WO2022028493A1 - 一种iab节点的配置方法及通信装置 - Google Patents

一种iab节点的配置方法及通信装置 Download PDF

Info

Publication number
WO2022028493A1
WO2022028493A1 PCT/CN2021/110642 CN2021110642W WO2022028493A1 WO 2022028493 A1 WO2022028493 A1 WO 2022028493A1 CN 2021110642 W CN2021110642 W CN 2021110642W WO 2022028493 A1 WO2022028493 A1 WO 2022028493A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
iab
iab host
function
host
Prior art date
Application number
PCT/CN2021/110642
Other languages
English (en)
French (fr)
Inventor
卓义斌
朱元萍
刘菁
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2021319651A priority Critical patent/AU2021319651A1/en
Priority to EP21853130.9A priority patent/EP4192103A4/en
Priority to JP2023508521A priority patent/JP2023536521A/ja
Publication of WO2022028493A1 publication Critical patent/WO2022028493A1/zh
Priority to US18/165,095 priority patent/US20230189091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a configuration method and a communication device of an IAB node.
  • the relay node In order to improve network capacity and coverage, a relay node supporting wireless backhaul transmission is proposed for the deployment of dense networks.
  • the node that supports the relay function is referred to as the relay node for short.
  • the relay node provides functions and services similar to the ordinary base station for the terminal accessing its cell.
  • the communication link between the relay node and the terminal is called the access link. access link.
  • the relay node accesses a base station serving it in a terminal-like manner through a wireless interface, and the base station is called another relay node or a donor base station (donor base station).
  • the wireless interface link between the relay node and the donor base station is called the backhaul link (BackHaul link).
  • a relay that integrates a wireless access link and a wireless backhaul link can be called an integrated access and backhaul (IAB) node.
  • IAB node establishes a wireless backhaul link with one or more upper-level nodes, and accesses the core network through the upper-level node, and the IAB node can also provide access services for multiple lower-level nodes and terminals.
  • the present application provides a configuration method and a communication device of an IAB node, which can avoid the conflict between the MT configuration and the DU configuration of the IAB node during the cross-home switching process of the IAB node.
  • a method for configuring an IAB node is provided.
  • the method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting functions required by the communication device to implement the method, such as a chip system.
  • the following description takes the communication device as the target IAB host as an example.
  • the method includes:
  • the target IAB host receives the first information from the source IAB host, and the target IAB host sends first configuration information to the source IAB host, the first configuration information is used for the IAB node to switch from the source IAB host to the target IAB host, IAB
  • the node includes an MT function and a DU function, the first configuration information is determined according to the first information, and the first configuration information is used to indicate the transmission direction of the time domain resources configured by the target IAB host for the MT function,
  • the first information is used to indicate one or more of the following four kinds of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the first information may be used to indicate the above four kinds of information, and the above four kinds of information may be considered as duplex capability or duplex information or multiplexing capability or multiplexing information of the IAB node.
  • the target IAB host determines the first configuration information according to the first information, that is, the target IAB host configures the transmission direction of the time domain resources of the MT function for the IAB node according to the duplex capability of the IAB node.
  • the first information indicates that the DU function receives data while the MT function is not supported to receive data, then if the transmission direction of the time domain resources of the DU function in a certain time domain resource is the uplink transmission direction (the uplink transmission of the DU function indicates that the DU function receives the data). data), then the first configuration information cannot configure the time domain resource for the MT function within the time domain resource.
  • the transmission direction of the time domain resource is the downlink transmission direction (the downlink transmission of the MT function indicates that the MT function receives data).
  • the IAB node can be avoided.
  • the DU function and the MT function conflict in sending and receiving, thereby avoiding abnormal communication between the link between the IAB node and the lower node of the IAB node or the link between the IAB node and the upper node of the IAB node.
  • the method further includes: the target IAB host receives second information from the source IAB host, where the second information is used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU function, and/ Or, the second information is used to indicate the state of the transmission direction of the time domain resources configured by the source IAB host for the DU function.
  • the source IAB host can provide the target IAB host with the transmission direction and/or the state of the transmission direction of the time domain resources configured by the source IAB host for the DU function, so that the target IAB host can refer to the source IAB host as
  • the configuration of the DU function determines how to configure the MT function, so as to avoid conflicts between the configuration of the MT function and the configuration of the DU function.
  • the method further includes: the target IAB host sends second configuration information to the source IAB host, where the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the target IAB host is The transmission direction of the time domain resource configured by the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the target IAB host for the DU function.
  • the configuration of the DU function is configured by the source IAB host
  • the configuration of the MT function is configured by the target IAB host.
  • the configuration configured by the source IAB host for the DU function may not be optimal.
  • the target IAB host can also update the configuration of the DU function, so as to improve the utilization of the DU function configuration as much as possible.
  • the first information and/or the second information are carried in the first request message, the first request message is carried in the first interface signaling, and the first interface is between the target IAB host and the source IAB host. interface, the first request message is used to request the IAB node to switch from the source IAB host to the target IAB host; or, the first information and/or the second information are received by the target IAB host through the core network device.
  • the solution enumerates two implementations of the first information and the second information, that is, the first information or the second information can be sent through the interface between the source IAB host and the target IAB host, or can also be sent through the source IAB host and the target IAB host respectively.
  • the target IAB hosts the communicable core network device forwarding, which is more flexible.
  • the first information and/or the second information may be carried in a request message for the IAB node to switch from the source IAB host to the target IAB host, which is better compatible with the existing protocol architecture.
  • the first information and the second information can be sent together through one signaling, that is, the two types of information can be sent through one signaling, which can save signaling overhead; or, the first information and the second information can be sent independently, There is no restriction on the sending method of the first information and the second information, which is more flexible.
  • the first configuration information and/or the second configuration information are carried in the first request response message, the first request response message is carried in the first interface signaling, and the first interface is the target IAB host and the source IAB
  • the interface between hosts, the first request response message is the response message of the request message that the IAB node sent by the target IAB host to the source IAB host switches from the source IAB host to the target IAB host; or, the first configuration information and/or the second The configuration information is forwarded by the target IAB host to the source IAB host through the core network device.
  • first configuration information and the second configuration information can be sent through the interface between the target IAB host and the source IAB host, or can also be sent through the interface with the target IAB host and the source IAB host respectively.
  • the target IAB host and the source IAB host can communicate with the core network device forwarding, which is more flexible.
  • the first configuration information and/or the second configuration information may be carried in the response message of the request message for the IAB node to switch from the source IAB host to the target IAB host, which is better compatible with the existing protocol architecture.
  • first configuration information and the second configuration information can be sent together through one signaling, that is, the two types of information can be sent through one signaling, which can save signaling overhead; or, the first configuration information and the second configuration information can be sent together. They are sent independently, without restricting the sending methods of the first information and the second information, and are more flexible.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction;
  • the state of the transmission direction of the time domain resource is a usable state, a conditional use state or an unusable state .
  • the scheme enumerates three possible transmission directions of time domain resources, and three states of each transmission direction.
  • the method can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system .
  • the following description takes the communication device as the source IAB host as an example. The method includes:
  • the source IAB host sends first information to the target IAB host, and the source IAB host receives first configuration information from the target IAB host, the first configuration information is used for the IAB node to switch from the source IAB node to the target IAB host, and the IAB node includes The MT function and the DU function, the first configuration information is determined according to the first information, the first configuration information is used to indicate the transmission direction of the time domain resources configured by the target IAB host for the MT function, and the first information is used. to indicate one or more of four types of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the method further includes: the source IAB host sends second information to the target IAB host, where the second information is used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU function, and/or, The second information is used to indicate the state of the transmission direction of the time domain resources configured by the source IAB host for the DU function.
  • the method further includes: the source IAB host receives second configuration information from the target IAB host, the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the target IAB host is The transmission direction of the time domain resource configured by the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the target IAB host for the DU function.
  • the first information and/or the second information are carried in a first request message, the first request message is carried in the first interface signaling, and the first interface is between the target IAB host and the source IAB host
  • the first request message is used to request the IAB node to switch from the source IAB host to the target IAB host; or, the first information and/or the second information are sent by the source IAB host through the core network device.
  • the first configuration information and/or the second configuration information are carried in the first request response message
  • the first request response message is carried in the first interface signaling
  • the first interface is the target IAB host and the source IAB
  • the interface between hosts, the first request response message is the response message of the request message that the IAB node sent by the target IAB host to the source IAB host switches from the source IAB host to the target IAB host; or, the first configuration information and/or the second The configuration information is received by the source IAB host through the core network device.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction;
  • the state of the transmission direction of the time domain resource is a usable state, a conditional use state or an unusable state .
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions. In a possible implementation, it includes a transceiver module and a processing module, wherein:
  • the transceiver module is configured to receive the first information from the source IAB host, and send the first configuration information to the source IAB host;
  • the processing module is configured to generate the first configuration information, and the first configuration information is used for An IAB node switches from the source IAB host to the communication device;
  • the IAB node includes an MT function and a DU function, the first configuration information is determined according to the first information, and the first configuration information is used to indicate when the communication device is configured for the MT function
  • the transmission direction of the domain resource, the first information is used to indicate one or more of the following four kinds of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the transceiver module is also used for:
  • Receive second information from the source IAB host where the second information is used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU function, and/or, the second information is used to indicate that the source IAB host is the DU The status of the transmission direction of the time-domain resource configured by the function.
  • the transceiver module is further configured to: send second configuration information to the source IAB host, where the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the communication device is the The transmission direction of the time domain resource configured by the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the communication apparatus for the DU function.
  • the first information and/or the second information are carried in the first request message, the first request message is carried in the first interface signaling, and the first interface is between the communication device and the source IAB host
  • the first request message is used to request the IAB node to switch from the source IAB host to the communication device; or, the first information and/or the second information are received by the communication device through the core network device.
  • the first configuration information and/or the second configuration information are carried in the first request response message, the first request response message is carried in the first interface signaling, and the first interface is between the communication device and the source
  • the interface between the IAB hosts, the first request response message is a response message sent by the communication device to the source IAB host to switch the IAB node from the source IAB host to the request message of the communication device; or, the first configuration information and/ Or the second configuration information is forwarded by the communication apparatus to the source IAB node through the core network device.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction;
  • the state of the transmission direction of the time domain resource is a usable state, a conditional use state or an unusable state .
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the second aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions. In a possible implementation, it includes a transceiver module and a processing module, wherein:
  • the processing module for generating first information
  • the transceiver module is configured to send the first information to the target IAB host, and receive first configuration information from the target IAB host, where the first configuration information is used for the IAB node to switch from the communication device to the target IAB host;
  • the IAB node includes an MT function and a DU function, the first configuration information is determined according to the first information, and the first configuration information is used to indicate the transmission direction of the time domain resources configured by the target IAB host for the MT function.
  • the first information is used to indicate one or more of four kinds of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the transceiver module is further configured to: send second information to the target IAB host, where the second information is used to indicate the transmission direction of the time domain resources configured by the communication apparatus for the DU function, and/ Or, the second information is used to indicate the state of the transmission direction of the time domain resource configured by the communication apparatus for the DU function.
  • the transceiver module is further configured to: receive second configuration information from the target IAB host, the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the target IAB host is the target IAB host.
  • the transmission direction of the time domain resource configured by the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the target IAB host for the DU function.
  • the first information and/or the second information are carried in the first request message, the first request message is carried in the first interface signaling, and the first interface is between the target IAB host and the communication device
  • the first request message is used to request the IAB node to switch from the communication device to the target IAB host; or, the first information and/or the second information are sent by the communication device through the core network device.
  • the first configuration information and/or the second configuration information are carried in the first request response message, the first request response message is carried in the first interface signaling, and the first interface is the target IAB host and the An interface between communication devices, the first request response message is a response message of a request message sent by the target IAB host to the communication device to switch the IAB node from the communication device to the target IAB host; or, the first configuration information And/or the second configuration information is received by the communication apparatus through the core network device.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction;
  • the state of the transmission direction of the time domain resource is a usable state, a conditional use state or an unusable state .
  • an embodiment of the present application provides a communication device, and the communication device may be the communication device in the third aspect or the fourth aspect in the foregoing embodiments, or the communication device set in the third aspect or the fourth aspect in the chip.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface, and when the processor reads the computer program, instructions or data, the communication device is made to execute the above-mentioned first aspect or the second aspect A method performed by a target IAB host or a source IAB host in a method embodiment.
  • the communication interface may be a transceiver in a communication device, for example, implemented by an antenna, a feeder, a codec, etc. in the communication device, or, if the communication device is a chip provided in a network device, the communication interface It can be the input/output interface of the chip, such as input/output pins and so on.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is the target IAB host, the other device is the source IAB host; or, when the communication device is the source IAB host, the other device is the target IAB host.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the method executed by the communication apparatus in the third aspect or the fourth aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the target IAB host in the above aspects is implemented; or A method of the above aspects performed by a source IAB host.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the target IAB host in the above aspects is executed, or the computer program code is executed. The method performed by the source IAB host in the above aspects is performed.
  • the target IAB host configures the transmission of time domain resources for the MT function on the premise of the duplex capability of the MT function and the DU function of the IAB node. direction. In this way, the conflict between the transmission direction of the time domain resource of the MT function of the IAB node and the transmission direction of the time domain resource of the DU function can be avoided, thereby avoiding communication abnormality of the IAB node as much as possible.
  • FIG. 1 is an architectural diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an IAB node provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a backhaul link and an access link provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of the architecture of an exemplary communication system to which the embodiments of the present application are applied;
  • FIG. 5 is a schematic diagram of the architecture of an exemplary communication system to which the embodiments of the present application are applied;
  • FIG. 6 is a schematic diagram of the architecture of an exemplary communication system to which the embodiments of the present application are applied;
  • FIG. 7 is a schematic diagram of a user plane protocol stack of an IAB node provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a control plane protocol stack of an IAB node provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of cross-host switching of an IAB node according to an embodiment of the present application.
  • FIG. 10 is another schematic diagram of cross-home handover of an IAB node according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for configuring an IAB node according to an embodiment of the present application
  • FIG. 12 is an exemplary schematic flowchart of a method for configuring an IAB node according to an embodiment of the present application
  • FIG. 13 is another exemplary schematic flowchart of a method for configuring an IAB node according to an embodiment of the present application
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an exemplary communication apparatus provided by an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of an exemplary communication apparatus provided by an embodiment of the present application.
  • a terminal-side device is a device that provides voice and/or data connectivity to users.
  • the terminal-side device involved in this application may be a terminal device or a terminal, or a hardware component inside the terminal device that can implement the function of the terminal device.
  • the terminal-side device may be referred to as a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), etc., for example, may include a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the terminal may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • terminal equipment are: personal communication service (PCS) telephones, cordless telephones, session initiation protocol (SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistant, PDA), barcode, radio frequency identification (radio frequency identification, RFID), sensor, satellite navigation system, such as global positioning system (global positioning system, GPS), Beidou positioning system, laser scanner and other information sensing equipment and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • barcode radio frequency identification
  • RFID radio frequency identification
  • sensor satellite navigation system
  • satellite navigation system such as global positioning system (global positioning system, GPS), Beidou positioning system, laser scanner and other information sensing equipment and other equipment.
  • the terminal-side device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal may also be a virtual reality (VR) device, an augmented reality (AR) device, a wireless terminal in industrial control, a wireless terminal in self driving, remote surgery Wireless terminal in (remote medical surgery), wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home (smart home) wireless terminals, terminal equipment in the future evolved public land mobile network (PLMN), or vehicle equipment in vehicle to everything (V2X), customer premises equipment (customer premises equipment, CPE) )Wait.
  • VR virtual reality
  • AR augmented reality
  • WLAN wireless terminal in industrial control
  • WLAN remote surgery
  • wireless terminal in smart grid wireless terminal in transportation safety
  • wireless terminal in smart city wireless terminal in smart home (smart home) wireless terminals
  • PLMN public land mobile network
  • V2X vehicle equipment in vehicle to everything
  • customer premises equipment customer premises equipment, CPE
  • the functions of the terminal-side device may be implemented by hardware components inside the terminal device, and the hardware components may be processors and/or programmable chips inside the terminal device.
  • the chip may be implemented by an application-specific integrated circuit (ASIC), or a programmable logic device (PLD).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex program logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), a system on a chip (system on a chip) , SOC) any one or any combination thereof.
  • the various terminals described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as on-board terminal equipment.
  • the on-board terminal equipment is also called an on-board unit (OBU) .
  • OBU on-board unit
  • Donor base station also known as a host node, refers to a node that can access the core network through this node, and is a device in the communication system that connects the terminal-side device to the wireless network. Wired links, such as fiber optic cables, connect to the core network.
  • the donor base station may be responsible for receiving data from the core network and forwarding it to the wireless backhaul device, or receiving data from the wireless backhaul device and forwarding it to the core network.
  • the donor base station can generally be connected to the network in a wired manner.
  • the donor base station may include a radio network controller (RNC), a node B (Node B, NB), a base station controller (BSC), a base transceiver station (base transceiver station, BTS) ), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), etc., and may also include the evolved type in the evolved LTE system (LTE-Advanced, LTE-A) Base station (NodeB or eNB or e-NodeB, evolutional Node B), or may also include the next generation node B (next generation node) in the fifth generation mobile communication technology (fifth generation, 5G) new radio (new radio, NR) system B, gNB) and so on.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • the gNB-CU or Donor-CU may also be a user plane (UP) (referred to as CU-UP in this application) and a control plane (CP) (referred to as CU-CP in this application)
  • UP user plane
  • CP control plane
  • CU-CP control plane
  • gNB-CU or Donor-CU consists of CU-CP and CU-UP.
  • One gNB-CU may include one gNB-CU-CP and at least one gNB-CU-UP.
  • one Donor-CU may include one Donor-CU-CP and at least one Donor-CU-UP.
  • the functions of the donor base station may be implemented by hardware components inside the donor base station, for example, a processor and/or a programmable chip inside the donor base station.
  • the chip can be implemented by an ASIC, or a PLD.
  • the above-mentioned PLD can be any one of CPLD, FPGA, GAL, SOC, or any combination thereof.
  • plality refers to two or more than two. In view of this, “plurality” may also be understood as “at least two” in the embodiments of the present application. "At least one" can be understood as one or more, such as one, two or more. For example, including at least one refers to including one, two or more, and does not limit which ones are included. For example, including at least one of A, B, and C, then including A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority, or importance of multiple objects.
  • the wireless backhaul device can provide wireless access services for the terminal-side device through the access link (AL), and the wireless backhaul device is connected to the host base station through the backhaul link (BL) to transmit the information of the terminal-side device.
  • A access link
  • BL backhaul link
  • a wireless backhaul device may be referred to as a relay node (RN), also referred to as a relay device, or a relay transmission reception point (relay transmission). and receptio point, rTRP) or transmission point (transmission point, TP), etc.
  • RN relay node
  • relay device also referred to as a relay device
  • relay transmission reception point relay transmission
  • rTRP receptio point
  • TP transmission point
  • the wireless backhaul device can establish wireless backhaul links with one or more upper nodes (parent nodes), and access the core network through the upper nodes.
  • the upper node can perform certain control (eg, data scheduling, timing modulation, power control, etc.) on the wireless backhaul device through various signaling.
  • the wireless backhaul device may serve one or more subordinate nodes (child nodes).
  • the upper-level node of the wireless backhaul device may be a base station or another relay node.
  • the subordinate node of the wireless backhaul device may be a terminal or another relay node.
  • the link between the wireless backhaul device and the upper node and the link between the wireless backhaul device and the lower node can share the same frequency band, which is also called in-band relay.
  • In-band relays generally have half-duplex constraints. That is, the wireless backhaul device cannot send downlink signals to its subordinate nodes when receiving downlink signals sent by its superior nodes, and the wireless backhaul device cannot send uplink signals to its superior nodes when receiving uplink signals sent by its subordinate nodes.
  • the relay scheme of the new generation wireless communication system (new radio, NR) is called IAB, and correspondingly, the wireless backhaul device is called IAB node (IAB node).
  • IAB node the wireless backhaul device
  • the link between the IAB node and the upper node and the link between the IAB node and the lower node can be resource multiplexed in the manner of time division, space division or frequency division.
  • FIG. 1 shows an IAB system, and the IAB node provides wireless access and wireless backhaul of the access service for the terminal.
  • the IAB donor node IAB host node
  • the IAB node provides the wireless backhaul function to the IAB node, and provides the interface between the terminal and the core network.
  • the IAB node is connected to the IAB donor node through a wireless backhaul link, so that the terminal-side equipment served by the IAB node is connected to the core network.
  • the network architecture may not be limited to including terminal-side equipment, wireless backhaul equipment and the host base station.
  • core network devices or devices for carrying virtualized network functions, etc. may also be included, which are obvious to those skilled in the art and will not be described in detail here.
  • the network architecture does not limit the number of terminal-side devices, wireless backhaul devices, and donor base stations For example, it may also include multiple terminal-side devices, multiple wireless backhaul devices, and multiple donor base stations.
  • the wireless backhaul device is an IAB node as an example.
  • FIG. 2 shows a schematic structural diagram of an IAB node.
  • the IAB node in NR may include a mobile terminal (mobile termination, MT) and a distributed unit (distributed unit, DU).
  • MT can also be understood as a component similar to the terminal in the IAB node.
  • the DU is relative to the centralized unit (CU) function of the network device. Therefore, the IAB node can also be considered to include the MT function and the DU function.
  • the MT function is referred to as MT
  • the DU function is referred to as DU.
  • the MT is used for the communication between the IAB node and the upper-level node (parent node).
  • DUs are used by IAB nodes to communicate with subordinate nodes (child nodes).
  • the parent node may be a base station or other IAB nodes
  • the child node may be a terminal or other IAB nodes.
  • the link between the MT and the parent node is called the parent backhaul link
  • the link between the DU and the lower IAB node is called the child backhaul link
  • the link between the DU and the subordinate terminal is called the child backhaul link.
  • the link is called an access link.
  • the lower backhaul link is also referred to as an access link, wherein the upper backhaul link includes an upper backhaul uplink (uplink, UL) and an upper backhaul downlink (downlink, DL) ), the subordinate backhaul link includes subordinate backhaul UL and subordinate backhaul DL, and the access link includes access UL and access DL, as shown in FIG. 3 .
  • the method for configuring an IAB node provided in this embodiment of the present application can be applied to various communication systems including wireless backhaul devices, such as an NR system, an LTE system, an LTE-A system, a worldwide interoperability for microwave access (WiMAX) ), or wireless local area networks (WLAN), etc.
  • wireless backhaul devices such as an NR system, an LTE system, an LTE-A system, a worldwide interoperability for microwave access (WiMAX) ), or wireless local area networks (WLAN), etc.
  • the communication method provided by the embodiment of the present application may be applied to the network architecture shown in FIG. 1 .
  • the terminal-side device is wirelessly connected to the wireless backhaul device
  • the wireless backhaul device is wirelessly connected to the host base station.
  • Communication between the terminal-side device and the wireless backhaul device and between the wireless backhaul device and the host base station can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or both.
  • the spectrum and the unlicensed spectrum are used for communication.
  • the licensed spectrum may be the spectrum below 6 GHz, which is not limited here. It should be understood that FIG.
  • the wireless backhaul device regards the node providing the backhaul service as the only parent node, for example, the wireless backhaul device regards the donor base station as the parent node.
  • the wireless backhaul device After the wireless backhaul device receives the wireless bearer carrying the uplink information from the terminal-side device, it transmits the wireless bearer to the donor base station, and then the donor base station sends the uplink information in the wireless bearer to the mobile gateway device (for example, in the 5G network).
  • the mobile gateway device for example, in the 5G network.
  • User plane function entity user port function, UPF
  • the radio bearer carrying the downlink information sent by the mobile gateway device is sent to the donor base station, and then sent to the terminal-side device through the wireless backhaul device in turn.
  • IAB node in the embodiment of the present application is only for the purpose of description, and does not mean that the solution in the embodiment of the present application is only used in the NR scenario.
  • a node or device with a transmission function, the use of an IAB node and a relay node in the implementation of this application should be understood to have the same meaning.
  • FIG. 4 is an example of a communication system including multiple terminals and multiple IAB nodes.
  • FIG. 4 includes two terminals and two IAB nodes as an example, wherein the two terminals are terminal 1 and terminal 2 respectively, and the two IAB nodes are IAB node 1 and IAB node 2 respectively.
  • the terminal 1 and the terminal 2 can access the IAB node 2, the IAB node 2 is connected with the IAB node 1 in a wireless way, and the IAB node 1 is connected with the donor base station in a wireless way.
  • IAB node 1 is the parent node of IAB node 2
  • the donor base station is the parent node of IAB node 1 .
  • the IAB node 2 provides wireless access services for the terminal 1 and the terminal 2 through an access link (shown by a thick line in FIG. 4 ).
  • the radio bearer sent by the terminal 1 and the terminal 2 is sequentially transmitted to the donor base station via the IAB node 2 and the IAB node 1, and then the donor base station sends the uplink information in the radio bearer to the mobile gateway device.
  • the mobile gateway device may send the radio bearer for carrying the downlink information to the donor base station, and then send the radio bearer to the terminal 1 and the terminal 2 via the IAB node 1 and the IAB node 2 in sequence.
  • the radio bearer sent by any terminal is sequentially transmitted to the donor base station through two IAB nodes, which can be understood as a multi-hop wireless backhaul scenario, which can ensure the coverage of the network.
  • FIG. 5 is an example of a communication system including one terminal and multiple IAB nodes.
  • FIG. 5 takes an example of including one terminal and three IAB nodes, wherein the three IAB nodes are IAB node 1 , IAB node 2 and IAB node 3 respectively.
  • the terminal can access the donor base station through two paths. One of the paths passes through the terminal, IAB node 2, IAB node 1 and the donor base station in sequence; the other path passes through the terminal, IAB node 2, IAB node 3, IAB node 1 and the donor base station in sequence.
  • the terminal accesses the donor base station through multiple paths, which can be understood as a multi-connection wireless backhaul scenario, which can ensure the reliability of service transmission.
  • the architecture shown in Figure 5 can be understood as a multi-hop + multi-connection networking scenario.
  • FIG. 6 is an example of a communication system including multiple terminals and multiple IAB nodes.
  • FIG. 6 includes two terminals and five IAB nodes as an example, wherein the two terminals are terminal 1 and terminal 2 respectively, and the five IAB nodes are IAB node 1 to IAB node 5 respectively.
  • the thick line in FIG. 6 represents the access link, and the thin line represents the backhaul link.
  • the terminal 1 can be connected to the donor base station via the IAB node 5 , the IAB node 2 and the IAB node 1 .
  • the terminal 1 can also be connected to the donor base station via the IAB node 4, the IAB node 2 and the IAB node 1.
  • the terminal 1 can also be connected to the donor base station via the IAB node 4, the IAB node 3 and the IAB node 1.
  • the terminal 2 can be connected to the donor base station via the IAB node 4, the IAB node 3 and the IAB node 1.
  • the terminal 2 can be connected to the donor base station via the IAB node 4, the IAB node 2 and the IAB node 1.
  • FIG. 4 to FIG. 6 are only examples, and do not limit the application scenarios to which the embodiments of the present application are applicable.
  • the embodiments of the present application can also be applied to a scenario in which a terminal communicates with a donor base station via an IAB node, and examples are not given here.
  • an F1 interface needs to be established between the DU of the IAB node and the CU of the IAB host, and the configuration of routing and bearer mapping is completed, so as to perform data transmission between the IAB node and the target IAB host according to the configuration.
  • the F1 interface may also be called an F1* interface, and the name of the interface is not limited in this embodiment of the present application. In this paper, the interface is referred to as the F1 interface as an example.
  • the F1 interface can support user plane protocols (F1-U/F1*-U) and control plane protocols (F1-C/F1*-C).
  • the user plane protocols include one or more of the following protocol layers: General Packet Radio Service (General Packet Radio Service, GPRS) tunneling protocol user plane (GPRS tunnelling protocol user plane, GTP-U) protocol layer, user datagram protocol (user datagram protocol, UDP) protocol layer, Internet protocol (internet protocol, IP) protocol layer, etc.
  • the control plane protocol includes one or more of the following protocol layers: F1 application protocol (F1application protocol, F1AP), stream control transport protocol (stream control transport protocol, SCTP), IP protocol layer, etc.
  • the IAB node and the IAB host can perform interface management, manage the IAB-DU, and perform configuration related to the terminal context.
  • the user plane of the F1/F1* interface user plane data transmission and downlink transmission status feedback can be performed between the IAB node and the IAB host.
  • FIG. 7 is a schematic diagram of a user plane protocol architecture in an IAB network
  • FIG. 8 is a schematic diagram of a control plane protocol architecture in an IAB network.
  • a Uu interface is established between the terminal and the IAB2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer, and the PHY layer.
  • the IAB node (node) 2-DU and the IAB host (donor) CU-UP establish an F1-U interface, and the peer-to-peer protocol layers include the GPRS tunneling protocol for the user plane (GTP-U) layer, User Datagram Protocol (UDP) layer.
  • GTP-U GPRS tunneling protocol for the user plane
  • UDP User Datagram Protocol
  • the IAB donor DU 1 and the IAB donor CU 1 are connected through a wired connection, and the equivalent protocol layers include the IP layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 1, and between IAB node 1 and IAB donor DU, and the peer protocol layers include BAP layer, RLC layer, MAC layer and PHY layer.
  • a peer-to-peer SCTP layer and a packet data convergence protocol (PDCP) layer are established between the terminal and IAB donor CU-UP, and a pair of IAB node 2-DU and IAB donor DU-UP is established. etc. IP layer.
  • PDCP packet data convergence protocol
  • the user plane protocol stack of the IAB network is compared with the user plane protocol stack of the single air interface. (functions of the radio link control, RLC) layer, media access control (media access control, MAC) layer and PHY layer, as well as the functions of the GTP-U layer and the UDP layer that establish a peer to the IAB donor CU-UP).
  • RLC radio link control
  • MAC media access control
  • PHY PHY layer
  • PDCP data packets are encapsulated in the GTP-U tunnel between the access IAB node (IAB node 2) and the IAB donor CU-UP.
  • the GTP-U tunnel is established on the F1-U interface.
  • a Uu interface is established between the terminal and the IAB node 2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer, and the PHY layer.
  • the IAB node 2-DU and the IAB donor CU 1 establish an F1-C interface, and the peer-to-peer protocol layers include the F1 application protocol (F1AP) and the SCTP layer.
  • the IAB donor DU and the IAB donor CU-UP are connected by wire, and the equivalent protocol layers include IP layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 1, and between IAB node 1 and IAB donor DU, and the peer-to-peer protocol layers include the Bakhaul Adaptation Protocol (BAP) layer, RLC layer, and MAC layer. and the physical (PHY) layer.
  • BAP Bakhaul Adaptation Protocol
  • RLC Radio Link Control
  • PHY physical
  • a peer-to-peer RRC layer and a PDCP layer are established between the terminal and the IAB donor CU-UP
  • a peer-to-peer IP layer is established between the IAB node 1-DU and the IAB donor DU.
  • the BAP layer has at least one of the following capabilities: adding routing information (Routing info) that can be identified by the IAB node to the data packet, performing routing based on the routing information that can be identified by the IAB node, and performing routing information for the data packet.
  • QoS Quality of service
  • the bearer mapping on the multi-segment link may be: in the backhaul link, based on the identification of the radio bearer (radio bearer, RB) of the terminal carried by the data packet, perform the RLC bearer from the RB of the terminal to the backhaul link. or mapping of RLC channels or logical channels.
  • the BAP implements the terminal's data radio bearer (DRB) or signaling radio bearer (SRB) to the RLC bearer on the backhaul link.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • a mapping is performed from the RB or RLC bearer or RLC channel or logical channel of the ingress link to the RB or RLC bearer or RLC channel or logical channel of the egress link.
  • the RLC bearer takes a channel, such as a backhaul (BH) RLC channel (channel, CH) as an example in FIG. 7 or FIG. 8 .
  • BH backhaul
  • CH backhaul
  • the control plane protocol stack of the IAB network is compared with the control plane protocol stack of the single air interface.
  • the DU connected to the IAB node (IAB node 2) realizes the function of the gNB-DU of the single air interface (that is, establishes a peer-to-peer relationship with the terminal).
  • the DU connected to the IAB node in the IAB network realizes the function of the single air interface gNB-DU; the IAB donor C-UP realizes the function of the single air interface gNB-CU.
  • RRC messages are encapsulated and transmitted in F1AP messages between the access IAB node and the IAB donor CU-UP.
  • the terminal encapsulates the RRC message in the PDCP protocol data unit (protocol data unit, PDU), and sends it to the IAB node 2-DU after being processed by the RLC layer, the MAC layer, and the PHY layer in sequence.
  • the IAB node 2-DU is processed by the PHY layer, the MAC layer and the RLC layer to obtain the PDCP PDU, encapsulates the PDCP PDU in the F1AP message, and is processed by the SCTP layer and the IP layer to obtain the IP packet.
  • the IAB node 2-MT After the IP packet is processed by the BAP layer, the RLC layer, the MAC layer and the PHY layer respectively, the IAB node 1-DU, in the same way, the IAB node 1-MT sends the IP packet to the IAB donor DU. After the IAB donor DU parses and obtains the IP packet, the IP packet is sent to the IAB donor CU-UP, and the IAB donor CU-UP sequentially processes the IP packet through the SCTP layer, the F1AP layer and the PDCP layer to obtain the RRC message. The downstream direction is similar and will not be described here.
  • an IAB node may have one or more roles, and the IAB node may have protocol stacks of the one or more roles; or, the IAB node may have a set of protocol stacks, and the protocol stack may Different roles are processed using the protocol layers corresponding to different roles.
  • the MT of the IAB node When an IAB node accesses the IAB network, it can act as a common terminal.
  • the MT of the IAB node has the protocol stack of a common terminal, such as the protocol stack of the terminal in FIG. 7 and FIG. 8 , that is, the RRC layer, the PDCP layer, the RLC layer, the MAC layer and the PHY layer, wherein, on the control plane,
  • the RRC message of the IAB node is encapsulated in the F1AP message between the parent node of the IAB node and the IAB donor CU. transmitted in the GTP-U tunnel.
  • the IAB node can still play the role of a common terminal, for example, transmit its own uplink and/or downlink data packets with the IAB donor, perform measurements through the RRC layer, and so on.
  • the IAB node After the IAB node accesses the IAB network, the IAB node can provide access services for the terminal, so as to play the role of an access IAB node. At this time, the IAB node has a protocol stack for accessing the IAB node, such as Figure 7 and Figure 7 The protocol stack of IAB node 2 in 8.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides backhaul services for the terminal (ie: access The protocol stack of the IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node After the IAB node accesses the IAB network, the IAB node can play the role of an intermediate IAB node. At this time, the IAB node has the protocol stack of the intermediate IAB node, such as the protocol stack of the IAB node 1 in Figures 7 and 8.
  • the interface of the IAB node facing its parent node can have two sets of protocol stacks, one set is the protocol stack of the common terminal, and the other set is the protocol stack that provides the return service for the child IAB node (ie: The protocol stack of the intermediate IAB node).
  • the same protocol layer of the two sets of protocol stacks may be shared, for example, the two sets of protocol stacks correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • the IAB node can assume the roles of the access IAB node and the intermediate IAB node at the same time.
  • the IAB node can be the access IAB node for some terminals, and the intermediate IAB node for other terminals.
  • the IAB node There may be three sets of protocol stacks, one set is the protocol stack of the above-mentioned common terminal, the other set is the protocol stack of the access IAB node, and the other set is the protocol stack of the intermediate IAB node.
  • the same protocol layer of the three sets of protocol stacks may be shared, for example, the three sets of protocol stacks all correspond to the same RLC layer, MAC layer, PHY layer, or BAP layer.
  • Figures 7 and 8 take the IAB network as an example.
  • the contents of Figures 7 and 8 are also applicable to other types of relay networks other than the IAB network.
  • the control plane protocol stack architecture of the relay network can be Referring to FIG. 8 , reference may be made to FIG. 7 for the user plane protocol stack architecture of the relay network.
  • the IAB nodes in Figures 7 and 8 can be replaced by relays, for example, IAB node 2 can be replaced by relay node 2, IAB node 1 can be replaced by relay node 1, IAB donor can be replaced by host node, host
  • the node has CU and DU protocol stacks, and other contents are the same as those described in FIG. 7 and FIG. 8 .
  • FIG. 7 and FIG. 8 which will not be repeated here.
  • FIG. 9 it is a schematic diagram of IAB node switching across host nodes. If the backhaul link between the IAB node and its directly connected superior node (that is, the host node) is interrupted or the communication quality of the backhaul link is degraded, in order to ensure the communication quality of the backhaul link of the IAB node, the IAB The backhaul link of a node can be migrated to another upper-level node (that is, another host node in FIG. 9 ), which involves switching across host nodes. It should be noted that, one or more IAB nodes may also be included between the IAB node and the two host nodes, and the downstream of the IAB node may further include one or more IAB nodes.
  • the handover mechanism of the terminal can be used, that is, the source IAB host (current serving base station) will send the measurement configuration to the MT.
  • the MT measures according to the configuration, and determines whether to report the measurement result according to the pre-configured threshold.
  • the source IAB host decides whether to let the MT perform the handover (that is, decide whether to let the IAB node perform the handover). If the source IAB host decides to let the MT or the IAB node handover, it will send a handover request to the target IAB host.
  • the target IAB host decides whether to allow the MT or the IAB node to perform handover according to the handover request of the source IAB host, and if so, sends a handover request response to the source IAB host, which carries the information including the MT for random access.
  • Incoming resources, the transmission direction of the time domain resources of the MT, etc. are configured.
  • the configuration of the DU is configured by the source IAB host, so there may be a resource conflict between the configuration of the MT and the configuration of the DU.
  • the DU of the IAB node can serve one or more terminals and act as a function of a base station.
  • the DU is configured for downlink transmission, for example, the DU is configured to send a synchronization signal block (synchronization signal block, SSB) to the terminal for serving the terminal.
  • SSB synchronization signal block
  • the resource location of the SSB generally does not change.
  • the target IAB host will send the SSB measurement configuration for the MT of the IAB node for the MT to receive and measure the SSB of the upper node, so that the MT is configured for downlink transmission. Due to the constraints of half-duplex, it is impossible for an IAB node to both send SSB and receive SSB from other devices at the same time. If the resource location of the SSB sent by the target IAB host overlaps with the resource location of the SSB sent by the IAB node's own DU, a resource conflict will occur.
  • an embodiment of the present application provides a method for switching an IAB node.
  • the target IAB host can configure the MT and/or DU of the IAB node according to the duplex capability of the IAB node, that is, according to the MT and/or DU of the IAB node. Whether DUs are allowed to be sent and/or received at the same time is configured for the MT and/or DU of the IAB node.
  • the configuration of the MT and DU of the IAB node is based on the duplex capability of the IAB node, in the process of implementing the cross-home node handover of the IAB node, it can be avoided that the DU of the IAB node sends, for example, the resources of the SSB and the IAB node.
  • the resources of the MT to send the SSB conflict, so as to avoid the inability to receive or send due to the resource conflict, and avoid unnecessary packet loss.
  • FIG. 11 it is a flowchart of a method for configuring an IAB node according to an embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 9 to FIG. 10 as an example.
  • the method may be performed by three communication devices, such as a first communication device, a second communication device and a third communication device.
  • the method is performed by the IAB node, the source IAB host and the target IAB host as an example, that is, the first communication device is the IAB node, the second communication device is the source IAB host, and the third communication device is the source IAB host. is the target IAB host for example.
  • the IAB node may be the IAB node performing the handover, or may be the downstream IAB node of the IAB node performing the handover. It should be noted that the embodiments of the present application only take the communication systems shown in FIG. 7 and FIG. 8 as an example, and are not limited to this scenario.
  • an IAB node includes an MT and a DU
  • the MT can be used to communicate with the upper node of the IAB node or the source IAB host or the target IAB host
  • the DU can be used to communicate with the subordinate nodes or terminals of the IAB node.
  • the source IAB host refers to the host base station to which the IAB node is currently connected.
  • the IAB node here refers to the IAB node to be switched, and may also be called the IAB node to be migrated, that is, the IAB node to switch the currently connected source host base station. It should be noted that the follow-up involved in the present invention The solution is also applicable to the downstream IAB node of the to-be-switched IAB node.
  • the target IAB host refers to the base station to which the IAB node will be migrated or handed over.
  • the source IAB host may also be referred to as the source IAB Donor, and the target IAB host may be referred to as the target IAB Donor.
  • the IAB host consists of a centralized unit (CU) (referred to as Donor-CU or gNB-CU in this application) and a distributed unit (DU) (referred to as Donor-CU in this application)
  • DU distributed unit
  • the IAB donor or the donor base station in the subsequent embodiments involved in the present invention refers to the centralized unit of the IAB donor.
  • the source IAB host sends first information to the target IAB host, and the target IAB host receives the first information, where the first information is used to indicate the duplex capability of the IAB node.
  • the duplex capability of the IAB node refers to whether the MT of the IAB node supports DU to receive or send data while receiving or sending data on the same time domain resource. That is, the duplex capability of the IAB node refers to the transmission direction (also referred to as the transmission direction of the time domain resource) in which the MT and the DU of the IAB node transmit data on the same time domain resource. If the IAB node does not support the same transmission direction of MT and DU in the same time domain resource at the same time, and during the cross-host switching process of the IAB node, the transmission direction of the time domain resource configured by the target IAB host for the MT is the same as the time domain resource of the DU. The transmission direction is the same, which will obviously lead to resource conflict in the time domain, and may also lead to abnormal communication of the IAB node.
  • the source IAB host determines the duplex capability of the IAB node, can generate the first information, and send the first information to the target IAB host.
  • the first information may be used to indicate the duplex capability of the IAB node. Since the source IAB host informs the target IAB host of the duplex capability of the IAB node, the target IAB host configures the transmission direction of the time domain resources for the MT according to the duplex capability, which can avoid the transmission direction of the time domain resources of the MT and the time domain resources of the DU. transmission direction conflict.
  • the first information may be used to indicate the duplex capability of the IAB node, in some embodiments, the first information may be referred to as duplex information. Or the duplex capability of the IAB node refers to whether the MT and the DU of the IAB node can multiplex the same time domain resources. Therefore, in some embodiments, the first information may be referred to as multiplexing information or multiplexing capability. Hereinafter, it is collectively referred to as the first information. Specifically, the first information can be used to indicate one or more of the following four situations:
  • the IAB node determines whether the IAB node supports the DU to send the data while the MT receives the data. In other words, it can be considered whether the IAB node has the ability of the DU to send data while the MT receives the data.
  • the capability of the DU to send data while the MT receives data may be referred to as the first capability hereinafter. Conversely, if the IAB node does not support the DU to transmit data while the MT receives data, then the IAB node does not have the first capability.
  • the IAB node determines whether the IAB node supports the DU to receive the data while the MT receives the data. Similarly, the ability of the IAB node to receive data while the IAB node has the MT to receive data can be considered that the IAB node has the second capability. Conversely, if the IAB node does not support the MT to receive data while the DU receives data, then the IAB node does not have the second capability.
  • the IAB node determines whether the IAB node supports the DU to send data while the MT sends data. Similarly, the ability of the IAB node to send data while the IAB node has the MT to send data can be considered that the IAB node has the third capability. Conversely, if the IAB node does not support the DU to send data while the MT sends data, then the IAB node does not have the third capability.
  • the IAB node determines whether the IAB node supports the DU to receive data while the MT sends data. Similarly, the ability of the IAB node to receive data while the IAB node has the MT to send data can be considered that the IAB node has the fourth capability. Conversely, if the IAB node does not support the DU to receive data while the MT sends data, then the IAB node does not have the fourth capability.
  • the above four cases are for one or more cells on the DU and one or more cells on the MT.
  • the duplex capability between them is independent. Whether the MT supports DU receiving or sending data while receiving or sending data refers to whether a specific cell of the MT supports receiving or sending data at the same time as a specific cell of the MT receives or sends data.
  • the MT is used to communicate with the parent node of the IAB node or the source IAB host. If the IAB node can communicate directly with the source IAB host, the MT can send the IAB node's duplex information directly to the source IAB host of the IAB node. If there is a superior node of the IAB node between the IAB node and the source IAB host, the MT can report the duplex information of the IAB node to the superior node of the IAB node, and the superior node forwards it to the source IAB host.
  • the first information may be carried in one or more fields of the existing signaling, which is beneficial to be compatible with the existing signaling.
  • the first information may be carried in X2/Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host.
  • the above one or more fields may be fields already defined in X2/Xn interface signaling, or may be newly defined X2/Xn interface signaling.
  • the embodiments of the present application are not limited.
  • the first information may also be carried in newly defined signaling.
  • the first information may carry Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host.
  • the first information may be carried in a first request message sent by the source IAB host to the target IAB host through Xn interface signaling, where the first request message is used to request the IAB node to switch from the source IAB host to the target IAB host. Since the first request message is used to request the IAB node to switch from the source IAB host to the target IAB host, in some embodiments, the first request message may be referred to as a handover request message. For example, a new field may be added to the handover request message, and the newly added field may be used to carry the first information.
  • the source IAB host can forward the first information to the target IAB host through the core network device. That is, the source IAB host sends the first information to the core network device, and the core network device may not parse the first information but transparently transmit it to the target IAB host after encapsulating the first information through the protocol layer, or the core network device may parse the first information after It is then sent to the target IAB host.
  • the core network device may be a mobility management entity (Mobility Management Entity, MME) or an access and mobility management function (Access and Mobility Function, AMF).
  • MME Mobility Management Entity
  • AMF Access and Mobility Function
  • the target IAB host sends first configuration information to the source IAB host, and the source IAB host receives the first configuration information, where the first configuration information is used to indicate the transmission direction of the time domain resources configured by the target IAB host for the MT function of the IAB node .
  • the target IAB host may configure the MT according to the first information, and generate the first configuration information. For example, the target IAB host may configure the transmission direction of the time domain resources of the MT for the IAB node according to the first information. For example, when the first information indicates that the MT is not supported to receive data, the DU receives data, that is, the IAB node does not have the second capability. In this case, in a certain time domain unit, if the time domain resource direction of the DU is the uplink transmission direction, the target IAB host cannot configure the time domain resource transmission direction for the MT as the downlink transmission direction.
  • the time domain unit may be a symbol or a time slot, for example, a time domain resource indication granularity such as a time slot in LTE or a time slot in NR. Since the transmission direction of the time domain resources configured for the MT function is premised on the first information, in the process of implementing the cross-home switching of the IAB node, the conflict of sending and receiving between the DU function of the IAB node and the MT function can be avoided, thereby avoiding The communication between the IAB node and the lower node of the IAB node or the link between the IAB node and the upper node of the IAB node is abnormal.
  • the first configuration information may include the time slot format configuration of the MT, for example, the TDD uplink and downlink time slot configurations (TDD-UL-DL-ConfigDedicated and/or TDD-UL-DL-ConfigCommon) of the IAB node, mainly It is used to configure the resource transmission direction of one or more symbols or time slots on the time domain resource, such as uplink transmission direction or downlink transmission direction or flexible transmission direction.
  • the MT of the IAB node communicates with the DU of the upper node of the IAB node according to the time slot format configuration of the MT.
  • the flexible transmission direction may be regarded as a pending transmission direction, and may be used as an uplink transmission direction or a downlink transmission direction subsequently. Whether the subsequent flexible transmission direction is used as the downstream transmission direction or the upstream transmission direction can be indicated by the target IAB host or parent node.
  • the target IAB host can send the first configuration information to the source IAB host, and the source IAB host forwards it to the IAB node. After receiving the first configuration information, the source IAB host can send the first configuration information of the MT to the IAB node through RRC signaling.
  • the first configuration information may also be carried on one or more fields of the existing signaling.
  • the first configuration information may be carried in one of RRC signaling, MAC CE signaling or DCI signaling, or X2/Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host, etc. or more.
  • One or more of the above fields can be defined fields in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling or X2/Xn interface signaling, or can be newly defined RRC fields, MAC CE field or DCI field or X2/Xn interface signaling.
  • the embodiments of the present application are not limited.
  • the first configuration information may also be carried in newly defined signaling.
  • the first configuration information may carry Xn interface signaling between the CU node of the target IAB host and the CU node of the source IAB host.
  • the first configuration information may be carried in the first request response message sent by the target IAB host to the source IAB host through Xn interface signaling, where the first request response message is the above-mentioned first request message sent by the source IAB host to the target IAB host response message. Since the first request response message is used to respond to the first request message, in some embodiments, the first request message may be referred to as a handover request response message. For example, a new field may be added to the handover request response message, and the newly added field may be used to carry the first configuration information.
  • the target IAB host can forward the first configuration information to the source IAB host through the core network device.
  • the core network device can communicate with both the source IAB host and the target IAB host. That is, the target IAB host sends the first configuration information to the core network device, and the core network device may not parse the first configuration information but transparently transmit it to the source IAB host after encapsulating the first configuration information through the protocol layer, or the core network device may pass the first configuration information to the source IAB host. After parsing, it is sent to the source IAB host.
  • the core network device may be a mobility management entity (Mobility Management Entity, MME) or an access and mobility management function (Access and Mobility Function, AMF).
  • MME Mobility Management Entity
  • AMF Access and Mobility Function
  • the source IAB host sends second information to the target IAB host, and the target IAB host receives the second information, where the second information is used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU, and/or the second information
  • the information is used to indicate the status of the transmission direction of the time domain resources configured by the source IAB host for the DU.
  • the DU configuration of the IAB node is configured by the source IAB host, and in the process of the cross-home handover of the IAB node, the MT of the IAB node is configured by the target IAB host.
  • the source IAB host can provide the configuration of DU to the target IAB host, so that the target IAB host can refer to the configuration of the source IAB host for DU to configure MT to avoid the configuration of MT There is a conflict with the configuration of the DU.
  • the source IAB host may generate second information, where the second information may be used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU.
  • the second information may include time domain resource configuration information of one or more cells of the DU.
  • the second information may be used to indicate that one or more time slots (or symbols) configured for each cell of the DU are uplink time slots (or uplink symbols) and one or more time slots (or symbols) configured for each cell of the DU.
  • the time slots (or symbols) are downlink time slots (or downlink symbols), and one or more time slots (or symbols) configured for each cell of the DU are one or more of the flexible time slots (or flexible symbols) kind.
  • the second information may also include the status of the transmission direction of the time domain resources configured for the DU, such as a usable state, a conditional use state, or an unusable state.
  • a usable state such as a usable state, a conditional use state, or an unusable state.
  • the state of the transmission direction of the time domain resource is the hard state, it may be considered that the time domain resource configured for the DU is available.
  • the state of the transmission direction of the time domain resource is the soft state, it can be considered that the time domain resource configured for the DU needs to be further indicated by the parent node to determine whether it is available (that is, the conditional use state).
  • the state of the transmission direction of the time domain resource is the (not available, NA) state, the time domain resource configured for the DU may be considered to be unavailable.
  • the second information may be used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU, and the status of the transmission direction of the time domain resources configured by the source IAB
  • the target IAB host can configure the MT according to the first information and the second information, that is, the target IAB host configures the MT according to the duplex capability of the IAB node and the configuration of the source IAB host to the DU.
  • the first configuration information generated by the target IAB host may be part of the configuration information of the MT, that is, the configuration conflicting with the DU configuration is reconfigured, and the remaining configurations can follow the configuration performed by the source IAB host for the MT.
  • another part of the configuration information for the MT may be indicated by the network side as the original configuration information of the MT of the IAB node.
  • the network side instructs the IAB node to migrate through signaling
  • the received part of the configuration information of the MT ie, the first configuration information
  • another part of the existing configuration information of the MT is applied.
  • the network side does not necessarily send signaling, it can also be a system or protocol agreement.
  • the IAB node migrates, part of the configuration information of the MT received by the application and another part of the existing configuration information of the MT are applied. That is, for the configuration that is not in the received configuration information, the MT uses the existing configuration by default.
  • the second information may also be carried on one or more fields of the existing signaling.
  • the second information may be carried in X2/Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host.
  • the above one or more fields may be fields already defined in X2/Xn interface signaling, or may be newly defined X2/Xn interface signaling.
  • the embodiments of the present application are not limited.
  • the second information can also be carried in newly defined signaling.
  • the second information and the first information can be sent to the target IAB host through one signaling, that is, the two types of information can be sent through one signaling, which can save signaling overhead.
  • the second information and the first information may also be sent independently, that is, the sending manner of the second information is not limited, which is more flexible.
  • the second information may carry Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host.
  • the second information may be carried in the above-mentioned first request message (handover request message) sent by the source IAB host to the target IAB host through Xn interface signaling.
  • a new field may be added to the handover request message, and the newly added field may be used to carry the second information.
  • the source IAB host can forward the second information to the target IAB host through the core network device. That is, the source IAB host sends the second information to the core network device, and the core network device may not parse the second information but transparently transmit it to the target IAB host after encapsulating the second information through the protocol layer, or the core network device may parse the second information after It is then sent to the target IAB host.
  • the core network device may be a mobility management entity (Mobility Management Entity, MME) or an access and mobility management function (Access and Mobility Function, AMF).
  • MME Mobility Management Entity
  • AMF Access and Mobility Function
  • the target IAB host can configure the MT according to the first information to avoid conflict between the configuration of the MT and the configuration of the DU, the second information is not essential, that is, the second information is optional. Therefore, S1103 is an optional step, which is illustrated by a dotted line in FIG. 11 .
  • the target IAB host can also configure the MT according to the first information and the second information, then S1103 can be executed before S1102, that is, the execution order of S1103 and S1102 in FIG. 9 is not limited.
  • the target IAB host sends second configuration information to the source IAB host, and the source IAB host receives the second configuration information, where the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the target IAB host is The transmission direction of the time domain resource configured by the DU, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured for the DU by the target IAB host.
  • the configuration of the DU of the IAB node is configured by the source IAB host
  • the configuration of the MT of the IAB node is configured by the target IAB host.
  • the configuration of the DU may conflict with the new configuration of the MT, or the configuration of the DU configured by the source IAB host may not be optimal.
