WO2023011206A1 - 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用 - Google Patents

一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023011206A1
WO2023011206A1 PCT/CN2022/107111 CN2022107111W WO2023011206A1 WO 2023011206 A1 WO2023011206 A1 WO 2023011206A1 CN 2022107111 W CN2022107111 W CN 2022107111W WO 2023011206 A1 WO2023011206 A1 WO 2023011206A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
glass fiber
nylon
acting antibacterial
antibacterial
Prior art date
Application number
PCT/CN2022/107111
Other languages
English (en)
French (fr)
Inventor
常欢
叶南飚
李皓
刘奇祥
胡志华
王超军
陈平绪
丁超
Original Assignee
广东金发科技有限公司
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东金发科技有限公司, 金发科技股份有限公司 filed Critical 广东金发科技有限公司
Publication of WO2023011206A1 publication Critical patent/WO2023011206A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the invention belongs to the technical field of composite materials, and in particular relates to a long-acting antibacterial glass fiber and nylon molding composition and a preparation method and application thereof.
  • Nylon is one of the four major engineering plastics. It is widely used in various fields of national production and life due to its high mechanical strength, wear resistance, corrosion resistance, and good formability, such as tableware, toys, medical equipment, auto parts, precision plastics, etc. Gears, electronic accessories and various connectors, etc. Whether it is precision equipment parts or the surface of kitchen utensils in contact with food, an important problem faced during long-term use is bacterial corrosion and mildew in humid environments. In the field of modified nylon, antimicrobial additives are usually used to inhibit material mildew and bacterial corrosion. Antibacterial additives are divided into organic antibacterial agents, inorganic antibacterial agents and natural antibacterial agents, which are used alone or in combination.
  • Inorganic antibacterial agents have the most obvious effect, mostly antibacterial agents containing silver ions, copper ions and zinc ions, such as patents CN201610545451.2, CN201210128504.2, CN201210128645.4, CN201210128676.X, CN201210128505.7, etc., which are in nylon materials Adding silver-based antioxidants has a better antibacterial effect.
  • Inorganic antibacterial agents usually cooperate with each other to improve antibacterial performance.
  • zinc oxide and copper oxide are compounded as antibacterial additives
  • CN201410252759.9 silver, copper, zinc, and titanium can be mixed and compounded as nylon antibacterial agents.
  • CN201810857867.7 uses silver-loaded nano-titanium oxide to achieve better antibacterial effect
  • CN201410061129.3 uses silver-based antibacterial agent loaded on white carbon black to compound titanium dioxide to improve antibacterial effect. Not only that, sometimes natural antibacterial agents and inorganic antibacterial agents are used together.
  • the nano-silver antibacterial agent is coated with white fresh skin traditional Chinese medicine extract.
  • the antibacterial agent used in CN201710585909.1 is nano-silver fiber and tea Phenol is mixed at 1:1.
  • nano-zinc oxide and garlic essential oil are mixed as an antibacterial agent to improve antibacterial performance.
  • the compound effect of organic antibacterial agents and inorganic antibacterial agents has been studied in detail, wherein the inorganic antibacterial agents can be silver ions, titanium dioxide, zinc oxide, sodium fluoride, cuprous iodide, etc., and the compound organic antibacterial agents can be Sorbic acid, 2,2-ethylenebis(4,6-di-tert-butylphenyl) fluorophosphorous acid, benzimidazole-2-methoxymethyl carbamate, 2-(4-thiazolyl )-benzimidazole, diethyl-2,3-epoxypropyl-[3-(methyldimethoxy)]silylpropylammonium chloride, tetraphenylphosphonium bromide, triphenylpropyl Phosphonium Bromide etc.
  • the inorganic antibacterial agents can be silver ions, titanium dioxide, zinc oxide, sodium fluoride, cuprous iodide, etc.
  • the compound organic antibacterial agents can be Sorbic acid, 2,2-
  • antibacterial and glass fiber reinforcement need to add antibacterial additives and glass fiber respectively, which increases the complexity of the formula and the technical risk of uneven dispersion of additives, and due to additives Uneven distribution, antibacterial additives are easy to precipitate and lose, resulting in poor long-term antibacterial effect.
  • the purpose of the present invention is to overcome the defects or deficiencies in the prior art that glass fibers and antibacterial additives are needed to realize long-acting antibacterial and enhanced effects at the same time, and provide a long-acting antibacterial glass fiber.
  • the long-acting antibacterial glass fiber provided by the invention has a better long-acting antibacterial effect, can realize long-acting antibacterial and strengthening effects at the same time, and has wide application prospects.
  • Another object of the present invention is to provide a method for preparing the above-mentioned long-acting antibacterial glass fiber.
