CPU。当网络设备1100是具有上述网络设备功能的部件时,发送模块1120可以是射频单元,接收模块也可以是射频单元,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可以是射频单元,处理模块1110可以是处理器(或者,处理电路),例如基带处理器。当网络设备1100是芯片系统时,发送模块1120可以是芯片(例如基带芯片)的输出接口、接收模块1130可以是芯片的输入接口(或者,如果输入接口和输出接口可以是同一接口,那么认为发送模块1120和接收模块1130是同一功能模块,即,芯片的输入输出接口)、处理模块1110可以是芯片系统的处理器(或者,处理电路),处理器可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件(或者,处理电路)实现,接收模块1130可以由收发器或收发器相关电路组件实现,发送模块1120可以由发射器或发射器相关电路组件实现。
例如,处理模块1110可以用于执行图4所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如确定第四配置信息的操作,和/或用于支持本文所描述的技术的其它过程。发送模块1120可以用于执行图4所示的实施例中由网络设备所执行的全部发送操作,例如S42和S47,和/或用于支持本文所描述的技术的其它过程。接收模块1130可以用于执行图4所示的实施例中由网络设备所执行的全部接收操作,例如S46和S48,和/或用于支持本文所描述的技术的其它过程。
又例如,处理模块1110可以用于执行图5所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如确定第四配置信息的操作,和/或用于支持本文所描述的技术的其它过程。发送模块1120可以用于执行图5所示的实施例中由网络设备所执行的全部发送操作,例如S52和S54,和/或用于支持本文所描述的技术的其它过程。接收模块1130可以用于执行图5所示的实施例中由网络设备所执行的全部接收操作,例如S58,和/或用于支持本文所描述的技术的其它过程。
再例如,处理模块1110可以用于执行图6所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如S64,和/或用于支持本文所描述的技术的其它过程。发送模块1120可以用于执行图6所示的实施例中由网络设备所执行的全部发送操作,例如S65,和/或用于支持本文所描述的技术的其它过程。接收模块1130可以用于执行图6所示的实施例中由网络设备所执行的全部接收操作,例如S63和S68,和/或用于支持本文所描述的技术的其它过程。
另外,关于发送模块1120和接收模块1130的实现方式,可参考对于发送模块920和接收模块930的实现方式的介绍。
其中,接收模块1130,用于接收来自第一终端设备的第一配置失败信息;
处理模块1110,用于根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
作为一种可选的实施方式,接收模块1130用于通过如下方式接收来自第一终端设备的第一配置失败信息:
接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
作为一种可选的实施方式,发送模块1120,用于向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
作为一种可选的实施方式,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,发送模块1120,用于向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
作为一种可选的实施方式,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
作为一种可选的实施方式,接收模块1130,还用于接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
作为一种可选的实施方式,
处理模块1110,还用于根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
发送模块1120,用于向所述第一终端设备发送所述第一配置信息。
作为一种可选的实施方式,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
关于网络设备1100所能实现的其他功能,可参考图4所示的实施例至图6所示的实施例中的任一个实施例的相关介绍,不多赘述。
图12为本申请实施例提供的通信装置1200的示意性框图。示例性地,通信装置1200 例如为第二终端设备1200。示例性地,第二终端设备1200例如为图8所示的实施例所述的第二终端设备。
第二终端设备1200包括发送模块1220和处理模块1210。可选的,第二终端设备1200还包括接收模块1230。示例性地,第二终端设备1200可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述第二终端设备功能的组合器件、部件等。当第二终端设备1200是终端设备时,发送模块1220可以是发射器,发射器可以包括天线和射频电路等,接收模块1230可以是接收器,接收器可以包括天线和射频电路等,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可称为收发器,处理模块1210可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二终端设备1200是具有上述第二终端设备功能的部件时,发送模块1220可以是射频单元,接收模块也可以是射频单元,其中,发射器和接收器可以分别是不同的模块,或者,发射器和接收器可以设置在同一功能模块中,该功能模块可以是射频单元,处理模块1210可以是处理器(或者,处理电路),例如基带处理器。当第二终端设备1200是芯片系统时,发送模块1220可以是芯片(例如基带芯片)的输出接口、接收模块1230可以是芯片的输入接口(或者,如果输入接口和输出接口可以是同一接口,那么认为发送模块1220和接收模块1230是同一功能模块,即,芯片的输入输出接口)、处理模块1210可以是芯片系统的处理器(或者,处理电路),处理器可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块1210可以由处理器或处理器相关电路组件(或者,处理电路)实现,接收模块1230可以由收发器或收发器相关电路组件实现,发送模块1220可以由发射器或发射器相关电路组件实现。
例如,处理模块1210可以用于执行图8所示的实施例中由第二终端设备所执行的除了收发操作之外的全部操作,例如S81、S82~S84和S86,和/或用于支持本文所描述的技术的其它过程。发送模块1220可以用于执行图8所示的实施例中由第二终端设备所执行的全部发送操作,例如S81和S85,和/或用于支持本文所描述的技术的其它过程。接收模块1230可以用于执行图8所示的实施例中由第二终端设备所执行的全部接收操作,例如S81,和/或用于支持本文所描述的技术的其它过程。
另外,关于发送模块1220和接收模块1230的实现方式,可参考对于发送模块920和接收模块930的实现方式的介绍。
其中,处理模块1210,用于确定第一终端设备与第二终端设备1200之间的链路失败,且所述第二终端设备未处于网络覆盖范围内;
发送模块1220,用于不向网络设备发送用于指示链路失败的信息。
作为一种可选的实施方式,发送模块1220,还用于向所述第一终端设备发送请求消息,以请求重建所述链路。
作为一种可选的实施方式,所述第一终端设备为第二终端设备1200提供中继服务,处理模块1210,还用于重新选择能够为第二终端设备1200提供中继服务的终端设备。
关于第二终端设备1200所能实现的其他功能,可参考图8所示的实施例的相关介绍,不多赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备(例如,第一设备可以是终端设备)所执行的动作。
当该通信装置为终端设备时,图13示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图13中,终端设备以手机作为例子。如图13所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图13所示,终端设备包括收发单元1310和处理单元1320。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1310中用于实现接收功能的器件视为接收单元,将收发单元1310中用于实现发送功能的器件视为发送单元,即收发单元1310包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1310可用于执行上述图4所示的实施例中第一终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图4所示的实施例中第一终端设备上除了收发操作之外的其他操作。
或者,收发单元1310可用于执行上述图4所示的实施例中第二终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图4所示的实施例中第二终端设备上除了收发操作之外的其他操作。
或者,收发单元1310可用于执行上述图5所示的实施例中第一终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图5所示的实施例中第一终端设备上除了收发操作之外的其他操作。
或者,收发单元1310可用于执行上述图5所示的实施例中第二终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图5所示的实施例中第二终端设备上除了收发操作之外的其他操作。
或者,收发单元1310可用于执行上述图6所示的实施例中第一终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图6所示的实施例中第一终端设备上除了收 发操作之外的其他操作。
或者,收发单元1310可用于执行上述图6所示的实施例中第二终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图6所示的实施例中第二终端设备上除了收发操作之外的其他操作。
或者,收发单元1310可用于执行上述图8所示的实施例中第二终端设备侧的发送操作和接收操作,处理单元1320用于执行上述图8所示的实施例中第二终端设备上除了收发操作之外的其他操作。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图14所示的设备。作为一个例子,该设备可以完成类似于图9中处理模块910的功能。例如,上述实施例中的处理模块910可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的发送模块920可以是图14中的发送数据处理器1420,并完成相应的功能;上述实施例中的接收模块930可以是图14中接收数据处理器1430,并完成相应的功能。又例如,上述实施例中的处理模块1010可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的发送模块1020可以是图14中的发送数据处理器1420,并完成相应的功能;上述实施例中的接收模块1030可以是图14中接收数据处理器1430,并完成相应的功能。再例如,上述实施例中的处理模块1210可以是图14中的该处理器1410,并完成相应的功能;上述实施例中的发送模块1220可以是图14中的发送数据处理器1420,并完成相应的功能;上述实施例中的接收模块1230可以是图14中接收数据处理器1430,并完成相应的功能。虽然图14中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图15示出本实施例的另一种形式。处理装置1500中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1503,接口1504。其中,处理器1503完成上述处理模块910的功能,接口1504完成上述发送模块920和接收模块930的功能。或者,处理器1503完成上述处理模块1010的功能,接口1504完成上述发送模块1020和接收模块1030的功能。或者,处理器1503完成上述处理模块1210的功能,接口1504完成上述发送模块1220和接收模块1230的功能。作为另一种变形,该调制子系统包括存储器1506、处理器1503及存储在存储器1506上并可在处理器上运行的程序,该处理器1503执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1506可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1500中,只要该存储器1506可以连接到所述处理器1503即可。
本申请实施例中的装置为网络设备时,该装置可以如图16所示。装置1600包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1610和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1620。所述RRU 1610可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图11中的发送模块1120和接收模块1130对应。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可 以包括至少一个天线1611和射频单元1612。所述RRU 1610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1620部分主要用于进行基带处理,对基站进行控制等。所述RRU 1610与BBU 1620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1620为基站的控制中心,也可以称为处理模块,可以与图11中的处理模块1110对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述BBU 1620还包括存储器1621和处理器1622。所述存储器1621用以存储必要的指令和数据。所述处理器1622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1621和处理器1622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供第一通信系统。第一通信系统可以包括上述的图4所示的实施例至图6所示的实施例中的任一个实施例所涉及的第一终端设备,包括上述的图4所示的实施例至图6所示的实施例中的任一个实施例所涉及的第二终端设备,以及包括上述的图4所示的实施例至图6所示的实施例中的任一个实施例所涉及的网络设备。第一终端设备例如为图9中的第一终端设备900,第二终端设备例如为图10中的第二终端设备1000,网络设备例如为图11中的网络1100。
本申请实施例提供第二通信系统。第一通信系统可以包括上述的图8所示的实施例所涉及的第二终端设备。第二终端设备例如为图12中的第二终端设备1200。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算 机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图8所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图4所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实 施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图8所示的实施例中与第二终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案的部分后者全部可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)、通用串行总线闪存盘(universal serial bus flash disk)、移动硬盘、或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。
结合以上,本申请还提供如下实施例:
实施例1、一种通信方法,包括:
获得第一配置信息,所述第一配置信息用于第一终端设备配置第一无线承载,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;
根据所述第一配置信息配置所述第一无线承载;
当所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
实施例2、根据实施例1所述的方法,向网络设备发送第一配置失败信息,包括:
向网络设备发送RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
实施例3、根据实施例1或实施例2所述的方法,所述方法还包括:
向所述第二终端设备发送第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备对所述第一无线承载配置失败。
实施例4、根据实施例1~实施例3中的任一个实施例所述的方法,获得第一配置信息,包括:
接收来自所述第二终端设备的所述第一配置信息。
实施例5、根据实施例4所述的方法,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例6、根据实施例1~实施例3中的任一个实施例所述的方法,获得第一配置信息, 包括:
接收来自所述网络设备的第二配置信息;
接收来自所述第二终端设备的第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识;
根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
实施例7、根据实施例6所述的方法,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
实施例8、根据实施例6或实施例7所述的方法,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
实施例9、根据实施例6~实施例8中的任一个实施例所述的方法,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例10、根据实施例1~实施例3中的任一个实施例所述的方法,在获得第一配置信息之前,还包括:
接收来自所述第二终端设备的QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS;
向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
实施例11、根据实施例10所述的方法,获得第一配置信息,包括:
接收来自所述网络设备的所述第一配置信息。
实施例12、根据实施例10或实施例11所述的方法,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例13、根据实施例11或实施例12所述的方法,所述方法还包括:
向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
实施例14、一种通信方法,包括:
接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端;
不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
实施例15、根据实施例14所述的方法,所述方法还包括:
接收来自所述网络设备的第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
实施例16、根据实施例15所述的方法,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例17、根据实施例15或实施例16所述的方法,所述方法还包括:
为所述第一无线承载选择逻辑信道;
向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
实施例18、根据实施例17所述的方法,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例19、根据实施例15或实施例16所述的方法,所述方法还包括:
为所述第一无线承载选择逻辑信道;
向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识。
实施例20、根据实施例19所述的方法,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
实施例21、根据实施例14所述的方法,所述方法还包括:
接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
实施例22、根据实施例21所述的方法,所述方法还包括:
向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
实施例23、根据实施例14~实施例22中的任一个实施例所述的方法,所述第二终端设备无法通过Uu口与网络设备通信。
实施例24、一种通信方法,包括:
接收来自第一终端设备的第一配置失败信息;
根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
实施例25、根据实施例24所述的方法,接收来自第一终端设备的第一配置失败信息,包括:
接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配 置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
实施例26、根据实施例24或实施例25所述的方法,所述方法还包括:
向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
实施例27、根据实施例26所述的方法,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例28、根据实施例24~实施例26中的任一个实施例所述的方法,所述方法还包括:
向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
实施例29、根据实施例28所述的方法,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例30、根据实施例24或实施例25所述的方法,所述方法还包括:
接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
实施例31、根据实施例30所述的方法,所述方法还包括:
根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
向所述第一终端设备发送所述第一配置信息。
实施例32、根据实施例31所述的方法,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例33、一种通信方法,包括:
第二终端设备确定第一终端设备与所述第二终端设备之间的链路失败,且所述第二终端设备未处于网络覆盖范围内;
所述第二终端设备不向网络设备发送用于指示链路失败的信息。
实施例34、根据实施例33所述的方法,所述方法还包括:
所述第二终端设备向所述第一终端设备发送请求消息,以请求重建所述链路。
实施例35、根据实施例33所述的方法,所述第一终端设备为所述第二终端设备提供中继服务,所述方法还包括:
所述第二终端设备重新选择能够为所述第二终端设备提供中继服务的终端设备。
实施例36、一种通信装置,包括:
处理模块,用于获得第一配置信息,所述第一配置信息用于所述通信装置配置第一无线承载,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;
所述处理模块,还用于根据所述第一配置信息配置所述第一无线承载;
发送模块,用于当所述处理模块对所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
实施例37、根据实施例36所述的通信装置,所述发送模块用于通过如下方式向网络设备发送第一配置失败信息:
向网络设备发送RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
实施例38、根据实施例36或实施例37所述的通信装置,所述发送模块,还用于向所述第二终端设备发送第二配置失败信息,所述第二配置失败信息用于指示所述通信装置对所述第一无线承载配置失败。
实施例39、根据实施例36~实施例38中的任一个实施例所述的通信装置,所述通信装置还包括接收模块,所述处理模块用于通过如下方式获得第一配置信息:
通过所述接收模块接收来自所述第二终端设备的所述第一配置信息。
实施例40、根据实施例39所述的通信装置,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例41、根据实施例36~实施例38中的任一个实施例所述的通信装置,所述通信装置还包括接收模块,所述处理模块用于通过如下方式获得第一配置信息:
通过所述接收模块接收来自所述网络设备的第二配置信息;
通过所述接收模块接收来自所述第二终端设备的第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识;
根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
实施例42、根据实施例41所述的通信装置,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
实施例43、根据实施例41或实施例42所述的通信装置,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
实施例44、根据实施例41~实施例43中的任一个实施例所述的通信装置,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例45、根据实施例36~实施例38中的任一个实施例所述的通信装置,所述通信装置还包括接收模块,
所述接收模块,用于在所述处理模块获得第一配置信息之前,接收来自所述第二终端 设备的QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述通信装置之间配置的无线承载的QoS;
所述发送模块,还用于向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和所述通信装置之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
实施例46、根据实施例45所述的通信装置,所述处理模块用于通过如下方式获得第一配置信息:
接收来自所述网络设备的所述第一配置信息。
实施例47、根据实施例45或实施例46所述的通信装置,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例48、根据实施例46或实施例47所述的通信装置,所述发送模块,还用于向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
实施例49、一种通信装置,包括:
接收模块,用于接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和所述通信装置之间的无线承载,所述第一终端设备为所述通信装置提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述通信装置为所述数据传输过程的数据发送端;
发送模块,用于不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
实施例50、根据实施例49所述的通信装置,所述接收模块,还用于接收来自所述网络设备的第四配置信息,所述第四配置信息用于所述通信装置配置所述第一无线承载。
实施例51、根据实施例50所述的通信装置,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例52、根据实施例50或实施例51所述的通信装置,所述通信装置还包括处理模块,
所述处理模块,用于为所述第一无线承载选择逻辑信道;
所述发送模块,还用于向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
实施例53、根据实施例52所述的通信装置,所述第一配置信息包括第一公共配置, 所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例54、根据实施例50或实施例51所述的通信装置,所述通信装置还包括处理模块,
所述处理模块,用于为所述第一无线承载选择逻辑信道;
所述发送模块还用于向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识。
实施例55、根据实施例54所述的通信装置,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
实施例56、根据实施例49所述的通信装置,所述接收模块,还用于接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于所述通信装置配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
实施例57、根据实施例56所述的通信装置,所述发送模块,还用于向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在所述通信装置和所述第一终端设备之间配置的无线承载的QoS。
实施例58、根据实施例49~实施例57中的任一个实施例所述的通信装置,所述通信装置无法通过Uu口与网络设备通信。
实施例59、一种通信装置,包括:
接收模块,用于接收来自第一终端设备的第一配置失败信息;
处理模块,用于根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
实施例60、根据实施例59所述的通信装置,所述接收模块用于通过如下方式接收来自第一终端设备的第一配置失败信息:
接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
实施例61、根据实施例59或实施例60所述的通信装置,所述通信装置还包括发送模块,用于向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
实施例62、根据实施例61所述的通信装置,所述第四配置信息包括第三发送配置和第三公共配置,其中,
所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例63、根据实施例59~实施例61中的任一个实施例所述的通信装置,所述通信 装置还包括发送模块,用于向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
实施例64、根据实施例63所述的通信装置,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例65、根据实施例63或实施例65所述的通信装置,所述接收模块,还用于接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
实施例66、根据实施例65所述的通信装置,所述通信装置还包括发送模块,
所述处理模块,还用于根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
所述发送模块,用于向所述第一终端设备发送所述第一配置信息。
实施例67、根据实施例66所述的通信装置,所述第一配置信息包括第一发送配置和第一公共配置,其中,
所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
实施例68、一种通信装置,包括:
处理模块,用于确定第一终端设备与所述通信装置之间的链路失败,且所述通信装置未处于网络覆盖范围内;
发送模块,用于不向网络设备发送用于指示链路失败的信息。
实施例69、根据实施例68所述的通信装置,所述发送模块,还用于向所述第一终端设备发送请求消息,以请求重建所述链路。
实施例70、根据实施例68所述的方法,所述第一终端设备为所述通信装置提供中继服务,所述处理模块,还用于重新选择能够为所述通信装置提供中继服务的终端设备。
实施例71、一种通信装置,其中,所述通信装置包括处理器和收发器(或,发射器和处理器),所述处理器和所述收发器(或,发射器和处理器)耦合,能够执行如实施例1至实施例13中的任一个实施例所述的方法,或执行如实施例14至实施例23中的任一个实施例所述的方法,或执行如实施例33至实施例35中的任一个实施例所述的方法。
实施例72、一种通信装置,其中,所述通信装置包括处理器和收发器(或,发射器和处理器),所述处理器和所述收发器(或,发射器和处理器)耦合,能够执行如实施例24至实施例32中的任一个实施例所述的方法。
实施例73、一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述实施例1至实施例13中的任一个实施例所述的方法,或执行如实施例14至实施例23中的任一个实施例所述的方法,或执行如实施例33至实施例35中的任一个实施例所述的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
实施例74、一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行 上述实施例24至实施例32中的任一个实施例所述的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
实施例75、一种通信系统,其中,所述通信系统包括如实施例36至实施例48中的任一个实施例所述的通信装置,包括如实施例49至实施例58中的任一个实施例所述的通信装置,以及包括如实施例59至实施例67中的任一个实施例所述的通信装置。
实施例76、一种通信系统,其中,所述通信系统包括如实施例68至实施例70中的任一个实施例所述的通信装置。
实施例77、一种计算机可读存储介质,其中,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如实施例1至实施例13中的任一个实施例所述的方法,或执行如实施例14至实施例23中的任一个实施例所述的方法,或执行如实施例33至实施例35中的任一个实施例所述的方法。
实施例78、一种计算机可读存储介质,其中,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如实施例24至实施例32中的任一个实施例所述的方法。
实施例79、一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现实施例1至实施例13中的任一个实施例所述的方法,或实现如实施例14至实施例23中的任一个实施例所述的方法,或实现如实施例33至实施例35中的任一个实施例所述的方法。
实施例80、一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现实施例24至实施例32中的任一个实施例所述的方法。
尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    获得第一配置信息,所述第一配置信息用于第一终端设备配置第一无线承载,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第二终端设备为数据发送端;
    根据所述第一配置信息配置所述第一无线承载;
    当所述第一无线承载配置失败时,向网络设备发送第一配置失败信息。
  2. 根据权利要求1所述的方法,其特征在于,向网络设备发送第一配置失败信息,包括:
    向网络设备发送无线资源控制RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备对所述第一无线承载配置失败。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,获得第一配置信息,包括:
    接收来自所述第二终端设备的所述第一配置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:服务数据适配协议SDAP对应的服务质量流标识QFI,分组数据汇聚协议PDCP和无线链路控制RLC的序列号SN长度,或,是否使用头压缩。
  6. 根据权利要求1~3任一项所述的方法,其特征在于,获得第一配置信息,包括:
    接收来自所述网络设备的第二配置信息;
    接收来自所述第二终端设备的第一信息,所述第一信息包括所述第一无线承载对应的逻辑信道的标识;
    根据所述第二配置信息和所述第一信息,获得所述第一配置信息。
  7. 根据权利要求5所述的方法,其特征在于,所述第一信息是所述第二终端设备根据来自所述网络设备的第四配置信息得到的,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
  8. 根据权利要求5~7任一项所述的方法,其特征在于,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
  9. 根据权利要求5~7任一项所述的方法,其特征在于,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  10. 根据权利要求1~3任一项所述的方法,其特征在于,在获得第一配置信息之前,还包括:
    接收来自所述第二终端设备的服务质量QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS;
    向所述网络设备发送第二信息,所述第二信息用于请求配置所述第二终端设备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括所述QoS信息。
  11. 根据权利要求10所述的方法,其特征在于,获得第一配置信息,包括:
    接收来自所述网络设备的所述第一配置信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一配置信息包括第一发送配置和第一公共配置,其中,
    所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,健壮性包头压缩RoHC压缩轮廓配置,SDAP的包头是否出现,与侧行链路SL上的QFI的映射关系,或,发送类型;
    所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  13. 根据权利要求11~12任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括所述第一配置信息的部分内容或全部内容。
  14. 一种通信方法,其特征在于,包括:
    接收来自第一终端设备的第二配置失败信息,所述第二配置失败信息用于指示所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端;
    不向网络设备发送用于指示所述第一终端设备配置所述第一无线承载失败的信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
  16. 根据权利要求15所述的方法,其特征在于,所述第四配置信息包括第三发送配置和第三公共配置,其中,
    所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
    所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    为所述第一无线承载选择逻辑信道;
    向所述第一终端设备发送第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载,且所述第一配置信息包括所述第一无线承载对应的逻辑信道的标识。
  18. 根据权利要求17所述的方法,其特征在于,所述第一配置信息包括第一公共配置,所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  19. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    为所述第一无线承载选择逻辑信道;
    向所述第一终端设备发送第一信息,所述第一信息包括所述第一无线承载对应的逻辑 信道的标识。
  20. 根据权利要求19所述的方法,其特征在于,所述第一信息还包括所述第一无线承载对应的QFI,和/或,所述第一无线承载在Uu口对应的标识和在PC5口对应的标识之间的对应关系。
  21. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第三配置信息,所述第三配置信息用于所述第二终端设备配置所述第一无线承载,所述第三配置信息包括第一配置信息的部分内容或全部内容,所述第一配置信息用于所述第一终端设备配置所述第一无线承载。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
  23. 根据权利要求14~22任一项所述的方法,其特征在于,所述第二终端设备无法通过Uu口与网络设备通信。
  24. 一种通信方法,其特征在于,包括:
    接收来自第一终端设备的第一配置失败信息;
    根据所述第一配置失败信息确定所述第一终端设备配置第一无线承载失败,所述第一无线承载为所述第一终端设备和第二终端设备之间的无线承载,所述第一终端设备为所述第二终端设备提供中继服务,且所述第一终端设备为通过所述第一无线承载所进行的数据传输过程的数据接收端,所述第二终端设备为所述数据传输过程的数据发送端。
  25. 根据权利要求24所述的方法,其特征在于,接收来自第一终端设备的第一配置失败信息,包括:
    接收来自所述第一终端设备的RRC消息,所述RRC消息包括第一信元,所述第一配置失败信息占用所述第一信元中的预留比特,所述第一信元用于指示失败原因。
  26. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送第四配置信息,所述第四配置信息用于所述第二终端设备配置所述第一无线承载。
  27. 根据权利要求26所述的方法,其特征在于,所述第四配置信息包括第三发送配置和第三公共配置,其中,
    所述第三发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
    所述第三公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  28. 根据权利要求24~26中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二配置信息,所述第二配置信息用于所述第一终端设备配置所述第一无线承载。
  29. 根据权利要求28所述的方法,其特征在于,所述第二配置信息包括接收配置和第二公共配置,其中,所述接收配置包括PDCP重排序定时器,所述第二公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  30. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的第二信息,所述第二信息用于请求配置所述第二终端设 备和所述第一终端设备之间的双向传输的无线承载,且所述第二信息包括QoS信息,所述QoS信息用于指示请求在所述第二终端设备和所述第一终端设备之间配置的无线承载的QoS。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    根据所述QoS信息确定第一配置信息,所述第一配置信息用于所述第一终端设备配置所述第一无线承载;
    向所述第一终端设备发送所述第一配置信息。
  32. 根据权利要求31所述的方法,其特征在于,所述第一配置信息包括第一发送配置和第一公共配置,其中,
    所述第一发送配置包括如下的一项或多项:PDCP丢弃定时器,RoHC压缩轮廓配置,SDAP的包头是否出现,与SL上的QFI的映射关系,或,发送类型;
    所述第一公共配置包括如下的一项或多项:SDAP对应的QFI,PDCP和RLC的SN长度,或,是否使用头压缩。
  33. 一种通信方法,其特征在于,包括:
    第二终端设备确定第一终端设备与所述第二终端设备之间的链路失败,且所述第二终端设备未处于网络覆盖范围内;
    所述第二终端设备不向网络设备发送用于指示链路失败的信息。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送请求消息,以请求重建所述链路。
  35. 根据权利要求33所述的方法,其特征在于,所述第一终端设备为所述第二终端设备提供中继服务,所述方法还包括:
    所述第二终端设备重新选择能够为所述第二终端设备提供中继服务的终端设备。
  36. 一种通信装置,其特征在于,包括接收模块、发送模块和处理模块,所述接收模块、所述发送模块和所述处理模块耦合,能够执行如权利要求1~13任一项所述的方法,或执行如权利要求14~23任一项所述的方法,或执行如权利要求33~35任一项所述的方法。
  37. 一种通信装置,其特征在于,包括接收模块、发送模块和处理模块,所述接收模块、所述发送模块和所述处理模块耦合,能够执行如权利要求24~32任一项所述的方法。
  38. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述处理器和所述收发器耦合,能够执行如权利要求1~13任一项所述的方法,或执行如权利要求14~23任一项所述的方法,或执行如权利要求33~35任一项所述的方法。
  39. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述处理器和所述收发器耦合,能够执行如权利要求24~32任一项所述的方法。
  40. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于执行如权利要求1~13任一项所述的方法,或执行如权利要求14~23任一项所述的方法,或执行如权利要求33~35任一项所述的方法。
  41. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于执行如权利要求24~32任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,所述计算机执行如权利要求1~13中任意一项所述的方法,或者使得所述计算机执行如权利要求14~23中任意一项所述的方法,或者 使得所述计算机执行如权利要求24~32中任意一项所述的方法,或者使得所述计算机执行如权利要求33~35中任意一项所述的方法。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品用于存储计算机程序,所述计算机程序被计算机执行时,所述计算机执行如权利要求1~13中任意一项所述的方法,或者使得所述计算机执行如权利要求14~23中任意一项所述的方法,或者使得所述计算机执行如权利要求24~32中任意一项所述的方法,或者使得所述计算机执行如权利要求33~35中任意一项所述的方法。
PCT/CN2021/078791 2020-05-25 2021-03-02 一种通信方法及装置 WO2021238318A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010450671.3 2020-05-25
CN202010450671 2020-05-25
CN202010724936.4A CN113727368A (zh) 2020-05-25 2020-07-24 一种通信方法及装置
CN202010724936.4 2020-07-24

Publications (1)

Publication Number Publication Date
WO2021238318A1 true WO2021238318A1 (zh) 2021-12-02

Family

ID=78672254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078791 WO2021238318A1 (zh) 2020-05-25 2021-03-02 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN113727368A (zh)
WO (1) WO2021238318A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114938710A (zh) * 2022-03-28 2022-08-23 北京小米移动软件有限公司 侧行链路sidelink通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347772A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 资源分配方法及装置
CN111096058A (zh) * 2019-12-02 2020-05-01 北京小米移动软件有限公司 无线链路失败的处理方法、装置及计算机存储介质
WO2020091443A1 (en) * 2018-11-01 2020-05-07 Lg Electronics Inc. Deactivation of configured grant and initiation of connection request upon detection of sidelink failure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924962B (zh) * 2017-03-24 2021-05-04 华为技术有限公司 信息指示的方法和装置
JP6776459B2 (ja) * 2017-05-08 2020-10-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるv2x通信を遂行する方法及びそのための装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347772A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 资源分配方法及装置
WO2020091443A1 (en) * 2018-11-01 2020-05-07 Lg Electronics Inc. Deactivation of configured grant and initiation of connection request upon detection of sidelink failure
CN111096058A (zh) * 2019-12-02 2020-05-01 北京小米移动软件有限公司 无线链路失败的处理方法、装置及计算机存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI (RAPPORTEUR): "Summary of [Post109e# 54][V2X] RRC Open Issues", 3GPP DRAFT; R2-2002918, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200420 - 20200430, 18 April 2020 (2020-04-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051876631 *
MEDIATEK INC.: "Configuration failure handling on PC5", 3GPP DRAFT; R2-2002722, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online Meeting ;20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051870930 *

Also Published As

Publication number Publication date
CN113727368A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN109787791B (zh) 通信方法及通信设备
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
CN112889258B (zh) 一种通信方法及装置
US20220174546A1 (en) User Plane Information Reporting Method And Apparatus
WO2020063108A1 (zh) 数据传输的方法和装置
WO2019019133A1 (zh) 命令指示方法及装置、信息交互方法及装置
WO2022082679A1 (zh) 一种通信方法及相关设备
US20230254922A1 (en) Multipath transmission method and communication apparatus
WO2022110168A1 (zh) 通信配置的方法和通信装置
WO2019029642A1 (zh) 通信方法、基站、终端设备和系统
US20230142993A1 (en) Method for sidelink relay communication under dual connectivity
WO2021197269A1 (zh) 一种临近服务的数据传输方法、设备及系统
CN113746585A (zh) 授时方法和通信装置
WO2021258766A1 (zh) 一种配置终端设备的方法及设备
CN113228717B (zh) 一种通信方法及装置
WO2021238318A1 (zh) 一种通信方法及装置
US20210144801A1 (en) Wireless communication method, communication device, chip, and communication system
WO2022104531A1 (zh) 连接方法及相关装置
WO2021213014A1 (zh) 一种通信方法及装置
US20220191951A1 (en) Method and apparatus for establishing radio bearer
WO2021164287A1 (zh) 一种通信方法及装置
WO2021097689A1 (zh) 一种通信方法、装置及设备
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2023246746A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812739

Country of ref document: EP

Kind code of ref document: A1