WO2023131094A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2023131094A1
WO2023131094A1 PCT/CN2022/144335 CN2022144335W WO2023131094A1 WO 2023131094 A1 WO2023131094 A1 WO 2023131094A1 CN 2022144335 W CN2022144335 W CN 2022144335W WO 2023131094 A1 WO2023131094 A1 WO 2023131094A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
address
target
iab
topology
Prior art date
Application number
PCT/CN2022/144335
Other languages
English (en)
French (fr)
Inventor
朱世超
孙飞
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131094A1 publication Critical patent/WO2023131094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method and a communication device.
  • the fifth-generation mobile communication system introduces integrated access and backhaul (IAB) network technology, and the access link (access link) and backhaul link in the IAB network (Backhaul link) all use wireless transmission solutions, which reduces the deployment of optical fibers, thereby reducing deployment costs and improving deployment flexibility.
  • IAB network including IAB node (IAB node) and IAB host (IAB donor).
  • IAB node is composed of mobile terminal (mobile termination, MT) part and distributed unit (distributed unit, DU) part
  • IAB donor is composed of centralized unit (centralized unit, CU) part and distributed unit (distributed unit, DU) part.
  • IABnode allows dual connections to different IABdonors, where the dual-connected IABnode is called a boundary node, and the IAB donor to which the CU that has an F1 interface with the DU part of the boundary node belongs It is called the primary node, and the IAB donor to which the CU that does not have an F1 interface with the DU part of the border node belongs to is called the secondary node, and information is transmitted between the primary node CU and the secondary node CU through the Xn interface.
  • FIG. 1 is a schematic diagram of a network structure of IABnode inter-CU dual connections.
  • CU1 and donorDU1 are the CU part and DU part of the primary node (IAB donor1) respectively, and CU2 and donorDU2 are the CU part and DU part of the secondary node (IAB donor2) respectively.
  • IABMT and IABDU are the MT part and DU part of IAB node respectively, for example, IABMT1 and IABDU1 are the MT part and DU part of IAB node1 respectively.
  • the collection of master nodes and IABnodes with F1 interfaces with CUs in the master nodes is called the master topology
  • slave nodes and IAB nodes with F1 interfaces with CUs in the slave nodes is called a slave topology.
  • CU1, donorDU1, IAB node1, IAB node2 and IAB node4 constitute the main topology
  • CU2 donorDU2 and IAB node3 constitute the secondary topology.
  • the flow control in the main topology is controlled by CU1
  • the flow control in the auxiliary topology is controlled by CU2.
  • the IAB node node will only report a status indication message to its associated node (CU1 or CU2), which is used to trigger receiving The node of the message performs flow control.
  • IAB node2 or IAB node4 finds congestion or poor signal quality in the serving cell
  • IAB node2 and IAB node4 will only send status indication messages to CU1.
  • IAB node3 finds congestion or the signal quality of the serving cell is poor
  • IAB node3 will only send a status indication message to CU2. Based on this, flow control under the cross-CU dual-connection network architecture cannot be realized.
  • the present application provides a communication method and a communication device, which can realize resource reconfiguration across CUs in a scenario where an IAB node is dual-connected to different IAB donor CUs, and then realize flow control across CUs.
  • the present application provides a communication method, the method is applicable to a first node, and the method includes:
  • the first message is used to indicate to reconfigure resources used to serve first traffic in a first topology, where the first topology is a topology controlled by the first node, the The first flow is the flow of the third node or the flow of the downstream node of the third node;
  • the third node ie, the MT of the third node
  • the third node ie, the DU of the third node
  • F1 connection between the second nodes, the first node is the centralized unit CU in the first access backhaul integrated IAB host node, and the second node is the centralized unit CU in the second IAB host node .
  • the first node can be the CU of the primary IAB host node
  • the second node can be the CU of the secondary IAB host node
  • the first node can be the CU of the secondary IAB host node
  • the second node can be the primary IAB The CU of the host node.
  • the first message may be used to instruct the first node to reconfigure resources used to serve the first traffic in its topology, so as to realize traffic control across CUs.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • resource reconfiguration at different granularities is indicated through the first message, for example, all resources are reconfigured, or resource reconfiguration at the granularity of QoS index, or resource reconfiguration at the granularity of F1-U Tunnel, can be Realize flow control at different granularities.
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the method also includes:
  • the second node sending a first feedback of the first message to the second node, where the first feedback is used to trigger the second node to reconfigure resources used to serve the first traffic in a second topology, the second topology is the topology controlled by the second node.
  • the second node receives the first feedback from the first node.
  • the second node can reconfigure the resources used to serve the first traffic in the second topology based on the first feedback, so as to realize cross-CU traffic control.
  • Another aspect may be used to determine that the first node has successfully received the first message.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • the reconfiguring the resources used to serve the first traffic in the first topology according to the first message includes:
  • Deleting resources used to serve the first traffic in the first topology according to the first message Deleting resources used to serve the first traffic in the first topology according to the first message.
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • the present application provides a communication method, the method is applicable to a second node, and the method includes:
  • Determining a first message where the first message is used to indicate reconfiguration of resources used to serve the first traffic in a first topology, where the first topology is a topology controlled by the first node, and the first traffic is a third node or the traffic of the downstream node of the third node;
  • an RRC connection between the third node, the first node, and the second node
  • an F1 connection exists between the third node and the second node
  • the first node is the first node.
  • the second node is the centralized unit CU in the second IAB host node.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the method also includes:
  • reconfiguring resources for serving the first traffic in a second topology In response to the first feedback, reconfiguring resources for serving the first traffic in a second topology, the second topology being the topology controlled by the second node.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • the reconfiguring the resources used to serve the first traffic in the second topology includes:
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • the method also includes:
  • a status indication message is received, where the status indication message is used to determine the first message.
  • the present application provides a communication method, the method is applicable to the first node, and the method includes:
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a cross-CU routing method is given for the scenario where an IAB node is dual-connected to different IAB donor CUs.
  • the second node obtains the mapping relationship between DSCP, IPv6 flow label and target IP address from the first node, so that the second node writes it into the packet header of the data packet, which ensures the correct transmission of the data packet across the topology and improves the Communication reliability.
  • a target IP address corresponds to a first parameter
  • the sending the first parameter corresponding to each target IP address to the second node includes:
  • multiple target IP addresses correspond to a first parameter
  • the sending the first parameter corresponding to each target IP address to the second node includes:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • the present application provides a communication method, the method is applicable to the second node, and the method includes:
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a target IP address corresponds to a first parameter
  • the receiving the first parameter corresponding to each of the target IP addresses from the first node includes:
  • multiple target IP addresses correspond to a first parameter
  • the receiving the first parameter corresponding to each of the target IP addresses from the first node includes:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • the present application provides a communication method, the method is applicable to the second node, and the method includes:
  • the second mapping relationship is used for the rerouting of the data packets of the first service
  • the first node is the centralized unit CU in the target IAB hosting node of the third node
  • the second node is the centralized unit CU in the source IAB hosting node of the third node.
  • a cross-CU rerouting method is given for a handover scenario. Specifically, by interacting with the first node, the second node uses the IP address as an intermediate variable to generate a mapping relationship between the old and new BAP routing IDs, and informs the third node (ie, the boundary node) that packet rerouting can be realized , improve the transmission success rate and reduce service interruption.
  • the third node ie, the boundary node
  • the first IP address includes a source IP address.
  • the method also includes:
  • the present application provides a communication method, the method is applicable to the first node, and the method includes:
  • the first IP address includes a source IP address.
  • the present application provides a communication device, which may be a first node, and the device includes:
  • a transceiver unit configured to receive a first message from a second node, where the first message is used to indicate reconfiguration of resources used to serve the first traffic in a first topology controlled by the first node topology, the first traffic is the traffic of the third node or the traffic of the downstream node of the third node;
  • a processing unit configured to reconfigure resources in the first topology for serving the first traffic according to the first message
  • an RRC connection between the third node, the first node, and the second node
  • an F1 connection exists between the third node and the second node
  • the first node is the first node.
  • the second node is the centralized unit CU in the second IAB host node.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the transceiver unit is also used for:
  • the second node sending a first feedback of the first message to the second node, where the first feedback is used to trigger the second node to reconfigure resources used to serve the first traffic in a second topology, the second topology is the topology controlled by the second node.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • the processing unit is specifically configured to:
  • Deleting resources used to serve the first traffic in the first topology according to the first message Deleting resources used to serve the first traffic in the first topology according to the first message.
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • the present application provides a communication device, which may be a second node, and the device includes:
  • a processing unit configured to determine a first message, where the first message is used to indicate reconfiguration of resources used to serve the first traffic in a first topology, where the first topology is a topology controlled by a first node, and the first The traffic is the traffic of the third node or the traffic of the downstream node of the third node;
  • transceiver unit configured to send the first message to the first node
  • an RRC connection between the third node, the first node, and the second node
  • an F1 connection exists between the third node and the second node
  • the first node is the first node.
  • the second node is the centralized unit CU in the second IAB host node.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the transceiving unit is further configured to receive a first feedback of the first message from the first node;
  • the processing unit is further configured to, in response to the first feedback, reconfigure resources used to serve the first traffic in a second topology, where the second topology is a topology controlled by the second node.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • the processing unit is specifically configured to:
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • the transceiver unit is also used for:
  • a status indication message is received, where the status indication message is used to determine the first message.
  • the present application provides a communication device, the device is a first node, and the device includes:
  • a transceiver unit configured to receive at least one target Internet Protocol IP address corresponding to the data packet of the first service from the second node;
  • a processing unit configured to determine a first parameter corresponding to each target IP address
  • the transceiving unit is configured to send the first parameter corresponding to each target IP address to the second node;
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a target IP address corresponds to a first parameter
  • the transceiver unit is specifically used for:
  • multiple target IP addresses correspond to a first parameter
  • the transceiver unit is specifically used for:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • the present application provides a communication device, the device is a second node, and the device includes:
  • a transceiver unit configured to send at least one target Internet Protocol IP address corresponding to the data packet of the first service to the first node;
  • the transceiving unit is configured to receive a first parameter corresponding to each of the target IP addresses from the first node;
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a target IP address corresponds to a first parameter
  • the transceiver unit is specifically used for:
  • multiple target IP addresses correspond to a first parameter
  • the transceiver unit is specifically used for:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • the present application provides a communication device, the device is suitable for a second node, and the device includes:
  • a transceiver unit configured to send the first Internet Protocol IP address corresponding to the data packet of the first service to the first node;
  • the transceiver unit is configured to receive the first mapping relationship between the first IP address from the first node and the first backhaul adaptation protocol routing identifier BAP routing ID;
  • the transceiver unit is configured to send the second mapping relationship between the first BAP routing ID and the second BAP routing ID to the third node, and the second mapping relationship is used for rerouting the data packets of the first service routing;
  • the first node is the centralized unit CU in the target IAB hosting node of the third node
  • the second node is the centralized unit CU in the source IAB hosting node of the third node.
  • the first IP address includes a source IP address.
  • the device further includes a processing unit configured to:
  • the present application provides a communication device, the device is a first node, and the device includes:
  • a transceiver unit configured to receive the first Internet Protocol IP address corresponding to the data packet of the first service from the second node;
  • the transceiver unit is configured to send the first mapping relationship between the first IP address and the first BAP routing ID to the second node.
  • the first IP address includes a source IP address.
  • the present application provides a communication device.
  • the device may be the first node, or a device in the first node, or a device that can be matched with the first node.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the first aspect and/or the third aspect and/or the sixth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device.
  • the device may be a second node, or a device in the second node, or a device that can be used in conjunction with the second node.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the second aspect and/or the fourth aspect and/or the fifth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device, which may be a first node, and the communication device includes a processor and a transceiver, and the processor and the transceiver are used to execute at least one memory stored in A computer program or an instruction, so that the device implements the method according to any one of the first aspect and/or the third aspect and/or the sixth aspect.
  • the present application provides a communication device, which may be a first node, and the communication device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory are coupled; the processor and the transceiver are used to implement the method according to any one of the first aspect and/or the third aspect and/or the sixth aspect.
  • the present application provides a communication device, which may be a second node, and the communication device includes a processor and a transceiver, and the processor and the transceiver are used to execute at least one memory stored in A computer program or an instruction, so that the device implements the method according to any one of the second aspect and/or the fourth aspect and/or the fifth aspect.
  • the present application provides a communication device, which may be a second node, and the communication device includes a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory are coupled; the processor and the transceiver are used to implement the method according to any one of the second aspect and/or the fourth aspect and/or the fifth aspect.
  • the present application provides a computer-readable storage medium, in which computer programs or instructions are stored.
  • the computer programs or instructions are executed by a computer, any one of the first to fourth aspects can be realized. Methods.
  • the present application provides a computer program product including instructions, the computer program product includes computer program codes, and when the computer program codes are run on a computer, any one of the first to fourth aspects can be realized. item method.
  • Figure 1 is a schematic diagram of the network architecture of IAB node cross-CU dual connection
  • FIG. 2 is a schematic diagram of a network architecture of an IAB network
  • FIG. 3 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a mapping relationship provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another mapping relationship provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of switching provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or description. Any embodiment or design described herein as “exemplary” or “for example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • the fifth-generation mobile communication puts forward more stringent requirements for various performance indicators of the network. For example, the capacity has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the capacity has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small cell networking is becoming more and more popular.
  • the propagation characteristics of high-frequency carriers are poor, the attenuation is serious due to occlusion, and the coverage area is not wide, so a large number of densely deployed small stations are required.
  • the cost of providing optical fiber backhaul for these densely deployed small stations is very high, and the construction is difficult.
  • IAB integrated access and backhaul
  • IAB nodes can be enabled to support dual connectivity (DC) or multi-connectivity (multi-connectivity) to deal with abnormal situations that may occur in the backhaul link, such as link failure Or blockage/congestion (blockage) or load fluctuations and other abnormalities to improve transmission reliability.
  • DC dual connectivity
  • multi-connectivity multi-connectivity
  • the IAB network supports multi-hop and multi-connection networking, multiple transmission paths may exist between a terminal device (for example, user equipment (UE)) and an IAB donor node (IAB donor).
  • Each transmission path includes multiple nodes, and multiple nodes may include UE, one or more IAB nodes, and IAB donor.
  • the IAB donor is separated from the centralized unit (CU) and the distributed unit (DU), the IAB donor can include the IAB donor-DU part (donor DU) and the IAB donor-CU (donor CU) Part etc.
  • the IAB node IAB node
  • the IAB node can provide wireless access services for the terminal equipment, and the business data of the terminal equipment is transmitted to the IAB donor through the wireless backhaul link by the IAB node.
  • the IAB node may have different names in different communication systems.
  • the IAB node may be called a relay node (relay node, RN), or may be called a wireless backhaul node or a wireless backhaul device; in a 5G system,
  • the relay node may be called an integrated access and backhaul node (IAB node).
  • the relay node may also have different names, which are not limited here.
  • the IAB nodes mentioned in the embodiments of the present application can be replaced by relay nodes.
  • each IAB node regards the adjacent node that provides backhaul service for it as a parent node (or upper-level node), and correspondingly, each IAB node can be regarded as a child node (or lower-level node) of its parent node.
  • the wireless link used by an IAB node to communicate with its child nodes is called an access link, including links for uplink transmission and downlink transmission. Uplink transmission on the access link is also called uplink transmission on the access link, and downlink transmission is also called downlink transmission on the access link.
  • the wireless link used by an IAB node to communicate with its parent node may be called a backhaul link, including links for uplink transmission and downlink transmission. Uplink transmission on the backhaul link is also called uplink transmission on the backhaul link, and downlink transmission is also called downlink transmission on the backhaul link.
  • FIG. 2 is a schematic diagram of a network architecture of an IAB network.
  • the parent node of node 1 is the host node (ie IAB donor)
  • node 1 is the parent node of node 2 and node 3
  • both node 2 and node 3 are the parent of node 4
  • the parent node of node 5 is node 2.
  • path 1 UE1-node 4-node 3-node 1-IABdonor
  • path 2 UE1-node 4-node 2-node 1-IAB donor .
  • the uplink data packet of each UE can be transmitted to the IAB donor by one or more IAB nodes, and then sent to the mobile gateway device (such as the user plane function (UPF) network element in the 5G core network) by the IAB donor.
  • the downlink data packet can be received by the IAB donor from the mobile gateway device, and then sent to the UE through the IAB node.
  • the mobile gateway device such as the user plane function (UPF) network element in the 5G core network
  • the IAB node may include a mobile terminal (mobile termination, MT) part and a distributed unit (distributed unit, DU) part.
  • MT mobile terminal
  • DU distributed unit
  • an IAB node faces its parent node (its parent node can be another IAB node, or an IAB donor), it can be regarded as a user equipment, that is, the role of MT; when an IAB node faces its child node (its child node can When it is another IAB node, or a terminal device), it can be regarded as a network device, that is, the role of DU, which is used to provide backhaul services for sub-nodes.
  • the IAB donor can be an access network element with complete access functions, or an access network element in the form of CU and DU separation.
  • the IAB donor can be connected to the core network serving terminal equipment (for example, 5G Core network (5Gcore, 5GC)) network elements, and provide wireless backhaul services for IAB nodes.
  • the core network serving terminal equipment for example, 5G Core network (5Gcore, 5GC)
  • 5Gcore, 5GC 5G Core network
  • the centralized unit of IAB donor is referred to as donor CU (or directly referred to as CU), and the distributed unit of IAB donor is referred to as donor DU for short.
  • the donor CU may also be a form in which the control plane (control plane, CP) and the user plane (user plane, UP) are separated.
  • a CU may be composed of one CU-CP and one (or more) CU-UP.
  • an IAB donor may also be called an IAB host, an IAB donor node, a donor node (donor node) or a donor base station (donor gNodeB, DgNB), which is not limited in this application.
  • the IAB networking scenario shown in Figure 2 is only exemplary. In the IAB networking scenario combining multi-hop and multi-connection, there are more other possibilities.
  • a DgNB and an IAB node under another DgNB can form a Dual connectivity serves the UE, etc., which are not listed here in this application.
  • the host base station may include but not limited to: next generation base station (generation nodeB, gNB), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved Node B or home Node B), transmission point (transmission and reception point or transmission point ), roadside unit (RSU) with base station function, baseband unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit, AAU), One or a group of antenna panels, or nodes with base station functions in subsequent evolution systems, etc.
  • generation nodeB, gNB next generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B Node B, NB
  • base station controller base station controller
  • BTS base transceiver station
  • home base station home evolved No
  • the host base station may be one entity, and may also include a centralized unit (centralized unit, CU) entity plus at least one distributed unit (distributed unit, DU) entity.
  • the interface between the CU and the DU may be referred to as an F1 interface.
  • the two ends of the F1 interface are the CU and the DU.
  • the opposite end of the F1 interface of the CU is the DU, and the opposite end of the F1 interface of the DU is the CU.
  • the F1 interface may further include a control plane F1 interface (F1-C) and a user plane F1 interface (F1-U).
  • the CU of the host base station may be referred to as Donor CU for short
  • the DU of the host base station may be referred to as Donor DU for short.
  • a terminal is sometimes referred to as user equipment (user equipment, UE), mobile station, terminal equipment, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (Internet of Things) of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • Terminals may include, but are not limited to: user equipment UE, mobile station, mobile device, terminal device, user agent, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (such as smart watches, smart bracelets, Smart glasses, etc.), smart furniture or home appliances, vehicle equipment in vehicle to everything (V2X), terminal equipment with relay function, customer premises equipment (CPE), IAB nodes (specifically IAB The MT of the node or the IAB node as the terminal role), etc., the application does not limit the specific name and implementation form of the terminal.
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • IAB nodes specifically IAB The MT of the node or the IAB node as the terminal role
  • BAP backhaul adaptation protocol
  • IAB donor-CU assigns a unique BAP address to each IABnode it controls, which can uniquely identify each IAB node in the network. In the case of multiple paths, each BAP address can be associated with multiple path IDs.
  • the source node (the IAB donor-DU in the downlink DL direction, and the access IABnode in the uplink UL direction) will add a BAP header to the data packets they are transmitting at their BAP layer.
  • the BAP header includes the BAP address and the BAP path ID.
  • Each IABnode will have routing tables configured with uplink UL and downlink DL (configured by the IAB donor-CU) containing next hop identifiers for each BAP path ID. Separate routing tables are reserved for DL and UL directions, where IAB node-DU uses the DL table and IAB node-MT uses the UL table.
  • the routing table can indicate to which child node (if DL) or parent node (if UL) the data packet should be forwarded.
  • the BAP protocol When the access IABnode receives a packet, the packet is forwarded to higher layers and processed in the same way that a normal DU handles an incoming F1-U or F1-C packet.
  • the BAP protocol also performs mapping between ingress and egress BH RLC channels, and the mapping rules are configured by the IAB donor-CU.
  • the mapping configuration is ⁇ input link ID, input BH RLC CH ID, output link ID, output BH RLC CH ID ⁇ .
  • the mapping configuration For the uplink mapping when the access IABnode sends F1-U data packets, the mapping configuration is ⁇ destination IP Address, TEID, output link ID, output BH RLC CH ID ⁇ .