  • Another object of the present invention is to provide a nylon molding composition.
  • Another object of the present invention is to provide a method for preparing the above-mentioned nylon molding composition.
  • Another object of the present invention is to provide the application of the above-mentioned nylon molding composition in the preparation of tableware, toys, medical equipment, auto parts, precision gears, electronic parts, and connectors.
  • a long-acting antibacterial glass fiber including 74.1-125.50 parts of basic glass oxide components, and also includes the following parts by weight of antibacterial oxide components:
  • Characteristic rare earth element oxides 0.2 to 4 parts
  • the weight ratio of characteristic rare earth element oxide to ZnO is 1:1-5.
  • ZnO itself is a wide bandgap material, not only it is difficult to absorb energy and be excited, but also the rapid recombination of excitons will cause the antibacterial effect of ZnO to be unable to be maintained for a long time; the combination of characteristic rare earth element oxides and ZnO can form heterogeneous Mass junction structure, improve electron-hole separation efficiency, form longer exciton lifetime and redox ability, and stronger stability, so not only the antibacterial property is stronger, but also can maintain long-term antibacterial property; at the same time, in the glass fiber Adding a small amount of characteristic rare earth element oxide will improve the reinforcement effect of glass fiber.
  • the weight ratio of characteristic rare earth element oxides and ZnO has a key influence on the long-acting antibacterial property and enhanced effect. If the weight ratio of the two is too high, the reinforcement effect of glass fiber will be weakened to a certain extent; if the weight ratio of the two is too low, the antibacterial performance will not have obvious advantages.
  • the long-acting antibacterial glass fiber provided by the present invention has a better long-acting antibacterial effect through the synergistic effect of ZnO and characteristic rare earth element oxides; when using it to strengthen nylon materials, the nylon molding composition obtained not only It has better enhancement performance and better long-term antibacterial performance.
  • the base glass oxide components conventional in the art for glass fibers can be used in the present invention.
  • the basic glass oxide component includes the following components in parts by weight:
  • MgO/CaO represents one or both of MgO and CaO.
  • the R 2 O is one or more of Li 2 O, Na 2 O or K 2 O.
  • the weight ratio of the characteristic rare earth element oxide to ZnO is 1:1.3-2.3.
  • the basic glass oxide component further includes 0-2 parts of other additives, more preferably 0.1-1.5 parts.
  • the other additives are one or both of Na 2 SO 4 or CaSO 4 .
  • Na 2 SO 4 , CaSO 4 can promote glass clarification.
  • the particle size distribution D95 of each component in the basic glass oxide component and the antibacterial oxide is 50-200 ⁇ m.
  • the preparation method of the above-mentioned long-acting antibacterial glass fiber includes the following steps: mixing basic glass oxide components, ZnO and characteristic rare earth element oxides, melting, clarifying, homogenizing, molding, and shredding to obtain the long-acting antibacterial glass fiber.
  • the melting treatment is carried out in a kiln, the temperature of the melting treatment is 1450-1600° C., and the time is 0.5-1 hour.
  • the melting treatment temperature is 1450-1550° C., and the time is 0.5-0.8 hours.
  • the temperature of the clarification treatment is 1450-1600° C.
  • the time is 0.5-1 hour.
  • the temperature of the homogenization treatment is 1450-1600° C.
  • the time is 0.5-1 hour.
  • the forming process is as follows: the homogenized molten fluid flows out through a 4000-hole platinum bushing, driven by a high-speed wire drawing machine, and formed into glass fibers; the drawing temperature is 1100-1250°C.
  • the wire drawing process is: using a chopping machine to cut wires, the length of which is 5-15 mm.
  • the present invention also claims a nylon molding composition, comprising the following components in parts by weight:
  • Reinforcement with long-term antibacterial glass fiber can not only significantly improve the tensile strength, flexural modulus and flexural strength of the nylon material, but also endow the nylon molding composition with a better long-term antibacterial effect.
  • the nylon is one or more of semi-aromatic nylon or aliphatic nylon, such as one or more of aliphatic nylon such as PA6 and PA66 or semi-aromatic nylon such as PA6T66.
  • the antioxidant is one or more of hindered phenol antioxidants, hindered amine antioxidants, phosphite antioxidants, thioester antioxidants or thioether antioxidants. kind.
  • the lubricant is a saturated hydrocarbon lubricant, a halogenated hydrocarbon lubricant, a fatty acid lubricant, a fatty acid ester lubricant, an aliphatic amide lubricant, a metal soap lubricant, or a fatty alcohol lubricant Or one or more of polyol lubricants.
