WO2022082679A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2022082679A1
WO2022082679A1 PCT/CN2020/123008 CN2020123008W WO2022082679A1 WO 2022082679 A1 WO2022082679 A1 WO 2022082679A1 CN 2020123008 W CN2020123008 W CN 2020123008W WO 2022082679 A1 WO2022082679 A1 WO 2022082679A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
host
node
target
iab node
Prior art date
Application number
PCT/CN2020/123008
Other languages
English (en)
French (fr)
Inventor
刘菁
朱元萍
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3196490A priority Critical patent/CA3196490A1/en
Priority to EP20958261.8A priority patent/EP4221324A4/en
Priority to PCT/CN2020/123008 priority patent/WO2022082679A1/zh
Priority to CN202080106589.7A priority patent/CN116548011A/zh
Publication of WO2022082679A1 publication Critical patent/WO2022082679A1/zh
Priority to US18/304,756 priority patent/US20230262528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points

Definitions

  • the present application relates to the field of communication technologies, and more particularly, to a communication method and related equipment.
  • IAB Integrated access and backhaul
  • the IAB node can choose between different IAB hosts. switch.
  • the IAB node In order to reduce the impact on the data transmission of the child node during the IAB node switching process, the IAB node generally needs to obtain the configuration information of the IAB node under the target IAB host in advance, so as to facilitate the establishment (or re-establishment) between the IAB node and the target IAB host. F1 connection between.
  • the CU of the target IAB host first transmits the configuration information of the IAB node under the target IAB host to the CU of the source IAB host, and the CU of the source IAB host then transmits the configuration information to the IAB node.
  • the CU hosted by the IAB will cause a large delay in transmitting the configuration information.
  • the present application provides a communication method and related equipment, which can reduce data transmission delay and data transmission interruption.
  • the present application provides a communication method, the method may include: a CU of a first IAB host determines a quality of service (QoS) attribute corresponding to an F1 interface application protocol (F1 application protocol, F1AP) message, or a service corresponding to user plane data.
  • QoS quality of service
  • F1 application protocol F1 application protocol
  • F1AP F1 application protocol
  • a quality of service (QoS) attribute where the F1 interface is a communication interface between the CU of the first IAB host and the distributed unit DU of the IAB node.
  • the CU of the first IAB host sends the F1AP message and the QoS attribute corresponding to the F1AP message to the DU of the second IAB host, or sends the user plane data and the user plane data corresponding to the user plane data to the DU of the second IAB host QoS attributes.
  • exemplary beneficial effects include: enabling the DU of the second IAB host to forward the F1AP message or user plane data from the CU of the first IAB host, on the one hand, it can reduce the inability of the DU of the first IAB host to forward the F1AP message or user plane data from the CU of the first IAB host.
  • the data transmission is interrupted due to the F1AP message or user plane data of the CU hosted by the first IAB.
  • the link between the CU of the first IAB host and the DU of the second IAB host is used, it is not necessary to go through the CU of the second IAB host, thereby reducing the data transmission delay.
  • the CU of the first IAB host may determine the QoS attribute corresponding to the F1AP message according to the correspondence between the F1AP message type and the QoS attribute.
  • the CU of the first IAB host may determine the QoS attribute corresponding to the user plane data according to the correspondence between the user plane data and the QoS attribute.
  • exemplary beneficial effects include: the second IAB Donor-DU can be configured to the second IAB Donor-DU according to the corresponding relationship between the QoS attributes and routing configuration of the second IAB Donor-DU, and/or , the corresponding relationship between QoS attributes and bearer configuration, correctly route the F1AP message or user plane data from the first IAB Donor-CU, and/or, bearer mapping.
  • the method includes: the CU of the first IAB host sends an F1AP message type indication and a QoS attribute to the CU of the second IAB host, where the F1AP message type indication and the QoS attribute have a corresponding relationship.
  • the CU of the first IAB host may send the user plane data indication and the QoS attribute to the CU of the second IAB host, where the user plane data indication and the QoS attribute have a corresponding relationship.
  • exemplary beneficial effects include: because the second IAB Donor-CU can indicate the correspondence between the received F1AP message type and the QoS attribute or the user plane data indication and the QoS attribute. , re-send the correspondence between QoS attributes and routing configuration to the second IAB Donor-DU, and/or, the correspondence between QoS attributes and bearer configuration, so that the second IAB Donor-DU can be configured according to the new QoS attributes and routing
  • the corresponding relationship, and/or the corresponding relationship between the QoS attribute and the bearer configuration perform routing and/or bearer mapping on the F1AP message or user plane data from the first IAB Donor-CU.
  • the method includes: a first transport network layer association (transport network layer association, TNLA) between the CU of the first IAB host and the CU of the first IAB host and the DU of the IAB node.
  • TNLA transport network layer association
  • the IAB node sends the F1AP message or user plane data
  • the first TNLA corresponds to an internet protocol (internet protocol, IP) address allocated by the first IAB host for the IAB node.
  • IP internet protocol
  • the CU of the first IAB host sends the F1AP message or user plane data to the IAB node through a second TNLA between the CU of the first IAB host and the DU of the IAB node, the second TNLA and the second TNLA It corresponds to the IP address assigned by the IAB host to the IAB node.
  • exemplary beneficial effects include: the F1AP message or user plane data generated by the first IAB donor-CU can pass through the TNLA between the first IAB donor-CU and the IAB-DU, and via the second IAB The donor-DU is sent to the IAB node.
  • the method includes: the CU of the first IAB host receives an IP address allocated for the IAB node by the second IAB host from the CU of the second IAB host.
  • the CU of the first IAB host sends the F1AP message or user plane data to the IAB node through the second transport network layer association TNLA between the CU of the first IAB host and the DU of the IAB node, including: the first IAB
  • the host CU sends the F1AP message or user plane data to the IAB node through the second TNLA by using the IP address allocated by the second IAB host for the IAB node.
  • exemplary beneficial effects include: enabling the first IAB donor-CU to use the IP address allocated for the IAB node by the second IAB host to send and receive data through the second TNLA.
  • the present application provides a communication method, the method may include: the CU of the second access backhaul integrated IAB host sends an F1AP message type indication and QoS attribute to the CU of the first IAB host, the F1AP message type indication There is a corresponding relationship with the QoS attribute, and the corresponding relationship is used to determine the QoS attribute corresponding to the F1AP message of the CU of the first IAB host, wherein the F1 interface is the distributed unit of the CU of the first IAB host and the IAB node Communication interface between DUs.
  • the centralized unit CU of the second access and backhaul integrated IAB host sends a user plane data indication and a QoS attribute to the CU of the first IAB host, where the user plane data indication and the QoS attribute have a corresponding relationship, and the corresponding relationship uses Determination of the QoS attribute corresponding to the user plane data of the CU of the first IAB host.
  • the method includes: the CU of the second IAB host sends an IP address allocated by the second IAB host to the IAB node to the CU of the first IAB host, where the IP address is used for the F1AP message or The transmission of the user plane data.
  • the present application provides a communication method, the method may include: the centralized unit CU of the second IAB host receives an F1AP message type indication and QoS attribute from the CU of the first IAB host, the F1AP message type indication and the The QoS attributes have a corresponding relationship, wherein the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the CU of the second IAB host receives the user plane data indication and the QoS attribute from the CU of the first IAB host, and the user plane data indication and the QoS attribute have a corresponding relationship.
  • the CU of the second IAB host sends the routing configuration and bearer configuration corresponding to the QoS attribute to the DU of the second IAB host according to the corresponding relationship.
  • the method includes: the CU of the second IAB host sends the IP address allocated by the first IAB host for the IAB node and the second IAB host is the IAB node to the DU of the second IAB host
  • the assigned backhaul adaptation protocol (bakhaul adaptation protocol, BAP) address, the IP address and the BAP address have a corresponding relationship, and the corresponding relationship is used to determine the BAP address of the target node corresponding to the F1AP message.
  • the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the present application provides a communication method, the method may include: a distributed unit DU of the second IAB host receives an F1AP message from the CU of the first IAB host and a QoS attribute corresponding to the F1AP message, or receives an F1AP message from the first IAB host User plane data of a CU of an IAB host and QoS attributes corresponding to the user plane data, wherein the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the DU of the second IAB host may perform routing and bearer mapping on the F1AP message or user plane data according to the routing configuration and bearer configuration corresponding to the QoS attribute.
  • the method includes that the DU of the second IAB host receives an IP address allocated by the first IAB host for the IAB node from the CU of the second IAB host and the second IAB host allocates the IP address for the IAB node.
  • the BAP address of the IP address has a corresponding relationship with the BAP address.
  • the DU of the second IAB host can determine the BAP address of the target node corresponding to the F1AP message or the user plane data according to the corresponding relationship, wherein the F1 interface is the one between the CU of the first IAB host and the DU of the IAB node communication interface between.
  • the present application provides a communication method, the method may include: an IAB node using an IP address allocated for the IAB node by a second IAB host, establishing between the CU of the first IAB host and the DU of the IAB node First TNLA. Afterwards, the IAB node receives the F1AP message or user plane data from the CU of the first IAB host through the first TNLA, where the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the F1AP message type includes a user equipment-related type and a non-user-equipment-related type.
  • the user plane data indication is an identifier or an IP address of a general packet radio service user plane tunneling protocol tunnel of the F1 interface.
  • the QoS attribute is a differentiated services code point (differentiated services code point, DSCP), and/or a flow label (flow label).
  • DSCP differentiated services code point
  • flow label flow label
  • the F1AP message carries configuration information of the DU of the IAB node under the first IAB host.
  • the present application provides a communication method, the method may include: the IAB node obtains the configuration information of the DU of the IAB node under the host of the target IAB, and the mobile terminal (mobile termination, MT) of the IAB node obtains the configuration information from the source After the IAB host switches to the target IAB host, the configuration information is activated.
  • the IAB node obtains the configuration information of the DU of the IAB node under the host of the target IAB
  • the mobile terminal (mobile termination, MT) of the IAB node obtains the configuration information from the source After the IAB host switches to the target IAB host, the configuration information is activated.
  • exemplary beneficial effects include: the IAB node can be made to disable the configuration information of the IAB node's DU under the target IAB host during the handover process of the MT part, so that the MT resources of the IAB node and the The resources of the DUs of the IAB node can be allocated in coordination.
  • the IAB node may receive the configuration information of the distributed unit DU of the IAB node under the target IAB host from the target IAB host.
  • exemplary beneficial effects include: the establishment process of the F1 interface can be reduced, and the handover efficiency can be improved.
  • the method further includes: the IAB node receiving second information from the target IAB host, where the second information is used to activate the configuration information.
  • the IAB node activating the configuration information includes: the IAB node activates the configuration information according to the second information.
  • exemplary beneficial effects include: the activation of the configuration information can be flexibly controlled by the target IAB host.
  • the method further includes: the IAB node receiving at least one configuration information from the network management device.
  • Obtaining, by the IAB node, configuration information of the DU of the IAB node under the host of the target IAB includes: the IAB node determining the configuration information from the at least one configuration information.
  • the method includes: the IAB node sends request information for establishing the F1 interface to the target IAB host, where the request information includes configuration information of the DU of the IAB node under the target IAB host.
  • the IAB node receives a response message to the request message from the target IAB host.
  • the method includes: the IAB node uses the IP address allocated by the target IAB host for the IAB node, and establishes a first transport network layer association between the CU of the target IAB host and the DU of the IAB node TNLA.
  • the IAB node sending the request information for establishing the F1 interface to the target IAB host includes: the IAB node sending the request information for establishing the F1 interface to the target IAB host through the first TNLA.
  • the IAB node receiving the response information of the request information from the target IAB host includes: the IAB node receiving the response information of the request information from the target IAB host through the first TNLA.
  • the method before the mobile terminal MT of the IAB node is switched from the source IAB host to the target IAB host, the method includes: the IAB node uses the IP address allocated by the source IAB host for the IAB node, in the target IAB node.
  • a second transport network layer association TNLA is established between the CU of the IAB host and the DU of the IAB node.
  • the IAB node sending the request information for establishing the F1 interface to the target IAB host includes: the IAB node sending the request information for establishing the F1 interface to the target IAB host through the second TNLA.
  • the IAB node receiving the response information of the request information from the target IAB host includes: the IAB node receiving the response information of the request information from the target IAB host through the second TNLA.
  • the method before the mobile terminal MT of the IAB node is switched from the source IAB host to the target IAB host, the method includes: the IAB node uses the IP address allocated by the source IAB host for the IAB node, in the target IAB node.
  • a second transport network layer association TNLA is established between the CU of the IAB host and the DU of the IAB node.
  • the IAB node sending the request information for establishing the F1 interface to the target IAB host includes: the IAB node sending the request information for establishing the F1 interface to the target IAB host through the second TNLA.
  • the method includes: the IAB node uses the IP address allocated by the target IAB host for the IAB node, in the target IAB host.
  • a first TNLA is established between the CU of the IAB host and the DU of the IAB node.
  • the IAB node receiving the response information of the request information from the target IAB host includes: the IAB node receiving the response information of the request information from the target IAB host through the first TNLA.
  • the method includes: if before the mobile terminal MT of the IAB node switches from the source IAB host to the target IAB host, the IAB node receives the response information of the request information from the target IAB host, then the The response information is used to deactivate the configuration information of the DU of the IAB node under the host of the target IAB.
  • exemplary beneficial effects include: before the IAB-MT completes the handover, the configuration information of the DU of the IAB node under the host of the target IAB is not misactivated by the response information of the request information.
  • the method includes: if after the mobile terminal MT of the IAB node is switched from the source IAB host to the target IAB host, the IAB node receives the response information of the request information from the target IAB host, then the The response information is used to activate the configuration information of the DU of the IAB node under the host of the target IAB.
  • exemplary beneficial effects include: the response information of the request information can be reused to activate the configuration information of the DU of the IAB node under the host of the target IAB, thereby saving air interface overhead.
  • the IAB node activating the configuration information includes: the IAB node automatically activates the configuration information.
  • exemplary beneficial effects include: no special activation information is required, air interface overhead can be saved,
  • the method further includes: the IAB node sending first information to the target IAB host, where the first information indicates that the configuration information has been activated.
  • exemplary beneficial effects include: enabling the IAB node to align the activation situation of the configuration information with the target IAB host.
  • the present application provides a communication method, the method may include: a target access backhaul integrated IAB host receives first information from an IAB node, the first information indicating that the distributed unit DU of the IAB node is in the The configuration information under the target IAB host is activated. The target IAB host determines that the configuration information has been activated according to the first information.
  • the present application provides a communication method, which may include: the target access backhaul integrated IAB host receives request information for establishing an F1 interface from an IAB node. Before the mobile terminal MT of the IAB node switches from the source IAB host to the target IAB host, the target IAB host sends the response information to the IAB node, and the response information is used to deactivate the DU of the IAB node under the target IAB host configuration information. Or, after the mobile terminal MT of the IAB node switches from the source IAB host to the target IAB host, the target IAB host sends the response information to the IAB node, and the response information is used to activate the DU of the IAB node in the target IAB host. configuration information below.
  • the target IAB host receives the request information for establishing the F1 interface from the IAB node, including: the second transmission between the CU of the target IAB host and the DU of the IAB node by the target IAB host
  • the network layer association TNLA receives the request information for establishing the F1 interface from the IAB node, and the second TNLA corresponds to the Internet Protocol IP address allocated by the source IAB host for the IAB node.
  • Sending the response information of the request information by the target IAB host to the IAB node includes: the target IAB host sends the response information of the request information to the IAB node through the second TNLA.
  • the target IAB host receives the request information for establishing the F1 interface from the IAB node, including: the target IAB host passes the first transmission between the CU of the target IAB host and the DU of the IAB node.
  • the network layer association TNLA receives the request information for establishing the F1 interface from the IAB node, and the first TNLA corresponds to the Internet Protocol IP address allocated for the IAB node by the target IAB host.
  • Sending the response information of the request information by the target IAB host to the IAB node includes: the target IAB host sends the response information of the request information to the IAB node through the first TNLA.
  • the target IAB host receives the request information for establishing the F1 interface from the IAB node, including: the target IAB host passes the The second transport network layer association TNLA between the CU of the target IAB host and the DU of the IAB node receives the request information for establishing the F1 interface from the IAB node, and the second TNLA and the source IAB host are allocated for the IAB node
  • the Internet Protocol IP address corresponds to.
  • the target IAB host sends the response information of the request information to the IAB node, including: the target IAB host passes the target IAB host
  • the first TNLA between the CU of the host and the DU of the IAB node sends response information of the request information to the IAB node, where the first TNLA corresponds to the IP address allocated by the target IAB host for the IAB node.
  • the present application provides a communication device, the device including a module for performing any one of the methods of the first to eighth aspects and any design thereof.
  • the present application provides a communication device, comprising a processor and a memory, the processor is coupled to the memory, and the processor is used to implement any one of the methods of the first to eighth aspects and any design thereof method.
  • the present application provides a communication device, comprising at least one processor and an interface circuit, the interface circuit being configured to receive signals from other communication devices other than the communication device and transmit to the processor, or the interface Circuitry is used to send signals from the processor to other communication devices than the communication device.
  • the processor implements any one of the methods of the first aspect to the eighth aspect and any design thereof by means of a logic circuit or executing program instructions.
  • the apparatus may be a chip or an integrated circuit in a node in any of the methods of the first to eighth aspects and any design thereof.
  • the communication device may further include at least one memory, and the memory stores the related program instructions.
  • the present application provides a communication device, the device having the function or operation of implementing any one of the methods of the first aspect to the eighth aspect and any of the methods in any design thereof, the function or The operations may be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units (modules) corresponding to the above functions or operations, such as a transceiver unit and a processing unit.
  • the present application provides a communication device, comprising at least one processor and a memory, the at least one processor is coupled to the memory, a computer program is stored in the memory, and the at least one processor executes the computer program to
  • the communication device is caused to perform any one of the methods of the first to eighth aspects and any design thereof.
  • the present application provides a communication device, comprising at least one processor and an interface circuit, and a related computer program is executed in the at least one processor, so that the communication device executes the methods of the first to eighth aspects and any method in any of its designs.
  • the present application provides a computer-readable storage medium, in which related program instructions are stored, and when the related program instructions are executed, the communication device implements the first aspect to the The method of the eighth aspect and any method in any design thereof.
  • the present application provides a computer program product, the computer program product includes related program instructions, when the related program instructions are executed, to implement the methods of the first to eighth aspects and any design thereof any of the methods.
  • the present application further provides a chip for implementing any one of the methods of the first aspect to the eighth aspect and any of the designs thereof.
  • the present application provides a communication system, which includes at least one communication device according to the ninth to fifteenth aspects and any designs thereof.
  • FIG. 1 is a schematic diagram of a possible communication system of the present application.
  • FIG. 2 is a schematic diagram of an IAB host provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a control plane protocol stack in an IAB network provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application.
  • FIG. 5A is a schematic diagram of an IAB node handover provided by an embodiment of the present application.
  • 5B is a schematic diagram of another IAB node handover provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of an apparatus provided by an embodiment of the present application.
  • the fifth generation mobile communication (5G) or new radio (NR) system has put forward all the performance indicators of the network. More stringent requirements. For example, the capacity index has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small stations to form a network is becoming more and more popular. High-frequency carriers have poor propagation characteristics, are severely attenuated by occlusion, and have limited coverage, so a large number of small stations need to be densely deployed.
  • the wireless backhaul device provides an idea for solving the above two problems: both the access link (AL) and the backhaul link (BL) use a wireless transmission scheme to reduce fiber deployment.
  • the wireless backhaul device may be a relay node (Relay Node, RN), an integrated access backhaul (Integrated Access Backhaul, IAB) node, or other devices that provide wireless backhaul functions. This application does not limited.
  • an IAB node as a wireless backhaul device, can provide wireless access services for user equipment (UE), and the service data of the UE is connected to the IAB node through a wireless backhaul link.
  • the IAB host or host base station transmits.
  • Using an IAB node can share antennas for access and backhaul, reducing the number of antennas at the base station.
  • FIG. 1 is a schematic diagram of a possible communication system provided by the present application.
  • the communication system includes a terminal, an IAB node, and an IAB host.
  • the terminal in FIG. 1 may be an access terminal device, a subscriber unit, a user equipment, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a user terminal device, a wireless terminal device, a user agent, or a user device etc.
  • It can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication capable Handheld devices, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices (such as smart watches, smart bracelets, etc.), smart furniture or home appliances, terminal devices in 5G networks, future evolution Terminal equipment in public land mobile network (PLMN), or vehicle equipment in vehicle to everything (V2X), customer premises equipment (CPE), etc.
  • PLMN public land mobile network
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • the IAB node in Figure 1 may be composed of a mobile terminal (MT) and a distributed unit (DU), wherein, when the IAB node faces its parent node, it can be regarded as a terminal device, that is, an MT When an IAB node faces its subordinate device (the subordinate device may be another IAB sub-node, or a normal UE), it can be regarded as a network device, that is, it acts as a DU.
  • each node in FIG. 1 is an example of an IAB node, and each of the IAB nodes may be replaced by a general relay node (relay node, RN).
  • the MT of the IAB node may be abbreviated as IAB-MT
  • the DU of the IAB node may be abbreviated as IAB-DU
  • the CU of the IAB host may be abbreviated as Donor-CU
  • the DU of the IAB host may be abbreviated as Donor-DU.
  • the IAB donor (IAB donor) in Figure 1 can be the donor base station, and the IAB donor can be referred to as DgNB (ie, donor gNodeB) for short in the 5G network.
  • the IAB host can be a complete entity, or can be a centralized unit (CU) (referred to as Donor-CU or gNB-CU in this application) and a distributed unit (DU) (in this application) It exists in the form of separation of Donor-DU or gNB-DU for short.
  • the IAB host can be a gNB located in a 5G radio access network (5G radio access network, 5G RAN).
  • the IAB host may be composed of gNB-CU and gNB-DU.
  • the gNB-CU and the gNB-DU are connected through an F1 interface, and the F1 interface may further include a control plane interface (F1-C) and a user plane interface (F1-U).
  • the CU and the core network are connected through a next generation (NG) interface.
  • the gNB-CU or Donor-CU may also be a user plane (UP) (referred to as CU-UP in this application) and a control plane (CP) (referred to as CU-CP in this application)
  • UP user plane
  • CP control plane
  • gNB-CU or Donor-CU consists of CU-CP and CU-UP.
  • One gNB-CU may include one gNB-CU-CP and at least one gNB-CU-UP.
  • one Donor-CU may include one Donor-CU-CP and at least one Donor-CU-UP.
  • the connection between Donor-CU and Donor-DU may be through wired connection.
  • the IAB host connected to the IAB node may be referred to as the IAB host of the IAB node for short.
  • the IAB node may directly access the IAB host, or the IAB node may be connected to the IAB host through other IAB nodes.
  • the IAB network supports the networking of multi-hop IAB nodes and multi-connection IAB nodes. Therefore, there may be multiple transmission paths between the terminal and the IAB host.
  • On a path there is a definite hierarchical relationship between the IAB nodes and between the IAB nodes and the IAB hosts connected to the IAB nodes, and each IAB node regards the node that provides backhaul services for it as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent node of IAB node 1 is the IAB host
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • both IAB node 2 and IAB node 3 are the parent nodes of IAB node 4
  • the parent node of IAB node 5 is IAB node 2.
  • the uplink data packets of the terminal may be transmitted to the IAB host via one or more IAB nodes, and the downlink data packets will be sent to the terminal by the IAB host via one or more IAB nodes.
  • terminal 1 and IAB host There are two available paths for data packet transmission between terminal 1 and IAB host, namely: terminal 1-IAB node 4-IAB node 3-IAB node 1-IAB host, and terminal 1-IAB node 4-IAB node 2 - IAB Node 1 - IAB Host.
  • terminal 2-IAB node 4-IAB node 3-IAB node 1-IAB host There are three available paths for data packet transmission between terminal 2 and IAB host, namely: terminal 2-IAB node 4-IAB node 3-IAB node 1-IAB host, terminal 2-IAB node 4-IAB node 2-IAB Node 1 - IAB Host, and Terminal 2 - IAB Node 5 - IAB Node 2 - IAB Node 1 - IAB Host.
  • the IAB host In order to ensure the normal transmission of data between the terminal and the IAB host, the IAB host needs to configure a routing table for each IAB node, that is, configure next-hop nodes corresponding to different paths. At the same time, the IAB host needs to determine the transmission path corresponding to the data transmission. That is to say, a transmission path will be determined before data transmission. This transmission path can be called the main path. Data is routed between the terminal and the IAB host through this main path, and other paths can be regarded as Backup path. The backup path is used for re-routing only when the primary path is unavailable, eg, an RLF occurs on a link on the primary path. For example, as shown in FIG.
  • the main data transmission path of the IAB host configuration terminal 2 is: terminal 2 - IAB node 4 - IAB node 2 - IAB node 1 - IAB host.
  • IAB node 2 detects that RLF occurs in the link with IAB node 1 and cannot recover the link
  • IAB node 2 sends radio link failure (RLF) indication information to IAB node 4, according to the indication information , the IAB node 4 can trigger data re-routing, and temporarily transmit the uplink data received from the terminal 2 through the backup path, namely: terminal 2-IAB node 4-IAB node 3-IAB node 1-IAB host.
  • RLF radio link failure
  • the intermediate IAB nodes on the upstream path from the IAB node to the IAB host can be called the upstream node of the IAB node.
  • the IAB node 1 and IAB node 2 in Figure 1 can be called the upstream node of the IAB node 5.
  • the intermediate IAB nodes on the downlink path from the IAB node to the terminal can be called the downstream nodes of the IAB node.
  • IAB node 2, IAB node 3, IAB node 4 and IAB node 5 in FIG. 1 can be called IAB node 1.
  • the downstream node (downstream node), downstream nodes include child nodes, child nodes of child nodes (or grandchild nodes) and so on.
  • Downstream nodes can be other IAB nodes or terminals.
  • the terminal 1 in FIG. 1 may be referred to as the downstream node of the IAB node 4
  • the IAB node 4 and the IAB node 5 may be referred to as the downstream nodes of the IAB node 1
  • the terminal 1 and the terminal 2 may be referred to as the downstream nodes of the IAB node 1. downstream node.
  • a transmission path between a terminal and an IAB host may include one or more IAB nodes.
  • Each IAB node needs to maintain the wireless backhaul link facing the parent node, and also needs to maintain the wireless link with the child node. If the child node of the IAB node is a terminal, there is a wireless access link between the IAB node and the child node (ie, the terminal). If the child nodes of the IAB node are other IAB nodes, there is a wireless backhaul link between the IAB node and the child nodes (ie, other IAB nodes). Exemplarily, referring to FIG.
  • terminal 1 accesses IAB node 4 through a wireless
  • the backhaul link is connected to the IAB node 3
  • the IAB node 3 is connected to the IAB node 1 through the wireless backhaul link
  • the IAB node 1 is connected to the IAB host through the wireless backhaul link.