  • the mapping configuration For the downlink mapping of Donor-DU, the mapping configuration is ⁇ destination IP Address, DSCP (optional), IPv6 flow label (optional), output link ID, output BH RLC CH ID ⁇ .
  • the F1 interface supports user plane protocols (F1-U/F1*-U) and control plane protocols (F1-C/F1*-C).
  • the user plane protocol includes one or more of the following protocol layers: general packet radio service (general packet radio service, GPRS) tunneling protocol user plane (gPRS tunneling protocol user plane, GTP-U), user datagram protocol (userdatagram protocol , UDP) and Internet protocol (internet protocol, IP) and other protocol layers;
  • the control plane protocol includes one or more of the following: F1 application protocol (F1application protocol, F1AP), stream control transport protocol (stream control transport protocol, SCTP) and IP and other protocol layers.
  • F1 application protocol F1application protocol, F1AP
  • stream control transport protocol stream control transport protocol
  • IP Internet protocol
  • the control plane protocol includes one or more of the following: F1 application protocol (F1application protocol, F1AP), stream control transport protocol (stream control transport protocol, SCTP) and IP and other protocol layers.
  • the physical layer (physical layer, PHY), MAC layer and radio link control (radio link control, RLC) layer that are equivalent to the terminal are located on the access IAB node, and the packet data convergence protocol that is equivalent to the terminal (packet data convergence protocol, PDCP) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer and radio resource control (radio resource control, RRC) layer are located on the IAB donor CU, if the IAB donor-CU consists of CP and UP Composition, the RRC layer equivalent to the terminal is located on the CP of the IAB donor CU (ie, donor-CU-CP), and the PDCP layer and SDAP layer equivalent to the terminal are located on the UP of the IAB donor CU (ie, donor-CU-UP). .
  • FIG. 3 and (b) in FIG. 3 are respectively a schematic diagram of the user plane protocol stack and a schematic diagram of the control plane protocol stack in the IAB network provided by the embodiment of the present application. The following is combined with (a) in FIG. 3 and (b) in Fig. 3 for description.
  • a Uu interface is established between the UE and the IAB node 2-DU (hereinafter referred to as IAB2-DU), and the peer-to-peer protocol layers include the RLC layer and the MAC layer and PHY layers.
  • IAB2-DU and IAB donor CU 1 have an F1-U interface, and the equivalent protocol layers include GTP-U layer, UDP layer and IP layer.
  • the F1 interface in the IAB host is established between the IAB donor DU and the IAB donor CU, and the peer protocol layers include the IP layer, L2 and L1.
  • a peer-to-peer SDAP layer and PDCP layer are established between UE and IAB donor CU, and a peer-to-peer IP layer is established between IAB2-DU and IAB donor DU.
  • the DU of the IAB access node realizes some functions of the gNB-DU of the single air interface (that is, establishes peer-to-peer RLC layer, MAC Layer and PHY layer functions, as well as establishing peer-to-peer with IAB donor CU, GTP-U layer, UDP layer and IP layer functions). It can be understood that the DU of the IAB access node implements the function of the gNB-DU with a single air interface; the IAB donor CU implements the function of the gNB-CU with a single air interface.
  • a Uu interface is established between the UE and the IAB2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer and the PHY layer.
  • IAB2-DU and IAB donor CU establish F1-C interface, and the equivalent protocol layers include F1AP layer, SCTP layer and IP layer.
  • the F1 interface in the IAB host is established between the IAB donor DU and the IAB donor CU, and the peer protocol layers include the IP layer, L2 and L1.
  • a peer-to-peer RRC layer and PDCP layer are established between the UE and the IAB donor CU, and a peer-to-peer IP layer is established between the IAB donor DU and the IAB donor DU.
  • the DU connected to the IAB node realizes the function of the gNB-DU of the single air interface (that is, establishes peer-to-peer RLC layer, MAC layer and the functions of the PHY layer, as well as the functions of the F1AP layer, SCTP layer, and IP layer for establishing peer-to-peer relationships with the CU).
  • the DU connected to the IAB node in the IAB network implements the function of the gNB-DU with a single air interface; the IAB donor CU implements the function of the gNB-CU with a single air interface.
  • the RRC message is encapsulated and transmitted in the F1AP message between the access IAB node and the IAB donor CU.
  • the UE may encapsulate the RRC message in a PDCP protocol data unit (protocol data unit, PDU), and sent to the IAB2-DU after being processed by the RLC layer, the MAC layer and the PHY layer in turn.
  • IAB2-DU is sequentially processed by the PHY layer, MAC layer, and RLC layer to obtain PDCP PDUs.
  • the PDCP PDUs are encapsulated in F1AP messages, and processed by the SCTP layer and the IP layer in turn to obtain data packets.
  • IAB node2-MT (abbreviated as IAB2-MT) sends the data packets to the IAB node1-DU (abbreviated as IAB1-DU) after being processed by the BAP layer, the RLC layer, the MAC layer and the PHY layer respectively.
  • IAB1-DU gets the data packet after being processed by the PHY layer, MAC layer, RLC layer and BAP layer in turn, and then IAB node1-MT (abbreviated as IAB1-MT) adopts an operation similar to IAB2-MT to send the data packet to IAB donor DU.
  • the IAB donor DU parses the data packet, it sends the data packet to the IABdonor CU, and the IAB donor CU processes the data packet through the SCTP layer, the F1AP layer and the PDCP layer in turn to obtain the RRC message.
  • the downlink direction is similar and will not be described here.
  • PDCP packets are encapsulated and transmitted in the GTP-U tunnel between the access IAB node and the IAB donor CU.
  • the GTP-U tunnel is established on the F1-U interface.
  • the access IAB node in the embodiment of the present application refers to the IAB node accessed by the terminal, and the intermediate IAB node refers to the IAB node between the access IAB node and the host node.
  • IAB node 4 is the access IAB node
  • IAB node 3 and IAB node 1 are intermediate IAB nodes .
  • the IAB node 3 provides the backhaul service for the IAB node 4
  • the IAB node 1 provides the backhaul service for the IAB node 3 .
  • an IAB node is an access IAB node.
  • it is an intermediate IAB node. Therefore, whether an IAB node is an access IAB node or an intermediate IAB node is not fixed and needs to be determined according to specific application scenarios.
  • Link Refers to a path between two adjacent nodes in a path.
  • the access link refers to the link accessed by the terminal, which may refer to the link between the terminal and the access network device, or between the terminal and the IAB node, or between the terminal and the host node, or between the terminal and the host DU.
  • the access link includes a wireless link used by an IAB node to communicate with its parent node when it acts as a common terminal device.
  • the IAB node acts as an ordinary terminal device, it does not provide backhaul services for any child nodes.
  • Access links include uplinks and downlinks.
  • the access link of the terminal is a wireless link, so the access link may be called a wireless access link.
  • the backhaul link refers to the link between the IAB node as the wireless backhaul node and the parent node.
  • the backhaul link includes an uplink backhaul link and a downlink backhaul link.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link may also be called a wireless backhaul link.
  • the last hop node of a node refers to the last node that receives the data packet before the node in the path including the node.
  • the next-hop node of a node refers to the node that first receives the data packet after the node in the path including the node.
  • the ingress link of a node For uplink transmission, it refers to the link between the node and the previous hop node of the node (for example, the previous hop node of the node can be a child node of the node), which can also be called The last hop link of the node.
  • the egress link of a node For uplink transmission, it refers to the link between the node and the next-hop node of the node (for example, the next-hop node of the node can be the parent node of the node), and can also be called The next hop link of the node.
  • each IAB node will regard the node that provides the wireless access service and/or wireless backhaul service for the IAB node as a parent node.
  • each IAB node can be regarded as a child node of its parent node.
  • a child node may also be called a lower-level node, and a parent node may also be called a higher-level node.
  • the data packet can be a data packet in a radio bearer (radio bearer, RB), and the RB can be a data radio bearer (data radio bearer, DRB).
  • radio bearer radio bearer
  • DRB data radio bearer
  • the data packet is a data packet of the user plane; or it can be a signaling radio bearer (Signaling radio bearer, SRB), it can be understood that the data packet is the data packet of the control plane; or, the data packet can be a business operation, management and maintenance (operation administration and maintenance, OAM) data packet, it can be understood that the data packet is the management plane data pack.
  • FIG. 4 and FIG. 5 are schematic diagrams of mapping relationships among RLC channels, LCHs, and protocol entities.
  • the RLC CH is a channel between the RLC entity and the upper layer protocol entity of the RLC entity.
  • the RLC CH on the backhaul link is a channel between the RLC entity and the PDCP entity.
  • the RLC CH on the backhaul link is a channel between the RLC entity and the BAP entity. Therefore, the definition of RLC CH depends on the upper layer protocol entity of the RLC entity.
  • a logical channel is a channel between an RLC entity and an underlying protocol entity of the RLC entity.
  • the lower layer of the RLC entity is the MAC layer
  • the logical channel is the channel between the RLC entity and the MAC entity.
  • the RLC CH of the IAB node corresponds to an RLC entity one by one, and also corresponds to an RLC bearer one by one.
  • the relationship between the BAP entity and the RLC entity may be that one BAP entity corresponds to multiple RLC entities, as shown in Figure 4, or one BAP entity corresponds to one RLC entity, as shown in Figure 5, which is not limited in this application.
  • the BAP layer has one or more of the following capabilities: adding routing information (routing information) that can be identified by the wireless backhaul node (IAB node) to the data packet; Routing information to perform routing selection, add identification information related to quality of service (QoS) requirements that can be identified by wireless backhaul nodes for data packets, and execute data packets on multiple links including wireless backhaul nodes QoS mapping, adding data packet type indication information to data packets, and sending flow control feedback information to nodes with flow control capabilities.
  • routing information routing information
  • QoS quality of service
  • the name of the protocol layer having these capabilities is not necessarily the BAP layer, but may be other names. Those skilled in the art can understand that as long as the protocol layer with these capabilities can be understood as the BAP layer in the embodiment of the present application.
  • the RLC CH on the BH link can be understood as a service differentiation channel on the BH link between two nodes, which can provide specific service quality QoS guarantee for the transmission of data packets.
  • the RLC CH on the BH link can be understood as a logical concept rather than a physical channel concept.
  • the RLC CH on the BH link can be understood as the peer-to-peer RLC CH of the two IAB nodes of the BH link.
  • host node has RLC CH1, RLC CH2;
  • Node 1 has RLC CH1, RLC CH2;
  • the RLC entity of the RLC CH1 of host node and the RLC entity of RLC CH1 of node 1 are peer (peer)
  • the RLC entity of the RLC CH2 of the host node and the RLC entity of the RLC CH1 of the node 1 are peer RLC entities.
  • the RLC CH2 of the node is equal to the RLC CH2 of node 1
  • the RLC CH1 of the BH link between the host node DU and node 1 can refer to the RLC CH1 of the host node and the RLC CH1 of node 1
  • the RLC CH2 of the BH link may refer to the RLC CH2 of the host node and the RLC CH2 of node 1.
  • RLC CH can be replaced by RLC bearer or logical channel.
  • RLC bearer on the BH link can also be called the BH bearer or the bearer of the BH link, so the RLC CH of the BH link can be replaced by the RLC real bearer of the BH link or the logical channel of the BH link or the BH The bearer or the bearer of the BH link.
  • Egress RLC CH refers to the RLC CH between the IAB node and its parent node.
  • Ingress RLC CH refers to the RLC CH between the IAB node and its child nodes.
  • the egress RLC CH and the ingress RLC CH may have a mapping relationship.
  • the uplink data received by the IAB node from the ingress RLC CH can be sent to the next IAB node (ie, the parent node of the IAB node) by the egress RLC CH mapped by the ingress RLC CH.
  • QoS Quality of service
  • TEID tunnel endpoint identification
  • QoS can be implemented by one or a group of F1-U Tunnels, where a TEID is used to uniquely mark an F1-U Tunnel.
  • the boundary node refers to the IAB node working in the dual connection state
  • the child node of the boundary node refers to the downstream node of the boundary node
  • the parent node of the boundary node refers to the upstream node of the boundary node.
  • the parent node may also be called an ancestor node, etc., which is not limited here.
  • IAB node2 is the boundary node
  • IAB node4 is the descendant node
  • IAB node1 is MN related ancestor node
  • IAB node3 is SN related ancestor node.
  • IAB DU means the DU part of IAB node
  • donor-DU means the DU part of IAB donor.
  • MN Master node
  • SN secondary node
  • the IAB donor of the CU that has an F1 interface with the DU part of the border node is called the master node (MN), and the IAB donor of the CU that does not have an F1 interface with the DU part of the border node is called the secondary node (secondary node, SN). ), information is transmitted between the master node and the slave node through the Xn interface.
  • MN master node
  • secondary node secondary node
  • the IAB node allows dual connections to different IAB donor CUs, as shown in Figure 1, CU1 is the MN CU, and CU2 is the SN CU.
  • CU1 When CU1 establishes traffic passing through the secondary topology, CU1 needs to send a QoS list to CU2 through the Xn interface to inform the QoS information of the traffic passing through the secondary topology, and CU2 configures resources in the secondary topology nodes to meet these QoS requirements.
  • each index in the QoS list represents a service type (UE-associated F1AP/non-UE-associated F1AP/non-F1); for UP traffic on the user plane, each index in the QoS list
  • Each index of represents one or more F1-U Tunnels that realize the QoS requirement, and CU2 may know the TEID of each F1-U Tunnel (CU1 informs CU2), or may not know it (CU1 does not inform CU2).
  • the collection of the primary node and the IAB node with the F1 interface with the CU in the primary node is called the primary topology
  • the collection of the secondary node and the IAB node with the F1 interface with the CU in the secondary node is called the secondary topology.
  • CU1, donor-DU1, IAB node1, IAB node2 and IAB node4 constitute the main topology
  • CU2, donor-DU2 and IAB node3 constitute the secondary topology.
  • the flow control in the main topology is controlled by CU1
  • the flow control in the auxiliary topology is controlled by CU2.
  • the IAB node node When a topology (such as primary topology or secondary topology) is congested or the signal quality of the serving cell is poor, the IAB node node will only report a status indication message to its associated node (CU1 or CU2), which is used to trigger receiving The node of the message performs flow control. For example, when IAB node2 or IAB node4 finds congestion or poor signal quality in the serving cell, IAB node2 and IAB node4 will only send status indication messages to CU1. For another example, when IAB node3 finds congestion or the signal quality of the serving cell is poor, IAB node3 will only send a status indication message to CU2. Based on this, flow control under the cross-CU dual-connection network architecture cannot be realized.
  • CU1 or CU2 When a topology (such as primary topology or secondary topology) is congested or the signal quality of the serving cell is poor, the IAB node node will only report a status indication message to its associated node (CU1 or
  • the embodiment of the present application proposes a communication method, which can support cross-CU resource reconfiguration for the scenario where an IAB node is dual-connected to different IAB donor CUs, thereby realizing cross-CU flow control.
  • reconfiguration in the embodiment of the present application may also be described as deletion, release, configuration or modification, etc., which is not limited in the embodiment of the present application.
  • flow control may also be described as flow release, flow withdrawal, etc., which are not limited here.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 6, the communication method includes the following steps S601-S602:
  • the first node receives a first message from a second node.
  • the second node sends a first message to the first node, and correspondingly the first node receives the first message from the second node, where the first message is used to indicate to reconfigure the The resource serving the first traffic, the first topology is the topology controlled by the first node, and the first traffic is the traffic of the third node or the traffic of the downstream node of the third node.
  • the third node is a border node, and in the system architecture shown in Figure 1, the third node is IAB node2.
  • the fourth node when the fourth node finds congestion based on its own implementation (for example, when the DU part of the fourth node determines that its own buffer load buffer load is greater than or equal to a preset threshold) or the signal quality of the serving cell is poor (for example, the fourth node When the MT part of the radio resource management (radio resource management, RRM) measurement finds that the signal quality of the serving cell is less than or equal to the preset signal quality threshold), the fourth node may send a second message to the second node, wherein the second message It may also be called a status indication message, where the status indication message may include a base station-distributed unit status indication (GNB-DU Status Indication) message or an RRC message, etc., which is not limited here.
  • GNB-DU Status Indication base station-distributed unit status indication
  • the second message is used to report the location where congestion occurs or the signal quality is poor.
  • the second message may include the identifier of the backhaul link BH link or the identifier of the backhaul radio link control channel (backhaul RLC channel identification, BH RLC CH ID), etc., so the second node receiving the second message can generate the first message according to the second message.
  • the GNB-DU Status Indication message carrying the BH link or RLC CH ID can be sent to the second node through the DU part of the fourth node, that is, the second message It is the GNB-DU Status Indication message.
  • the MT part of the fourth node can send an RRC message carrying BH link or RLC CH ID to the second node, that is, the second message is RRC information.
  • the second node receives the second message from the fourth node, and then the second node can generate the first message according to the second message, and send the first message to the first node.
  • the second node may send the first message to the first node through the Xn interface, that is, the first message is an Xn message.
  • the fourth node can be an IAB node node in the network architecture, for example, the fourth node and the third node can be the same node, that is, the fourth node is a boundary node, for example, IAB node2 in the system architecture diagram shown in Figure 1 ; Or, the fourth node is a child node of the boundary node (or called the downstream node of the boundary node), such as the IAB node4 in the system architecture diagram shown in Figure 1; or, the fourth node is the auxiliary ancestor node of the boundary node,
  • the IAB node3 in the system architecture diagram shown in FIG. 1 is not limited here, and the schemes provided by this application will be described in detail in the following according to the different possibilities of the fourth node.
  • the third node (or described as the MT part of the third node) and the first node and the second node, and between the third node (or described as the DU part of the third node) and the second node
  • the first node is the centralized unit CU in the first IAB host node
  • the second node is the centralized unit CU in the second IAB host node. That is to say, the third node is dual-connected to the first node and the second node, or described as the first node is the centralized unit CU in the first IAB host node in dual-connection mode, and the second node is in dual-connection mode Centralized unit CU in the second IAB host node under .
  • the first IAB host node may be a secondary IAB host node in dual connectivity mode
  • the second IAB host node may be a primary IAB host node in dual connectivity mode
  • the first IAB host node may be a primary IAB host node in dual connectivity mode
  • the second IAB host node may be a secondary IAB host node in dual connectivity mode.
  • the first node is the CU of the secondary IAB host node in the dual connectivity mode
  • the second node is the CU of the primary IAB host node in the dual connectivity mode
  • the first node is the CU of the master IAB host node in the dual connectivity mode
  • the second node is the CU of the secondary IAB host node in the dual connectivity mode.
  • the first topology is the secondary topology, that is, the first message is used to indicate Resources in the secondary topology for serving the first traffic are reconfigured.
  • the first topology is the master topology, that is, the first message is used to indicate the withdrawal of the master A resource in the topology used to serve the first flow.
  • the first node when the first node is the CU of the secondary IAB host node in dual connectivity mode, and the second node is the CU of the primary IAB host node in dual connectivity mode, the first node may receive the The second message of the four nodes identifies resources in the first topology that need to be reconfigured to serve the first traffic.
  • the fourth node may be a boundary node, or the fourth node may be a child node of the boundary node, or the fourth node may be an ancestor node related to the main node.
  • the first node may be CU2 as shown in FIG. 1
  • the second node may be CU1 as shown in FIG.
  • the fourth node may be The boundary node IAB node2 (ie IAB MT2 and IAB DU2) shown in Figure 1, or, the fourth node can be a child node IAB node4 (ie IAB MT4 and IAB DU4) of the boundary node as shown in Figure 1, or, the fourth node can It is the ancestor node IAB node1 (ie IAB MT1 and IAB DU1) related to the master node as shown in Figure 1.
  • the first node when the first node is the CU of the primary IAB host node in dual connectivity mode, and the second node is the CU of the secondary IAB host node in dual connectivity mode, the first node may receive the CU from The second message of the third IAB node determines the service flow carried in the first topology to be withdrawn.
  • the fourth node may be an ancestor node related to the secondary node.
  • the first node may be CU2 as shown in FIG. 1
  • the second node may be CU1 as shown in FIG. 1
  • the fourth node may be Ancestor node IAB node3 (ie IAB MT3 and IAB DU3 ) related to the secondary node is shown.
  • the first node reconfigures resources used to serve the first traffic in the first topology according to the first message.
  • the first node may reconfigure the resources used to serve the first traffic in the first topology according to the first message.
  • the resources used to serve the first traffic in the first topology are reconfigured according to the first message.
  • the resources may be understood as: deleting resources used to serve the first traffic in the first topology according to the first message.
  • the first node may also send a first feedback of the first message to the second node, and the first feedback is used to trigger the second node to reconfigure resources used to serve the first traffic in the second topology, where the second topology is The topology controlled by the second node.
  • the first message includes at least one of the following information: indication information for reconfiguring all resources of the first flow, resources corresponding to quality of service indexes (QoS indexes) in the resources of the first flow, resources of the first flow
  • the tunnel endpoint identifies the resource corresponding to the TEID. That is to say, the first node performs resource deletion, resource reconfiguration, or resource release at different granularities according to different contents included in the first message, thereby implementing traffic release, traffic control, or traffic withdrawal at different granularities.