  • the preparation method of the above-mentioned nylon molding composition comprises the following steps: uniformly mixing nylon, long-acting antibacterial glass fiber, antioxidant and lubricant to obtain a compound, then melting and extruding the compound, and granulating to obtain the described Nylon molding compositions.
  • a high mixer is used for stirring and mixing, the stirring speed is 200-300 rpm, and the stirring time is 15-30 minutes.
  • a twin-screw extruder is used for melt extrusion and granulation; the extrusion temperature of the twin-screw extruder is 210-320°C, the aspect ratio is 1:38-50, and the screw speed is 280-350 rpm min.
  • the present invention has the following beneficial effects:
  • the long-acting antibacterial glass fiber provided by the present invention is obtained by adding antibacterial oxides to the basic glass oxide component, and the obtained glass fiber not only has a better reinforcing effect, but also has a better long-term antibacterial effect.
  • the obtained nylon molding composition has higher strength and better long-term antibacterial effect.
  • Nylon PA66 Nylon PA66, EP1026, aliphatic nylon, Huafon Group Co., Ltd.
  • Lubricant Licolub WE 4
  • fatty acid ester lubricant Kain Chemical.
  • Antibacterial rate The newly prepared samples were tested according to the Escherichia coli test method in the standard GB 21551.2-2016. Antibacterial rate ⁇ 99%, indicating strong antibacterial properties; 90% ⁇ antibacterial rate ⁇ 99%, indicating antibacterial properties.
  • This embodiment and comparative example provide a series of glass fibers, the formulations of which are shown in Table 1.
  • the glass fibers provided in Examples 1-15 and Comparative Examples 1-6 are prepared through the following process: put each component into the mixing chamber and mix thoroughly; send it into a pool kiln and heat it at a high temperature of 1480°C to melt the glass fiber raw material ;Continue to maintain the temperature, the melt is clarified and homogenized, and the treatment time is 0.5 hours; it flows out through a 4000-hole platinum leak plate, driven by a high-speed wire drawing machine, and formed into glass fibers; it is cut into strands by a chopping machine, and the length is 7mm .
  • This example provides a series of nylon molding compositions, the formulations of which are shown in Table 3 and Table 4.
  • nylon molding compositions provided in Examples 16-34 and Comparative Examples 7-12 were prepared through the following process:
  • each component is stirred and mixed in a high mixer, the stirring speed is 250 rpm, and the time is 20 minutes;
  • the screw extruder performs melt extrusion and granulation;
  • the extrusion temperature of the twin-screw extruder is 230° C., the length-to-diameter ratio is 1:40, and the screw speed is 300 rpm.
  • Example 31 The preparation process of Example 31 is as follows: each component is stirred and mixed in a high mixer, the stirring speed is 250 rpm, and the time is 20 minutes; The extrusion temperature of the extruder is 260°C, the aspect ratio is 1:40, and the screw speed is 300 rpm.
  • Example 32 The preparation process of Example 32 is as follows: each component is stirred and mixed in a high mixer, the stirring speed is 250 rpm, and the time is 20 minutes; The extrusion temperature of the extruder is 310°C, the aspect ratio is 1:40, and the screw speed is 300 rpm.
  • Comparative Example 9 only ZnO was added to the glass fiber for modification, and the antibacterial rate and long-term antibacterial rate were both improved to a limited extent, and the antibacterial grade was poor.
  • the glass fiber added in Comparative Example 10 only adds characteristic rare earth element oxides, lacks the synergistic effect of ZnO, and has poor antibacterial effect.