  • the target IAB host can also update the configuration of the DU function, so as to avoid the conflict between the configuration of the DU and the configuration of the MT, and at the same time, try to improve the utilization of the configuration of the DU function.
  • the target IAB host may further configure the DU according to the first information, and generate second configuration information. That is, the target IAB host can also update the configuration configured for the DU by the source IAB host during the inter-home switching process of the IAB node.
  • the DU receives data.
  • the target IAB host can reconfigure the DU, that is, the DU
  • the transmission direction of the configuration time domain resources is the downlink transmission direction, so as to ensure that the configuration of the MT and the configuration of the DU will not conflict.
  • the target IAB host may also configure the DU according to the first information and the second information, that is, reconfigure the DU according to the configuration of the source IAB host as the DU. That is, the target IAB host reconfigures the DU with reference to the configuration of the source IAB host for the DU.
  • the second configuration information generated by the target IAB host may be part of the configuration information of the DU, that is, the configuration conflicting with the MT configuration is reconfigured, and the remaining configurations can follow the configuration performed by the source IAB host for the DU.
  • another part of the configuration information for the DU may be indicated by the network side as the original configuration information of the DU of the IAB node.
  • the network side instructs the IAB node to migrate through signaling
  • the part of the configuration information (ie, the first configuration information) of the received DU is applied, and another part of the existing configuration information of the DU is applied.
  • the network side does not necessarily send signaling, and it may also be a system or protocol agreement.
  • the IAB node migrates, part of the configuration information of the received DU and another part of the existing configuration information of the DU are applied. That is, for the configuration that is not in the received configuration information, the DU uses the existing configuration by default.
  • the target IAB host After the target IAB host determines the configuration performed for the DU, it can generate second configuration information, and forward the second configuration information to the DU of the IAB node via the source IAB host. That is, the target IAB host can send the second configuration information to the source IAB host, and the source IAB host can forward it to the IAB node. After receiving the second configuration information, the source IAB host sends the second configuration information to the IAB node through the F1-AP message. In some embodiments, the F1-AP message may also be carried in RRC signaling for transmission.
  • the second configuration information can be used to indicate the transmission direction of the time domain resources configured by the target IAB host for the DU, and one or more of the status of the transmission direction of the time domain resources configured by the target IAB host for the DU .
  • the second configuration information may be time-domain resource configuration information of one cell of the DU, or may be time-domain resource configuration information of multiple cells of the DU.
  • the second information may be used to indicate that one or more time slots (or symbols) configured for each cell of the DU are uplink time slots (or uplink symbols) and one or more time slots (or symbols) configured for each cell of the DU.
  • the time slots (or symbols) are downlink time slots (or downlink symbols), and one or more time slots (or symbols) configured for each cell of the DU are one or more of the flexible time slots (or flexible symbols) kind.
  • the second configuration information may also indicate the state of the transmission direction of the time domain resources configured for the DU, such as a usable state, a conditional use state, or an unusable state. That is, the second configuration information may also include available resources configured for the DU, unavailable resources, hard type resources, soft type resources, and the like.
  • the second configuration information may include TDD uplink time slot configuration and TDD downlink time slot configuration, as well as available resources configured for DUs, unavailable resources, hard type resources, soft type resources, and the like.
  • the second configuration information may be carried on one or more fields of the existing signaling.
  • the second configuration information may be carried in one of RRC signaling, MAC CE signaling or DCI signaling, or X2/Xn interface signaling between the CU node of the source IAB host and the CU node of the target IAB host, etc. or more.
  • One or more of the above fields can be defined fields in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling or X2/Xn interface signaling, or can be newly defined RRC fields, MAC CE field or DCI field or X2/Xn interface signaling.
  • the embodiments of the present application are not limited.
  • the first configuration information may also be carried in newly defined signaling.
  • the second configuration information and the first configuration information can be sent to the target IAB host through one signaling, that is, two kinds of information can be sent through one signaling, which can save signaling overhead.
  • the second configuration information and the first configuration information may also be sent independently, that is, the sending manner of the second configuration information is not limited, which is more flexible.
  • the second configuration information may carry X2 interface signaling between the CU node of the target IAB host and the CU node of the source IAB host.
  • the second configuration information may be carried in the above-mentioned first request response message (handover request response message) sent by the target IAB host to the source IAB host through X2 interface signaling.
  • a new field may be added to the handover request response message, and the newly added field may be used to carry the second configuration information.
  • the target IAB host can forward the second configuration information to the source IAB host through the core network device. That is, the target IAB host sends the second configuration information to the core network device, and the core network device may not parse the second configuration information but transparently transmit it to the source IAB host after encapsulating the second configuration information through the protocol layer.
  • the second configuration information is not required to be configured by the target IAB host, that is, S1104 is an optional step, so it is illustrated with a dotted line in FIG. 11 .
  • Example 1 please refer to FIG. 12 , which is a schematic flowchart of an exemplary method for configuring an IAB node according to an embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 9 to FIG. 10 as an example.
  • the embodiments of the present application only take the communication systems shown in FIG. 9 and FIG. 10 as an example, and are not limited to this scenario. The flow is described below.
  • the IAB node sends a measurement report to the source IAB host, and the source IAB host receives the measurement report, where the measurement report is used to indicate the results of the IAB node measuring multiple candidate target IAB hosts.
  • the source IAB host may configure a measurement configuration for the IAB node, that is, measurement-related information, which may include, for example, parameters for measuring multiple candidate target IAB hosts.
  • the IAB node measures multiple candidate target IAB hosts according to the measurement configuration, and reports the measurement results to the source IAB host.
  • the source IAB host can determine the target IAB host to which the IAB node is to be migrated from the multiple candidate target IAB hosts according to the measurement result.
  • the source host base station may not determine the target IAB host according to the measurement result of the IAB node.
  • the source IAB host may determine the target IAB host according to historical information or information specified by the network. Therefore, S1201 is an optional step, not essential, which is illustrated by a dotted line in FIG. 12 .
  • the IAB node can send the measurement report to the source IAB host through the parent node. That is, the IAB node sends the measurement report to the parent node, and the parent node can forward the received measurement report to the source IAB host.
  • a parent node between the IAB node and the source IAB host may be referred to as a source parent node (see FIG. 12 as an example).
  • the parent node between the IAB node and the target IAB host is called the target parent node (see Figure 12 as an example).
  • the measurement report may be encapsulated in an F1-AP message between the DU of the source parent node and the CU hosted by the source IAB.
  • the F1-AP message can also be carried in the RRC signaling for transmission.
  • the source IAB host sends a handover request message to the target IAB host, where the handover request message is used to request the IAB node to switch from the source IAB host to the target IAB host.
  • the handover request message may be carried through X2/Xn interface signaling between the CU of the source IAB host and the CU of the target IAB host.
  • the handover request message may include the aforementioned first information.
  • first information For the specific content indicated by the first information and the implementation form, reference may be made to the introduction of the relevant embodiments of S901, which will not be repeated here.
  • the target IAB host can configure the transmission direction of the time domain resources for the MT according to the first information as much as possible. Avoid conflict between the configuration of the MT and the configuration of the DU of the IAB node.
  • the handover request message may further include second information, that is, configuration information configured by the source IAB host for the DU of the IAB node, such as the transmission direction and/or the time domain resource configured by the source IAB node for the DU. Or the state of the transmission direction of the time domain resource configured by the source IAB node for the DU.
  • the target IAB host can reconfigure the DU according to the second information, so as to avoid the configuration of the target IAB host to the MT according to the first information and the source IAB node.
  • the configuration of the DU for the IAB node conflicts.
  • the target IAB host sends a handover request response message to the source IAB host, and the source IAB host receives the handover request response message.
  • the handover request response message can be communicated through the X2/Xn interface between the CU of the target IAB host and the CU of the source IAB host. order to carry.
  • the handover request response message may include configuration information of the MT whose target IAB host is an IAB node, such as the aforementioned first configuration information.
  • configuration information of the MT whose target IAB host is an IAB node such as the aforementioned first configuration information.
  • first configuration information is configured according to the first information, the conflict between the configuration of the MT and the configuration of the DU of the IAB node can be avoided as much as possible.
  • the handover request response message may include first configuration information and configuration information of a DU whose target IAB host is an IAB node, such as the aforementioned second configuration information.
  • first configuration information and configuration information of a DU whose target IAB host is an IAB node such as the aforementioned second configuration information.
  • the second configuration information can be configured with reference to the second information. If the second information indicates that the configuration that the source IAB host is DU does not conflict with the configuration that the target IAB host is MT, the second configuration information can follow the configuration that the source IAB host is DU.
  • the second configuration information may reconfigure the DU so that the configuration of the DU does not conflict with the configuration of the MT.
  • the second configuration information can be used to update the configuration of the DU, so that the better performance of the DU can be guaranteed as much as possible under the condition that the configuration of the MT of the IAB node and the configuration of the DU do not conflict.
  • the source IAB host sends an RRC reconfiguration message to the IAB node, and correspondingly, the IAB node receives the RRC reconfiguration message.
  • the source IAB host can obtain the first configuration information configured by the MT of the IAB node as the target IAB host, or obtain the first configuration information of the MT configured by the target IAB host as the IAB node and the first configuration information for the IAB node.
  • the second configuration information of the DU configuration and notify the IAB node of the configuration performed by the target IAB host for the IAB node.
  • the source IAB host may generate an RRC reconfiguration message, where the RRC reconfiguration message may include the first configuration information. It should be understood that if the source IAB host obtains the first configuration information and the second configuration information, the RRC reconfiguration message may also include the first configuration information and the second configuration information.
  • the RRC reconfiguration information can be encapsulated in the F1-AP message between the DU of the source parent node and the CU hosted by the source IAB, and carried by RRC signaling.
  • the RRC reconfiguration message may further include configuration information for the IAB node to perform random access on the target parent node, for example, the RRC reconfiguration message may also include a physical random access channel (physical random access channel, PRACH) ) resource allocation, etc.
  • the RRC reconfiguration message may also include a physical random access channel (physical random access channel, PRACH) ) resource allocation, etc.
  • the second configuration information may be sent to the IAB node through another signaling, for example, through F1-F1 between the CU of the source IAB node and the IAB node AP message sending. If the first configuration information and the second configuration information are sent to the IAB node through different messages, the IAB node should try to ensure that the first configuration information and the second configuration information take effect at the same time, that is to say, the IAB node can try to apply the first configuration at the same time. information and second configuration information.
  • the IAB node receives the first configuration information first, the first configuration information may not be used immediately until the second configuration information is received, and the first configuration information and the second configuration information may be simultaneously applied.
  • the source IAB host sends the first configuration information and the second configuration information through two signalings, it can try to ensure that the first configuration information and the second configuration information are sent at the same time, so as to ensure that the IAB node receives the first configuration information at the same time. configuration information and second configuration information.
  • the random access process of the DU between the IAB node and the target parent node may follow the random access process in the prior art, which will not be repeated here.
  • S1206 The IAB node sends an RRC reconfiguration complete message to the target IAB host through the target parent node.
  • the RRC reconfiguration complete message can be used to instruct the IAB node to randomly access the target parent node and update the configuration of the MT, or update the configuration of the MT and the configuration of the DU, and complete the RRC link with the target IAB host.
  • the RRC reconfiguration complete message may be encapsulated in an F1-AP message between the DU of the target parent node and the target IAB host.
  • the IAB node establishes an FI interface with the target IAB host, and completes the configuration of routing and bearer mapping.
  • the IAB node After the IAB node completes the RRC link with the target IAB host, it can establish an F1 interface with the target IAB host, and complete the configuration of routing and bearer mapping, so as to perform data transmission between the IAB node and the target IAB host according to the configuration.
  • FIG. 12 takes the IAB node without subordinate nodes (child nodes) as an example, if there is a subordinate node of the IAB node or a subordinate node of the subordinate node. Then, the target IAB host can also configure the DUs of the subordinate nodes of the IAB node and the subordinate nodes, so as to update the configuration of the DUs of the subordinate nodes of the IAB node and the subordinate nodes.
  • an X2/Xn interface exists between the CU of the source IAB host and the CU of the target IAB host. If there is no X2/Xn interface between the CU of the source IAB host and the CU of the target IAB host, that is, the CU of the source IAB host and the CU of the target IAB host do not have the ability to directly interact with interface signaling, then the core network equipment To forward the message to be sent.
  • the configuration method of the IAB node provided by the embodiment of the present application is described in order that there is no X2/Xn interface between the CU of the source IAB host and the CU of the target IAB host.
  • Example 2 please refer to FIG. 13 , which is a schematic flowchart of an exemplary method for configuring an IAB node according to an embodiment of the present application.
  • the method is applied to the communication system shown in FIG. 9 to FIG. 10 as an example.
  • the embodiments of the present application only take the communication systems shown in FIG. 9 and FIG. 10 as an example, and are not limited to this scenario. The flow is described below.
  • the IAB node sends a measurement report to the source IAB host, and the source IAB host receives the measurement report, where the measurement report is used to indicate the results of the IAB node measuring multiple candidate target IAB hosts.
  • the source IAB host sends a handover request message to the core network device, and correspondingly, the core network device receives the handover request message.
  • the core network device sends a handover request message to the target IAB host, and correspondingly, the target IAB host receives the handover request message.
  • the source IAB host can forward the above handover request message to the target IAB host through the core network device.
  • the handover request message For the implementation of the handover request message, reference may be made to the relevant content in the foregoing embodiment shown in FIG. 12 , which will not be repeated here.
  • the target IAB host sends a handover request response message to the core network device, and correspondingly, the core network device receives the handover request response message.
  • the core network device sends a handover request response message to the source IAB host, and correspondingly, the source IAB host receives the handover request response message.
  • the target IAB host can forward the above handover request response message to the source IAB host through the core network device.
  • the handover request response message For the implementation of the handover request response message, reference may be made to the relevant content in the foregoing embodiment shown in FIG. 12 , which will not be repeated here.
  • the source IAB host sends an RRC reconfiguration message to the IAB node.
  • the target IAB host configures the transmission of time domain resources for the MT function on the premise of the duplex capability of the MT function and the DU function of the IAB node. direction. In this way, the conflict between the transmission direction of the time domain resource of the MT function of the IAB node and the transmission direction of the time domain resource of the DU function can be avoided, thereby avoiding communication abnormality of the terminal as much as possible.
  • the target IAB host can also update the configuration of the DU of the IAB node, that is, the target IAB host configures both the MT of the IAB node and the DU of the IAB node, avoiding the configuration of the MT and the configuration of the DU. In the case of configuration conflict, try to ensure the best performance of the DU.
  • the embodiments of the present application are provided. method is introduced.
  • the IAB node, the source IAB host, and the target IAB host to be migrated may include hardware structures and/or software modules, and the hardware structures, software modules, or hardware structures plus software The form of module to achieve the above functions.
  • FIG. 14 shows a schematic structural diagram of a communication apparatus 1400 .
  • the communication apparatus 1400 may correspondingly implement the functions or steps implemented by the source IAB host or the target IAB host in each of the foregoing method embodiments.
  • the communication apparatus may include a processing module 1410 and a transceiver module 1420 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 1410 and the transceiver module 1420 may be coupled with the storage unit, for example, the processing module 1410 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the transceiving module 1420 may include a transmitting module and a receiving module.
  • the communication apparatus 1400 can correspondingly implement the behaviors and functions of the target IAB host in the above method embodiments.
  • the communication apparatus 1400 may be a target IAB host, or may be a component (eg, a chip or a circuit) applied in the target IAB host.
  • the transceiver module 1420 may be configured to perform all receiving or sending operations performed by the target IAB host in the embodiment shown in FIG. 9, FIG. 10 or FIG. 13, such as S901-S904 in the embodiment shown in FIG. 9, and/or using
  • the processing module 1410 is used to perform all operations performed by the target IAB host in the embodiment shown in FIG.
  • the processing module 1410 is used to perform the embodiment shown in FIG. 10. All operations performed by the target IAB host in the target IAB host except the transceiving operation; for example, the transceiving module 1420 may be used to perform S1303, S1304 in the embodiment shown in FIG. 13, and/or used to support the techniques described herein.
  • the processing module 1410 is configured to perform all operations except the transceiving operation performed by the target IAB host in the embodiment shown in FIG. 11 .
  • the transceiver module 1420 is configured to receive the first information from the source IAB host, and send the first configuration information to the source IAB host;
  • the processing module 1410 is configured to generate the first configuration information, the first configuration information For the IAB node to switch from the source IAB host to the communication device 1400, the IAB node includes the MT function and the DU function, the first configuration information is determined according to the first information, and the first configuration information is used to instruct the communication device 1400 to be
  • the transmission direction of the time domain resource configured by the MT function, the first information is used to indicate one or more of the following four kinds of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the transceiver module 1420 is further configured to: receive second information from the source IAB host, where the second information is used to indicate the transmission direction of the time domain resources configured by the source IAB host for the DU function, and/or , the second information is used to indicate the state of the transmission direction of the time domain resources configured by the source IAB host for the DU function.
  • the transceiver module 1420 is further configured to: send second configuration information to the source IAB host, where the second configuration information is determined according to the first information, and the second configuration information is used to instruct the communication apparatus 1400 The transmission direction of the time domain resource configured for the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the communication apparatus 1400 for the DU function.
  • the first information and/or the second information are carried in the first request message, the first request message is carried in the first interface signaling, and the first interface is between the communication device 1400 and the source IAB
  • the interface between hosts, the first request message is used to request the IAB node to switch from the source IAB host to the communication apparatus 1400; or, the first information and/or the second information are received by the communication apparatus 1400 through the core network device .
  • the first configuration information and/or the second configuration information are carried in the first request response message, the first request response message is carried in the first interface signaling, and the first interface is the communication device
  • the first request response message is a response message sent by the communication device 1400 to the source IAB host to switch the IAB node from the source IAB host to the request message of the communication device 1400;
  • the first configuration information and/or the second configuration information is forwarded by the communication apparatus 1400 to the source IAB node through the core network device.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction; the state of the transmission direction of the time domain resource is available state, conditional use state or unavailable status of use.
  • the communication apparatus 1400 can correspondingly implement the behaviors and functions of the source IAB host in the foregoing method embodiments.
  • the communication apparatus 1400 may be the source IAB host, or may be a component (eg, a chip or a circuit) applied in the source IAB host.
  • the transceiver module 1420 may be configured to perform all receive or transmit operations performed by the source IAB host in the embodiment shown in FIG. 9/FIG. 10 or FIG. 13, such as S901-S904 in the embodiment shown in FIG.
  • the processing module 1410 is used to perform all the operations performed by the source IAB host in the embodiment shown in FIG.
  • the processing module 1410 is used to perform the processing by the source IAB in the embodiment shown in FIG. 10. All operations performed by the host except the transceiving operations; for example, the transceiving module 1420 may be used to perform S1301, S1302, S1305, S1306 in the embodiment shown in FIG. 13, and/or used to support the techniques described herein
  • the processing module 1410 is configured to perform all operations performed by the source IAB host except the transceiving operation in the embodiment shown in FIG. 11 .
  • the processing module 1410 is configured to generate the first information; the transceiver module 1420 is configured to send the first information to the target IAB host, and receive the first configuration information from the target IAB host, the first configuration information using After the IAB node switches from the communication device 1400 to the target IAB host, the IAB node includes an MT function and a DU function, the first configuration information is determined according to the first information, and the first configuration information is used to indicate that the target IAB host is the MT
  • the transmission direction of the time domain resources configured by the function, the first information is used to indicate one or more of four kinds of information:
  • the DU function sends data while supporting or not supporting the MT function to receive data
  • the DU function receives data while supporting or not supporting the MT function to receive data
  • the DU function While supporting or not supporting the MT function to transmit data, the DU function transmits data
  • the DU function receives data while supporting or not supporting the MT function to transmit data.
  • the transceiver module 1420 is further configured to: send second information to the target IAB host, where the second information is used to indicate the transmission direction of the time domain resources configured by the communication apparatus 1400 for the DU function, and/ Or, the second information is used to indicate the state of the transmission direction of the time domain resource configured by the communication apparatus for the DU function.
  • the transceiver module 1420 is further configured to: receive second configuration information from the target IAB host, where the second configuration information is determined according to the first information, and the second configuration information is used to indicate that the target IAB host is The transmission direction of the time domain resource configured by the DU function, and/or the second configuration information is used to indicate the state of the transmission direction of the time domain resource configured by the target IAB host for the DU function.
  • the first information and/or the second information are carried in the first request message, the first request message is carried in the first interface signaling, and the first interface is between the target IAB host and the communication device 1400, the first request message is used to request the IAB node to switch from the communication device 1400 to the target IAB host; or, the first information and/or the second information is sent by the communication device 1400 through the core network device .
  • the first configuration information and/or the second configuration information are carried in the first request response message, the first request response message is carried in the first interface signaling, and the first interface is the target IAB host and the The interface between the communication devices, the first request response message is the response message of the request message sent by the target IAB host to the communication device 1400 to switch the IAB node from the communication device 1400 to the target IAB host; or, The first configuration information and/or the second configuration information is received by the communication apparatus 1400 through a core network device.
  • the transmission direction of the time domain resource is an uplink transmission direction or a downlink transmission direction or a flexible transmission direction;
  • the state of the transmission direction of the time domain resource is a usable state, a conditional use state or an unusable state .
  • FIG. 15 shows a communication apparatus 1500 provided in this embodiment of the present application, where the communication apparatus 1500 may be a source IAB host, capable of implementing the function of the source IAB host in the method provided in the embodiment of the present application, or the communication apparatus 1500 may be a source IAB host.
  • the target IAB host can implement the functions of the target IAB host in the methods provided in the embodiments of the present application; alternatively, the communication device 1500 may also be a device that can support the source IAB hosts to implement the corresponding functions in the methods provided in the embodiments of the present application, or can A device that supports the target IAB host to implement the corresponding functions in the methods provided in the embodiments of the present application.
  • the communication apparatus 1500 may be a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 1420 may be a transceiver, and the transceiver is integrated into the communication device 1500 to form a communication interface 1510 .
  • the communication apparatus 1500 includes at least one processor 1520, which is configured to implement or support the communication apparatus 1500 to implement the function of the source IAB host or the target IAB host in the method provided in the embodiments of this application. For details, refer to the detailed description in the method example, which is not repeated here.
  • Communication apparatus 1500 may also include at least one memory 1530 for storing program instructions and/or data.
  • Memory 1530 and processor 1520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1520 may cooperate with the memory 1530.
  • the processor 1520 may execute program instructions and/or data stored in the memory 1530 to cause the communication device 1500 to implement the corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1500 may also include a communication interface 1510 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1500 may communicate with other devices.
  • a communication interface 1510 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 1500 may communicate with other devices.
  • the communication device is the source IAB host
  • the other device is the target IAB host; or, when the communication device is the target IAB host, the other device is the source IAB host.
  • the processor 1520 may use the communication interface 1510 to send and receive data.
  • the communication interface 1510 may specifically be a transceiver.
  • the specific connection medium between the communication interface 1510 , the processor 1520 , and the memory 1530 is not limited in the embodiments of the present application.
  • the memory 1530, the processor 1520, and the communication interface 1510 are connected through a bus 1540 in FIG. 15.
  • the bus is represented by a thick line in FIG. 15, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 15, but it does not mean that there is only one bus or one type of bus.
  • the processor 1520 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1530 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • FIG. 16 shows another form of the communication device 1300 .
  • the communication device 1500 is a source IAB host or a target IAB host.
  • the source IAB host or the target IAB host includes a CU and a DU
  • the CU may include a communication interface, a processor and a memory, and connect the communication interface, the processor and the A bus of memory where a communication interface can be used to communicate with a CU of another IAB host or a DU of an IAB node.
  • the DU may also include a communication interface, a processor, and a memory, and a bus connecting the communication interface, the processor, and the memory, wherein the communication interface is used to communicate with the MT of the IAB node.
  • FIG. 17 shows another form of a communication device.
  • the communication device is the source IAB host or the target IAB host as an example.
  • the communication device 1700 can be applied in the system shown in FIG. 7 or FIG. 8 , and can be the host node in FIG. 7 and FIG. 8 , and execute the function of the source IAB host or the target IAB host in the above method embodiments.
  • the communication device 1700 may include one or more radio frequency units, such as a remote radio unit (RRU) 1710 and one or more baseband units (BBU) (also referred to as digital units, DUs) )1720.
  • RRU 1710 may be referred to as a communication module, corresponding to the transceiver module 1420 in FIG.
  • the communication module may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1711 and RF unit 1712.
  • the RRU 1710 part is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals and baseband signals.
  • the communication device 1700 is used by the source IAB host to send the above-mentioned first information to the target IAB host.
  • the part of the BBU 1720 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 1710 and the BBU 1720 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1720 is the control center of the base station, and can also be called a processing module, which can correspond to the processing module 1410 in FIG. 14 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 1720 may be composed of one or more single boards, and the multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 1720 also includes a memory 1721 and a processor 1722.
  • the memory 1721 is used to store necessary instructions and data.
  • the processor 1722 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation procedure of the source IAB host or the target IAB host in the above method embodiments.
  • the memory 1721 and processor 1722 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • Embodiments of the present application further provide a communication system, specifically, the communication system includes an IAB node, a source IAB host and a target IAB host, or may also include more IAB nodes, source IAB hosts and target IAB hosts.
  • the source IAB host and the target IAB host are respectively used to implement the functions of the related devices in the above-mentioned FIG. 9 , FIG. 10 or FIG. 13 .
  • the source IAB host and the target IAB host are respectively used to implement the functions of the related devices in the above-mentioned FIG. 9 , FIG. 10 or FIG. 13 .
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method performed by the source IAB host and the target IAB host in FIG. 9 , FIG. 10 or FIG. 13 .
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method performed by the source IAB host and the target IAB host in FIG. 9 , FIG. 10 or FIG. 13 .
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the functions of the source IAB host and the target IAB host in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请公开了一种 IAB 节点的配置方法及通信装置,该方法包括: 目标 IAB 宿主接收来自源IAB宿主的第一信息,以及向源 IAB 宿主发送第一配置信息; IAB 节点包括 MT 和 DU,第一配置信息是根据第一信息确定的,用于指示目标 IAB 宿主为 MT 配置的时域资源的传输方向,第一信息用于指示以下四种信息中的一种或多种: 支持或不支持 MT 接收数据的同时,DU 发送数据;支持或不支持 MT 接收数据的同时,DU 接收数据;支持或不支持 MT 发送数据的同时,DU 发送数据;支持或不支持 MT 发送数据的同时,DU 接收数据。第一信息可以是双工能力信息,第一配置信息以第一信息为前提,在 IAB 节点的跨宿主切换过程中,可避免 DU 和 MT 收发冲突。

Description

一种IAB节点的配置方法及通信装置
相关申请的交叉引用
本申请要求在2020年08月07日提交中国专利局、申请号为202010788512.4、申请名称为“一种IAB节点的配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种IAB节点的配置方法及通信装置。
背景技术
为了提升网络容量和覆盖,提出了一种支持无线回传传输的中继节点用于实现密集网络的部署。把支持中继功能的节点简称为中继节点,中继节点对接入其小区的终端提供与普通基站类似的功能和服务,中继节点与终端之间的通信链路称之为接入链路(access link)。中继节点通过无线接口以类似终端的方式接入一个服务于它的基站,该基站称为另一中继节点或宿主基站(donor base station),中继节点和中继节点之间、以及中继节点和宿主基站之间的无线接口链路称为回传链路(BackHaul link)。
未来通信技术支持更大的带宽且支持更大规模的多天线或者多波束的传输,为接入链路和回传链路共享空口资源的中继提供了条件,也就是为集成了无线接入链路和无线回传链路的中继提供了条件。集成了无线接入链路和无线回传链路的中继可以称为接入回传一体化(integrated access and backhaul,IAB)节点。应理解,IAB节点与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网,IAB节点也可以为多个下级节点和终端提供接入服务。
回传链路或者接入链路的链路状态不佳或者拥塞等可能导致IAB节点与某个上级节点之间的链路通信中断,可能会涉及到跨宿主基站的切换,如何进行IAB节点的跨宿主基站切换的资源配置是需要解决的问题。
发明内容
本申请提供一种IAB节点的配置方法及通信装置,在IAB节点的跨宿主切换过程中,可避免IAB节点的MT配置和DU配置冲突。
第一方面,提供一种IAB节点的配置方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为目标IAB宿主为例进行描述。该方法包括:
目标IAB宿主接收来自源IAB宿主的第一信息,以及该目标IAB宿主向所述源IAB宿主发送第一配置信息,该第一配置信息用于IAB节点从源IAB宿主切换到目标IAB宿主,IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示以下四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
在本申请实施例中,第一信息可用于指示如上的四种信息,上述四种信息可认为是IAB节点的双工能力或双工信息或复用能力或复用信息。目标IAB宿主根据第一信息确定第一配置信息,即目标IAB宿主根据IAB节点的双工能力为IAB节点配置MT功能的时域资源的传输方向。例如第一信息指示不支持MT功能接收数据的同时,DU功能接收数据,那么如果某时域资源内DU功能的时域资源的传输方向为上行传输方向(DU功能的上行传输即指示DU功能接收数据),那么第一配置信息在该时域资源内不可为MT功能配置时域资源的传输方向为下行传输方向(MT功能的下行传输即指示MT功能接收数据)。可见,通过本申请实施例提供的方法,由于为MT功能配置的时域资源的传输方向是以第一信息为前提的,所以在实现IAB节点的跨宿主的切换过程中,可避免IAB节点的DU功能和MT功能收发冲突,进而可避免IAB节点与该IAB节点的下级节点之间的链路或IAB节点与该IAB节点的上级节点之间的链路的通信异常。
在可能的实现方式中,所述方法还包括:目标IAB宿主接收来自源IAB宿主的第二信息,该第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向的状态。该方案中,源IAB宿主可向目标IAB宿主提供源IAB宿主为所述DU功能配置的时域资源的传输方向和/或所述传输方向的状态,这样目标IAB宿主就可以参考源IAB宿主为所述DU功能的配置确定如何配置MT功能,以避免MT功能的配置和DU功能的配置存在冲突。
在可能的实现方式中,所述方法还包括:目标IAB宿主向源IAB宿主发送第二配置信息,该第二配置信息是根据第一信息确定的,第二配置信息用于指示目标IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示目标IAB宿主为DU功能配置的时域资源的传输方向的状态。该方案中,考虑到在跨宿主切换之前,所述DU功能的配置是源IAB宿主配置的,在跨宿主切换之后,所述MT功能的配置是由目标IAB宿主配置的,这种情况下,源IAB宿主为DU功能所配置的配置可能并不是较优的。为此,目标IAB宿主还可以更新DU功能的配置,尽量提高DU功能配置的利用率。
在可能的实现方式中,第一信息和/或第二信息携带在第一请求消息中,第一请求消息承载于第一接口信令,第一接口是目标IAB宿主与源IAB宿主之间的接口,第一请求消息用于请求IAB节点从源IAB宿主切换到目标IAB宿主;或者,第一信息和/或第二信息是目标IAB宿主通过核心网设备接收的。该方案列举了第一信息和第二信息的两种实现方式,即第一信息或第二信息可通过源IAB宿主和目标IAB宿主之间的接口发送,或者也可以通过分别与源IAB宿主和目标IAB宿主可通信的核心网设备转发,较为灵活。示例性的,第一信息和/或第二信息可携带在IAB节点从源IAB宿主切换到目标IAB宿主的请求消息内,更好地兼容现有协议架构。另外,第一信息和第二信息可以通过一条信令一起发送,即通过一条信令实现两种信息的发送,可节约信令的开销;或者,第一信息和第二信息可分别独立发送,不会限制第一信息和第二信息的发送方式,较为灵活。
在可能的实现方式中,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是目标IAB宿主与源IAB宿主之间的接 口,第一请求响应消息为目标IAB宿主向源IAB宿主发送的IAB节点从源IAB宿主切换到目标IAB宿主的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是目标IAB宿主通过核心网设备转发给源IAB宿主的。该方案列举了第一配置信息和第二配置信息的两种实现方式,即第一配置信息或第二配置信息可通过目标IAB宿主和源IAB宿主之间的接口发送,或者也可以通过分别与目标IAB宿主和源IAB宿主可通信的核心网设备转发,较为灵活。示例性的,第一配置信息和/或第二配置信息可携带在IAB节点从源IAB宿主切换到目标IAB宿主的请求消息的响应消息内,更好地兼容现有协议架构。另外,第一配置信息和第二配置信息可以通过一条信令一起发送,即通过一条信令实现两种信息的发送,可节约信令的开销;或者,第一配置信息和第二配置信息可分别独立发送,不会限制第一信息和第二信息的发送方式,较为灵活。
在可能的实现方式中,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。该方案列举了时域资源可能的三种传输方向,以及每种传输方向的三种状态。
第二方面,提供另一种IAB节点的配置方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为源IAB宿主为例进行描述。该方法包括:
源IAB宿主向目标IAB宿主发送第一信息,以及该源IAB宿主接收来自目标IAB宿主的第一配置信息,该第一配置信息用于IAB节点从源IAB节点切换到目标IAB宿主,IAB节点包括MT功能和DU功能,第一配置信息是根据第一信息确定的,所述第一配置信息用于指示所述目标IAB宿主为MT功能配置的时域资源的传输方向,所述第一信息用于指示四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
在可能的实现方式中,所述方法还包括:源IAB宿主向目标IAB宿主发送第二信息,第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,所述方法还包括:源IAB宿主接收来自目标IAB宿主的第二配置信息,第二配置信息是根据第一信息确定的,第二配置信息用于指示目标IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示目标IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,第一信息和/或第二信息携带在第一请求消息中,该第一请求消息承载于第一接口信令,第一接口是目标IAB宿主与源IAB宿主之间的接口,所述第一请求消息用于请求IAB节点从源IAB宿主切换到目标IAB宿主;或者,第一信息和/或第二信息是源IAB宿主通过核心网设备发送的。
在可能的实现方式中,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是目标IAB宿主与源IAB宿主之间的接口,第一请求响应消息为目标IAB宿主向源IAB宿主发送的IAB节点从源IAB宿主切换到目标IAB宿主的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是源IAB 宿主通过核心网设备接收的。
在可能的实现方式中,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发模块和处理模块,其中:
所述收发模块用于接收来自源IAB宿主的第一信息,以及向所述源IAB宿主发送第一配置信息;所述处理模块用于生成所述第一配置信息,该第一配置信息用于IAB节点从所述源IAB宿主切换到所述通信装置;
其中,所述IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示所述通信装置为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示以下四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
在可能的实现方式中,所述收发模块还用于:
接收来自源IAB宿主的第二信息,第二信息用于指示源IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,第二信息用于指示源IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,所述收发模块还用于:向源IAB宿主发送第二配置信息,第二配置信息是根据第一信息确定的,第二配置信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,第一信息和/或第二信息携带在第一请求消息中,第一请求消息承载于第一接口信令,第一接口是所述通信装置与源IAB宿主之间的接口,第一请求消息用于请求IAB节点从源IAB宿主切换到所述通信装置;或者,第一信息和/或第二信息是所述通信装置通过核心网设备接收的。
在可能的实现方式中,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是所述通信装置与源IAB宿主之间的接口,第一请求响应消息为所述通信装置向源IAB宿主发送的IAB节点从源IAB宿主切换到所述通信装置的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是所述通信装置通过核心网设备转发给源IAB节点的。
在可能的实现方式中,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发模块和处理模块,其中:
所述处理模块,用于生成第一信息;
所述收发模块,用于向目标IAB宿主发送所述第一信息,以及接收来自目标IAB宿主的第一配置信息,该第一配置信息用于IAB节点从所述通信装置切换到目标IAB宿主;
其中,所述IAB节点包括MT功能和DU功能,第一配置信息是根据第一信息确定的,第一配置信息用于指示目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
在可能的实现方式中,所述收发模块还用于:向目标IAB宿主发送第二信息,第二信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向,和/或,第二信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,所述收发模块还用于:接收来自目标IAB宿主的第二配置信息,第二配置信息是根据第一信息确定的,第二配置信息用于指示目标IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示目标IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
在可能的实现方式中,第一信息和/或第二信息携带在第一请求消息中,第一请求消息承载于第一接口信令,第一接口是目标IAB宿主与所述通信装置之间的接口,第一请求消息用于请求IAB节点从所述通信装置切换到目标IAB宿主;或者,第一信息和/或第二信息是所述通信装置通过核心网设备发送的。
在可能的实现方式中,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是目标IAB宿主与所述通信装置之间的接口,第一请求响应消息为目标IAB宿主向所述通信装置发送的所述IAB节点从所述通信装置切换到目标IAB宿主的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是所述通信装置通过核心网设备接收的。
在可能的实现方式中,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第三方面或第四方面中的通信装置,或者为设置在第三方面或第四方面中的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储 计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述第一方面或第二方面方法实施例中由目标IAB宿主或源IAB宿主所执行的方法。
应理解,该通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。该收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为目标IAB宿主时,该其它设备为源IAB宿主;或者,当该通信装置为源IAB宿主时,该其它设备为目标IAB宿主。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第三方面或第四方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例提供了一种通信系统,所述通信系统包括第三方面所述的通信装置和第四方面所述的通信装置。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由目标IAB宿主执行的方法;或实现上述各方面中由源IAB宿主执行的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由目标IAB宿主执行的方法被执行,或使得上述各方面中由源IAB宿主执行的方法被执行。
上述第五方面至第九方面及其实现方式的有益效果可以参考对第一方面或第二方面的方法及其实现方式的有益效果的描述。
本申请实施例提供了的方法中,在IAB节点的跨宿主切换过程中,目标IAB宿主以IAB节点的MT功能和DU功能的双工能力为前提,为所述MT功能配置时域资源的传输方向。这样可避免IAB节点的MT功能的时域资源的传输方向和DU功能的时域资源的传输方向发生冲突,进而尽量避免IAB节点的通信异常。
附图说明
图1为本申请实施例提供的通信系统的架构图;
图2为本申请实施例提供的IAB节点的结构示意图;
图3为本申请实施例提供的一种回传链路、接入链路的示意图;
图4为本申请实施例适用的一示例性的通信系统的架构示意图;
图5为本申请实施例适用的一示例性的通信系统的架构示意图;
图6为本申请实施例适用的一示例性的通信系统的架构示意图;
图7为本申请实施例提供的IAB节点的用户面协议栈示意图;
图8为本申请实施例提供的IAB节点的控制面协议栈示意图;
图9为本申请实施例提供的IAB节点跨宿主的切换一示意图;
图10为本申请实施例提供的IAB节点跨宿主的切换的另一示意图;
图11为本申请实施例提供的IAB节点的配置方法的流程示意图;
图12为本申请实施例提供的IAB节点的配置方法的一示例性的流程示意图;
图13为本申请实施例提供的IAB节点的配置方法的另一示例性的流程示意图;
图14为本申请实施例提供的通信装置的一种结构示意图;
图15为本申请实施例提供的通信装置的另一种结构示意图;
图16为本申请实施例提供的示例性的通信装置的一种结构示意图;
图17为本申请实施例提供的示例性的通信装置的另一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
1)终端侧设备,是一种向用户提供语音和/或数据连通性的设备。本申请涉及的终端侧设备可以为终端设备或终端,或者所述终端设备内部能够实现该终端设备功能的硬件部件。
在本申请实施例中,终端侧设备可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。一些终端设备的举例为:个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、条码、射频识别(radio frequency identification,RFID)、传感器、卫星导航系统,例如全球定位系统(global positioning system,GPS)、北斗定位系统,激光扫描器等信息传感设备等设备。
终端侧设备还可以可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。该终端还可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等。
终端侧设备的功能可以通过终端设备内部的硬件部件来实现,所述硬件部件可以为所述终端设备内部的处理器和/或可编程的芯片。可选的,该芯片可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic  device,PLD)实现。上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL),片上系统(system on a chip,SOC)中的任一项或其任意组合。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)宿主基站(Donor base station),也可以称为宿主节点,是指通过该节点可以接入核心网的节点,是通信系统中将终端侧设备接入到无线网络的设备,宿主基站一般通过有线链路(例如光纤线缆)连接到核心网。宿主基站可负责接收核心网的数据并转发给无线回传设备,或者接收无线回传设备的数据并转发给核心网。宿主基站一般可以通过有线的方式连接到网络。
作为一种示例,宿主基站可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)等,也可以包括演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)等。作为另一种示例,宿主基站可以包括集中单元(centralized unit,CU)(本申请中简称为Donor-CU或者gNB-CU)和分布单元(distributed unit,DU)(本申请中简称为Donor-DU或者gNB-DU)。gNB-CU和gNB-DU通过F1接口相连,F1接口又可以进一步包括控制面接口(F1-C)和用户面接口(F1-U)。CU和核心网之间通过下一代(next generation,NG)接口相连。其中,gNB-CU或者Donor-CU还可以是以用户面(User plane,UP)(本申请中简称为CU-UP)和控制面(Control plane,CP)(本申请中简称为CU-CP)分离的形态存在,即gNB-CU或者Donor-CU由CU-CP和CU-UP组成。一个gNB-CU可以包括一个gNB-CU-CP和至少一个gNB-CU-UP。或者,一个Donor-CU可以包括一个Donor-CU-CP和至少一个Donor-CU-UP。
该宿主基站的功能可以是由宿主基站内部的硬件部件实现,例如,所述宿主基站内部的处理器和/或可编程的芯片。例如,该芯片可以通过ASIC实现,或PLD实现。上述PLD可以是CPLD、FPGA、GAL、SOC中任一项或其任意组合。
3)本申请实施例中“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。本申请实施例中的术语“系统”和“网络”可被互换使用。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
下面介绍与本申请实施例相关的技术特征。
为了提高频谱利用率,未来的基站部署将会更加密集。然而由于光纤的部署成本非常高昂,通过无线回传设备的回传链路与核心网建立连接,可节省部分光纤部署成本。无线回传设备可以通过接入链路(access link,AL)为终端侧设备提供无线接入服务,无线回传设备通过回传链路(backhaul link,BL)连接到宿主基站传输终端侧设备的业务数据,通过对业务数据的重新发送或者转发,来扩大移动通信系统的覆盖范围。作为一种示例,在长期演进(long term evolution,LTE),无线回传设备可以称为中继节点(relay node,RN),也可以称为中继设备,或者中继传输接收点(relay transmission and receptio point,rTRP)或传输点(transmission point,TP)等。
无线回传设备可以与一个或多个上级节点(父节点)建立无线回传链路,并通过上级节点接入核心网。上级节点可通过多种信令对无线回传设备进行一定的控制(例如,数据调度、定时调制、功率控制等)。另外,无线回传设备可以为一个或多个下级节点(子节点)提供服务。无线回传设备的上级节点可以是基站,也可以是另一个中继节点。无线回传设备的下级节点可以是终端,也可以是另一个中继节点。
为了提高频谱的利用率,无线回传设备与上级节点之间的链路和无线回传设备与下级节点之间的链路可共享相同频段,该方案也称为带内中继。带内中继一般具有半双工的约束。也就是无线回传设备在接收其上级节点发送的下行信号时不能向其下级节点发送下行信号,且无线回传设备在接收其下级节点发送的上行信号时不能向其上级节点发送上行信号。
新一代无线通信系统(new radio,NR)的中继方案被称为IAB,相应的,无线回传设备被称为IAB节点(IAB node)。IAB节点在正常工作时,IAB节点与上级节点之间的链路和IAB节点与下级节点之间的链路可以以时分,空分或频分的方式进行资源复用。
图1示出了一种IAB系统,IAB节点为终端提供无线接入和接入业务的无线回传。IAB donor节点(IAB宿主节点)向IAB节点提供无线回传功能,并提供终端与核心网的接口。IAB节点通过无线回传链路连接到IAB donor节点,从而使IAB节点所服务的终端侧设备与核心网进行连接。
需要说明的是,在如图1所示的网络架构图中,尽管示出了终端侧设备、无线回传设备及宿主基站,但该网络架构可以并不限于包括终端侧设备、无线回传设备及宿主基站。例如,还可以包括核心网设备或用于承载虚拟化网络功能的设备等,这些对于本领域普通技术人员而言是显而易见的,在此不一一详述。另外,如图1所示的系统中,尽管示出了一个终端侧设备、一个无线回传设备及一个宿主基站,但该网络架构并不限制终端侧设备、无线回传设备及宿主基站的数量,例如,也可以包括多个终端侧设备、多个无线回传设备及多个宿主基站等。在下文的描述中,以无线回传设备是IAB节点为例。
图2示出了IAB节点的一种结构示意图。NR中的IAB节点可包括移动终端(mobile termination,MT)与分布式单元(distributed unit,DU)两部分。MT也可以理解为在IAB节点中类似终端的一个组件。DU是相对网络设备的集中单元(centralized unit,CU)功能而言的。因此,也可认为IAB节点包括MT功能和DU功能,为了描述简便,在下文中,将MT功能称为MT,将DU功能称为DU。由于MT类似一个普通终端的功能,那么可以理解为MT用于IAB节点与上级节点(父节点)通信。DU用于IAB节点与下级节点(子节点)通信。应理解,父节点可以是基站或者其他IAB节点,子节点可以是终端或者其他IAB节点。MT与父节点通信的链路称为上级回传链路(parent backhaul link),DU与下级 IAB节点通信的链路称为下级回传链路(child backhaul link),而DU与下属终端通信的链路称为接入链路。IAB节点可通过多级父节点连接至宿主节点。在一些实施例中,下级回传链路也被称为接入链路,其中,上级回传链路包括上级回传上行链路(uplink,UL)以及上级回传下行链路(downlink,DL),下级回传链路包括下级回传UL和下级回传DL,接入链路包括接入UL和接入DL,如图3所示。
本申请实施例提供的IAB节点的配置方法可以应用于包括无线回传设备的各种通信系统,例如NR系统、LTE系统、LTE-A系统、全球微波互联接入(worldwide interoperability for microwave access,WiMAX),或无线局域网络(wireless local area networks,WLAN)等。
示例性的,本申请实施例提供的通信方法可以应用于如图1所示的网络架构。在图1所示的网络架构中,终端侧设备通过无线的方式与无线回传设备相连,无线回传设备通过无线的方式与宿主基站相连。终端侧设备与无线回传设备之间以及无线回传设备与宿主基站之间均可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信,例如,该授权频谱可以为6GHz以下的频谱,在此不作限制。应理解,图1仅是一种示例性说明,并不对无线通信系统中包括的终端侧设备、无线回传设备的数量进行具体限定。在图1所示的网络架构中,无线回传设备将为其提供回传服务的节点视为唯一的父节点,例如,无线回传设备将宿主基站视为父节点。当无线回传设备接收终端侧设备的承载上行信息的无线承载后,将无线承载传输至宿主基站后,再由宿主基站将该无线承载中的上行信息发送至移动网关设备(例如5G网络中的用户面功能实体(user port function,UPF))。移动网关设备发送的承载下行信息的无线承载至宿主基站,然后依次经由无线回传设备发送至终端侧设备。
应理解,本申请实施例中采用IAB节点仅仅出于描述的需要,并不表示本申请实施例的方案仅用于NR的场景,在本申请实施例中,IAB节点可以泛指任何具有无线回传功能的节点或设备,本申请实施中的IAB节点和中继节点的使用应理解具有相同的含义。
作为一种示例,请参见图4,为包括多个终端和多个IAB节点的通信系统的一种示例。图4以包括2个终端和2个IAB节点为例,其中,这2个终端分别为终端1和终端2,这2个IAB节点分别为IAB节点1和IAB节点2。终端1和终端2可接入IAB节点2,IAB节点2通过无线方式与IAB节点1连接,IAB节点1通过无线方式与宿主基站连接。应理解,IAB节点1是IAB节点2的父节点,宿主基站是IAB节点1的父节点。IAB节点2通过接入链路(图4以粗线示意)为终端1和终端2提供无线接入服务。终端1和终端2发送的无线承载,依次经由IAB节点2和IAB节点1传输至宿主基站,再由宿主基站将该无线承载中的上行信息发送至移动网关设备。相反,移动网关设备可发送用于承载下行信息的无线承载至宿主基站,然后依次经由IAB节点1和IAB节点2,发送至终端1和终端2。从图4可以看出,任意一个终端发送的无线承载依次经过两个IAB节点传输至宿主基站,可以理解为多跳的无线回传场景,可保证网络的覆盖范围。
作为另一种示例,请参见图5,为包括1个终端和多个IAB节点的通信系统的一种示例。图5以包括1个终端和3个IAB节点为例,其中,这3个IAB节点分别为IAB节点1、IAB节点2和IAB节点3。与图4的不同之处在于,图5中,终端可通过两条路径接入宿主基站。其中的一条路径依次经过终端、IAB节点2、IAB节点1和宿主基站;另一条路径依次经过终端、IAB节点2、IAB节点3、IAB节点1和宿主基站。终端通过多条路径接 入宿主基站,可以理解为多连接无线回传场景,可保证业务传输的可靠性。那么相较于图4,图5所示的架构可以理解为多跳+多连接的组网场景。
作为另一种示例,请参见图6,为包括多个终端和多个IAB节点的通信系统的一种示例。图6以包括2个终端和5个IAB节点为例,其中,这2个终端分别为终端1和终端2,这,5个IAB节点分别为IAB节点1~IAB节点5。应理解,图6粗线示意接入链路,细线示意回传链路。其中,终端1可经由IAB节点5、IAB节点2和IAB节点1与宿主基站相连。终端1也可经由IAB节点4、IAB节点2和IAB节点1与宿主基站相连。或者终端1也可经由IAB节点4、IAB节点3和IAB节点1与宿主基站相连。终端2可经由IAB节点4、IAB节点3和IAB节点1与宿主基站相连。终端2可经由IAB节点4、IAB节点2和IAB节点1与宿主基站相连。
需要说明的是,图4~图6所示的网络结构只是示例,并不对本申请实施例适用的应用场景构成限定。例如,本申请实施例也可以适用于终端经过一个IAB节点与宿主基站进行通信的场景,在此不一一举例。
应理解,IAB节点的DU和IAB宿主的CU之间需要建立F1接口,并完成路由和承载映射的配置,以根据配置来进行IAB节点和目标IAB宿主之间的数据传输。当然该F1接口也可以称为F1*接口,本申请实施例对该接口的名称不作限制。且本文中以该接口称为F1接口为例。
F1接口可支持用户面协议(F1-U/F1*-U)和控制面协议(F1-C/F1*-C),用户面协议包括以下协议层的一个或多个:通用分组无线服务(General Packet Radio Service,GPRS)隧道协议用户面(GPRS tunnelling protocol user plane,GTP-U)协议层,用户数据报协议(user datagram protocol,UDP)协议层、因特网协议(internet protocol,IP)协议层等;控制面协议包括以下协议层中的一个或者多个:F1应用协议(F1application protocol,F1AP)、流控传输协议(stream control transport protocol,SCTP)、IP协议层等。通过F1/F1*接口的控制面,IAB节点和IAB宿主之间可以进行执行接口管理、对IAB-DU进行管理,以及执行终端上下文相关的配置等。通过F1/F1*接口的用户面,IAB节点和IAB宿主之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
示例性的,请参见图7和图8,其中图7为IAB网络中的用户面协议架构的示意图,图8为IAB网络中的控制面协议架构的示意图。
如图7所示,对于用户面而言,终端和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB节点(node)2-DU和IAB宿主(donor)CU-UP建立有F1-U接口,对等的协议层包括GPRS用户面隧道协议(GPRS tunnelling protocol for the user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层。IAB donor DU 1和IAB donor CU 1之间通过有线连接,对等的协议层包括IP层、L2和L1。IAB node 2和IAB node 1之间,以及IAB node 1和IAB donor DU之间均建立有BL,对等的协议层包括BAP层、RLC层、MAC层以及PHY层。另外,终端和IAB donor CU-UP之间建立有对等的SCTP层和分组数据汇聚层协议(packet data convergence protocol,PDCP)层,IAB node 2-DU和IAB donor DU-UP之间建立有对等的IP层。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的DU实现了单空口的gNB-DU的部分功能(即与终端建立对等无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)层和PHY层的功能,以 及与IAB donor CU-UP建立对等的GTP-U层、UDP层的功能)。可以理解,IAB接入节点(IAB node 2)的DU实现了单空口的gNB-DU的功能;IAB donor CU-UP实现了单空口的gNB-CU的功能。
在用户面上,PDCP数据包封装在接入IAB节点(IAB node 2)和IAB donor CU-UP之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
对于控制面而言,如图8所示,终端和IAB node 2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB node 2-DU和IAB donor CU 1建立有F1-C接口,对等的协议层包括F1应用协议(F1application protocol,F1AP)、SCTP层。IAB donor DU和IAB donor CU-UP之间通过有线连接,对等的协议层包括IP层、L2和L1。IAB node 2和IAB node 1之间,以及IAB node 1和IAB donor DU之间均建立有BL,对等的协议层包括回传适配协议(Bakhaul Adaptation Protocol,BAP)层、RLC层、MAC层以及物理(physical,PHY)层。另外,终端和IAB donor CU-UP之间建立有对等的RRC层和PDCP层,IAB node 1-DU和IAB donor DU之间建立有对等的IP层。BAP层具备以下能力中的至少一种:为数据包添加能被IAB节点识别出的路由信息(Routing info)、基于所述能被IAB节点识别出的路由信息执行路由选择、为数据包执行在包含IAB节点的多段链路上的服务质量(quality of service,QoS)映射。所述多段链路上的承载映射可以为:在回传链路中基于数据包携带的终端的无线承载(radio bearer,RB)的标识,执行从终端的RB到回传链路上的RLC承载或RLC信道或逻辑信道的映射。例如BAP执行终端的数据无线承载(data radio bearer,DRB)或信令无线承载(signaling radio bearer,SRB)到回传链路上的RLC承载。基于入口链路(即接收数据包的链路)和出口链路(即发送数据包的链路)的RLC承载、RLC信道和逻辑信道中的任意两个或更多个之间的对应关系,执行从入口链路的RB或RLC承载或RLC信道或逻辑信道,到出口链路的RB或RLC承载或RLC信道或逻辑信道的映射。其中,RLC承载在图7或图8中以信道,例如回传(backhaul,BH)RLC信道(channe,CH)为例。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点(IAB node 2)的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor C-UP实现了单空口的gNB-CU的功能。
在控制面上,RRC消息封装在接入IAB节点和IAB donor CU-UP之间的F1AP消息中传输。具体地,在上行方向上,终端将RRC消息封装在PDCP协议数据单元(protocol data unit,PDU)中,并依次经过RLC层、MAC层和PHY层的处理后发送至IAB node 2-DU。IAB node 2-DU依次经过PHY层、MAC层和RLC层的处理后得到PDCP PDU,将PDCP PDU封装在F1AP消息中,并依次经过SCTP层、IP层处理后得到IP包,IAB node 2-MT将IP包分别通过BAP层、RLC层、MAC层和PHY层的处理后IAB node 1-DU,同理,IAB node 1-MT将该IP包发送至IAB donor DU。IAB donor DU解析得到IP包后,将该IP包发送至IAB donor CU-UP,IAB donor CU-UP将该IP包依次通过SCTP层、F1AP层和PDCP层的处理后得到RRC消息。下行方向类似,在此不再描述。
需要说明的是,一个IAB节点可能具备一个或者多个角色,该IAB节点可以拥有该一个或者多个角色的协议栈;或者,IAB节点可以具有一套协议栈,该协议栈可以针对IAB 节点的不同角色,使用不同角色对应的协议层进行处理。下面以该IAB节点拥有该一个或者多个角色的协议栈为例进行说明:
(1)普通终端的协议栈
IAB节点在接入IAB网络时,可以充当普通终端的角色。此时,该IAB节点的MT具有普通终端的协议栈,例如图7和图8中的终端的协议栈,即RRC层、PDCP层、RLC层、MAC层和PHY层,其中,控制面上,IAB节点的RRC消息是封装在IAB节点的父节点与IAB donor CU之间的F1AP消息中传输的;用户面上,IAB节点的PDCP数据包封装在IAB节点的父节点与IAB donor CU之间的GTP-U隧道中传输的。
另外,该IAB节点接入IAB网络后,该IAB节点仍然可以充当普通终端的角色,例如,与IAB donor传输自己的上行和/或下行的数据包,通过RRC层执行测量等等。
(2)接入IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以为终端提供接入服务,从而充当一个接入IAB节点的角色,此时,该IAB节点具有接入IAB节点的协议栈,例如图7和图8中的IAB node 2的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为终端提供回传服务的协议栈(即:接入IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
(3)中间IAB节点的协议栈
IAB节点在接入IAB网络后,该IAB节点可以充当一个中间IAB节点的角色,此时,该IAB节点具有中间IAB节点的协议栈,例如图7和图8中的IAB node 1的协议栈。
在这种情况下,该IAB节点面向其父节点的接口上可以有两套协议栈,一套是普通终端的协议栈,另一套是为子IAB节点提供回传服务的协议栈(即:中间IAB节点的协议栈)。可选的,该两套协议栈的相同的协议层可以共享,例如该两套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
另外,IAB节点可以同时承担接入IAB节点和中间IAB节点的角色,例如,IAB节点可以针对某些终端是接入IAB节点,针对另一些终端而言,是中间IAB节点,此时该IAB节点可以有三套协议栈,一套为上述普通终端的协议栈,一套为接入IAB节点的协议栈,一套为中间IAB节点的协议栈。可选的,该三套协议栈的相同的协议层可以共享,例如该三套协议栈均对应相同的RLC层,MAC层,PHY层,或者BAP层。
需要说明的是,图7和图8以IAB网络为例进行了介绍,图7和图8的内容同样适用于IAB网络以外的其他类型中继网络,该中继网络的控制面协议栈架构可以参考图8,该中继网络的用户面协议栈架构可以参考图7。图7和图8中的IAB节点可以替换成中继(relay),例如IAB node 2可以替换成中继节点2,IAB node 1可以替换成中继节点1,IAB donor可以替换成宿主节点,宿主节点具有CU和DU协议栈,其余内容与图7和图8中描述的内容相同,具体可以参考图7和图8的描述,在此不再赘述。
在一种可能的应用场景中,如图9所示,为IAB节点跨宿主节点切换的示意图。如果IAB节点与其直接连接的上级节点(也就是宿主节点)之间的回传链路中断或者该回传链路的通信质量下降,为了保证该IAB节点的回传链路的通信质量,该IAB节点的回传链路可以迁移到另一个上级节点(也就是图9中的另一宿主节点),这就涉及到跨宿主节点的 切换。需要说明的是,所述IAB节点与两个宿主节点之间还可能包括一个或多个IAB节点,以及所述IAB节点的下游还包括一个或多个IAB节点。
具体来讲,请参见图10,为图9的另一种示例。由于IAB节点包括MT和DU,对于MT而言,可以沿用终端的切换机制,即源IAB宿主(当前服务基站)会给MT发送测量配置。MT根据配置进行测量,按照预配置的门限,确定是否上报测量结果。源IAB宿主根据接收到的测量结果,决定是否让MT进行切换(也就是决定是否让IAB节点进行切换)。如果源IAB宿主决定让所述MT或所述IAB节点切换,会向目标IAB宿主发送切换请求。目标IAB宿主根据源IAB宿主的切换请求,决定是否允许所述MT或所述IAB节点进行切换,如若允许,则向所述源IAB宿主发送切换请求响应,其中携带了包括所述MT进行随机接入资源、MT的时域资源的传输方向等配置。
但是对于DU而言,DU的配置是源IAB宿主配置的,这样MT的配置和DU的配置可能存在资源冲突。例如对于一个受半双工约束的IAB节点,IAB节点的DU可以为一个或多个终端服务,充当基站的功能。通常DU会被配置为下行传输,例如DU被配置向终端发送同步信号块(synchronization signal block,SSB),用于服务终端。为了不影响终端,SSB的资源位置一般不会改变。然而如果IAB节点跨宿主节点切换时,目标IAB宿主会为IAB节点的MT发送SSB测量配置,用于MT接收并测量上级节点的SSB,这样MT被配置为下行传输。由于受半双工的约束,IAB节点不可能在同一时间既发送SSB,又接收来自其他设备发送的SSB。如果目标IAB宿主发送SSB的资源位置与IAB节点自身的DU发送SSB的资源位置存在重叠,就会造成资源冲突。
鉴于此,本申请实施例提供了一种IAB节点的切换方法,该方法中,目标IAB宿主可根据IAB节点的双工能力配置IAB节点的MT和/或DU,也就是根据IAB节点的MT和DU是否允许同时发送和/或接收,为IAB节点的MT和/或DU进行配置。由于IAB节点MT和DU的配置是以IAB节点的双工能力为前提的,所以在实现IAB节点的跨宿主节点的切换的过程中,可避免IAB节点的DU发送例如SSB的资源与IAB节点的MT发送SSB的资源发生冲突,进而避免由于资源冲突导致无法接收或发送,避免不必要的丢包。
下面结合附图对本申请实施例提供的IAB节点的配置方法进行详细介绍。
请参见图11,为本申请实施例提供的IAB节点的配置方法的流程图。在下文的介绍过程中,以该方法应用于图9~图10所示的通信系统为例。另外,该方法可由三个通信装置执行,这三个通信装置例如为第一通信装置、第二通信装置和第三通信装置。为了便于介绍,在下文中,以该方法由IAB节点、源IAB宿主和目标IAB宿主执行为例,也就是,以第一通信装置是IAB节点、第二通信装置是源IAB宿主,第三通信装置是目标IAB宿主为例。其中IAB节点可以是进行切换的IAB节点,也可以是进行切换的IAB节点的下游IAB节点。需要说明的是,本申请实施例只是以通过图7和图8的通信系统为例,并不限制于这种场景。
应理解,IAB节点包括MT和DU,MT可用于与该IAB节点的上级节点或者源IAB宿主或目标IAB宿主通信,DU可用于与该IAB节点的下级节点或者终端通信。源IAB宿主指的是IAB节点当前所连接的宿主基站。这里的IAB节点指的是待切换的IAB节点,也可以称为待迁移的IAB节点,也就是要切换当前所连接的源宿主基站的IAB节点,需要说明的是,本发明中所涉及的后续方案同样适用于所述待切换IAB节点的下游IAB节点。目标IAB宿主指的是IAB节点将要迁移或切换到的基站。在本文中,源IAB宿主也可称 为源IAB Donor,目标IAB宿主可称为目标IAB Donor。需要说明的是,在IAB宿主以集中式单元(centralized unit,CU)(本申请中简称为Donor-CU或者gNB-CU)和分布式单元(distributed unit,DU)(本申请中简称为Donor-DU或者gNB-DU)分离的形态存在时,本发明中所涉及的后续实施例中的IAB宿主或者宿主基站指的是IAB宿主的集中式单元。
具体的,本申请实施例提供的通信方法的流程描述如下。
S1101、源IAB宿主向目标IAB宿主发送第一信息,目标IAB宿主接收该第一信息,该第一信息用于指示IAB节点的双工能力。
在本申请实施例中,IAB节点的双工能力指的同一时域资源上,IAB节点的MT接收或发送数据的同时,是否支持DU接收或发送数据。也就是IAB节点的双工能力是针对IAB节点的MT和DU在同一时域资源上传输数据的传输方向(也称为时域资源的传输方向)来说的。如果IAB节点不支持MT和DU同时在同一时域资源的传输方向相同,而在IAB节点的跨宿主的切换过程中,目标IAB宿主为MT配置的时域资源的传输方向与DU的时域资源的传输方向相同,显然会导致该时域资源冲突,可能还会导致IAB节点通信异常。
为此,在IAB节点的跨宿主切换的过程中,源IAB宿主确定IAB节点的双工能力,可生成第一信息,并向目标IAB宿主发送第一信息。该第一信息可用于指示IAB节点的双工能力。由于源IAB宿主告知目标IAB宿主IAB节点的双工能力,这样目标IAB宿主根据该双工能力为MT配置时域资源的传输方向,可避免MT的时域资源的传输方向和DU的时域资源的传输方向冲突。
需要说明的是,由于该第一信息可用于指示IAB节点的双工能力,在一些实施例中,可将第一信息称为双工信息。或者IAB节点的双工能力指的是IAB节点的MT和DU是否可复用同一时域资源,因此,在一些实施例中,可将第一信息称为复用信息或复用能力。下文中统一称为第一信息。具体来讲,第一信息可用于指示如下四种情况中的一种或多种:
第一种情况,IAB节点是否支持MT接收数据的同时,DU发送数据。换句话说,可认为IAB节点是否具有MT接收数据的同时,DU发送数据的能力。为了便于描述,下文中可将MT接收数据的同时,DU发送数据的能力称为第一能力。相反,如果IAB节点不支持MT接收数据的同时,DU发送数据,那么IAB节点不具有第一能力。
第二种情况,IAB节点是否支持MT接收数据的同时,DU接收数据。同理,可将IAB节点具有MT接收数据的同时,DU接收数据的能力认为IAB节点具有第二能力。相反,如果IAB节点不支持MT接收数据的同时,DU接收数据,那么IAB节点不具有第二能力。
第三种情况,IAB节点是否支持MT发送数据的同时,DU发送数据。同理,可将IAB节点具有MT发送数据的同时,DU发送数据的能力认为IAB节点具有第三能力。相反,如果IAB节点不支持MT发送数据的同时,DU发送数据,那么IAB节点不具有第三能力。
第四种情况,IAB节点是否支持MT发送数据的同时,DU接收数据。同理,可将IAB节点具有MT发送数据的同时,DU接收数据的能力认为IAB节点具有第四能力。相反,如果IAB节点不支持MT发送数据的同时,DU接收数据,那么IAB节点不具有第四能力。
需要说明的是,上述四种情况是针对DU上的一个或多个小区与MT上的一个或多个小区的。换句话说,对于每个MT小区和每个DU配对,它们之间的双工能力是独立的。MT接收或发送数据的同时,是否支持DU接收或发送数据,指的是MT的某个特定小区接收或发送数据的同时,是否支持DU的某个特定小区接收或发送数据。
应理解,MT用于与该IAB节点的上级节点或者源IAB宿主通信。如果该IAB节点可 与源IAB宿主直接通信,那么MT可将IAB节点的双工信息直接发送给该IAB节点的源IAB宿主。如果该IAB节点与源IAB宿主之间存在该IAB节点的上级节点,那么MT可将IAB节点的双工信息上报给该IAB节点的上级节点,由该上级节点转发给源IAB宿主。
在一些实施例中,该第一信息可以承载在现有信令的一个或多个字段上,有利于兼容现有的信令。例如,该第一信息可承载于源IAB宿主的CU节点与目标IAB宿主的CU节点之间的X2/Xn接口信令中。上述一个或多个字段可以是X2/Xn接口信令已定义的字段,也可以是新定义的X2/Xn接口信令。对此,本申请实施例不作限制。当然,该第一信息也可以承载在新定义的信令。
作为一种示例,第一信息可携带在源IAB宿主的CU节点与目标IAB宿主的CU节点之间的Xn接口信令。例如第一信息可携带在源IAB宿主通过Xn接口信令向目标IAB宿主发送的第一请求消息中,该第一请求消息用于请求IAB节点从源IAB宿主切换到目标IAB宿主。由于第一请求消息用于请求IAB节点从源IAB宿主切换到目标IAB宿主,所以在一些实施例中,第一请求消息可称为切换请求消息。例如,可在切换请求消息中新增加一个字段,该新增字段可用于承载第一信息。
应理解,当源IAB宿主和目标IAB宿主之间不存在X2/Xn接口,由于源IAB宿主和目标IAB宿主之间的核心网设备既可与源IAB宿主通信,又可与目标IAB宿主通信,所以源IAB宿主可通过核心网设备向目标IAB宿主转发第一信息。即源IAB宿主将第一信息发送给核心网设备,核心网设备可不对第一信息进行解析而是通过协议层封装后透传给目标IAB宿主,或者核心网设备可以对第一信息进行解析后再发送至目标IAB宿主。其中,核心网设备可以为移动性管理实体(Mobility Management Entity,MME)或者接入和移动管理功能(Access and Mobility Function,AMF)。
S1102、目标IAB宿主向源IAB宿主发送第一配置信息,源IAB宿主接收该第一配置信息,该第一配置信息用于指示目标IAB宿主为IAB节点的MT功能配置的时域资源的传输方向。
目标IAB宿主接收第一信息后,可根据第一信息为MT进行配置,并生成第一配置信息。例如目标IAB宿主可根据第一信息为IAB节点配置MT的时域资源的传输方向。例如第一信息指示不支持MT接收数据的同时,DU接收数据,也就是IAB节点不具有第二能力。这种情况下,在某时域单元内,如果DU的时域资源方向为上行传输方向,那么目标IAB宿主不可为MT配置时域资源传输方向为下行传输方向。需要说明的是,该时域单元可以是符号、时隙,例如LTE中的时隙或者NR中的时隙等时域资源指示粒度。由于为MT功能配置的时域资源的传输方向是以第一信息为前提的,所以在实现IAB节点的跨宿主的切换过程中,可避免IAB节点的DU功能和MT功能收发冲突,进而可避免IAB节点与该IAB节点的下级节点之间的链路或IAB节点与该IAB节点的上级节点之间的链路的通信异常。
作为一种示例,第一配置信息可包括MT的时隙格式配置,例如IAB节点的TDD上行、下行时隙配置(TDD-UL-DL-ConfigDedicated和/或TDD-UL-DL-ConfigCommon),主要用于配置时域资源上一个或多个符号或时隙的资源传输方向,例如上行传输方向或下行传输方向或灵活传输方向。IAB节点的MT根据该MT的时隙格式配置与该IAB节点的上级节点的DU进行通信。应理解,灵活传输方向可以认为传输方向是待定的,后续可能作为上行传输方向,也可能作为下行传输方向。后续灵活传输方向作为下行传输方向还是 上行传输方向可由目标IAB宿主或者父节点指示。
应理解,目标IAB宿主可将第一配置信息发送给源IAB宿主,由源IAB宿主转发给IAB节点。源IAB宿主接收第一配置信息后,可通过RRC信令向IAB节点发送MT的第一配置信息。
与第一信息类似,第一配置信息也可以承载在现有信令的一个或多个字段上。例如,该第一配置信息可承载于RRC信令,MAC CE信令或DCI信令或源IAB宿主的CU节点与目标IAB宿主的CU节点之间的X2/Xn接口信令等中的一种或多种。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令或者X2/Xn接口信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段或X2/Xn接口信令。对此,本申请实施例不作限制。当然,该第一配置信息也可以承载在新定义的信令。
作为一种示例,第一配置信息可携带在目标IAB宿主的CU节点与源IAB宿主的CU节点之间的Xn接口信令。例如第一配置信息可携带在目标IAB宿主通过Xn接口信令向源IAB宿主发送的第一请求响应消息中,该第一请求响应消息为源IAB宿主向目标IAB宿主发送的上述第一请求消息的响应消息。由于第一请求响应消息用于响应第一请求消息的,所以在一些实施例中,第一请求消息可称为切换请求响应消息。例如,可在切换请求响应消息中新增加一个字段,该新增字段可用于承载第一配置信息。
应理解,当目标IAB宿主和源IAB宿主之间不存在X2/Xn接口,那么目标IAB宿主可通过核心网设备向源IAB宿主转发第一配置信息。应理解,核心网设备即可与源IAB宿主通信,又可与目标IAB宿主通信。即目标IAB宿主将第一配置信息发送给核心网设备,核心网设备可不对第一配置信息进行解析而是通过协议层封装后透传给源IAB宿主,或者核心网设备可以对第一配置信息进行解析后再发送至源IAB宿主。其中,核心网设备可以为移动性管理实体(Mobility Management Entity,MME)或者接入和移动管理功能(Access and Mobility Function,AMF)。
S1103、源IAB宿主向目标IAB宿主发送第二信息,目标IAB宿主接收该第二信息,该第二信息用于指示源IAB宿主为DU配置的时域资源的传输方向,和/或,第二信息用于指示源IAB宿主为DU配置的时域资源的传输方向的状态。
应理解,IAB节点的DU配置是由源IAB宿主配置的,而在IAB节点的跨宿主切换的过程中,IAB节点的MT是由目标IAB宿主配置的。为了避免MT的配置和DU的配置可能存在的冲突,源IAB宿主可向目标IAB宿主提供DU的配置,这样目标IAB宿主就可以参考源IAB宿主为DU的配置来配置MT,以避免MT的配置和DU的配置存在冲突。
作为一种示例,源IAB宿主可生成第二信息,该第二信息可用于指示源IAB宿主为DU配置的时域资源的传输方向。例如第二信息可包括DU的一个或多个小区的时域资源配置信息。示例性的,第二信息可用于指示为DU的每个小区配置的一个或多个时隙(或者符号)为上行时隙(或者上行符号)、为DU的每个小区配置的一个或多个时隙(或者符号)为下行时隙(或者下行符号),以及为DU的每个小区配置的一个或多个时隙(或者符号)为灵活时隙(或者灵活符号)中的一种或多种。第二信息还可以包括为DU配置的时域资源的传输方向的状态,例如可使用状态、条件使用状态或不可使用状态。其中,如果时域资源的传输方向的状态为hard状态,那么可认为为DU配置的该时域资源可用。如果时域资源的传输方向的状态为soft状态,那么可认为为DU配置的该时域资源需要通过父 节点进一步指示才能确定是否可用(即条件使用状态)。如果时域资源的传输方向的状态为(not available,NA)状态,那么可认为为DU配置的该时域资源不可用。当然,在一些实施例中,第二信息可用于指示源IAB宿主为DU配置的时域资源的传输方向,以及源IAB宿主为DU配置的时域资源的传输方向的状态。
目标IAB宿主可根据第一信息和第二信息来配置MT,即目标IAB宿主根据IAB节点的双工能力,以及源IAB宿主给DU的配置来配置MT。目标IAB宿主所生成的第一配置信息可能是MT的部分配置信息,即重新配置与DU配置冲突的配置,其余配置可沿用源IAB宿主为MT进行的配置。这种情况下,对于MT的另一部分配置信息可通过网络侧指示为该IAB节点的MT原始的配置信息。也就是网络侧通过信令指示该IAB节点迁移时,应用接收的MT的部分配置信息(即第一配置信息),以及应用MT已有的另一部分配置信息。当然网络侧不一定发送信令,也可以是系统或者协议约定,IAB节点迁移时,应用接收的MT的部分配置信息,以及应用MT已有的另一部分配置信息。也就是对于没有在接收的配置信息中的配置,MT默认沿用已有的配置。
与第一信息类似,第二信息也可以承载在现有信令的一个或多个字段上。例如,该第二信息可承载于源IAB宿主的CU节点与目标IAB宿主的CU节点之间的X2/Xn接口信令。上述一个或多个字段可以是X2/Xn接口信令已定义的字段,也可以是新定义的X2/Xn接口信令。对此,本申请实施例不作限制。当然,该第二信息也可以承载在新定义的信令。
第二信息可与第一信息通过一条信令发送给目标IAB宿主,即通过一条信令可实现两种信息的发送,可节约信令开销。或者,第二信息与第一信息也可以分别独立发送,即不限制第二信息的发送方式,更为灵活。
作为一种示例,第二信息可携带在源IAB宿主的CU节点与目标IAB宿主的CU节点之间的Xn接口信令。例如第二信息可携带在源IAB宿主通过Xn接口信令向目标IAB宿主发送的上述第一请求消息(切换请求消息)中。例如,可在切换请求消息中新增加一个字段,该新增字段可用于承载第二信息。
应理解,当源IAB宿主和目标IAB宿主之间不存在X2/Xn接口,那么源IAB宿主可通过核心网设备向目标IAB宿主转发第二信息。即源IAB宿主将第二信息发送给核心网设备,核心网设备可不对第二信息进行解析而是通过协议层封装后透传给目标IAB宿主,或者核心网设备可以对第二信息进行解析后再发送至目标IAB宿主。其中,核心网设备可以为移动性管理实体(Mobility Management Entity,MME)或者接入和移动管理功能(Access and Mobility Function,AMF)。
需要说明的是,由于目标IAB宿主可根据第一信息来配置MT,避免MT的配置和DU的配置冲突,所以第二信息不是必不可少的,即第二信息是可选的。因此,S1103是可选的步骤,在图11中以虚线进行示意。另外,目标IAB宿主也可以根据第一信息和第二信息来配置MT,那么S1103可在S1102之前执行,即图9中S1103和S1102的执行顺序不作限制。
S1104、目标IAB宿主向源IAB宿主发送第二配置信息,源IAB宿主接收该第二配置信息,该第二配置信息是根据第一信息确定的,该第二配置信息用于指示目标IAB宿主为DU配置的时域资源的传输方向,和/或,第二配置信息用于指示目标IAB宿主为DU配置的时域资源的传输方向的状态。
在本申请实施例中,考虑到在跨宿主切换之前,IAB节点的DU的配置是源IAB宿主 配置的,在跨宿主切换之后,IAB节点的MT的配置是由目标IAB宿主配置的,这种情况下,DU的配置可能与MT的新配置冲突,或者源IAB宿主所配置DU的配置可能并不是较优的。为此,目标IAB宿主还可以更新DU功能的配置,以避免DU的配置和MT的配置冲突,同时尽量提高DU功能配置的利用率。
例如,目标IAB宿主接收第一信息后,还可根据第一信息为DU进行配置,并生成第二配置信息。也就是目标IAB宿主在IAB节点跨宿主切换过程中,还可以更新源IAB宿主为DU所配置的配置。示例性的,例如第一信息指示不支持MT接收数据的同时,DU接收数据。如果目标IAB宿主为MT配置的时域资源的传输方向为下行传输方向,但是源IAB宿主为DU配置的时域资源的传输方向是上行传输方向,那么目标IAB宿主可重新配置DU,即为DU配置时域资源的传输方向为下行传输方向,从而保证MT的配置和DU的配置不会冲突。
进一步的,目标IAB宿主还可以根据第一信息和第二信息为DU进行配置,也就是根据源IAB宿主为DU的配置来重新配置DU。即目标IAB宿主参考源IAB宿主为DU的配置来重新配置DU。这样目标IAB宿主所生成的第二配置信息可能是DU的部分配置信息,即重新配置与MT配置冲突的配置,其余配置可沿用源IAB宿主为DU进行的配置。这种情况下,对于DU的另一部分配置信息可通过网络侧指示为该IAB节点的DU原始的配置信息。也就是网络侧通过信令指示该IAB节点迁移时,应用接收的DU的部分配置信息(即第一配置信息),以及应用DU已有的另一部分配置信息。当然网络侧不一定发送信令,也可以是系统或者协议约定,IAB节点迁移时,应用接收的DU的部分配置信息,以及应用DU已有的另一部分配置信息。也就是对于没有在接收的配置信息中的配置,DU默认沿用已有的配置。
目标IAB宿主确定为DU进行的配置后,可生成第二配置信息,将该第二配置信息经由源IAB宿主转发给IAB节点的DU。即目标IAB宿主可将第二配置信息发送给源IAB宿主,由源IAB宿主转发给IAB节点。源IAB宿主接收第二配置信息后,通过F1-AP消息向IAB节点发送第二配置信息。在一些实施例中,F1-AP消息也可以被承载在RRC信令中进行发送。
与第二信息类型,该第二配置信息可用于指示目标IAB宿主为DU配置的时域资源的传输方向,以及目标IAB宿主为DU配置的时域资源的传输方向的状态的一种或多种。第二配置信息可以是DU的一个小区的时域资源配置信息,也可以是DU的多个小区的时域资源配置信息。示例性的,第二信息可用于指示为DU的每个小区配置的一个或多个时隙(或者符号)为上行时隙(或者上行符号)、为DU的每个小区配置的一个或多个时隙(或者符号)为下行时隙(或者下行符号),以及为DU的每个小区配置的一个或多个时隙(或者符号)为灵活时隙(或者灵活符号)中的一种或多种。或者,第二配置信息也可以指示为DU配置的时域资源的传输方向的状态,例如可使用状态、条件使用状态或不可使用状态。即第二配置信息也可以包括为DU配置的可用资源,不可用资源、hard类型资源,soft类型资源等。当然,在一些实施例中,第二配置信息可包括TDD上行时隙配置和TDD下行时隙配置,以及为DU配置的可用资源,不可用资源、hard类型资源,soft类型资源等。
第二配置信息可以承载在现有信令的一个或多个字段上。例如,该第二配置信息可承载于RRC信令,MAC CE信令或DCI信令或源IAB宿主的CU节点与目标IAB宿主的CU节点之间的X2/Xn接口信令等中的一种或多种。上述一个或多个字段可以是RRC信令 已定义的字段、MAC CE信令已定义的字段或者DCI信令或者X2/Xn接口信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段或X2/Xn接口信令。对此,本申请实施例不作限制。当然,该第一配置信息也可以承载在新定义的信令。
第二配置信息可与第一配置信息通过一条信令发送给目标IAB宿主,即通过一条信令可实现两种信息的发送,可节约信令开销。或者,第二配置信息与第一配置信息也可以分别独立发送,即不限制第二配置信息的发送方式,更为灵活。
作为一种示例,第二配置信息可携带在目标IAB宿主的CU节点与源IAB宿主的CU节点之间的X2接口信令。例如第二配置信息可携带在目标IAB宿主通过X2接口信令向源IAB宿主发送的上述的第一请求响应消息(切换请求响应消息)中。例如,可在切换请求响应消息中新增加一个字段,该新增字段可用于承载第二配置信息。
应理解,当目标IAB宿主和源IAB宿主之间不存在X2/Xn接口,那么目标IAB宿主可通过核心网设备向源IAB宿主转发第二配置信息。即目标IAB宿主将第二配置信息发送给核心网设备,核心网设备可不对第二配置信息进行解析而是通过协议层封装后透传给源IAB宿主。
需要说明的是,第二配置信息不是目标IAB宿主必须配置的,即S1104是可选的步骤,因此,在图11中以虚线进行示意。
为了便于理解本申请实施例提供的技术方案,下面介绍本申请实施例的几种具体实现形式。
示例一,请参见图12,为本申请实施例提供的一示例性的IAB节点的配置方法的流程示意图。下文的描述中,以该方法应用于图9~图10所示的通信系统为例。另外,以该方法由IAB节点、源IAB宿主和目标IAB宿主执行为例。需要说明的是,本申请实施例只是以通过图9和图10的通信系统为例,并不限制于这种场景。该流程描述如下。
S1201、IAB节点向源IAB宿主发送测量报告,源IAB宿主接收该测量报告,该测量报告用于指示IAB节点对多个备选目标IAB宿主进行测量的结果。
应理解,源IAB宿主可以为IAB节点配置测量配置,也就是测量相关信息,可包括例如对多个备选目标IAB宿主进行测量的参数。IAB节点根据该测量配置对多个备选目标IAB宿主进行测量,并将测量结果上报给源IAB宿主。源IAB宿主根据测量结果可从这多个备选目标IAB宿主中确定IAB节点待迁移的目标IAB宿主。
需要说明的是,在一些实施例中,源宿主基站可不必根据IAB节点的测量结果确定目标IAB宿主,例如源IAB宿主可根据历史信息或者网络规定的信息,确定目标IAB宿主。因此,S1201是可选的步骤,不是必不可少的,在图12中采用虚线进行示意。
应理解,如果IAB节点与源IAB宿主之间存在父节点,那么IAB节点可通过父节点将测量报告发送给源IAB宿主。即IAB节点将测量报告发送给父节点,父节点可将接收的测量报告转发给源IAB宿主。为了便于描述,在本文中,IAB节点与源IAB宿主之间存在父节点可称为源父节点(图12以此为例)。同理,IAB节点与目标IAB宿主之间的父节点称为目标父节点(图12以此为例)。示例性的,测量报告可封装在源父节点的DU与源IAB宿主的CU之间的F1-AP消息中。当然该F1-AP消息也可以被承载在RRC信令中进行发送。
S1202、源IAB宿主向目标IAB宿主发送切换请求消息,该切换请求消息用于请求IAB节点从源IAB宿主切换到目标IAB宿主。
在一些实施例中,该切换请求消息可通过源IAB宿主的CU和目标IAB宿主的CU之间的X2/Xn接口信令承载。该切换请求消息可包括前述的第一信息。具体第一信息指示的内容,以及实现的形式可参考前述S901的相关实施例的介绍,这里不再赘述。
由于第一信息可用于指示IAB节点的双工能力,即IAB节点的MT在收发数据的同时,是否支持DU收发数据,这样目标IAB宿主根据第一信息为MT配置时域资源的传输方向可尽量避免给MT的配置与IAB节点的DU的配置冲突。
在另一些实施例中,该切换请求消息还可以包括第二信息,即源IAB宿主为IAB节点的DU配置的配置信息,例如源IAB节点为所述DU配置的时域资源的传输方向和/或源IAB节点为所述DU配置的时域资源的传输方向的状态。具体第一信息指示的内容,以及实现的形式可参考前述S903的相关实施例的介绍,这里不再赘述。
由于第二信息可用于指示源IAB宿主为IAB节点的DU配置的配置信息,这样目标IAB宿主根据第二信息可重新配置DU,以避免目标IAB宿主根据第一信息给MT的配置与源IAB节点为IAB节点的DU的配置冲突。
S1203、目标IAB宿主向源IAB宿主发送切换请求响应消息,源IAB宿主接收该切换请求响应消息。
应理解,如果目标IAB宿主的CU和源IAB宿主的CU之间存在X2/Xn接口,那么该切换请求响应消息可通过目标IAB宿主的CU和源IAB宿主的CU之间的X2/Xn接口信令承载。
在一些实施例中,该切换请求响应消息可包括目标IAB宿主为IAB节点的MT的配置信息,例如前述的第一配置信息。具体第一配置信息指示的内容,以及实现的形式可参考前述S1102的相关实施例的介绍,这里不再赘述。由于第一配置信息是根据第一信息配置的,所以可尽量避免给MT的配置与IAB节点的DU的配置冲突。
在另一些实施例中,该切换请求响应消息可以包括第一配置信息以及目标IAB宿主为IAB节点的DU的配置信息,例如前述的第二配置信息。具体第二配置信息指示的内容以及实现的形式可参考前述S1104的相关实施例的介绍,这里不再赘述。第二配置信息可参考第二信息配置的,如果第二信息指示源IAB宿主为DU的配置与目标IAB宿主为MT的配置不冲突,那么第二配置信息可沿用源IAB宿主为DU的配置。如果第二信息指示源IAB宿主为DU的配置与目标IAB宿主为MT的配置冲突,那么第二配置信息可重新为DU进行配置,以使得DU的配置与MT的配置不冲突。且第二配置信息可用于更新DU的配置,这样在保证IAB节点的MT的配置和DU的配置不冲突的情况下,可还尽量保证DU较优的性能。
S1204、源IAB宿主向IAB节点发送RRC重配置消息,相应的,IAB节点接收该RRC重配置消息。
应理解,源IAB宿主接收切换请求响应消息之后,可获取目标IAB宿主为IAB节点的MT配置的第一配置信息,或者获取目标IAB宿主为IAB节点的MT配置的第一配置信息以及为IAB节点的DU配置的第二配置信息,并将目标IAB宿主为IAB节点进行的配置通知给IAB节点。
作为一种示例,源IAB宿主获取第一配置信息后,可生成RRC重配置消息,该RRC重配置消息可包括第一配置信息。应理解,如果源IAB宿主获取第一配置信息和第二配置信息,那么该RRC重配置消息也可以包括第一配置信息和第二配置信息。该RRC重配置 信息可封装在源父节点的DU和源IAB宿主的CU之间的F1-AP消息中,通过RRC信令承载。
在一些实施例中,该RRC重配置消息还可以包括IAB节点在目标父节点上进行随机接入的配置信息,例如该RRC重配置消息还可以包括物理随机接入信道(physical random access channel,PRACH)资源配置等。
需要说明的是,如果该RRC重配置消息中不包括第二配置信息,那么第二配置信息可通过另一条信令发送给IAB节点,例如通过源IAB节点的CU和IAB节点之间的F1-AP消息发送。如果第一配置信息和第二配置信息分别通过不同的消息发送给IAB节点,那么IAB节点应尽量保证第一配置信息和第二配置信息同时生效,也就是说IAB节点可尽量同时应用第一配置信息和第二配置信息。即如果IAB节点先接收到第一配置信息,可不立即使用第一配置信息,直到接收到第二配置信息,可同时应用第一配置信息和第二配置信息。或者,如果源IAB宿主通过两条信令分别发送第一配置信息和第二配置信息,可尽量保证第一配置信息和第二配置信息的发送时刻相同,以尽量保证IAB节点同时接收到第一配置信息和第二配置信息。
S1205、IAB节点与目标父节点的DU之间进行随机接入过程。
IAB节点与目标父节点的DU的随机接入过程可沿用现有技术中的随机接入过程,这里不再赘述。
S1206:IAB节点通过目标父节点向目标IAB宿主发送RRC重配置完成消息。
该RRC重配置完成消息可用于指示IAB节点随机接入目标父节点,并更新MT的配置,或者更新MT的配置以及DU的配置,完成与目标IAB宿主的RRC链接。在可能的实现方式中,该RRC重配置完成消息可封装在目标父节点的DU和目标IAB宿主之间的F1-AP消息中。
S1207:IAB节点与目标IAB宿主建立FI接口,并完成路由和承载映射的配置。
IAB节点完成与目标IAB宿主的RRC链接之后,可与目标IAB宿主建立F1接口,并完成路由和承载映射的配置,以根据配置来进行IAB节点和目标IAB宿主之间的数据传输。
需要说明的是,图12以IAB节点没有下级节点(子节点)为例,如果存在IAB节点的下级节点或者下级节点的更下级节点。那么目标IAB宿主还可以为IAB节点的下级节点以及更下级节点的DU进行配置,以更新IAB节点的下级节点以及更下级节点的DU的配置。
应理解,图12所示的实施例中,源IAB宿主的CU和目标IAB宿主的CU之间存在X2/Xn接口。如果源IAB宿主的CU和目标IAB宿主的CU之间不存在X2/Xn接口,即源IAB宿主的CU和目标IAB宿主的CU不具备直接进行接口信令交互的能力,那么需要通过核心网设备进行转发要发送的消息。下面以源IAB宿主的CU和目标IAB宿主的CU之间不存在X2/Xn接口为了,介绍本申请实施例提供的IAB节点的配置方法。
示例二,请参见图13,为本申请实施例提供的一示例性的IAB节点的配置方法的流程示意图。下文的描述中,以该方法应用于图9~图10所示的通信系统为例。另外,以该方法由IAB节点、源IAB宿主和目标IAB宿主执行为例。需要说明的是,本申请实施例只是以通过图9和图10的通信系统为例,并不限制于这种场景。该流程描述如下。
S1301、IAB节点向源IAB宿主发送测量报告,源IAB宿主接收该测量报告,该测量报告用于指示IAB节点对多个备选目标IAB宿主进行测量的结果。
应理解,S1301与前述S1201的实现相同,具体可参考前述S1201的描述,这里不再赘述。
S1302、源IAB宿主向核心网设备发送切换请求消息,相应的,核心网设备接收该切换请求消息。
S1303、核心网设备向目标IAB宿主发送切换请求消息,相应的,目标IAB宿主接收该切换请求消息。
由于源IAB宿主的CU和目标IAB宿主的CU之间不存在X2/Xn接口,所以源IAB宿主可通过核心网设备向目标IAB宿主转发上述的切换请求消息。该切换请求消息的实现可参考前述图12所示实施例中的相关内容,这里不再赘述。
S1304、目标IAB宿主向核心网设备发送切换请求响应消息,相应的,核心网设备接收该切换请求响应消息。
S1305、核心网设备向源IAB宿主发送切换请求响应消息,相应的,源IAB宿主接收该切换请求响应消息。
同理,由于源IAB宿主的CU和目标IAB宿主的CU之间不存在X2/Xn接口,所以目标IAB宿主可通过核心网设备向源IAB宿主转发上述的切换请求响应消息。该切换请求响应消息的实现可参考前述图12所示实施例中的相关内容,这里不再赘述。
S1306、源IAB宿主向IAB节点发送RRC重配置消息。
应理解,S1306与前述的S1204的实现相同,具体可参考前述S1204的描述,这里不再赘述。
本申请实施例提供了的方法中,在IAB节点的跨宿主切换过程中,目标IAB宿主以IAB节点的MT功能和DU功能的双工能力为前提,为所述MT功能配置时域资源的传输方向。这样可避免IAB节点的MT功能的时域资源的传输方向和DU功能的时域资源的传输方向发生冲突,进而尽量避免终端的通信异常。另外,在该方法中,目标IAB宿主还可以更新IAB节点的DU的配置,即目标IAB宿主既为IAB节点的MT进行配置,又为IAB节点的DU进行配置,在避免MT的配置和DU的配置冲突的情况下,尽量保证DU的较优性能。
上述本申请提供的实施例中,分别从待迁移的IAB节点、源IAB宿主、目标IAB宿主,以及待迁移的IAB节点、源宿主基站和目标宿主基站之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,待迁移的IAB节点、源IAB宿主、目标IAB宿主可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图14示出了一种通信装置1400的结构示意图。该通信装置1400可以对应实现上述各个方法实施例中由源IAB宿主或目标IAB宿主实现的功能或者步骤。该通信装置可以包括处理模块1410和收发模块1420。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1410和收发模块1420可以与该存储单元耦合,例如,处理模块1410可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如收发模块1420可包括发送模块和接收模块。
在一些可能的实施方式中,通信装置1400能够对应实现上述方法实施例中目标IAB宿主的行为和功能。例如通信装置1400可以为目标IAB宿主,也可以为应用于目标IAB宿主中的部件(例如芯片或者电路)。收发模块1420可以用于执行图9、图10或图13的实施例中由目标IAB宿主所执行的全部接收或发送操作,例如图9所示的实施例中的S901-S904,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图9所示的实施例中由目标IAB宿主所执行的除了收发操作之外的全部操作;例如收发模块1420可以用于执行图10所示的实施例中的S1002、S1003、S1006,S1007,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图10所示的实施例中由目标IAB宿主所执行的除了收发操作之外的全部操作;例如收发模块1420可以用于执行图13所示的实施例中的S1303、S1304,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图11所示的实施例中由目标IAB宿主所执行的除了收发操作之外的全部操作。
在一些实施例中,收发模块1420用于接收来自源IAB宿主的第一信息,以及向源IAB宿主发送第一配置信息;处理模块1410用于生成所述第一配置信息,该第一配置信息用于IAB节点从源IAB宿主切换到所述通信装置1400,IAB节点包括MT功能和DU功能,第一配置信息是根据第一信息确定的,第一配置信息用于指示所述通信装置1400为MT功能配置的时域资源的传输方向,第一信息用于指示以下四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
作为一种可选的实现方式,收发模块1420还用于:接收来自源IAB宿主的第二信息,第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二信息用于指示源IAB宿主为DU功能配置的时域资源的传输方向的状态。
作为一种可选的实现方式,收发模块1420还用于:向源IAB宿主发送第二配置信息,第二配置信息是根据第一信息确定的,第二配置信息用于指示所述通信装置1400为DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示所述通信装置1400为DU功能配置的时域资源的传输方向的状态。
作为一种可选的实现方式,第一信息和/或第二信息携带在第一请求消息中,第一请求消息承载于第一接口信令,第一接口是所述通信装置1400与源IAB宿主之间的接口,第一请求消息用于请求IAB节点从源IAB宿主切换到所述通信装置1400;或者,第一信息和/或第二信息是所述通信装置1400通过核心网设备接收的。
作为一种可选的实现方式,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是所述通信装置1400与源IAB宿主之间的接口,第一请求响应消息为所述通信装置1400向源IAB宿主发送的IAB节点从源IAB宿主切换到所述通信装置1400的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是所述通信装置1400通过核心网设备转发给源IAB节点的。
作为一种可选的实现方式,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
在另一些可能的实施方式中,通信装置1400能够对应实现上述方法实施例中源IAB宿主的行为和功能。例如通信装置1400可以为源IAB宿主,也可以为应用于源IAB宿主中的部件(例如芯片或者电路)。收发模块1420可以用于执行图9/图10或图13的实施例中由源IAB宿主所执行的全部接收或发送操作,例如图9所示的实施例中的S901-S904,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图9所示的实施例中由源IAB宿主所执行的除了收发操作之外的全部操作;例如收发模块1420可以用于执行图10所示的实施例中的S1001-S1004,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图10所示的实施例中由源IAB宿主所执行的除了收发操作之外的全部操作;例如收发模块1420可以用于执行图13所示的实施例中的S1301、S1302、S1305,S1306,和/或用于支持本文所描述的技术的其它过程,其中,处理模块1410用于执行如图11所示的实施例中由源IAB宿主所执行的除了收发操作之外的全部操作。
在一些实施例中,处理模块1410用于生成第一信息;收发模块1420用于向目标IAB宿主发送所述第一信息,以及接收来自目标IAB宿主的第一配置信息,该第一配置信息用于IAB节点从所述通信装置1400切换到目标IAB宿主,IAB节点包括MT功能和DU功能,第一配置信息是根据第一信息确定的,第一配置信息用于指示目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示四种信息中的一种或多种:
支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
作为一种可选的实现方式,收发模块1420还用于:向目标IAB宿主发送第二信息,第二信息用于指示所述通信装置1400为DU功能配置的时域资源的传输方向,和/或,第二信息用于指示所述通信装置为DU功能配置的时域资源的传输方向的状态。
作为一种可选的实现方式,收发模块1420还用于:接收来自目标IAB宿主的第二配置信息,第二配置信息是根据第一信息确定的,第二配置信息用于指示目标IAB宿主为DU功能配置的时域资源的传输方向,和/或,第二配置信息用于指示目标IAB宿主为DU功能配置的时域资源的传输方向的状态。
作为一种可选的实现方式,第一信息和/或第二信息携带在第一请求消息中,第一请求消息承载于第一接口信令,第一接口是目标IAB宿主与所述通信装置1400之间的接口,第一请求消息用于请求IAB节点从所述通信装置1400切换到目标IAB宿主;或者,第一信息和/或第二信息是所述通信装置1400通过核心网设备发送的。
作为一种可选的实现方式,第一配置信息和/或第二配置信息携带在第一请求响应消息中,第一请求响应消息承载于第一接口信令,第一接口是目标IAB宿主与所述通信装置之间的接口,第一请求响应消息为目标IAB宿主向所述通信装置1400发送的所述IAB节点从所述通信装置1400切换到目标IAB宿主的请求消息的响应消息;或者,第一配置信息和/或第二配置信息是所述通信装置1400通过核心网设备接收的。
在可能的实现方式中,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
如图15所示为本申请实施例提供的通信装置1500,其中,通信装置1500可以是源IAB 宿主,能够实现本申请实施例提供的方法中源IAB宿主的功能,或者,通信装置1500可以是目标IAB宿主,能够实现本申请实施例提供的方法中目标IAB宿主的功能;或者,通信装置1500也可以是能够支持源IAB宿主实现本申请实施例提供的方法中对应的功能的装置,或者能够支持目标IAB宿主实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块1420可以为收发器,收发器集成在通信装置1500中构成通信接口1510。
通信装置1500包括至少一个处理器1520,用于实现或用于支持通信装置1500实现本申请实施例提供的方法中源IAB宿主或目标IAB宿主的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1500还可以包括至少一个存储器1530,用于存储程序指令和/或数据。存储器1530和处理器1520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1520可能和存储器1530协同操作。处理器1520可能执行存储器1530中存储的程序指令和/或数据,以使得通信装置1500实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1500还可以包括通信接口1510,用于通过传输介质和其它设备进行通信,从而用于通信装置1500中的装置可以和其它设备进行通信。示例性地,当该通信装置为源IAB宿主时,该其它设备为目标IAB宿主;或者,当该通信装置为目标IAB宿主时,该其它设备为源IAB宿主。处理器1520可以利用通信接口1510收发数据。通信接口1510具体可以是收发器。
本申请实施例中不限定上述通信接口1510、处理器1520以及存储器1530之间的具体连接介质。本申请实施例在图15中以存储器1530、处理器1520以及通信接口1510之间通过总线1540连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
应理解,通信装置1500为源IAB宿主或目标IAB宿主时,图16示出了通信装置1300的另一种形式。图16中,通信装置1500是源IAB宿主或目标IAB宿主,应理解,源IAB 宿主或目标IAB宿主包括CU和DU,CU可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口可用于与另一IAB宿主的CU或IAB节点的DU进行通信。DU也可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口用于与IAB节点的MT进行通信。
图17示出了一种通信装置的另一种形式。便于理解和图示方便,图17中,通信装置是源IAB宿主或目标IAB宿主作为例子。该通信装置1700可应用于如图7或图8所示的系统中,可以为图7和图8中的宿主节点,执行上述方法实施例中源IAB宿主或目标IAB宿主的功能。通信装置1700可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1710和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1720。所述RRU 1710可以称为通信模块,与图14中的收发模块1420对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1711和射频单元1712。所述RRU 1710部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如该通信装置1700是源IAB宿主用于向目标IAB宿主发送上述的第一信息。所述BBU 1720部分主要用于进行基带处理,对基站进行控制等。所述RRU 1710与BBU 1720可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1720为基站的控制中心,也可以称为处理模块,可以与图14中的处理模块1410对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1720可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1720还包括存储器1721和处理器1722。所述存储器1721用以存储必要的指令和数据。所述处理器1722用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于源IAB宿主或目标IAB宿主的操作流程。所述存储器1721和处理器1722可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括IAB节点、源IAB宿主和目标IAB宿主,或者还可以包括更多个IAB节点、源IAB宿主和目标IAB宿主。
所述源IAB宿主和目标IAB宿主分别用于实现上述图9、图10或图13中相关设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图9、图10或图13中源IAB宿主和目标IAB宿主执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图9、图10或图13中源IAB宿主和目标IAB宿主执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中源IAB宿主和目标IAB宿主的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程 构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种接入回传一体化IAB节点的配置方法,其特征在于,包括:
    目标IAB宿主接收来自源IAB宿主的第一信息,以及所述目标IAB宿主向所述源IAB宿主发送第一配置信息,所述第一配置信息用于IAB节点从所述源IAB宿主切换到所述目标IAB宿主;
    其中,所述IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示所述目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示以下四种信息中的一种或多种:
    支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述目标IAB宿主接收来自源IAB宿主的第二信息,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述目标IAB宿主向所述源IAB宿主发送第二配置信息,所述第二配置信息是根据所述第一信息确定的,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一信息和/或第二信息携带在第一请求消息中,所述第一请求消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述源IAB宿主之间的接口,所述第一请求消息用于请求所述IAB节点从所述源IAB宿主切换到所述目标IAB宿主;或者,
    所述第一信息和/或所述第二信息是所述目标IAB宿主通过核心网设备接收的。
  5. 如权利要求3或4所述的方法,其特征在于,所述第一配置信息和/或所述第二配置信息携带在第一请求响应消息中,所述第一请求响应消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述源IAB宿主之间的接口,所述第一请求响应消息为所述目标IAB宿主向所述源IAB宿主发送的所述IAB节点从所述源IAB宿主切换到所述目标IAB宿主的请求消息的响应消息;或者,
    所述第一配置信息和/或所述第二配置信息是所述目标IAB宿主通过核心网设备转发给所述源IAB宿主的。
  6. 如权利要求2-5任一项所述的方法,其特征在于,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;
    所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
  7. 一种接入回传一体化IAB节点的配置方法,其特征在于,包括:
    源IAB宿主向目标IAB宿主发送第一信息,以及所述源IAB宿主接收来自所述目标IAB宿主的第一配置信息,所述第一配置信息用于IAB节点从所述源IAB宿主切换到所述 目标IAB宿主;
    其中,所述IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示所述目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示四种信息中的一种或多种:
    支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述源IAB宿主向所述目标IAB宿主发送第二信息,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述源IAB宿主接收来自所述目标IAB宿主的第二配置信息,所述第二配置信息是根据所述第一信息确定的,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一信息和/或第二信息携带在第一请求消息中,所述第一请求消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述源IAB宿主之间的接口,所述第一请求消息用于请求所述IAB节点从所述源IAB宿主切换到所述目标IAB宿主;或者,
    所述第一信息和/或所述第二信息是所述源IAB宿主通过核心网设备发送的。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一配置信息和/或所述第二配置信息携带在第一请求响应消息中,所述第一请求响应消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述源IAB宿主之间的接口,所述第一请求响应消息为所述目标IAB宿主向所述源IAB宿主发送的所述IAB节点从所述源IAB宿主切换到所述目标IAB宿主的请求消息的响应消息;或者,
    所述第一配置信息和/或所述第二配置信息是所述源IAB宿主通过核心网设备接收的。
  12. 如权利要求8-11任一项所述的方法,其特征在于,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;
    所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
  13. 一种通信装置,其特征在于,收发模块和处理模块,其中,
    所述收发模块,用于接收来自源IAB宿主的第一信息,以及向所述源IAB宿主发送第一配置信息,所述第一配置信息用于IAB节点从所述源IAB宿主切换到所述通信装置;
    所述处理模块,用于生成所述第一配置信息;
    其中,所述IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示所述通信装置为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示以下四种信息中的一种或多种:
    支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
  14. 如权利要求13所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自源IAB宿主的第二信息,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二信息用于指示所述源IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  15. 如权利要求13或14所述的通信装置,其特征在于,所述收发模块还用于:
    向所述源IAB宿主发送第二配置信息,所述第二配置信息是根据所述第一信息确定的,所述第二配置信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向,和/或,所述第二配置信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向的状态。
  16. 如权利要求14或15所述的通信装置,其特征在于,所述第一信息和/或第二信息携带在第一请求消息中,所述第一请求消息承载于第一接口信令,所述第一接口是所述通信装置与所述源IAB宿主之间的接口,所述第一请求消息用于请求所述IAB节点从所述源IAB宿主切换到所述通信装置;或者,
    所述第一信息和/或所述第二信息是所述通信装置通过核心网设备接收的。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第一配置信息和/或所述第二配置信息携带在第一请求响应消息中,所述第一请求响应消息承载于第一接口信令,所述第一接口是所述通信装置与所述源IAB宿主之间的接口,所述第一请求响应消息为所述通信装置向所述源IAB宿主发送的所述IAB节点从所述源IAB宿主切换到所述通信装置的请求消息的响应消息;或者,
    所述第一配置信息和/或所述第二配置信息是所述通信装置通过核心网设备转发给所述源IAB节点的。
  18. 如权利要求14-17任一项所述的通信装置,其特征在于,所述时域资源的传输方向包括上行传输方向为下行传输方向或灵活传输方向;
    所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
  19. 一种通信装置,其特征在于,包括收发模块和处理模块,其中,
    所述处理模块,用于生成第一信息;
    所述收发模块,用于向目标IAB宿主发送所述第一信息,以及接收来自所述目标IAB宿主的第一配置信息,所述第一配置信息用于IAB节点从所述通信装置切换到所述目标IAB宿主;
    其中,所述IAB节点包括MT功能和DU功能,所述第一配置信息是根据所述第一信息确定的,所述第一配置信息用于指示所述目标IAB宿主为所述MT功能配置的时域资源的传输方向,所述第一信息用于指示四种信息中的一种或多种:
    支持或不支持所述MT功能接收数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能接收数据的同时,所述DU功能接收数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能发送数据;
    支持或不支持所述MT功能发送数据的同时,所述DU功能接收数据。
  20. 如权利要求19所述的通信装置,其特征在于,所述收发模块还用于:
    向所述目标IAB宿主发送第二信息,所述第二信息用于指示所述通信装置为所述DU 功能配置的时域资源的传输方向,和/或,所述第二信息用于指示所述通信装置为所述DU功能配置的时域资源的传输方向的状态。
  21. 如权利要求19或20所述的通信装置,其特征在于,所述收发模块还用于:
    接收来自所述目标IAB宿主的第二配置信息,所述第二配置信息是根据所述第一信息确定的,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向,和/或,所述第二配置信息用于指示所述目标IAB宿主为所述DU功能配置的时域资源的传输方向的状态。
  22. 如权利要求20或21所述的通信装置,其特征在于,所述第一信息和/或第二信息携带在第一请求消息中,所述第一请求消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述通信装置之间的接口,所述第一请求消息用于请求所述IAB节点从所述通信装置切换到所述目标IAB宿主;或者,
    所述第一信息和/或所述第二信息是所述通信装置通过核心网设备发送的。
  23. 如权利要求21或22所述的通信装置,其特征在于,所述第一配置信息和/或所述第二配置信息携带在第一请求响应消息中,所述第一请求响应消息承载于第一接口信令,所述第一接口是所述目标IAB宿主与所述通信装置之间的接口,所述第一请求响应消息为所述目标IAB宿主向所述通信装置发送的所述IAB节点从所述通信装置切换到所述目标IAB宿主的请求消息的响应消息;或者,
    所述第一配置信息和/或所述第二配置信息是所述通信装置通过核心网设备接收的。
  24. 如权利要求20-23任一项所述的通信装置,其特征在于,所述时域资源的传输方向为上行传输方向或下行传输方向或灵活传输方向;
    所述时域资源的传输方向的状态为可使用状态、条件使用状态或不可使用状态。
  25. 一种通信装置,其特征在于,包括:所述通信装置包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算机程序,使得所述通信装置实现如权利要求1~6或7~12中任一项所述的方法。
  26. 一种通信系统,其特征在于,所述通信系统包括如权利要求13~18任一所述的通信装置,以及如权利要求19~24任一所述的通信装置。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~6或7~12中任意一项所述的方法。
PCT/CN2021/110642 2020-08-07 2021-08-04 一种iab节点的配置方法及通信装置 WO2022028493A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2021319651A AU2021319651A1 (en) 2020-08-07 2021-08-04 Iab node configuration method and communication device
EP21853130.9A EP4192103A4 (en) 2020-08-07 2021-08-04 IAB NODE CONFIGURATION METHOD AND COMMUNICATION DEVICE
JP2023508521A JP2023536521A (ja) 2020-08-07 2021-08-04 Iabノード構成方法及び通信装置
US18/165,095 US20230189091A1 (en) 2020-08-07 2023-02-06 Iab node configuration method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010788512.4 2020-08-07
CN202010788512.4A CN114071613A (zh) 2020-08-07 2020-08-07 一种iab节点的配置方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/165,095 Continuation US20230189091A1 (en) 2020-08-07 2023-02-06 Iab node configuration method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022028493A1 true WO2022028493A1 (zh) 2022-02-10

Family

ID=80120011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110642 WO2022028493A1 (zh) 2020-08-07 2021-08-04 一种iab节点的配置方法及通信装置

Country Status (6)

Country Link
US (1) US20230189091A1 (zh)
EP (1) EP4192103A4 (zh)
JP (1) JP2023536521A (zh)
CN (1) CN114071613A (zh)
AU (1) AU2021319651A1 (zh)
WO (1) WO2022028493A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240174A1 (en) * 2022-06-10 2023-12-14 Qualcomm Incorporated F1 connection options in integrated access and backhaul handover scenarios
WO2024065545A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种确定移动的方法及其装置
WO2024077423A1 (zh) * 2022-10-09 2024-04-18 北京小米移动软件有限公司 一种集成接入与回传iab节点服务处理方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117202402A (zh) * 2022-05-16 2023-12-08 大唐移动通信设备有限公司 交互方法和相关设备
CN117793814A (zh) * 2022-09-27 2024-03-29 华为技术有限公司 一种通信方法及装置
CN115604778B (zh) * 2022-11-28 2023-03-10 广州世炬网络科技有限公司 一种节点接入方法、装置、设备以及存储介质
CN116056149B (zh) * 2023-03-27 2023-07-04 广州世炬网络科技有限公司 一种iab宿主节点的单工作业方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站
CN110753397A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 基于IAB node能力进行资源分配的方法、装置、节点、介质
CN110831095A (zh) * 2018-08-11 2020-02-21 华为技术有限公司 通信方法和通信装置
CN111435876A (zh) * 2019-01-11 2020-07-21 中国移动通信有限公司研究院 资源确定方法、装置、相关设备及存储介质
CN111435894A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 资源配置的方法及装置、存储介质及电子装置
CN111436145A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 资源配置的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360496A1 (en) * 2018-10-31 2021-11-18 Sharp Kabushiki Kaisha Methods and apparatus for using conditional handovers for wireless backhaul

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站
CN110753397A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 基于IAB node能力进行资源分配的方法、装置、节点、介质
CN110831095A (zh) * 2018-08-11 2020-02-21 华为技术有限公司 通信方法和通信装置
CN111435876A (zh) * 2019-01-11 2020-07-21 中国移动通信有限公司研究院 资源确定方法、装置、相关设备及存储介质
CN111435894A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 资源配置的方法及装置、存储介质及电子装置
CN111436145A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 资源配置的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "BL CR to 38.401 Support for IAB", 3GPP DRAFT; R3-196504, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820354 *
See also references of EP4192103A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240174A1 (en) * 2022-06-10 2023-12-14 Qualcomm Incorporated F1 connection options in integrated access and backhaul handover scenarios
WO2024065545A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种确定移动的方法及其装置
WO2024077423A1 (zh) * 2022-10-09 2024-04-18 北京小米移动软件有限公司 一种集成接入与回传iab节点服务处理方法及装置

Also Published As

Publication number Publication date
JP2023536521A (ja) 2023-08-25
EP4192103A1 (en) 2023-06-07
AU2021319651A1 (en) 2023-03-23
CN114071613A (zh) 2022-02-18
EP4192103A4 (en) 2024-01-17
US20230189091A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
WO2022028493A1 (zh) 一种iab节点的配置方法及通信装置
JP7378433B2 (ja) データパケットの送信方法、受信方法及び装置ならびにデータパケットの伝送システム
CN113556794B (zh) 通信方法、装置及系统
US20220232651A1 (en) Method for transmitting control signaling in relay network, configuration method and device
US20230239757A1 (en) Method and apparatus for inter-donor mobility
WO2023011245A1 (zh) 通信方法和通信装置
JP2021523601A (ja) Nr−nrデュアルコネクティビティ(nr−dc)のプロトコル及びアーキテクチャ
US20230370898A1 (en) Communication method and apparatus
CN114467288A (zh) 一种数据包传输方法及装置
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
US20230164684A1 (en) Configuration information exchange in an integrated access and backhaul network
US20220264602A1 (en) Communication method and apparatus
WO2023011518A1 (zh) 一种通信方法及通信装置
WO2023202220A1 (zh) 一种通信方法及装置
WO2024067118A1 (zh) 通信方法和通信装置
JP2024503807A (ja) 通信を処理する方法及びネットワークノード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508521

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021853130

Country of ref document: EP

Effective date: 20230227

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021319651

Country of ref document: AU

Date of ref document: 20210804

Kind code of ref document: A