  • the first message may further include first indication information, where the first indication information is used to indicate a reason for triggering flow control.
  • the reasons for triggering flow control include occurrence of congestion or signal quality not meeting quality requirements.
  • the length of the first indication information can be 1 bit, when the value of the first indication information is 1, it means that the reason for triggering flow control is congestion; when the value of the first indication information is 0, Indicates that the reason for triggering the flow control is that the signal quality does not meet the quality requirements; or vice versa, there is no limitation here.
  • the length of the first indication information can be 2 bits
  • the value of the first indication information is 10
  • the value of the first indication information is 01
  • the reason for triggering the flow control is that the signal quality does not meet the quality requirements; or vice versa
  • the first node when the first message includes indication information for reconfiguring resources of all first traffic, the first node may delete all resources used to serve the first traffic in the first topology.
  • the first node The second node may delete all resources used to serve the first traffic in the second topology, so as to release all resources used to serve the first traffic.
  • the second node can notify the primary topology node through F1AP (for example boundarynode, and/or descendant node, and/or, the ancestor node related to the primary node) releases all traffic in the QoS list passing through the secondary topology, and the first node can notify the secondary topology node through F1AP (for example, related to the secondary node Ancestor nodes), release all traffic passing through the QoS list of the secondary topology.
  • F1AP for example boundarynode, and/or descendant node, and/or, the ancestor node related to the primary node
  • the first node When the first node is the CU of the primary IAB host node in dual connectivity mode, and the second node is the CU of the secondary IAB host node in dual connectivity mode, the first node can notify the primary topology node (such as boundarynode, and /or descendant node, and/or, the ancestor node associated with the primary node) releases all traffic in the QoS list passing through the primary topology, and the second node can notify the secondary topology node (such as the ancestor node associated with the secondary node) through F1AP ) to release all traffic passing through the QoS list of the main topology.
  • the primary topology node such as boundarynode, and /or descendant node, and/or, the ancestor node associated with the primary node
  • the secondary topology node such as the ancestor node associated with the secondary node
  • the QoS lists involved in the embodiments of the present application can all be understood as the MN CU (such as CU1 in FIG.
  • the QoS list sent by CU2) in 1 the QoS list is used to inform the QoS information of the traffic passing through the secondary topology, based on this, the SN CU can configure resources in the secondary topology nodes to meet the QoS requirements in the QoS list.
  • the first node when the first message includes quality of service indexes (QoS indexes), the first node can delete resources corresponding to the quality of service indexes in the first topology, and correspondingly, the second node can delete the second topology resources corresponding to the quality of service index in the middle, so as to release part of the resources used to serve the first traffic.
  • QoS indexes quality of service indexes
  • the second node can notify the primary topology node through F1AP (for example boundarynode, and/or descendant node, and/or, the ancestor node related to the primary node) releases the QoS indexes that need to be released in the QoS list of the secondary topology, and the first node can notify the secondary topology node through F1AP (such as with the secondary topology Node-related ancestor nodes), release the QoS indexes that need to be released in the QoS list of the secondary topology.
  • F1AP for example boundarynode, and/or descendant node, and/or, the ancestor node related to the primary node
  • the first node can notify the secondary topology node through F1AP (such as with the secondary topology Node-related ancestor nodes), release the QoS indexes that need to be released in the QoS list of the secondary topology.
  • the first node can notify the primary topology node (such as boundarynode, and /or descendant node, and/or, the ancestor node related to the main node) releases the QoS indexes that need to be released in the QoS list of the main topology
  • the second node can notify the auxiliary topology node (such as related to the auxiliary node) through F1AP Ancestor node), release the QoS indexes that need to be released in the QoS list of the main topology.
  • the release of traffic can be understood as deleting the newly created RLC in the node (primary topology node or secondary topology node) to meet the QoS requirements in the QoS list CH, or delete the mapping relationship between QoS requirements and RLC CH.
  • FIG. 1 Take the system architecture shown in Figure 1 as an example. Assume that the first node is CU2 and the second node is CU1. Assume that when CU1 establishes traffic passing through the secondary topology, CU1 sends the QoS list to CU2 through the Xn interface. Including QoS index1 corresponding to service type 1, QoS index2 corresponding to service type 2 and QoS index3 corresponding to service type 3.
  • CU2 receives the first information from CU1, the first information includes QoS index1, therefore, CU2 can notify Donor-du2, IAB node3 (that is, IAB MT3 and IAB DU3) to perform traffic corresponding to QoS index1 Release, CU1 can notify Donor du1, IAB node1 (ie IAB MT1 and IAB DU1), IAB node2 (ie IAB MT2 and IAB DU2) and IAB node4 (ie IAB MT4 and IAB DU4) to release the traffic corresponding to QoS index1.
  • Donor-du2 that is, IAB MT3 and IAB DU3
  • IAB node4 ie IAB MT4 and IAB DU4
  • the first node when the first message includes the TEID, can delete the resource corresponding to the TEID in the first topology (that is, the F1-U Tunnel), and correspondingly, the second node can delete the resource corresponding to the TEID in the second topology. resources corresponding to the TEID (that is, the F1-U Tunnel), so as to release part of the resources used to serve the first traffic.
  • the second node can notify the primary topology node through F1AP (for example boundarynode, and/or descendant node, and/or, the ancestor node related to the master node) releases the resources in the selected F1-U Tunnel, and the first node can notify the auxiliary topology node (for example, related to the auxiliary node) through F1AP ancestral node) to release the resources in the selected F1-U Tunnel.
  • F1AP boundarynode, and/or descendant node, and/or, the ancestor node related to the master node
  • the first node can notify the auxiliary topology node (for example, related to the auxiliary node) through F1AP ancestral node) to release the resources in the selected F1-U Tunnel.
  • the first node When the first node is the CU of the primary IAB host node in dual connectivity mode, and the second node is the CU of the secondary IAB host node in dual connectivity mode, the first node can notify the primary topology node (such as boundarynode, and /or descendant node, and/or, the ancestor node related to the primary node) releases the resources in the selected F1-U Tunnel, and the second node can notify the auxiliary topology node (such as the ancestor node related to the auxiliary node) through F1AP ), to release the resources in the selected F1-U Tunnel.
  • the primary topology node such as boundarynode, and /or descendant node, and/or, the ancestor node related to the primary node
  • the second node can notify the auxiliary topology node (such as the ancestor node related to the auxiliary node) through F1AP ), to release the resources in the selected F1-U Tunnel.
  • the release of traffic can be understood as deleting the RLC CH in the F1-U Tunnel corresponding to the TEID in the node (primary topology node or secondary topology node).
  • the CU of the master node needs to notify the CU of the slave node of all TEIDs passing through the slave topology when establishing traffic passing through the slave topology.
  • TEIDs of the topology are TEID1, TEID2, TEID3, TEID4 and TEID5.
  • CU2 receives the first information from CU1, the first information includes TEID2 and TEID3, therefore, CU2 can notify Donor-du2, IAB node3 (that is, IAB MT3 and IAB DU3) corresponding to TEID2 and TEID3
  • Donor-du2 IAB node3 (that is, IAB MT3 and IAB DU3) corresponding to TEID2 and TEID3
  • CU1 can notify Donor du1, IAB node1 (that is, IAB MT1 and IAB DU1), IAB node2 (that is, IAB MT2 and IAB DU2) and IAB node4 (that is, IAB MT4 and IAB DU4) to carry out the traffic corresponding to TEID2 and TEID3. freed.
  • the release triggered by the auxiliary topology node it can be rebuilt in the main topology, and for the release triggered by the main topology node, whether to allow reconstruction depends on the network element that triggers the traffic release , for example, taking the system architecture shown in Figure 1 as an example, for the release triggered by the poor signal quality of the serving cell reported by IAB MT2 (which can be judged by the first indication information), this part of the traffic can be re-established in the main topology ( For example, establish RLC CH according to QoS requirements, or re-establish F1-U Tunnel). For the congestion or poor signal quality found by IAB DU2 or IAB node4, it can only be relieved by releasing traffic, and rebuilding in the main topology is not supported.
  • a cross-CU flow control method supporting various resource granularities is given.
  • the second node may send a first message to the first node, where the first message is used to instruct to reconfigure the first topology
  • the resource used to serve the first flow in may be used to serve the first traffic carried in their corresponding topologies based on the indication of the first message.
  • the resource reconfiguration granularity involved in the embodiment of this application includes reconfiguring all resources, cross-CU resource reconfiguration with QoS index as the granularity, and cross-CU resource reconfiguration with F1-U Tunnel as the granularity, or described as this application
  • the traffic control granularity involved in the embodiment includes releasing all traffic, releasing cross-CU traffic at the granularity of QoS index, and releasing cross-CU traffic at the granularity of F1-U Tunnel.
  • the donor-DU2 needs to be based on the target IP address, IPv6 flow label and differentiated services code point (Differentiated Services Code Point, DSCP) Perform downlink RLC CH mapping, where the target IP address, IPv6 flow label and DSCP need to be included in the IP header, and CU1 writes these information into the IP header.
  • DSCP and IPv6 flow label reflect the QoS requirements of the service, and there is a mapping relationship with the target IP address.
  • the mapping relationship is configured by IAB donor-CU2. Therefore, this application also proposes a communication method. It can solve the mapping configuration problem of RLC CH under the network architecture shown in FIG. 1 . The following describes how to feed back the mapping relationship to CU1 in combination with Figure 6, so that CU1 can write the information into the IP header.
  • FIG. 7 is another schematic flowchart of the communication method provided by the embodiment of the present application. It should be noted that the first node in the embodiment of the present application is the centralized unit CU in the secondary IAB host node in dual connectivity mode, and the second node is the centralized unit CU in the primary IAB host node in dual connectivity mode . As shown in Figure 7, the communication method includes the following steps S701-S703:
  • the first node receives at least one target IP address corresponding to the data packet of the first service from the second node.
  • the second node sends at least one target Internet protocol (internet protocol, IP) address corresponding to the data packet of the first service of the first service to the first node, and correspondingly, the first node receives the address from the first service At least one target IP address corresponding to the data packet of the first service of the two nodes.
  • IP Internet protocol
  • the first node and the second node can communicate through the Xn interface, that is, the second node can send the target IP address of the downlink data packet to the first node through the Xn interface.
  • the first node determines a first parameter corresponding to each target IP address.
  • the first node determines the first parameter corresponding to each target IP address. That is to say, the first parameter corresponding to each target IP address may be configured by the first node. Wherein, the target IP address may be an IPv4 address or an IPv6 address.
  • the first node sends the first parameter corresponding to each target IP address to the second node.
  • the first node sends the first parameter corresponding to each target IP address to the second node.
  • the first parameter when the target IP address is an IPv4 address, the first parameter includes DSCP.
  • the target IP address is an IPv6 address, the first parameter includes DSCP and an IPv6 flow label (IPv6 flow label).
  • IPv6 flow label IPv6 flow label
  • sending the first parameter corresponding to each target IP address to the second node can be understood as: based on the receiving order of at least one target IP address, sending the The second node sends the first parameter corresponding to each target IP address; or, sends a 1:1 mapping relationship between the first parameter and each target IP address to the second node. That is to say, for 1:1 mapping, the first node can arrange ⁇ DSCP,IPv6 flow label ⁇ in the order of the target IP addresses sent to it by the second node, and send them to the second node through the Xn interface, for easy understanding , the cell structure of the 1:1 mapping in this transmission mode can be expressed as the following table 1. Or, for 1:1 mapping, the first node can use the arrangement of ⁇ DSCP,IPv6 flow label,IP ⁇ , and send the mapping relationship to the second node through the Xn interface. The cell structure of 1:1 mapping is shown in Table 2 below.
  • IP address1 For example, take the system architecture shown in Figure 1 as an example, for 1:1 mapping, assume that the target IP addresses sent by CU1 to CU2 include IP address1, IP address2 and IP address3, and CU1 follows IP address1 ⁇ IP address2 ⁇ The sequence of IP address3 sends these IP addresses to CU2.
  • CU2 when CU2 receives these IP addresses, it can configure IP address1 to correspond to DSCP1 and IPv6 flow label1; IP address2 to correspond to DSCP2 and IPv6 flow label2; IP address3 to correspond to DSCP3 and IPv6 flow label3.
  • CU2 can arrange the ⁇ DSCP,IPv6 flow label ⁇ corresponding to IP address1, IP address2 and IP address3 according to the order of the IP addresses sent by CU1, and send them to CU1 through the Xn interface, that is, CU2 In the order of ⁇ DSCP1,IPv6 flow label1 ⁇ DSCP2,IPv6 flow label2 ⁇ DSCP3,IPv6 flow label3 ⁇ , send the ⁇ DSCP,IPv6 flow label ⁇ corresponding to IP address1, IP address2 and IP address3 to CU1.
  • CU2 can use the arrangement of ⁇ DSCP, IPv6 flow label, IP address ⁇ to pass the ⁇ DSCP, IPv6 flow label, IP address ⁇ corresponding to IP address1, IP address2 and IP address3 through Xn
  • the interface sends to CU1, that is, CU2 sends ⁇ DSCP1, IPv6 flow label1, IP address1 ⁇ , ⁇ DSCP2, IPv6 flow label2, IP address2 ⁇ and ⁇ DSCP3, IPv6 flow label3, IP address3 ⁇ to CU1.
  • the sending order is not limited, for example, CU2 can send in the order of ⁇ DSCP1,IPv6 flow label1,IP address1 ⁇ DSCP2,IPv6 flow label2,IP address2 ⁇ DSCP3,IPv6 flow label3,IP address3 ⁇ , and for example , CU2 can send in the order of ⁇ DSCP2,IPv6 flow label2,IP address2 ⁇ DSCP1,IPv6 flow label1,IP address1 ⁇ DSCP3,IPv6 flow label3,IP address3 ⁇ , and for example, CU2 can follow ⁇ DSCP2,IPv6 Flow label2,IP address2 ⁇ DSCP3,IPv6 flow label3,IP address3 ⁇ DSCP1,IPv6 flow label1,IP address1 ⁇ are sent in order, etc., there is no limit here.
  • sending the first parameter corresponding to each target IP address to the second node can be understood as: based on the receiving order of at least one target IP address , sending the first parameter corresponding to each target IP address to the second node; or sending the 1:N mapping relationship between the first parameter and multiple target IP addresses to the second node.
  • the first node can arrange ⁇ DSCP,IPv6flow label ⁇ according to the order of the target IP addresses sent by the second node to it, and send them to the second node through the Xn interface (the cell structure can be Refer to the above Table 1); or, the arrangement of ⁇ DSCP,IPv6 flow label ⁇ , ⁇ IP1,...,IPN ⁇ can be used to express the mapping relationship, and the ⁇ DSCP,IPv6 flow label ⁇ and the corresponding multiple IP addresses After pairing, the mapping relationship is sent to the second node through the Xn interface.
  • the cell structure of the 1:1 mapping in this sending mode can be expressed as Table 3 below.
  • IPv6 IPv6 flowlabel IP address list >IP address 1 >IP address 2 ... >IP address N
  • IP address1 to correspond to DSCP1 and IPv6 flow label1
  • IP address2 to correspond to DSCP1 and IPv6 flow label1
  • IP address3 to correspond to DSCP2 and IPv6 flow label2
  • IP address4 to correspond to DSCP2 and IPv6 flow label2.
  • CU2 can arrange the ⁇ DSCP,IPv6 flow label ⁇ corresponding to IP address1, IP address2, IP address3 and IP address4 according to the order of the IP addresses sent by CU1, and send them to CU1 through the Xn interface , that is, CU2 assigns IP address1, IP address2, IP address3 and IP address4 in the order of ⁇ DSCP1,IPv6 flow label1 ⁇ DSCP1,IPv6 flow label1 ⁇ DSCP2,IPv6 flow label2 ⁇ DSCP2,IPv6 flow label2 ⁇ The corresponding ⁇ DSCP,IPv6 flow label ⁇ is sent to CU1.
  • CU2 can use the arrangement of ⁇ DSCP,IPv6 flow label ⁇ , ⁇ IP1,...,IPN ⁇ to assign ⁇ DSCP,IPv6 flow labels corresponding to IP address1, IP address2 and IP address3 respectively.
  • label,IP address ⁇ is sent to CU1 through the Xn interface, that is, CU2 sends ⁇ DSCP1,IPv6 flow label1 ⁇ , ⁇ IP address1,IP address2 ⁇ to CU1, ⁇ DSCP2,IPv6 flow label2 ⁇ , ⁇ IP address3,IP address4 ⁇
  • the sending order is not limited, for example, CU2 can follow ⁇ DSCP1,IPv6 flow label1 ⁇ , ⁇ IP address1,IP address2 ⁇ DSCP2,IPv6 flow label2 ⁇ , ⁇ IP address3, IP address4 ⁇ is sent in order, and for example, CU2 can follow ⁇ DSCP2,IPv6 flow label2 ⁇ , ⁇ IP address3,IP address4 ⁇ DSCP1,IPv6 flow label1 ⁇ , ⁇ IP address1,IP address2 ⁇ , there is no
  • the second node can write the target IP address, DSCP and IPv6 flow label into the IP header based on the mapping relationship, and finally send the data packet to donor-DU2 for routing.
  • a cross-CU routing method is given for the scenario where an IAB node is dual-connected to different IAB donor CUs.
  • the second node obtains the mapping relationship between DSCP, IPv6 flow label and target IP address from the first node, so that the second node writes it into the packet header of the data packet, which ensures the correct transmission of the data packet across the topology and improves the Communication reliability.
  • the switching of the IAB node between different hosts will adopt partial migration, that is, the MT part of the IAB node that needs to be switched is switched to the DU of the target host (the donor-DU of the target host or the IAB node DU controlled by the donor-CU of the target host), disconnect from the source host, and establish an RRC connection with the CU of the target host; while its DU part is still controlled by the source CU, The F1 interface with the source host CU is reserved, and a new F1 interface with the target host CU will not be established.
  • FIG. 8 is a schematic diagram of handover provided by an embodiment of the present application.
  • IAB MT2 maintains dual connections with CU1 and CU2 through IAB DU1 and IAB DU3. Sometimes IAB MT2 will directly switch to IAB DU3 and disconnect from IAB DU1, but at this time IAB DU2 and IAB DU4 will not establish F1AP with CU2, and still maintain F1AP with CU1 to reduce the cost of F1AP reconstruction. This architecture is called partial migration.
  • IAB MT2 switches to IAB DU3 controlled by CU2, and establishes an RRC connection with CU2; while IAB DU2 is still controlled by CU1, and retains the F1 interface with CU1, and the F1 interface passes through the path "IAB node2 ⁇ IAB node3 ⁇ donor-DU2 ⁇ CU1” implementation.
  • the embodiment of the present application proposes a communication method, which can solve the problem of rewriting the BAP header during rerouting in a partial migration scenario.
  • FIG. 9 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • the first node is the centralized unit CU in the target IAB host node of the third node
  • the second node is the centralized unit CU in the source IAB host node of the third node
  • the third node may be a DU of a border node.
  • the communication method includes the following steps S901-S903:
  • the second node sends the first IP address corresponding to the data packet of the first service to the first node.
  • the second node obtains the first IP address, and sends the first IP address to the first node through the Xn interface, and correspondingly, the first node receives the first IP address from the second node through the Xn interface .
  • the first IP address includes a source IP address.
  • the second node may obtain the source IP address of the uplink data packet according to the traffic context of the border node or a child node of the border node, and notify the first node through the Xn interface.
  • the second node receives the first mapping relationship between the first IP address and the first BAP routing ID from the first node.
  • the first node may assign each data packet a first backhaul adaptation protocol routing identifier (BAP routing ID) in the first topology, and assign the first BAP routing ID
  • BAP routing ID backhaul adaptation protocol routing identifier
  • the first mapping relationship with the first IP address (that is, the source IP address of the uplink data packet) is notified to the second node through the F1AP, and accordingly, the second node receives the connection between the first IP address and the first BAP routing ID from the first node.
  • the first mapping relationship of is notified to the second node through the F1AP, and accordingly, the second node receives the connection between the first IP address and the first BAP routing ID from the first node.
  • the second node sends the second mapping relationship between the first BAP routing ID and the second BAP routing ID to the third node.
  • the second node sends a second mapping relationship between the first BAP routing ID and the second BAP routing ID to the third node, and the second mapping relationship is used for rerouting of data packets of the first service.
  • the second node obtains the third mapping relationship between the first IP address and the second BAP routing ID, and determines the second mapping relationship according to the first mapping relationship and the third mapping relationship.
  • the second node sends a second mapping relationship between the first BAP routing ID and the second BAP routing ID to the third node, and the second mapping relationship is used for rerouting of data packets of the first service.