  • the addition of Eu 2 O 3 and ZnO in Comparative Example 12 lacks synergistic effect, the antibacterial performance is not significantly improved, and the long-term antibacterial performance is relatively poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用。该长效抗菌玻璃纤维包括基础玻璃氧化物组分、ZnO和特征稀土元素氧化物。本发明提供的长效抗菌玻璃纤维通过ZnO和特征稀土元素氧化物的协同作用,得到的玻璃纤维具有较佳的长效抗菌效果;利用其增强尼龙材料时,得到的尼龙模塑组合物不仅具有较好的增强性能,还具有较佳的长效抑菌性能。

Description

一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用 技术领域
本发明属于复合材料技术领域,具体涉及一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用。
背景技术
尼龙是四大工程塑料之一,以其高机械强度、耐磨、耐腐蚀、成型性好等优良性能被广泛应用在国民生产生活各领域中,比如餐具、玩具、医疗设备、汽车配件、精密齿轮、电子配件和各种连接器等。不管是精密的设备零部件,还是食品接触的厨具表面,在长期使用过程中面临的一个重要问题就是潮湿环境下的细菌腐蚀和霉变。在改性尼龙领域中,抑制材料霉变和细菌腐蚀通常采用的是添加抗菌助剂的方式,抗菌助剂分为有机抗菌剂、无机抗菌剂和天然抗菌剂,单独使用或复配使用。
无机抗菌剂效果最明显,多为含银离子、铜离子和锌离子的抗菌剂,如专利CN201610545451.2、CN201210128504.2、CN201210128645.4、CN201210128676.X、CN201210128505.7等,就是在尼龙材料中添加银系抗氧剂取得较好的抗菌效果。无机抗菌剂之间通常也相互配合提高抗菌性能,比如专利CN201510152447.5中氧化锌和氧化铜复配作为抗菌助剂,CN201410252759.9则是银、铜、锌、钛可混合复配作为尼龙抗菌助剂,CN201810857867.7使用载银纳米氧化钛也取得了较好的抗菌效果,CN201410061129.3则是将银系抗菌剂荷载在白炭黑上复配二氧化钛提升抗菌效果。不仅如此,有时也将天然抗菌剂和无机抗菌剂一起使用,CN201910239814.3中将纳米银抗菌剂外面包覆白鲜皮中药提取物,CN201710585909.1中使用的抗菌剂是纳米银纤维和茶多酚1:1混合,CN201610682102.5中将纳米氧化锌和大蒜精油混合作为抗菌剂,以提高抗菌性能。专利CN201610787000.X中详细研究了有机抗菌剂和无机抗菌剂的复配效果,其中无机抗菌剂可以是银离子、二氧化钛、氧化锌、氟化钠、碘化亚铜等,复配有机抗菌剂可以是山梨酸、2,2-亚乙基二(4,6-二-叔-丁基苯)氟亚磷酸、苯并咪唑-2-甲氧基氨基甲酸甲酯、2-(4-噻唑基)-苯并咪唑、二乙基-2,3-环氧丙基-[3-(甲基二甲氧基)]硅丙基氯化铵、四苯基溴化鏻、三苯基丙基溴化鏻等。
除了抗菌性能外,还需要利用玻璃纤维进行填充增强;抗菌性和玻纤增强需要分别添加抗菌助剂和玻纤,增加了配方的复杂性以及助剂分散不均匀的技术风险,并且由于助剂分布不均,抗菌助剂容易析出损失,导致长效抗菌效果差。
因此,开发一种具有长效抗菌效果的玻璃纤维以同时实现长效抗菌和增强效果具有重要的研究意义和经济价值。
发明内容
本发明的目的在于克服现有技术需利用玻璃纤维和抗菌助剂来同时实现长效抗菌和增强效果的缺陷或不足,提供一种长效抗菌玻璃纤维。本发明提供的长效抗菌玻璃纤维具有较佳的长效抑菌效果,可同时实现长效抗菌和增强效果,具有广泛的应用前景。
本发明的另一目的在于提供上述长效抗菌玻璃纤维的制备方法。
本发明的另一目的在于提供一种尼龙模塑组合物。
本发明的另一目的在于提供上述尼龙模塑组合物的制备方法。
本发明的另一目的在于提供上述尼龙模塑组合物在制备餐具、玩具、医疗设备、汽车配件、精密齿轮、电子配件、连接器中的应用。
为实现上述发明目的,本发明采用如下技术方案:
一种长效抗菌玻璃纤维,包括基础玻璃氧化物组分74.1~125.50份,还包括如下重量份数的抗菌氧化物组分:
ZnO    1~4份;
特征稀土元素氧化物    0.2~4份;
特征稀土元素氧化物和ZnO的重量比为1:1~5。
向玻璃纤维的配方中加入抗菌组分,无疑是同时获得长效抗菌和增强效果的有效解决途径。ZnO具有一定的抗菌作用,但研究发现,如在玻璃纤维中加入ZnO,其抗菌效果及长效性并不佳。