  • the above IAB networking scenario is just an example.
  • the IAB host and the IAB nodes under another IAB host are composed Dual connections are terminal services, etc., which will not be listed here.
  • the access IAB node in the embodiment of the present application refers to the IAB node accessed by the terminal, and the intermediate IAB node refers to the IAB node that provides wireless backhaul service for the terminal or the IAB node.
  • IAB node 4 is an access IAB node
  • IAB node 3 and IAB node 1 are intermediate IAB nodes.
  • an IAB node is an access IAB node for a terminal that accesses the IAB node.
  • IAB node is specifically an access IAB node.
  • the node or the intermediate IAB node is not fixed and needs to be determined according to the specific application scenario.
  • FIG. 3 and FIG. 4 are respectively a schematic diagram of a control plane protocol stack and a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application, which will be described below with reference to FIG. 3 and FIG. 4 .
  • a Uu interface is established between the terminal 1 and the IAB4-DU (referring to the DU of the IAB node 4), and the peer-to-peer protocol layers include the RLC layer, the MAC layer and the PHY layer.
  • IAB4-DU and IAB donor CU 1 establish an F1-C interface, and the peer-to-peer protocol layers include the F1 application protocol (F1AP) layer and the stream control transmission protocol (SCTP) layer.
  • the peer-to-peer protocol layers between IAB donor DU 1 and IAB donor CU1 include the Internet Protocol IP (internet protocol) layer, L2 and L1.
  • a backhaul link is established between IAB node 4 and IAB node3, between IAB node 3 and IAB node 1, and between IAB node 1 and IAB donor DU 1.
  • the peer-to-peer protocol layers include Backhaul adaptation protocol (bakhaul adaptation protocol, BAP) layer, RLC layer, MAC layer and PHY layer.
  • BAP Backhaul adaptation protocol
  • RLC Backhaul adaptation protocol
  • MAC Media Access Control
  • PHY layer PHY layer
  • a peer-to-peer RRC layer and a PDCP layer are established between the terminal 1 and the IAB donor CU 1, and a peer-to-peer IP layer is established between the IAB4-DU and the IAB donor DU 1.
  • control plane protocol stack of the IAB network is compared with the control plane protocol stack of the single air interface.
  • the DU connected to the IAB node realizes the function of the gNB-DU of the single air interface (that is, establishing a peer RLC layer, MAC layer with the terminal). and the functions of the PHY layer, as well as the functions of the F1AP layer and SCTP layer that establish peering with the CU).
  • the DU connected to the IAB node in the IAB network realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • RRC messages are encapsulated and transmitted in F1AP messages between the access IAB node and the IAB donor CU.
  • the terminal 1 encapsulates the RRC message in a PDCP protocol data unit (protocol data unit, PDU), and sends it to the IAB4-DU after being processed by the RLC layer, the MAC layer, and the PHY layer in sequence.
  • the IAB4-DU is processed by the PHY layer, the MAC layer and the RLC layer to obtain the PDCP PDU, encapsulates the PDCP PDU in the F1AP message, and is processed by the SCTP layer and the IP layer to obtain the IP packet.
  • the IAB4-MT (referring to the IAB node The MT of 4) sends the IP packet to the IAB3-DU after being processed by the BAP layer, the RLC layer, the MAC layer and the PHY layer respectively.
  • the IAB3-DU is processed by the PHY layer, the MAC layer, the RLC layer and the BAP layer to obtain an IP packet, and then the IAB3-MT adopts an operation similar to the IAB4-MT to send the IP packet to the IAB1-DU.
  • IAB1 -MT sends the IP packet to IAB donor DU 1.
  • the IP packet is sent to the IAB donor CU 1, and the IAB donor CU 1 sequentially processes the IP packet through the SCTP layer, the F1AP layer and the PDCP layer to obtain the RRC message.
  • the downstream direction is similar and will not be described here.
  • a Uu interface is established between the terminal 1 and the IAB4-DU, and the peer-to-peer protocol layers include an RLC layer, a MAC layer, and a PHY layer.
  • IAB4-DU and IAB donor CU 1 establish an F1-U interface, and the peer-to-peer protocol layers include the general packet radio service tunnelling protocol for the user plane (GTP-U) layer, user datagram Protocol (user datagram protocol, UDP) layer.
  • GTP-U general packet radio service tunnelling protocol for the user plane
  • UDP user datagram Protocol
  • the IAB donor DU1 and the IAB donor CU 1 are connected by wire, and the equivalent protocol layers include the IP layer, L2 and L1.
  • a backhaul link is established between IAB node 4 and IAB node 3, between IAB node 3 and IAB node 1, and between IAB node 1 and IAB donor DU 1.
  • the peer-to-peer protocol layer Including BAP layer, RLC layer, MAC layer and PHY layer.
  • a peer-to-peer SDAP layer and a PDCP layer are established between the terminal 1 and the IAB donor CU 1, and a peer-to-peer IP layer is established between the IAB4-DU and the IAB donor DU 1.
  • the user plane protocol stack of the IAB network is compared with the user plane protocol stack of the single air interface.
  • the DU of the IAB access node realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • PDCP packets are encapsulated and transmitted in the GTP-U tunnel between the access IAB node and the IAB donor CU.
  • the GTP-U tunnel is established on the F1-U interface.
  • FIG. 3 and FIG. 4 describe the protocol stack in the IAB scenario shown in FIG. 1 as an example.
  • an IAB node may have one or more roles, and the IAB node may have protocol stacks of the one or more roles.
  • the IAB node may have a set of protocol stacks, and the protocol stack may use protocol layers corresponding to different roles to process different roles of the IAB node.
  • the following is an example of the protocol stack in which the IAB node has the one or more roles:
  • the MT of the IAB node has the protocol stack of a common terminal, such as the protocol stack of the terminal 1 in FIG. 3 and FIG. 4 , that is, the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer.
  • the RRC message of the IAB node is encapsulated in the F1AP message between the parent node of the IAB node and the IAB donor CU; on the user plane, the PDCP data packet of the IAB node is encapsulated between the parent node of the IAB node and the IAB donor CU. transmitted in the GTP-U tunnel.
  • the IAB node can still play the role of a common terminal, for example, transmitting its own uplink and/or downlink data packets (such as operation, management and maintenance network elements (operation, management, and maintenance network elements) with the IAB donor. administration and maintenance, OAM) packets), perform measurements through the RRC layer, etc.
  • uplink and/or downlink data packets such as operation, management and maintenance network elements (operation, management, and maintenance network elements) with the IAB donor. administration and maintenance, OAM) packets
  • OAM administration and maintenance
  • the IAB node After the IAB node accesses the IAB network, the IAB node can provide access services for the terminal, thereby acting as an access IAB node. At this time, the IAB node has the protocol stack for accessing the IAB node, such as Figure 3 and Figure 3 The protocol stack of IAB node 4 in 4.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides backhaul services for the terminal (ie: access The protocol stack of the IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node After the IAB node accesses the IAB network, the IAB node can play the role of an intermediate IAB node. At this time, the IAB node has the protocol stack of the intermediate IAB node, such as IAB node 3 or IAB node 1 in Figure 3 and Figure 4 the protocol stack.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides the return service for the child IAB node (ie: The protocol stack of the intermediate IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node can assume the roles of the access IAB node and the intermediate IAB node at the same time.
  • the IAB node can be the access IAB node for some terminals, and the intermediate IAB node for other terminals.
  • the IAB node There may be three sets of protocol stacks, one set is the protocol stack of the above-mentioned common terminal, the other set is the protocol stack of the access IAB node, and the other set is the protocol stack of the intermediate IAB node.
  • the same protocol layer of the three sets of protocol stacks may be shared, for example, the three sets of protocol stacks all correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • Figures 3 and 4 take the IAB network as an example.
  • the contents of Figures 3 and 4 are also applicable to other types of relay networks other than the IAB network.
  • the control plane protocol stack architecture of the relay network can be Referring to FIG. 3 , reference may be made to FIG. 4 for the user plane protocol stack architecture of the relay network.
  • the IAB nodes in Figures 3 and 4 can be replaced by relays, for example, IAB node 4 can be replaced by relay node 4, IAB node 3 can be replaced by relay node 3, and IAB node 1 can be replaced by relay node 1.
  • the IAB donor 1 can be replaced with the host base station 1, and the host base station has a CU and DU protocol stack. The rest of the content can be referred to the descriptions in FIG. 3 and FIG. 4, and will not be repeated here.
  • FIG. 5A and FIG. 5B are schematic diagrams of two kinds of IAB node handovers provided by the present application.
  • IAB node 3 switches from the source parent node (IAB node 1) to the target parent node (IAB node 2), but does not change the IAB host.
  • This switching can be called switching within the IAB host, or donor CU Internal switching (intra-donor CU migrating).
  • IAB nodes may also be included between IAB node 1 and IAB donor 1, or, IAB node3 may also be directly connected to IAB donor 1, that is, IAB node 1 in Figure 5A, and/or, IAB node2 may not exist.
  • IAB node 3 switches from the source parent node (IAB node 1) to the target parent node (IAB node 2), and changes the connected IAB host, that is, switches from the source IAB host (IAB donor 1) to the target IAB Host (IAB donor 2), can be called cross-IAB host switching, or cross-donor CU switching (inter-donor CU migrating).
  • one, two, or multiple donor DUs can be connected under the IAB donor CU.
  • Figure 5A is an example of connecting two donor DUs under an IAB donor CU.
  • Figure 5B is an example of connecting one donor DU under an IAB donor CU.
  • this application does not limit how many donor DUs are connected under an IAB donor CU.
  • multiple IAB nodes may also be included between IAB node 1 and IAB donor 1, or IAB node 3 may also be directly connected to IAB donor 1, that is, IAB node 1 in Figure 5A, And/or, IAB node2 may not exist.
  • the IAB node 1 in FIG. 5B may not exist.
  • multiple IAB nodes may also be included between IAB node 2 and IAB donor 2, or, IAB node 3 may also be directly connected to IAB donor 2, that is, IAB node 2 may not exist in FIG. 5B.
  • the child nodes of the IAB node (as shown in IAB node 4 in FIG. 5A or 5B) can follow the IAB node to switch, that is, also switch from the source IAB host to the target IAB host.
  • the method provided by the embodiment of the present application is applicable to the handover of the IAB node, and is also applicable to the scenario in which the downstream node of the IAB node follows the IAB node to perform the handover.
  • the handover IAB node in this application may refer to the IAB node whose handover is triggered by the source IAB host.
  • FIG. 6 shows a communication method according to an embodiment of the present application, and the communication method 600 includes:
  • the CU of the first IAB host determines the quality of service (quality of service, QoS) attribute corresponding to the F1 interface application protocol F1AP message, and/or, the quality of service QoS attribute corresponding to the user plane data.
  • QoS quality of service
  • the F1AP message in the embodiment of the present application refers to a message on the control plane of the F1 interface between the first IAB donor-CU and the IAB-DU of the IAB node.
  • the user plane data in the embodiment of the present application may refer to the data on the user plane of the F1 interface between the first IAB donor-CU and the IAB-DU of the IAB node.
  • the F1AP message may be classified into multiple types, for example, the types of the F1AP message may include a first type and a second type.
  • the first type of F1AP message is mainly used for context management of the F1 interface, transmission of RRC messages, and the like.
  • the context can refer to either the context of the IAB node or the context of the terminal device.
  • the RRC message here can refer to either the message between the RRC layer of the IAB-MT and the RRC layer of the IAB donor-CU, or the message between the RRC layer of the terminal device and the RRC layer of the IAB donor-CU.
  • the second type of F1AP message is mainly used for the management of the F1 interface, for example, establishment, reset, configuration update and the like of the F1 interface.
  • the first type may be referred to as user equipment associated (UE associated), and the second type may be referred to as non-user equipment associated (Non-UE associated).
  • UE associated user equipment associated
  • Non-UE associated non-user equipment associated
  • Different types of F1AP messages may have different priorities.
  • the priorities may be represented by QoS attributes.
  • the QoS attribute value may include a differentiated services code point (DSCP), and/or a flow label. Different types of F1AP messages correspond to different DSCP or flow label values.
  • DSCP differentiated services code point
  • the first IAB Donor-CU needs to determine the QoS attribute corresponding to the F1AP message, that is, the QoS corresponding to the F1AP message type to which the F1AP message belongs Attributes.
  • the user plane data may include the data of the terminal device, and may also include the data of the IAB node, for example, the data used to configure the IAB node from the network management device.
  • Different user plane data has different QoS requirements and can have different priorities. Exemplarily, the priority can be reflected by QoS attributes.
  • user plane data with different QoS requirements can correspond to different DSCP or flow labels. value.
  • the QoS attribute corresponding to the user plane data may be identified by the user plane data indication.
  • the user plane data indication may be an identifier of a GTP-U tunnel, such as a GTP tunnel endpoint identifier (GTP tunnel endpoint identifier, TEID) and/or an IP address.
  • the first IAB Donor-CU sends the F1AP message and the QoS attribute corresponding to the F1AP message to the DU (the second IAB Donor-DU) of the second IAB host, and/or the first IAB Donor-CU sends the first IAB Donor-CU to the second IAB Donor-CU 2.
  • the IAB Donor-DU sends the user plane data and the QoS attributes corresponding to the user plane data.
  • the first IAB Donor-CU may encapsulate the F1AP message in an internet protocol (internet protocol, IP) packet, and in the IP header of the IP packet After carrying the QoS attribute corresponding to the F1AP message, the IP packet is sent to the second IAB Donor-DU by means of IP routing.
  • IP internet protocol
  • the first IAB Donor-CU can encapsulate the user plane data in an IP packet, and carry the user plane data in the IP header of the IP packet.
  • the IP packet is sent to the second IAB Donor-DU by means of IP routing.
  • the source IP address of the IP packet may be the IP address of the first IAB Donor-CU
  • the destination IP address of the IP packet may be the IP address of the IAB node.
  • the IP address of the IAB node may be allocated by the first IAB Donor-CU for the IAB node, or may be allocated by the second IAB Donor-CU for the IAB node.
  • the second IAB Donor-DU After the second IAB Donor-DU receives the IP packet, it will route and/or bearer mapping the F1AP message in the IP packet according to the QoS attribute in the IP header of the IP packet, so as to be further sent to the IAB node.
  • the second IAB Donor-DU will determine the routing configuration corresponding to the IP packet according to the internally stored QoS attribute and the corresponding relationship of the routing configuration and the QoS attribute in the IP packet, and then according to the routing configuration corresponding to the IP packet. Configure to route the F1AP message in the IP packet.
  • the second IAB Donor-DU will determine the bearer configuration corresponding to the IP packet according to the corresponding relationship between the internally stored QoS attribute and the bearer configuration and the QoS attribute in the IP packet, and then according to the bearer configuration corresponding to the IP packet. configuration, and perform bearer mapping on the F1AP message in the IP packet.
  • the routing configuration may include a BAP routing identity (bakhaul adaptation protocol routing identity, BAP routing ID), and/or a BAP address (BAP address) of the next hop node.
  • the bearer configuration may include a backhaul RLC channel identity (BH RLC CH ID).
  • the corresponding relationship between the QoS attribute stored in the second IAB Donor-DU and the routing configuration, and/or the corresponding relationship between the QoS attribute stored in the second IAB Donor-DU and the bearer configuration may be the CU of the second IAB host (the second IAB Donor-CU) is allocated to the second IAB Donor-DU.
  • the communication method 600 may further include S603:
  • the first IAB Donor-CU obtains from the second IAB Donor-CU the correspondence between at least one F1AP message type and at least one QoS attribute, and/or, at least one user plane data and at least one QoS attribute Correspondence.
  • the second IAB Donor-CU may send the first IAB Donor-CU the correspondence between at least one F1AP message type indication and at least one QoS attribute, and/or, at least one user plane data indication and at least one QoS attribute so that the first IAB Donor-CU obtains the corresponding relationship between at least one F1AP message type and at least one QoS attribute, and/or the corresponding relationship between at least one user plane data and at least one QoS attribute.
  • the correspondence between at least one F1AP message type indication and at least one QoS attribute may be as shown in Table 1:
  • Table 1 only shows a possible correspondence between the F1AP message type indication and the QoS attribute.
  • the corresponding relationship between the F1AP message type indication and the QoS attribute may be one-to-one, many-to-one, or one-to-many or many-to-many, which is not limited in this embodiment of the present application.
  • the first type of F1AP message and the second type of F1AP message in Table 1 may be indicated by different F1AP message type indications.
  • the F1AP message type indication may be indication information occupying N bits. For example, different F1AP message types are indicated by the value of the indication information occupying 1 bit. If the value of the F1AP message type indication is 0, it indicates that the first type of F1AP is indicated. It is the second type of F1AP.
  • the different QoS attributes in Table 1 may be represented by different DSCP values, and/or flow label values.
  • the correspondence between the at least one user plane data indication and the at least one QoS attribute can be understood by referring to the correspondence between the at least one F1AP message type indication and the at least one QoS attribute or by referring to Table 1.
  • the first IAB Donor-CU can be made to determine the F1AP message according to the corresponding relationship between the F1AP message type indication and the QoS attribute sent by the second IAB Donor-CU and the type of the F1AP message generated by the first IAB Donor-CU Corresponding QoS attributes.
  • the first IAB Donor-CU can be made to indicate the correspondence between the user plane data and the QoS attribute according to the user plane data sent by the second IAB Donor-CU, and the user plane data corresponding to the user plane data generated by the first IAB Donor-CU. Indicate, determine the QoS attribute corresponding to the user plane data.
  • the second IAB Donor-DU configures the second IAB Donor-DU according to the corresponding relationship between the QoS attribute and the routing configuration of the second IAB Donor-DU, and/or, the corresponding relationship between the QoS attribute and the bearer configuration, it is
  • the F1AP message or user plane data from the first IAB Donor-CU can be correctly routed and/or bearer mapped.
  • the communication method 600 may further include S604:
  • the first IAB Donor-CU sends the second IAB Donor-CU to the second IAB Donor-CU the correspondence between at least one F1AP message type indication and at least one QoS attribute, and/or at least one user plane data indication and at least one QoS attribute Correspondence of attributes.
  • the second IAB Donor-CU receives the corresponding relationship between the F1AP message type indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the routing configuration to the second IAB Donor-DU. So that the second IAB Donor-DU can route the F1AP message from the first IAB Donor-CU according to the corresponding relationship between the new QoS attribute and the routing configuration.
  • the second IAB Donor-CU receives the corresponding relationship between the F1AP message type indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the bearer configuration to the second IAB Donor-DU.
  • the second IAB Donor-DU receives the corresponding relationship between the F1AP message type indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the bearer configuration to the second IAB Donor-DU.
  • the second IAB Donor-CU receives the corresponding relationship between the user plane data indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the routing configuration to the second IAB Donor-DU. So that the second IAB Donor-DU can route the user plane data from the first IAB Donor-CU according to the corresponding relationship between the new QoS attribute and the routing configuration.
  • the second IAB Donor-CU receives the corresponding relationship between the user plane data indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the bearer configuration to the second IAB Donor-DU.
  • the second IAB Donor-DU receives the corresponding relationship between the user plane data indication and the QoS attribute sent by the second IAB Donor-CU, and can send the corresponding relationship between the QoS attribute and the bearer configuration to the second IAB Donor-DU.
  • S603 and S604 are performed alternatively in this embodiment of the present application, that is, in order to enable the second IAB Donor-DU to correctly perform routing and/or bearer mapping on the F1AP message or user plane data from the first IAB Donor-CU, It is not necessary to perform both operations.
  • the communication method 600 may further include S605 or S606:
  • the IAB node uses the IP address allocated by the first IAB donor (donor-CU or donor-DU) for the IAB node (or the IAB-DU of the IAB node), in the first IAB donor-CU and the IAB node of the IAB node.
  • a first transport network layer association (TNLA) is established between the DUs.
  • the IAB node establishes a first TNLA between the first IAB donor-CU and the IAB-DU of the IAB node, and the first TNLA and the first IAB donor (IAB donor-CU or IAB donor-DU) are the IAB node (or the IAB-DU of the IAB node) corresponds to the IP address assigned.
  • the transport network layer may include the IP, UDP, and SCTP layers in FIG. 3 and FIG. 4 , and may also include other protocol layers. This application does not limit which specific protocol layers the transport network layer includes.
  • the transport network layer association is only a name of the association, and the association may also have another name, which is not limited in this application.
  • the transmission protocol stack at this time can be understood by replacing IAB donor CU 1 in FIG. 2 or FIG. 3 with IAB donor CU 2.
  • IAB donor DU 1 and IAB donor CU 1 form an IAB Donor
  • IAB donor DU 2 and IAB donor CU 2 form an IAB Donor.
  • the IP packet may be The source IP address is set to the IP address of the first IAB donor-CU, and the destination IP address is set to the first IAB donor (donor-CU or donor-DU) allocated for the IAB node (or the IAB-DU of the IAB node). IP address.
  • the second IAB donor-CU needs to determine the IAB node (or the IAB-DU of the IAB node) and the corresponding relationship between the IP address of the IAB node and the BAP address of the IAB node, and send the determined correspondence to the second IAB donor-DU, wherein the IAB node (or the IAB The IP address of the node's IAB-DU) is allocated by the first IAB donor (IAB donor-CU or IAB donor-DU), and the BAP address of the IAB node is allocated by the second IAB donor-CU.
  • the IP address allocated by the first IAB donor (IAB donor-CU or IAB donor-DU) to the IAB node (or the IAB-DU of the IAB node) may be sent by the first IAB donor to the second IAB donor .
  • the second IAB donor-DU receives an IP packet that carries the F1AP message or user plane data, because the destination IP address of the IP packet is the first IAB donor (IAB donor-CU or IAB donor-DU ) is the IP address allocated for the IAB node (or the IAB-DU of the IAB node), then the second IAB donor-DU can be the IAB node ( Or the corresponding relationship between the IP address assigned by the IAB-DU of the IAB node and the BAP address assigned by the second IAB donor-CU for the IAB node, determine the BAP address assigned by the second IAB donor-CU for the IAB node, and finally Send the F1AP message or user plane data to the IAB node corresponding to the BAP address.
  • the IAB node uses the IP address allocated by the second IAB donor (donor-CU or donor-DU) for the IAB node (or the IAB-DU of the IAB node), in the first IAB donor-CU and the IAB node of the IAB node.
  • a second TNLA is established between DUs.
  • the IAB node establishes a second TNLA between the first IAB donor-CU and the IAB-DU of the IAB node, and the second TNLA and the second IAB donor (donor-CU or donor-DU) are the IAB node (or It corresponds to the IP address assigned by the IAB-DU of the IAB node.
  • the second IAB donor-CU may send the second IAB donor (donor-CU or donor-DU) allocated for the IAB node (or the IAB-DU of the IAB node) to the first IAB donor-CU.
  • IP address So that the first IAB donor-CU can use the IP address to send and receive data through the second TNLA. For example, based on the IP address and the source IP address of the IP packet of the data received through the second TNLA, the sender of the IP packet can be identified.
  • the source of the IP packet can be The IP address is set to the IP address of the first IAB donor-CU, and the target IP address is set to the IP allocated by the second IAB donor (donor-CU or donor-DU) for the IAB node (or the IAB-DU of the IAB node). address.
  • the method in the embodiment of the present application can be applied to a scenario where an IAB node is switched across donor CUs (inter-donor CU migrating), that is, the IAB node in the embodiment of the present application can be a switching IAB node (as shown in the IAB node 3 in FIG. 5B ). ) or switch the downstream node of the IAB node (as shown in IAB node4 in Figure 5B), the first IAB donor can be the target IAB host (as shown in Figure 5B, the IAB donor 2), and the second IAB donor can be the source IAB host (as shown in Figure 5B). IAB donor 1 in 5B).
  • the F1AP message in the embodiment of the present application may carry the configuration information of the DU of the IAB node under the host of the target IAB. In this way, through the method of this embodiment, the IAB node can be made to obtain the configuration information under the target IAB host as soon as possible, thereby switching from the source IAB host to the target IAB host as soon as possible.
  • the methods in the embodiments of the present application can also be applied to dual connectivity (DC) or multi-connectivity (MC) scenarios, that is, the IAB node connects to the first IAB host and the second IAB host at the same time, for example, the IAB node There are F1 interfaces respectively between the IAB-DU and the first IAB donor-CU and the second IAB donor-CU.
  • DC dual connectivity
  • MC multi-connectivity
  • the path of the first IAB donor-CU, via the first IAB donor-DU, to the IAB node may be referred to as a main path.
  • the path of the first IAB donor-CU, via the second IAB donor-DU, to the IAB node may be referred to as a backup path.
  • the primary path and the backup path can be understood with reference to the relevant descriptions in the embodiment corresponding to FIG. 1 . In this way, through the method of this embodiment, the reliability of data transmission of the IAB node can be increased, and the situation of data interruption can be reduced.
  • the second donor-DU receives the IP packet from the IAB node, the IP packet includes an F1AP message or user plane data, and the destination address of the IP packet is the IP address of the first donor-CU.
  • the second donor-DU may send the F1AP message or the user plane data to the first donor-CU by means of IP routing.
  • the method may include S605 or S606.
  • S605 or S606 in this embodiment of the present application may be used as a separate embodiment for establishing a communication connection between the first IAB donor-CU and the IAB-DU of the IAB node via the second IAB donor-DU, In order to facilitate the transmission of subsequent F1AP messages or user plane data.
  • S605 or S606 can also form an embodiment together with S601 to S602, so that the F1AP message or user plane data can be transmitted between the first IAB donor-CU and the IAB-DU of the IAB node via the second IAB donor-DU.
  • FIG. 7 shows a communication method according to an embodiment of the present application, and the communication method 700 includes:
  • the IAB node obtains the configuration information of the IAB-DU of the IAB node under the host of the target IAB.
  • the IAB node may be the IAB node3 in Figure 5B or its downstream node.
  • the configuration information of the IAB node under the target IAB donor refers to the configuration information that the IAB-DU of the IAB node needs to use when the IAB node is connected to the target IAB host.
  • the configuration information of the IAB node under the target IAB donor may include at least one of the following: IAB-DU identification (ID), IAB-DU name (name), cell information of the cell served by the IAB node under the target IAB donor, the The synchronization signal and PBCH block (synchronization signal and physical broadcast channel block, SSB) configuration sent by the DU of the IAB node, the system information sent by the DU of the IAB node, the public land mobile network identifier list (public land mobile network identifier list, PLMN) Id List), single network slice selection support information list (Single Network Slice Selection Assistance Information list, sNSSAI List), PCI, tracking area code (tracking area code, TAC), base station identification length (gNB ID length), uplink and downlink frequency points , the IP address of the IAB node.
  • ID IAB-DU identification
  • IAB-DU name name
  • cell information of the cell served by the IAB node under the target IAB donor the The synchronization signal and PBCH
  • the SSB configuration may include an SSB frequency, an SSB period, an SSB carrier interval, an SSB offset (Offset), or an SSB duration (Duration), and the like.
  • a cell served by an IAB node may include a cell served by a DU of the IAB node or a cell deployed by a DU of the IAB node.
  • the cell information of the cell served by the IAB node under the target IAB donor may include at least one of the following: a physical cell identifier (physical cell identifier, PCI), a cell identifier (CellIdentity), and a cell global identifier (cell global identification, CGI).
  • the cell identity consists of a base station identity and a cell local identity.
  • the cell global identifier is composed of a public land mobile network identifier (PLMNId), a base station identifier and a cell local identifier (cell local identifier, cellLocalId).
  • the IAB node obtains the configuration information of the IAB-DU of the IAB node under the host of the target IAB, which can be realized by any one of the following two implementation methods:
  • the IAB node can obtain the configuration information of the IAB-DU under the target IAB host from the target IAB donor.
  • the target IAB donor can use the method 600 to send the configuration information of the IAB-DU under the target IAB donor to the IAB node.
  • the configuration information of the IAB node under the target IAB donor may further include indication information of whether the cell is activated.
  • the target IAB donor and the IAB node can exchange the configuration information of the IAB-DU under the target IAB donor without triggering the F1 interface establishment process between the target IAB donor-CU and the IAB-DU , so that the establishment process of the F1 interface can be reduced and the switching efficiency can be improved.
  • the IAB node can receive at least one configuration information from the network management device, and the IAB node determines the configuration information of the IAB-DU under the host of the target IAB from the at least one configuration information.
  • the network management device may determine the candidate IAB host of the IAB node according to the location information of the IAB node and/or the information of the neighboring cells of the IAB node.
  • the candidate IAB host can be at least one IAB host surrounding the IAB node. For each candidate IAB host, the network management device generates configuration information of the IAB node under the candidate IAB host. As shown in table 2:
  • the network management device may send configuration information corresponding to X (X is a positive integer greater than or equal to 1) candidate IAB hosts to the IAB node.
  • the IAB node can determine the configuration information of the IAB node under the candidate IAB host from the X pieces of configuration information according to the target IAB host.
  • the network management device may be an operation, management and maintenance network element (operation, administration and maintenance, OAM).
  • the network management equipment may include a network element management system (element management system, EMS), and a network management system (network management system, NMS).
  • the network management device may be a functional network element located in the 5G core network (5G Core, 5GC), or the network management device may also be a functional network element deployed in the backbone network behind the 5G core network. This application does not limit the specific deployment of the network management device. s position.
  • the IAB node activates the configuration information of the IAB-DU under the target IAB donor, which may mean that the IAB node activates at least one cell in the configuration information of the IAB-DU under the target IAB donor.
  • Activating a cell may refer to validating the relevant configuration of the cell, such as a cell identity or CGI.