  • the second node According to the mapping relationship between the received IP address and the first BAP routing ID of the first topology, and the mapping relationship between the IP address already known in the second node and the second BAP routing ID of the second topology, the second node The mapping relationship can use the first IP address as an intermediate variable to generate a mapping relationship between the second BAP routing ID of the second topology and the first BAP routing ID of the first topology. Further, the second node may send the second mapping relationship between the second BAP routing ID in the second topology and the first BAP routing ID in the first topology to the DU of the third node through F1AP, therefore, the third node's The DU can rewrite the BAP routing ID according to the second mapping relationship.
  • CU1 sends data to itself through the second topology before learning five IP addresses, IP Address1, IP Address2, IP Address3, IP Address4, and IP Address5, according to the context of descendant traffic, and now the data sent by these IP addresses needs to be replayed. Routing to the first topology, so CU1 informs CU2 of IP Address1, IP Address2, IP Address3, IP Address4, IP Address5.
  • CU2 learns that the data packets of these IP addresses will be rerouted by the first topology, and assigns the first BAP routing ID to the data packets of these IP addresses, for example: ⁇ IP Address1,IP Address2,IP Address3 ⁇ ->the first BAP routing ID1; ⁇ IP Address4, IP Address5 ⁇ ->the first BAP routing ID2, and inform CU1 of these mapping relationships (that is, the first mapping relationship).
  • CU1 originally knew the mapping relationship between the IP address and the second BAP routing ID (that is, the third mapping relationship), for example: ⁇ IP Address1 ⁇ ->second BAP routing ID1; ⁇ IP Address2,IP Address3 ⁇ ->second BAP routing ID2; ⁇ IP Address4, IP Address5 ⁇ ->second BAP routing ID3, therefore, CU1 can further learn the mapping relationship between the second BAP routing ID and the first BAP routing ID (that is, the second mapping relationship), as follows: ⁇ The second BAP routing ID1, the second BAP routing ID2 ⁇ -> the first BAP routing ID1;
  • CU1 sends the mapping relationship between the second BAP routing ID and the first BAP routing ID to IAB DU2, and IAB DU2 rewrites the BAP routing ID according to the mapping relationship, for example: the BAP routing ID in the BAP header is the second BAP For the upstream data packet of routing ID3, IAB DU2 rewrites the BAP routing ID to the first BAP routing ID2, and sends it to IAB DU3 through IAB MT2,
  • IAB DU3 can correctly identify the information in the first BAP routing ID2.
  • CU1 sends data to itself through the second topology before knowing the three IP addresses of IP Address1, IP Address2 and IP Address3 according to the context of boundary traffic, and now the data sent by these IP addresses needs to be rerouted to the first topology. So CU1 informs CU2 of IP Address1, IP Address2 and IP Address3.
  • CU2 learns that the data packets of these IP addresses will be rerouted by the first topology, and assigns the first BAP routing ID to the data packets of these IP addresses, for example: ⁇ IP Address1 ⁇ ->first BAP routing ID1; ⁇ IP Address2 ⁇ ->first BAP routing ID2; ⁇ IP Address3 ⁇ ->first BAP routing ID3, and inform CU1 of these mapping relationships (ie, the first mapping relationship).
  • CU1 originally knew the mapping relationship between the IP address and the second BAP routing ID (that is, the third mapping relationship), for example: ⁇ IP Address1 ⁇ -> second BAP routing ID3; ⁇ IP Address2 ⁇ -> second BAP routing ID2 ; ⁇ IP Address3 ⁇ ->second BAP routing ID1, therefore, CU1 can further learn the mapping relationship between the second BAP routing ID and the first BAP routing ID (that is, the second mapping relationship), as follows: ⁇ second BAP routing ID1 ⁇ -> First BAP routing ID3; ⁇ Second BAP routing ID2 ⁇ -> First BAP routing ID2; ⁇ Second BAP routing ID3 ⁇ -> First BAP routing ID1.
  • CU1 sends the mapping relationship between the second BAP routing ID and the first BAP routing ID to IAB DU2, and IAB DU2 rewrites the BAP routing ID according to the mapping relationship, for example: the BAP routing ID in the BAP header is the second BAP
  • IAB DU2 rewrites the BAP routing ID to the first BAP routing ID1, and sends it to IAB DU3 through IAB MT2, and IAB DU3 can correctly identify the information in the first BAP routing ID2.
  • a cross-CU rerouting method is given for a handover scenario. Specifically, by interacting with the first node, the second node uses the IP address as an intermediate variable to generate a mapping relationship between the old and new BAP routing IDs, and informs the third node (ie, the boundary node) that packet rerouting can be realized , improve the transmission success rate and reduce service interruption.
  • the third node ie, the boundary node
  • the communication device provided by the present application will be described in detail below with reference to FIGS. 10 to 12 .
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 10 may be used to execute part or all of the functions of the first node in the method embodiments described above in FIG. 6 to FIG. 9 .
  • the device may be the first node, or a device in the first node, or a device that can be matched with the first node.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 10 may include a transceiver unit 1001 and a processing unit 1002 .
  • the processing unit 1002 is configured to perform data processing.
  • the transceiver unit 1001 is integrated with a receiving unit and a sending unit.
  • the transceiver unit 1001 may also be called a communication unit. Alternatively, the transceiver unit 1001 may also be split into a receiving unit and a sending unit.
  • the processing unit 1002 below is the same as the transceiver unit 1001 , and will not be described in detail below. in:
  • a transceiver unit 1001 configured to receive a first message from a second node, where the first message is used to indicate reconfiguration of resources used to serve first traffic in a first topology, where the first topology is the first node
  • the topology of the control, the first flow is the flow of the third node or the flow of the downstream node of the third node;
  • a processing unit 1002 configured to reconfigure resources used to serve the first traffic in the first topology according to the first message
  • an RRC connection between the third node, the first node, and the second node
  • an F1 connection exists between the third node and the second node
  • the first node is the first node.
  • the second node is the centralized unit CU in the second IAB host node.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the transceiver unit 1001 is further configured to:
  • the second node sending a first feedback of the first message to the second node, where the first feedback is used to trigger the second node to reconfigure resources used to serve the first traffic in a second topology, the second topology is the topology controlled by the second node.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • processing unit 1002 is specifically configured to:
  • Deleting resources used to serve the first traffic in the first topology according to the first message Deleting resources used to serve the first traffic in the first topology according to the first message.
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • a transceiver unit 1001 configured to receive at least one target Internet Protocol IP address corresponding to the data packet of the first service from the second node;
  • a processing unit 1002 configured to determine a first parameter corresponding to each target IP address
  • the transceiving unit 1001 is configured to send the first parameter corresponding to each target IP address to the second node;
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a target IP address corresponds to a first parameter
  • the transceiver unit 1001 is specifically used for:
  • multiple target IP addresses correspond to a first parameter
  • the transceiver unit 1001 is specifically used for:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • a transceiver unit 1001 configured to receive the first Internet Protocol IP address corresponding to the data packet of the first service from the second node;
  • the transceiver unit 1001 is configured to send the first mapping relationship between the first IP address and the first BAP routing ID to the second node.
  • the first IP address includes a source IP address.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device shown in FIG. 11 may be used to execute part or all of the functions of the second node in the method embodiments described above in FIG. 6 to FIG. 9 .
  • the device may be the second node, or a device in the second node, or a device that can be matched with the second node.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 11 may include a transceiver unit 1101 and a processing unit 1102 . in:
  • the processing unit 1102 is configured to determine a first message, where the first message is used to indicate to reconfigure resources used to serve the first traffic in a first topology, where the first topology is a topology controlled by a first node, and the first topology A flow is the flow of the third node or the flow of the downstream node of the third node;
  • a transceiver unit 1101, configured to send the first message to the first node
  • an RRC connection between the third node, the first node, and the second node
  • an F1 connection exists between the third node and the second node
  • the first node is the first node.
  • the second node is the centralized unit CU in the second IAB host node.
  • the first message includes at least one of the following information: indication information for reconfiguring all the resources of the first flow, resources corresponding to the quality of service index in the resources of the first flow .
  • indication information for reconfiguring all the resources of the first flow resources corresponding to the quality of service index in the resources of the first flow .
  • the first message is also used to indicate a reason for triggering flow control.
  • the reason for triggering the flow control includes occurrence of congestion or signal quality not meeting a quality requirement.
  • the transceiving unit 1101 is further configured to receive a first feedback of the first message from the first node;
  • the processing unit 1102 is further configured to, in response to the first feedback, reconfigure resources used to serve the first traffic in a second topology, where the second topology is a topology controlled by the second node.
  • the second topology includes a distributed unit DU of the second node.
  • the first topology includes the DU of the first node.
  • processing unit 1102 is specifically configured to:
  • the first IAB host node is a secondary IAB host node
  • the second IAB host node is a master IAB host node
  • the first IAB host node is a master IAB host node
  • the second IAB host node is a secondary IAB host node.
  • the first message is an Xn message.
  • the transceiver unit 1101 is further configured to:
  • a status indication message is received, where the status indication message is used to determine the first message.
  • a transceiver unit 1101, configured to send at least one target Internet Protocol IP address corresponding to the data packet of the first service to the first node;
  • the transceiving unit 1101 is configured to receive a first parameter corresponding to each of the target IP addresses from the first node;
  • the first parameter reflects the QoS requirement of the first service
  • the target IP address and the first parameter corresponding to the target IP address are used to determine the radio link control channel RLC CH corresponding to the first service
  • the first node is the centralized unit CU in the secondary IAB hosting node in dual connectivity mode
  • the second node is the centralized unit CU in the primary IAB hosting node in dual connectivity mode.
  • a target IP address corresponds to a first parameter
  • the transceiver unit 1101 is specifically used for:
  • multiple target IP addresses correspond to a first parameter
  • the transceiver unit 1101 is specifically used for:
  • the target IP address includes an IPv4 address
  • the first parameter includes a differentiated services code point (DSCP).
  • DSCP differentiated services code point
  • the target IP address includes an IPv6 address
  • the first parameter includes a DSCP and an IPv6 flow label.
  • the transceiver unit 1101 is configured to send the first Internet Protocol IP address corresponding to the data packet of the first service to the first node;
  • the transceiver unit 1101 is configured to receive a first mapping relationship between the first IP address and the first backhaul adaptation protocol routing identifier BAP routing ID from the first node;
  • the transceiver unit 1101 is configured to send the second mapping relationship between the first BAP routing ID and the second BAP routing ID to the third node, the second mapping relationship is used for the data packets of the first service rerouting;
  • the first node is the centralized unit CU in the target IAB hosting node of the third node
  • the second node is the centralized unit CU in the source IAB hosting node of the third node.
  • the first IP address includes a source IP address.
  • the apparatus further includes a processing unit 1102, and the processing unit 1102 is configured to:
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be the first node or the second node described in this application, and is used to realize the functions of the first node or the second node in the foregoing FIGS. 6 to 9 .
  • FIG. 12 only shows main components of the communication device 1200 .
  • a communications device 1200 includes one or more processors 1201 , and optionally, an interface 1202 .
  • the device 1200 may be enabled to implement the communication method provided in any of the foregoing embodiments and any possible design therein.
  • the processor 1201 implements the communication method provided by any of the foregoing embodiments and any possible design thereof through a logic circuit or by executing code instructions.
  • the interface 1202 may be used to receive program instructions and transmit them to the processor, or the interface 1202 may be used for the apparatus 1200 to communicate and interact with other communication devices, such as to exchange control signaling and/or service data.
  • the interface 1202 may be used to receive signals from other devices other than the device 1200 and transmit them to the processor 1201 or send signals from the processor 1201 to other communication devices other than the device 1200 .
  • the interface 1202 may be a code and/or data read/write interface circuit, or the interface 1202 may be a signal transmission interface circuit between the communication processor and the transceiver, or a chip pin.
  • the communication device 1200 may further include at least one memory 1203, and the memory 1203 may be used to store required related program instructions and/or data.
  • the device 1200 may further include a power supply circuit 1204, which may be used to supply power to the processor 1201, and the power supply circuit 1204 may be located in the same chip as the processor 1201, or located in the inside another chip outside of the chip.
  • the apparatus 1200 may further include a bus 1205 , and various parts in the apparatus 1200 may be interconnected via the bus 1205 .
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic random access memory dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • Synchronous connection dynamic random access memory synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the power supply circuit described in the embodiment of the present application includes but is not limited to at least one of the following: a power supply circuit, a power supply subsystem, a power management chip, a power consumption management processor, or a power consumption management control circuit.
  • the transceiver device, interface, or transceiver described in the embodiments of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • Transceiving means, interfaces, or transceivers may operate under the direction of a corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a processor reads and executes program instructions stored in a memory to realize the functions corresponding to the above-mentioned modules or units, wherein a processor refers to a processing circuit capable of executing program instructions, Including but not limited to at least one of the following: central processing unit (central processing unit, CPU), microprocessor, digital signal processing (digital signal processing, DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence processing Processors and other processing circuits capable of executing program instructions.
  • the processor may also include circuits with other processing functions (such as hardware circuits for hardware acceleration, buses and interfaces, etc.).
  • Processors can be presented in the form of an integrated chip, for example, in the form of an integrated chip whose processing function consists only of executing software instructions, or in the form of a system on a chip (SoC), that is, on a chip
  • SoC system on a chip
  • the processing circuit usually called “core”
  • core the processing circuit
  • the processing function may also include various hardware acceleration functions (such as AI calculation, codec, compression and decompression, etc.).
  • the hardware processing circuit may be composed of discrete hardware components, or may be an integrated circuit. In order to reduce power consumption and size, it is usually implemented in the form of an integrated circuit.
  • the hardware processing circuit may include an ASIC, or a programmable logic device (programmable logic device, PLD); wherein, the PLD may include an FPGA, a complex programmable logic device (complex programmable logic device, CPLD) and the like.
  • These hardware processing circuits can be a semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon base.
  • a variety of hardware circuits and CPUs are packaged separately into a chip.
  • This chip is also called SoC, or circuits and CPUs for realizing FPGA functions can also be formed on a silicon base, and separately sealed into a chip.
  • This chip Also known as a programmable system on a chip (system on a programmable chip, SoPC).
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple on the network unit. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium may include several instructions to enable a computer device, such as a personal computer, server, or network device, or a processor to perform all or part of the operations of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium can include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk, or optical disk, etc., which can store program codes. media or computer-readable storage media.
  • transmission may include the following three situations: sending of data, receiving of data, or sending of data and receiving of data.
  • data may include service data and/or signaling data.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more.
  • “Including at least one of the following: A, B, C.” means that it may include A, or include B, or include C, or include A and B, or include A and C, or include B and C, or include A, B, and c. Among them, A, B, and C can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,该方法包括: 接收来自第二节点的第一消息,第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,第一拓扑为第一节点控制的拓扑,第一流量为第三节点的流量或第三节点的下游节点的流量; 根据第一消息重新配置第一拓扑中用于服务第一流量的资源。其中,第三节点与第一节点和第二节点之间均存在 RRC 连接,第三节点与第二节点之间存在 F1 连接,第一节点为第一 IAB 宿主节点中的 CU,第二节点为第二 IAB 宿主节点中的 CU。在本申请中,通过第一节点和第二节点之间交互第一消息,该第一消息可以用于指示第一节点重新配置其拓扑中用于服务第一流量的资源,进而可实现跨 CU 的流量控制。

Description

通信方法及通信装置
本申请要求于2022年01月05日提交中国专利局、申请号为202210009198.4,发明名称为“通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
第五代移动通信系统(5th-generation,5G)中引入了接入回传一体化(integrated access and backhaul,IAB)网络技术,IAB网络中的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,减少了光纤部署,从而降低了部署成本,提高了部署灵活性。在IAB网络中,包括IAB节点(IAB node)和IAB宿主(IAB donor)。通常来说,IAB node由移动终端(mobile termination,MT)部分和分布式单元(distributed unit,DU)部分组成,IAB donor由集中式单元(centralized unit,CU)部分和分布式单元(distributed unit,DU)部分组成。
CU与DU之间的接口称为F1接口。在双连接(dual connectivity,DC)场景中,IABnode允许双连接至不同IABdonor下,其中,双连接的IABnode称为边界节点(boundary node),与边界节点DU部分存在F1接口的CU所属的IAB donor称为主节点,与边界节点DU部分不存在F1接口的CU所属的IAB donor称为辅节点,主节点CU与辅节点CU之间通过Xn接口传递信息。示例性地,请参见图1,图1是IABnode跨CU双连接的网络结构示意图。如图1所示,CU1和donorDU1分别为主节点(即IAB donor1)的CU部分和DU部分,CU2和donorDU2分别为辅节点(即IAB donor2)的CU部分和DU部分。IABMT和IABDU分别为IAB node的MT部分和DU部分,例如,IABMT1和IABDU1分别为IAB node1的MT部分和DU部分。主节点以及与主节点中的CU存在F1接口的IABnode的集合称为主拓扑,辅节点以及与辅节点中的CU存在F1接口的IAB node的集合称为辅拓扑。如图1所示,CU1,donorDU1,IAB node1,IAB node2和IAB node4构成了主拓扑,CU2,donorDU2和IAB node3构成了辅拓扑。需要说明的是,在如图1所示的系统架构中,主拓扑中的流量控制是由CU1控制的,辅拓扑中的流量控制是由CU2控制的,其中,当某个IAB node节点发现某个拓扑(例如主拓扑或辅拓扑)发生拥塞或服务小区信号质量不佳时,该IAB node节点只会向其关联的节点(CU1或CU2)上报状态指示消息,该状态指示消息用于触发接收该消息的节点进行流量控制。例如,当IAB node2或IAB node4发现拥塞或服务小区信号质量不佳时,IAB node2和IAB node4只会向CU1发送状态指示消息。又例如,当IAB node3发现拥塞或服务小区信号质量不佳时,IAB node3只会向CU2发送状态指示消息,基于此,无法实现跨CU双连接网络架构下的流量控制。
发明内容
本申请提供了一种通信方法及通信装置,可实现IAB node双连接至不同IAB donor CU的场景下跨CU的资源重配置,进而实现跨CU的流量控制。
第一方面,本申请提供了一种通信方法,该方法适用于第一节点,该方法包括:
接收来自第二节点的第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第 一流量的资源,所述第一拓扑为所述第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
其中,所述第三节点(即第三节点的MT)与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点(即第三节点的DU)与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在本申请中,第一节点可以为主IAB宿主节点的CU,第二节点可以为辅IAB宿主节点的CU,或者,第一节点可以为辅IAB宿主节点的CU,第二节点可以为主IAB宿主节点的CU。其中,通过第一节点和第二节点之间交互第一消息,该第一消息可以用于指示第一节点重新配置其拓扑中用于服务第一流量的资源,可实现跨CU的流量控制。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在本申请中,通过第一消息指示不同粒度的资源重配置,例如重配置全部资源,或者,以QoS index为粒度的资源重配置,或者,以F1-U Tunnel为粒度的资源重配置,可实现不同粒度的流量控制。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述方法还包括:
向所述第二节点发送所述第一消息的第一反馈,所述第一反馈用于触发所述第二节点重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在本申请中,第二节点通过接收来自第一节点的第一反馈,一方面第二节点可基于第一反馈重新配置第二拓扑中用于服务第一流量的资源,进而实现跨CU的流量控制。另一方面可用于确定第一节点已经成功接收第一消息。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源,包括:
根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
第二方面,本申请提供了一种通信方法,该方法适用于第二节点,该方法包括:
确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
向所述第一节点发送所述第一消息;
其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述方法还包括:
接收来自所述第一节点的所述第一消息的第一反馈;
响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述重新配置第二拓扑中用于服务第一流量的资源,包括:
删除所述第二拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
在一种可能的实现中,所述方法还包括:
接收状态指示消息,所述状态指示消息用于确定所述第一消息。
第三方面,本申请提供了一种通信方法,该方法适用于第一节点,该方法包括:
接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址;
确定每个所述目标IP地址对应的第一参数;
向所述第二节点发送每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在本申请中,针对IAB node双连接至不同IAB donor CU的场景,给出了跨CU的路由方法。具体地,第二节点从第一节点中获取DSCP、IPv6 flow label与目标IP地址的映射关系,以便第二节点将其写入数据包的包头,保证了数据包跨拓扑的正确传输,提高了通信的可靠性。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
第四方面,本申请提供了一种通信方法,该方法适用于第二节点,该方法包括:
向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
接收来自所述第一节点的每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述接收来自所述第一节点的每个所述目标IP地址对应的第一参数,包括:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述接收来自所述第一节点的每个所述目标IP地址对应的第一参数,包括:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
第五方面,本申请提供了一种通信方法,该方法适用于第二节点,该方法包括:
向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
接收来自所述第一节点的所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系;
向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
在本申请中,针对切换场景,给出了跨CU的重路由方法。具体地,第二节点通过与第一节点之间交互,将IP地址作为中间变量,生成新旧BAP routing ID之间的映射关系,并告知第三节点(即boundary node),可以实现数据包重路由,提升传输成功率,减少业务中断。
在一种可能的实现中,所述第一IP地址包括源IP地址。
在一种可能的实现中,所述方法还包括:
获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
第六方面,本申请提供了一种通信方法,该方法适用于第一节点,该方法包括:
接收来自第二节点第一业务的数据包对应的第一因特网协议IP地址;
向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
在一种可能的实现中,所述第一IP地址包括源IP地址。
第七方面,本申请提供了一种通信装置,该装置可以为第一节点,该装置包括:
收发单元,用于接收来自第二节点的第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为所述第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
处理单元,用于根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述收发单元还用于:
向所述第二节点发送所述第一消息的第一反馈,所述第一反馈用于触发所述第二节点重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述处理单元具体用于:
根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
第八方面,本申请提供了一种通信装置,该装置可以为第二节点,该装置包括:
处理单元,用于确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
收发单元,用于向所述第一节点发送所述第一消息;
其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述收发单元,还用于接收来自所述第一节点的所述第一消息的第一反馈;
所述处理单元,还用于响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述处理单元具体用于:
删除所述第二拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
在一种可能的实现中,所述收发单元还用于:
接收状态指示消息,所述状态指示消息用于确定所述第一消息。
第九方面,本申请提供了一种通信装置,该装置为第一节点,该装置包括:
收发单元,用于接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址;
处理单元,用于确定每个所述目标IP地址对应的第一参数;
所述收发单元,用于向所述第二节点发送每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述收发单元具体用于:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述收发单元具体用于:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
第十方面,本申请提供了一种通信装置,该装置为第二节点,该装置包括:
收发单元,用于向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
所述收发单元,用于接收来自所述第一节点的每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述收发单元具体用于:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述收发单元具体用于:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
第十一方面,本申请提供了一种通信装置,该装置适用于第二节点,该装置包括:
收发单元,用于向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
所述收发单元,用于接收来自所述第一节点的所述第一IP地址与第一回传适配协议 路由标识BAP routing ID间的第一映射关系;
所述收发单元,用于向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一IP地址包括源IP地址。
在一种可能的实现中,所述装置还包括处理单元,所述处理单元用于:
获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
第十二方面,本申请提供了一种通信装置,该装置为第一节点,该装置包括:
收发单元,用于接收来自第二节点第一业务的数据包对应的第一因特网协议IP地址;
所述收发单元,用于向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
在一种可能的实现中,所述第一IP地址包括源IP地址。
第十三方面,本申请提供了一种通信装置,该装置可以是第一节点,也可以是第一节点中的装置,或者是能够和第一节点匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面和/或第三方面和/或第六方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面和/或第三方面和/或第六方面所述的方法以及有益效果,重复之处不再赘述。
第十四方面,本申请提供了一种通信装置,该装置可以是第二节点,也可以是第二节点中的装置,或者是能够和第二节点匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面和/或第四方面和/或第五方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面和/或第四方面和/或第五方面所述的方法以及有益效果,重复之处不再赘述。
第十五方面,本申请提供了一种通信装置,该装置可以是第一节点,所述通信装置包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如第一方面和/或第三方面和/或第六方面中任意一项的方法。
第十六方面,本申请提供了一种通信装置,该装置可以是第一节点,该通信装置包括处理器、收发器和存储器。其中,处理器、收发器和存储器耦合;处理器和收发器用于实现如第一方面和/或第三方面和/或第六方面中任意一项的方法。
第十七方面,本申请提供了一种通信装置,该装置可以是第二节点,所述通信装置包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如第二方面和/或第四方面和/或第五方面中任意一项的方法。
第十八方面,本申请提供了一种通信装置,该装置可以是第二节点,该通信装置包括处 理器、收发器和存储器。其中,处理器、收发器和存储器耦合;处理器和收发器用于实现如第二方面和/或第四方面和/或第五方面中任意一项的方法。
第十九方面,本申请提供了一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被计算机执行时,实现如第一方面~第四方面中任意一项的方法。
第二十方面,本申请提供一种包括指令的计算机程序产品,所述计算机程序产品中包括计算机程序代码,当计算机程序代码在计算机上运行时,以实现第一方面~第四方面中任意一项的方法。
附图说明
图1是IAB node跨CU双连接的网络架构示意图;
图2是一种IAB网络的网络架构示意图;
图3是本申请实施例提供的一种协议栈示意图;
图4是本申请实施例提供的一种映射关系示意图;
图5是本申请实施例提供的另一种映射关系示意图;
图6是本申请实施例提供的通信方法的一个流程示意图;
图7是本申请实施例提供的通信方法的另一流程示意图;
图8是本申请实施例提供的一种切换示意图;
图9是本申请实施例提供的通信方法的另一流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
第五代移动通信(5th-generation,5G)针对网络各项性能指标,提出了更严苛的要求。例如,容量提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。接入回传一体化(integrated access  and backhaul,IAB)技术为解决上述两个问题提供了思路:其接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,减少了光纤部署。
其中,考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况,例如链路的失败或阻塞/拥塞(blockage)或负载波动等异常,提高传输的可靠性。考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,在IAB网络中可以采用多跳组网。
由于IAB网络支持多跳和多连接组网,因此在终端设备(例如,用户设备(userequipment,UE))和IAB宿主节点(IAB donor)之间可能存在多条传输路径。每条传输路径包含多个节点,多个节点可以包括UE、一个或多个IAB节点以及IAB donor。若IAB donor为集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离的形态,则IAB donor可以包含IAB donor-DU部分(donor DU)和IAB donor-CU(donor CU)部分等。在IAB网络中,IAB节点(IAB node)可以为终端设备提供无线接入服务,终端设备的业务数据由IAB节点通过无线回传链路传输到IAB donor。IAB node在不同的通信系统中可以有不同的名称,例如,IAB node可以称为中继节点(relay node,RN),或者可以称为无线回传节点或者无线回传设备;在5G系统中,中继节点可以称为接入回传一体化节点(integrated access and backhaul node,IAB node)。当然,在未来的通信系统中,中继节点还可以有不同的名称,在此不作限制。本申请实施例中提到的IAB节点均可替换为中继节点。
其中,每个IAB节点将为其提供回传服务的相邻节点视为父节点(或者上级节点),相应地,每个IAB节点可视为其父节点的子节点(或者下级节点)。某个IAB节点和它的子节点进行通信时所使用的无线链路称为接入链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。某个IAB节点和它的父节点进行通信时所使用的无线链路可以称为回传链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。
示例性地,请参见图2,图2是一种IAB网络的网络架构示意图。如图2所示的无线中继场景中,节点1的父节点为宿主节点(即IAB donor),节点1又为节点2和节点3的父节点,节点2和节点3均为节点4的父节点,节点5的父节点为节点2。其中,UE1和IAB donor之间的数据传输有两条可用的路径,路径1:UE1-节点4-节点3-节点1-IABdonor,路径2:UE1-节点4-节点2-节点1-IAB donor。UE2和IAB donor之间的数据传输有三条可用的路径,路径3:UE2-节点4-节点3-节点1-IAB donor,路径4:UE2-节点4-节点2-节点1-IABdonor,路径5:UE2-节点5-节点2-节点1-IAB donor。每个UE的上行数据包可以由一个或多个IAB节点传输至IAB donor后,再由IAB donor发送至移动网关设备(例如5G核心网中的用户面功能(user plane function,UPF)网元),下行数据包可以由IAB donor从移动网关设备处接收后,再通过IAB节点发送至UE。
其中,IAB节点可以包括移动终端(mobile termination,MT)部分和分布式单元(distributed unit,DU)部分。当IAB节点面向其父节点(其父节点可以是另一IAB节点,或者是IAB donor)时,可以被看作是用户设备,即MT的角色;当IAB节点面向其子节点(其子节点可以是另一IAB节点,或者是终端设备)时,其可被看做网络设备,即DU的角色,用于为子节点提供回传服务。
其中,IAB donor可以是一个具有完整接入功能的接入网网元,也可以是CU和DU分离形态的接入网网元,IAB donor可以连接到为终端设备服务的核心网(例如,5G核心网(5Gcore, 5GC))网元,并为IAB节点提供无线回传服务。为便于表述,将IAB donor的集中式单元简称为donor CU(或直接称为CU),IAB donor的分布式单元简称为donor DU。其中donor CU还有可能是控制面(control plane,CP)和用户面(user plane,UP)分离的形态,例如CU可由一个CU-CP和一个(或多个)CU-UP组成。本申请实施例中,IAB donor也可以称为IAB宿主或IAB宿主节点或宿主节点(donor node)或宿主基站(donor gNodeB,DgNB),本申请不做限定。
图2所示的IAB组网场景仅仅是示例性的,在多跳和多连接结合的IAB组网场景中,还有更多其他的可能性,例如DgNB和另一DgNB下的IAB节点可以组成双连接为UE服务等,本申请在此不一一列举。
本申请中,宿主基站可以包括但不限于:下一代基站(generation nodeB,gNB),演进型节点B(evolved Node B,eNB),无线网络控制器(radio network controller,RNC),节点B(Node B,NB),基站控制器(base station controller,BSC),基站收发台(base transceiver station,BTS),家庭基站(home evolved Node B或者home Node B),传输点(transmission and reception point或者transmission point),具有基站功能的路边单元(road side unit,RSU),基带单元(baseband unit,BBU),射频拉远单元(Remote Radio Unit,RRU),有源天线单元(active antenna unit,AAU),一个或一组天线面板,或后续演进系统中具备基站功能的节点等。宿主基站可以是一个实体,还可以包括一个集中式单元(centralized unit,CU)实体加上至少一个分布式单元(distributed unit,DU)实体。其中,CU和DU之间的接口可以称之为F1接口。F1接口的两端分别是CU和DU,CU的F1接口的对端是DU,DU的F1接口的对端是CU。F1接口又可以进一步包括控制面F1接口(F1-C)和用户面F1接口(F1-U)。本申请中,宿主基站的CU可以简称为Donor CU,宿主基站的DU可以简称为Donor DU。
本申请中,终端有时也称为用户设备(user equipment,UE),移动台,终端设备等。终端可以广泛引用于各种场景,例如设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。终端可以包括但不限于:用户设备UE,移动站,移动设备,终端设备,用户代理,蜂窝电话,无绳电话,会话启动协议(session initiation protocol,SIP)电话,无线本地环路(wireless local loop,WLL)站,个人数字处理(personal digital assistant,PDA),具有无线通信功能的手持设备,计算设备,连接到无线调制解调器的其它处理设备,车载设备,可穿戴设备(如智能手表,智能手环,智能眼镜等),智能家具或家电,车联网(vehicle to everything,V2X)中的车辆设备,具有中继功能的终端设备,客户前置设备(customer premises equipment,CPE),IAB节点(具体是IAB节点的MT或者作为终端角色的IAB节点)等,本申请对终端的具体名称和实现形式并不做限定。
如图3所示,在当前对IAB网络的讨论中,确定在无线回传链路引入回传适配协议(backhaul adaptation protocol,BAP)层,该协议层可以位于无线链路控制(radio link control,RLC)层之上,可用于实现数据包在无线回传链路的路由,以及承载映射等功能。IAB donor-CU为其控制的每个IABnode分配唯一的BAP地址,这样可以唯一标识网络中的每个IAB node。在多条路径的情况下,每个BAP地址可以关联多个路径ID。源节点(下行DL方向的IAB donor-DU,上行UL方向的接入IABnode)在其BAP层将在它们正在传输的数据包中添加 BAP报头,BAP报头包括BAP地址和BAP路径ID。每个IABnode都将有配置了上行链路UL和下行链路DL的路由表(由IAB donor-CU配置),其中包含每个BAP路径ID的下一跳标识符。DL和UL方向保留单独的路由表,其中IAB node-DU使用DL表,而IAB node-MT使用UL表。通过路由表可以指示数据包应转发到哪个子节点(如果是DL)或父节点(如果是UL)。当接入IABnode接收到数据包时,该数据包将被转发到更高层,并以普通DU处理传入的F1-U或F1-C数据包的方式处理。除了路由功能外,BAP协议还执行入口和出口BH RLC信道之间的映射,映射规则由IAB donor-CU配置。对于中间IABnode,映射配置为{输入link ID、输入BH RLC CH ID、输出link ID、输出BH RLC CH ID}。对于接入IABnode发送F1-U数据包时的上行映射,映射配置为{目的IP Address、TEID、输出link ID、输出BH RLC CH ID}。对于Donor-DU的下行映射,映射配置为{目的IP Address、DSCP(optional)、IPv6 flow label(optional)、输出link ID、输出BH RLC CH ID}。
其中,在IAB节点(IAB的DU部分)和IAB donor(或者donor CU)之间,需要建立F1接口(或者被称为F1*接口,本申请实施例中,可统一称为F1接口,但对名称并不做限定),该F1接口支持用户面协议(F1-U/F1*-U)和控制面协议(F1-C/F1*-C)。其中,用户面协议包括以下协议层的一个或多个:通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(gPRS tunneling protocol user plane,GTP-U),用户数据报协议(userdatagram protocol,UDP)和因特网协议(internet protocol,IP)等协议层;控制面协议包括以下中的一个或者多个:F1应用协议(F1application protocol,F1AP)、流控传输协议(stream control transport protocol,SCTP)和IP等协议层。通过F1接口的控制面,IAB节点和IAB donor之间可以进行执行接口管理、对donor DU进行管理,以及执行UE上下文相关的配置等。通过F1接口的用户面,IAB节点和IAB donor之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
IAB网络中,与终端对等的物理层(physical layer,PHY)、MAC层和无线链路控制(radio link control,RLC)层位于接入IAB节点上,而与终端对等的分组数据汇聚协议(packet data convergence protocol,PDCP)层、服务数据适配协议(service dataadaptation protocol,SDAP)层和无线资源控制(radio resource control,RRC)层位于IAB donor CU上,若IAB donor-CU由CP和UP组成,则与终端对等的RRC层位于IAB donor CU的CP(即donor-CU-CP)上,终端对等的PDCP层和SDAP层位于IAB donor CU的UP(即donor-CU-UP)上。
图3中的(a)和图3中的(b)分别是本申请实施例提供的IAB网络中的用户面协议栈的示意图和控制面协议栈的示意图,下面结合图3中的(a)和图3中的(b)进行说明。
对于用户面而言,如图3中的(a)所示,UE和IAB node 2-DU(下文简称为IAB2-DU)之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB2-DU和IAB donor CU 1建立有F1-U接口,对等的协议层包括GTP-U层、UDP层和IP层。IAB donor DU和IAB donor CU之间建立有IAB宿主内的F1接口,对等的协议层包括IP层、L2和L1。另外,UE和IAB donor CU之间建立有对等的SDAP层和PDCP层,IAB2-DU和IAB donor DU之间建立有对等的IP层。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的DU实现了单空口的gNB-DU的部分功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与IAB donor CU建立对等的、GTP-U层、UDP层和IP层的功能)。可以理解,IAB接入节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
对于控制面而言,如图3中的(b)所示,UE和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB2-DU和IAB donor CU建立有F1-C接口,对等的协议层包括F1AP层、SCTP层和IP层。IAB donor DU和IAB donor CU之间建立有IAB宿主内的F1接口,对等的协议层包括IP层、L2和L1。另外,UE和IAB donor CU之间建立有对等的RRC层和PDCP层,IAB donor DU和IAB donor DU之间建立有对等的IP层。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层和IP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在控制面上,RRC消息封装在接入IAB节点和IAB donor CU之间的F1AP消息中传输。示例性地,如图3所示,以“UE-IAB node 2-IAB node 1-IAB donor”的路由路径为例,在上行方向上,UE可以将RRC消息封装在PDCP协议数据单元(protocol data unit,PDU)中,并依次经过RLC层、MAC层和PHY层的处理后发送至IAB2-DU。IAB2-DU依次经过PHY层、MAC层和RLC层的处理后得到PDCP PDU,将PDCP PDU封装在F1AP消息中,并依次经过SCTP层、IP层处理后得到数据包,IAB node2-MT(简称为IAB2-MT)将数据包分别通过BAP层、RLC层、MAC层和PHY层的处理后发送至IAB node1-DU(简称为IAB1-DU)。IAB1-DU依次经过PHY层、MAC层、RLC层和BAP层的处理后得到数据包,然后IAB node1-MT(简称为IAB1-MT)采用类似于IAB2-MT的操作,将该数据包发送至IAB donor DU。IAB donor DU解析得到数据包后,将该数据包发送至IABdonor CU,IAB donor CU将该数据包依次通过SCTP层、F1AP层和PDCP层的处理后得到RRC消息。下行方向类似,在此不再描述。
在控制面上,PDCP数据包封装在接入IAB节点和IAB donor CU之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
为了使得本申请实施例更加清楚,下面对本申请实施例涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
1、接入IAB节点和中间IAB节点
本申请实施例中的接入IAB节点是指终端接入的IAB节点,中间IAB节点是指接入IAB节点与宿主节点之间的IAB节点。
示例性的,参见图2,在路径“UE1→IAB节点4→IAB节点3→IAB节点1→宿主节点”中,IAB节点4为接入IAB节点,IAB节点3和IAB节点1为中间IAB节点。IAB节点3为IAB节点4提供回传服务,IAB节点1为IAB节点3提供回传服务。
需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。针对接入其他IAB节点的终端而言,是中间IAB节点。因此,一个IAB节点具体是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。
2、链路、接入链路和回传链路
链路:是指一条路径中的两个相邻节点之间的路径。
接入链路指终端接入的链路,可以指终端与接入网设备之间,或者终端与IAB节点之间,或者终端与宿主节点之间,或者终端与宿主DU之间的链路。或者,接入链路包括某个IAB节点作为普通终端设备角色时和它的父节点进行通信时所使用的无线链路。IAB节点作为普通终端设备角色时,不为任何子节点提供回传服务。接入链路包括上行接入链路和下行接入 链路。本申请中,终端的接入链路为无线链路,故接入链路可被称为无线接入链路。
回传链路指IAB节点作为无线回传节点时与父节点之间的链路。IAB节点作为无线回传节点时,为子节点提供无线回传服务。回传链路包括上行回传链路,以及下行回传链路。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
3、节点的上一跳节点、节点的下一跳节点、节点的入口链路(ingress link)和节点的出口链路(egress link)
节点的上一跳节点:是指在包含该节点的路径中的、在该节点之前最后一个接收到数据包的节点。
节点的下一跳节点:是指在包含该节点的路径中的、在该节点之后第一个接收到数据包的节点。
节点的入口链路:对于上行传输,是指该节点与该节点的上一跳节点(例如,该节点的上一跳节点可以是该节点的子节点)之间的链路,也可以称为节点的上一跳链路。
节点的出口链路:对于上行传输,是指该节点与该节点的下一跳节点(例如,该节点的下一跳节点可以是该节点的父节点)之间的链路,也可以称为节点的下一跳链路。
父节点与子节点:每个IAB节点将为该IAB节点提供无线接入服务和/或无线回传服务的节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。可替换地,子节点也可以称为下级节点,父节点也可以称为上级节点。
4、数据包
数据包可以是无线承载(radio bearer,RB)中的数据包,该RB可以是数据无线承载(data radio bearer,DRB),可以理解数据包是用户面的数据包;或者可以是信令无线承载(signaling radio bearer,SRB),可以理解数据包是控制面的数据包;或者,数据包可以是业务操作、管理和维护(operation administration and maintence,OAM)数据包,可以理解数据包是管理面的数据包。
5、RLC信道、LCH以及协议实体之间映射关系
参见图4和图5,图4和图5为RLC信道、LCH以及协议实体之间映射关系的示意图。如图4或图5所示,RLC CH是RLC实体和RLC实体的上层协议实体之间的信道。例如,若RLC实体的上层为PDCP实体,则回传链路上的RLC CH是RLC实体与PDCP实体之间的信道。又例如,若RLC实体的上层为BAP层实体,则回传链路上的RLC CH是RLC实体和BAP实体之间的信道。因此,RLC CH的定义具体视RLC实体的上层协议实体而定。
逻辑信道是RLC实体和RLC实体的下层协议实体之间的信道。例如,RLC实体的下层为MAC层,逻辑信道是RLC实体和MAC实体之间的信道。
IAB节点的RLC CH一一对应于一个RLC实体,也一一对应于一个RLC承载。
其中,BAP实体和RLC实体之间可以是一个BAP实体对应多个RLC实体,如图4所示,也可以是一个BAP实体对应一个RLC实体,如图5所示,本申请对此不作限定。
另外,BAP层具备以下能力中的一种或多种:为数据包添加能被无线回传节点(IAB节点)识别出的路由信息(routing information)、基于所述能被无线回传节点识别出的路由信息执行路由选择、为数据包添加能被无线回传节点识别出的与服务质量(quality ofservice,QoS)需求相关的标识信息、为数据包执行在包含无线回传节点的多段链路上的QoS映射、为数据包添加数据包类型指示信息、向具有流量控制能力的节点发送流控反馈信息。需要说明的是,具备这些能力的协议层的名称不一定为BAP层,也可以为其它名称。本领域技术人员可以理 解,只要具备这些能力的协议层均可以理解为本申请实施例中的BAP层。BH链路上的RLC CH可以理解为两个节点之间的BH链路上的业务区分通道,该业务区分通道可以为数据包的传输提供特定的业务质量QoS保障。BH链路上的RLC CH可以理解为一个逻辑概念,而非物理信道的概念。
具体地,BH链路上的RLC CH可以理解为BH链路的两个IAB节点的对等的RLC CH。例如,在图2中,宿主节点具有RLC CH1,RLC CH2;节点1具有RLC CH1,RLC CH2;其中,宿主节点的RLC CH1的RLC实体与节点1的RLC CH1的RLC实体为对等(peer)的RLC实体,宿主节点的RLC CH2的RLC实体与节点1的RLC CH1的RLC实体为对等(peer)的RLC实体,进一步可以理解为宿主节点的RLC CH1与节点1的RLC CH1对等,宿主节点的RLC CH2与节点1的RLC CH2对等,宿主节点DU与节点1之间的BH链路的RLC CH1可以指宿主节点的RLC CH1和节点1的RLCCH1,宿主节点DU与节点1之间的BH链路的RLC CH2可以指宿主节点的RLC CH2和节点1的RLCCH2。
由于RLC CH、RLC承载和逻辑信道是一一对应的,本申请实施例中,这三种说法可以相互替代,例如本申请实施例中RLC CH可以替换成RLC承载或者逻辑信道。类似的,在BH链路的RLC承载,也可以称为BH承载或BH链路的承载,因此BH链路的RLC CH可以替换成BH链路的RLC实承载或者BH链路的逻辑信道或者BH承载或者BH链路的承载。
6、出口RLC CH和入口RLC CH
出口RLC CH:是指IAB节点与其父节点之间的RLC CH。
入口RLC CH:是指IAB节点与其子节点之间的RLC CH。
其中,出口RLC CH与入口RLC CH可以具有映射关系。IAB节点从入口RLC CH接收到的上行数据,可以由该入口RLC CH映射的出口RLC CH发送到下一个IAB节点(即IAB节点的父节点)。
7、服务质量(quality of service,QoS)和隧道端点标识(tunnel endpoint identification,TEID)
一般来说,QoS可以由一个或一组F1-U Tunnel来实现,其中,一个TEID用于唯一标记一个F1-U Tunnel。
8、边界节点(boundary node)、边界节点的子节点(descendant node)和边界节点的父节点(ancestor node)
在本申请实施例中,边界节点是指工作在双连接态的IAB node,边界节点的子节点是指边界节点的下游节点,边界节点的父节点是指边界节点的上游节点。其中,父节点也可以称为祖先节点等,在此不做限制。示例性的,在图1中(图中已将IAB node表示为MT部分和DU部分、将IAB donor表示为CU部分和donor-DU部分),IAB node2为boundary node,IAB node4为descendant node,IAB node1为MN related ancestor node,IAB node3为SN related ancestor node。在后续描述中,IAB DU表示IAB node的DU部分,donor-DU表示IAB donor的DU部分。
9、主节点(master node,MN)和辅节点(secondary node,SN)
与边界节点的DU部分存在F1接口的CU所属的IAB donor称为主节点(master node,MN),与边界节点DU部分不存在F1接口的CU所属的IAB donor称为辅节点(secondary node,SN),主节点与辅节点之间通过Xn接口传递信息。
需要说明的是,在图1所示的本申请实施例所适用的通信系统的架构中,IAB node允许 双连接至不同IAB donor CU下,如图1所示,CU1为MN CU,CU2为SN CU。在CU1建立经过辅拓扑的流量时,CU1需要通过Xn接口给CU2发送一个QoS列表,告知经过辅拓扑的流量的QoS信息,CU2在辅拓扑节点中配置资源以满足这些QoS需求。对于非用户面流量non-UP traffic,QoS列表中的每一个index表示一种业务类型(UE-associated F1AP/non-UE-associated F1AP/non-F1);对于用户面流量UP traffic,QoS列表中的每一个index表示实现该QoS需求的一个或多个F1-U Tunnel,CU2对每一个F1-U Tunnel的TEID可能已知(CU1告知CU2),也可能未知(CU1未告知CU2)。
其中,主节点以及与主节点中的CU存在F1接口的IAB node的集合称为主拓扑,辅节点以及与辅节点中的CU存在F1接口的IAB node的集合称为辅拓扑。如图1所示,CU1,donor-DU1,IAB node1,IAB node2和IAB node4构成了主拓扑,CU2,donor-DU2和IAB node3构成了辅拓扑。需要说明的是,在如图1所示的系统架构中,主拓扑中的流量控制是由CU1控制的,辅拓扑中的流量控制是由CU2控制的,其中,当某个IAB node节点发现某个拓扑(例如主拓扑或辅拓扑)发生拥塞或服务小区信号质量不佳时,该IAB node节点只会向其关联的节点(CU1或CU2)上报状态指示消息,该状态指示消息用于触发接收该消息的节点进行流量控制。例如,当IAB node2或IAB node4发现拥塞或服务小区信号质量不佳时,IAB node2和IAB node4只会向CU1发送状态指示消息。又例如,当IAB node3发现拥塞或服务小区信号质量不佳时,IAB node3只会向CU2发送状态指示消息,基于此,无法实现跨CU双连接网络架构下的流量控制。
基于此,本申请实施例提出了一种通信方法,针对IAB node双连接至不同IAB donor CU的场景,可以支持跨CU的资源重配置,进而实现跨CU的流量控制。
需要说明的是,本申请实施例中的重新配置也可以描述为删除,释放,配置或修改等,本申请实施例在此不做限定。在本申请实施例中,流量控制也可以描述为流量释放,流量撤回等,在此不做限制。
下面对本申请提供的通信方法及通信装置进行详细介绍:
请参见图6,图6是本申请实施例提供的通信方法的一个流程示意图。如图6所示,该通信方法包括如下步骤S601~S602:
S601、第一节点接收来自第二节点的第一消息。
在一些可行的实施方式中,第二节点向第一节点发送第一消息,相应地第一节点接收来自第二节点的第一消息,该第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,第一拓扑为第一节点控制的拓扑,第一流量为第三节点的流量或第三节点的下游节点的流量。其中,第三节点为边界节点,如图1所示的系统架构中,第三节点为IAB node2。
通常而言,当第四节点基于自身的实现发现拥塞(例如,第四节点的DU部分确定自身的缓冲负载buffer load大于或者等于预设阈值时)或者服务小区信号质量不佳(例如第四节点的MT部分通过无线资源管理(radio resource management,RRM)测量发现服务小区的信号质量小于或者等于预设信号质量门限)时,第四节点可以向第二节点发送第二消息,其中,第二消息也可以称为状态指示消息,其中,状态指示消息可以包括基站-分布式单元状态指示(GNB-DU Status Indication)消息或RRC消息等,在此不做限制。该第二消息用于报告发生拥塞或信号质量不佳的位置,例如,第二消息可以包括回传链路BH link的标识或者回传无线链路控制信道标识(backhaul RLC channel identification,BH RLC CH ID)等,因此接收该第二消息的第二节点可以根据第二消息生成第一消息。具体地,当第四 节点的DU部分基于自身的实现发现拥塞时,可以通过第四节点的DU部分发送携带BH link或RLC CH ID的GNB-DU Status Indication消息给第二节点,即第二消息为GNB-DU Status Indication消息。当第四节点的MT部分通过RRM测量发现服务小区的信号质量不佳时,可以通过第四节点的MT部分发送携带BH link或RLC CH ID的RRC消息给第二节点,即第二消息为RRC消息。其中,第二节点接收到来自第四节点的第二消息,进而第二节点可以根据第二消息生成第一消息,并向第一节点发送第一消息。一般来说,第二节点可以通过Xn接口向第一节点发送第一消息,即第一消息为Xn消息。
其中,第四节点可以为网络架构中的IAB node节点,例如第四节点与第三节点可以为同一个节点,即第四节点为边界节点,例如图1所示的系统架构图中的IAB node2;或者,第四节点为边界节点的子节点(或称为边界节点的下游节点),例如图1所示的系统架构图中的IAB node4;或者,第四节点为边界节点的辅祖先节点,例如图1所示的系统架构图中的IAB node3,在此不做限制,后续将针对第四节点的不同可能对本申请提供的方案分别进行详细阐述。
其中,第三节点(或描述为第三节点MT部分)与第一节点和第二节点之间均存在RRC连接,第三节点(或描述为第三节点的DU部分)与第二节点之间存在F1连接,第一节点为第一IAB宿主节点中的集中式单元CU,第二节点为第二IAB宿主节点中的集中式单元CU。也就是说,第三节点双连接于第一节点和第二节点,或者,描述为第一节点为双连接模式下的第一IAB宿主节点中的集中式单元CU,第二节点为双连接模式下的第二IAB宿主节点中的集中式单元CU。其中,第一IAB宿主节点可以为双连接模式下的辅IAB宿主节点,第二IAB宿主节点可以为双连接模式下的主IAB宿主节点。或者,第一IAB宿主节点可以为双连接模式下的主IAB宿主节点,第二IAB宿主节点可以为双连接模式下的辅IAB宿主节点。换句话说,在一种可能的实现中,第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU。在另一种实现中,第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU。
其中,当第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU时,第一拓扑为辅拓扑,即第一消息用于指示重新配置辅拓扑中用于服务第一流量的资源。当第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU时,第一拓扑为主拓扑,即第一消息用于指示撤回主拓扑中用于服务第一流量的资源。下面针对该两种情况分别进行详细说明。
在一种实现中,当第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU时,第一节点可以基于接收到的来自第四节点的第二消息确定需要重新配置的第一拓扑中用于服务第一流量的资源。其中,第四节点可以为边界节点,或者第四节点可以为边界节点的子节点,或者,第四节点为与主节点相关的祖先节点。示例性地,以图1所示的系统架构为例,第一节点可以为如图1所示的CU2,第二节点可以为如图1所示的CU1,第四节点可以为如图1所示的边界节点IAB node2(即IAB MT2和IAB DU2),或者,第四节点可以为如图1所示的边界节点的子节点IAB node4(即IAB MT4和IAB DU4),或者,第四节点可以为如图1所示的与主节点相关的祖先节点IAB node1(即IAB MT1和IAB DU1)。
在另一种实现中,当第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU时,第一节点可以基于接收到的来自第三IAB节点的第二消息确定待撤回的第一拓扑中承载的业务流量。具体地,第四节点可以为与辅节点 相关的祖先节点。示例性地,同样以图1所示的系统架构为例,第一节点可以为如图1所示的CU2,第二节点可以为如图1所示的CU1,第四节点可以为如图1所示的与辅节点相关的祖先节点IAB node3(即IAB MT3和IAB DU3)。
S602、第一节点根据第一消息重新配置第一拓扑中用于服务第一流量的资源。
在一些可行的实施方式中,第一节点可以根据第一消息重新配置第一拓扑中用于服务第一流量的资源,这里,根据第一消息重新配置第一拓扑中用于服务第一流量的资源可以理解为:根据第一消息删除第一拓扑中用于服务第一流量的资源。可选的,第一节点还可以向第二节点发送第一消息的第一反馈,第一反馈用于触发第二节点重新配置第二拓扑中用于服务第一流量的资源,第二拓扑为第二节点控制的拓扑。
一般来说,第一消息包括以下信息中的至少一种:重新配置全部第一流量的资源的指示信息、第一流量的资源中服务质量索引(QoS indexes)对应的资源、第一流量的资源中隧道端点标识TEID对应的资源。也就是说,第一节点根据第一消息中包括的不同内容,执行不同粒度的资源删除或资源重配置或资源释放,进而实现不同粒度的流量释放或流量控制或流量撤回。
可选的,第一消息中还可以包括第一指示信息,第一指示信息用于指示触发流量控制的原因。具体地,触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。举个例子,当第一指示信息的长度可以为1bit,其中当第一指示信息的取值为1时,表示触发流量控制的原因为发生拥塞,当第一指示信息的取值为0时,表示触发流量控制的原因为信号质量不满足质量要求;或者反之,在此不做限制。再举个例子,当第一指示信息的长度可以为2bit,其中当第一指示信息的取值为10时,表示触发流量控制的原因为发生拥塞,当第一指示信息的取值为01时,表示触发流量控制的原因为信号质量不满足质量要求;或者反之,在此不做限制。
在一种可能的实现中,当第一消息中包括重新配置全部第一流量的资源的指示信息时,第一节点可以删除第一拓扑中用于服务第一流量的全部资源,相应地,第二节点可以删除第二拓扑中用于服务第一流量的全部资源,以实现释放用于服务第一流量的全部资源。具体地,①当第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU时,第二节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对经过辅拓扑的QoS列表中的所有流量进行释放,第一节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对经过辅拓扑的QoS列表中的所有流量进行释放。②当第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU时,第一节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对经过主拓扑的QoS列表中的所有流量进行释放,第二节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对经过主拓扑的QoS列表中的所有流量进行释放。
需要说明的是,本申请实施例中所涉及的QoS列表皆可以理解为是MN CU(例如图1中的CU1)在建立经过辅拓扑的流量时,MN CU通过Xn接口给SN CU(例如图1中的CU2)发送的QoS列表,该QoS列表用于告知经过辅拓扑的流量的QoS信息,基于此,SN CU可以在辅拓扑节点中配置资源以满足QoS列表中的QoS需求。
在一种可能的实现中,当第一消息中包括服务质量索引(QoS indexes)时,第一节点可以删除第一拓扑中服务质量索引对应的资源,相应地,第二节点可以删除第二拓扑 中服务质量索引对应的资源,以实现释放用于服务第一流量的部分资源。具体地,①当第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU时,第二节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对经过辅拓扑的QoS列表中需要释放的QoS indexes进行释放,第一节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对经过辅拓扑的QoS列表中需要释放的QoS indexes进行释放。②当第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU时,第一节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对经过主拓扑的QoS列表中需要释放的QoS indexes进行释放,第二节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对经过主拓扑的QoS列表中需要释放的QoS indexes进行释放。
其中,当流量释放的粒度为全部流量或以QoS为最小粒度的释放时,对流量进行释放可以理解为删除节点(主拓扑节点或辅拓扑节点)中为了满足QoS列表中的QoS需求新建的RLC CH、或删除QoS需求与RLC CH间的映射关系。
举个例子,以如图1所示的系统架构为例,假设第一节点为CU2,第二节点为CU1,假设CU1在建立经过辅拓扑的流量时,CU1通过Xn接口向CU2发送的Qos列表中包括业务类型1对应的QoS index1,业务类型2对应的QoS index2和业务类型3对应的QoS index3。在流量传输过程中,CU2接收到来自CU1的第一信息,该第一信息包括QoS index1,因此,CU2可通知Donor-du2,IAB node3(即IAB MT3和IAB DU3)对QoS index1对应的流量进行释放,CU1可通知Donor du1,IAB node1(即IAB MT1和IAB DU1),IAB node2(即IAB MT2和IAB DU2)和IAB node4(即IAB MT4和IAB DU4)对QoS index1对应的流量进行释放。
在一种可能的实现中,当第一消息中包括TEID时,第一节点可以删除第一拓扑中TEID对应的资源(即F1-U Tunnel),相应地,第二节点可以删除第二拓扑中TEID对应的资源(即F1-U Tunnel),以实现释放用于服务第一流量的部分资源。具体地,①当第一节点为双连接模式下的辅IAB宿主节点的CU,第二节点为双连接模式下的主IAB宿主节点的CU时,第二节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对被选择的F1-U Tunnel中的资源进行释放,第一节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对被选择的F1-U Tunnel中的资源进行释放。②当第一节点为双连接模式下的主IAB宿主节点的CU,第二节点为双连接模式下的辅IAB宿主节点的CU时,第一节点可以通过F1AP告知主拓扑节点(例如boundarynode,和/或descendant node,和/或,与主节点相关的祖先节点)对被选择的F1-U Tunnel中的资源进行释放,第二节点可以通过F1AP告知辅拓扑节点(例如与辅节点相关的祖先节点),对被选择的F1-U Tunnel中的资源进行释放。
其中,当流量释放的粒度为以F1-U Tunnel为最小粒度的释放时,对流量进行释放可以理解为删除节点(主拓扑节点或辅拓扑节点)中TEID对应的F1-U Tunnel中的RLC CH。需要说明的是,当第一消息中包括TEID时,主节点的CU需要在建立经过辅拓扑的流量时,将经过辅拓扑的所有TEID告知辅节点的CU。
举个例子,以如图1所示的系统架构为例,假设第一节点为CU2,第二节点为CU1,假设CU1在建立经过辅拓扑的流量时,CU1通过Xn接口向CU2发送了经过辅拓扑的所有TEID分别为TEID1,TEID2,TEID3,TEID4和TEID5。在流量传输过程中,CU2接 收到来自CU1的第一信息,该第一信息包括TEID2和TEID3,因此,CU2可通知Donor-du2,IAB node3(即IAB MT3和IAB DU3)对TEID2和TEID3对应的流量进行释放,CU1可通知Donor du1,IAB node1(即IAB MT1和IAB DU1),IAB node2(即IAB MT2和IAB DU2)和IAB node4(即IAB MT4和IAB DU4)对TEID2和TEID3对应的流量进行释放。
可选的,在一些可行的实施方式中,对于由辅拓扑节点触发的释放,均可以在主拓扑中重建,而对于由主拓扑节点触发的释放,是否允许重建取决于触发流量释放的网元,例如,以图1所示的系统架构为例,对于因IAB MT2上报服务小区信号质量不佳所触发的释放(可通过第一指示信息判断),可在主拓扑中重新建立这部分流量(例如,根据QoS需求建立RLC CH,或者,重新建立F1-U Tunnel)。对于IAB DU2或IAB node4发现的拥塞或信号质量不佳,仅能通过流量释放来缓解,不支持在主拓扑中重建。
在本申请实施例中,针对IAB node双连接至不同IAB donor CU的场景,给出了支持各种资源粒度的跨CU流量控制方法。具体地,当第二节点确定第二节点所在的第一拓扑发生拥塞或者信号质量不佳时,第二节点可向第一节点发送第一消息,该第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源。因此第一节点和第二节点可分别基于第一消息的指示删除其对应拓扑中承载的用于服务第一流量的资源。其中本申请实施例中涉及的资源重配置粒度包括重新配置全部资源,以QoS index为粒度的跨CU资源重配置,以F1-U Tunnel为粒度的跨CU资源重配置,或者,描述为本申请实施例中涉及的流量控制粒度包括释放全部流量,以QoS index为粒度的跨CU流量释放,以F1-U Tunnel为粒度的跨CU流量释放。
需要说明的是,针对如图1所示的IAB node双连接至不同IAB donor CU的网络架构,donor-DU2需要根据目标IP地址、IPv6 flow label和区分服务编码点(Differentiated Services Code Point,DSCP)进行下行的RLC CH映射,其中,目标IP地址、IPv6 flow label和DSCP都需要包含在IP header中,CU1将这些信息写入IP header。DSCP和IPv6 flow label反映业务的QoS需求,与目标IP地址存在映射关系,而在donor-DU2中,该映射关系由IAB donor-CU2配置,因此,本申请还提出了一种通信方法,该方法可解决如图1所示的网络架构下的RLC CH的映射配置问题。下面具体结合图6介绍如何将该映射关系反馈给CU1,以便CU1将这些信息写入IP header。
请参见图7,图7是本申请实施例提供的通信方法的另一流程示意图。需要说明的是,本申请实施例中的第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。如图7所示,该通信方法包括如下步骤S701~S703:
S701、第一节点接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址。
在一些可行的实施方式中,第二节点向第一节点发送第一业务的第一业务的数据包对应的至少一个目标因特网协议(internet protocol,IP)地址,相应地,第一节点接收来自第二节点的第一业务的数据包对应的至少一个目标IP地址。其中,第一节点和第二节点之间可以通过Xn接口进行通信,也就是说,第二节点可以通过Xn接口向第一节点发送下行数据包的目标IP地址。
S702、第一节点确定每个目标IP地址对应的第一参数。
在一些可行的实施方式中,第一节点确定每个目标IP地址对应的第一参数。也就是说,可以由第一节点配置每个目标IP地址对应的第一参数。其中,目标IP地址可以为IPv4地址或IPv6地址。
S703、第一节点向第二节点发送每个目标IP地址对应的第一参数。
在一些可行的实施方式中,第一节点向第二节点发送每个目标IP地址对应的第一参数。其中,当目标IP地址为IPv4地址时,第一参数包括DSCP。当目标IP地址为IPv6地址时,第一参数包括DSCP和IPv6流标签(IPv6 flow label)。为方便理解,以下皆以目标IP地址为IPv6地址,第一参数包括DSCP和IPv6 flow label为例进行示意性说明。
在一种可能的实现中,当一个目标IP地址对应一个第一参数时,向第二节点发送每个目标IP地址对应的第一参数可以理解为:基于至少一个目标IP地址的接收顺序,向第二节点发送每个目标IP地址对应的第一参数;或者,向第二节点发送第一参数与每个目标IP地址间的1:1映射关系。也就是说,对于1:1映射,第一节点可以将{DSCP,IPv6 flow label}按照第二节点给其发送的目标IP地址的顺序依次排列,通过Xn接口发送给第二节点,为便于理解,可将此发送方式下的1:1映射的信元结构表示为如下表1。或者,对于1:1映射,第一节点可以采用{DSCP,IPv6 flow label,IP}的排列方式,通过Xn接口将该映射关系发送给第二节点,为便于理解,可将此发送方式下的1:1映射的信元结构表示为如下表2。
表1
IE Name for 1:1 mapping(option1)
DSCP
IPv6 flowlabel
表2
IE Name for 1:1 mapping(option2)
DSCP
IPv6 flowlabel
IP address
举例来说,以如图1所示的系统架构为例,对于1:1映射,假设CU1向CU2发送的目标IP地址包括IP address1,IP address2和IP address3,且CU1是按照IP address1→IP address2→IP address3的顺序向CU2发送这些IP地址的。其中,当CU2接收到这些IP地址后,可配置IP address1对应DSCP1和IPv6 flow label1;IP address2对应DSCP2和IPv6 flow label2;IP address3对应DSCP3和IPv6 flow label3。在一种可能的实现中,CU2可将IP address1,IP address2和IP address3对应的{DSCP,IPv6 flow label}按照CU1给其发送的IP地址的顺序依次排列,通过Xn接口发送给CU1,即CU2按照{DSCP1,IPv6 flow label1}→{DSCP2,IPv6 flow label2}→{DSCP3,IPv6 flow label3}的顺序依次将IP address1,IP address2和IP address3对应的{DSCP,IPv6 flow label}发送给CU1。在另一种可能的实现中,CU2可采用{DSCP,IPv6 flow label,IP address}的排列方式,将IP address1,IP address2和IP address3分别对应的{DSCP,IPv6 flow label,IP address}通过Xn接口发送给CU1,即CU2向CU1发送{DSCP1,IPv6 flow label1,IP address1},{DSCP2,IPv6 flow label2,IP address2}和{DSCP3,IPv6 flow label3,IP address3},可理解的,此种实现中,发送顺序可不做限定,例如CU2可按照{DSCP1,IPv6 flow label1,IP address1}→{DSCP2,IPv6 flow label2,IP address2}→{DSCP3,IPv6 flow label3,IP address3}的顺序发送,又例如,CU2可按照 {DSCP2,IPv6 flow label2,IP address2}→{DSCP1,IPv6 flow label1,IP address1}→{DSCP3,IPv6 flow label3,IP address3}的顺序发送,又例如,CU2可按照{DSCP2,IPv6 flow label2,IP address2}→{DSCP3,IPv6 flow label3,IP address3}→{DSCP1,IPv6 flow label1,IP address1}的顺序发送等,在此不做限制。
在另一种可能的实现中,当一个目标IP地址对应多个第一参数时,向第二节点发送每个目标IP地址对应的第一参数可以理解为:基于至少一个目标IP地址的接收顺序,向第二节点发送每个目标IP地址对应的第一参数;或者,向第二节点发送第一参数与多个目标IP地址间的1:N映射关系。也就是说,对于1:N映射,第一节点可以将{DSCP,IPv6flow label}按照第二节点给其发送的目标IP地址的顺序依次排列,通过Xn接口发送给第二节点(信元结构可参见上述表1);或者,可以采用{{DSCP,IPv6 flow label},{IP1,…,IPN}}的排列方式来表达映射关系,将{DSCP,IPv6 flow label}与对应的多个IP地址配对后,将映射关系通过Xn接口发送给第二节点,为便于理解,可将此发送方式下的1:1映射的信元结构表示为如下表3。
表3
IE Name for 1:N mapping
DSCP
IPv6 flowlabel
IP address list
>IP address 1
>IP address 2
……
>IP address N
举例来说,以如图1所示的系统架构为例,对于1:N映射,假设CU1向CU2发送的目标IP地址包括IP address1,IP address2,IP address3和IP address4,且CU1是按照IP address1→IP address2→IP address3→IP address4的顺序向CU2发送这些IP地址的。其中,当CU2接收到这些IP地址后,可配置IP address1对应DSCP1和IPv6 flow label1;IP address2对应DSCP1和IPv6 flow label1;IP address3对应DSCP2和IPv6 flow label2;IP address4对应DSCP2和IPv6 flow label2。在一种可能的实现中,CU2可将IP address1,IP address2,IP address3和IP address4对应的{DSCP,IPv6 flow label}按照CU1给其发送的IP地址的顺序依次排列,通过Xn接口发送给CU1,即CU2按照{DSCP1,IPv6 flow label1}→{DSCP1,IPv6 flow label1}→{DSCP2,IPv6 flow label2}→{DSCP2,IPv6 flow label2}的顺序依次将IP address1,IP address2,IP address3和IP address4对应的{DSCP,IPv6 flow label}发送给CU1。在另一种可能的实现中,CU2可采用{{DSCP,IPv6 flow label},{IP1,…,IPN}}的排列方式,将IP address1,IP address2和IP address3分别对应的{DSCP,IPv6 flow label,IP address}通过Xn接口发送给CU1,即CU2向CU1发送{{DSCP1,IPv6 flow label1},{IP address1,IP address2}},{{DSCP2,IPv6 flow label2},{IP address3,IP address4}},可理解的,此种实现中,发送顺序可不做限定,例如CU2可按照{{DSCP1,IPv6 flow label1},{IP address1,IP address2}}→{{DSCP2,IPv6 flow label2},{IP address3,IP address4}}的顺序发送,又例如,CU2可按照{{DSCP2,IPv6 flow label2},{IP address3,IP address4}}→{{DSCP1,IPv6 flow label1},{IP address1,IP address2}}的顺序发送,在此不做限制。
需要说明的是,对于每一个数据包,第二节点可基于映射关系将目标IP地址、DSCP和IPv6 flow label写入IP header,最后将数据包发送给donor-DU2进行路由。
在本申请实施例中,针对IAB node双连接至不同IAB donor CU的场景,给出了跨CU的路由方法。具体地,第二节点从第一节点中获取DSCP、IPv6 flow label与目标IP地址的映射关系,以便第二节点将其写入数据包的包头,保证了数据包跨拓扑的正确传输,提高了通信的可靠性。
需要说明的是,在3GPP Rel-17标准的讨论中,确定IAB node在不同宿主之间的切换将采用局部切换(partial migration),即:需要切换的IAB node的MT部分切换至目标宿主的DU下(目标宿主的donor-DU或目标宿主donor-CU控制的IAB node DU),与源宿主断开连接,与目标宿主的CU之间建立RRC连接;而它的DU部分仍然受源CU控制,保留与源宿主CU的F1接口,不会与目标宿主CU建立新的F1接口。示例性地,请参见图8,图8是本申请实施例提供的一种切换示意图。如图8所示,IAB MT2通过IAB DU1和IAB DU3,与CU1和CU2保持双连接。而有时IAB MT2会直接切换至IAB DU3下,与IAB DU1断开连接,但这时IAB DU2和IAB DU4并不会与CU2建立F1AP,仍保持与CU1间的F1AP,以减少F1AP重建的开销,这种架构称为partial migration。可理解的,IAB MT2切换至受CU2控制的IAB DU3下,与CU2建立RRC连接;而IAB DU2仍受CU1控制,保留与CU1之间的F1接口,该F1接口通过的路径“IAB node2→IAB node3→donor-DU2→CU1”实现。
需要说明的是,当发生partial migration后,boundary/descendant node与CU1之间只能通过第一拓扑连接,而考虑到当partial migration发生时,可能有数据正在通过第二拓扑传输,此时IAB MT2与第二拓扑断开连接,这些正在传输的数据需要进行跨拓扑重路由。跨拓扑的重路由涉及到BAP头的改写,需要将输入拓扑的旧BAP routing ID改为输出拓扑中能识别的新BAP routing ID。以图8为例,对于IAB node2,其与IAB node3、IAB node4之间的数据传输都需要通过BAP路由,IAB node2需要了解BAP routing ID的修改方法,以在上行传输时将BAP routing ID从第二拓扑可识别改第一拓扑可识别。
基于此,本申请实施例提出了一种通信方法,该方法可解决局部切换(partial migration)场景下重路由时的BAP头的改写问题。
请参见图9,图9是本申请实施例提供的通信方法的另一流程示意图。需要说明的是,本申请实施例中的第一节点为第三节点目标IAB宿主节点中的集中式单元CU,第二节点为第三节点的源IAB宿主节点中的集中式单元CU,其中,第三节点可以为边界节点的DU。如图9所示,该通信方法包括如下步骤S901~S903:
S901、第二节点向第一节点发送第一业务的数据包对应的第一IP地址。
在一些可行的实施方式中,第二节点获取第一IP地址,并通过Xn接口向第一节点发送第一IP地址,相应地,第一节点通过Xn接口接收来自第二节点的第一IP地址。其中,第一IP地址包括源IP地址。具体地,第二节点可以根据边界节点或边界节点的子节点的流量上下文,获取上行数据包的源IP地址,并通过Xn接口告知第一节点。
S902、第二节点接收来自第一节点的第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
在一些可行的实施方式中,对于上行数据包,第一节点可以为每个数据包分配第一拓扑中的第一回传适配协议路由标识(BAP routing ID),并将第一BAP routing ID与第 一IP地址(即上行数据包的源IP地址)的第一映射关系通过F1AP告知第二节点,相应地,第二节点接收来自第一节点的第一IP地址与第一BAP routing ID间的第一映射关系。
S903、第二节点向第三节点发送第一BAP routing ID与第二BAP routing ID间的第二映射关系。
在一些可行的实施方式中,第二节点向第三节点发送第一BAP routing ID与第二BAP routing ID间的第二映射关系,第二映射关系用于第一业务的数据包的重路由。具体地,第二节点获取第一IP地址与第二BAP routing ID间的第三映射关系,根据第一映射关系和第三映射关系确定第二映射关系。进一步地,第二节点向第三节点发送第一BAP routing ID与第二BAP routing ID间的第二映射关系,第二映射关系用于第一业务的数据包的重路由。也就是说,第二节点根据收到的IP地址与第一拓扑的第一BAP routing ID的映射关系、以及第二节点中原本就已知的IP地址与第二拓扑的第二BAP routing ID的映射关系,可以将第一IP地址作为中间变量,生成第二拓扑的第二BAP routing ID和第一拓扑的第一BAP routing ID的映射关系。进一步地,第二节点可以将第二拓扑中的第二BAP routing ID和第一拓扑中的第一BAP routing ID的第二映射关系通过F1AP发送给第三节点的DU,因此,第三节点的DU可以根据该第二映射关系进行BAP routing ID的改写。
举个例子,以图7所示系统架构下的上行数据包为例。首先,CU1根据descendant traffic的上下文,获知IP Address1,IP Address2,IP Address3,IP Address4,IP Address5共5个IP地址之前通过第二拓扑向自己发送数据,而现在这些IP地址发来的数据需要重路由至第一拓扑,因此CU1将IP Address1,IP Address2,IP Address3,IP Address4,IP Address5告知CU2。接下来,CU2获知这些IP地址的数据包将被重路由第一拓扑,给这些IP地址的数据包分配第一BAP routing ID,例如:{IP Address1,IP Address2,IP Address3}->第一BAP routing ID1;{IP Address4,IP Address5}->第一BAP routing ID2,并将这些映射关系(即第一映射关系)告知CU1。然后,CU1原本已知IP地址与第二BAP routing ID的映射关系(即第三映射关系),例如:{IP Address1}->第二BAP routing ID1;{IP Address2,IP Address3}->第二BAP routing ID2;{IP Address4,IP Address5}->第二BAP routing ID3,因此,CU1可进一步获知第二BAP routing ID与第一BAP routing ID的映射关系(即第二映射关系),如下:{第二BAP routing ID1,第二BAP routing ID2}->第一BAP routing ID1;
{第二BAP routing ID3}->第一BAP routing ID2。最后,CU1将第二BAP routing ID与第一BAP routing ID的映射关系发送给IAB DU2,IAB DU2根据该映射关系进行BAP routing ID的改写,例如:对于BAP头中的BAP routing ID为第二BAP routing ID3的上行数据包,IAB DU2将BAP routing ID改写为第一BAP routing ID2,通过IAB MT2发送给IAB DU3,
IAB DU3能够正确识别第一BAP routing ID2中的信息。
再举个例子,以图7所示系统架构下的上行数据包为例。首先,CU1根据boundary traffic的上下文,获知IP Address1,IP Address2和IP Address3共3个IP地址之前通过第二拓扑向自己发送数据,而现在这些IP地址发来的数据需要重路由至第一拓扑,因此CU1将IP IP Address1,IP Address2和IP Address3告知CU2。接下来,CU2获知这些IP地址的数据包将被重路由第一拓扑,给这些IP地址的数据包分配第一BAP routing ID,例如:{IP Address1}->第一BAP routing ID1;{IP Address2}->第一BAP routing ID2;{IP Address3}->第一BAP routing ID3,并将这些映射关系(即第一映射关系)告知CU1。然后,CU1原本已知IP地址与第二BAP routing ID的映射关系(即第三映射关系),例如:{IP Address1}-> 第二BAP routing ID3;{IP Address2}->第二BAP routing ID2;{IP Address3}->第二BAP routing ID1,因此,CU1可进一步获知第二BAP routing ID与第一BAP routing ID的映射关系(即第二映射关系),如下:{第二BAP routing ID1}->第一BAP routing ID3;{第二BAP routing ID2}->第一BAP routing ID2;{第二BAP routing ID3}->第一BAP routing ID1。最后,CU1将第二BAP routing ID与第一BAP routing ID的映射关系发送给IAB DU2,IAB DU2根据该映射关系进行BAP routing ID的改写,例如:对于BAP头中的BAP routing ID为第二BAP routing ID3的上行数据包,IAB DU2将BAP routing ID改写为第一BAP routing ID1,通过IAB MT2发送给IAB DU3,IAB DU3能够正确识别第一BAP routing ID2中的信息。
在本申请实施例中,针对切换场景,给出了跨CU的重路由方法。具体地,第二节点通过与第一节点之间交互,将IP地址作为中间变量,生成新旧BAP routing ID之间的映射关系,并告知第三节点(即boundary node),可以实现数据包重路由,提升传输成功率,减少业务中断。
下面将结合图10~图12对本申请提供的通信装置进行详细说明。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图。图10所示的通信装置可以用于执行上述图6~图9所描述的方法实施例中第一节点的部分或全部功能。该装置可以是第一节点,也可以是第一节点中的装置,或者是能够和第一节点匹配使用的装置。其中,该通信装置还可以为芯片系统。图10所示的通信装置可以包括收发单元1001和处理单元1002。其中,处理单元1002,用于进行数据处理。收发单元1001集成有接收单元和发送单元。收发单元1001也可以称为通信单元。或者,也可将收发单元1001拆分为接收单元和发送单元。下文的处理单元1002和收发单元1001同理,下文不再赘述。其中:
在一种实现中:
收发单元1001,用于接收来自第二节点的第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为所述第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
处理单元1002,用于根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述收发单元1001还用于:
向所述第二节点发送所述第一消息的第一反馈,所述第一反馈用于触发所述第二节点重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述处理单元1002具体用于:
根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
在另一种实现中:
收发单元1001,用于接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址;
处理单元1002,用于确定每个所述目标IP地址对应的第一参数;
所述收发单元1001,用于向所述第二节点发送每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述收发单元1001具体用于:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述收发单元1001具体用于:
基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
在另一种实现中:
收发单元1001,用于接收来自第二节点第一业务的数据包对应的第一因特网协议IP地址;
所述收发单元1001,用于向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
在一种可能的实现中,所述第一IP地址包括源IP地址。
该通信装置的其他可能的实现方式,可参见上述图6~图9对应的方法实施例中对接入网设备功能的相关描述,在此不赘述。
请参见图11,图11是本申请实施例提供的另一种通信装置的结构示意图。图11所示的通信装置可以用于执行上述图6~图9所描述的方法实施例中第二节点的部分或全部功能。该装置可以是第二节点,也可以是第二节点中的装置,或者是能够和第二节点匹配使用的装置。其中,该通信装置还可以为芯片系统。图11所示的通信装置可以包括收发单元1101和处理单元1102。其中:
在一种实现中:
处理单元1102,用于确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
收发单元1101,用于向所述第一节点发送所述第一消息;
其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
在一种可能的实现中,所述第一消息还用于指示触发流量控制的原因。
在一种可能的实现中,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
在一种可能的实现中,所述收发单元1101,还用于接收来自所述第一节点的所述第一消息的第一反馈;
所述处理单元1102,还用于响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
在一种可能的实现中,所述第二拓扑包括所述第二节点的分布式单元DU。
在一种可能的实现中,所述第一拓扑中包括所述第一节点的DU。
在一种可能的实现中,所述处理单元1102具体用于:
删除所述第二拓扑中用于服务第一流量的资源。
在一种可能的实现中,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
在一种可能的实现中,所述第一消息为Xn消息。
在一种可能的实现中,所述收发单元1101还用于:
接收状态指示消息,所述状态指示消息用于确定所述第一消息。
在另一种实现中:
收发单元1101,用于向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
所述收发单元1101,用于接收来自所述第一节点的每个所述目标IP地址对应的第一参数;
所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
在一种可能的实现中,一个目标IP地址对应一个第一参数;
所述收发单元1101具体用于:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与每个目标IP地址间的1:1映射关系。
在一种可能的实现中,多个目标IP地址对应一个第一参数;
所述收发单元1101具体用于:
基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
接收来自所述第一节点的第一参数与多个目标IP地址间的1:N映射关系。
在一种可能的实现中,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
在一种可能的实现中,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
在另一种实现中:
收发单元1101,用于向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
所述收发单元1101,用于接收来自所述第一节点的所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系;
所述收发单元1101,用于向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
在一种可能的实现中,所述第一IP地址包括源IP地址。
在一种可能的实现中,所述装置还包括处理单元1102,所述处理单元1102用于:
获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
该通信装置的其他可能的实现方式,可参见上述图6~图9对应的方法实施例中对接入网设备功能的相关描述,在此不赘述。
请参见图12,图12是本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以为本申请中描述的第一节点或第二节点,用于实现上述图6~图9中第一节点或第二节点的功能。为了便于说明,图12仅示出了通信装置1200的主要部件。
如图12所示,通信装置1200包括一个或多个处理器1201,可选的,还包括接口1202。当涉及的程序指令在该至少一个处理器1201中执行时,可以使得该装置1200实现前述任一实施例所提供的通信方法及其中任一可能的设计。或者,该处理器1201通过逻辑电路或执行代码指令用于实现前述任一实施例所提供的通信方法及其中任一可能的设计。接口1202,可 以用于接收程序指令并传输至所述处理器,或者,接口1202可以用于装置1200与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。示例性的,该接口1202可以用于接收来自该装置1200之外的其它装置的信号并传输至该处理器1201或将来自该处理器1201的信号发送给该装置1200之外的其它通信装置。该接口1202可以为代码和/或数据读写接口电路,或者,该接口1202可以为通信处理器与收发机之间的信号传输接口电路,或者为芯片的管脚。可选的,该通信装置1200还可以包括至少一个存储器1203,该存储器1203可以用于存储所需的涉及的程序指令和/或数据。可选的,该装置1200还可以包括供电电路1204,该供电电路1204可以用于为该处理器1201供电,该供电电路1204可以与处理器1201位于同一个芯片内,或者,位于处理器1201所在的芯片之外的另一个芯片内。可选的,该装置1200还可以包括总线1205,该装置1200中的各个部分可以通过总线1205互联。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
本申请实施例所述的收发装置、接口、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者 可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元或者算法操作,能够通过硬件实现,或者,通过软件实现,或者,通过软件和硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请中,“通过软件实现”可以指处理器读取并执行存储在存储器中的程序指令来实现上述模块或单元所对应的功能,其中,处理器是指具有执行程序指令功能的处理电路,包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signal processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类能够运行程序指令的处理电路。在另一些实施例中,处理器还可以包括其他处理功能的电路(如用于硬件加速的硬件电路、总线和接口等)。处理器可以以集成芯片的形式呈现,例如,以处理功能仅包括执行软件指令功能的集成芯片的形式呈现,或者还可以片上系统(system on a chip,SoC)的形式呈现,即在一个芯片上,除了包括能够运行程序指令的处理电路(通常被称为“核”)外,还包括其他用于实现特定功能的硬件电路(当然,这些硬件电路也可以是基于ASIC、FPGA单独实现),相应的,处理功能除了包括执行软件指令功能外,还可以包括各种硬件加速功能(如AI计算、编解码、压缩解压等)。
本申请中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括ASIC,或者可编程逻辑器件(programmable logic device,PLD);其中,PLD又可包括FPGA、复杂可编程逻辑器件(complex programmable logic device,CPLD)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为可编程片上系统(system on a programmable chip,SoPC)。
需要说明的是,本申请在通过软件、硬件或者软件硬件结合的方式实现时,可以使用不同的软件、硬件,并不限定只使用一种软件或者硬件。例如,其中,其中一个模块或者单元可以使用CPU来实现,另一个模块或者单元可以使用DSP来实现。同理,当使用硬件实现时,其中一个模块或者单元可以使用ASIC来实现,另一个模块或者单元可以使用FPGA实现。当然,也不限定部分或者所有的模块或者单元使用同一种软件(如都通过CPU)或者同一种硬件(如都通过ASIC)来实现。此外,对于本领域技术人员,可以知道,软件通常来说灵活性更好,但性能不如硬件,而硬件正好相反,因此,本领域技术人员可以结合实际需求来选择软件或者硬件或者两者结合的形式来实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。本申请实施例之间可以结合,实施例中的某些技术特征也可以从具体实施例中解耦出来,结合现有技术可以解决本申请实施例涉及的技术问题。
本申请实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟、或者光盘等各种可以存储程序代码的介质或计算机可读存储介质。
在本申请的描述中,“第一”,“第二”,“S601”,或“S602”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
在本申请的描述中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即“一个或多个”。“至少一个”,表示一个或者多个。“包括以下至少一个:A,B,C。”表示可以包括A,或者包括B,或者包括C,或者包括A和B,或者包括A和C,或者包括B和C,或者包括A,B和C。其中A,B,C可以是单个,也可以是多个。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (103)

  1. 一种通信方法,其特征在于,所述方法应用于第一节点,包括:
    接收来自第二节点的第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为所述第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
    根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
    其中,所述第三节点与所述第一节点和所述第二节点之间均存在无线资源控制RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的CU。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息为Xn消息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一消息还用于指示触发流量控制的原因。
  5. 根据权利要求4所述的方法,其特征在于,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二节点发送所述第一消息的第一反馈,所述第一反馈用于触发所述第二节点重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
  7. 根据权利要求6所述的方法,其特征在于,所述第二拓扑包括所述第二节点的分布式单元DU。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一拓扑中包括所述第一节点的DU。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源,包括:
    根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
    所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
  11. 一种通信方法,其特征在于,所述方法应用于第二节点,包括:
    确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
    向所述第一节点发送所述第一消息;
    其中,所述第三节点与所述第一节点和所述第二节点之间均存在无线资源控制RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的CU。
  12. 根据权利要求11所述的方法,其特征在于,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一消息为Xn消息。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第一消息还用于指示触发流量控制的原因。
  15. 根据权利要求14所述的方法,其特征在于,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一节点的所述第一消息的第一反馈;
    响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
  17. 根据权利要求16所述的方法,其特征在于,所述第二拓扑包括所述第二节点的分布式单元DU。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,所述第一拓扑中包括所述第一节点的DU。
  19. 根据权利要求16或17所述的方法,其特征在于,所述重新配置第二拓扑中用于服务第一流量的资源,包括:
    删除所述第二拓扑中用于服务第一流量的资源。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,
    所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
    所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
  21. 根据权利要求11-20任一项所述的方法,其特征在于,所述方法还包括:
    接收状态指示消息,所述状态指示消息用于确定所述第一消息。
  22. 一种通信方法,其特征在于,所述方法应用于第一节点,包括:
    接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址;
    确定每个所述目标IP地址对应的第一参数;
    向所述第二节点发送每个所述目标IP地址对应的第一参数;
    所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
  23. 根据权利要求22所述的方法,其特征在于,一个目标IP地址对应一个第一参数;
    所述向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
    基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
  24. 根据权利要求22所述的方法,其特征在于,多个目标IP地址对应一个第一参数;
    所述向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
    基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
  25. 根据权利要求22-24任一项所述的方法,其特征在于,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
  26. 根据权利要求22-24任一项所述的方法,其特征在于,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
  27. 一种通信方法,其特征在于,所述方法应用于第二节点,包括:
    向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
    接收来自所述第一节点的每个所述目标IP地址对应的第一参数;
    所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
  28. 根据权利要求27所述的方法,其特征在于,一个目标IP地址对应一个第一参数;
    所述接收来自所述第一节点的每个所述目标IP地址对应的第一参数,包括:
    基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
    接收来自所述第一节点的第一参数与每个目标IP地址间的1:1映射关系。
  29. 根据权利要求27所述的方法,其特征在于,多个目标IP地址对应一个第一参数;
    所述接收来自所述第一节点的每个所述目标IP地址对应的第一参数,包括:
    基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
    接收来自所述第一节点的第一参数与多个目标IP地址间的1:N映射关系。
  30. 根据权利要求27-29任一项所述的方法,其特征在于,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
  31. 根据权利要求27-29任一项所述的方法,其特征在于,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
  32. 一种通信方法,其特征在于,所述方法应用于第二节点,包括:
    向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
    接收来自所述第一节点的所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系;
    向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
    其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
  33. 根据权利要求32所述的方法,其特征在于,所述第一IP地址包括源IP地址。
  34. 根据权利要求32或33所述的方法,其特征在于,所述方法还包括:
    获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
    根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
  35. 一种通信方法,其特征在于,所述方法应用于第一节点,包括:
    接收来自第二节点第一业务的数据包对应的第一因特网协议IP地址;
    向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
  36. 根据权利要求35所述的方法,其特征在于,所述第一IP地址包括源IP地址。
  37. 一种通信方法,其特征在于,所述方法包括:
    第二节点确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流 量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
    所述第二节点向所述第一节点发送所述第一消息;
    所述第一节点根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
    其中,所述第三节点与所述第一节点和所述第二节点之间均存在无线资源控制RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的CU。
  38. 根据权利要求37所述的方法,其特征在于,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
  39. 根据权利要求37或38所述的方法,其特征在于,所述第一消息为Xn消息。
  40. 根据权利要求37-39任一项所述的方法,其特征在于,所述第一消息还用于指示触发流量控制的原因。
  41. 根据权利要求40所述的方法,其特征在于,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
  42. 根据权利要求37-41任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送所述第一消息的第一反馈;
    所述第二节点响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
  43. 根据权利要求42所述的方法,其特征在于,所述第二拓扑包括所述第二节点的分布式单元DU。
  44. 根据权利要求37-43任一项所述的方法,其特征在于,所述第一拓扑中包括所述第一节点的DU。
  45. 根据权利要求37-44任一项所述的方法,其特征在于,所述第一节点根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源,包括:
    所述第一节点根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
  46. 根据权利要求42或43所述的方法,其特征在于,所述第二节点重新配置第二拓扑中用于服务第一流量的资源,包括:
    所述第二节点删除所述第二拓扑中用于服务第一流量的资源。
  47. 根据权利要求37-46任一项所述的方法,其特征在于,
    所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点; 或者,
    所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
  48. 根据权利要求37-47任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收状态指示消息,所述状态指示消息用于确定所述第一消息。
  49. 一种通信方法,其特征在于,所述方法包括:
    第二节点向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
    所述第一节点确定每个所述目标IP地址对应的第一参数;
    所述第一节点向所述第二节点发送每个所述目标IP地址对应的第一参数;
    所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
  50. 根据权利要求49所述的方法,其特征在于,一个目标IP地址对应一个第一参数;
    所述第一节点向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
    所述第一节点基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    所述第一节点向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
  51. 根据权利要求49所述的方法,其特征在于,多个目标IP地址对应一个第一参数;
    所述第一节点向所述第二节点发送每个所述目标IP地址对应的第一参数,包括:
    所述第一节点基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    所述第一节点向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
  52. 根据权利要求49-51任一项所述的方法,其特征在于,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
  53. 根据权利要求49-51任一项所述的方法,其特征在于,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
  54. 一种通信方法,其特征在于,所述方法包括:
    第二节点向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
    所述第一节点向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系;
    所述第二节点向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
    其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述 第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
  55. 根据权利要求54所述的方法,其特征在于,所述第一IP地址包括源IP地址。
  56. 根据权利要求54或55所述的方法,其特征在于,所述方法还包括:
    所述第二节点获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
    所述第二节点根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
  57. 一种通信装置,其特征在于,所述装置为第一节点,包括:
    收发单元,用于接收来自第二节点的第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为所述第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
    处理单元,用于根据所述第一消息重新配置所述第一拓扑中用于服务第一流量的资源;
    其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
  58. 根据权利要求57所述的装置,其特征在于,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
  59. 根据权利要求57或58所述的装置,其特征在于,所述第一消息为Xn消息。
  60. 根据权利要求57-59任一项所述的装置,其特征在于,所述第一消息还用于指示触发流量控制的原因。
  61. 根据权利要求60所述的装置,其特征在于,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
  62. 根据权利要求57-61任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述第二节点发送所述第一消息的第一反馈,所述第一反馈用于触发所述第二节点重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
  63. 根据权利要求62所述的装置,其特征在于,所述第二拓扑包括所述第二节点的分布式单元DU。
  64. 根据权利要求57-63任一项所述的装置,其特征在于,所述第一拓扑中包括所述第一节点的DU。
  65. 根据权利要求57-64任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一消息删除所述第一拓扑中用于服务第一流量的资源。
  66. 根据权利要求57-65任一项所述的装置,其特征在于,所述第一IAB宿主节点为辅IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
    所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
  67. 一种通信装置,其特征在于,所述装置为第二节点,包括:
    处理单元,用于确定第一消息,所述第一消息用于指示重新配置第一拓扑中用于服务第一流量的资源,所述第一拓扑为第一节点控制的拓扑,所述第一流量为第三节点的流量或所述第三节点的下游节点的流量;
    收发单元,用于向所述第一节点发送所述第一消息;
    其中,所述第三节点与所述第一节点和所述第二节点之间均存在RRC连接,所述第三节点与所述第二节点之间存在F1连接,所述第一节点为第一接入回传一体化IAB宿主节点中的集中式单元CU,所述第二节点为第二IAB宿主节点中的集中式单元CU。
  68. 根据权利要求67所述的装置,其特征在于,所述第一消息包括以下信息中的至少一种:重新配置全部所述第一流量的资源的指示信息、所述第一流量的资源中服务质量索引对应的资源、所述第一流量的资源中隧道端点标识TEID对应的资源。
  69. 根据权利要求67或68所述的装置,其特征在于,所述第一消息为Xn消息。
  70. 根据权利要求67-69任一项所述的装置,其特征在于,所述第一消息还用于指示触发流量控制的原因。
  71. 根据权利要求70所述的装置,其特征在于,所述触发流量控制的原因包括发生拥塞或信号质量不满足质量要求。
  72. 根据权利要求67-71任一项所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述第一节点的所述第一消息的第一反馈;
    所述处理单元,还用于响应于所述第一反馈,重新配置第二拓扑中用于服务第一流量的资源,所述第二拓扑为所述第二节点控制的拓扑。
  73. 根据权利要求72所述的装置,其特征在于,所述第二拓扑包括所述第二节点的分布式单元DU。
  74. 根据权利要求67-73任一项所述的装置,其特征在于,所述第一拓扑中包括所述第一节点的DU。
  75. 根据权利要求72或73所述的装置,其特征在于,所述处理单元具体用于:
    删除所述第二拓扑中用于服务第一流量的资源。
  76. 根据权利要求67-75任一项所述的装置,其特征在于,所述第一IAB宿主节点为辅 IAB宿主节点,所述第二IAB宿主节点为主IAB宿主节点;或者,
    所述第一IAB宿主节点为主IAB宿主节点,所述第二IAB宿主节点为辅IAB宿主节点。
  77. 根据权利要求67-76任一项所述的装置,其特征在于,所述收发单元还用于:
    接收状态指示消息,所述状态指示消息用于确定所述第一消息。
  78. 一种通信装置,其特征在于,所述装置为第一节点,包括:
    收发单元,用于接收来自第二节点的第一业务的数据包对应的至少一个目标因特网协议IP地址;
    处理单元,用于确定每个所述目标IP地址对应的第一参数;
    所述收发单元,用于向所述第二节点发送每个所述目标IP地址对应的第一参数;
    所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
  79. 根据权利要求78所述的装置,其特征在于,一个目标IP地址对应一个第一参数;
    所述收发单元具体用于:
    基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    向所述第二节点发送第一参数与每个目标IP地址间的1:1映射关系。
  80. 根据权利要求78所述的装置,其特征在于,多个目标IP地址对应一个第一参数;
    所述收发单元具体用于:
    基于所述至少一个目标IP地址的接收顺序,向所述第二节点发送每个目标IP地址对应的第一参数;或者,
    向所述第二节点发送第一参数与多个目标IP地址间的1:N映射关系。
  81. 根据权利要求78-80任一项所述的装置,其特征在于,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
  82. 根据权利要求78-80任一项所述的装置,其特征在于,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
  83. 一种通信装置,其特征在于,所述装置为第二节点,包括:
    收发单元,用于向第一节点发送第一业务的数据包对应的至少一个目标因特网协议IP地址;
    所述收发单元,用于接收来自所述第一节点的每个所述目标IP地址对应的第一参数;
    所述第一参数反映所述第一业务的服务质量Qos需求,所述目标IP地址和所述目标 IP地址对应的第一参数用于确定所述第一业务对应的无线链路控制信道RLC CH,所述第一节点为双连接模式下的辅IAB宿主节点中的集中式单元CU,所述第二节点为双连接模式下的主IAB宿主节点中的集中式单元CU。
  84. 根据权利要求83所述的装置,其特征在于,一个目标IP地址对应一个第一参数;
    所述收发单元具体用于:
    基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
    接收来自所述第一节点的第一参数与每个目标IP地址间的1:1映射关系。
  85. 根据权利要求83所述的装置,其特征在于,多个目标IP地址对应一个第一参数;
    所述收发单元具体用于:
    基于所述至少一个目标IP地址的发送顺序,接收来自所述第一节点的每个所述目标IP地址对应的第一参数;或者,
    接收来自所述第一节点的第一参数与多个目标IP地址间的1:N映射关系。
  86. 根据权利要求83-85任一项所述的装置,其特征在于,所述目标IP地址包括IPv4地址,所述第一参数包括区分服务编码点DSCP。
  87. 根据权利要求83-85任一项所述的装置,其特征在于,所述目标IP地址包括IPv6地址,所述第一参数包括DSCP和IPv6流标签。
  88. 一种通信装置,其特征在于,所述装置为第二节点,包括:
    收发单元,用于向第一节点发送第一业务的数据包对应的第一因特网协议IP地址;
    所述收发单元,用于接收来自所述第一节点的所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系;
    所述收发单元,用于向第三节点发送所述第一BAP routing ID与第二BAP routing ID间的第二映射关系,所述第二映射关系用于所述第一业务的数据包的重路由;
    其中,所述第一节点为所述第三节点的目标IAB宿主节点中的集中式单元CU,所述第二节点为所述第三节点的源IAB宿主节点中的集中式单元CU。
  89. 根据权利要求88所述的装置,其特征在于,所述第一IP地址包括源IP地址。
  90. 根据权利要求88或89所述的装置,其特征在于,所述装置还包括处理单元,所述处理单元用于:
    获取所述第一IP地址与所述第二BAP routing ID间的第三映射关系;
    根据所述第一映射关系和所述第三映射关系确定所述第二映射关系。
  91. 一种通信装置,其特征在于,所述装置为第一节点,包括:
    收发单元,用于接收来自第二节点第一业务的数据包对应的第一因特网协议IP地址;
    所述收发单元,用于向所述第二节点发送所述第一IP地址与第一回传适配协议路由标识BAP routing ID间的第一映射关系。
  92. 根据权利要求91所述的装置,其特征在于,所述第一IP地址包括源IP地址。
  93. 一种通信装置,其特征在于,所述装置为第一节点,所述装置用于执行权利要求1-10中任一项所述的方法,或者,用于执行权利要求22-26中任一项所述的方法,或者,用于执行权利要求35-36中任一项所述的方法。
  94. 一种通信装置,其特征在于,所述装置为第二节点,所述装置用于执行权利要求11-21中任一项所述的方法,或者,用于执行权利要求27-31中任一项所述的方法,或者,用于执行权利要求32-34中任一项所述的方法。
  95. 一种通信装置,其特征在于,所述装置为第一节点,包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如权利要求1~10中任一项所述方法,或者,实现如权利要求22-26中任一项所述的方法,或者,实现如权利要求35-36中任一项所述的方法。
  96. 一种通信装置,其特征在于,所述装置为第二节点,包括处理器和收发器,所述处理器和所述收发器用于执行至少一个存储器中存储的计算机程序或指令,以使得所述装置实现如权利要求11~21中任一项所述的方法,或者,实现如权利要求27-31中任一项所述的方法,或者,实现如权利要求32-34中任一项所述的方法。
  97. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1~10中任一项所述的方法,或者,实现如权利要求22-26中任一项所述的方法,或者,实现如权利要求35-36中任一项所述的方法。
  98. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求11~21中任一项所述的方法,或者,实现如权利要求27-31中任一项所述的方法,或者,实现如权利要求32-34中任一项所述的方法。
  99. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以实现权利要求1~10中任一项所述的方法,或者,实现如权利要求22-26中任一项所述的方法,或者,实现如权利要求35-36中任一项所述的方法。
  100. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以实现如权利要求11~21中任一项所述的方法, 或者,实现如权利要求27-31中任一项所述的方法,或者,实现如权利要求32-34中任一项所述的方法。
  101. 一种芯片或芯片系统,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于交互信息或数据,所述处理电路用于运行指令,以使得安装所述芯片或芯片系统的装置执行如权利要求1-10中任一项所述的方法,或者,用于执行权利要求22-26中任一项所述的方法,或者,用于执行权利要求35-36中任一项所述的方法。
  102. 一种芯片或芯片系统,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于交互信息或数据,所述处理电路用于运行指令,以使得安装所述芯片或芯片系统的装置执行如权利要求11-21中任一项所述的方法,或者,用于执行权利要求27-31中任一项所述的方法,或者,用于执行权利要求32-34中任一项所述的方法。
  103. 一种通信系统,其特征在于,包括第一节点和第二节点;所述第一节点包括用于执行权利要求1-10中任一项所述方法的单元或模块,或者,包括用于执行权利要求22-26中任一项所述方法的单元或模块,或者,包括用于执行权利要求35-36中任一项所述方法的单元或模块;所述第二节点包括用于执行权利要求11~21中任一项所述方法的单元或模块,或者,包括用于执行权利要求27-31中任一项所述方法的单元或模块,或者,包括用于执行权利要求32-34中任一项所述方法的单元或模块。
PCT/CN2022/144335 2022-01-05 2022-12-30 通信方法及通信装置 WO2023131094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210009198.4A CN116456352A (zh) 2022-01-05 2022-01-05 通信方法及通信装置
CN202210009198.4 2022-01-05

Publications (1)

Publication Number Publication Date
WO2023131094A1 true WO2023131094A1 (zh) 2023-07-13

Family

ID=87073219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144335 WO2023131094A1 (zh) 2022-01-05 2022-12-30 通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN116456352A (zh)
WO (1) WO2023131094A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351109A (zh) * 2018-04-04 2019-10-18 中兴通讯股份有限公司 拓扑信息的管理方法及装置、系统、存储介质、电子装置
WO2020191768A1 (en) * 2019-03-28 2020-10-01 Zte Corporation System and method for iab handovers
CN113747521A (zh) * 2020-05-29 2021-12-03 维沃移动通信有限公司 网络切换方法、装置、通信设备及系统
WO2021262077A1 (en) * 2020-06-26 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Iab-node handover in inter-cu migration, recursive f1 and rrc signaling aspects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351109A (zh) * 2018-04-04 2019-10-18 中兴通讯股份有限公司 拓扑信息的管理方法及装置、系统、存储介质、电子装置
WO2020191768A1 (en) * 2019-03-28 2020-10-01 Zte Corporation System and method for iab handovers
CN113747521A (zh) * 2020-05-29 2021-12-03 维沃移动通信有限公司 网络切换方法、装置、通信设备及系统
WO2021262077A1 (en) * 2020-06-26 2021-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Iab-node handover in inter-cu migration, recursive f1 and rrc signaling aspects

Also Published As

Publication number Publication date
CN116456352A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11510131B2 (en) Configuration method, data transmission method, and apparatus
WO2021213470A1 (zh) 通信方法、装置及系统
WO2020164615A1 (zh) 一种通信方法及相关设备
WO2022028493A1 (zh) 一种iab节点的配置方法及通信装置
WO2022082679A1 (zh) 一种通信方法及相关设备
WO2023011245A1 (zh) 通信方法和通信装置
JP2023531787A (ja) Iabネットワーク通信方法及び関連デバイス
WO2021062803A1 (zh) 一种数据包传输方法及装置
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
WO2022228162A1 (zh) 一种通信方法、装置及系统
WO2021026706A1 (zh) 一种f1接口管理方法及装置
US20240073971A1 (en) Iab node connection update method and apparatus
WO2022151296A1 (zh) 通信方法及装置
WO2022152079A1 (zh) 一种通信方法及相关设备
WO2023131094A1 (zh) 通信方法及通信装置
WO2022151298A1 (zh) 群组迁移方法、装置和系统
WO2021159238A1 (zh) 一种数据处理方法、通信装置和通信系统
WO2021087924A1 (zh) 一种通信方法及装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2023131091A1 (zh) 通信方法和装置
WO2022237599A1 (zh) 一种通信方法、装置及系统
WO2022206317A1 (zh) 一种通信方法以及通信设备
WO2023011621A1 (zh) 一种通信方法及通信装置
RU2803196C1 (ru) Способ передачи пакета данных и устройство
WO2022068164A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918535

Country of ref document: EP

Kind code of ref document: A1