发明人经反复试验发现,CeO 2、La 2O 3、Nd 2O 3这三种特征稀土元素氧化物与ZnO具有抗菌协同作用,将其与ZnO复配作为抗菌氧化物组分,可有效提高抗菌效果及长效性,且可提升玻璃纤维的增强效果,得到的玻璃纤维同时具有较好的长效抗菌效果和增强效果。其作用原理可能如下:ZnO本身是一种宽带隙材料,不仅吸收能量被激发难度大,而且激子快速复合将造成ZnO抗菌效果无法 长时间保持;特征稀土元素氧化物和ZnO复配可以形成异质结结构,提高电子-空穴分离效率,形成较长的激子寿命和氧化还原能力,稳定性更强,因此不仅抗菌性更强,而且可以保持长效抗菌性;同时,在玻璃纤维中添加少量特征稀土元素氧化物将提升玻璃纤维的增强效果。
特征稀土元素氧化物和ZnO的重量比对长效抗菌性及增强作用有关键性的影响。如两者的重量比太高,反而一定程度削弱玻璃纤维的增强效果;如两者的重量比太低,抗菌性能将不具有明显优势。
即本发明提供的长效抗菌玻璃纤维通过ZnO和特征稀土元素氧化物的协同作用,得到的玻璃纤维具有较佳的长效抗菌效果;利用其增强尼龙材料时,得到的尼龙模塑组合物不仅具有较好的增强性能,还具有较佳的长效抑菌性能。
本领域常规的用于玻璃纤维的基础玻璃氧化物组分均可用于本发明中。
优选地,所述基础玻璃氧化物组分包括如下重量份数的组分:
Figure PCTCN2022107111-appb-000001
应当说明的是,MgO/CaO代表MgO、CaO中的一种或两种均可。
更为优选地,所述R 2O为Li 2O、Na 2O或K 2O中的一种或几种。
优选地,特征稀土元素氧化物和ZnO的重量比为1:1.3~2.3。
优选地,所述基础玻璃氧化物组分还包括其它添加剂0~2份,进一步优选为0.1~1.5份。
更为优选地,所述其它添加剂为Na 2SO 4或CaSO 4中的一种或两种。Na 2SO 4、CaSO 4可促进玻璃澄清。
优选地,所述基础玻璃氧化物组分和抗菌氧化物中的各组分的粒径分布D95为50~200μm。
上述长效抗菌玻璃纤维的制备方法,包括如下步骤:将基础玻璃氧化物组分、ZnO和特征稀土元素氧化物混合,熔融,澄清,均化,成型,切丝即得所述长效 抗菌玻璃纤维。
优选地,所述熔融处理在窑池中进行,熔融处理的温度为1450~1600℃,时间为0.5~1小时。
更为优选地,熔融处理的温度为1450~1550℃,时间为0.5~0.8小时。
优选地,所述澄清处理的温度为1450~1600℃,时间为0.5~1小时。
优选地,所述均化处理的温度为1450~1600℃,时间为0.5~1小时。
优选地,所述成型处理的过程为:将均化处理后的熔融流体通过4000孔铂金漏板流出,高速拉丝机带动,成型为玻璃纤维;拉丝的温度为1100~1250℃。
优选地,所述拉丝的过程为:利用短切机切丝,长度为5~15mm。
本发明还请求保护一种尼龙模塑组合物,包括如下重量份数的组分:
Figure PCTCN2022107111-appb-000002
利用长效抗菌玻璃纤维进行增强,可不仅显著提升尼龙材料的拉伸强度、弯曲模量及弯曲强度,还赋予尼龙模塑组合物较好的长效抑菌效果。
本领域常规的尼龙、抗氧剂和润滑剂均可用于本发明中。
优选地,所述尼龙为半芳香族尼龙或脂肪族尼龙中的一种或几种,例如PA6、PA66等脂肪族尼龙或PA6T66等半芳香族尼龙中的一种或几种。
优选地,所述抗氧剂为受阻酚类抗氧剂、受阻胺类抗氧剂、亚磷酸酯类抗氧剂、硫酯类抗氧剂或硫醚类抗氧剂中的一种或几种。
优选地,所述润滑剂为饱和烃类润滑剂、卤代烃类润滑剂、脂肪酸类润滑剂、脂肪酸酯类润滑剂、脂肪族酰胺类润滑剂、金属皂类润滑剂、脂肪醇类润滑剂或多元醇类润滑剂中的一种或几种。
上述尼龙模塑组合物的制备方法,包括如下步骤:将尼龙、长效抗菌玻璃纤维、抗氧剂和润滑剂混合均匀得混合料,然后将混合料熔融挤出,造粒,即得所述尼龙模塑组合物。
优选地,利用高混机进行搅拌混合,搅拌的转速为200~300转/min,时间为15~30min。
优选地,利用双螺杆挤出机进行熔融挤出,造粒;双螺杆挤出机的挤出温度为210~320℃,长径比为1:38~50,螺杆转速为280~350转/min。
与现有技术相比,本发明具有如下有益效果:
本发明提供的长效抗菌玻璃纤维通过向基础玻璃氧化物组分中添加抗菌氧化物,得到的玻璃纤维不仅具有较好的增强效果,还具有较佳的长效抑菌效果。将其作为功能助剂添加至尼龙材料中时,得到的尼龙模塑组合物具有较高的强度和较好的长效抑菌效果。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
本发明各实施例及对比例选用的部分试剂说明如下:
尼龙PA6,BE3250,脂肪族尼龙,江苏弘盛新材料股份有限公司。
尼龙PA66,EP1026,脂肪族尼龙,华峰集团有限公司。
尼龙PA6T66,A-6000,半芳香族尼龙,美国苏威。
抗氧剂,REVONOX 608,亚磷酸酯类抗氧剂,上海璞展实业有限公司。
润滑剂,Licolub WE 4,脂肪酸酯类润滑剂,凯茵化工。
SiO 2,二氧化硅,山东国化化学有限公司,粒径分布D95=60μm。
Al 2O 3,CR10,中铝山东有限公司,粒径分布D95=60μm。