  • the configuration information of the DU of the IAB node under the host of the target IAB is not valid during the handover process of the MT part, so as to reduce the IAB node when the MT is still connected to the source IAB donor.
  • the MT of the IAB node and the DU of the IAB node appear resource allocation inconsistency.
  • the resources of the IAB-MT and IAB-DU are uniformly configured by the source IAB host, during the handover process of the IAB-MT, the resources of the IAB-MT are configured by the source IAB host, if it takes effect at this time
  • the configuration information of the DU of the IAB node under the target IAB host will cause the IAB-MT resources to be configured by the source IAB host and the IAB-DU resources to be configured by the target IAB host, so that the IAB-MT may appear.
  • the problem of inconsistency with the resource allocation of IAB-DU is the reason for the resource allocation of IAB-DU.
  • the configuration information can be activated by either of the following two methods:
  • Method 1 The IAB node automatically activates the configuration information of the IAB-DU under the target IAB donor.
  • the IAB node can automatically activate the configuration information of the IAB-DU under the target IAB donor after the IAB-MT successfully accesses the target IAB donor.
  • the IAB node can automatically activate the IAB node after the IAB-MT successfully accesses the target IAB donor according to the indication information of whether the cell is activated in the configuration information of the IAB node under the target IAB donor.
  • the configuration information of the IAB-DU under the target IAB donor (activate the cell of the IAB-DU under the target IAB donor).
  • the method 1 in order to make the target IAB donor know that the configuration information of the IAB-DU under the target IAB donor has been activated, optionally, the method 1 includes S703:
  • the IAB node sends first information to the target IAB donor, where the first information indicates that the configuration information of the IAB-DU under the target IAB donor has been activated.
  • Method 2 is further divided into the following 2 cases:
  • the method 2 includes S704:
  • the IAB node receives second information from the target IAB donor, where the second information is used to activate the configuration information.
  • the IAB node After receiving the second information, the IAB node activates the configuration information of the IAB-DU under the target IAB donor.
  • Activating the configuration information of the IAB-DU under the target IAB donor may be regarded as activating the configuration information corresponding to the cell in the configuration information of the IAB-DU under the target IAB donor.
  • the second information may include the instruction to activate the IAB-DU in the configuration information under the target IAB donor. Indication information of at least one cell.
  • the IAB node can, according to the indication information of whether the cell is activated, after receiving the second information, Activate the configuration information of the IAB-DU under the target IAB donor.
  • the second information can be carried in the configuration update message sent by the target IAB donor (or the target IAB donor-CU) to the IAB node, such as the GNB-CU CONFIGURATION UPDATE message, the GNB-CU CONFIGURATION UPDATE message can refer to 3GPP TS 38.473 V16. Chapter 9.2.1.10 understanding in version 1.0.
  • the second information may be carried in the configuration update confirmation message sent by the target IAB donor (or the target IAB donor-CU) to the IAB node, such as the GNB-DU CONFIGURATION UPDATE ACKNOWLEDGE message, the GNB-DU CONFIGURATION UPDATE ACKNOWLEDGE message can refer to Section 9.2.1.8 in 3GPP TS 38.473 V16.1.0 is understood.
  • the method 2 includes S705 and S706:
  • the IAB node sends request information for establishing (or re-establishing) the F1 interface to the target IAB donor, where the request information includes the configuration information of the IAB-DU under the target IAB donor.
  • the F1 interface refers to the communication interface between the IAB-DU of the IAB node and the IAB donor-CU of the target IAB donor.
  • the configuration information of the IAB node under the candidate IAB donor may also include indication information whether the cell needs to be activated.
  • the IAB node may send the request information for establishing (or re-establishing) the F1 interface to the target IAB donor through the first TNLA or the second TNLA.
  • the first TNLA is the IP address allocated for the IAB node (or IAB-DU) by the IAB node using the target IAB donor (donor-CU or donor-DU), and the target IAB donor-CU and the IAB - TNLA established between DUs.
  • the second TNLA is the IP address allocated for the IAB node (or IAB-DU) by the IAB node using the source IAB donor (donor-CU or donor-DU), between the target IAB donor-CU and the IAB-DU TNLA established between.
  • S706 The target IAB donor sends the response information of the request information to the IAB node.
  • the target IAB donor sends the response information of the request information to the IAB node, the response information is not used to activate the IAB-DU in the target IAB Configuration information under donor.
  • the response information includes indication information that is not used to activate the configuration information of the IAB-DU under the target IAB donor, or the response information includes deactivation instruction information for deactivating the configuration information of the IAB-DU under the target IAB donor.
  • the deactivation instruction information may be the instruction information for deactivating all cells of the IAB-DU under the target IAB donor, or the response information does not include the activation of the IAB-DU in all cells under the target IAB donor. Activation instructions.
  • S704 may be executed to activate the configuration information of the IAB-DU under the target IAB donor.
  • the target IAB donor sends the response information of the request information to the IAB node
  • the response information is used to activate the IAB-DU in the target Configuration information under IAB donor.
  • the response information includes activation indication information for activating the configuration information of the IAB-DU under the target IAB donor, or the response information includes activating at least one of the configuration information of the IAB-DU under the target IAB donor Activation indication information of a cell.
  • the activation indication information may be generated by the target IAB donor according to the indication information of whether to be activated.
  • the response information may also include at least one of the following: information for identifying the target IAB donor, the RRC version supported by the target IAB donor-CU, the transport layer address information of the target IAB donor-CU, the The synchronization signal block transmission configuration (STC) of the IAB-DU of the IAB node.
  • STC The synchronization signal block transmission configuration
  • the response information of the request information can be reused to activate the configuration information of the DU of the IAB node under the host of the target IAB, thereby saving air interface overhead.
  • the IAB node can send the request information for establishing (or re-establishing) the F1 interface to the target IAB donor through the first TNLA, and receive the request information sent by the target IAB donor through the first TNLA. response information.
  • the IAB node can send the request information for establishing (or re-establishing) the F1 interface to the target IAB donor through the second TNLA, and receive the request information sent by the target IAB donor through the second TNLA. response information.
  • the IAB node can send the request information for establishing (or re-establishing) the F1 interface to the target IAB donor through the second TNLA, and receive the request information sent by the target IAB donor through the first TNLA. response information.
  • the first TNLA is the IP address allocated for the IAB node (or IAB-DU) by the IAB node using the target IAB donor (donor-CU or donor-DU), and the target IAB donor-CU and the IAB - TNLA established between DUs.
  • the second TNLA is the IP address assigned by the IAB node to the IAB node (or IAB-DU) using the source IAB donor (donor-CU or donor-DU), between the target IAB donor-CU and the IAB-DU TNLA established between.
  • the target IAB donor may adopt the method 600 between the IAB nodes to exchange the above-mentioned request information for establishing (or re-establishing) the F1 interface, the response information of the request information, or the second information. at least one.
  • an embodiment of the present application provides a communication device, and the device may be an IAB donor-CU, IAB donor-DU, and IAB donor in any of the possible design solutions of the method 600 or 700 in the foregoing embodiment.
  • the communication device includes: in the communication method provided by the method 600 or 700, for executing the corresponding method steps or operations or behaviors performed by the IAB donor-CU, IAB donor-DU, IAB donor or IAB node of at least one unit.
  • the setting of the at least one unit may have a one-to-one correspondence with method steps or operations or behaviors performed by the IAB donor-CU, IAB donor-DU, IAB donor or IAB node.
  • These units may be implemented by computer programs, hardware circuits, or a combination of computer programs and hardware circuits.
  • FIG. 8 is a schematic block diagram of a communication apparatus 800 provided by an embodiment of the present application.
  • the communication device 800 can be applied to an IAB donor-CU.
  • the structure and function of the communication device 800 will be divided into different designs for specific description below. Although the module names are the same between different designs, the structure and function can be different.
  • the communication apparatus 800 may include a processing module 801 and a sending module 802 .
  • the processing module 801 is configured to determine the QoS attribute corresponding to the F1 interface application protocol (F1 application protocol, F1AP) message, or the QoS attribute corresponding to the user plane data, wherein the F1 interface is the CU of the first IAB host and the DU of the IAB node communication interface between.
  • the sending module 802 is configured to send the F1AP message and the QoS attribute corresponding to the F1AP message to the DU of the second IAB host, or send the user plane data and the QoS attribute corresponding to the user plane data to the DU of the second IAB host.
  • the processing module 801 is configured to determine the QoS attribute corresponding to the F1AP message according to the corresponding relationship between the F1AP message type and the QoS attribute.
  • the corresponding relationship is that the CU of the first IAB host is obtained from the CU of the second IAB host.
  • the processing module 801 is configured to determine the QoS attribute corresponding to the user plane data according to the corresponding relationship between the user plane data and the QoS attribute.
  • the corresponding relationship is that the CU of the first IAB host is obtained from the CU of the second IAB host.
  • the sending module 802 is further configured to send the F1AP message type indication and the QoS attribute to the CU of the second IAB host, where the F1AP message type indication and the QoS attribute have a corresponding relationship, or the sending module 802 is also used to send the F1AP message type indication and the QoS attribute to the second IAB host CU.
  • the CU of the second IAB host sends a user plane data indication and a QoS attribute, and the user plane data indication and the QoS attribute have a corresponding relationship.
  • the sending module 802 is specifically configured to send the F1AP message or user plane data to the IAB node through the first transport network layer association TNLA between the CU of the first IAB host and the DU of the IAB node, the first TNLA Corresponding to the Internet Protocol IP address allocated by the first IAB host for the IAB node, or the sending module 802 is specifically configured to associate through the second transport network layer between the CU of the first IAB host and the DU of the IAB node
  • the TNLA sends the F1AP message or the user plane data to the IAB node, and the second TNLA corresponds to the Internet Protocol IP address allocated for the IAB node by the second IAB host.
  • the communication apparatus 800 may further include an obtaining module 803, configured to receive an IP address allocated to the IAB node by the second IAB host from the CU of the second IAB host. Further, the processing module 801 uses the IP address assigned to the IAB node by the second IAB host, so that the sending module 802 sends the F1AP message or user plane data to the IAB node through the second TNLA.
  • the F1AP message type includes user equipment related types and non-user equipment related types.
  • the user plane data indication is the identifier or IP address of the GTP-U tunnel of the F1 interface.
  • the QoS attributes are differentiated services code points, and/or flow labels.
  • the F1AP message carries the configuration information of the DU of the IAB node under the host of the first IAB.
  • the communication apparatus 800 may include a sending module 802 .
  • the sending module 802 is configured to send an F1 interface application protocol (F1 application protocol, F1AP) message type indication and a QoS attribute to the CU of the first IAB host, where the F1AP message type indication and the QoS attribute have a corresponding relationship, and the corresponding relationship is used for the Determination of the QoS attribute corresponding to the F1AP message of the CU of the first IAB host, where the F1 interface is a communication interface between the CU of the first IAB host and the distributed unit DU of the IAB node.
  • F1 interface application protocol F1 application protocol, F1AP
  • the sending module 802 is configured to send the user plane data indication and the QoS attribute to the CU of the first IAB host, where the user plane data indication and the QoS attribute have a corresponding relationship, and the corresponding relationship is used for the user of the CU of the first IAB host Determination of the QoS attributes corresponding to the plane data.
  • the sending module 802 is further configured to send the IP address allocated by the second IAB host to the IAB node to the CU of the first IAB host, where the IP address is used for transmission of the F1AP message or the user plane data.
  • the sending module 802 is further configured to send, to the DU of the second IAB host, the IP address allocated by the first IAB host for the IAB node and the BAP address allocated by the second IAB host for the IAB node, the IP address.
  • There is a corresponding relationship with the BAP address and the corresponding relationship is used for determining the BAP address of the target node corresponding to the F1AP message or the user plane data.
  • the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the F1AP message type includes user equipment related types and non-user equipment related types.
  • the user plane data indication is the identifier or IP address of the General Packet Radio Service User Plane Tunneling Protocol GTP-U tunnel of the F1 interface.
  • the QoS attribute is the Differentiated Services Code Point DSCP, and/or the flow label flow label.
  • the F1AP message carries the configuration information of the DU of the IAB node under the host of the first IAB.
  • the communication apparatus 800 may include a processing module 801 , a sending module 802 and an obtaining module 803 .
  • the obtaining module 803 is configured to receive the F1 interface application protocol (F1 application protocol, F1AP) message type indication and the QoS attribute from the CU of the first IAB host, and the F1AP message type indication and the QoS attribute have a corresponding relationship, wherein the F1 interface It is the communication interface between the CU of the first IAB host and the distributed unit DU of the IAB node, or the obtaining module 803 is configured to receive the user plane data indication and QoS attribute from the CU of the first IAB host, the user plane data The indication has a corresponding relationship with the QoS attribute.
  • F1 interface application protocol F1 application protocol, F1AP
  • the processing module 801 is configured to cause the sending module 802 to send the routing configuration and the bearer configuration corresponding to the QoS attribute to the DU of the second IAB host according to the corresponding relationship.
  • the sending module 802 is further configured to send, to the DU of the second IAB host, the IP address allocated by the first IAB host for the IAB node and the BAP address allocated by the second IAB host for the IAB node, the IP address.
  • There is a corresponding relationship with the BAP address and the corresponding relationship is used for determining the BAP address of the target node corresponding to the F1AP message or the user plane data.
  • the F1 interface is a communication interface between the CU of the first IAB host and the DU of the IAB node.
  • the F1AP message type includes user equipment related types and non-user equipment related types.
  • the user plane data indication is the identifier or IP address of the General Packet Radio Service User Plane Tunneling Protocol GTP-U tunnel of the F1 interface.
  • the QoS attribute is the Differentiated Services Code Point DSCP, and/or the flow label flow label.
  • the F1AP message carries the configuration information of the DU of the IAB node under the host of the first IAB.
  • FIG. 9 is a schematic block diagram of a communication apparatus 900 provided by an embodiment of the present application.
  • the communication device 900 can be applied to an IAB donor-DU.
  • the structure and function of the communication device 900 will be described in detail below.
  • the communication apparatus 900 may include a processing module 901 and an acquisition module 902 .
  • the acquisition module 902 is configured to receive the F1 interface application protocol (F1 application protocol, F1AP) from the CU of the first IAB host and the QoS attribute corresponding to the F1AP message, or receive user plane data from the CU of the first IAB host and the user The QoS attribute corresponding to the plane data, wherein the F1 interface is the communication interface between the CU of the first IAB host and the DU of the IAB node;
  • F1 interface application protocol F1 application protocol, F1AP
  • the processing module 901 is configured to perform routing and bearer mapping on the F1AP message or user plane data according to the routing configuration and bearer configuration corresponding to the QoS attribute.
  • the obtaining module 902 is further configured to receive the Internet Protocol IP address allocated by the first IAB host for the IAB node and the BAP address allocated by the second IAB host for the IAB node from the CU of the second IAB host.
  • the IP address and the BAP address have a corresponding relationship.
  • the processing module 901 is further configured to determine the BAP address of the target node corresponding to the F1AP message or the user plane data according to the corresponding relationship; wherein, the F1 interface is between the CU of the first IAB host and the DU of the IAB node communication interface.
  • the F1AP message type may include user equipment related types and non-user equipment related types.
  • the user plane data indication is the identifier or IP address of the GTP-U tunnel of the F1 interface.
  • the QoS attributes are differentiated services code points, and/or flow labels.
  • the F1AP message carries the configuration information of the DU of the IAB node under the host of the first IAB.
  • FIG. 10 is a schematic block diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication device 1000 can be applied to an IAB node.
  • the structure and function of the communication device 1000 will be divided into different designs and will be specifically described below. Although the module names are the same between different designs, the structure and function can be different.
  • the communication apparatus 1000 may include a processing module 1001 and an acquisition module 1003 .
  • the processing module 1001 is configured to use the IP address allocated for the IAB node by the second IAB host to establish a first TNLA between the CU of the first IAB host and the DU of the IAB node.
  • the acquisition module 1003 is configured to receive, through the first TNLA, an F1 interface application protocol (F1 application protocol, F1AP) message or user plane data from the CU of the first IAB host, where the F1 interface is the CU and IAB of the first IAB host Communication interface between DUs of a node.
  • F1 interface application protocol F1 application protocol, F1AP
  • the F1AP message type includes user equipment related types and non-user equipment related types.
  • the user plane data indication is the identifier or IP address of the GTP-U tunnel of the F1 interface.
  • the QoS attributes are differentiated services code points, and/or flow labels.
  • the F1AP message carries the configuration information of the DU of the IAB node under the host of the first IAB.
  • the communication apparatus 1000 may include a processing module 1001 and an acquisition module 1003 .
  • the obtaining module 1003 is configured to obtain the configuration information of the distributed unit DU of the IAB node under the host of the target IAB.
  • the processing module 1001 is configured to activate the configuration information after the MT of the IAB node switches from the source IAB host to the target IAB host.
  • the obtaining module 1003 is configured to receive the configuration information from the target IAB host.
  • the obtaining module 1003 is further configured to receive second information from the target IAB host, where the second information is used to activate the configuration information.
  • the processing module 1001 is specifically configured to activate the configuration information according to the second information.
  • the obtaining module 1003 is specifically configured to receive at least one configuration information from the network management device.
  • the processing module 1001 is further configured to enable the obtaining module 1003 to determine the configuration information from the at least one configuration information.
  • the communication apparatus 1000 may further include a sending module 1002 .
  • the sending module 1002 is configured to send request information for establishing the F1 interface to the target IAB host, where the request information includes configuration information of the DU of the IAB node under the target IAB host.
  • the obtaining module 1003 is configured to receive response information of the request information from the target IAB host.
  • the processing module 1001 is further configured to establish a first TNLA between the CU of the target IAB host and the DU of the IAB node using the IP address allocated by the target IAB host for the IAB node.
  • the sending module 1002 is specifically configured to send the request information for establishing the F1 interface to the target IAB host through the first TNLA.
  • the obtaining module 1003 is specifically configured to receive, through the first TNLA, response information for the request information from the target IAB host.
  • the processing module 1001 is further configured to use the IP address allocated by the source IAB host for the IAB node, in the IP address of the target IAB host.
  • a second transport network layer association TNLA is established between the CU and the DU of the IAB node.
  • the sending module 1002 is specifically configured to send the request information for establishing the F1 interface to the target IAB host through the second TNLA.
  • the obtaining module 1003 is specifically configured to receive, through the second TNLA, response information for the request information from the target IAB host.
  • the processing module 1001 is further configured to use the IP address allocated by the source IAB host for the IAB node, in the CU of the target IAB host and the IP address of the target IAB host.
  • a second transport network layer association TNLA is established between the DUs of the IAB node.
  • the sending module 1002 is specifically configured to send the request information for establishing the F1 interface to the target IAB host through the second TNLA.
  • the processing module 1001 is also used to use the IP address allocated by the target IAB host for the IAB node, in the CU of the target IAB host.
  • the first TNLA is established with the DU of the IAB node.
  • the obtaining module 1003 is specifically configured to receive, through the first TNLA, response information for the request information from the target IAB host.
  • the obtaining module 1003 receives the response information of the request information from the target IAB host, then the response information is used to deactivate the IAB node's The configuration information of the DU under the host of the target IAB, or,
  • the obtaining module 1003 receives response information for the request information from the target IAB host, the response information is used to activate the DU of the IAB node in the Configuration information under the target IAB host.
  • the processing module 1001 is used to automatically activate the configuration information. Further, the sending module 1002 is further configured to send first information to the target IAB host, where the first information indicates that the configuration information has been activated.
  • FIG. 11 is a schematic block diagram of a communication apparatus 1100 provided by an embodiment of the present application.
  • the communication device 1100 can be applied to an IAB donor.
  • the structure and function of the communication device 1100 will be divided into different designs for specific description below. Although the module names are the same between different designs, the structure and function can be different.
  • the communication device 1100 may include a processing module 1001 and an acquisition module 1103 .
  • the obtaining module 1103 is configured to receive first information from the IAB node, where the first information indicates that the configuration information of the distributed unit DU of the IAB node under the host of the target IAB has been activated.
  • the processing module 1001 is configured to determine, according to the first information, that the configuration information has been activated.
  • the communication apparatus 1100 may include a sending module 1102 and an obtaining module 1103 .
  • the acquiring module 1103 is configured to receive request information for establishing the F1 interface from the IAB node.
  • the sending module 1102 is configured to send the response information to the IAB node before the MT of the IAB node switches from the source IAB host to the target IAB host, where the response information is used to deactivate the DU of the IAB node under the target IAB host.
  • configuration information, or the sending module 1102 is configured to send the response information to the IAB node after the mobile terminal MT of the IAB node switches from the source IAB host to the target IAB host, where the response information is used to activate the DU of the IAB node in Configuration information under the target IAB host.
  • the obtaining module 1103 is configured to receive the request information for establishing the F1 interface from the IAB node through the second transport network layer association TNLA between the CU of the target IAB host and the DU of the IAB node.
  • the TNLA corresponds to the IP address assigned to the IAB node by the source IAB host.
  • the sending module 1102 is configured to send response information of the request information to the IAB node through the second TNLA.
  • the obtaining module 1103 is specifically configured to receive the request information for establishing the F1 interface from the IAB node through the first TNLA between the CU of the target IAB host and the DU of the IAB node, the first TNLA and the Corresponds to the IP address assigned by the target IAB host to the IAB node.
  • the sending module 1102 is specifically configured to send the response information of the request information to the IAB node through the first TNLA.
  • the obtaining module 1103 is configured to receive through the second transport network layer association TNLA between the CU of the target IAB host and the DU of the IAB node before the MT of the IAB node switches from the source IAB host to the target IAB host Request information from the IAB node for establishing the F1 interface, the second TNLA corresponds to the Internet Protocol IP address allocated by the source IAB host for the IAB node.
  • the sending module 1102 is configured to send to the IAB node through the first TNLA between the CU of the target IAB host and the DU of the IAB node after the MT of the IAB node is switched from the source IAB host to the target IAB host
  • the first TNLA corresponds to the IP address allocated by the target IAB host for the IAB node.
  • an embodiment of the present application further provides an apparatus 1200 , and the structure and function of the apparatus 1200 will be described in detail below with reference to FIG. 12 , a schematic block diagram of the apparatus 1200 .
  • the apparatus may include at least one processor 1201 .
  • an interface circuit 1202 is also included.
  • the apparatus 1200 can be made to implement the communication method provided in any of the foregoing embodiments and any of the possible designs.
  • the processor 1201 is used to implement the communication method and any possible design provided by any of the foregoing embodiments through logic circuits or executing code instructions.
  • the interface circuit 1202 may be used to receive program instructions and transmit them to the processor, or the interface circuit 1202 may be used for the apparatus 1200 to communicate and interact with other communication devices, such as interactive control signaling and/or service data.
  • the interface circuit 1202 can be used to receive signals from other devices other than the device 1200 and transmit to the processor 1201 or send signals from the processor 1201 to other communication devices other than the device 1200 .
  • the interface circuit 1202 may be a code and/or data read/write interface circuit, or the interface circuit 1202 may be a signal transmission interface circuit between the communication processor and the transceiver.
  • the communication apparatus 1200 may further include at least one memory 1203, and the memory 1203 may be used to store required program instructions and/or data.
  • the apparatus 1200 may further include a power supply circuit 1204, and the power supply circuit 1204 may be used to supply power to the processor 1201.
  • the power supply circuit 1204 may be located in the same chip as the processor 1201, or may be located where the processor 1201 is located. outside the chip inside another chip.
  • the apparatus 1200 may further include a bus 1205 , and various parts of the apparatus 1200 may be interconnected through the bus 1205 .
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM Synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the power supply circuit described in the embodiments of the present application includes, but is not limited to, at least one of the following: a power supply line, a power supply subsystem, a power management chip, a power consumption management processor, or a power consumption management control circuit.
  • the transceiver device, the interface circuit, or the transceiver described in the embodiments of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • Transceiver devices, interface circuits, or transceivers may operate under the direction of a corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • “implemented by software” may mean that the processor reads and executes the program instructions stored in the memory to realize the functions corresponding to the above modules or units, wherein the processor refers to a processing circuit with the function of executing program instructions, Including but not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processing (DSP), microcontroller (MCU), or artificial intelligence processing Various types of processing circuits that can run program instructions, such as a processor. In other embodiments, the processor may also include circuits for other processing functions (eg, hardware circuits for hardware acceleration, bus and interface circuits, etc.).
  • the processor may be presented in the form of an integrated chip, for example, in the form of an integrated chip whose processing function only includes the function of executing software instructions, or in the form of a system on a chip (SoC), that is, on a chip , in addition to including a processing circuit (usually called a "core") capable of running program instructions, it also includes other hardware circuits for implementing specific functions (of course, these hardware circuits can also be implemented independently based on ASIC and FPGA), correspondingly Yes, in addition to the function of executing software instructions, the processing function may also include various hardware acceleration functions (such as AI calculation, encoding and decoding, compression and decompression, etc.).
  • SoC system on a chip
  • the hardware processing circuit can be composed of discrete hardware components or an integrated circuit. In order to reduce power consumption and reduce size, it is usually implemented in the form of integrated circuits.
  • the hardware processing circuit may include an ASIC, or a programmable logic device (programmable logic device, PLD); wherein, the PLD may in turn include an FPGA, a complex programmable logic device (complex programmable logic device, CPLD), and the like.
  • These hardware processing circuits can be a single semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon substrate
  • a variety of hardware circuits and CPUs are individually packaged into a chip, which is also called SoC, or circuits and CPUs for implementing FPGA functions can also be formed on a silicon substrate and individually enclosed into a single chip. Also known as a programmable system on a chip (system on a programmable chip, SoPC).
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple on the network unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the medium may include several instructions to cause a computer device, such as a personal computer, a server, or a network device, or a processor to perform all or part of the operations of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk, or optical disk, etc. that can store program codes medium or computer-readable storage medium.
  • transmission may include the following three situations: data transmission, data reception, or data transmission and data reception.
  • data may include service data, and/or signaling data.
  • At least one means one or more. “Includes at least one of the following: A, B, C.” means that it may include A, or B, or C, or A and B, or A and C, or B and C, or A, B and C.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD LTE Time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th generation
  • NR new radio

Abstract

本申请实施例提供了一种通信的方法及相关设备。该方法包括:第一IAB宿主的CU确定F1接口应用协议(F1 application protocol,F1AP)消息对应的QoS属性,其中,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。之后,该第一IAB宿主的CU向第二IAB宿主的DU发送该F1AP消息和该F1AP消息对应的QoS属性。通过本方法,即使在第一IAB宿主的DU无法转发来自第一IAB宿主的CU的F1AP消息的情况下,也可以保证F1AP消息的传输。

Description

一种通信方法及相关设备 技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种通信的方法及相关设备。
背景技术
接入回传一体化技术(integrated access and backhaul,IAB)是第五代移动通信技术(5G)的一个重要的部分。
一方面,由于IAB节点的分布式单元(Distributed Unit,DU)与IAB宿主的集中式单元(Central Unit,CU)之间是通过无线连接的,所以IAB节点可以选择在不同的IAB宿主之间进行切换。为了减少IAB节点切换过程中对子节点数据传输的影响,一般需要该IAB节点提前获取该IAB节点在目标IAB宿主下的配置信息,以便于建立(或者重建立)该IAB节点和目标IAB宿主之间的F1连接。例如,目标IAB宿主的CU先将该IAB节点在目标IAB宿主下的配置信息传递给源IAB宿主的CU,源IAB宿主的CU再将该配置信息传递给该IAB节点,由于这个过程需要经过源IAB宿主的CU,会导致该配置信息的传递时延较大。
另一方面,在多连接或双连接的场景,即IAB节点同时连接第一IAB宿主和第二IAB宿主的情况下,如果第一IAB宿主的DU无法转发第一IAB宿主的CU发送的数据,会导致第一IAB宿主与IAB节点之间的数据传输发送中断,从而影响用户体验。
发明内容
有鉴于此,本申请提供了一种通信方法及相关设备,可以减少数据传输时延和数据传输中断。
第一方面,本申请提供一种通信方法,该方法可以包括:第一IAB宿主的CU确定F1接口应用协议(F1 application protocol,F1AP)消息对应的服务质量QoS属性,或者用户面数据对应的服务质量(quality of service,QoS)属性,其中,该F1接口为该第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口。之后,该第一IAB宿主的CU向第二IAB宿主的DU发送该F1AP消息和该F1AP消息对应的QoS属性,或者向该第二IAB宿主的DU发送该用户面数据和该用户面数据对应的QoS属性。
通过本方法,示例性的有益效果包括:可以使得第二IAB宿主的DU能够转发来自第一IAB宿主的CU的F1AP消息或者用户面数据,一方面可以减少由于第一IAB宿主的DU无法转发来自第一IAB宿主的CU的F1AP消息或者用户面数据导致的数据传输中断。另一方面,由于利用的是第一IAB宿主的CU和第二IAB宿主的DU之间的链路,不需要经过第二IAB宿主的CU,从而减少了数据传输时延。
一种可能的设计中,该第一IAB宿主的CU可以根据F1AP消息类型与QoS属性之间的对应关系,确定该F1AP消息对应的QoS属性。或者,该第一IAB宿主的CU可以根据用户面数据与QoS属性之间的对应关系,确定所述用户面数据对应的QoS属性。
其中,该对应关系是从该第二IAB宿主的CU处获得的。
通过本设计,示例性的有益效果包括:可以使得该第二IAB Donor-DU按照该第二IAB Donor-CU配置给该第二IAB Donor-DU的QoS属性和路由配置的对应关系,和/或,QoS属性和承载配置的对应关系,正确的对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由,和/或,承载映射。
一种可能的设计中,该方法包括:该第一IAB宿主的CU向第二IAB宿主的CU发送F1AP消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系。或者,该第一IAB宿主的CU可以向第二IAB宿主的CU发送用户面数据指示与QoS属性,该用户面数据指示和所述QoS属性具有对应关系。
通过本设计,示例性的有益效果包括:由于该第二IAB Donor-CU可以根据收到的F1AP消息类型指示与该QoS属性之间的对应关系或者用户面数据指示与QoS属性之间的对应关系,重新向第二IAB Donor-DU发送QoS属性和路由配置的对应关系,和/或,QoS属性和承载配置的对应关系,以便于该第二IAB Donor-DU根据新的QoS属性和路由配置的对应关系,和/或,QoS属性和承载配置的对应关系,对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由和/或承载映射。
一种可能的设计中,该方法包括:该第一IAB宿主的CU通过该第一IAB宿主的CU和该IAB节点的DU之间的第一传输网络层关联(transport network layer association,TNLA)向该IAB节点发送该F1AP消息或者用户面数据,该第一TNLA与该第一IAB宿主为该IAB节点分配的互联网协议(internet protocol,IP)地址对应。或者,该第一IAB宿主的CU通过该第一IAB宿主的CU和该IAB节点的DU之间的第二TNLA向该IAB节点发送该F1AP消息或者用户面数据,该第二TNLA与该第二IAB宿主为该IAB节点分配的IP地址对应。
通过本设计,示例性的有益效果包括:可以使得该第一IAB donor-CU生成的F1AP消息或者用户面数据可以通过该第一IAB donor-CU与IAB-DU之间的TNLA,经由第二IAB donor-DU发送给IAB node。
一种可能的设计中,该方法包括:该第一IAB宿主的CU接收来自该第二IAB宿主的CU的该第二IAB宿主为该IAB节点分配的IP地址。该第一IAB宿主的CU通过该第一IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA向该IAB节点发送该F1AP消息或者用户面数据,包括:该第一IAB宿主的CU使用该第二IAB宿主为该IAB节点分配的IP地址,通过该第二TNLA向该IAB节点发送该F1AP消息或者用户面数据。
通过本设计,示例性的有益效果包括:使得该第一IAB donor-CU可以使用该第二IAB宿主为该IAB节点分配的IP地址,通过该第二TNLA收发数据。
第二方面,本申请提供一种通信方法,该方法可以包括:第二接入回传一体化IAB宿主的CU向第一IAB宿主的CU发送F1AP消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系,该对应关系用于该第一IAB宿主的CU的F1AP消息对应的QoS属性的确定,其中,该F1接口为该第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口。或者,第二接入回传一体化IAB宿主的集中式单元CU向第一IAB宿主的CU发送用户面数据指示与QoS属性,该用户面数据指示和该QoS属性具有对应关系,该对应关系用于该第一IAB宿主的CU的用户面数据对应的QoS属性的确定。
一种可能的设计中,该方法包括:该第二IAB宿主的CU向该第一IAB宿主的CU发送该第二IAB宿主为该IAB节点分配的IP地址,该IP地址用于该F1AP消息或者该用户面数据的传输。
第三方面,本申请提供一种通信方法,该方法可以包括:第二IAB宿主的集中式单元CU接收来自第一IAB宿主的CU的F1AP消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系,其中,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。或者,第二IAB宿主的CU接收来自第一IAB宿主的CU的用户面数据指示与QoS属性,该用户面数据指示和该QoS属性具有对应关系。
该第二IAB宿主的CU根据该对应关系,向该第二IAB宿主的DU发送该QoS属性对应的路由配置和承载配置。
一种可能的设计中,该方法包括:该第二IAB宿主的CU向该第二IAB宿主的DU发送该第一IAB宿主为该IAB节点分配的IP地址和该第二IAB宿主为该IAB节点分配的回传适配协议(bakhaul adaptation protocol,BAP)地址,该IP地址和该BAP地址具有对应关系,该对应关系用于该F1AP消息对应的目标节点的BAP地址的确定。其中,该F1接口为该第一IAB宿主的CU与该IAB节点的DU之间的通信接口。
第四方面,本申请提供一种通信方法,该方法可以包括:第二IAB宿主的分布式单元DU接收来自第一IAB宿主的CU的F1AP消息和该F1AP消息对应的QoS属性,或者接收来自第一IAB宿主的CU的用户面数据和该用户面数据对应的QoS属性,其中,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。
该第二IAB宿主的DU可以根据该QoS属性对应的路由配置和承载配置,对该F1AP消息或者用户面数据进行路由和承载映射。
一种可能的设计中,该方法包括该第二IAB宿主的DU接收来自该第二IAB宿主的CU的该第一IAB宿主为IAB节点分配的IP地址和该第二IAB宿主为该IAB节点分配的BAP地址,该IP地址和该BAP地址具有对应关系。
该第二IAB宿主的DU可以根据该对应关系,确定该F1AP消息或者该用户面数据对应的目标节点的BAP地址,其中,该F1接口为该第一IAB宿主的CU与该IAB节点的DU之间的通信接口。
第五方面,本申请提供一种通信方法,该方法可以包括:IAB节点使用第二IAB宿主为该IAB节点分配的IP地址,在该第一IAB宿主的CU和该IAB节点的DU之间建立第一TNLA。之后,该IAB节点通过该第一TNLA接收来自该第一IAB宿主的CU的F1AP消息或者用户面数据,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。
在上述第一方面至第三方面及其任一可能的设计中,该F1AP消息类型包括用户设备相关类型和非用户设备相关类型。
在上述第一方面至第三方面及其任一可能的设计中,该用户面数据指示为该F1接口的通用分组无线业务用户面隧道协议隧道的标识或者IP地址。
在上述第一方面至第五方面及其任一可能的设计中,该QoS属性为区分服务编码点(differentiated services code point,DSCP),和/或,流标签(flow label)。
在上述第一方面至第五方面及其任一可能的设计中,该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
第六方面,本申请提供一种通信方法,该方法可以包括:IAB节点获得该IAB节点的DU在目标IAB宿主下的配置信息,并在该IAB节点的移动终端(mobile termination,MT)从源IAB宿主切换至目标IAB宿主之后,激活该配置信息。
通过本方法,示例性的有益效果包括:可以使得该IAB节点在MT部分的切换过程中,不生效该IAB节点的DU在目标IAB宿主下的配置信息,使得该IAB节点的MT的资源和该IAB节点的DU的资源可以得到协调分配。
一种可能的设计中,该IAB节点可以从该目标IAB宿主处接收该IAB节点的分布式单元DU在目标IAB宿主下的配置信息。
通过本设计,示例性的有益效果包括:可以减少F1接口的建立流程,提高切换的效率。
一种可能的设计中,该方法还包括:该IAB节点接收来自该目标IAB宿主的第二信息, 该第二信息用于激活该配置信息。该IAB节点激活该配置信息,包括:该IAB节点根据该第二信息,激活该配置信息。
通过本设计,示例性的有益效果包括:可以由目标IAB宿主灵活的控制该配置信息的激活。
一种可能的设计中,该方法还包括:该IAB节点从网管设备接收至少一个配置信息。该IAB节点获得该IAB节点的DU在目标IAB宿主下的配置信息,包括:该IAB节点从该至少一个配置信息中确定该配置信息。
一种可能的设计中,该方法包括:该IAB节点向该目标IAB宿主发送用于建立F1接口的请求信息,该请求信息包括该IAB节点的DU在该目标IAB宿主下的配置信息。该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息。
一种可能的设计中,该方法包括:该IAB节点使用该目标IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第一传输网络层关联TNLA。该IAB节点向该目标IAB宿主发送用于建立F1接口的请求信息,包括:该IAB节点通过该第一TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息,包括:该IAB节点通过该第一TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
一种可能的设计中,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,该方法包括:该IAB节点使用该源IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第二传输网络层关联TNLA。该IAB节点向该目标IAB宿主发送用于建立F1接口的请求信息,包括:该IAB节点通过该第二TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息,包括:该IAB节点通过该第二TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
一种可能的设计中,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,该方法包括:该IAB节点使用该源IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第二传输网络层关联TNLA。该IAB节点向该目标IAB宿主发送用于建立F1接口的请求信息,包括:该IAB节点通过该第二TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。
一种可能的设计中,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,该方法包括:该IAB节点使用该目标IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第一TNLA。该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息,包括:该IAB节点通过该第一TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
一种可能的设计中,该方法包括:如果在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息,则该响应信息用于去激活该IAB节点的DU在该目标IAB宿主下的配置信息。
通过本设计,示例性的有益效果包括:可以使得在IAB-MT完成切换前,该IAB节点的DU在该目标IAB宿主下的配置信息不被该请求信息的响应信息误激活。
一种可能的设计中,该方法包括:如果在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,该IAB节点接收来自该目标IAB宿主的该请求信息的响应信息,则该响应信息用于激活该IAB节点的DU在该目标IAB宿主下的配置信息。
通过本设计,示例性的有益效果包括:可以复用该请求信息的响应信息激活该IAB节点的DU在该目标IAB宿主下的配置信息,从而节省空口开销。
一种可能的设计中,该IAB节点激活该配置信息,包括:该IAB节点自动激活该配置信息。通过本设计,示例性的有益效果包括:不需要专门的激活信息,可以节省空口开销,
一种可能的设计中,该方法还包括:该IAB节点向该目标IAB宿主发送第一信息,该第一信息指示该配置信息已激活。通过本设计,示例性的有益效果包括:可以使得该IAB节点向该目标IAB宿主对齐该配置信息的激活情况。
第七方面,本申请提供一种通信方法,该方法可以包括:目标接入回传一体化IAB宿主接收来自IAB节点的第一信息,该第一信息指示该IAB节点的分布式单元DU在该目标IAB宿主下的配置信息已激活。该目标IAB宿主根据该第一信息,确定该配置信息已激活。
第八方面,本申请提供一种通信方法,该方法可以包括:目标接入回传一体化IAB宿主接收来自IAB节点的用于建立F1接口的请求信息。在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,该目标IAB宿主向该IAB节点发送该响应信息,该响应信息用于去激活该IAB节点的DU在该目标IAB宿主下的配置信息。或者,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,该目标IAB宿主向该IAB节点发送该响应信息,该响应信息用于激活该IAB节点的DU在该目标IAB宿主下的配置信息。
一种可能的设计中,该目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:该目标IAB宿主通过该目标IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA接收来自IAB节点的该用于建立F1接口的请求信息,该第二TNLA与该源IAB宿主为该IAB节点分配的互联网协议IP地址对应。该目标IAB宿主向该IAB节点发送该请求信息的响应信息,包括:该目标IAB宿主通过该第二TNLA向该IAB节点发送该请求信息的响应信息。
一种可能的设计中,该目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:该目标IAB宿主通过该目标IAB宿主的CU和该IAB节点的DU之间的第一传输网络层关联TNLA接收来自IAB节点的该用于建立F1接口的请求信息,该第一TNLA与该目标IAB宿主为该IAB节点分配的互联网协议IP地址对应。该目标IAB宿主向该IAB节点发送该请求信息的响应信息,包括:该目标IAB宿主通过该第一TNLA向该IAB节点发送该请求信息的响应信息。
一种可能的设计中,在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,该目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:该目标IAB宿主通过该目标IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA接收来自该IAB节点的用于建立F1接口的请求信息,该第二TNLA与该源IAB宿主为该IAB节点分配的互联网协议IP地址对应。
一种可能的设计中,在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,该目标IAB宿主向该IAB节点发送该请求信息的响应信息,包括:该目标IAB宿主通过该目标IAB宿主的CU和该IAB节点的DU之间的第一TNLA向该IAB节点发送该请求信息的响应信息,该第一TNLA与该目标IAB宿主为该IAB节点分配的IP地址对应。
第九方面,本申请提供一种通信装置,该装置包括用于执行第一方面至第八方面的方法及其任一设计中的任一种方法的模块。
第十方面,本申请提供一种通信装置,包括处理器和存储器,该处理器和该存储器耦合,该处理器用于实现第一方面至第八方面的方法及其任一设计中的任一种方法。
第十一方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器,或该接口电路用于将来自该处理器的信号发送给该通信装置之外的其它通信装置。该处理器通过逻辑电路或执行程序指令来实现第一方面至第八方面的方法及其任一设计中的任一种方法。
在一个可能的设计中,该装置可以是第一方面至第八方面的方法及其任一设计中的任一种方法中的节点中的芯片或者集成电路。
可选的,该通信装置还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第十二方面,本申请提供一种通信装置,该装置具有实现上述第一方面至第八方面的方法及其任一设计中的方法中的任一种方法的功能或操作,所述功能或操作可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能或操作相对应的单元(模块),比如包括收发单元和处理单元。
第十三方面,本申请提供一种通信装置,包括至少一个处理器和存储器,该至少一个处理器和该存储器耦合,该存储器中存储有计算机程序,该至少一个处理器执行该计算机程序,以使得该通信装置执行第一方面至第八方面的方法及其任一设计中的任一种方法。
第十四方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,涉及的计算机程序在该至少一个处理器中执行,以使得该通信装置执行第一方面至第八方面的方法及其任一设计中的任一种方法。
第十五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有涉及的程序指令,该涉及的程序指令被运行时,以使得该通信装置实现第一方面至第八方面的方法及其任一设计中的任一种方法。
第十六方面,本申请提供了一种计算机程序产品,该计算机程序产品包含涉及的程序指令,该涉及的程序指令被执行时,以实现第一方面至第八方面的方法及其任一设计中的任一种方法。
第十七方面,本申请还提供一种芯片,所述芯片用于实现第一方面至第八方面的方法及其任一设计中的任一种方法。
第十八方面,本申请提供了一种通信系统,该通信系统包括第九方面至第十五方面及其任一设计中至少一种通信装置。
附图说明
可以包括在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例,或特征和方面,并且用于解释本申请的原理,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以包括根据这些附图获得其他的附图。
图1是本申请一种可能的通信系统的示意图;
图2是本申请实施例提供的一种IAB宿主的示意图;
图3是本申请实施例提供的IAB网络中的控制面协议栈的示意图;
图4是本申请实施例提供的IAB网络中的用户面协议栈的示意图;
图5A是本申请实施例提供的一种IAB节点切换的示意图;
图5B是本申请实施例提供的另一种IAB节点切换的示意图;
图6是本申请实施例提供的一种通信方法的示意图;
图7是本申请实施例提供的一种通信方法的示意图;
图8是本申请实施例提供的一种通信装置的示意性框图;
图9是本申请实施例提供的一种通信装置的示意性框图;
图10是本申请实施例提供的一种通信装置的示意性框图;
图11是本申请实施例提供的一种通信装置的示意性框图;
图12是本申请实施例提供的一种装置的示意性框图。
具体实施方式
相较于第四代移动通信或者长期演进(long term evolution,LTE)系统,第五代移动通信(5G)或者新空口(new radio,NR)系统针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。无线回传设备为解决上述两个问题提供了思路:其接入链路(acess link,AL)和回传链路(backhaul link,BL)皆采用无线传输方案,减少光纤部署。无线回传设备可以是中继节点(Relay Node,RN),也可以是接入回传一体化(Integrated Access Backhaul,IAB)节点,还可以是其他提供无线回传功能的设备,本申请并不限定。在IAB网络中,IAB节点(IAB node)作为无线回传设备,可以为用户设备(user equipment,UE)提供无线接入服务,所述UE的业务数据由IAB node通过无线回传链路连接到IAB宿主或者说宿主基站传输。使用IAB节点,可以使得进行接入和回传共享天线,减少基站的天线数目。
下面将结合附图,对本申请实施例进行描述,附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
图1是本申请提供的一种可能的通信系统的示意图。该通信系统包括终端,IAB节点,IAB宿主。
图1中的终端可以是接入终端设备、用户单元、用户设备、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、无线终端设备、用户代理、或者用户装置等。还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(如智能手表、智能手环等)、还可以为智能家具或家电、5G网络中的终端设备、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等,本申请对用户设备的具体实现形式并不做限定。
图1中的IAB节点可以由移动终端(mobile termination,MT)和分布式单元DU(distributed unit,DU)组成,其中,当IAB节点面向其父节点时,可以被看做是终端设备,即MT的角色;当IAB节点面向其下属设备(下属设备可能是另一IAB子节点,或者普通UE)时,其可被看做网络设备,即作为DU的角色。应理解,图1中的各节点是以IAB节点为例,其中的各IAB节点可以被替换为一般的中继节点(relay node,RN)。本申请中,IAB节点的MT 可以简称为IAB-MT,IAB节点的DU可以简称为IAB-DU,IAB宿主的CU可以简称为Donor-CU,IAB宿主的DU可以简称为Donor-DU。
图1中的IAB宿主(IAB donor)可以为宿主基站,IAB宿主在5G网络中可以简称为DgNB(即donor gNodeB)。IAB宿主可以是一个完整的实体,还可以是以集中式单元(centralized unit,CU)(本申请中简称为Donor-CU或者gNB-CU)和分布式单元(distributed unit,DU)(本申请中简称为Donor-DU或者gNB-DU)分离的形态存在,如图2所示,IAB宿主可以是位于5G无线接入网(5G radio access network,5G RAN)中的gNB。该IAB宿主可以是由gNB-CU和gNB-DU组成。gNB-CU和gNB-DU通过F1接口相连,F1接口又可以进一步包括控制面接口(F1-C)和用户面接口(F1-U)。CU和核心网之间通过下一代(next generation,NG)接口相连。其中,gNB-CU或者Donor-CU还可以是以用户面(user plane,UP)(本申请中简称为CU-UP)和控制面(control plane,CP)(本申请中简称为CU-CP)分离的形态存在,即gNB-CU或者Donor-CU由CU-CP和CU-UP组成。一个gNB-CU可以包括一个gNB-CU-CP和至少一个gNB-CU-UP。或者,一个Donor-CU可以包括一个Donor-CU-CP和至少一个Donor-CU-UP。Donor-CU和Donor-DU之间可以是通过有线连接。本申请中,IAB节点连接的IAB宿主可以简称为IAB节点的IAB宿主。其中,该IAB节点可以直接接入该IAB宿主,或者,该IAB节点可以通过其他IAB节点连接到该IAB宿主。
为了保证业务传输的可靠性,IAB网络支持多跳IAB节点和多连接IAB节点组网。因此,在终端和IAB宿主之间可能存在多条传输路径。在一条路径上,IAB节点之间,以及IAB节点和IAB节点连接的IAB宿主之间有确定的层级关系,每个IAB节点将为其提供回传服务的节点视为父节点。相应地,每个IAB节点可视为其父节点的子节点。
示例性的,参见图1,IAB节点1的父节点为IAB宿主,IAB节点1又为IAB节点2和IAB节点3的父节点,IAB节点2和IAB节点3均为IAB节点4的父节点,IAB节点5的父节点为IAB节点2。终端的上行数据包可以经一个或多个IAB节点传输至IAB宿主,下行数据包将由IAB宿主经一个或多个IAB节点发送至终端。终端1和IAB宿主之间数据包的传输有两条可用的路径,分别为:终端1-IAB节点4-IAB节点3-IAB节点1-IAB宿主,和终端1-IAB节点4-IAB节点2-IAB节点1-IAB宿主。终端2和IAB宿主之间数据包的传输有三条可用的路径,分别为:终端2-IAB节点4-IAB节点3-IAB节点1-IAB宿主,终端2-IAB节点4-IAB节点2-IAB节点1-IAB宿主,和终端2-IAB节点5-IAB节点2-IAB节点1-IAB宿主。
为了保证数据在终端和IAB宿主之间的正常传输,IAB宿主需要为每个IAB节点配置路由表,即:配置不同路径对应的下一跳节点。同时,IAB宿主需要确定数据传输对应的传输路径。也就是说,在数据传输之前会先确定一个传输路径,该传输路径可以称为主路径,数据在终端和IAB宿主之间通过该主路径进行路由(routing)传输,而其他路径都可以看成备份(backup)路径。仅当主路径不可用时,例如:主路径上的某个链路发生RLF,才使用该备份路径进行重路由(re-routing)。例如,如图1所示,IAB宿主配置终端2的数据传输主路径为:终端2-IAB节点4-IAB节点2-IAB节点1-IAB宿主。当IAB节点2检测到与IAB节点1之间的链路发生RLF并无法链路恢复时,IAB节点2向IAB节点4发送无线链路失败(radio link failure,RLF)指示信息,根据该指示信息,IAB节点4可以触发数据的re-routing,将从终端2收到的上行数据暂时通过备份路径进行传输,即:终端2-IAB节点4-IAB节点3-IAB节点1-IAB宿主。
IAB节点到IAB宿主的上行路径上的中间IAB节点都可以称之为IAB节点的上游节点(upstream node),例如图1中的IAB节点1和IAB节点2都可以称之为IAB节点5的上游 IAB节点。IAB节点到终端的下行路径上的中间IAB节点都可以称之为IAB节点的下游节点,例如图1中IAB节点2、IAB节点3、IAB节点4和IAB节点5都可以称之为IAB节点1的下游节点(downstream node),下游节点包括子节点,子节点的子节点(或称为孙节点)等。下游节点可以是其他IAB节点,也可以是终端。示例性的,图1中的终端1可以称之为IAB节点4的下游节点,IAB节点4和IAB节点5可以称为IAB节点1的下游节点,终端1和终端2可以称为IAB节点1的下游节点。
可以理解的是,在IAB网络中,终端和IAB宿主之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若IAB节点的子节点是终端,该IAB节点和子节点(即终端)之间是无线接入链路。若IAB节点的子节点是其他IAB节点,该IAB节点和子节点(即其他IAB节点)之间是无线回传链路。示例性的,参见图1,在路径“终端1-IAB节点4-IAB节点3-IAB节点1-IAB宿主”中,终端1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路连接到IAB节点3,IAB节点3通过无线回传链路连接到IAB节点1,IAB节点1通过无线回传链路连接到IAB宿主。
上述IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,IAB组网场景还有更多其他的可能性,例如,IAB宿主和另一IAB宿主下的IAB节点组成双连接为终端服务等,此处不再一一列举。
本申请实施例中的接入IAB节点是指终端接入的IAB节点,中间IAB节点是指为终端或者IAB节点提供无线回传服务的IAB节点。示例性的,参见图1,在路径终端1-IAB节点4-IAB节点3-IAB节点1-IAB宿主”中,IAB节点4为接入IAB节点,IAB节点3和IAB节点1为中间IAB节点。需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。针对接入其他IAB节点的终端,是中间IAB节点。因此,一个IAB节点具体是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。
图3和图4分别是本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图,下面结合图3和图4进行说明。
对于控制面而言,如图3所示,终端1和IAB4-DU(指IAB节点4的DU)之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB4-DU和IAB donor CU 1建立有F1-C接口,对等的协议层包括F1应用协议(F1 application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层。IAB donor DU 1和IAB donor CU1之间对等的协议层包括互联网协议IP(internet protocol)层、L2和L1。IAB node 4和IAB node3之间、IAB node 3和IAB node 1之间,以及IAB node 1和IAB donor DU 1之间均建立有回传链路(backhaul link,BL),对等的协议层包括回传适配协议(bakhaul adaptation protocol,BAP)层、RLC层、MAC层以及PHY层。另外,终端1和IAB donor CU 1之间建立有对等的RRC层和PDCP层,IAB4-DU和IAB donor DU 1之间建立有对等的IP层。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在控制面上,RRC消息封装在接入IAB节点和IAB donor CU之间的F1AP消息中传输。具体地,在上行方向上,终端1将RRC消息封装在PDCP协议数据单元(protocol data unit,PDU)中,并依次经过RLC层、MAC层和PHY层的处理后发送至IAB4-DU。IAB4-DU依 次经过PHY层、MAC层和RLC层的处理后得到PDCP PDU,将PDCP PDU封装在F1AP消息中,并依次经过SCTP层、IP层处理后得到IP包,IAB4-MT(指IAB节点4的MT)将IP包分别通过BAP层、RLC层、MAC层和PHY层的处理后发送至IAB3-DU。IAB3-DU依次经过PHY层、MAC层、RLC层和BAP层的处理后得到IP包,然后IAB3-MT采用类似于IAB4-MT的操作,将该IP包发送至IAB1-DU,同理,IAB1-MT将该IP包发送至IAB donor DU 1。IAB donor DU 1解析得到IP包后,将该IP包发送至IAB donor CU 1,IAB donor CU 1将该IP包依次通过SCTP层、F1AP层和PDCP层的处理后得到RRC消息。下行方向类似,在此不再描述。
对于用户面而言,如图4所示,终端1和IAB4-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB4-DU和IAB donor CU 1建立有F1-U接口,对等的协议层包括通用分组无线业务用户面隧道协议(general packet radio service tunnelling protocol for the user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层。IAB donor DU1和IAB donor CU 1之间通过有线连接,对等的协议层包括IP层、L2和L1。IAB node 4和IAB node 3之间、IAB node 3和IAB node 1之间,以及IAB node 1和IAB donor DU 1之间均建立有回传链路(backhaul link,BL),对等的协议层包括BAP层、RLC层、MAC层以及PHY层。另外,终端1和IAB donor CU 1之间建立有对等的SDAP层和PDCP层,IAB4-DU和IAB donor DU 1之间建立有对等的IP层。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的DU实现了单空口的gNB-DU的部分功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与IAB donor CU 1建立对等的GTP-U层、UDP层的功能)。可以理解,IAB接入节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在用户面上,PDCP数据包封装在接入IAB节点和IAB donor CU之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
图3和图4以图1所示的IAB场景下的协议栈为例进行了描述。需要说明的是,一个IAB节点可能具备一个或者多个角色,该IAB节点可以拥有该一个或者多个角色的协议栈。或者,IAB节点可以具有一套协议栈,该协议栈可以针对IAB节点的不同角色,使用不同角色对应的协议层进行处理。下面以该IAB节点拥有该一个或者多个角色的协议栈为例进行说明:
(1)普通终端的协议栈
IAB节点在接入IAB网络时,可以充当普通终端的角色。此时,该IAB节点的MT具有普通终端的协议栈,例如图3和图4中的终端1的协议栈,即RRC层、PDCP层、RLC层、MAC层和PHY层,其中,控制面上,IAB节点的RRC消息是封装在IAB节点的父节点与IAB donor CU之间的F1AP消息中传输的;用户面上,IAB节点的PDCP数据包封装在IAB节点的父节点与IAB donor CU之间的GTP-U隧道中传输的。
另外,该IAB节点接入IAB网络后,该IAB节点仍然可以充当普通终端的角色,例如,与IAB donor传输自己的上行和/或下行的数据包(例如操作、管理和维护网元(operation,administration and maintenance,OAM)数据包),通过RRC层执行测量等等。
(2)接入IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以为终端提供接入服务,从而充当一个接入IAB节点的角色,此时,该IAB节点具有接入IAB节点的协议栈,例如图3和图4中的IAB node 4的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端 的协议栈,另一套是为终端提供回传服务的协议栈(即:接入IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
(3)中间IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以充当一个中间IAB节点的角色,此时,该IAB节点具有中间IAB节点的协议栈,例如图3和图4中的IAB node 3或者IAB node 1的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为子IAB节点提供回传服务的协议栈(即:中间IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
另外,IAB节点可以同时承担接入IAB节点和中间IAB节点的角色,例如,IAB节点可以针对某些终端是接入IAB节点,针对另一些终端而言,是中间IAB节点,此时该IAB节点可以有三套协议栈,一套为上述普通终端的协议栈,一套为接入IAB节点的协议栈,一套为中间IAB节点的协议栈。可选的,该三套协议栈的相同的协议层可以共享,例如该三套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
需要说明的是,图3和图4以IAB网络为例进行了介绍,图3和图4的内容同样适用于IAB网络以外的其他类型中继网络,该中继网络的控制面协议栈架构可以参考图3,该中继网络的用户面协议栈架构可以参考图4。图3和图4中的IAB节点可以替换成中继(relay),例如IAB node 4可以替换成中继节点4,IAB node 3可以替换成中继节点3,IAB node 1可以替换成中继节点1,IAB donor 1可以替换成宿主基站1,宿主基站具有CU和DU协议栈,其余内容可以参考图3和图4的描述,在此不再赘述。
图5A和图5B是本申请提供的两种IAB节点切换的示意图。
如图5A所示,IAB node 3从源父节点(IAB node 1)切换至目标父节点(IAB node 2),但不改变IAB宿主,这种切换可以称为IAB宿主内部的切换,或者donor CU内部的切换(intra-donor CU migrating)。
在图5A中,IAB node 1和IAB donor 1之间还可以包括多个IAB node,或者,IAB node3也可以是直接连接到IAB donor 1,即图5A中的IAB node 1,和/或,IAB node2可以不存在。
如图5B所示,IAB node 3从源父节点(IAB node 1)切换至目标父节点(IAB node 2),且改变连接的IAB宿主,即从源IAB宿主(IAB donor 1)切换至目标IAB宿主(IAB donor 2),可以称为跨IAB宿主的切换,或者跨donor CU的切换(inter-donor CU migrating)。
在图5A和5B中,IAB donor CU下面都可以连接1个,2个,或者多个donor DU。图5A是以IAB donor CU下面连接2个donor DU为例,图5B是以一个IAB donor CU下面都连接1个donor DU为例,但是本申请对于IAB donor CU下面连接多少个donor DU不限制。
另外,在图5A和5B中,IAB node 1和IAB donor 1之间还可以包括多个IAB node,或者,IAB node 3也可以是直接连接到IAB donor 1,即图5A中的IAB node 1,和/或,IAB node2可以不存在。图5B中IAB node 1可以不存在。同理。在图5B中,IAB node 2和IAB donor 2之间也可以包括多个IAB node,或者,IAB node 3也可以是直接连接到IAB donor 2,即图5B中IAB node 2也可以不存在。
另外,IAB节点的子节点(如图5A或者5B中的IAB node 4)可以跟随该IAB节点进行切换,即也从源IAB宿主切换到目标IAB宿主。本申请实施例提供的方法适用于该IAB节 点的切换,同样也适用于该IAB节点的下游节点跟随该IAB节点进行切换的场景。本申请中的切换IAB节点可以指的是由源IAB宿主触发切换的IAB节点。
图6所示为本申请的一种实施例的通信方法,该通信方法600包括:
S601:第一IAB宿主的CU(第一IAB donor-CU)确定F1接口应用协议F1AP消息对应的服务质量(quality of service,QoS)属性,和/或,用户面数据对应的服务质量QoS属性。
本申请实施例中的F1AP消息指的是第一IAB donor-CU与IAB node的IAB-DU之间的F1接口控制面上的消息。本申请实施例中的用户面数据可以是指第一IAB donor-CU与IAB node的IAB-DU之间的F1接口用户面上的数据。
该F1AP消息可以分为多种类型,例如,F1AP消息的类型可以包括第一类型和第二类型。该第一类型F1AP消息主要用于F1接口的上下文管理、RRC消息的传输等。此处的上下文既可以指IAB node的上下文,也可以指终端设备的上下文。此处的RRC消息既可以指的是IAB-MT的RRC层和IAB donor-CU的RRC层之间的消息,也可以指终端设备的RRC层和IAB donor-CU的RRC层之间的消息。该第二类型F1AP消息主要用于F1接口的管理,例如:F1接口的建立、复位、配置更新等。示例性的,该第一类型可以称之为用户设备相关(UE associated),该第二类型可以称之为非用户设备相关(Non-UE associated)。不同类型的F1AP消息可以具有不同的优先级,示例性的,该优先级可以通过QoS属性来体现。该QoS属性值可以包括区分服务编码点(differentiated services code point,DSCP),和/或,流标签(flow label)。不同类型的F1AP消息对应不同的DSCP或者flow label的值。
为了区分发给该IAB-DU的F1AP消息的优先级,该第一IAB Donor-CU生成F1AP消息后,需要确定该F1AP消息对应的QoS属性,即该F1AP消息所属的F1AP消息类型所对应的QoS属性。
该用户面数据可以包括终端设备的数据,也可以包括IAB node的数据,例如来自网管设备的用于配置IAB node的数据。不同的用户面数据存在不同的QoS需求,可以具有不同的优先级,示例性的,该优先级可以通过QoS属性来体现,例如可以为不同QoS需求的用户面数据对应不同的DSCP或者flow label的值。同理,为了区分发给该IAB-DU的用户面数据的优先级,该第一IAB Donor-CU生成用户面数据后,需要确定该用户面数据对应的QoS属性。其中,用户面数据可以通过用户面数据指示来标识。用户面数据指示可以为GTP-U隧道的标识,例如:GTP隧道端点标识(GTP tunnel endpoint identifier,TEID)和/或IP地址。
S602:该第一IAB Donor-CU向第二IAB宿主的DU(第二IAB Donor-DU)发送该F1AP消息和该F1AP消息对应的QoS属性,和/或,该第一IAB Donor-CU向第二IAB Donor-DU发送该用户面数据和该用户面数据对应的QoS属性。
示例性的,在确定了该F1AP消息对应的QoS属性之后,该第一IAB Donor-CU可以将该F1AP消息封装在互联网协议(internet protocol,IP)包中,并在该IP包的IP头中携带该F1AP消息对应的QoS属性后,通过IP路由的方式向第二IAB Donor-DU发送该IP包。
同理,示例性的,在确定了该用户面数据对应的QoS属性之后,该第一IAB Donor-CU可以将该用户面数据封装在IP包中,并在该IP包的IP头中携带该用户面数据对应的QoS属性后,通过IP路由的方式向第二IAB Donor-DU发送该IP包。
示例性的,该IP包的源IP地址可以是该第一IAB Donor-CU的IP地址,该IP包的目标IP地址可以是该IAB node的IP地址。该IAB node的IP地址可以是该第一IAB Donor-CU为该IAB node分配的,或者可以是该第二IAB Donor-CU为该IAB node分配的。
该第二IAB Donor-DU收到该IP包之后,会根据该IP包的IP头中的QoS属性,对该IP包中的F1AP消息进行路由和/或承载映射,以便进一步发送给IAB node。示例性的,该第二 IAB Donor-DU会根据内部存储的QoS属性和路由配置的对应关系以及该IP包中的QoS属性,确定该IP包对应的路由配置,再根据该IP包对应的路由配置,对该IP包中的F1AP消息进行路由。示例性的,该第二IAB Donor-DU会根据内部存储的QoS属性和承载配置的对应关系以及该IP包中的QoS属性,确定该IP包对应的承载配置,再根据该IP包对应的承载配置,对该IP包中的F1AP消息进行承载映射。其中,该路由配置可以包括BAP路由标识(bakhaul adaptation protocol routing identity,BAP routing ID),和/或,下一跳节点的BAP地址(BAP address)。该承载配置可以包括回传RLC信道标识(backhaul RLC channel identity,BH RLC CH ID)。
其中,该第二IAB Donor-DU内部存储的QoS属性和路由配置的对应关系,和/或,内部存储的QoS属性和承载配置的对应关系,可以是该第二IAB宿主的CU(第二IAB Donor-CU)配置给该第二IAB Donor-DU的。
为了使得第二IAB Donor-DU能够正确的对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由和/或承载映射,该通信方法600还可以包括S603:
S603:该第一IAB Donor-CU从第二IAB Donor-CU获得至少一种F1AP消息类型与至少一种QoS属性的对应关系,和/或,至少一种用户面数据与至少一种QoS属性的对应关系。
第二IAB Donor-CU可以向该第一IAB Donor-CU发送至少一种F1AP消息类型指示与至少一种QoS属性的对应关系,和/或,至少一种用户面数据指示与至少一种QoS属性的对应关系,使得该第一IAB Donor-CU获得至少一种F1AP消息类型与至少一种QoS属性的对应关系,和/或,至少一种用户面数据与至少一种QoS属性的对应关系。
示例性的,至少一种F1AP消息类型指示与至少一种QoS属性之间的对应关系可以如表1示:
表1
F1AP消息类型指示 QoS属性
第一类型 属性1
第二类型 属性2
…… ……
第X类型 属性X
需要说明的是,表1仅仅示出了一种可能的F1AP消息类型指示与QoS属性的对应关系。该F1AP消息类型指示与QoS属性的对应关系,可以是一对一,多对一,也可以是一对多,多对多,本申请实施例对此不作限定。表1中的第一类型F1AP消息和第二类型F1AP消息可以是通过不同的F1AP消息类型指示来指示的。该F1AP消息类型指示可以是占用N比特的指示信息。例如,通过占用1比特的指示信息的取值来指示不同的F1AP消息类型,若F1AP消息类型指示取值为0表示指示的是第一类型F1AP,若F1AP消息类型指示取值为1表示指示的是第二类型F1AP。表1中的不同QoS属性可以是通过不同的DSCP值,和/或,flow label值表示的。
同理,至少一种用户面数据指示与至少一种QoS属性的对应关系可以参照至少一种F1AP消息类型指示与至少一种QoS属性之间的对应关系或者参照表1进行理解。
通过S603,可以使得该第一IAB Donor-CU根据第二IAB Donor-CU发送的F1AP消息类型指示与QoS属性的对应关系以及该第一IAB Donor-CU生成的F1AP消息的类型,确定该F1AP消息对应的QoS属性。
同理,可以使得该第一IAB Donor-CU根据第二IAB Donor-CU发送的用户面数据指示与QoS属性的对应关系,以及该第一IAB Donor-CU生成的用户面数据对应的用户面数据指示,确定该用户面数据对应的QoS属性。这样,该第二IAB Donor-DU按照该第二IAB Donor-CU配置给该第二IAB Donor-DU的QoS属性和路由配置的对应关系,和/或,QoS属性和承载配置的对应关系,就可以正确的对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由和/或承载映射。
可选的,为了使得第二IAB Donor-DU能够正确的对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由和/或承载映射,该通信方法600还可以包括S604:
S604:第一IAB Donor-CU向该第二IAB Donor-CU发送至少一种F1AP消息类型指示与至少一种QoS属性的对应关系,和/或,至少一种用户面数据指示与至少一种QoS属性的对应关系。
该第二IAB Donor-CU收到该第二IAB Donor-CU发送的F1AP消息类型指示与QoS属性的对应关系,可以向第二IAB Donor-DU发送QoS属性和路由配置的对应关系。以便于该第二IAB Donor-DU根据新的QoS属性和路由配置的对应关系,对来自第一IAB Donor-CU的F1AP消息进行路由。
该第二IAB Donor-CU收到该第二IAB Donor-CU发送的F1AP消息类型指示与QoS属性的对应关系,可以向第二IAB Donor-DU发送QoS属性和承载配置的对应关系。以便于该第二IAB Donor-DU根据新的QoS属性和承载配置的对应关系,对来自第一IAB Donor-CU的F1AP消息进行承载映射。
该第二IAB Donor-CU收到该第二IAB Donor-CU发送的用户面数据指示与QoS属性的对应关系,可以向第二IAB Donor-DU发送QoS属性和路由配置的对应关系。以便于该第二IAB Donor-DU根据新的QoS属性和路由配置的对应关系,对来自第一IAB Donor-CU的用户面数据进行路由。
该第二IAB Donor-CU收到该第二IAB Donor-CU发送的用户面数据指示与QoS属性的对应关系,可以向第二IAB Donor-DU发送QoS属性和承载配置的对应关系。以便于该第二IAB Donor-DU根据新的QoS属性和承载配置的对应关系,对来自第一IAB Donor-CU的用户面数据进行承载映射。
S603和S604在本申请实施例中是择一执行的,即为了使得第二IAB Donor-DU能够正确的对来自第一IAB Donor-CU的F1AP消息或者用户面数据进行路由和/或承载映射,不需要两个操作都执行。
可选的,为了使得该第一IAB donor-CU生成的F1AP消息或者用户面数据可以通过该第一IAB donor-CU与IAB-DU之间的F1接口,经由第二IAB donor-DU发送给IAB node,该通信方法600还可以包括S605或者S606:
S605:IAB node使用第一IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址,在该第一IAB donor-CU和该IAB node的IAB-DU之间建立第一传输网络层关联(transport network layer association,TNLA)。
IAB node在该第一IAB donor-CU和该IAB node的IAB-DU之间建立第一TNLA,该第一TNLA与该第一IAB donor(IAB donor-CU或者IAB donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址对应。
其中,传输网络层可以包括图3和图4中的IP、UDP、SCTP层,也可以包括其他协议层,本申请对于传输网络层包括哪些具体的协议层不限定。传输网络层关联只是该关联的一个名字,该关联也可以取别的名字,本申请对此不限定。
示例性的,此时的传输协议栈可以将图2或者图3中的IAB donor CU 1换成IAB donor CU 2进行理解。其中,IAB donor DU 1和IAB donor CU 1构成一个IAB Donor,IAB donor DU 2和IAB donor CU 2构成一个IAB Donor。
示例性的,该第一IAB donor-CU通过该第一TNLA向该IAB node(或者IAB node的IAB-DU)发送携带有该F1AP消息或者用户面数据的IP包时,可以将该IP包的源IP地址设置为该第一IAB donor-CU的IP地址,目标IP地址设置为该第一IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址。
在S605中,可选的,为了使得该第二IAB donor-DU能够正确的确定该F1AP消息或者用户面数据的目标节点(即该IAB node),该第二IAB donor-CU需要确定该IAB node(或者IAB node的IAB-DU)的IP地址和该IAB node的BAP地址之间的对应关系,并将该确定的对应关系发送给该第二IAB donor-DU,其中,该IAB node(或者IAB node的IAB-DU)的IP地址为该第一IAB donor(IAB donor-CU或者IAB donor-DU)分配的,该IAB node的BAP地址为该第二IAB donor-CU分配的。此外,该第一IAB donor(IAB donor-CU或者IAB donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址可以是由该第一IAB donor发送给第二IAB donor的。
示例性的,该第二IAB donor-DU收到携带有该F1AP消息或者用户面数据的IP包,由于该IP包的目的IP地址是该第一IAB donor(IAB donor-CU或者IAB donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址,则该第二IAB donor-DU可以根据该第一IAB donor(IAB donor-CU或者IAB donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址与该第二IAB donor-CU为该IAB node分配的BAP地址的对应关系,确定该第二IAB donor-CU为该IAB node分配的BAP地址,最终将该F1AP消息或者用户面数据发送到该BAP地址对应的IAB node。
S606:IAB node使用第二IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址,在该第一IAB donor-CU和该IAB node的IAB-DU之间建立第二TNLA。
IAB node在该第一IAB donor-CU和该IAB node的IAB-DU之间建立第二TNLA,该第二TNLA和该第二IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址对应。
示例性的,该第二IAB donor-CU可以向该第一IAB donor-CU发送该第二IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址。以便于该第一IAB donor-CU可以使用该IP地址,通过该第二TNLA收发数据。例如,根据该IP地址和通过第二TNLA接收到的数据的IP包的源IP地址,可以识别该IP包的发送端。又例如,该第一IAB donor-CU通过该第二TNLA向该IAB node(或者IAB node的IAB-DU)发送携带有该F1AP消息或者用户面数据的IP包时,可以将该IP包的源IP地址设置为该第一IAB donor-CU的IP地址,目标IP地址设置为该第二IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB node的IAB-DU)分配的IP地址。
本申请实施例的方法可以应用于IAB node发生跨donor CU的切换(inter-donor CU migrating)的场景,即本申请实施例中的IAB node可以是切换IAB node(如图5B中的IAB node  3)或者切换IAB node的下游节点(如图5B中的IAB node4),第一IAB donor可以是目标IAB宿主(如图5B中的IAB donor 2),第二IAB donor可以是源IAB宿主(如图5B中的IAB donor 1)。IAB node和源IAB donor之间可以存在一个或者多个父节点,或者IAB node是直连到源IAB donor。IAB node和目标IAB donor之间也可以存在一个或者多个父节点,或者IAB node会直连到目标IAB donor。本申请实施例中的F1AP消息可以携带该IAB node的DU在目标IAB宿主下的配置信息。这样,通过本实施例的方法,可以使得IAB node尽快获得在目标IAB宿主下的配置信息,从而尽快从源IAB宿主切换到目标IAB宿主。
本申请实施例的方法还可以应用于双连接(dual connectivity,DC)或者多连接(Multi-Connectivity,MC)的场景,即IAB node同时连接第一IAB宿主和第二IAB宿主,例如,IAB node的IAB-DU与第一IAB donor-CU以及第二IAB donor-CU之间分别存在F1接口。当IAB node和第一IAB宿主之间的数据无法通过IAB node和第一IAB宿主之间的路径发送至IAB node时,可以通过第二IAB宿主将IAB node和第一IAB宿主之间的数据发送至IAB node。示例性的,该第一IAB donor-CU,经由第一IAB donor-DU,到达该IAB node的路径可以称之为主路径。该第一IAB donor-CU,经由第二IAB donor-DU,到达该IAB node的路径可以称之为备份路径。主路径和备份路径可以参照图1对应的实施例中的相关描述进行理解。这样,通过本实施例的方法,可以增加IAB node的数据传输的可靠性,减少了数据中断的情况。
另外,对于IAB node的F1AP消息或者用户面数据的上行传输,可以参照如下方法:
第二donor-DU收到来自该IAB node的该IP包,该IP包包括F1AP消息或者用户面数据,该IP包的目的地址为第一donor-CU的IP地址。第二donor-DU可以通过IP路由的方式将该F1AP消息或者用户面数据发送至第一donor-CU。为了使得该IAB node的F1AP消息或者用户面数据可以通过该第一IAB donor-CU与IAB-DU之间的F1接口,并经由第二IAB donor-DU发送给IAB node,该方法可以包括S605或者S606。
此外,本申请实施例中的S605或者S606可以作为一个单独的实施例,用于经由第二IAB donor-DU,在第一IAB donor-CU与IAB node的IAB-DU之间建立起通信连接,以便于后续F1AP消息或者用户面数据的传输。S605或者S606也可以和S601至S602一起构成一个实施例,使得F1AP消息或者用户面数据可以经由第二IAB donor-DU,在第一IAB donor-CU与IAB node的IAB-DU之间进行传输。
图7所示为本申请的一种实施例的通信方法,该通信方法700包括:
S701:IAB node获得该IAB node的IAB-DU在目标IAB宿主下的配置信息。
该IAB node可以是图5B中的IAB node3或者其下游节点。该IAB node在目标IAB donor下的配置信息指的是当该IAB node连接到目标IAB宿主时,该IAB node的IAB-DU需要使用的配置信息。
该IAB node在目标IAB donor下的配置信息可以包括以下至少一种:IAB-DU标识(ID),IAB-DU名称(name),该IAB node在目标IAB donor下服务的小区的小区信息,该IAB节点的DU发送的同步信号和PBCH块(synchronization signal and physical broadcast channel block,SSB)配置、所述IAB节点的DU发送的系统信息,公用陆地移动网标识列表(public land mobile network identifier list,PLMN Id List),单网络切片选择支撑信息列表(Single Network Slice Selection Assistance Information list,sNSSAI List),PCI,跟踪区码(tracking area code,TAC),基站标识长度(gNB ID length),上下行频点,该IAB node的IP地址。
其中,该SSB配置可以包括SSB频率,SSB周期,SSB载波间隔,SSB偏置(Offset),或者SSB持续时间(Duration)等。示例性的,IAB node服务的小区可以包括IAB节点的DU所服务的小区或者由IAB节点的DU部署的小区。该IAB node在目标IAB donor下服务的小区的小区信息可以包括以下至少一种:物理小区标识(physical cell identifier,PCI),小区标识(CellIdentity),小区全球标识(cell global identification,CGI)。该小区标识由基站标识和小区本地标识组成。小区全球标识由公共陆地移动网标识(public land mobile network identifier,PLMNId),基站标识以及小区本地标识(cell local identifier,cellLocalId)组成。
IAB node获得该IAB node的IAB-DU在目标IAB宿主下的配置信息,可以通过下面两种实现方式中的任一种实现方式来实现:
实现方式1:该IAB node可以从该目标IAB donor处获得该IAB-DU在目标IAB宿主下的配置信息。示例性的,该目标IAB donor可以采用方法600,将该IAB-DU在目标IAB宿主下的配置信息发送给该IAB node。示例性的,在实现方式1中,该IAB node在目标IAB donor下的配置信息还可以包括小区是否被激活的指示信息。
在实现方式1中,由于该IAB-DU在目标IAB donor下的配置信息是由目标IAB donor配置的,即该目标IAB donor和该IAB node都已经知道该IAB-DU在目标IAB donor下的配置信息,所以该目标IAB donor和该IAB node之间就可以不需要通过触发目标IAB donor-CU和该IAB-DU之间的F1接口建立流程来交互该IAB-DU在目标IAB donor下的配置信息,从而可以减少F1接口的建立流程,提高切换的效率。
实现方式2:该IAB node可以从网管设备处接收至少一个配置信息,该IAB node从该至少一个配置信息中确定出该IAB-DU在目标IAB宿主下的配置信息。示例性的,该网管设备可以根据该IAB node的位置信息,和/或,该IAB node的邻近小区的信息,确定该IAB节点的候选IAB宿主。该候选IAB宿主可以是该IAB node周边的至少一个IAB宿主。针对每个候选IAB宿主,网管设备生成该IAB node在该候选IAB宿主下的配置信息。如表2所示:
表2:
候选IAB宿主1 配置信息1
候选IAB宿主2 配置信息2
…… ……
候选IAB宿主X 配置信息X
该网管设备可以将X(X为大于等于1的正整数)个候选IAB宿主对应的配置信息发送给该IAB node。该IAB node可以根据该目标IAB宿主,从该X个配置信息中确定出该IAB node在该候选IAB宿主下的配置信息。
在实现方式2中,由于该目标IAB donor-CU不知道该IAB-DU在目标IAB宿主下的配置信息,所以需要触发目标IAB donor-CU和该IAB-DU之间的F1接口建立流程来交互该IAB-DU在目标IAB donor下的配置信息。
示例性,网管设备可以为操作、管理和维护网元(operation,administration and maintenance,OAM)。网管设备可以包括网元管理系统(element management system,EMS),网络管理系统(network management system,NMS)。网管设备可以是位于5G核心网(5G Core,5GC)中的功能网元,或者,网管设备也可以是部署在5G核心网后面的骨干网中的功能网元,本申请不限定网管设备具体部署的位置。
S702:在该IAB node的IAB-MT从源IAB donor切换至目标IAB donor之后,该IAB node激活该IAB-DU在目标IAB donor下的配置信息。
该IAB node激活该IAB-DU在目标IAB donor下的配置信息,可以指的是该IAB node激活该IAB-DU在目标IAB donor下的配置信息中的至少一个小区。激活小区可以指的是生效该小区的相关配置,如小区标识或者CGI。
通过本方法,使得该IAB节点在MT部分的切换过程中,不生效该IAB节点的DU在目标IAB宿主下的配置信息,以减少该IAB节点在MT还连接在源IAB donor时,该IAB节点的MT和该IAB节点的DU出现资源分配不协调的情况。例如,因为IAB-MT和IAB-DU各自的资源是由源IAB宿主统一配置的,在该IAB-MT的切换过程中,IAB-MT的资源是由源IAB宿主配置的,如果此时就生效该IAB节点的DU在目标IAB宿主下的配置信息,会导致IAB-MT的资源是由源IAB宿主配置的而IAB-DU的资源是由目标IAB宿主配置的,从而可能会出现该IAB-MT和IAB-DU的资源分配不协调的问题。
在该IAB node的IAB-MT从源IAB donor切换至目标IAB donor之后,可以通过下面两种方法中的任一种方法来激活该配置信息:
方法1:该IAB node自动激活该IAB-DU在目标IAB donor下的配置信息。示例性的,该IAB node可以在IAB-MT成功接入目标IAB donor后,自动激活该IAB-DU在目标IAB donor下的配置信息。示例性的,在方法1中,该IAB node可以根据该IAB node在目标IAB donor下的配置信息中的小区是否被激活的指示信息,在IAB-MT成功接入目标IAB donor后,自动激活该IAB-DU在目标IAB donor下的配置信息(激活该IAB-DU在目标IAB donor下的小区)。
在方法1中,为了使得该目标IAB donor知道该IAB-DU在目标IAB donor下的配置信息已经被激活,可选的,该方法1包括S703:
S703:该IAB node向所述目标IAB donor发送第一信息,该第一信息指示该IAB-DU在目标IAB donor下的配置信息已经被激活。
方法2又分为下面2中情况:
(1)在IAB node从该目标IAB donor处获得该IAB-DU在目标IAB宿主下的配置信息的情况下,该方法2包括S704:
S704:该IAB node接收来自该目标IAB donor的第二信息,该第二信息用于激活该配置信息。
该IAB node在收到该第二信息后,再激活该IAB-DU在目标IAB donor下的配置信息。激活该IAB-DU在目标IAB donor下的配置信息可以认为是激活该IAB-DU在目标IAB donor下的配置信息中小区对应的配置信息。
示例性的,如果该IAB node在目标IAB donor下的配置信息中不包括小区是否被激活的指示信息,则第二信息可以包括指示激活该IAB-DU在该目标IAB donor下的配置信息中的至少一个小区的指示信息。
示例性的,如果该IAB node在目标IAB donor下的配置信息中包括小区是否被激活的指示信息,则该IAB node可以根据该小区是否被激活的指示信息,在收到该第二信息后,激活该IAB-DU在目标IAB donor下的配置信息。
该第二信息可以承载在目标IAB donor(或者目标IAB donor-CU)发送给IAB node的配置更新消息中,如GNB-CU CONFIGURATION UPDATE消息,该GNB-CU CONFIGURATION UPDATE消息可以参考3GPP TS 38.473 V16.1.0版本中的9.2.1.10章节理解。或者,该第二信息可以承载在目标IAB donor(或者目标IAB donor-CU)发送给IAB node的配置更新确认消息中,如GNB-DU CONFIGURATION UPDATE ACKNOWLEDGE消息,该GNB-DU  CONFIGURATION UPDATE ACKNOWLEDGE消息可以参考3GPP TS 38.473 V16.1.0版本中的9.2.1.8章节理解。
(2)在IAB node从来自网管设备的至少一个配置信息中确定出该IAB-DU在目标IAB宿主下的配置信息的情况下,该方法2包括S705和S706:
S705:该IAB node向该目标IAB donor发送用于建立(或者重建立)F1接口的请求信息,该请求信息包括该IAB-DU在该目标IAB donor下的配置信息。
该F1接口指的是该IAB node的IAB-DU与该目标IAB donor的IAB donor-CU之间的通信接口。
示例性的,该IAB node在候选IAB donor下的配置信息还可以包括小区是否需要被激活的指示信息。
示例性的,该IAB node可以通过第一TNLA或者第二TNLA向该目标IAB donor发送该用于建立(或者重建立)F1接口的请求信息。其中,该第一TNLA是由该IAB node使用该目标IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB-DU)分配的IP地址,在该目标IAB donor-CU和该IAB-DU之间建立的TNLA。该第二TNLA是由该IAB node使用该源IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB-DU)分配的IP地址,在该目标IAB donor-CU和该IAB-DU之间建立的TNLA。
S706:该目标IAB donor向该IAB node发送该请求信息的响应信息。
如果在该IAB node的IAB-MT从源IAB donor切换至目标IAB donor之前,该目标IAB donor向该IAB node发送该请求信息的响应信息,则该响应信息不用于激活该IAB-DU在目标IAB donor下的配置信息。例如,该响应信息包括不用于激活该IAB-DU在目标IAB donor下的配置信息的指示信息,或者,该响应信息包括去激活该IAB-DU在目标IAB donor下的配置信息的去激活指示信息,具体的,该去激活指示信息可以是去激活该IAB-DU在目标IAB donor下的所有小区的指示信息,或者,该响应信息不包括激活该IAB-DU在目标IAB donor下的所有小区的激活指示信息。
通过本设计,可以使得在IAB-MT完成切换前,该IAB-DU在该目标IAB宿主下的配置信息不会被该请求信息的响应信息误激活。进一步的,在该IAB node的IAB-MT从源IAB donor切换至目标IAB donor之后,可以执行通过S704来激活该IAB-DU在该目标IAB donor下的配置信息。
如果在该IAB node的IAB-MT从源IAB donor切换至目标IAB donor之后,该目标IAB donor向该IAB node发送该请求信息的响应信息,则该响应信息用于激活该IAB-DU在该目标IAB donor下的配置信息。例如,该响应信息包括用于激活该IAB-DU在该目标IAB donor下的配置信息的激活指示信息,或者,该响应信息包括激活该IAB-DU在该目标IAB donor下的配置信息中的至少一个小区的激活指示信息。示例性的,该激活指示信息可以是该目标IAB donor根据该是否需要被激活的指示信息生成的。
示例性的,该响应信息还可以包括以下中至少一个:用于标识该目标IAB donor的信息,该目标IAB donor-CU所支持的RRC版本,该目标IAB donor-CU的传输层地址信息,该IAB node的IAB-DU的同步信号块发送配置(synchronization signal block transmission configuration,STC)。
通过本设计,可以复用该请求信息的响应信息来激活该IAB节点的DU在该目标IAB宿主下的配置信息,从而节省了空口开销。
示例性的,该IAB node可以通过第一TNLA向该目标IAB donor发送该用于建立(或者重建立)F1接口的请求信息,并通过该第一TNLA接收该目标IAB donor发送的该请求信息的响应信息。
可选的,该IAB node可以通过第二TNLA向该目标IAB donor发送该用于建立(或者重建立)F1接口的请求信息,并通过该第二TNLA接收该目标IAB donor发送的该请求信息的响应信息。
可选的,该IAB node可以通过第二TNLA向该目标IAB donor发送该用于建立(或者重建立)F1接口的请求信息,并通过该第一TNLA接收该目标IAB donor发送的该请求信息的响应信息。
其中,该第一TNLA是由该IAB node使用该目标IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB-DU)分配的IP地址,在该目标IAB donor-CU和该IAB-DU之间建立的TNLA。该第二TNLA是由该IAB node使用该源IAB donor(donor-CU或者donor-DU)为该IAB node(或者IAB-DU)分配的IP地址,在该目标IAB donor-CU和该IAB-DU之间建立的TNLA。
示例性的,该目标IAB donor可该IAB node之间可以采用方法600,交互上述的用于建立(或者重建立)F1接口的请求信息,该请求信息的响应信息,或者该第二信息中的至少一种。
基于上述相类似的技术构思,本申请实施例提供了一种通信装置,该装置可以是前述实施例方法600或700中任一可能的设计方案中IAB donor-CU、IAB donor-DU、IAB donor或者IAB node,该通信装置包括:方法600或700所提供的通信方法中,用于执行该IAB donor-CU、IAB donor-DU、IAB donor或者IAB node所进行的方法步骤或操作或行为的相应的至少一个单元。其中,该至少一个单元的设置,可以与该IAB donor-CU、IAB donor-DU、IAB donor或者IAB node进行的方法步骤或操作或行为具有一一对应的关系。这些单元可以是由计算机程序实现,也可以由硬件电路实现,还可以是用计算机程序结合硬件电路的方式来实现。
图8是本申请实施例提供的一种通信装置800示意性框图。该通信装置800可以应用于IAB donor-CU。下面将对通信装置800的结构和功能分为不同的设计进行具体的描述。不同设计间的模块名称虽然相同,但是结构和功能可以不同。
设计1:该通信装置800可以包括处理模块801,发送模块802。处理模块801用于确定F1接口应用协议(F1 application protocol,F1AP)消息对应的QoS属性,或者用户面数据对应的QoS属性,其中,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。发送模块802用于向第二IAB宿主的DU发送该F1AP消息和该F1AP消息对应的QoS属性,或者向该第二IAB宿主的DU发送该用户面数据和该用户面数据对应的QoS属性。
具体的,该处理模块801用于根据F1AP消息类型与QoS属性之间的对应关系,确定该F1AP消息对应的QoS属性。其中,该对应关系是该第一IAB宿主的CU从该第二IAB宿主的CU获得。该处理模块801用于根据用户面数据与QoS属性之间的对应关系,确定该用户面数据对应的QoS属性。其中,该对应关系是该第一IAB宿主的CU从该第二IAB宿主的CU获得。
进一步的,该发送模块802还用于向第二IAB宿主的CU发送F1AP消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系,或者,该发送模块802还用于向第二IAB宿主的CU发送用户面数据指示与QoS属性,该用户面数据指示和该QoS属性具 有对应关系。
其中,该发送模块802具体用于通过该第一IAB宿主的CU和该IAB节点的DU之间的第一传输网络层关联TNLA向该IAB节点发送该F1AP消息或者用户面数据,该第一TNLA与该第一IAB宿主为该IAB节点分配的互联网协议IP地址对应,或者,该发送模块802具体用于通过该第一IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA向该IAB节点发送该F1AP消息或者用户面数据,该第二TNLA与该第二IAB宿主为该IAB节点分配的互联网协议IP地址对应。
该通信装置800还可以包括获取模块803,用于接收来自该第二IAB宿主的CU的该第二IAB宿主为该IAB节点分配的IP地址。进一步的,该处理模块801使用该第二IAB宿主为该IAB节点分配的IP地址,使得该发送模块802通过该第二TNLA向该IAB节点发送该F1AP消息或者用户面数据。
其中,该F1AP消息类型包括用户设备相关类型和非用户设备相关类型。该用户面数据指示为该F1接口的GTP-U隧道的标识或者IP地址。该QoS属性为区分服务编码点,和/或,流标签。该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
设计2、该通信装置800可以包括发送模块802。发送模块802用于向第一IAB宿主的CU发送F1接口应用协议(F1 application protocol,F1AP)消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系,该对应关系用于该第一IAB宿主的CU的F1AP消息对应的QoS属性的确定,其中,该F1接口为该第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口。或者,发送模块802用于向第一IAB宿主的CU发送用户面数据指示与QoS属性,该用户面数据指示和该QoS属性具有对应关系,该对应关系用于该第一IAB宿主的CU的用户面数据对应的QoS属性的确定。
该发送模块802还用于向该第一IAB宿主的CU发送该第二IAB宿主为该IAB节点分配的IP地址,该IP地址用于该F1AP消息或者该用户面数据的传输。
进一步的,该发送模块802还用于向该第二IAB宿主的DU发送该第一IAB宿主为该IAB节点分配的IP地址和该第二IAB宿主为该IAB节点分配的BAP地址,该IP地址和该BAP地址具有对应关系,该对应关系用于该F1AP消息或者用户面数据对应的目标节点的BAP地址的确定。其中,该F1接口为该第一IAB宿主的CU与该IAB节点的DU之间的通信接口。
其中,该F1AP消息类型包括用户设备相关类型和非用户设备相关类型。该用户面数据指示为该F1接口的通用分组无线业务用户面隧道协议GTP-U隧道的标识或者IP地址。该QoS属性为区分服务编码点DSCP,和/或,流标签flow label。该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
设计3:该通信装置800可以包括处理模块801,发送模块802和获取模块803。获取模块803用于接收来自第一IAB宿主的CU的F1接口应用协议(F1 application protocol,F1AP)消息类型指示与QoS属性,该F1AP消息类型指示和该QoS属性具有对应关系,其中,该F1接口为该第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口,或者,获取模块803用于接收来自第一IAB宿主的CU的用户面数据指示与QoS属性,该用户面数据指示和该QoS属性具有对应关系。
处理模块801用于根据该对应关系,使得发送模块802向该第二IAB宿主的DU发送该QoS属性对应的路由配置和承载配置。
进一步的,该发送模块802还用于向该第二IAB宿主的DU发送该第一IAB宿主为该IAB节点分配的IP地址和该第二IAB宿主为该IAB节点分配的BAP地址,该IP地址和该BAP 地址具有对应关系,该对应关系用于该F1AP消息或者用户面数据对应的目标节点的BAP地址的确定。其中,该F1接口为该第一IAB宿主的CU与该IAB节点的DU之间的通信接口。
其中,该F1AP消息类型包括用户设备相关类型和非用户设备相关类型。该用户面数据指示为该F1接口的通用分组无线业务用户面隧道协议GTP-U隧道的标识或者IP地址。该QoS属性为区分服务编码点DSCP,和/或,流标签flow label。该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
图9是本申请实施例提供的一种通信装置900示意性框图。该通信装置900可以应用于IAB donor-DU。下面将对通信装置900的结构和功能进行具体的描述。
该通信装置900可以包括处理模块901,获取模块902。获取模块902用于接收来自第一IAB宿主的CU的F1接口应用协议(F1 application protocol,F1AP)和该F1AP消息对应的QoS属性,或者接收来自第一IAB宿主的CU的用户面数据和该用户面数据对应的QoS属性,其中,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口;
处理模块901用于根据该QoS属性对应的路由配置和承载配置,对该F1AP消息或者用户面数据进行路由和承载映射。
进一步的,该获取模块902还用于接收来自该第二IAB宿主的CU的该第一IAB宿主为IAB节点分配的互联网协议IP地址和该第二IAB宿主为该IAB节点分配的BAP地址,该IP地址和该BAP地址具有对应关系。该处理模块901还用于根据该对应关系,确定该F1AP消息或者该用户面数据对应的目标节点的BAP地址;其中,该F1接口为该第一IAB宿主的CU与该IAB节点的DU之间的通信接口。
其中,该F1AP消息类型可以包括用户设备相关类型和非用户设备相关类型。该用户面数据指示为该F1接口的GTP-U隧道的标识或者IP地址。该QoS属性为区分服务编码点,和/或,流标签。该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
图10是本申请实施例提供的一种通信装置1000示意性框图。该通信装置1000可以应用于IAB node。下面将对通信装置1000的结构和功能分为不同的设计进行具体的描述。不同设计间的模块名称虽然相同,但是结构和功能可以不同。
设计1:该通信装置1000可以包括处理模块1001,获取模块1003。处理模块1001用于使用第二IAB宿主为该IAB节点分配的IP地址,在该第一IAB宿主的CU和该IAB节点的DU之间建立第一TNLA。获取模块1003用于通过该第一TNLA接收来自该第一IAB宿主的CU的F1接口应用协议(F1 application protocol,F1AP)消息或者用户面数据,该F1接口为该第一IAB宿主的CU与IAB节点的DU之间的通信接口。
其中,该F1AP消息类型包括用户设备相关类型和非用户设备相关类型。该用户面数据指示为该F1接口的GTP-U隧道的标识或者IP地址。该QoS属性为区分服务编码点,和/或,流标签。该F1AP消息携带该IAB节点的DU在第一IAB宿主下的配置信息。
设计2:该通信装置1000可以包括处理模块1001,获取模块1003。获取模块1003用于获得该IAB节点的分布式单元DU在目标IAB宿主下的配置信息。处理模块1001用于在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,激活该配置信息。
具体的,该获取模块1003用于接收来自该目标IAB宿主的该配置信息。
进一步,该获取模块1003还用于接收来自该目标IAB宿主的第二信息,该第二信息用于激活该配置信息。该处理模块1001具体用于根据该第二信息,激活该配置信息。
其中,该获取模块1003具体用于从网管设备接收至少一个配置信息。该处理模块1001还用于使得该获取模块1003从该至少一个配置信息中确定该配置信息。
另外,该通信装置1000还可以包括发送模块1002。该发送模块1002用于向该目标IAB宿主发送用于建立F1接口的请求信息,该请求信息包括该IAB节点的DU在该目标IAB宿主下的配置信息。该获取模块1003,用于接收来自该目标IAB宿主的该请求信息的响应信息。
进一步的,该处理模块1001还用于使用该目标IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第一TNLA。该发送模块1002具体用于通过该第一TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。该获取模块1003具体用于通过该第一TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
可选的,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,该处理模块1001还用于使用该源IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第二传输网络层关联TNLA。该发送模块1002具体用于通过该第二TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。该获取模块1003具体用于通过该第二TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
示例性的,在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,该处理模块1001还用于使用该源IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第二传输网络层关联TNLA。该发送模块1002具体用于通过该第二TNLA向该目标IAB宿主发送该用于建立F1接口的请求信息。
进一步的,在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,该处理模块1001还用于使用该目标IAB宿主为该IAB节点分配的IP地址,在该目标IAB宿主的CU和该IAB节点的DU之间建立第一TNLA。该获取模块1003具体用于通过该第一TNLA接收来自该目标IAB宿主的该请求信息的响应信息。
其中,如果在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,该获取模块1003接收来自该目标IAB宿主的该请求信息的响应信息,则该响应信息用于去激活该IAB节点的DU在该目标IAB宿主下的配置信息,或者,
如果在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,该获取模块1003接收来自该目标IAB宿主的该请求信息的响应信息,则该响应信息用于激活该IAB节点的DU在该目标IAB宿主下的配置信息。
具体的,该处理模块1001用于自动激活该配置信息。进一步的,该发送模块1002还用于向该目标IAB宿主发送第一信息,该第一信息指示该配置信息已激活。
本申请实施例提供的一种通信装置1100,下面将对通信装置1100的结构和功能进行具体的描述。图11是本申请实施例提供的一种通信装置1100示意性框图。该通信装置1100可以应用于IAB donor。下面将对通信装置1100的结构和功能分为不同的设计进行具体的描述。不同设计间的模块名称虽然相同,但是结构和功能可以不同。
设计1:该通信装置1100可以包括处理模块1001,获取模块1103。获取模块1103用于接收来自IAB节点的第一信息,该第一信息指示该IAB节点的分布式单元DU在该目标IAB宿主下的配置信息已激活。处理模块1001用于根据该第一信息,确定该配置信息已激活。
设计2:该通信装置1100可以包括发送模块1102,获取模块1103。获取模块1103用于接收来自IAB节点的用于建立F1接口的请求信息。
发送模块1102用于在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,向该IAB节点发送该响应信息,该响应信息用于去激活该IAB节点的DU在该目标IAB宿主下的配置信息,或者,发送模块1102用于在该IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,向该IAB节点发送该响应信息,该响应信息用于激活该IAB节点的DU在 该目标IAB宿主下的配置信息。
具体的,该获取模块1103用于通过该目标IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA接收来自IAB节点的该用于建立F1接口的请求信息,该第二TNLA与该源IAB宿主为该IAB节点分配的IP地址对应。该发送模块1102用于通过该第二TNLA向该IAB节点发送该请求信息的响应信息。
具体的,该获取模块1103具体用于通过该目标IAB宿主的CU和该IAB节点的DU之间的第一TNLA接收来自IAB节点的该用于建立F1接口的请求信息,该第一TNLA与该目标IAB宿主为该IAB节点分配的IP地址对应。该发送模块1102具体用于通过该第一TNLA向该IAB节点发送该请求信息的响应信息。
具体的,该获取模块1103用于在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,通过该目标IAB宿主的CU和该IAB节点的DU之间的第二传输网络层关联TNLA接收来自该IAB节点的用于建立F1接口的请求信息,该第二TNLA与该源IAB宿主为该IAB节点分配的互联网协议IP地址对应。
具体的,该发送模块1102用于在该IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,通过该目标IAB宿主的CU和该IAB节点的DU之间的第一TNLA向该IAB节点发送该请求信息的响应信息,该第一TNLA与该目标IAB宿主为该IAB节点分配的IP地址对应。
基于相同的技术构思,本申请实施例还提供了一种装置1200,下面将结合装置1200的示意性框图图12,对装置1200的结构和功能进行具体的描述。该装置可以包括至少一个处理器1201。可选的还包括接口电路1202。当涉及的程序指令在该至少一个处理器1201中执行时,可以使得该装置1200实现前述任一实施例所提供的通信方法及其中任一可能的设计。或者,该处理器1201通过逻辑电路或执行代码指令用于实现前述任一实施例所提供的通信方法及其中任一可能的设计。该接口电路1202,可以用于接收程序指令并传输至所述处理器,或者,该接口电路1202可以用于装置1200与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。示例性的,该接口电路1202可以用于接收来自该装置1200之外的其它装置的信号并传输至该处理器1201或将来自该处理器1201的信号发送给该装置1200之外的其它通信装置。该接口电路1202可以为代码和/或数据读写接口电路,或者,该接口电路1202可以为通信处理器与收发机之间的信号传输接口电路。可选的,该通信装置1200还可以包括至少一个存储器1203,该存储器1203可以用于存储所需的涉及的程序指令和/或数据。可选的,该装置1200还可以包括供电电路1204,该供电电路1204可以用于为该处理器1201供电,该供电电路1204可以与处理器1201位于同一个芯片内,或者,位于处理器1201所在的芯片之外的另一个芯片内。可选的,该装置1200还可以包括总线1205,该装置1200中的各个部分可以通过总线1205互联。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存 储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
本申请实施例所述的收发装置、接口电路、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口电路、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元或者算法操作,能够通过硬件实现,或者,通过软件实现,或者,通过软件和硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请中,“通过软件实现”可以指处理器读取并执行存储在存储器中的程序指令来实现上述模块或单元所对应的功能,其中,处理器是指具有执行程序指令功能的处理电路,包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signal processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类能够运行程序指令的处理电路。在另一些实施例中,处理器还可以包括其他处理功能的电路(如用于硬件加速的硬件电路、总线和接口电路等)。处理器可以以集成芯片的形式呈现,例如,以处理功能仅包括执行软件指令功能的集成芯片的形式呈现,或者还可以片上系统(system on a chip,SoC)的形式呈现,即在一个芯片上,除了包括能够运行程序指令的处理电路(通常被称为“核”)外,还包括其他用于实现特定功能的硬件电路(当然,这些硬件电路也可以是基于ASIC、FPGA单独实现),相应的,处理功能除了包括执行软件 指令功能外,还可以包括各种硬件加速功能(如AI计算、编解码、压缩解压等)。
本申请中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC,或者可编程逻辑器件(programmable logic device,PLD);其中,PLD又可包括FPGA、复杂可编程逻辑器件(complex programmable logic device,CPLD)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为可编程片上系统(system on a programmable chip,SoPC)。
需要说明的是,本申请在通过软件、硬件或者软件硬件结合的方式实现时,可以使用不同的软件、硬件,并不限定只使用一种软件或者硬件。例如,其中,其中一个模块或者单元可以使用CPU来实现,另一个模块或者单元可以使用DSP来实现。同理,当使用硬件实现时,其中一个模块或者单元可以使用ASIC来实现,另一个模块或者单元可以使用FPGA实现。当然,也不限定部分或者所有的模块或者单元使用同一种软件(如都通过CPU)或者同一种硬件(如都通过ASIC)来实现。此外,对于本领域技术人员,可以知道,软件通常来说灵活性更好,但性能不如硬件,而硬件正好相反,因此,本领域技术人员可以结合实际需求来选择软件或者硬件或者两者结合的形式来实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。本申请实施例之间可以结合,实施例中的某些技术特征也可以从具体实施例中解耦出来,结合现有技术可以解决本申请实施例涉及的技术问题。
本申请实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟、或者光盘等各种可以存储程序代码的介质或计算机可读存储介质。
在本申请的描述中,“第一”,“第二”,“S201”,或“S202”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系, 例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
在本申请的描述中,“至少一个”,表示一个或者多个。“包括以下至少一个:A,B,C。”表示可以包括A,或者包括B,或者包括C,或者包括A和B,或者包括A和C,或者包括B和C,或者包括A,B和C。
本申请实施例提供的方案可适用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统、或者新无线(new radio,NR)系统,以及其他可用于提供移动通信服务的网络系统等,本申请不做限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (72)

  1. 一种通信方法,其特征在于,包括:
    第一接入回传一体化IAB宿主的集中式单元CU确定F1接口应用协议F1AP消息对应的服务质量QoS属性,或者用户面数据对应的服务质量QoS属性,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;
    所述第一IAB宿主的CU向第二IAB宿主的DU发送所述F1AP消息和所述F1AP消息对应的QoS属性,或者向所述第二IAB宿主的DU发送所述用户面数据和所述用户面数据对应的QoS属性。
  2. 根据权利要求1所述的方法,其特征在于,第一IAB宿主的CU确定F1AP消息对应的服务质量QoS属性,包括:
    所述第一IAB宿主的CU根据F1AP消息类型与QoS属性之间的对应关系,确定所述F1AP消息对应的QoS属性;或者,
    所述第一IAB宿主的CU根据用户面数据与QoS属性之间的对应关系,确定所述用户面数据对应的QoS属性;
    其中,所述对应关系是所述第一IAB宿主的CU从所述第二IAB宿主的CU获得。
  3. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述第一IAB宿主的CU向第二IAB宿主的CU发送F1AP消息类型指示与QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系;或者,
    所述第一IAB宿主的CU向第二IAB宿主的CU发送用户面数据指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述方法包括:
    所述第一IAB宿主的CU通过所述第一IAB宿主的CU和所述IAB节点的DU之间的第一传输网络层关联TNLA向所述IAB节点发送所述F1AP消息或者用户面数据,所述第一TNLA与所述第一IAB宿主为所述IAB节点分配的互联网协议IP地址对应;或者,
    所述第一IAB宿主的CU通过所述第一IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA向所述IAB节点发送所述F1AP消息或者用户面数据,所述第二TNLA与所述第二IAB宿主为所述IAB节点分配的互联网协议IP地址对应。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一IAB宿主的CU接收来自所述第二IAB宿主的CU的所述第二IAB宿主为所述IAB节点分配的IP地址;
    所述第一IAB宿主的CU通过所述第一IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA向所述IAB节点发送所述F1AP消息或者用户面数据,包括:
    所述第一IAB宿主的CU使用所述第二IAB宿主为所述IAB节点分配的IP地址,通过所述第二TNLA向所述IAB节点发送所述F1AP消息或者用户面数据。
  6. 一种通信方法,其特征在于,包括:
    第二接入回传一体化IAB宿主的集中式单元CU向第一IAB宿主的CU发送F1接口应用协议F1AP消息类型指示与服务质量QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系,所述对应关系用于所述第一IAB宿主的CU的F1AP消息对应的QoS属性的确定,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;或者,
    第二接入回传一体化IAB宿主的集中式单元CU向第一IAB宿主的CU发送用户面数据 指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系,所述对应关系用于所述第一IAB宿主的CU的用户面数据对应的QoS属性的确定。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第二IAB宿主的CU向所述第一IAB宿主的CU发送所述第二IAB宿主为所述IAB节点分配的IP地址,所述IP地址用于所述F1AP消息或者所述用户面数据的传输。
  8. 一种通信方法,其特征在于,包括:
    第二接入回传一体化IAB宿主的集中式单元CU接收来自第一IAB宿主的CU的F1接口应用协议F1AP消息类型指示与服务质量QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;或者,
    第二接入回传一体化IAB宿主的集中式单元CU接收来自第一IAB宿主的CU的用户面数据指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系;
    所述第二IAB宿主的CU根据所述对应关系,向所述第二IAB宿主的DU发送所述QoS属性对应的路由配置和承载配置。
  9. 根据权利要求6-8任一所述的方法,其特征在于,所述方法包括:
    所述第二IAB宿主的CU向所述第二IAB宿主的DU发送所述第一IAB宿主为所述IAB节点分配的互联网协议IP地址和所述第二IAB宿主为所述IAB节点分配的回传适配协议BAP地址,所述IP地址和所述BAP地址具有对应关系,所述对应关系用于所述F1AP消息或者用户面数据对应的目标节点的BAP地址的确定;
    其中,所述F1接口为所述第一IAB宿主的CU与所述IAB节点的DU之间的通信接口。
  10. 一种通信方法,其特征在于,包括:
    第二接入回传一体化IAB宿主的分布式单元DU接收来自第一IAB宿主的集中式单元CU的F1接口应用协议F1AP消息和所述F1AP消息对应的服务质量QoS属性,或者接收来自第一IAB宿主的集中式单元CU的用户面数据和所述用户面数据对应的QoS属性,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的DU之间的通信接口;
    所述第二IAB宿主的DU根据所述QoS属性对应的路由配置和承载配置,对所述F1AP消息或者用户面数据进行路由和承载映射。
  11. 根据权利要求10所述的方法,其特征在于,所述方法包括所述第二IAB宿主的DU接收来自所述第二IAB宿主的CU的所述第一IAB宿主为IAB节点分配的互联网协议IP地址和所述第二IAB宿主为所述IAB节点分配的回传适配协议BAP地址,所述IP地址和所述BAP地址具有对应关系;
    所述第二IAB宿主的DU根据所述对应关系,确定所述F1AP消息或者所述用户面数据对应的目标节点的BAP地址;
    其中,所述F1接口为所述第一IAB宿主的CU与所述IAB节点的DU之间的通信接口。
  12. 一种通信方法,其特征在于,包括:
    接入回传一体化IAB节点使用第二IAB宿主为所述IAB节点分配的互联网协议IP地址,在所述第一IAB宿主的集中式单元CU和所述IAB节点的分布式单元DU之间建立第一传输网络层关联TNLA;
    所述IAB节点通过所述第一TNLA接收来自所述第一IAB宿主的CU的F1接口应用协议F1AP消息或者用户面数据,所述F1接口为所述第一IAB宿主的CU与IAB节点的DU之间的通信接口。
  13. 根据权利要求2-9任一所述的方法,其特征在于,所述F1AP消息类型包括用户设备相关类型和非用户设备相关类型。
  14. 根据权利要求2-9,13任一所述的方法,其特征在于,所述用户面数据指示为所述F1接口的通用分组无线业务用户面隧道协议GTP-U隧道的标识或者IP地址。
  15. 根据权利要求1-14任一所述的方法,其特征在于,所述QoS属性为区分服务编码点DSCP,和/或,流标签flow label。
  16. 根据权利要求1-15任一所述的方法,其特征在于,所述F1AP消息携带所述IAB节点的DU在第一IAB宿主下的配置信息。
  17. 一种切换方法,其特征在于,包括:
    接入回传一体化IAB节点获得所述IAB节点的分布式单元DU在目标IAB宿主下的配置信息;
    在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,所述IAB节点激活所述配置信息。
  18. 根据权利要求17所述的方法,其特征在于,IAB节点获得所述IAB节点的分布式单元DU在目标IAB宿主下的配置信息,包括:
    所述IAB节点接收来自所述目标IAB宿主的所述配置信息。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述IAB节点接收来自所述目标IAB宿主的第二信息,所述第二信息用于激活所述配置信息;
    所述IAB节点激活所述配置信息,包括:
    所述IAB节点根据所述第二信息,激活所述配置信息。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述IAB节点从网管设备接收至少一个配置信息;
    所述IAB节点获得所述IAB节点的DU在目标IAB宿主下的配置信息,包括:
    所述IAB节点从所述至少一个配置信息中确定所述配置信息。
  21. 根据权利要求20所述的方法,其特征在于,所述方法包括:
    所述IAB节点向所述目标IAB宿主发送用于建立F1接口的请求信息,所述请求信息包括所述IAB节点的DU在所述目标IAB宿主下的配置信息;
    所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法包括:
    所述IAB节点使用所述目标IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第一传输网络层关联TNLA;
    所述IAB节点向所述目标IAB宿主发送用于建立F1接口的请求信息,包括:
    所述IAB节点通过所述第一TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息;
    所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息,包括:
    所述IAB节点通过所述第一TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  23. 根据权利要求21所述的方法,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,所述方法包括:
    所述IAB节点使用所述源IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿 主的CU和所述IAB节点的DU之间建立第二传输网络层关联TNLA;
    所述IAB节点向所述目标IAB宿主发送用于建立F1接口的请求信息,包括:
    所述IAB节点通过所述第二TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息;
    所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息,包括:
    所述IAB节点通过所述第二TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  24. 根据权利要求21所述的方法,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,所述方法包括:
    所述IAB节点使用所述源IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第二传输网络层关联TNLA;
    所述IAB节点向所述目标IAB宿主发送用于建立F1接口的请求信息,包括:
    所述IAB节点通过所述第二TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息。
  25. 根据权利要求24所述的方法,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,所述方法包括:
    所述IAB节点使用所述目标IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第一TNLA;
    所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息,包括:
    所述IAB节点通过所述第一TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  26. 根据权利要求21-25任一所述的方法,其特征在于,所述方法包括:
    如果在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息,则所述响应信息用于去激活所述IAB节点的DU在所述目标IAB宿主下的配置信息;或者,
    如果在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,所述IAB节点接收来自所述目标IAB宿主的所述请求信息的响应信息,则所述响应信息用于激活所述IAB节点的DU在所述目标IAB宿主下的配置信息。
  27. 根据权利要求17所述的方法,其特征在于,所述IAB节点激活所述配置信息,包括:
    所述IAB节点自动激活所述配置信息。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述IAB节点向所述目标IAB宿主发送第一信息,所述第一信息指示所述配置信息已激活。
  29. 一种切换方法,其特征在于,包括:
    目标接入回传一体化IAB宿主接收来自IAB节点的第一信息,所述第一信息指示所述IAB节点的分布式单元DU在所述目标IAB宿主下的配置信息已激活;
    所述目标IAB宿主根据所述第一信息,确定所述配置信息已激活。
  30. 一种切换方法,其特征在于,包括:
    目标接入回传一体化IAB宿主接收来自IAB节点的用于建立F1接口的请求信息;
    在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,所述目标IAB 宿主向所述IAB节点发送所述响应信息,所述响应信息用于去激活所述IAB节点的DU在所述目标IAB宿主下的配置信息;或者,
    在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,所述目标IAB宿主向所述IAB节点发送所述响应信息,所述响应信息用于激活所述IAB节点的DU在所述目标IAB宿主下的配置信息。
  31. 根据权利要求30所述的方法,其特征在于,
    所述目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:
    所述目标IAB宿主通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA接收来自IAB节点的所述用于建立F1接口的请求信息,所述第二TNLA与所述源IAB宿主为所述IAB节点分配的互联网协议IP地址对应;
    所述目标IAB宿主向所述IAB节点发送所述请求信息的响应信息,包括:
    所述目标IAB宿主通过所述第二TNLA向所述IAB节点发送所述请求信息的响应信息。
  32. 根据权利要求30所述的方法,其特征在于,
    所述目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:
    所述目标IAB宿主通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第一传输网络层关联TNLA接收来自IAB节点的所述用于建立F1接口的请求信息,所述第一TNLA与所述目标IAB宿主为所述IAB节点分配的互联网协议IP地址对应;
    所述目标IAB宿主向所述IAB节点发送所述请求信息的响应信息,包括:
    所述目标IAB宿主通过所述第一TNLA向所述IAB节点发送所述请求信息的响应信息。
  33. 根据权利要求30所述的方法,其特征在于,
    在所述IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,所述目标IAB宿主接收来自IAB节点的用于建立F1接口的请求信息,包括:
    所述目标IAB宿主通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA接收来自所述IAB节点的用于建立F1接口的请求信息,所述第二TNLA与所述源IAB宿主为所述IAB节点分配的互联网协议IP地址对应。
  34. 根据权利要求33所述的方法,其特征在于,
    在所述IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,所述目标IAB宿主向所述IAB节点发送所述请求信息的响应信息,包括:
    所述目标IAB宿主通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第一TNLA向所述IAB节点发送所述请求信息的响应信息,所述第一TNLA与所述目标IAB宿主为所述IAB节点分配的IP地址对应。
  35. 一种通信装置,应用于第一接入回传一体化IAB宿主的集中式单元CU,其特征在于,包括:
    处理模块,用于确定F1接口应用协议F1AP消息对应的服务质量QoS属性,或者用户面数据对应的服务质量QoS属性,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;
    发送模块,用于向第二IAB宿主的DU发送所述F1AP消息和所述F1AP消息对应的QoS属性,或者向所述第二IAB宿主的DU发送所述用户面数据和所述用户面数据对应的QoS属性。
  36. 根据权利要求35所述的装置,其特征在于,
    所述处理模块具体用于根据F1AP消息类型与QoS属性之间的对应关系,确定所述F1AP 消息对应的QoS属性;或者,
    所述处理模块具体用于根据用户面数据与QoS属性之间的对应关系,确定所述用户面数据对应的QoS属性;
    其中,所述对应关系是所述第一IAB宿主的CU从所述第二IAB宿主的CU获得。
  37. 根据权利要求35所述的装置,其特征在于,
    所述发送模块还用于向第二IAB宿主的CU发送F1AP消息类型指示与QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系;或者,
    所述发送模块还用于向第二IAB宿主的CU发送用户面数据指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系。
  38. 根据权利要求35-37任一所述的装置,其特征在于,
    所述发送模块具体用于通过所述第一IAB宿主的CU和所述IAB节点的DU之间的第一传输网络层关联TNLA向所述IAB节点发送所述F1AP消息或者用户面数据,所述第一TNLA与所述第一IAB宿主为所述IAB节点分配的互联网协议IP地址对应;或者,
    所述发送模块具体用于通过所述第一IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA向所述IAB节点发送所述F1AP消息或者用户面数据,所述第二TNLA与所述第二IAB宿主为所述IAB节点分配的互联网协议IP地址对应。
  39. 根据权利要求38所述的装置,其特征在于,
    所述获取模块还用于接收来自所述第二IAB宿主的CU的所述第二IAB宿主为所述IAB节点分配的IP地址;
    所述处理模块使用所述第二IAB宿主为所述IAB节点分配的IP地址,使得所述发送模块通过所述第二TNLA向所述IAB节点发送所述F1AP消息或者用户面数据。
  40. 一种通信装置,应用于第二接入回传一体化IAB宿主的集中式单元CU,其特征在于,包括:
    发送模块,用于向第一IAB宿主的CU发送F1接口应用协议F1AP消息类型指示与服务质量QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系,所述对应关系用于所述第一IAB宿主的CU的F1AP消息对应的QoS属性的确定,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;或者,
    发送模块,用于向第一IAB宿主的CU发送用户面数据指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系,所述对应关系用于所述第一IAB宿主的CU的用户面数据对应的QoS属性的确定。
  41. 根据权利要求40所述的装置,其特征在于,
    所述发送模块还用于向所述第一IAB宿主的CU发送所述第二IAB宿主为所述IAB节点分配的IP地址,所述IP地址用于所述F1AP消息或者所述用户面数据的传输。
  42. 一种通信装置,应用于第二接入回传一体化IAB宿主的集中式单元CU,其特征在于,包括:
    获取模块,用于接收来自第一IAB宿主的CU的F1接口应用协议F1AP消息类型指示与服务质量QoS属性,所述F1AP消息类型指示和所述QoS属性具有对应关系,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的分布式单元DU之间的通信接口;或者,
    获取模块,用于接收来自第一IAB宿主的CU的用户面数据指示与QoS属性,所述用户面数据指示和所述QoS属性具有对应关系;
    所述装置还包括:
    处理模块,用于根据所述对应关系,使得发送模块向所述第二IAB宿主的DU发送所述QoS属性对应的路由配置和承载配置。
  43. 根据权利要求40-42任一所述的装置,其特征在于,
    所述发送模块还用于向所述第二IAB宿主的DU发送所述第一IAB宿主为所述IAB节点分配的互联网协议IP地址和所述第二IAB宿主为所述IAB节点分配的回传适配协议BAP地址,所述IP地址和所述BAP地址具有对应关系,所述对应关系用于所述F1AP消息或者用户面数据对应的目标节点的BAP地址的确定;
    其中,所述F1接口为所述第一IAB宿主的CU与所述IAB节点的DU之间的通信接口。
  44. 一种通信装置,应用于第二接入回传一体化IAB宿主的分布式单元DU,其特征在于,包括:
    获取模块,用于接收来自第一IAB宿主的集中式单元CU的F1接口应用协议F1AP消息和所述F1AP消息对应的服务质量QoS属性,或者接收来自第一IAB宿主的集中式单元CU的用户面数据和所述用户面数据对应的QoS属性,其中,所述F1接口为所述第一IAB宿主的CU与IAB节点的DU之间的通信接口;
    处理模块,用于根据所述QoS属性对应的路由配置和承载配置,对所述F1AP消息或者用户面数据进行路由和承载映射。
  45. 根据权利要求44所述的装置,其特征在于,
    所述获取模块,还用于接收来自所述第二IAB宿主的CU的所述第一IAB宿主为IAB节点分配的互联网协议IP地址和所述第二IAB宿主为所述IAB节点分配的回传适配协议BAP地址,所述IP地址和所述BAP地址具有对应关系;
    所述处理模块还用于根据所述对应关系,确定所述F1AP消息或者所述用户面数据对应的目标节点的BAP地址;
    其中,所述F1接口为所述第一IAB宿主的CU与所述IAB节点的DU之间的通信接口。
  46. 一种通信装置,应用于接入回传一体化IAB节点,其特征在于,包括:
    处理模块,用于使用第二接入回传一体化IAB宿主为所述IAB节点分配的互联网协议IP地址,在所述第一IAB宿主的集中式单元CU和所述IAB节点的分布式单元DU之间建立第一传输网络层关联TNLA;
    获取模块,用于通过所述第一TNLA接收来自所述第一IAB宿主的CU的F1接口应用协议F1AP消息或者用户面数据,所述F1接口为所述第一IAB宿主的CU与IAB节点的DU之间的通信接口。
  47. 根据权利要求36-43任一所述的装置,其特征在于,所述F1AP消息类型包括用户设备相关类型和非用户设备相关类型。
  48. 根据权利要求36-43,47任一所述的装置,其特征在于,所述用户面数据指示为所述F1接口的通用分组无线业务用户面隧道协议GTP-U隧道的标识或者IP地址。
  49. 根据权利要求35-48任一所述的装置,其特征在于,所述QoS属性为区分服务编码点DSCP,和/或,流标签flow label。
  50. 根据权利要求33-46任一所述的装置,其特征在于,所述F1AP消息携带所述IAB节点的DU在第一IAB宿主下的配置信息。
  51. 一种通信装置,应用于接入回传一体化IAB节点,其特征在于,包括:
    获取模块,用于获得所述IAB节点的分布式单元DU在目标IAB宿主下的配置信息;
    处理模块,用于在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之 后,激活所述配置信息。
  52. 根据权利要求51所述的装置,其特征在于,
    所述获取模块具体用于接收来自所述目标IAB宿主的所述配置信息。
  53. 根据权利要求52所述的装置,其特征在于,
    所述获取模块还用于接收来自所述目标IAB宿主的第二信息,所述第二信息用于激活所述配置信息;
    所述处理模块具体用于根据所述第二信息,激活所述配置信息。
  54. 根据权利要求51所述的装置,其特征在于,
    所述获取模块具体用于从网管设备接收至少一个配置信息;
    所述处理模块还用于使得所述获取模块从所述至少一个配置信息中确定所述配置信息。
  55. 根据权利要求54所述的装置,其特征在于,
    发送模块,用于向所述目标IAB宿主发送用于建立F1接口的请求信息,所述请求信息包括所述IAB节点的DU在所述目标IAB宿主下的配置信息;
    所述获取模块,用于接收来自所述目标IAB宿主的所述请求信息的响应信息。
  56. 根据权利要求55所述的装置,其特征在于,所述装置包括:
    所述处理模块还用于使用所述目标IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第一传输网络层关联TNLA;
    所述发送模块具体用于通过所述第一TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息;
    所述获取模块具体用于通过所述第一TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  57. 根据权利要求55所述的装置,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,
    所述处理模块还用于使用所述源IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第二传输网络层关联TNLA;
    所述发送模块具体用于通过所述第二TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息;
    所述获取模块具体用于通过所述第二TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  58. 根据权利要求55所述的装置,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,
    所述处理模块还用于使用所述源IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第二传输网络层关联TNLA;
    所述发送模块具体用于通过所述第二TNLA向所述目标IAB宿主发送所述用于建立F1接口的请求信息。
  59. 根据权利要求58所述的装置,其特征在于,在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,
    所述处理模块还用于使用所述目标IAB宿主为所述IAB节点分配的IP地址,在所述目标IAB宿主的CU和所述IAB节点的DU之间建立第一TNLA;
    所述获取模块具体用于通过所述第一TNLA接收来自所述目标IAB宿主的所述请求信息的响应信息。
  60. 根据权利要求55-59任一所述的装置,其特征在于,
    如果在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,所述获取模块接收来自所述目标IAB宿主的所述请求信息的响应信息,则所述响应信息用于去激活所述IAB节点的DU在所述目标IAB宿主下的配置信息;或者,
    如果在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,所述获取模块接收来自所述目标IAB宿主的所述请求信息的响应信息,则所述响应信息用于激活所述IAB节点的DU在所述目标IAB宿主下的配置信息。
  61. 根据权利要求51所述的装置,其特征在于,所述处理模块具体用于自动激活所述配置信息。
  62. 根据权利要求61所述的装置,其特征在于,
    所述发送模块还用于向所述目标IAB宿主发送第一信息,所述第一信息指示所述配置信息已激活。
  63. 一种通信装置,应用于目标接入回传一体化IAB宿主,其特征在于,包括:
    获取模块,用于接收来自IAB节点的第一信息,所述第一信息指示所述IAB节点的分布式单元DU在所述目标IAB宿主下的配置信息已激活;
    处理模块,用于根据所述第一信息,确定所述配置信息已激活。
  64. 一种通信装置,应用于目标接入回传一体化IAB宿主,其特征在于,包括:
    获取模块,用于接收来自IAB节点的用于建立F1接口的请求信息;
    发送模块,用于在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之前,向所述IAB节点发送所述响应信息,所述响应信息用于去激活所述IAB节点的DU在所述目标IAB宿主下的配置信息;或者,
    发送模块,用于在所述IAB节点的移动终端MT从源IAB宿主切换至目标IAB宿主之后,向所述IAB节点发送所述响应信息,所述响应信息用于激活所述IAB节点的DU在所述目标IAB宿主下的配置信息。
  65. 根据权利要求64所述的装置,其特征在于,
    所述获取模块具体用于通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA接收来自IAB节点的所述用于建立F1接口的请求信息,所述第二TNLA与所述源IAB宿主为所述IAB节点分配的互联网协议IP地址对应;
    所述发送模块具体用于通过所述第二TNLA向所述IAB节点发送所述请求信息的响应信息。
  66. 根据权利要求64所述的装置,其特征在于,
    所述获取模块具体用于通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第一传输网络层关联TNLA接收来自IAB节点的所述用于建立F1接口的请求信息,所述第一TNLA与所述目标IAB宿主为所述IAB节点分配的互联网协议IP地址对应;
    所述发送模块具体用于通过所述第一TNLA向所述IAB节点发送所述请求信息的响应信息。
  67. 根据权利要求64所述的装置,其特征在于,
    所述获取模块具体用于在所述IAB节点的MT从源IAB宿主切换至目标IAB宿主之前,通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第二传输网络层关联TNLA接收来自所述IAB节点的用于建立F1接口的请求信息,所述第二TNLA与所述源IAB宿主为所述IAB节点分配的互联网协议IP地址对应。
  68. 根据权利要求67所述的装置,其特征在于,
    所述发送模块具体用于在所述IAB节点的MT从源IAB宿主切换至目标IAB宿主之后,通过所述目标IAB宿主的CU和所述IAB节点的DU之间的第一TNLA向所述IAB节点发送所述请求信息的响应信息,所述第一TNLA与所述目标IAB宿主为所述IAB节点分配的IP地址对应。
  69. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,涉及的计算机程序在所述至少一个处理器中执行,以使得所述通信装置执行权利要求1-34中任一所述的方法。
  70. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至34中任一项所述的方法。
  71. 一种计算机程序产品,所述计算机程序产品包含涉及的程序指令,所述涉及的程序指令被执行时,实现如权利要求1至34中任一项所述的方法。
  72. 一种通信系统,其特征在于,包括如权利要求35至43中任一项所述的通信装置,如权利要求44至45中任一项所述的通信装置和权利要求46至50中任一项所述的通信装置,或者,包括权利要求51至62中任一项所述的通信装置和权利要求63至68中任一项所述的通信装置。
PCT/CN2020/123008 2020-10-22 2020-10-22 一种通信方法及相关设备 WO2022082679A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3196490A CA3196490A1 (en) 2020-10-22 2020-10-22 Communication method and related device
EP20958261.8A EP4221324A4 (en) 2020-10-22 2020-10-22 COMMUNICATION METHOD AND ASSOCIATED DEVICE
PCT/CN2020/123008 WO2022082679A1 (zh) 2020-10-22 2020-10-22 一种通信方法及相关设备
CN202080106589.7A CN116548011A (zh) 2020-10-22 2020-10-22 一种通信方法及相关设备
US18/304,756 US20230262528A1 (en) 2020-10-22 2023-04-21 Communication method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123008 WO2022082679A1 (zh) 2020-10-22 2020-10-22 一种通信方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/304,756 Continuation US20230262528A1 (en) 2020-10-22 2023-04-21 Communication method and related device

Publications (1)

Publication Number Publication Date
WO2022082679A1 true WO2022082679A1 (zh) 2022-04-28

Family

ID=81291414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123008 WO2022082679A1 (zh) 2020-10-22 2020-10-22 一种通信方法及相关设备

Country Status (5)

Country Link
US (1) US20230262528A1 (zh)
EP (1) EP4221324A4 (zh)
CN (1) CN116548011A (zh)
CA (1) CA3196490A1 (zh)
WO (1) WO2022082679A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840435A (zh) * 2022-09-16 2023-03-24 广州汽车集团股份有限公司 数据传输方法、装置、车辆及存储介质
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质
WO2023246746A1 (zh) * 2022-06-20 2023-12-28 华为技术有限公司 一种通信方法及相关设备
WO2024065195A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 一种迁移类型确定方法及其装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240073834A1 (en) * 2022-08-30 2024-02-29 Qualcomm Incorporated Method for mobile node to obtain neighbor node synchronization signal block (ssb) transmission configuration (stc)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092348A1 (en) * 2018-10-31 2020-05-07 Intel Corporation Off-raster ssb design in iab networks
WO2020153274A1 (en) * 2019-01-22 2020-07-30 Sharp Kabushiki Kaisha Cell selection on a radio link failure in wireless relay networks
WO2020166223A1 (en) * 2019-02-14 2020-08-20 Sharp Kabushiki Kaisha Notification of radio link failure in wireless relay networks
CN111586887A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 无线回传系统、通信方法及其装置
WO2020191768A1 (en) * 2019-03-28 2020-10-01 Zte Corporation System and method for iab handovers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475368B (zh) * 2018-05-10 2022-12-20 中兴通讯股份有限公司 信息传输方法及装置
CN113840348A (zh) * 2019-02-15 2021-12-24 华为技术有限公司 一种数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092348A1 (en) * 2018-10-31 2020-05-07 Intel Corporation Off-raster ssb design in iab networks
WO2020153274A1 (en) * 2019-01-22 2020-07-30 Sharp Kabushiki Kaisha Cell selection on a radio link failure in wireless relay networks
WO2020166223A1 (en) * 2019-02-14 2020-08-20 Sharp Kabushiki Kaisha Notification of radio link failure in wireless relay networks
CN111586887A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 无线回传系统、通信方法及其装置
WO2020191768A1 (en) * 2019-03-28 2020-10-01 Zte Corporation System and method for iab handovers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.473
See also references of EP4221324A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246746A1 (zh) * 2022-06-20 2023-12-28 华为技术有限公司 一种通信方法及相关设备
CN115840435A (zh) * 2022-09-16 2023-03-24 广州汽车集团股份有限公司 数据传输方法、装置、车辆及存储介质
WO2024065195A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 一种迁移类型确定方法及其装置
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质

Also Published As

Publication number Publication date
EP4221324A4 (en) 2023-11-22
US20230262528A1 (en) 2023-08-17
EP4221324A1 (en) 2023-08-02
CA3196490A1 (en) 2022-04-28
CN116548011A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2022082679A1 (zh) 一种通信方法及相关设备
WO2019214747A1 (zh) 一种配置方法、数据传输方法和装置
US20210377846A1 (en) Communication method and related device
KR20200136976A (ko) 중계 자원의 구성 방법 및 기기
CN113873587B (zh) 一种用于iab网络通信的方法及相关设备
CN113556794A (zh) 通信方法、装置及系统
CN110035449B (zh) 一种数据量报告的发送方法和装置
WO2023011245A1 (zh) 通信方法和通信装置
US20230199575A1 (en) Node handover method and related device
WO2022011496A1 (zh) 一种通信方法和通信装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2021249153A1 (zh) 一种中继通信方法及相关设备
CN113810215A (zh) 一种中继通信方法及相关设备
WO2022067781A1 (zh) 一种通信方法及相关设备
WO2022068164A1 (zh) 一种通信方法及相关设备
WO2023131091A1 (zh) 通信方法和装置
WO2023011111A1 (zh) 路由方法和通信装置
WO2023246746A1 (zh) 一种通信方法及相关设备
US20240031860A1 (en) Communication method and device
WO2022082683A1 (zh) 一种用于接入回传一体化iab系统中的通信方法及相关设备
US20240073762A1 (en) Communication method, apparatus, and system
WO2023130989A1 (zh) 一种通信方法及装置
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2023131094A1 (zh) 通信方法及通信装置
WO2022233011A1 (zh) 建立连接的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3196490

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202080106589.7

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007604

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020958261

Country of ref document: EP

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023007604

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230420