Li 2O,L122329,上海阿拉丁生化科技股份有限公司,粒径分布D95=50μm。
B 2O 3,B108404,上海阿拉丁生化科技股份有限公司,粒径分布D95=50μm。
MgO,氧化镁,邢台市镁神化工有限公司,粒径分布D95=100μm。
CaO,氧化钙,常熟市佳友粉体有限公司,粒径分布D95=150μm。
TiO 2,SR-240,山东东佳集团股份有限公司,粒径分布D95=55μm。
ZnO 1#,Z112847,上海阿拉丁生化科技股份有限公司,粒径分布D95=60μm。
ZnO 2#,氧化锌,河南铭之鑫化工科技有限公司,粒径分布D95=300μm。
CeO 2 1#,氧化铈,山东德盛新材料有限公司,粒径分布D95=100μm。
CeO 2 2#,氧化铈,北京华威锐科化工有限公司,粒径分布D95=250μm。
La 2O 3,氧化镧,山东德盛新材料有限公司,粒径分布D95=150μm。
Nd 2O 3,氧化钕,山东德盛新材料有限公司,粒径分布D95=150μm。
Eu 2O 3,氧化铕,北京华威锐科化工有限公司,粒径分布D95=150μm。
Na 2SO 4,硫酸钠,北京华威锐科化工有限公司,粒径分布D95=180μm。
本发明各实施例及对比例的尼龙模塑组合物进行如下测试:
(1)抗菌率:新制备的样品按照标准GB 21551.2-2016中大肠杆菌测试方法测定。抗菌率≥99%,表明有强抗菌性;90%≤抗菌率<99%,表明有抗菌性。
(2)长效抗菌率:样品放置6个月后按照标准GB 21551.2-2016中大肠杆菌测试方法测定。长效抗菌率≥95%,表明有长效强抗菌性;85%≤抗菌率<95%,表明有长效抗菌性。
(3)拉伸强度:按GB/T 1039-1992测试,测试速率50mm/min。
(4)弯曲模量:按GB/T 9341-2008测试,测试速率2mm/min。
(5)弯曲强度:按GB/T 9341-2008测试,测试速率2mm/min。
实施例1~15和对比例1~6
本实施例和对比例提供一系列玻璃纤维,其配方如表1。
表1实施例1~15的配方(份)
Figure PCTCN2022107111-appb-000003
Figure PCTCN2022107111-appb-000004
表2对比例1~6的配方(份)
Figure PCTCN2022107111-appb-000005
实施例1~15和对比例1~6提供的玻璃纤维通过如下过程制备得到:将各组分加入混合仓中,充分混合;送入池窑中于1480℃下高温加热,使玻璃纤维原材料融化;继续保持该温度,熔体经过澄清、均化处理,处理时长均为0.5小时;通过4000孔铂金漏板流出,高速拉丝机带动,成型为玻璃纤维;经短切机切丝,长度为7mm。
实施例16~30和对比例7~12
本实施例提供一系列的尼龙模塑组合物,其配方如表3和表4。
表3实施例16~30的配方(份)
Figure PCTCN2022107111-appb-000006
Figure PCTCN2022107111-appb-000007
表4实施例31~34和对比例7~12的配方(份)
Figure PCTCN2022107111-appb-000008
实施例16~34和对比例7~12提供的尼龙模塑组合物通过如下过程制备得到:
实施例16~30、实施例33~34、对比例7~12的制备工艺为:将各组分于高混机进行搅拌混合,搅拌的转速为250转/min,时间为20min;然后利用双螺杆挤出机进行熔融挤出,造粒;双螺杆挤出机的挤出温度为230℃,长径比为1:40,螺杆转速为300转/min。
实施例31的制备工艺为,将各组分于高混机进行搅拌混合,搅拌的转速为250转/min,时间为20min;然后利用双螺杆挤出机进行熔融挤出,造粒;双螺杆挤出机的挤出温度为260℃,长径比为1:40,螺杆转速为300转/min。
实施例32的制备工艺为,将各组分于高混机进行搅拌混合,搅拌的转速为 250转/min,时间为20min;然后利用双螺杆挤出机进行熔融挤出,造粒;双螺杆挤出机的挤出温度为310℃,长径比为1:40,螺杆转速为300转/min。
由上述测试结果可知,与对比例11中添加未改性的玻璃纤维相比,实施例14~30提供的尼龙模塑组合物添加有长效抗菌玻璃纤维,具有较佳的增强效果和长效抑菌效果,抑菌等级高,其中以实施例19的综合性能最优。对比例7添加的玻璃纤维中特征稀土元素氧化物和ZnO的重量比太小,抗菌效果和长效抗菌效果均不佳;对比例8添加的玻璃纤维中特征稀土元素氧化物和ZnO的重量比太大,虽然抗菌效果有所提升,但力学增强效果有所减弱。对比例9添加的玻璃纤维中仅添加ZnO来进行改性,抗菌率及长效抗菌率均提升有限,抗菌等级较差。对比例10添加的玻璃纤维中仅添加特征稀土元素氧化物,缺乏ZnO的协同配合作用,抗菌效果也较差。对比例12添加Eu 2O 3和ZnO,缺乏协同作用,抗菌性能没有明显提升,长效抗菌性能也比较差。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

  1. 一种长效抗菌玻璃纤维,包括基础玻璃氧化物组分74.1~125.50份,其特征在于,还包括如下重量份数的抗菌氧化物组分:
    ZnO    1~4份;
    特征稀土元素氧化物    0.2~4份;
    特征稀土元素氧化物和ZnO的重量比为1:1~5,特征稀土元素氧化物为CeO 2、La 2O 3或Nd 2O 3中的一种或几种。
  2. 根据权利要求1所述长效抗菌玻璃纤维,其特征在于,所述基础玻璃氧化物组分包括如下重量份数的组分:
    Figure PCTCN2022107111-appb-100001
  3. 根据权利要求2所述长效抗菌玻璃纤维,其特征在于,所述R 2O为Li 2O、Na 2O或K 2O中的一种或几种。
  4. 根据权利要求1所述长效抗菌玻璃纤维,其特征在于,特征稀土元素氧化物和ZnO的重量比为1:1.3~2.3。
  5. 根据权利要求1所述长效抗菌玻璃纤维,其特征在于,所述基础玻璃氧化物组分还包括其它添加剂0~2份,所述其它添加剂为Na 2SO 4或CaSO 4中的一种或两种。
  6. 权利要求1~5任一所述长效抗菌玻璃纤维的制备方法,其特征在于,包括如下步骤:将基础玻璃氧化物组分、ZnO和特征稀土元素氧化物混合,熔融,澄清,均化,成型,切丝即得所述长效抗菌玻璃纤维。
  7. 一种尼龙模塑组合物,其特征在于,包括如下重量份数的组分:
    Figure PCTCN2022107111-appb-100002
  8. 根据权利要求7所述尼龙模塑组合物,其特征在于,所述尼龙为半芳香族尼龙或脂肪族尼龙中的一种或几种;所述抗氧剂为受阻酚类抗氧剂、受阻胺类抗氧剂、亚磷酸酯类抗氧剂、硫酯类抗氧剂或硫醚类抗氧剂中的一种或几种;所述润滑剂为饱和烃类润滑剂、卤代烃类润滑剂、脂肪酸类润滑剂、脂肪酸酯类润滑剂、脂肪族酰胺类润滑剂、金属皂类润滑剂、脂肪醇类润滑剂或多元醇类润滑剂中的一种或几种。
  9. 权利要求7~8任一所述尼龙模塑组合物的制备方法,其特征在于,包括如下步骤:将尼龙、长效抗菌玻璃纤维、抗氧剂和润滑剂混合均匀得混合料,然后将混合料熔融挤出,造粒,即得所述尼龙模塑组合物。
  10. 权利要求7~8任一所述尼龙模塑组合物在制备餐具、玩具、医疗设备、汽车配件、精密齿轮、电子配件、连接器中的应用。
PCT/CN2022/107111 2021-07-31 2022-07-21 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用 WO2023011206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110876296.3A CN113800772A (zh) 2021-07-31 2021-07-31 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用
CN202110876296.3 2021-07-31

Publications (1)

Publication Number Publication Date
WO2023011206A1 true WO2023011206A1 (zh) 2023-02-09

Family

ID=78942727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107111 WO2023011206A1 (zh) 2021-07-31 2022-07-21 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113800772A (zh)
WO (1) WO2023011206A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800772A (zh) * 2021-07-31 2021-12-17 广东金发科技有限公司 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107238A1 (en) * 2003-09-09 2005-05-19 Hong Li Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
CN101469129A (zh) * 2007-12-24 2009-07-01 上海杰事杰新材料股份有限公司 一种阻燃抗静电增强尼龙6组合物及制备方法
CN103030972A (zh) * 2012-12-26 2013-04-10 上海金发科技发展有限公司 一种高耐热低翘曲尼龙66复合材料及其制备方法
CN108290769A (zh) * 2015-05-13 2018-07-17 电子玻璃纤维美国有限责任公司 用于制造具有改进的低热膨胀系数的改进的低介电纤维的MgO、ZnO和稀土氧化物用于高硼铝硅酸盐组合物的用途
CN111542654A (zh) * 2018-12-04 2020-08-14 兴亚硝子株式会社 抗菌性纤维和抗菌性纤维的制造方法
CN113800772A (zh) * 2021-07-31 2021-12-17 广东金发科技有限公司 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245237A (ja) * 1995-03-09 1996-09-24 Nippon Sheet Glass Co Ltd 抗菌性ガラス用組成物
CN103849138A (zh) * 2012-11-29 2014-06-11 合肥杰事杰新材料股份有限公司 一种短切玻璃纤维增强尼龙复合材料及其制备方法
CN104556709A (zh) * 2014-12-30 2015-04-29 东华大学 一种含氧化铈的高强度玻璃纤维及其制备方法
CN108658468A (zh) * 2017-03-29 2018-10-16 重庆马谷纤维新材料有限公司 一种生物可溶抗菌超细玻璃棉及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107238A1 (en) * 2003-09-09 2005-05-19 Hong Li Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
CN101469129A (zh) * 2007-12-24 2009-07-01 上海杰事杰新材料股份有限公司 一种阻燃抗静电增强尼龙6组合物及制备方法
CN103030972A (zh) * 2012-12-26 2013-04-10 上海金发科技发展有限公司 一种高耐热低翘曲尼龙66复合材料及其制备方法
CN108290769A (zh) * 2015-05-13 2018-07-17 电子玻璃纤维美国有限责任公司 用于制造具有改进的低热膨胀系数的改进的低介电纤维的MgO、ZnO和稀土氧化物用于高硼铝硅酸盐组合物的用途
CN111542654A (zh) * 2018-12-04 2020-08-14 兴亚硝子株式会社 抗菌性纤维和抗菌性纤维的制造方法
CN113800772A (zh) * 2021-07-31 2021-12-17 广东金发科技有限公司 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN113800772A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
EP2676939B1 (en) Glass fibre composition free of boron and fluorine
WO2023011206A1 (zh) 一种长效抗菌玻璃纤维、尼龙模塑组合物及其制备方法和应用
CN105623248A (zh) 一种聚酰胺复合材料及其制备方法
CN109082007A (zh) 一种高强抗菌聚丙烯塑料及制备方法
CN1128984A (zh) 玻璃纤维组合物
CN106009580A (zh) 一种高硬度耐磨透明聚碳酸酯材料及其制备方法
CN104277381A (zh) 一种竹纤维增强窗塑钢型材及其制备方法
WO2023011205A1 (zh) 一种高分散玻璃纤维、玻纤增强尼龙材料及其制备方法和应用
CN108530887B (zh) 一种高耐热、高强度半芳香族聚酰胺/聚酯合金材料及其制备方法和应用
CN113527858A (zh) 高强高韧抗菌防霉阻燃pc/abs合金材料及其制备方法
CN108794810A (zh) 一种纳米碳酸钙的改性方法及其在增强pvc管材的应用
CN110408185A (zh) 一种高强度耐低温玻璃钢及其制备方法
CN103849029A (zh) 聚乙烯/弹性体/微米碳酸钙三元共混复合材料
CN108585616A (zh) 一种耐久混凝土及其制备方法
CN104744781A (zh) 一种高抗冲的加强改性聚乙烯粉末
CN116606502A (zh) 一种pp抗菌材料及其制备方法
CN104419178A (zh) 碳纤维增强聚碳酸酯pc及其制备方法
WO2020024308A1 (zh) 一种pvc用稀土复合热稳定剂及其制备方法
CN106905635A (zh) 一种改性塑料
CN109810413A (zh) 一种改性石墨烯塑料及制备方法
CN107974059A (zh) 一种基于回收pet的聚酯材料及其制备方法
CN100340510C (zh) 一种磁性玻璃纤维及其制备方法
CN111423651A (zh) 一种制作塑料垃圾桶的配方
CN114213804B (zh) 一种高韧性抗菌增强abs复合材料及其制备方法
CN104312054A (zh) 一种高强度门窗塑钢型材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE