WO2023011025A1 - 一种资源确定方法及通信装置 - Google Patents

一种资源确定方法及通信装置 Download PDF

Info

Publication number
WO2023011025A1
WO2023011025A1 PCT/CN2022/100029 CN2022100029W WO2023011025A1 WO 2023011025 A1 WO2023011025 A1 WO 2023011025A1 CN 2022100029 W CN2022100029 W CN 2022100029W WO 2023011025 A1 WO2023011025 A1 WO 2023011025A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
resource
frequency
offset
relative
Prior art date
Application number
PCT/CN2022/100029
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
花梦
周涵
黄雯雯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011025A1 publication Critical patent/WO2023011025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a resource determination method and a communication device.
  • 5G new air interface
  • NR new radio
  • control resource set control resource set, CORESET #0 for the terminal equipment through the master information block (MIB), so as to send physical downlink control channel (physical downlink control) channel, PDCCH) to schedule system messages, schedule paging messages, or schedule data in the random access process.
  • MIB master information block
  • PDCCH physical downlink control channel
  • the network device may configure more than one initial downlink bandwidth part (bandwith part, BWP) during the initial access phase, different initial downlink BWPs may not overlap, and the newly configured initial downlink BWP may not include Synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, or ss/pbch block, SSB), and the newly configured initial downlink BWP may also need to configure a new CORESET.
  • the newly configured CORESET outside of CORESET#0 may be far away from the SSB in the frequency domain.
  • Using the SSB-based offset value to determine the frequency domain position of the new CORESET requires newly defining a large number of larger offset values. The accuracy is low and the signaling overhead required is large.
  • the present application provides a method for determining resources and a communication device, so as to ensure the location of resources under the condition of less signaling overhead.
  • the present application provides a resource determination method, which can be executed by a terminal device or by a network device, wherein the terminal device can be user equipment (user equipment, UE), vehicle-mounted equipment, smart watch , smart bracelet, etc., and the network device may be a transmission reception point (transmission reception point, TRP), a 5G base station (gnodeB, gNB), etc., which are not specifically limited in this application.
  • the terminal device can be user equipment (user equipment, UE), vehicle-mounted equipment, smart watch , smart bracelet, etc.
  • the network device may be a transmission reception point (transmission reception point, TRP), a 5G base station (gnodeB, gNB), etc., which are not specifically limited in this application.
  • the network device can determine the frequency position of the first resource and the frequency position of the second CORESET, the first resource is BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain; the first CORESET can be configured by system information , such as configured by the master information block (master information block, MIB) or system information block 1 (system information block-1, SIB1), for example, the first CORESET is CORESET#0 configured by the MIB; the network device can be configured according to the first resource The frequency position of the second CORESET and the frequency position of the second CORESET determine the frequency offset of the second CORESET relative to the first resource; the network device notifies the terminal device of the frequency position and frequency offset of the first resource; the terminal device according to the frequency position of the first resource and the frequency offset to determine the frequency position of the second CORESET; the network device sends the PDCCH on the second CORESET, and the terminal device monitors the PDCCH on the second CORESET.
  • master information block master information
  • the above-mentioned first resource When the above-mentioned first resource is BWP, it may be an uplink BWP or a downlink BWP, and may be a resource in the radio resource control (radio resource control, RRC) IDLE state (idle state) or RRC INACTIVE (inactive state), or It is an RRC CONNECTED (connected state) resource, which is not specifically limited here.
  • the above-mentioned first CORESET may be the control resource set CORESET#0 with an identifier of 0 configured by the network device for the terminal device, or may be a control resource set with other identifiers, which is not specifically limited here.
  • the first resource may be configured by system information (system information, SI), for example, configured by SIB1, or configured by other RRC messages, for example, configured by an RRC message in RRC connected state, which is not specifically limited here.
  • SI system information
  • RRC messages for example, configured by an RRC message in RRC connected state, which is not specifically limited here. Since more and more terminals are connected in the communication system, for load balancing, multiple CORESETs can be reintroduced to improve communication service quality.
  • the imported CORESET can be the second CORESET, and the second CORESET does not overlap with the first CORESET in the frequency domain to ensure better communication service quality, improve system capacity, and solve the problem of PDCCH congestion.
  • the above-mentioned frequency position may also be called a frequency domain position, and the specific name is not specifically limited here, and may be determined according to a specific application scenario in actual application.
  • the introduction of the second CORESET in this application can balance the load and expand the system capacity, and the terminal device determines the second CORESET based on the first resource and frequency offset, which can reduce signaling compared to determining the frequency position of the CORESET through the bitmap indication Overhead, save time-frequency resources, and improve resource utilization efficiency.
  • the frequency offset represents: the offset of the first resource block RB of the second CORESET relative to the first RB of the first resource; or, the offset of the last RB of the second CORESET relative to the first resource or, the offset of the center RB of the second CORESET relative to the center RB of the first resource; or, the offset of the lower boundary of the second CORESET relative to the lower boundary of the first resource; or, the second The offset of the upper boundary of the CORESET relative to the upper boundary of the first resource; or, the center frequency of the first resource unit RE of the first RB of the second CORESET relative to the first RE of the first RB of the first resource.
  • the frequency offset specifically indicates which frequency position of the first resource and which frequency position of the second CORESET the offset between which frequency position can be determined according to service requirements, and is not specifically limited here.
  • the terminal device may receive indication information from the network device, where the indication information is used to indicate the frequency offset; the indication information is one or more of the following signaling:
  • the terminal device can obtain the frequency offset after obtaining the DCI/MIB of SIB1/scheduled SIB1 in the initial access phase, which is beneficial to determine the frequency position of the second CORESET in the initial access phase, so , which is conducive to realizing load balancing in the initial access stage and reducing the congestion of the PDCCH.
  • the indication information is also used to indicate the bandwidth of the second CORESET and the number of OFDM symbols of the second CORESET. In this way, the bandwidth of the second CORESET and the number of OFDM symbols of the second CORESET can be determined more flexibly.
  • the indication information can be used to determine the bandwidth, the number of symbols, and the frequency offset of the second CORESET at the same time, which can save signaling overhead, and it is not necessary to separately specify the bandwidth, the number of symbols, and the frequency offset of the second CORESET. The frequency offset is indicated.
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth number of orthogonal frequency division multiplexing (OFDM) symbols, control channel element resource element group mapping type (control channel element resource element group mapping type, cce-REG-MappingType), resource element group package Size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and PDCCH demodulation reference signal scrambling code identification (physical downlink control channel demodulation reference signal scrambling Identity document, pdcch-DMRS-ScramblingID).
  • OFDM orthogonal frequency division multiplexing
  • the parameters of the second CORESET can reuse the parameters of CORESET#0, and there is no need to configure the parameters of the second CORESET separately, which can save signaling overhead, especially when the second CORESET is configured in the initial access phase, it can save initial access.
  • the signaling overhead when entering the stage for example, saving the signaling overhead of SIB1.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • the parameters of the search space set associated with the second CORESET can reuse the parameters of the search space set associated with CORESET#0, and there is no need to separately configure the parameters of the search space set associated with the second CORESET, which can save signaling overhead, especially when When the second CORESET is configured in the initial access phase, the signaling overhead in the initial access phase can be saved, for example, the signaling overhead of SIB1 can be saved.
  • the present application provides a resource determination method, which can be executed by a terminal device or a network device, wherein the terminal device can be a UE, a vehicle-mounted device, a smart watch, a smart bracelet, etc., and the network
  • the device may be TRP, gNB, etc., which are not specifically limited in this application.
  • the network device can determine the frequency position of the first resource and the frequency position of the second CORESET, the first resource is the bandwidth part BWP or the first control resource set CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain; the first CORESET It can be configured by system information, such as MIB or SIB1.
  • the first CORESET is CORESET#0 configured by MIB.
  • the network device notifies the terminal device of the frequency position of the first resource; the terminal device determines the frequency position of the first resource according to the frequency position of the first resource.
  • the frequency position of the second CORESET the network device sends the PDCCH on the second CORESET, and the terminal device monitors the PDCCH on the second CORESET.
  • the above-mentioned first CORESET may be the control resource set CORESET#0 with an identifier of 0 configured by the network device for the terminal device, or may be a control resource set with other identifiers, which is not specifically limited here. Since more and more terminals are connected in the communication system, for load balancing, multiple CORESETs can be reintroduced to improve communication service quality.
  • the imported CORESET may be a second CORESET, where the second CORESET does not overlap or partially overlaps with the first CORESET to ensure better communication service quality.
  • the above-mentioned frequency position may also be called a frequency domain position, and the specific name is not specifically limited here, and may be determined according to a specific application scenario in actual application.
  • the network device and the terminal device can agree in advance that there is no offset between the frequency position of the first resource and the frequency position of the second CORESET, or the offset is a fixed value, so the terminal device can directly
  • the method of determining the frequency position of the second CORESET according to the frequency position of the first resource is simpler and quicker.
  • the first resource block RB of the second CORESET is aligned with the first RB of the first resource; or, the last RB of the second CORESET is aligned with the last RB of the first resource; or , the center RB of the second CORESET is aligned with the center RB of the first resource; or, the lower boundary of the second CORESET is aligned with the lower boundary of the first resource; or, the upper boundary of the second CORESET is aligned with the upper boundary of the first resource; Or, the center frequency of the first RE of the first RB of the second CORESET is aligned with the center frequency of the first RE of the first RB of the first resource; or, the center frequency of the first RE of the last RB of the second CORESET
  • the center frequency of a resource unit RE is aligned with the center frequency of the first RE of the last RB of the first resource; or, the upper boundary of the second CORESET is aligned with the preset frequency of the first resource; or, the second C
  • the above alignment can be understood as the frequency offset is 0 or a fixed value, such as the alignment of the first resource block RB of the second CORESET with the first RB of the first resource can be understood as the alignment of the first resource block RB of the second CORESET with There is no frequency offset between the first RB of the first resource, or the frequency offset between the first resource block RB of the second CORESET and the first RB of the first resource is a fixed value. It is not specifically limited, and can be determined according to actual application scenarios.
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type, search space associated DCI format.
  • the present application provides a communication device.
  • the communication device can be understood as a terminal device, which can be a UE, a vehicle device, a smart watch, a smart bracelet, etc., and includes: a processing unit and an input and output unit.
  • the processing unit is configured to determine the frequency offset and the frequency position of the first resource, where the first resource is the bandwidth part BWP or the first control resource set CORESET; the frequency offset indicates the frequency offset of the second CORESET relative to the first resource, The first CORESET and the second CORESET do not overlap in the frequency domain; and according to the frequency position and frequency offset of the first resource, determine the frequency position of the second CORESET; the input and output unit is used to monitor the physical downlink control channel PDCCH in the second CORESET .
  • the frequency offset may represent: the offset of the first resource block RB of the second CORESET relative to the first RB of the first resource; or, the offset of the last RB of the second CORESET relative to the first The offset of the last RB of the resource; or, the offset of the center RB of the second CORESET relative to the center RB of the first resource; or, the offset of the lower boundary of the second CORESET relative to the lower boundary of the first resource; or, the first The offset of the upper boundary of the second CORESET relative to the upper boundary of the first resource; or, the center frequency of the first resource unit RE of the first RB of the second CORESET relative to the first RE of the first RB of the first resource or, the center frequency of the first resource unit RE of the last RB of the second CORESET relative to the center frequency of the first RE of the last RB of the first resource; or, the second The offset of the upper boundary of the CORESET relative to the preset frequency of the first resource; or, the offset of the lower boundary of
  • the input and output unit is further configured to: receive indication information, the indication information is used to indicate the frequency offset; the indication information is one or more of the following signaling:
  • SIB1 schedules DCI and MIB of SIB1.
  • the indication information is also used to indicate the bandwidth of the second CORESET and the number of OFDM symbols of the second CORESET.
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type, search space associated DCI format.
  • the present application provides a communication device.
  • the communication device may be understood as a network device, such as TRP, gNB, etc., and includes: a processing unit and an input and output unit.
  • the processing unit is configured to determine the frequency position of the first resource and the frequency position of the second control resource set CORESET, the first resource is BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain; and according to The frequency position of the first resource and the frequency position of the second CORESET determine the frequency offset; the frequency offset indicates the frequency offset of the second CORESET relative to the first resource; the input and output unit is used to notify the terminal device of the frequency of the first resource location and frequency offset; and sending a physical downlink control channel PDCCH in the second CORESET.
  • the frequency offset may represent: the offset of the first resource block RB of the second CORESET relative to the first RB of the first resource; or, the offset of the last RB of the second CORESET relative to the first The offset of the last RB of the resource; or, the offset of the center RB of the second CORESET relative to the center RB of the first resource; or, the offset of the lower boundary of the second CORESET relative to the lower boundary of the first resource; or, the first The offset of the upper boundary of the second CORESET relative to the upper boundary of the first resource; or, the center frequency of the first resource unit RE of the first RB of the second CORESET relative to the first RE of the first RB of the first resource or, the center frequency of the first resource unit RE of the last RB of the second CORESET relative to the center frequency of the first RE of the last RB of the first resource; or, the second The offset of the upper boundary of the CORESET relative to the preset frequency of the first resource; or, the offset of the lower boundary of
  • the frequency offset is indicated through one or more of the following signalings:
  • SIB1 schedules DCI and MIB of SIB1.
  • the signaling is also used to indicate the bandwidth of the second CORESET and the number of OFDM symbols of the second CORESET.
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type, search space associated DCI format.
  • the present application provides a communication device.
  • the communication device can be understood as a terminal device, which can be a UE, a vehicle-mounted device, a smart watch, a smart bracelet, etc., and includes: a processing unit and an input and output unit.
  • processing unit is used to determine the frequency position of the second CORESET according to the frequency position of the first resource; the first resource is BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain; the input and output unit is used for Monitor the PDCCH at the second CORESET.
  • the first resource block RB of the second CORESET is aligned with the first RB of the first resource; or, the last RB of the second CORESET is aligned with the last RB of the first resource; or , the center RB of the second CORESET is aligned with the center RB of the first resource; or, the lower boundary of the second CORESET is aligned with the lower boundary of the first resource; or, the upper boundary of the second CORESET is aligned with the upper boundary of the first resource; Or, the center frequency of the first RE of the first RB of the second CORESET is aligned with the center frequency of the first RE of the first RB of the first resource; or, the center frequency of the first RE of the last RB of the second CORESET
  • the center frequency of a resource unit RE is aligned with the center frequency of the first RE of the last RB of the first resource; or, the upper boundary of the second CORESET is aligned with the preset frequency of the first resource; or, the second C
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type, search space associated DCI format.
  • the present application provides a communication device.
  • the communication device may be understood as a network device, which may be a TRP, gNB, etc., and includes: a processing unit and an input and output unit.
  • the processing unit is used to determine the frequency position of the first resource and the frequency position of the second CORESET, the first resource is BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain; the input and output unit uses To notify the terminal device of the frequency position of the first resource, and send the PDCCH in the second CORESET.
  • the first resource block RB of the second CORESET is aligned with the first RB of the first resource; or, the last RB of the second CORESET is aligned with the last RB of the first resource; or , the center RB of the second CORESET is aligned with the center RB of the first resource; or, the lower boundary of the second CORESET is aligned with the lower boundary of the first resource; or, the upper boundary of the second CORESET is aligned with the upper boundary of the first resource; Or, the center frequency of the first RE of the first RB of the second CORESET is aligned with the center frequency of the first RE of the first RB of the first resource; or, the center frequency of the first RE of the last RB of the second CORESET
  • the center frequency of a resource unit RE is aligned with the center frequency of the first RE of the last RB of the first resource; or, the upper boundary of the second CORESET is aligned with the preset frequency of the first resource; or, the second C
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, CORESET#0 is configured by system information, and the configuration of the search space set includes at least one of the following :
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type, search space associated DCI format.
  • the present application provides a communication device, including at least one processor and a memory; the memory is used to store computer programs or instructions, and when the device is running, the at least one processor executes the computer programs or instructions, so that The communication device executes the method of the first aspect or each embodiment of the first aspect or the second aspect or the method of each embodiment of the second aspect.
  • the present application provides another communication device, including: an interface circuit and a logic circuit; where the interface circuit can be understood as an input and output interface, and the logic circuit can be used to run code instructions to perform the above-mentioned first aspect or the first aspect The method of each embodiment or the second aspect or the method of each embodiment of the second aspect.
  • the present application also provides a computer-readable storage medium, in which computer-readable instructions are stored, and when the computer-readable instructions are run on a computer, the computer can execute A method in any one of the possible designs of the first aspect or a method in any of the possible designs of the second aspect or the second aspect.
  • the present application provides a computer program product containing instructions, which, when run on a computer, cause the computer to execute the method of the above-mentioned first aspect or each embodiment of the first aspect or the second aspect or the method of the second aspect Methods of Examples.
  • the present application provides a chip system, the chip system includes a processor, and may also include a memory, for implementing the method or The method described in the second aspect or any possible design of the second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, the system includes network equipment and terminal equipment, and the communication system is used to implement the above-mentioned first aspect or any possible design of the first aspect. method or the method described in the above second aspect or any possible design of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a frequency position determination scenario of CORESET#0
  • Fig. 3 shows a schematic flowchart of a method for determining resources provided by an embodiment of the present application
  • FIG. 4A shows a schematic diagram of a frequency position determination scenario of a CORESET#R provided by an embodiment of the present application
  • FIG. 4B shows a schematic flowchart of a method for determining resources provided by an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of a resource determination method provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication system consists of network equipment and UE1-UE6 to form a communication system.
  • UE1-UE6 can send information to the network device, and the network device can receive the information sent by UE1-UE6 and give back a response message.
  • UE4-UE6 can also form a communication system.
  • the first communication device and the second communication device can both be terminal devices.
  • terminal device 1 sends configuration information to terminal device 2, and receives The data sent by the terminal device 2; and the terminal device 2 receives the configuration information sent by the terminal device 1, and sends data to the terminal device 1.
  • the above-mentioned network device is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • Access network equipment A device with wireless transceiver function or a chip that can be set on the device, including but not limited to: evolved node B (evolved node B, eNB), base station controller (base station controller, BSC), base station Access in base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be a gNB in a 5G (such as NR) system, or, Transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements RRC, packet data convergence protocol (packet data convergence protocol, PDCP) layer functions, DU implements radio link control (radio link control, RLC) , Media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the access network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and the CU can also be divided into network devices in the core network CN, which is not limited here.
  • the terminal equipment involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals, and is used for sending uplink signals to network equipment or receiving downlink signals from network equipment.
  • Including devices that provide voice and/or data connectivity to a user may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include UE, V2X terminal equipment, wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, machine-to-machine/machine-type communication (machine-to-machine/machine -type communications, M2M/MTC) terminal equipment, internet of things (IoT) terminal equipment, subscriber unit, subscriber station, mobile station, remote station , access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), wearable equipment, on-board equipment, drones, etc.
  • IoT internet of things
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices. ).
  • RedCap UE can be wearables, industrial wireless sensors and video surveillance equipment.
  • the general NR enhanced mobile broadband (eMBB) UE supports a bandwidth of 100MHz in FR1 and a bandwidth of 200MHz in FR2, where FR1 and FR2 are defined by the 3rd generation partnership project (3GPP) FR1 frequency band and FR2 frequency band.
  • 3GPP 3rd generation partnership project
  • the maximum bandwidth supported by NR RedCap UE in FR1 is 20MHz.
  • the maximum bandwidth supported by RedCap UE is 100MHz.
  • the reason why the bandwidth capability supported by RedCap UE is smaller than that of eMBB UE is because RedCap UE has low implementation complexity and low power consumption.
  • the network device In the initial access stage of the terminal device (such as: booting into the network, canceling the flight mode, random access, etc.), the network device will configure a CORESET for the eMBB UE through MIB signaling, and its ID is 0, that is, CORESET#0.
  • the SIB1 signaling can configure an additional public CORESET for the UE, called common CORESET, whose ID is not 0, and the additional public CORESET must be within the bandwidth of CORESET#0 in the frequency domain.
  • the network device may configure a new CORESET for the RedCap UE (assuming that the CORESET is CORESET#R, which can also be called CORESET#0A, or other numbered CORESETs, this application refers to the name of the new CORESET without specific restrictions).
  • a control resource set namely CORESET
  • a CORESET consists of several RBs in the frequency domain and 1, 2 or 3 OFDM symbols in the time domain.
  • the downlink data in the initial access phase is transmitted in the initial downlink BWP, for example, it is used for scheduling message 2 in the random access process Or the PDCCH of message 4, the paging PDCCH of scheduling paging messages, etc. are all transmitted on CORESET#0.
  • the number of eMBB UEs and RedCap UEs increases, it will cause channel congestion during the initial access phase, such as PDCCH congestion (PDCCH blocking).
  • PDCCH congestion PDCCH blocking
  • at least one new initial downlink BWP can be configured for RedCap UE in addition to the existing initial downlink BWP for data transmission of RedCap UE.
  • FR1 supports a radio frequency bandwidth capability of 100MHz. Therefore, the bandwidth of the initial uplink BWP configured by the network device for the eMBB UE may exceed the maximum bandwidth capability supported by the RedCap UE.
  • a new initial uplink BWP may be configured for RedCap UE, and the bandwidth of the new initial uplink BWP should not exceed the bandwidth supported by RedCap UE Maximum bandwidth capability.
  • an uplink BWP and a downlink BWP form a BWP pair (BWP pair), and their IDs are the same and they have the same center frequency.
  • the initial uplink BWP and the initial downlink BWP are a BWP pair and should have the same center frequency.
  • the center frequency of the initial uplink BWP newly introduced for RedCap UE may not be aligned with the initial downlink BWP configured for eMBB UE.
  • BWP center frequency points are aligned, and an initial downlink BWP is newly introduced for RedCap UE, for example called: RedCap-initial DL BWP.
  • the initial downlink BWP configured for RedCap UE generally at least one CORESET must be configured.
  • the initial downlink BWP of RedCap UE does not include CORESET#0. Configure a new CORESET.
  • the network device can indicate the bandwidth of CORESET#0, the number of symbols and the offset value between SSB, etc., so that the terminal device can determine CORESET#0 according to the offset value between SSB and CORESET#0 and the frequency position of SSB frequency position.
  • the UE when the UE initially accesses, it first searches for the SSB, and the MIB included in the physical broadcast channel (physical broadcast channel, PBCH) included in the SSB will indicate an index value, which is used to indicate the CORESET#0 Bandwidth, the number of symbols, and the offset value between SSB, etc., and then according to the offset value between SSB and CORESET#0, the UE can determine the frequency position of CORESET#0, and then determine the CORESET according to the bandwidth corresponding to the index value Bandwidth of #0.
  • the time domain interval between SSB and CORESET#0 is only for illustration.
  • the newly introduced CORESET for RedCap UE may be far away from SSB in the frequency domain, or the initial downlink BWP configured for RedCap UE does not include SSB, and the current offset value does not support configuring CORESET#R at a distance of SSB It is not appropriate to determine the frequency location of CORESET#R based on the SSB.
  • a downlink BWP includes an integer number of RBs in the frequency domain, and a CORESET can be a part of RBs in a BWP in the frequency domain, and a CORESET also includes an integer number of RBs.
  • a downlink BWP starts from the first RB in the frequency domain, and every 6 RBs are used as an RB group (RB group), and the RB group where the first RB is located is called the first RB group.
  • the first bit of the bitmap corresponds to the first RB group in the BWP
  • the second bit corresponds to the second RB group, and so on.
  • one bit is set to 1, it means that the RB group corresponding to this bit is the frequency domain resource included in the CORESET; otherwise, the corresponding RB group does not belong to the CORESET.
  • CORESET#R it is possible to carry configuration information of CORESET#R through SIB1 signaling. If the frequency position of CORESET#R is determined through the bitmap, the signaling overhead (load overhead) of SIB1 will be increased. Wherein, the SIB1 signaling is a broadcast signaling, which carries minimum system information, and if the SIB1 signaling overhead is too large, system resource utilization efficiency will be reduced.
  • the present application provides a resource determination method.
  • the method can be executed by a terminal device or by a network device, wherein the terminal device can be UE, vehicle-mounted device, smart watch, smart bracelet, etc., and the network device can be TRP, gNB, etc.
  • the present application No specific limitation is made here.
  • Figure 3 uses UE as the terminal device and gNB as an example to illustrate the network device.
  • the category of the terminal device and the network device are not specifically limited:
  • the gNB determines the frequency position of the first resource and the frequency position of the second CORESET.
  • the first resource is the BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain.
  • the above-mentioned first resource is BWP
  • it can be uplink BWP or downlink BWP
  • the above-mentioned first CORESET may be configured by system information, for example, by MIB or SIB1.
  • the first CORESET may be the control resource set CORESET#0 with an identifier of 0 configured by the network device for the terminal device, or may be a control resource set with other identifiers, which is not specifically limited here.
  • the imported CORESET may be a second CORESET, where the second CORESET does not overlap with the first CORESET in the frequency domain. It can be understood that the second CORESET and the first CORESET do not overlap at all or partially in frequency domain resources. This method can be Ensure better communication service quality.
  • the above-mentioned second CORESET and first CORESET can be configured for the same terminal device, for example, the first CORESET configured for eMBB UE is CORESET#0, and the second CORESET can be common CORESET or other CORESET configured for eMBB UE; the above The second CORESET and the first CORESET can also be configured for different terminal devices.
  • the first CORESET configured for eMBB UE is CORESET#0
  • the second CORESET can be CORESET#R configured for RedCap UE.
  • RedCap UE The PDCCH can also be monitored on the first CORESET or CORESET#0, which is not specifically limited here.
  • the first CORESET can also be the CORESET#R configured for the RedCap UE
  • the second CORESET can be the CORESET configured for the eMBB UE.
  • Other CORESETs other than #0 are not specifically limited here.
  • the first resource when the first resource is BWP, it can be the uplink BWP or downlink BWP configured by the network device for the RedCap UE.
  • the first resource is the initial downlink BWP configured by the network device for the RedCap UE, or the initial uplink BWP.
  • the device will also configure downlink BWP and uplink BWP for eMBB UE.
  • the frequency position and bandwidth of downlink/uplink BWP configured for RedCap UE and eMBB UE can be the same or different, and there are no specific restrictions here.
  • the above-mentioned frequency position may also be called a frequency domain position, and the specific name is not specifically limited here, and may be determined according to a specific application scenario in actual application.
  • Determining the frequency position of the first resource with RedCap downlink/uplink BWP as a reference helps to configure CORESET#R inside RedCap downlink/uplink BWP, or ensure that the total bandwidth of RedCap downlink/uplink BWP and CORESET#R does not exceed RedCap The maximum bandwidth capability supported by the UE.
  • the first CORESET can be CORESET#0, which is simpler and quicker, and the second CORESET can be configured not to overlap with CORESET#0, which can increase system capacity and reduce PDCCH congestion.
  • which one of the first resource is specified may be specified through an agreement between the terminal device and the network device, or may be indicated through signaling of the network device.
  • Step 302 the gNB determines the frequency offset of the second CORESET relative to the first resource according to the frequency position of the first resource and the frequency position of the second CORESET.
  • the above-mentioned frequency offset may indicate: the offset of the first RB of the second CORESET relative to the first RB of the first resource, or the relative offset of the first RB of the second CORESET The offset of the last RB or the central RB of the first resource.
  • the RBs included in the second CORESET are continuous in the frequency domain.
  • a BWP includes 40 RBs in total, numbered from 0 to 39, then the central RB corresponds to the RB numbered 19 or the RB numbered 20.
  • the specific one can be predefined by the protocol or indicated by the network device.
  • the central RB is the RB located at the center frequency domain position of the frequency domain resource.
  • a BWP includes a total of 41 RBs, numbered from 0 to 40, then the central RB corresponds to the RB numbered 20, and any description related to the central RB in the following can be referred to here, and will not be repeated below.
  • the frequency offset can also indicate the offset of the last RB of the second CORESET relative to the last RB of the first resource, or the offset of the last RB of the second CORESET relative to the first RB or center RB of the first resource .
  • the frequency offset may also indicate the offset of the central RB of the second CORESET relative to the central RB of the first resource, or the offset of the central RB of the second CORESET relative to the first or last RB of the first resource.
  • the frequency offset may also indicate the offset of the lower boundary of the second CORESET relative to the lower boundary of the first resource, and may also be the offset of the lower boundary of the second CORESET relative to the upper boundary or center frequency of the first resource.
  • the lower boundary of a piece of frequency domain resource Y indicates the lower boundary of the first RE in the first RB of Y (the interval between the center frequency of the first RE and the center frequency of the first RE is 1/2*SCS, and the SCS is the block The subcarrier spacing of the frequency domain resource), that is, the starting position of the frequency domain of this resource.
  • the upper boundary of Y indicates the upper boundary of the last RE in the last RB of Y (the interval between the center frequency of the last RE and the center frequency of the last RE is 1/2*SCS, and the SCS is the subcarrier spacing of the frequency domain resource of the block), That is, the end position of this resource in the frequency domain.
  • the frequency offset may also indicate the offset of the upper boundary of the second CORESET relative to the upper boundary of the first resource, and the offset of the upper boundary of the second CORESET relative to the lower boundary or center frequency of the first resource.
  • the frequency offset may also indicate the offset of the upper boundary of the second CORESET relative to the center frequency of the first resource, or the offset of the upper boundary of the second CORESET relative to the lower or upper boundary of the first resource.
  • the frequency offset may also represent the offset of the center frequency of the first resource unit RE of the first RB of the second CORESET relative to the center frequency of the first RE of the first RB of the first resource; or, the second CORESET The offset of the center frequency of the first resource unit RE of the last RB of the first resource relative to the center frequency of the first RE of the last RB of the first resource; or, the last resource unit RE of the last RB of the second CORESET Offset of the center frequency relative to the center frequency of the last RE of the last RB of the first resource.
  • the frequency offset can also represent the offset of the upper boundary of the second CORESET relative to the preset frequency of the first resource; or, the offset of the lower boundary of the second CORESET relative to the preset frequency of the first resource; wherein, the first resource
  • the offset between the preset frequency and the center frequency of the first resource is a preset value; the preset value is greater than 0.
  • the preset frequency of the first resource is a frequency point that deviates from the center frequency of the first resource by a certain frequency interval in the direction of increasing the RB number.
  • the frequency offset can be determined through the upper boundary of the second CORESET.
  • the frequency offset is determined with reference to the lower boundary, center frequency, of the second CORESET.
  • the preset frequency of the first resource is a frequency point that deviates from the center frequency of the first frequency domain resource by a certain frequency interval in the direction of decreasing the RB number.
  • the frequency offset can be determined by the lower boundary of the second CORESET, In addition, the frequency offset may also be determined with reference to the upper boundary and center frequency of the second CORESET.
  • the certain frequency interval includes: 10 MHz, 50 MHz. For example, considering that the maximum bandwidth capability supported by RedCap UE in FR1 is 20MHz, and the maximum bandwidth capability supported in FR2 is 100MHz, so, in FR1, the certain frequency interval may be 10MHz, and in FR2, the certain frequency interval may be 50MHz.
  • the frequency position of the second CORESET can be indicated more flexibly, and it can also be ensured that the total bandwidth of the RedCap downlink/uplink BWP and the second CORESET does not exceed the maximum bandwidth capability supported by the RedCap UE.
  • the indicated second CORESET may not be fully included inside the RedCap upstream BWP. It should be understood that the UE does not expect that part or all of the second CORESET is located outside the RedCap downlink BWP. That is, if the RedCap downlink BWP is configured, the second CORESET should be completely inside the RedCap downlink BWP.
  • the frequency domain offset can be represented by the number of RBs, the number of REs, or an absolute frequency (for example, in MHz or KHz), which is not specifically limited here.
  • the frequency offset specifically represents the first
  • the offset between which frequency position of a resource and which frequency position of the second CORESET may be determined according to service requirements or may be indicated according to signaling of the network device, which is not specifically limited here. It should be understood that even if the unit of the frequency offset is represented by the number of RBs or REs, it can also be converted into an absolute frequency to accurately determine the specific frequency offset.
  • the subcarrier spacing used for conversion may be indicated by a network device, such as RRC signaling, or pre-defined by a protocol. For example, the subcarrier spacing corresponding to the frequency domain offset is equal to the subcarrier spacing of the second CORESET, or equal to the subcarrier spacing of the first resource.
  • the last RB of the second CORESET can be selected to determine the frequency offset, which can ensure that the first CORESET It does not overlap with the number of the second CORESET, and the number of the last RB of the second CORESET is less than or equal to the number of the first RB of the first CORESET, that is, the number of any RB of the second CORESET is less than or equal to the number of the first CORESET The number of any RB.
  • the first RB of the second CORESET can be selected to determine the frequency offset, so as to ensure that the numbers of the first CORESET and the second CORESET do not overlap, And the number of the first RB of the second CORESET is greater than or equal to the number of the first RB of the first CORESET, that is, the number of any RB of the second CORESET is greater than or equal to the number of any RB of the first CORESET.
  • step 303 the gNB notifies the UE of the frequency position and frequency offset of the first resource.
  • the terminal device may receive indication information from the network device, the indication information is used to indicate the frequency offset; the indication information is one or more of the following signaling: SIB1, DCI for scheduling SIB1, and MIB.
  • the PDCCH scheduling SIB1 is sent on CORESET#0.
  • RedCap UE when RedCap UE initially accesses, it first searches for the SSB (cell-defining SSB, CD-SSB) that defines the cell, and then determines CORESET#0 according to the MIB carried by the physical broadcast channel (physical broadcast channel, PBCH) included in the SSB, The UE monitors the PDCCH scheduling the SIB1 on the CORESET#0, and the SIB1 carries the above indication information.
  • SSB cell-defining SSB, CD-SSB
  • PBCH physical broadcast channel
  • SIB1 carries the configuration information of the RedCap UE's initial downlink BWP, and the first resource is the RedCap UE's initial downlink BWP, then the UE can determine the first resource and frequency after obtaining the SIB1 offset, and then the second CORESET can be determined according to the first resource and the frequency offset, which is the CORESET configured for the RedCap UE.
  • the indication information may also be carried by the MIB.
  • the MIB carried by PBCH includes the configuration information of CORESET#0, and the configuration information is used to determine an index, which is used to determine the bandwidth and the number of OFDM symbols of CORESET#0.
  • the index can also be used to determine the frequency offset.
  • the UE may determine the frequency offset after acquiring the MIB.
  • the indication information may also be jointly carried by the DCI and the DCI for scheduling the SIB1.
  • SIB1 is used to configure multiple frequency offsets
  • the DCI for scheduling the SIB1 is used to indicate that one of the multiple frequency offsets is a valid frequency offset, that is, the terminal device is used to determine the second CORESET frequency The frequency offset of the location.
  • the indication information may also be carried by other SIBs other than SIB1, for example, carried by SIB2, or carried by RRC signaling, DCI or media access control element (media access control control element, MAC CE) in the RRC connection state .
  • SIBs other SIBs
  • RRC signaling DCI or media access control element (media access control control element, MAC CE) in the RRC connection state .
  • MAC CE media access control control element
  • the bandwidth of the second CORESET and/or the number of OFDM symbols of the second CORESET may also be indicated through indication information.
  • the indication information determines an index, if the index is 1, the index 1 not only corresponds to a frequency offset, but also corresponds to the bandwidth of a second CORESET, and/or the number of OFDM symbols of the second CORESET, according to the index, the terminal The device may determine the frequency offset, the bandwidth of the second CORESET, and the number of OFDM symbols of the second CORESET.
  • another index may be used to indicate the bandwidth of the second CORESET, and/or the number of OFDM symbols of the second CORESET, such as the index indicating the frequency offset is index 1, the bandwidth of the second CORESET may be indicated by index A, and /or the number of OFDM symbols of the second CORESET.
  • the method for indicating the bandwidth of the second CORESET and/or the number of OFDM symbols of the second CORESET is not specifically limited in this application.
  • the protocol can pre-define one or more frequency offsets, and one of the values can be indicated through the indication information, which is not specifically limited here.
  • the predefined table of CORESET#0 add a new column with To indicate the frequency offset, as shown by the last column in Table 1 and Table 2, wherein each row in Table 1 includes one frequency offset value, and each row in Table 2 includes 4 frequency offset values.
  • index 1 in Table 1 corresponds to Value1 of the frequency offset.
  • Table 1 The number of RBs and the number of OFDM symbols of CORESET#0, the subcarriers corresponding to SSB and PDCCH are both 15KHz, corresponding to the frequency band with the minimum channel bandwidth of 5MHz or 10MHz, and each row corresponds to 1
  • Table 2 The number of RBs and the number of OFDM symbols of CORESET#0, the subcarriers corresponding to SSB and PDCCH are both 15KHz, corresponding to the frequency band with the minimum channel bandwidth of 5MHz or 10MHz, and each row corresponds to 4
  • the frequency offset values of the second CORESET relative to the first resource corresponding to two rows in Table 1 may be the same or different, which is not limited here.
  • the frequency offset values of the four second CORESETs corresponding to two rows in Table 2 with respect to the first resource may be all the same, or all different, or only partly the same, which is not limited here.
  • Table 1 and Table 2 are specific examples of carrying indication information through the MIB, that is, the index used to determine the CORESET#0 parameter is also used to determine the frequency offset, but in actual applications, it may also be in other forms, or The indication information may be carried by other information, which is not specifically limited in this application.
  • the frequency offset may be a number greater than or equal to 0, or may be greater than 0, less than 0, or equal to 0.
  • the frequency offset indicates the frequency offset from the first RB of RedCap's initial downlink BWP to the first RB of the second CORESET.
  • the frequency offset is a number greater than or equal to 0. If it is greater than 0, it means The first RB of the second CORESET is located from the first RB of RedCap’s initial downlink BWP to the direction in which the RB number increases. If it is equal to 0, it means that the first RB of the second CORESET is the same as the first RB of RedCap’s initial downlink BWP.
  • the above alignment can be understood as a frequency offset of 0 or a fixed value.
  • the frequency offset can also indicate the frequency offset from the center frequency of RedCap's initial downlink BWP to the center frequency of the second CORESET. If the frequency offset is greater than 0, it means that the center frequency of the second CORESET is located at the center of the initial downlink BWP from RedCap.
  • the start position and the end position of the frequency offset may also be determined according to the sign of the frequency offset, so as to determine the position of the second CORESET. For example, if the frequency offset is equal to 0, it means that the first RB of the second CORESET is aligned with the first RB of RedCap’s initial downlink BWP; if the frequency offset is greater than 0, it means that the starting position of the frequency offset is RedCap’s initial downlink BWP
  • the end position of the frequency offset is the first RB of the second CORESET, and the frequency offset indicates the frequency offset from the first RB of the RedCap initial downlink BWP to the first RB of the second CORESET and the first RB of the second CORESET is located in the direction from the first RB of RedCap's initial downlink BWP to the direction in which the RB number increases; if the frequency offset is less than 0, it means that the starting position of the frequency offset is RedCap's initial downlink The last RB of the BWP, the end position of the frequency
  • the frequency offset indicates that the lower boundary of the first RB of the second CORESET is aligned with the upper boundary of the last RB of the first CORESET. If the frequency offset is greater than 0, the frequency offset represents the frequency offset from the upper boundary of the last RB of the first CORESET to the lower boundary of the first RB of the second CORESET, and the first RB of the second CORESET Located in the direction from the last RB of the first CORESET to the direction in which the RB number increases; if the frequency offset is less than 0, the absolute value of the frequency offset indicates from the lower boundary of the first RB of the first CORESET to the last of the second CORESET The frequency offset between the upper boundaries of one RB, and the last RB of the second CORESET is located in the direction in which the number of RBs decreases from the first RB of the first CORESET.
  • the absolute value of the frequency domain offset can be as small as possible, which is beneficial to indicate with a small number of bits and save signaling overhead.
  • the second CORESET can also be configured not to overlap with the first CORESET, which is beneficial to expand system capacity and reduce PDCCH congestion.
  • the alignment of the two RBs is equivalent to the alignment of the center frequencies of the two RBs, or the alignment of the center frequencies of the first REs of the two RBs, Or alignment of lower boundaries of two RBs, etc. If the subcarrier spacing of the two RBs is different, the two RBs are aligned, which can be understood as one of the following: the center frequencies of the two RBs are aligned, the lower boundaries of the two RBs are aligned, and the first RE of the two RBs center frequency alignment.
  • Step 304 the UE determines the frequency position of the second CORESET according to the frequency position and the frequency offset of the first resource.
  • the UE may send information to the gNB (the sending message may be feedback information or response information for determining the frequency position of the second CORESET, for example, by sending a physical random access channel (physical random access channel, PRACH) information, etc.) to inform the gNB, for example, the UE can send the PRACH to the gNB, then the gNB can learn that the UE has determined the frequency position of the second CORESET, and then step A can be performed.
  • the sending message may be feedback information or response information for determining the frequency position of the second CORESET, for example, by sending a physical random access channel (physical random access channel, PRACH) information, etc.
  • PRACH physical random access channel
  • Step A gNB sends PDCCH in the second CORESET.
  • Step 305 the UE monitors the PDCCH in the second CORESET.
  • the UE may refer to FIG. 4A for determination during the initial access phase.
  • the UE first determines the first resource, and then according to the frequency offset, the UE may determine the frequency position of CORESET#R.
  • the time domain interval between the first resource and CORESET#R is only for illustration.
  • the frequency position of the second CORESET can also be determined through the execution flow of the resource determination method shown in FIG. 4B:
  • Step 401 searching for and receiving the SSB, analyzing the information carried by the PBCH, and obtaining the configuration information of the MIB.
  • Step 402 Determine the frequency position of CORESET#0 according to the configuration information of the MIB.
  • Step 403 monitor and schedule the PDCCH of SIB1 on CORESET#0, and then receive the PDSCH carrying SIB1, and obtain the configuration information of SIB1, wherein the configuration information of SIB1 includes information for determining the following resources and parameters: the initial downlink BWP of the RedCap UE, RedCap UE's initial uplink BWP, frequency offset, eMBB UE's initial downlink BWP, and eMBB UE's initial uplink BWP.
  • Step 404 taking the initial downlink BWP of the RedCap UE as the first resource, and determining the frequency position of the second CORESET according to the frequency offset, the second CORESET is CORESET#R in Figure 4A.
  • Step 405 monitor the PDCCH on the second CORESET, and the PDCCH can be used to schedule paging messages or schedule Msg2 or Msg4 in the random access process, or schedule system messages for RedCap UEs.
  • the introduction of the second CORESET in this application can balance the load and expand the system capacity, and the terminal device determines the second CORESET based on the first resource and frequency offset, which can reduce signaling compared to determining the frequency position of the CORESET through the bitmap indication Overhead, save time-frequency resources, and improve resource utilization efficiency.
  • FIG. 5 uses the terminal device as UE for illustration, but does not specifically limit the type of terminal device in actual application. Take the network device as gNB as an example To illustrate:
  • the gNB determines the frequency position of the first resource and the frequency position of the second CORESET.
  • the first resource is the BWP or the first CORESET; the first CORESET and the second CORESET do not overlap in the frequency domain.
  • the above-mentioned first CORESET may be configured by system information, for example, by MIB or SIB1.
  • the first CORESET may be the control resource set CORESET#0 with an identifier of 0 configured by the network device for the terminal device, or may be a control resource set with other identifiers, which is not specifically limited here.
  • step 502 the gNB notifies the UE of the frequency position of the first resource.
  • Step 503 the UE determines the frequency position of the second CORESET according to the frequency position of the first resource.
  • Step A gNB sends PDCCH in the second CORESET.
  • Step 504 the UE monitors the PDCCH in the second CORESET.
  • the network device and the terminal device can agree in advance on the relative relationship between the frequency position of the first resource and the frequency position of the second CORESET, so the terminal device can directly determine the frequency position based on the frequency position of the first resource.
  • the frequency position of the second CORESET this method is simpler and faster.
  • the first RB of the second CORESET is aligned with the first RB of the first resource; or, the last RB of the second CORESET is aligned with the last RB of the first resource; or, the first The central RB of the second CORESET is aligned with the central RB of the first resource; or, the lower boundary of the second CORESET is aligned with the lower boundary of the first resource; or, the upper boundary of the second CORESET is aligned with the upper boundary of the first resource; or, The center frequency of the first resource unit RE of the first RB of the second CORESET is aligned with the center frequency of the first RE of the first RB of the first resource; or, the last resource of the last RB of the second CORESET The center frequency of the unit RE is aligned with the center frequency of the last RE of the last RB of the first resource; or, the upper boundary of the second CORESET is aligned with the preset frequency of the first resource; or, the lower boundary of the second CORE
  • the above alignment can be understood as the frequency offset is 0 or a fixed value, such as the alignment of the first resource block RB of the second CORESET with the first RB of the first resource can be understood as the alignment of the first resource block RB of the second CORESET with There is no frequency offset between the first RB of the first resource, or the frequency offset between the first resource block RB of the second CORESET and the first RB of the first resource is a fixed value. No specific limitation is made. Specifically, which two frequencies are aligned may be directly instructed by the network device, or agreed in advance between the network device and the terminal device, which is not specifically limited in this application.
  • the network device may also indicate candidate frequencies to the terminal device, and the first resource is aligned with the candidate frequencies of the second CORESET, for example, the candidate frequencies are the first RB, the last RB, and the center RB.
  • the indication information of the network device may be received, and one of the candidate RBs may be selected to determine the frequency position of the second CORESET.
  • the network device indicates that the candidate frequency is the first RB, it means that the first RB of the second CORESET is aligned with the first RB of the first resource. If the network device indicates that the candidate frequency is the upper boundary, it means that the upper boundary of the second CORESET is aligned with the upper boundary of the first resource.
  • the second CORESET can be configured the same as CORESET#0 configured in the MIB except for the frequency position.
  • the configuration other than the frequency position includes at least the following one item:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the bandwidth indicates the number of frequency domain RBs included in the control resource set;
  • the number of OFDM symbols indicates the number of time domain OFDM symbols included in the control resource set;
  • cce-REG-MappingType indicates the mapping type from CCE to REG, for example, the mapping type includes interleaving (interleaved) mapping and non-interleaved (non-interleaved) mapping.
  • configurations other than frequency locations also include specific mapping methods, for example, which REG bundle(s) a CCE corresponds to; reg-bundlesize indicates that a REG bundle includes The number of REGs; interleaversize indicates the size of the interleaver, that is, the number of rows of the interleaver; precoder granularity indicates the size of resources using the same precoding, for example, setting precoder granularity to sameAsREG-bundle indicates that the data in a REG bundle uses the same precoding Coding, precodergranularity is set to allContiguousRBs means that the data in all REGs in CORESET adopts the same precoding; pdcch-DMRS-ScramblingID means the number used when the PDCCH DMRS scrambling code is initialized.
  • the configuration of the search space set associated with the second CORESET may be the same as the configuration of the search space set associated with CORESET#0, and the configuration of the search space set includes at least one of the following:
  • Listening cycle cycle offset, number of continuous listening slots for each listening opportunity, listening symbols in listening occasions, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type (public or dedicated ), the DCI format associated with the search space set.
  • the listening period is used to determine the listening period of the search space set, and the period offset is used to determine the start of each listening period, that is, the starting time slot where the PDCCH listening opportunity is located in each listening period;
  • the number of time slots indicates the number of consecutive time slots including PDCCH monitoring opportunities in each monitoring period; the monitoring symbols in the monitoring opportunities indicate the starting symbols of the PDCCH monitoring opportunities in the time slot; the candidate PDCCH aggregation level indicates candidate PDCCH
  • the search space set type public or dedicated indicates whether the search space set is used for a group of terminal equipment or only for one UE;
  • the DCI format associated with the search space set indicates the The possible DCI formats of the DCI carried by the PDCCH sent by the set.
  • a CORESET is associated with a search space set, which means that the UE monitors the PDCCH in this CORESET according to the parameters determined by the associated search space set.
  • CORESET#0 may be associated with one or more search space sets, and correspondingly, there are one or more search space sets associated with the second CORESET, and the configuration of each search space set is the same as that of the corresponding CORESET The configuration of the set of search spaces associated with #0 is the same. For example, if CORESET#0 is associated with Type 0-PDCCH common search space set, Type 0A-PDCCH common search space set, Type 1-PDCCH common search space set and Type 2-PDCCH common search space set, then the second CORESET is also associated with type 0-PDCCH common search space set, type 0A-PDCCH common search space set, type 1-PDCCH common search space set and type 2-PDCCH common search space set.
  • the type 0-PDCCH public search space set is used to monitor the DCI whose cyclic redundancy check (cyclic redundancy check, CRC) is scrambled by the system information-radio network temporary identity (SI-RNTI) Format, the DCI format is used to schedule SIB1 signaling.
  • SI-RNTI system information-radio network temporary identity
  • the Type 0A-PDCCH common search space set is used to listen to DCI formats whose CRC is scrambled by SI-RNTI for scheduling other system messages, ie other SIBs than SIB1, eg SIB2-SIBx.
  • Type 1-PDCCH public search space set is used to monitor its CRC by random access radio network temporary identification (random access-RNTI, RA-RNTI), message B radio network temporary identification (Message B-RNTI, MsgB-RNTI) or temporary The DCI format of the scrambled cell radio network temporary identifier (temporary cell-RNTI, TC-RNTI).
  • the type 2-PDCCH common search space set is used to monitor a DCI format whose CRC is scrambled by a paging radio network temporary identifier (paging-RNTI, P-RNTI).
  • the configuration used by the terminal device when monitoring the paging PDCCH in the second CORESET is the same as that used in CORESET#0
  • the configuration used when monitoring the paging PDCCH is the same, and the configuration used when monitoring the paging PDCCH includes at least one of the following: the default paging cycle, the ratio of the paging frame to the paging cycle (used to calculate the paging cycle in a paging cycle) The number of paging frames), the paging frame offset, the number of paging occasions in the paging frame, and the first PDCCH monitoring opportunity of each paging occasion (PO, paging occasion) in the paging frame domain location.
  • the default paging cycle represents the paging cycle of the system message broadcast;
  • the paging frame represents a wireless frame including one or more paging occasions;
  • the paging frame offset is used for the terminal equipment to determine the system frame number of the paging frame ( system frame number, SFN);
  • a PO is a set including one or more PDCCH monitoring occasions (PDCCH monitoring occasions), the number of PDCCH monitoring occasions included in a PO is equal to the number of SSBs actually sent in one SSB cycle, That is, the number of SSBs actually sent included in a synchronization signal cluster (SS burst set).
  • the second CORESET is the CORESET configured for the RedCap UE during the initial access process.
  • the network device configures a public CORESET for the eMBB UE through SIB1, for example, the number is 1, that is, public CORESET#1, then the bandwidth of the second CORESET is the same as that of CORESET#0, and also includes a public CORESET in the frequency domain of the second CORESET, and its number is not limited, for example, it is called public CORESET# R1, and in the frequency domain, the relative position of public CORESET#R1 in the second CORESET is the same as the relative position of public CORESET#1 in CORESET#0, and the bandwidth of public CORESET#R1 is the same as the bandwidth of public CORESET#1 , and the configuration of the search space set associated with the public CORESET#R1 is the same as that of the search space set associated with the public CORESET#1. In this way, the number is 1, that is, public CORESET#1, then the bandwidth of the
  • the first resource can be BWP or the first CORESET.
  • the second CORESET can be the same configuration as CORESET#0 configured in the MIB except for the frequency position.
  • the configuration of the search space set associated with CORESET may also be the same as the configuration of the search space set associated with CORESET#0.
  • the configuration of the second CORESET can be the same as that of the first CORESET except for the frequency position
  • the configuration of the search space set associated with the second CORESET can also be the same as the configuration of the search space set associated with the first CORESET
  • the first CORESET may be CORESET#0 or another CORESET, which is not specifically limited.
  • the configurations other than the frequency position and the configuration of the search space set reference may be made to the above description, and details are not repeated here.
  • FIG. 6 shows a communication device.
  • the communication device can be understood as a terminal device, which can be a UE, a vehicle device, a smart watch, a smart bracelet, etc., or can be understood as a network device, which can be a TRP, gNB, etc.
  • the communication device may include: a processing unit 601 and an input and output unit 602 .
  • the input and output unit may be called a transceiver unit, a communication unit, etc., and when the communication device is a terminal device, the input and output unit may be a transceiver; the processing unit may be a processor.
  • the input and output unit can be an input and output interface, an input and output circuit or an input and output pin, etc., and can also be called an interface, a communication interface or an interface circuit etc.;
  • the processing unit may be a processor, a processing circuit or a logic circuit and the like.
  • the communication device can be used to execute the steps of the above method embodiment corresponding to FIG. 3 or FIG. 5 .
  • the specific description of the implementation details refer to the part of the method embodiment, and details are not repeated here.
  • the processing unit 601 is configured to determine the frequency offset and the frequency position of the first resource, where the first resource is the bandwidth part BWP or the first control resource set CORESET; the frequency offset indicates that the second CORESET is relative to the first resource set.
  • the frequency offset of a resource when the first resource is the first CORESET, the first CORESET and the second CORESET do not overlap in the frequency domain; and according to the frequency location and frequency offset of the first resource, determine the frequency location of the second CORESET ;
  • the input and output unit 602 is configured to monitor the physical downlink control channel PDCCH in the second CORESET.
  • the processing unit 601 is configured to determine the frequency position of the first resource and the frequency position of the second control resource set CORESET, the first resource is the bandwidth part BWP or the first CORESET; when the first resource is the first resource set For one CORESET, the first CORESET and the second CORESET do not overlap in the frequency domain; and the frequency offset is determined according to the frequency position of the first resource and the frequency position of the second CORESET; the frequency offset indicates the relative frequency of the second CORESET to the first resource frequency offset; an input and output unit 602, configured to notify the terminal device of the frequency position and frequency offset of the first resource; and send a physical downlink control channel PDCCH in the second CORESET.
  • the introduction of the second CORESET in this application can balance the load and expand the system capacity, and the terminal device determines the second CORESET based on the first resource and frequency offset, which can reduce signaling compared to determining the frequency position of the CORESET through the bitmap indication Overhead, save time-frequency resources, and improve resource utilization efficiency.
  • the frequency offset may represent: the offset of the first resource block RB of the second CORESET relative to the first RB of the first resource; or, the offset of the last RB of the second CORESET relative to the first The offset of the last RB of the resource; or, the offset of the center RB of the second CORESET relative to the center RB of the first resource; or, the offset of the lower boundary of the second CORESET relative to the lower boundary of the first resource; or, the first The offset of the upper boundary of the second CORESET relative to the upper boundary of the first resource; or, the center frequency of the first resource unit RE of the first RB of the second CORESET relative to the first RE of the first RB of the first resource or, the center frequency of the first resource unit RE of the last RB of the second CORESET relative to the center frequency of the first RE of the last RB of the first resource; or, the second The offset of the upper boundary of the CORESET relative to the preset frequency of the first resource; or, the offset of the lower boundary of
  • the frequency offset specifically indicates which frequency of the first resource and which frequency of the second CORESET are offset can be determined according to service requirements, and is not specifically limited here.
  • the input and output unit 602 of the terminal device is also configured to: receive indication information, the indication information is used to indicate the frequency offset; the indication information is one or more of the following signaling:
  • SIB1 schedules the DCI and MIB of SIB1.
  • the terminal device can obtain the frequency offset after obtaining the DCI/MIB of SIB1/scheduled SIB1 in the initial access phase, which is beneficial to determine the frequency position of the second CORESET in the initial access phase, so , which is conducive to realizing load balancing in the initial access stage and reducing the congestion of the PDCCH.
  • the indication information is also used to indicate the bandwidth of the second CORESET, and/or, the number of OFDM symbols of the second CORESET.
  • the indication information determines an index, if the index is 1, the index 1 not only corresponds to a frequency offset, but also corresponds to the bandwidth of a second CORESET, and/or the number of OFDM symbols of the second CORESET, according to the index, the terminal The device may determine the frequency offset, the bandwidth of the second CORESET, and the number of OFDM symbols of the second CORESET.
  • another index may be used to indicate the bandwidth of the second CORESET, and/or the number of OFDM symbols of the second CORESET, such as the index indicating the frequency offset is index 1, the bandwidth of the second CORESET may be indicated by index A, and /or the number of OFDM symbols of the second CORESET.
  • the method for indicating the bandwidth of the second CORESET and/or the number of OFDM symbols of the second CORESET is not specifically limited in this application.
  • the bandwidth of the second CORESET and the number of OFDM symbols of the second CORESET can be determined more flexibly.
  • the indication information can be used to determine the bandwidth, the number of symbols, and the frequency offset of the second CORESET at the same time, which can save signaling overhead, and it is not necessary to separately specify the bandwidth, the number of symbols, and the frequency offset of the second CORESET.
  • the frequency offset is indicated.
  • the configuration of the second CORESET is the same as that of CORESET#0 except for the frequency position, CORESET#0 is configured by system information, and the configuration other than the frequency position includes at least one of the following:
  • Bandwidth Bandwidth, number of OFDM symbols, cce-REG-MappingType, resource unit packet size (reg-bundlesize), interleaver size (interleaversize), precoder granularity (precoder granularity), and pdcch-DMRS-ScramblingID.
  • the parameters of the second CORESET can reuse the parameters of CORESET#0, and there is no need to configure the parameters of the second CORESET separately, which can save signaling overhead, especially when the second CORESET is configured in the initial access phase, it can save initial The signaling overhead during the access phase, for example, saving the signaling overhead of SIB1.
  • the configuration of the search space set associated with the second CORESET is the same as the configuration of the search space set associated with CORESET#0, and the configuration of the search space set includes at least one of the following:
  • Listening cycle cycle offset, number of consecutive time slots for each listening opportunity, listening symbols in the listening opportunity, candidate PDCCH aggregation level, number of PDCCH candidates corresponding to the candidate PDCCH aggregation level, search space set type (public or dedicated) , Search the DCI format associated with the space.
  • the parameters of the search space set associated with the second CORESET can reuse the parameters of the search space set associated with CORESET#0, and there is no need to separately configure the parameters of the search space set associated with the second CORESET, which can save signaling overhead.
  • the signaling overhead during the initial access phase can be saved, for example, the signaling overhead of SIB1 can be saved.
  • the communication device 700 may be a chip or a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication device 700 may include at least one processor 710, and the communication device 700 may further include at least one memory 720 for storing computer programs, program instructions and/or data.
  • the memory 720 is coupled to the processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 720 .
  • Processor 710 may execute computer programs stored in memory 720 .
  • the at least one memory 720 may also be integrated with the processor 710 .
  • the communication device 700 may or may not include the transceiver 730 , which is indicated by a dotted box in the figure, and the communication device 700 may perform information exchange with other devices through the transceiver 730 .
  • the transceiver 730 may be a circuit, a bus, a transceiver or any other device that can be used for information exchange.
  • the communication apparatus 700 may be applied to the foregoing terminal device, or may be the foregoing terminal device.
  • the memory 720 stores necessary computer programs, program instructions and/or data for implementing the functions of the terminal device in any of the above-mentioned embodiments.
  • the processor 710 can execute the computer program stored in the memory 720 to complete the method in any of the above embodiments.
  • a specific connection medium among the transceiver 730, the processor 710, and the memory 720 is not limited.
  • the memory 720, the processor 710, and the transceiver 730 are connected through a bus.
  • the bus is represented by a thick line in FIG. 7, and the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application also provides another communication device 800, including: an interface circuit 810 and a logic circuit 820; the interface circuit 810, which can be understood as an input and output interface, can be used to perform the same as the above-mentioned FIG. 6
  • the illustrated input and output unit or the same operation steps as the transceiver illustrated in FIG. 7 will not be repeated in this application.
  • the logic circuit 820 can be used to run the code instructions to execute the method in any of the above embodiments, and can be understood as the processing unit in FIG. 6 or the processor in FIG. 7 above, which can realize the same function as the processing unit or processor, This application will not go into details here.
  • the embodiments of the present application further provide a readable storage medium, the readable storage medium stores instructions, and when the instructions are executed, the method for determining resources in any of the above embodiments is implemented.
  • the readable storage medium may include various mediums capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising the instruction device, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源确定方法及通信装置,涉及通信技术领域,终端设备确定频率偏移和第一资源的频率位置,第一资源为带宽部分BWP或第一控制资源集CORESET;频率偏移表示第二CORESET相对所述第一资源的频率偏移,第一CORESET与第二CORESET在频域不重叠;根据第一资源的频率位置以及频率偏移确定第二CORESET的频率位置,并在第二CORESET监听物理下行控制信道PDCCH。终端设备通过该方式确定第二CORESET的频率位置,与网络设备间的交互信令较少,可以节约信令资源。

Description

一种资源确定方法及通信装置
相关申请的交叉引用
本申请要求在2021年07月31日提交中国专利局、申请号为202110876860.1、申请名称为“一种资源确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源确定方法及通信装置。
背景技术
终端设备要接入第五代移动通信技术(5th generation mobile networks,5G)新空口(new radio,NR)网络,需经过小区搜索,获取系统信息,以及随机接入等过程,才能更好地接收5G NR网络的通信服务。
通常终端设备在初始接入阶段,网络设备会通过主信息块(master information block,MIB)为终端设备配置控制资源集(control resource set,CORESET)#0,以便发送物理下行控制信道(physical downlink control channel,PDCCH)来调度系统消息、调度寻呼消息或在随机接入过程中调度数据。然而随着通信系统容量的不断扩大,为了平衡负载,减少数据拥堵,达到更好的通信性能,可额外引入新的CORESET。此外,网络设备在初始接入阶段可能会配置不止一个初始下行带宽部分(bandwith part,BWP),不同的初始下行BWP之间可能不重叠,并且新配置的初始下行BWP在频域上可能不包括同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,or ss/pbch block,SSB),而新配置的初始下行BWP也可能需要配置新的CORESET。初始接入阶段在CORESET#0之外新配置的CORESET在频域上可能距离SSB较远,采用基于SSB的偏移值确定新的CORESET的频域位置需要新定义大量较大的偏移值,准确度较低且需要的信令开销较大。还有部分CORESET是通过比特位图直接指示频域位置的,但是通过比特位图指示CORESET的频域位置信令开销较大。
发明内容
本申请提供一种资源确定方法及通信装置,以保证在少的信令开销的条件下,确定资源的位置。
第一方面,本申请提供一种资源确定方法,该方法可通过终端设备来执行,也可通过网络设备来执行,其中,终端设备可以为用户设备(user equipment,UE)、车载设备、智能手表、智能手环等,网络设备可以为传输接收点(transmission reception point,TRP)、5G基站(gnodeB,gNB)等,本申请在此不作具体限定。在执行时:
网络设备可确定第一资源的频率位置以及第二CORESET的频率位置,第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠;该第一CORESET可由系统信息配置的,例如由主信息块(master information block,MIB)或系统消息块1 (system information block-1,SIB1)配置,例如,第一CORESET是由MIB配置的CORESET#0;网络设备可根据第一资源的频率位置以及第二CORESET的频率位置,确定第二CORESET相对第一资源的频率偏移;网络设备向终端设备通知第一资源的频率位置以及频率偏移;终端设备根据第一资源的频率位置和频率偏移,确定第二CORESET的频率位置;网络设备在第二CORESET发送PDCCH,终端设备在第二CORESET监听PDCCH。
上述的第一资源为BWP时,可以为上行BWP也可以为下行BWP,可以为无线资源控制(radio resource control,RRC)IDLE态(空闲态)或RRC INACTIVE(非激活态)的资源,还可以为RRC CONNECTED(连接态)的资源,在此不作具体限定。上述的第一CORESET,可以为网络设备为终端设备配置的标识为0的控制资源集CORESET#0,也可能是其他标识的控制资源集,在此不具体限定。第一资源可是由系统信息(system information,SI)配置的,例如,由SIB1配置,或由其他RRC消息配置的,例如由RRC连接态的RRC消息配置的,在此不作具体限定。由于通信系统中,接入的终端越来越多,为了负载均衡,可重新引入多个CORESET来提高通信服务质量。该引入的CORESET可以为第二CORESET,其中第二CORESET与第一CORESET在频域不重叠才能保证更好地通信服务质量,提高系统容量,解决PDCCH拥堵的问题。
此外,上述的频率位置还可以称作频域位置,在此不具体限定具体名称,在实际应用时,可根据具体的应用场景确定。
本申请中引入第二CORESET可以平衡负载,扩大系统容量,且终端设备基于第一资源以及频率偏移,确定第二CORESET,相对于通过比特位图指示确定CORESET的频率位置而言可以减少信令开销,节省时频资源,提高资源利用效率。
在一种可选的方式中,频率偏移表示:第二CORESET的第一个资源块RB相对第一资源的第一个RB的偏移;或,第二CORESET的最后一个RB相对第一资源的最后一个RB的偏移;或,第二CORESET的中心RB相对第一资源的中心RB的偏移;或,第二CORESET的下边界相对第一资源的下边界的偏移;或,第二CORESET的上边界相对第一资源的上边界的偏移;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率相对第一资源的第一个RB的第一个RE的中心频率的偏移;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对第一资源的最后一个RB的第一个RE的中心频率的偏移;或,第二CORESET的上边界相对第一资源的预设频率的偏移;或,第二CORESET的下边界相对第一资源的预设频率的偏移;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
需要说明的是,在实际应用时,频率偏移具体指示第一资源的哪个频率位置与第二CORESET的哪个频率位置之间的偏移可根据业务需求确定,在此不作具体限定。
在一种可选的方式中,终端设备可接收来自网络设备的指示信息,指示信息用于指示频率偏移;指示信息为以下信令中的一种或多种:
SIB1、调度SIB1的下行控制信息(downlink control information,DCI)以及MIB。采用上述的信令,使得终端设备在初始接入阶段,获取SIB1/调度SIB1的DCI/MIB之后就能获取所述频率偏移,有利于在初始接入阶段确定第二CORESET的频率位置,这样,有利于在初始接入阶段就能实现负载均衡,降低PDCCH的拥堵。
在一种可选的方式中,指示信息还用于指示第二CORESET的带宽、第二CORESET的OFDM符号个数。这样,可以更灵活的确定第二CORESET的带宽和第二CORESET的 OFDM符号个数。此外,可选的,指示信息可以同时用于确定第二CORESET的带宽、符号个数以及所述频率偏移,这样可以节省信令开销,不需要分别针对第二CORESET的带宽、符号个数以及所述频率偏移进行指示。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、正交频分复用(orthogonal frequency division multiplexing,OFDM)符号个数、控制信道元素和资源单元组映射类型(control channel element resource element group mapping type,cce-REG-MappingType)、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及PDCCH的解调参考信号扰码标识(physical downlink control channel demodulation reference signal scrambling Identity document,pdcch-DMRS-ScramblingID)。这样,第二CORESET的参数可以复用CORESET#0的参数,不需要对第二CORESET的参数单独配置,可以节省信令开销,尤其当第二CORESET在初始接入阶段配置时,可以节省初始接入阶段时的信令开销,例如节省SIB1的信令开销。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。这样,第二CORESET关联的搜索空间集的参数可以复用CORESET#0关联的搜索空间集的参数,不需要对第二CORESET关联的搜索空间集的参数单独配置,可以节省信令开销,尤其当第二CORESET在初始接入阶段配置时,可以节省初始接入阶段时的信令开销,例如节省SIB1的信令开销。
第二方面,本申请提供一种资源确定方法,该方法可通过终端设备来执行,也可通过网络设备来执行,其中,终端设备可以为UE、车载设备、智能手表、智能手环等,网络设备可以为TRP、gNB等,本申请在此不作具体限定。在执行时:
网络设备可确定第一资源的频率位置以及第二CORESET的频率位置,第一资源为带宽部分BWP或第一控制资源集CORESET;第一CORESET与第二CORESET在频域不重叠;该第一CORESET可由系统信息配置的,例如由MIB或SIB1配置,例如,第一CORESET是由MIB配置的CORESET#0,网络设备向终端设备通知第一资源的频率位置;终端设备根据第一资源的频率位置确定第二CORESET的频率位置;网络设备在第二CORESET发送PDCCH,终端设备在第二CORESET监听PDCCH。
上述的第一CORESET,可以为网络设备为终端设备配置的标识为0的控制资源集CORESET#0,也可能是其他标识的控制资源集,在此不具体限定。由于通信系统中,接入的终端越来越多,为了负载均衡,可重新引入多个CORESET来提高通信服务质量。该引入的CORESET可以为第二CORESET,其中第二CORESET与第一CORESET不重叠或者部分不重叠才能保证更好地通信服务质量。此外,上述的频率位置还可以称作频域位置,在此不具体限定具体名称,在实际应用时,可根据具体的应用场景确定。
需要说明的是,在该方案中,网络设备与终端设备可预先约定第一资源的频率位置与第二CORESET的频率位置之间不存在偏移,或者偏移为固定值,故而终端设备可直接根 据第一资源的频率位置确定第二CORESET的频率位置,该方式更加简便快捷。
在一种可选的方式中,第二CORESET的第一个资源块RB与第一资源的第一个RB对齐;或,第二CORESET的最后一个RB与第一资源的最后一个RB对齐;或,第二CORESET的中心RB与第一资源的中心RB对齐;或,第二CORESET的下边界与第一资源的下边界对齐;或,第二CORESET的上边界与第一资源的上边界对齐;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率与第一资源的第一个RB的第一个RE的中心频率对齐;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率与第一资源的最后一个RB的第一个RE的中心频率对齐;或,第二CORESET的上边界与第一资源的预设频率对齐;或,第二CORESET的下边界与第一资源的预设频率对齐;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
上述的对齐可以理解为频率偏移为0或固定值,如第二CORESET的第一个资源块RB与第一资源的第一个RB对齐可以理解为第二CORESET的第一个资源块RB与第一资源的第一个RB之间不存在频率偏移,或者第二CORESET的第一个资源块RB与第一资源的第一个RB之间的频率偏移为固定值,本申请在此不作具体限定,可根据实际应用场景确定。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
第三方面,本申请提供一种通信装置,该通信装置可以理解为终端设备,可以为UE、车载设备、智能手表、智能手环等,包括:处理单元和输入输出单元。
其中,处理单元,用于确定频率偏移和第一资源的频率位置,第一资源为带宽部分BWP或第一控制资源集CORESET;频率偏移表示第二CORESET相对第一资源的频率偏移,第一CORESET与第二CORESET在频域不重叠;以及根据第一资源的频率位置和频率偏移,确定第二CORESET的频率位置;输入输出单元,用于在第二CORESET监听物理下行控制信道PDCCH。
在一种可选的方式中,频率偏移可表示:第二CORESET的第一个资源块RB相对第一资源的第一个RB的偏移;或,第二CORESET的最后一个RB相对第一资源的最后一个RB的偏移;或,第二CORESET的中心RB相对第一资源的中心RB的偏移;或,第二CORESET的下边界相对第一资源的下边界的偏移;或,第二CORESET的上边界相对第一资源的上边界的偏移;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率相对第一资源的第一个RB的第一个RE的中心频率的偏移;或,第二CORESET的 最后一个RB的第一个资源单元RE的中心频率相对第一资源的最后一个RB的第一个RE的中心频率的偏移;或,第二CORESET的上边界相对第一资源的预设频率的偏移;或,第二CORESET的下边界相对第一资源的预设频率的偏移;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
在一种可选的方式中,输入输出单元,还用于:接收指示信息,指示信息用于指示频率偏移;指示信息为以下信令中的一种或多种:
SIB1、调度SIB1的DCI以及MIB。
在一种可选的方式中,指示信息还用于指示第二CORESET的带宽、第二CORESET的OFDM符号个数。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
第四方面,本申请提供一种通信装置,该通信装置可以理解为网络设备,可以为TRP、gNB等,包括:处理单元和输入输出单元。
其中,处理单元,用于确定第一资源的频率位置以及第二控制资源集CORESET的频率位置,第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠;以及根据第一资源的频率位置以及第二CORESET的频率位置,确定频率偏移;频率偏移表示第二CORESET相对第一资源的频率偏移;输入输出单元,用于向终端设备通知第一资源的频率位置以及频率偏移;以及在第二CORESET发送物理下行控制信道PDCCH。
在一种可选的方式中,频率偏移可表示:第二CORESET的第一个资源块RB相对第一资源的第一个RB的偏移;或,第二CORESET的最后一个RB相对第一资源的最后一个RB的偏移;或,第二CORESET的中心RB相对第一资源的中心RB的偏移;或,第二CORESET的下边界相对第一资源的下边界的偏移;或,第二CORESET的上边界相对第一资源的上边界的偏移;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率相对第一资源的第一个RB的第一个RE的中心频率的偏移;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对第一资源的最后一个RB的第一个RE的中心频率的偏移;或,第二CORESET的上边界相对第一资源的预设频率的偏移;或,第二CORESET的下边界相对第一资源的预设频率的偏移;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
在一种可选的方式中,通过以下信令中的一种或多种指示频率偏移:
SIB1、调度SIB1的DCI以及MIB。
在一种可选的方式中,信令还用于指示第二CORESET的带宽、第二CORESET的OFDM符号个数。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
第五方面,本申请提供一种通信装置,该通信装置可以理解为终端设备,可以为UE、车载设备、智能手表、智能手环等,包括:处理单元和输入输出单元。
其中处理单元,用于根据第一资源的频率位置确定第二CORESET的频率位置;第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠;输入输出单元,用于在第二CORESET监听PDCCH。
在一种可选的方式中,第二CORESET的第一个资源块RB与第一资源的第一个RB对齐;或,第二CORESET的最后一个RB与第一资源的最后一个RB对齐;或,第二CORESET的中心RB与第一资源的中心RB对齐;或,第二CORESET的下边界与第一资源的下边界对齐;或,第二CORESET的上边界与第一资源的上边界对齐;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率与第一资源的第一个RB的第一个RE的中心频率对齐;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率与第一资源的最后一个RB的第一个RE的中心频率对齐;或,第二CORESET的上边界与第一资源的预设频率对齐;或,第二CORESET的下边界与第一资源的预设频率对齐;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
第六方面,本申请提供一种通信装置,该通信装置可以理解为网络设备,可以为TRP、 gNB等,包括:处理单元和输入输出单元。
其中,处理单元,用于确定第一资源的频率位置以及第二CORESET的频率位置,第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠;输入输出单元,用于向终端设备通知第一资源的频率位置,并在第二CORESET发送PDCCH。
在一种可选的方式中,第二CORESET的第一个资源块RB与第一资源的第一个RB对齐;或,第二CORESET的最后一个RB与第一资源的最后一个RB对齐;或,第二CORESET的中心RB与第一资源的中心RB对齐;或,第二CORESET的下边界与第一资源的下边界对齐;或,第二CORESET的上边界与第一资源的上边界对齐;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率与第一资源的第一个RB的第一个RE的中心频率对齐;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率与第一资源的最后一个RB的第一个RE的中心频率对齐;或,第二CORESET的上边界与第一资源的预设频率对齐;或,第二CORESET的下边界与第一资源的预设频率对齐;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,CORESET#0由系统信息配置,搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
第七方面,本申请提供一种通信装置,包括至少一个处理器和存储器;该存储器用于存储计算机程序或指令,当该装置运行时,该至少一个处理器执行该计算机程序或指令,以使该通信装置执行如上述第一方面或第一方面的各实施例的方法或第二方面或第二方面的各实施例的方法。
第八方面,本申请提供另一种通信装置,包括:接口电路和逻辑电路;其中接口电路,可以理解为输入输出接口,逻辑电路可用于运行代码指令以执行上述第一方面或第一方面的各实施例的方法或第二方面或第二方面的各实施例的方法。
第九方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在计算机上运行时,以使得计算机执行如第一方面或第一方面中任一种可能的设计中的方法或第二方面或第二方面中任一种可能的设计中的方法。
第十方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各实施例的方法或第二方面或第二方面的各实施例的方法。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储 器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法或第二方面或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请提供了一种通信系统,所述系统包括网络设备以及终端设备,所述通信系统用于执行上述第一方面或第一方面中任一种可能的设计中所述的方法或上述第二方面或第二方面中任一种可能的设计中所述的方法。
上述第三方面至第十二方面可以达到的技术效果,请参照上述第一方面或第二方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1示出了本申请实施例提供的一种通信系统的示意图;
图2示出了一种CORESET#0的频率位置确定场景示意图;
图3示出了本申请实施例提供的一种资源确定方法的流程示意图;
图4A示出了本申请实施例提供的一种CORESET#R的频率位置确定场景示意图;
图4B示出了本申请实施例提供的一种资源确定方法的流程示意图;
图5示出了本申请实施例提供的一种资源确定方法的流程示意图;
图6示出了本申请实施例提供的通信装置的结构示意图;
图7示出了本申请实施例提供的通信装置的结构示意图;
图8示出了本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请可应用于5G NR系统,也可以应用于其它的通信系统,如下一代通信系统等。如图1所示,该通信系统由网络设备和UE1~UE6组成一个通信系统。在该通信系统中,UE1~UE6可以发送信息给网络设备,网络设备可接收UE1~UE6发送的信息,并回馈响应消息。
此外,UE4~UE6也可以组成一个通信系统,此时,第一通信装置和第二通信装置还可以都是终端设备,例如车联网系统中,终端设备1向终端设备2发送配置信息,并且接收终端设备2发送的数据;而终端设备2接收终端设备1发送的配置信息,并向终端设备1发送数据。
上述的网络设备为是一种部署在无线接入网中为终端设备提供无线通信功能的装置。接入网设备具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved node B,eNB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and  reception point,TRP或者transmission point,TP)等,还可以为5G(如NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU)、DU、卫星、无人机等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息(即通过PHY层发送),或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请实施例中所涉及的终端设备,又可以称之为终端,是用户侧的一种用于接收或发射信号的实体,用于向网络设备发送上行信号,或从网络设备接收下行信号。包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括UE、V2X终端设备、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)、可穿戴设备、车载设备、无人机等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
目前,NR正在讨论一种新的UE类型,称为降低能力(reduced capability,RedCap)的UE。其中,RedCap UE可以为可穿戴设备(wearables),工业无线传感器(intustrial wireless sensors)和视频监控(Video surveillance)设备。目前,一般NR增强型移动宽带(enhance mobile broadband,eMBB)UE在FR1支持100MHz的带宽,在FR2支持200MHz的带宽,其中FR1和FR2为第三代合作伙伴计划(3rd generation partnership project,3GPP)定义的FR1频段和FR2频段。而NR RedCap UE在FR1支持的最大带宽为20MHz。在FR2,RedCap UE支持的最大带宽为100MHz。RedCap UE支持的带宽能力比eMBB UE小的原因是由于RedCap UE实现复杂度低,功耗小。
终端设备初始接入阶段(如:开机入网、取消飞行模式、随机接入等),网络设备会通过MIB信令为eMBB UE配置一个CORESET,其ID为0,即CORESET#0。此外,可选的,SIB1信令可为UE配置1个额外的公共CORESET,称为common CORESET,其ID不为0,并且该额外公共CORESET在频域上要位于CORESET#0的带宽范围以内。
为了扩大系统容量,平衡负载,网络设备可能为RedCap UE配置一个新的CORESET(假定该CORESET为CORESET#R,也可以称为CORESET#0A,或其他编号的CORESET,本申请对新的CORESET的名称不作具体限制)。
应理解,NR中定义了控制资源集,即CORESET,用于传输PDCCH,一个CORESET由频域上的若干个RB以及在时域上的1个,2个或3个OFDM符号组成。
在NR eMBB UE和NR RedCap UE共存的系统中,不管是eMBB UE还是RedCap UE,在初始接入阶段的下行数据都是在初始下行BWP传输的,例如在随机接入过程中用于调度消息2或消息4的PDCCH、调度寻呼消息的寻呼PDCCH等都是在CORESET#0上传输的。随着eMBB UE和RedCap UE的数量增多,会造成在初始接入阶段信道拥塞,例如PDCCH拥塞(PDCCH blocking)。为了提高系统容量,平衡UE负载,可在现有初始下行BWP之外,为RedCap UE额外配置至少一个新的初始下行BWP,用于RedCap UE的数据传输。
此外,时分双工(time division duplex,TDD)系统中,由于eMBB UE的带宽能力较高,比如FR1支持100MHz的射频带宽能力。因此,网络设备为eMBB UE配置的初始上行BWP的带宽可能超过RedCap UE支持的最大带宽能力。为了支持RedCap UE的上行传输,使RedCap UE的数据都位于RedCap UE支持的带宽以内,可能会为RedCap UE配置一个新的初始上行BWP,并且新的初始上行BWP的带宽应不超过RedCap UE支持的最大带宽能力。TDD系统中,一个上行BWP会和一个下行BWP组成一个BWP对(BWP pair),它们的ID相同,并且具有相同的中心频率。例如初始上行BWP和初始下行BWP为一个BWP对,应具有相同的中心频率。但是,为RedCap UE新引入的初始上行BWP可能和为eMBB UE配置的初始下行BWP的中心频率不对齐,因此,除了之上扩大系统容量的原因之外,可能会为了保持RedCap UE的初始上下行BWP中心频点对齐,为RedCap UE新引入一个初始下行BWP,例如称为:RedCap-initial DL BWP。
而在为RedCap UE配置的初始下行BWP里,一般都要配置至少一个CORESET,例如RedCap UE的初始下行BWP里不包含CORESET#0,这时,就要在RedCap UE的初始下行BWP内部为RedCap UE配置一个新的CORESET。
通常网络设备可指示CORESET#0的带宽、符号个数和SSB之间的偏移值等,以便终端设备可根据SSB与CORESET#0之间的偏移值以及SSB的频率位置来确定CORESET#0的频率位置。如图2所示,UE在初始接入时,先搜索到SSB,SSB包括的物理广播信道(physical broadcast channel,PBCH)包括的MIB会指示一个索引值,该索引值用于指示CORESET#0的带宽、符号个数和SSB之间的偏移值等,然后根据SSB与CORESET#0之间的偏移值,UE可确定CORESET#0的频率位置,进而可根据索引值对应的带宽,确定CORESET#0的带宽。其中,SSB与CORESET#0的时域间隔只是作为示意,图中为了更好的示意,SSB与CORESET#0两个资源之间具有时间间隔,在实际应用时并不具体限定。但是,为RedCap UE新引入的CORESET可能在频域上距离SSB较远,或者,为RedCap UE配置的初始下行BWP不包括SSB,且当前的偏移值并不支持将CORESET#R配置在距离SSB较远的位置,因此基于SSB确定CORESET#R的频率位置是不恰当的。
此外,相关技术还提出通过比特位图(bitmap)确定除CORESET#0以外的CORESET的频率位置。在NR中,一个下行BWP在频域包括整数个RB,而CORESET在频域上可以是一个BWP中的部分RB,一个CORESET也包括整数个RB。例如,一个下行BWP在频域上从第一个RB开始,以每6个RB作为一个RB组(RB group),第一个RB所在 的RB组称为第一个RB组。bitmap的第一个bit对应BWP中的第一个RB组,第二个bit对应第二个RB组,以此类推。如果1个bit置1,表示该bit对应的RB组就是CORESET所包括的频域资源,否则,其对应的RB组就不属于该CORESET。考虑到CORESET#R,可能通过SIB1信令承载CORESET#R的配置信息。若通过比特位图来确定CORESET#R的频率位置,会增大SIB1的信令开销(负载开销)。其中,SIB1信令为广播信令,承载最小系统消息,如果SIB1信令开销过大,则会降低系统资源利用效率。
为了在少信令开销的情况下确定CORESET#R的频率位置以及除CORESET#0以外的其他CORESET的频率位置,本申请提供一种资源确定方法。具体如下,该方法可通过终端设备来执行,也可通过网络设备来执行,其中,终端设备可以为UE、车载设备、智能手表、智能手环等,网络设备可以为TRP、gNB等,本申请在此不作具体限定。在执行时,可参阅图3,图3以终端设备为UE来说明,以网络设备为gNB为例来说明,但是在实际应用时并不对终端设备的类别以及网络设备的类别具体限定:
步骤301,gNB确定第一资源的频率位置以及第二CORESET的频率位置,第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠。
上述的第一资源为BWP时,可以为上行BWP也可以为下行BWP,可以为RRC IDLE态的BWP或RRC INACTIVE态的BWP还可以为RRC连接态的资源,在此不作具体限定。上述的第一CORESET可由系统信息配置的,例如由MIB或SIB1配置。第一CORESET可以为网络设备为终端设备配置的标识为0的控制资源集CORESET#0,也可能是其他标识的控制资源集,在此不具体限定。由于通信系统中,接入的终端设备越来越多,为了负载均衡,可在初始接入阶段引入多个CORESET来提高通信服务质量。该引入的CORESET可以为第二CORESET,其中第二CORESET与第一CORESET在频域不重叠,可以理解为第二CORESET与第一CORESET在频域资源上完全不重叠或者部分不重叠,该方式可保证更好地通信服务质量。上述的第二CORESET和第一CORESET可是给相同的终端设备配置的,如为eMBB UE配置的第一CORESET为CORESET#0,第二CORESET可以为为eMBB UE配置的common CORESET或其他CORESET;上述的第二CORESET和第一CORESET也可是给不同的终端设备配置的,如为eMBB UE配置的第一CORESET为CORESET#0,第二CORESET可以为为RedCap UE配置的CORESET#R,应理解,RedCap UE也可在第一CORESET或CORESET#0上监听PDCCH,在此不作具体限制,另外,该第一CORESET也可为为RedCap UE配置的CORESET#R,第二CORESET可以为为eMBB UE配置的除CORESET#0以外的其他CORESET,在此不作具体限定。
需要说明的是,第一资源为BWP时,可以为网络设备为RedCap UE配置的上行BWP或下行BWP,例如,第一资源为网络设备为RedCap UE配置的初始下行BWP,或初始上行BWP,网络设备也会给eMBB UE配置下行BWP、上行BWP,为RedCap UE和为eMBB UE配置的下行/上行BWP频率位置和带宽可以相同,也可以不同,在此不具体限制。此外,上述的频率位置还可以称作频域位置,在此不具体限定具体名称,在实际应用时,可根据具体的应用场景确定。以RedCap下行/上行BWP为参考确定第一资源的频率位置,有助于将CORESET#R配置在RedCap下行/上行BWP内部,或者,确保RedCap下行/上行BWP和CORESET#R的总带宽不超过RedCap UE支持的最大带宽能力。
第一资源为第一CORESET时,第一CORESET可以为CORESET#0,该方式更加简便快捷,可以将第二CORESET配置成和CORESET#0不重叠,这样可以增大系统容量, 减少PDCCH拥堵。在实际应用时,第一资源具体为哪个可通过终端设备和网络设备之间的协议约定,也可通过网络设备的信令指示。
步骤302,gNB根据第一资源的频率位置以及第二CORESET的频率位置,确定第二CORESET相对第一资源的频率偏移。
在一种可选的方式中,上述的频率偏移可表示:第二CORESET的第一个RB相对第一资源的第一个RB的偏移,还可以是第二CORESET的第一个RB相对第一资源的最后一个RB或中心RB的偏移。此外,还要说明的是,本申请中第二CORESET包括的RB在频域是连续的。
应理解,当一块频域资源X包括的RB个数为偶数时,其中心RB为X的中心频率之上与中心频率相邻的RB,或X的中心频率之下与中心频率相邻的RB。例如,一个BWP共包括40个RBs,编号从0至39,那么中心RB对应编号为19的RB或编号为20的RB。具体为哪个,可由协议预定义,或网络设备指示。当一块频域资源包括的RB个数为奇数时,其中心RB即为位于所述一块频域资源中心频域位置RB。例如,一个BWP共包括41个RBs,编号从0至40,那么中心RB对应编号为20的RB,下文中任何涉及中心RB的描述均可参照此处,下文不再赘述。
频率偏移还可表示第二CORESET的最后一个RB相对第一资源的最后一个RB的偏移,还可以是第二CORESET的最后一个RB相对第一资源的第一个RB或中心RB的偏移。
频率偏移还可表示第二CORESET的中心RB相对第一资源的中心RB的偏移,还可以是第二CORESET的中心RB相对第一资源的第一个RB或最后一个RB的偏移。
频率偏移还可表示第二CORESET的下边界相对第一资源的下边界的偏移,还可以是第二CORESET的下边界相对第一资源的上边界或中心频率的偏移。其中,一块频域资源Y的下边界,表示Y的第一个RB中的第一个RE的下边界(与第一个RE的中心频率之间间隔1/2*SCS,该SCS为该块频域资源的子载波间隔),即这块资源的频域起始位置。Y的上边界,表示Y的最后一个RB中的最后一个RE的上边界(与最后一个RE的中心频率之间间隔1/2*SCS,该SCS为该块频域资源的子载波间隔),即这块资源的频域结束位置。下文中任何涉及下边界和上边界的描述均可参照此处,下文不再赘述。
频率偏移还可表示第二CORESET的上边界相对第一资源的上边界的偏移,第二CORESET的上边界相对第一资源的下边界或中心频率的偏移。
频率偏移还可表示第二CORESET的上边界相对第一资源的中心频率的偏移,还可以是第二CORESET的上边界相对第一资源的下边界或上边界的偏移。
频率偏移还可表示第二CORESET的第一个RB的第一个资源单元RE的中心频率相对第一资源的第一个RB的第一个RE的中心频率的偏移;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对第一资源的最后一个RB的第一个RE的中心频率的偏移;或,第二CORESET的最后一个RB的最后一个资源单元RE的中心频率相对第一资源的最后一个RB的最后一个RE的中心频率的偏移。
频率偏移还可表示第二CORESET的上边界相对第一资源的预设频率的偏移;或,第二CORESET的下边界相对第一资源的预设频率的偏移;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。例如,第一资源的预设频率为与第一资源的中心频率往RB编号增加的方向偏离一定频率间隔的频点,此时,可通过第二CORESET上边界确定频率偏移,另外,还可参考第二CORESET的下边界、中心频率 确定频率偏移。例如,第一资源的预设频率为与第一频域资源的中心频率往RB编号减小的方向偏离一定频率间隔的频点,此时,可通过第二CORESET的下边界确定频率偏移,另外,还可以参考第二CORESET的上边界、中心频率确定频率偏移。其中,一定频率间隔包括:10MHz、50MHz。例如,考虑到RedCap UE在FR1支持的最大带宽能力为20MHz,在FR2支持的最大带宽能力为100MHz,所以,在FR1,所述一定频率间隔可以为10MHz,在FR2,所述一定频率间隔可以为50MHz。这样,可以更灵活的指示第二CORESET的频率位置,并且也能够确保RedCap下行/上行BWP和第二CORESET的总带宽不超过RedCap UE支持的最大带宽能力。根据这种方法,指示的第二CORESET可能不完全包括在RedCap上行BWP内部。应理解,UE不期待第二CORESET有部分或全部位于RedCap下行BWP之外。也就是说,如果配置了RedCap下行BWP,则第二CORESET应完全位于RedCap下行BWP内部。
需要说明的是,频域偏移可以用RB个数、RE个数或绝对频率(例如以MHz或KHz为单位)表示,在此不具体限定,另外在实际应用时,频率偏移具体表示第一资源的哪个频率位置与第二CORESET的哪个频率位置之间的偏移可根据业务需求确定也可根据网络设备的信令进行指示,在此不作具体限定。应理解,即使频率偏移的单位以RB或者RE个数表示,也可换算成绝对频率来准确确定具体的频率偏移,例如,单位为RB个数要换算成单位为MHz,这就需要知道换算时使用的子载波间隔,换算时使用的子载波间隔可是网络设备指示的,例如RRC信令,或由协议预先定义的。例如,频域偏移对应的子载波间隔和第二CORESET的子载波间隔相等,或者,和第一资源的子载波间隔相等。
此外,在第一资源为第一CORESET时,若频率偏移是基于第一CORESET的第一个RB确定的,可选择第二CORESET的最后一个RB来确定频率偏移,这样可以保证第一CORESET和第二CORESET的编号不重叠,且第二CORESET的最后一个RB的编号小于或等于第一CORESET的第一个RB的编号,也即第二CORESET的任意RB的编号均小于或等于第一CORESET的任意RB的编号。同样地,若频率偏移是基于第一CORESET的最后一个RB确定的,可选择第二CORESET的第一个RB来确定频率偏移,这样可以保证第一CORESET和第二CORESET的编号不重叠,且第二CORESET的第一个RB的编号大于或等于第一CORESET的第一个RB的编号,也即第二CORESET的任意RB的编号均大于或等于第一CORESET的任意RB的编号。
步骤303,gNB向UE通知第一资源的频率位置以及频率偏移。
在一种可选的方式中,终端设备可接收来自网络设备的指示信息,指示信息用于指示频率偏移;指示信息为以下信令中的一种或多种:SIB1、调度SIB1的DCI以及MIB。
其中,调度SIB1的PDCCH在CORESET#0上发送。例如,RedCap UE在初始接入时,先搜索定义小区的SSB(cell-defining SSB,CD-SSB),然后根据SSB包括的物理广播信道(physical broadcast channel,PBCH)承载的MIB确定CORESET#0,UE在CORESET#0上监听调度SIB1的PDCCH,由SIB1承载上述的指示信息。假设网络设备为RedCap UE配置了专用的初始下行BWP,SIB1承载了RedCap UE初始下行BWP的配置信息,第一资源为RedCap UE初始下行BWP,则UE在获取SIB1之后,可确定第一资源和频率偏移,然后就能根据第一资源和频率偏移确定第二CORESET,即为RedCap UE配置的CORESET。
其中,指示信息也可由MIB承载。例如,PBCH承载的MIB包括CORESET#0的配置信息,所述配置信息用于确定一个索引,该索引用于确定CORESET#0的带宽和OFDM 符号个数,在本申请中,该索引也可以用于确定频率偏移。UE在获取MIB之后可确定频率偏移。
其中,指示信息也可由DCI和调度SIB1的DCI共同承载。例如,SIB1用于配置多个频率偏移,而调度所述SIB1的DCI用于从所述多个频率频移中指示其中一个为有效的频率偏移,即终端设备用于确定第二CORESET频率位置的频率偏移。
可选的,指示信息也可由除SIB1以外的其他SIB承载,例如由SIB2承载,或者由RRC连接态的RRC信令、DCI或媒体介质访问控制控制元素(media access control control element,MAC CE)承载。
此外,还可通过指示信息指示第二CORESET的带宽,和/或,第二CORESET的OFDM符号个数。例如,指示信息确定一个索引,如该索引为1,该索引1不仅对应一个频率偏移,还对应一个第二CORESET的带宽,和/或第二CORESET的OFDM符号个数,根据该索引,终端设备可确定频率偏移、第二CORESET的带宽和第二CORESET的OFDM符号个数。此外,还可通过另一索引指示第二CORESET的带宽、和/或第二CORESET的OFDM符号个数,如指示频率偏移的索引为索引1,可通过索引A指示第二CORESET的带宽、和/或第二CORESET的OFDM符号个数。第二CORESET的带宽、和/或第二CORESET的OFDM符号个数的指示方式本申请在此不作具体限定。
需要说明的是,协议可预先定义1个或多个频率偏移,可通过指示信息指示其中的一个值,在此不作具体限定,例如,在CORESET#0的预定义表格中,新增一列用于指示频率偏移,如通过表1和表2中的最后一列所示,其中表1中每行包括一个频率偏移值,表2中每行包括4个频率偏移值。如,表1中索引1对应频率偏移的Value1。
表1:CORESET#0的RB个数和OFDM符号个数集合,对应SSB和PDCCH的子载波均为15KHz,对应具有最小信道带宽为5MHz或10MHz的频段,每行对应1个
第二CORESET相对第一资源的频域偏移
Figure PCTCN2022100029-appb-000001
表2:CORESET#0的RB个数和OFDM符号个数集合,对应SSB和PDCCH的子载波均为15KHz,对应具有最小信道带宽为5MHz或10MHz的频段,每行对应4个
第二CORESET相对第一资源的频域偏移值
Figure PCTCN2022100029-appb-000002
其中,表1中的其中两行对应的第二CORESET相对第一资源的频率偏移值可相同,也可不同,在此不作限制。表2中的其中两行分别对应的4个第二CORESET相对第一资源的频率偏移值可能全部相同,或全部不同,或只有部分相同,在此不作限制。
应理解,表1和表2即是通过MIB承载指示信息的具体示例,即用于确定CORESET#0参数的索引同时用于确定频率偏移,但是在实际应用时,还可能为其他形式,也可通过其他信息承载指示信息,本申请在此不作具体限定。
此外,还要说明的是,频率偏移可以是大于等于0的数,或者,既可以大于0,也可以小于0,也可以等于0。例如,频率偏移表示从RedCap初始下行BWP的第一个RB到第二CORESET的第一个RB之间的频率偏移,此时,频率偏移为大于等于0的数,如果大于0,表示第二CORESET的第一个RB位于从RedCap初始下行BWP的第一个RB往RB编号增加的方向的位置,如果等于0,表示第二CORESET的第一个RB与RedCap初始下行BWP的第一个RB对齐,上述的对齐可以理解为频率偏移为0或固定值。频率偏移还可表示从RedCap初始下行BWP的中心频率到第二CORESET 的中心频率之间的频率偏移,如果频率偏移大于0,表示第二CORESET的中心频率位于从RedCap初始下行BWP的中心频率开始往RB编号增加的方向的位置;如果频率偏移小于0,表示第二CORESET的中心频率位于从RedCap初始下行BWP的中心频率开始往RB编号减小的方向的位置;如果频率偏移等于0,表示第二CORESET的中心频率与RedCap下行BWP的中心频率对齐。
另外,也可以根据频率偏移的正负号来确定所述频率偏移的起始位置和结束位置,进而确定第二CORESET的位置。例如,如果频率偏移等于0,表示第二CORESET的第一个RB与RedCap初始下行BWP的第一个RB对齐;如果频率偏移大于0,表示频率偏移的起始位置为RedCap初始下行BWP的第一个RB,频率偏移的结束位置为第二CORESET的第一个RB,频率偏移表示从RedCap初始下行BWP的第一个RB到第二CORESET的第一个RB之间的频率偏移,且第二CORESET的第一个RB位于从RedCap初始下行BWP的第一个RB往RB编号增加的方向的位置;如果频率偏移小于0,表示频率偏移的起始位置为RedCap初始下行BWP的最后一个RB,频率偏移的结束位置为第二CORESET的最后一个RB,频率偏移的绝对值表示从RedCap初始下行BWP的最后一个RB到第二CORESET的最后一个RB之间的频率偏移,且第二CORESET的最后一个RB位于从RedCap初始下行BWP的最后一个RB往RB编号减小的方向的位置。这样,可以更灵活的配置第二CORESET的位置。
再例如,如果频率偏移等于0,频率偏移表示第二CORESET的第一个RB的下边界与第一CORESET的最后一个RB的上边界对齐。如果频率偏移大于0,频率偏移表示从第一CORESET的最后一个RB的上边界到第二CORESET的第一个RB的下边界之间的频率偏移,且第二CORESET的第一个RB位于从第一CORESET的最后一个RB往RB编号增加的方向的位置;如果频率偏移小于0,频率偏移的绝对值表示从第一CORESET的第一个RB的下边界到第二CORESET的最后一个RB的上边界之间的频率偏移,且第二CORESET的最后一个RB位于从第一CORESET的第一个RB往RB编号减小的方向的位置。这样,频域偏移的绝对值可以尽可能的小,有利于用较少的比特数进行指示,节省信令开销。这样也能将第二CORESET配置成和第一CORESET不重叠,有利于扩大系统容量,降低PDCCH拥堵。
另外,若第一资源的RB与第二CORESET的RB的子载波间隔相同,则两个RB对齐等价于两个RB的中心频率对齐,或两个RB的第一个RE的中心频率对齐,或两个RB的下边界对齐等。如果两个RB的子载波间隔不同,则两个RB对齐,可以理解成如下中的一种:两个RB的中心频率对齐、两个RB的下边界对齐、两个RB的第一个RE的中心频率对齐。
步骤304,UE根据第一资源的频率位置以及频率偏移确定第二CORESET的频率位置。需要说明的是,UE在执行步骤304后,可以向gNB发送信息(该发送消息可以为对确定第二CORESET的频率位置的反馈信息或响应信息,例如通过发送物理随机接入信道(physical random access channel,PRACH)信息等来指示)以通知gNB,例如UE可以向gNB发送PRACH,那么gNB则可获悉UE已经确定第二CORESET的频率位置,则可执行步骤A。
步骤A,gNB在第二CORESET发送PDCCH。
步骤305,UE在第二CORESET监听PDCCH。
作为一个示例,UE在初始接入阶段,可参阅图4A确定,UE在初始接入时,先确定第一资源,然后根据频率偏移,UE可确定CORESET#R的频率位置。其中,第一资源与CORESET#R的时域间隔只是作为示意。还可通过图4B示意的资源确定方法的执行流程来确定第二CORESET的频率位置:
步骤401,搜索并接收SSB,并解析PBCH承载的信息,获取MIB的配置信息。
步骤402,根据MIB的配置信息,确定CORESET#0的频率位置。
步骤403,在CORESET#0上监听调度SIB1的PDCCH,进而接收承载SIB1的PDSCH,获取SIB1的配置信息,其中SIB1的配置信息包括用于确定如下资源和参数的信息:RedCap UE的初始下行BWP、RedCap UE的初始上行BWP、频率偏移、eMBB UE的初始下行BWP以及eMBB UE的初始上行BWP。
步骤404,以RedCap UE的初始下行BWP为第一资源,根据频率偏移确定第二CORESET的频率位置,第二CORESET就是图4A中的CORESET#R。
步骤405,在第二CORESET监听PDCCH,该PDCCH可用于调度寻呼消息或在随机接入过程中调度Msg2或调度Msg4,或调度针对RedCap UE的系统消息。
本申请中引入第二CORESET可以平衡负载,扩大系统容量,且终端设备基于第一资源以及频率偏移,确定第二CORESET,相对于通过比特位图指示确定CORESET的频率位置而言可以减少信令开销,节省时频资源,提高资源利用效率。
本申请还提供另一种资源确定方法,在执行时,可参阅图5,图5以终端设备为UE来说明但是在实际应用时并不对终端设备的类别具体限定,以网络设备为gNB为例来说明:
步骤501,gNB确定第一资源的频率位置以及第二CORESET的频率位置,第一资源为BWP或第一CORESET;第一CORESET与第二CORESET在频域不重叠。上述的第一CORESET可由系统信息配置的,例如由MIB或SIB1配置。第一CORESET可以为网络设备为终端设备配置的标识为0的控制资源集CORESET#0,也可能是其他标识的控制资源集,在此不具体限定。
步骤502,gNB向UE通知第一资源的频率位置至UE。
步骤503,UE根据第一资源的频率位置确定第二CORESET的频率位置。
步骤A,gNB在第二CORESET发送PDCCH。
步骤504,UE在第二CORESET监听PDCCH。
需要说明的是,在该方案中,网络设备与终端设备可预先约定第一资源的频率位置与第二CORESET的频率位置之间的相对关系,故而终端设备可直接根据第一资源的频率位置确定第二CORESET的频率位置,该方式更加简便快捷。
在一种可选的方式中,第二CORESET的第一个RB与第一资源的第一个RB对齐;或,第二CORESET的最后一个RB与第一资源的最后一个RB对齐;或,第二CORESET的中心RB与第一资源的中心RB对齐;或,第二CORESET的下边界与第一资源的下边界对齐;或,第二CORESET的上边界与第一资源的上边界对齐;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率与第一资源的第一个RB的第一个RE的中心频率对齐;或,第二CORESET的最后一个RB的最后一个资源单元RE的中心频率与第一资源的最后一个RB的最后一个RE的中心频率对齐;或,第二CORESET的上边界与 第一资源的预设频率对齐;或,第二CORESET的下边界与第一资源的预设频率对齐;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
上述的对齐可以理解为频率偏移为0或固定值,如第二CORESET的第一个资源块RB与第一资源的第一个RB对齐可以理解为第二CORESET的第一个资源块RB与第一资源的第一个RB之间不存在频率偏移,或者第二CORESET的第一个资源块RB与第一资源的第一个RB之间的频率偏移为固定值,本申请在此不作具体限定,具体是哪两个频率对齐可以是网络设备直接指示,或者是网络设备与终端设备提前约定,本申请在此不作具体限定。
另外,网络设备还可向终端设备指示候选频率,第一资源与第二CORESET的候选频率是对齐的,如候选频率为第一个RB、最后一个RB以及中心RB等。可接收网络设备的指示信息,在候选RB中选择一个来确定第二CORESET的频率位置。
例如,若网络设备指示候选频率为第一个RB,则表示第二CORESET的第一个RB与第一资源的第一个RB是对齐的。若网络设备指示候选频率为上边界,则表示第二CORESET的上边界和第一资源的上边界是对齐的。
为了节约处理器的资源,节省信令开销,进而节省资源开销,提高资源利用效率,第二CORESET可与MIB配置的CORESET#0除频率位置以外的配置相同,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
其中,带宽表示控制资源集包括的频域RB个数;OFDM符号个数表示控制资源集包括的时域OFDM符号个数;cce-REG-MappingType表示CCE到REG的映射类型,例如映射类型包括交织(interleaved)映射和非交织(non-interleaved)映射,另外,除频率位置以外的配置还包括具体的映射方式,例如,一个CCE具体对应哪些REG bundle(s);reg-bundlesize表示一个REG bundle包括的REG的个数;interleaversize表示交织器的大小,即交织器的行数;precodergranularity表示采用相同预编码的资源大小,例如,precodergranularity设置成sameAsREG-bundle表示在一个REG bundle里数据是采用相同的预编码,precodergranularity设置成allContiguousRBs表示在CORESET里的所有REG里数据都是采用相同的预编码;pdcch-DMRS-ScramblingID表示PDCCH DMRS扰码初始化时使用的数字。
此外,第二CORESET关联的搜索空间集的配置可与CORESET#0关联的搜索空间集的配置相同,所述搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续监听时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型(公共或专用)、搜索空间集关联的DCI格式。
其中,监听周期用于确定搜索空间集的监听周期,周期偏移用于确定每一个监听周期的起始,即每一个监听周期中PDCCH监听时机所在的起始时隙;每个监听时机的连续时隙个数表示每个监听周期中的包括PDCCH监听时机的连续的时隙的个数;监听时机中的监听符号表示PDCCH监听时机在时隙中的起始符号;候选PDCCH聚合级别表示候选PDCCH包括的CCE的个数;搜索空间集类型(公共或专用)表示该搜索空间集是用给一 组终端设备的,还是只给一个UE使用的;搜索空间集关联的DCI格式表示在该搜索空间集发送的PDCCH承载的DCI可能的DCI格式。
应理解,一个CORESET与一个搜索空间集关联,表示UE在这个CORESET按照关联的这个搜索空间集确定的参数监听PDCCH。
应理解,CORESET#0可能关联1个或多个搜索空间集,则对应的,第二CORESET关联的搜索空间集也分别为1个或多个,且每个搜索空间集的配置与对应的CORESET#0关联的搜索空间集的配置相同。例如,若CORESET#0关联类型0-PDCCH公共搜索空间集、类型0A-PDCCH公共搜索空间集、类型1-PDCCH公共搜索空间集和类型2-PDCCH公共搜索空间集,则第二CORESET也关联类型0-PDCCH公共搜索空间集、类型0A-PDCCH公共搜索空间集、类型1-PDCCH公共搜索空间集和类型2-PDCCH公共搜索空间集。其中,类型0-PDCCH公共搜索空间集用于监听其循环冗余校验(cyclic redundancy check,CRC)由系统消息无线网络临时标识(system information-radio network temporary identity,SI-RNTI)加扰的DCI格式,所述DCI格式用于调度SIB1信令。类型0A-PDCCH公共搜索空间集用于监听其CRC由SI-RNTI加扰的DCI格式,所述DCI格式用于调度其他系统消息,即SIB1以外的其他SIB,例如,SIB2-SIBx。类型1-PDCCH公共搜索空间集用于监听其CRC由随机接入无线网络临时标识(random access-RNTI,RA-RNTI)、消息B无线网络临时标识(Message B-RNTI,MsgB-RNTI)或临时小区无线网络临时标识(temporary cell-RNTI,TC-RNTI)加扰的DCI格式。类型2-PDCCH公共搜索空间集用于监听其CRC由寻呼无线网络临时标识(paging-RNTI,P-RNTI)加扰的DCI格式。
可选的,若第二CORESET和CORESET#0均关联寻呼搜索空间集,即类型2-PDCCH公共搜索空间集,则终端设备在第二CORESET监听寻呼PDCCH时使用的配置和在CORESET#0监听寻呼PDCCH时使用的配置相同,所述监听寻呼PDCCH时使用的配置包括如下至少一项:默认寻呼周期、寻呼帧与寻呼周期的比例(用于计算一个寻呼周期中的寻呼帧的个数)、寻呼帧偏移、寻呼帧中的寻呼时机的个数、寻呼帧中的每个寻呼时机(PO,paging occasion)的第一个PDCCH监听时机时域位置。其中,默认寻呼周期表示系统消息广播的寻呼周期;寻呼帧表示包括1个或多个寻呼时机的无线帧;寻呼帧偏移用于终端设备确定寻呼帧的系统帧编号(system frame number,SFN);一个PO是一个包括一个或多个PDCCH监听时机(PDCCH monitoring occasions)的集合,一个PO包括的PDCCH监听时机的个数等于一个SSB周期中实际发送的SSB的个数,即一个同步信号丛集(SS burst set)包括的实际发送的SSB的个数。
一种示例中,第二CORESET是初始接入过程中为RedCap UE配置的CORESET,由MIB配置的CORESET#0频域范围内,网络设备又通过SIB1为eMBB UE配置了一个公共CORESET,例如,编号为1,即公共CORESET#1,则第二CORESET的带宽和CORESET#0的带宽相同,且在第二CORESET的频域范围内也包括一个公共CORESET,不限制其编号,例如称为公共CORESET#R1,且在频域上,公共CORESET#R1在第二CORESET内的相对位置和公共CORESET#1在CORESET#0内的相对位置相同,且公共CORESET#R1的带宽和公共CORESET#1的带宽相同,且公共CORESET#R1关联的搜索空间集的配置与公共CORESET#1关联的搜索空间集的配置相同。这样,网络设备不需要在第二CORESET内重新配置一个公共控制资源集,只需要采用和公共CORESET#1相同的配置即可,可以节省信令开销。
需要注意的是,本申请中第一资源可以为BWP还可以为第一CORESET,在第一资源为BWP时,第二CORESET可与MIB配置的CORESET#0除频率位置以外的配置相同,第二CORESET关联的搜索空间集的配置也可与CORESET#0关联的搜索空间集的配置相同。在第一资源为第一CORESET时,第二CORESET可与第一CORESET除频率位置以外的配置相同,第二CORESET关联的搜索空间集的配置也可与第一CORESET关联的搜索空间集的配置相同,该第一CORESET可以为CORESET#0也可以为其他CORESET,并不具体限定。此处,所述的除频率位置以外的配置以及搜索空间集的配置可以参照上文的描述,在此不赘述。
图6示出了通信装置,该通信装置可以理解为终端设备,可以为UE、车载设备、智能手表、智能手环等,也可理解为网络设备,可以为TRP、gNB等。该通信装置可包括:处理单元601和输入输出单元602。应理解,所述输入输出单元可以称为收发单元、通信单元等,当所述通信装置是终端设备时,所述输入输出单元可以是收发器;所述处理单元可以是处理器。当所述通信装置是终端设备中的模块(如,芯片)时,所述输入输出单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。该通信装置可用以执行上述图3或图5所对应的方法实施例的步骤,对于实现细节的具体描述可参照方法实施例部分,在此不在赘述。
其中通信装置为终端设备时,处理单元601,用于确定频率偏移和第一资源的频率位置,第一资源为带宽部分BWP或第一控制资源集CORESET;频率偏移表示第二CORESET相对第一资源的频率偏移,当第一资源为第一CORESET时,第一CORESET与第二CORESET在频域不重叠;以及根据第一资源的频率位置和频率偏移,确定第二CORESET的频率位置;输入输出单元602,用于在第二CORESET监听物理下行控制信道PDCCH。
其中通信装置为网络设备时,处理单元601,用于确定第一资源的频率位置以及第二控制资源集CORESET的频率位置,第一资源为带宽部分BWP或第一CORESET;当第一资源为第一CORESET时,第一CORESET与第二CORESET在频域不重叠;以及根据第一资源的频率位置以及第二CORESET的频率位置,确定频率偏移;频率偏移表示第二CORESET相对第一资源的频率偏移;输入输出单元602,用于向终端设备通知第一资源的频率位置以及频率偏移;以及在第二CORESET发送物理下行控制信道PDCCH。
本申请中引入第二CORESET可以平衡负载,扩大系统容量,且终端设备基于第一资源以及频率偏移,确定第二CORESET,相对于通过比特位图指示确定CORESET的频率位置而言可以减少信令开销,节省时频资源,提高资源利用效率。
在一种可选的方式中,频率偏移可表示:第二CORESET的第一个资源块RB相对第一资源的第一个RB的偏移;或,第二CORESET的最后一个RB相对第一资源的最后一个RB的偏移;或,第二CORESET的中心RB相对第一资源的中心RB的偏移;或,第二CORESET的下边界相对第一资源的下边界的偏移;或,第二CORESET的上边界相对第一资源的上边界的偏移;或,第二CORESET的第一个RB的第一个资源单元RE的中心频率相对第一资源的第一个RB的第一个RE的中心频率的偏移;或,第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对第一资源的最后一个RB的第一个RE的中心频率的偏移;或,第二CORESET的上边界相对第一资源的预设频率的偏移;或, 第二CORESET的下边界相对第一资源的预设频率的偏移;其中,第一资源的预设频率与第一资源的中心频率之间的偏移量为预设值;预设值大于0。
需要说明的是,在实际应用时,频率偏移具体指示第一资源的哪个频率量与第二CORESET的哪个频率量之间的偏移可根据业务需求确定,在此不作具体限定。
在一种可选的方式中,终端设备的输入输出单元602,还用于:接收指示信息,指示信息用于指示频率偏移;指示信息为以下信令中的一种或多种:
SIB1、调度SIB1的DCI以及MIB。
采用上述的信令,使得终端设备在初始接入阶段,获取SIB1/调度SIB1的DCI/MIB之后就能获取所述频率偏移,有利于在初始接入阶段确定第二CORESET的频率位置,这样,有利于在初始接入阶段就能实现负载均衡,降低PDCCH的拥堵。
在一种可选的方式中,指示信息还用于指示第二CORESET的带宽,和/或,第二CORESET的OFDM符号个数。例如,指示信息确定一个索引,如该索引为1,该索引1不仅对应一个频率偏移,还对应一个第二CORESET的带宽,和/或第二CORESET的OFDM符号个数,根据该索引,终端设备可确定频率偏移、第二CORESET的带宽和第二CORESET的OFDM符号个数。此外,还可通过另一索引指示第二CORESET的带宽、和/或第二CORESET的OFDM符号个数,如指示频率偏移的索引为索引1,可通过索引A指示第二CORESET的带宽、和/或第二CORESET的OFDM符号个数。第二CORESET的带宽、和/或第二CORESET的OFDM符号个数的指示方式本申请在此不作具体限定。
通过该方式可以更灵活的确定第二CORESET的带宽和第二CORESET的OFDM符号个数。此外,可选的,指示信息可以同时用于确定第二CORESET的带宽、符号个数以及所述频率偏移,这样可以节省信令开销,不需要分别针对第二CORESET的带宽、符号个数以及所述频率偏移进行指示。
在一种可选的方式中,第二CORESET与CORESET#0除频率位置以外的配置相同,CORESET#0由系统信息配置,除频率位置以外的配置包括以下至少一项:
带宽、OFDM符号个数、cce-REG-MappingType、资源单元组包大小(reg-bundlesize)、交织器大小(interleaversize)、预编码粒度(precodergranularity)以及pdcch-DMRS-ScramblingID。
通过该方式第二CORESET的参数可以复用CORESET#0的参数,不需要对第二CORESET的参数单独配置,可以节省信令开销,尤其当第二CORESET在初始接入阶段配置时,可以节省初始接入阶段时的信令开销,例如节省SIB1的信令开销。
在一种可选的方式中,第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,所述搜索空间集的配置包括以下至少一项:
监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型(公共或专用)、搜索空间关联的DCI格式。
通过该方式,第二CORESET关联的搜索空间集的参数可以复用CORESET#0关联的搜索空间集的参数,不需要对第二CORESET关联的搜索空间集的参数单独配置,可以节省信令开销,尤其当第二CORESET在初始接入阶段配置时,可以节省初始接入阶段时的信令开销,例如节省SIB1的信令开销。
此外,如图7所示,为本申请还提供的一种通信装置700。示例性地,通信装置700 可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置700可以包括至少一个处理器710,通信装置700还可以包括至少一个存储器720,用于存储计算机程序、程序指令和/或数据。存储器720和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器720协同操作。处理器710可能执行存储器720中存储的计算机程序。可选的,所述至少一个存储器720也可与处理器710集成在一起。
可选的,在实际应用中,通信装置700中可以包括收发器730也可不包括收发器730,图中以虚线框来示意,通信装置700可以通过收发器730和其它设备进行信息交互。收发器730可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置700可以应用于前述的终端设备,也可以是前述的终端设备。存储器720保存实施上述任一实施例中的终端设备的功能的必要计算机程序、程序指令和/或数据。所述处理器710可执行所述存储器720存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器730、处理器710以及存储器720之间的具体连接介质。本申请实施例在图7中以存储器720、处理器710以及收发器730之间通过总线连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图8,本申请实施例还提供另一种通信装置800,包括:接口电路810和逻辑电路820;接口电路810,可以理解为输入输出接口,可用于执行与上述图6示意的输入输出单元或如图7示意的收发器同样的操作步骤,本申请在此不再赘述。逻辑电路820可用于运行所述代码指令以执行上述任一实施例中的方法,可以理解成上述图6中的处理单元或图7中的处理器,可以实现处理单元或处理器同样的功能,本申请在此不再赘述。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中资源确定方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储 程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (27)

  1. 一种资源确定方法,其特征在于,包括:
    确定频率偏移和第一资源的频率位置,所述第一资源为带宽部分BWP或第一控制资源集CORESET;所述频率偏移表示第二CORESET相对所述第一资源的频率偏移,所述第一CORESET与所述第二CORESET在频域不重叠;
    根据所述第一资源的频率位置和所述频率偏移,确定所述第二CORESET的频率位置;
    在所述第二CORESET监听物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述频率偏移表示:
    所述第二CORESET的第一个资源块RB相对所述第一资源的第一个RB的偏移;或,
    所述第二CORESET的最后一个RB相对所述第一资源的最后一个RB的偏移;或,所述第二CORESET的中心RB相对所述第一资源的中心RB的偏移;或,所述第二CORESET的下边界相对所述第一资源的下边界的偏移;或,所述第二CORESET的上边界相对所述第一资源的上边界的偏移;或,所述第二CORESET的第一个RB的第一个资源单元RE的中心频率相对所述第一资源的第一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对所述第一资源的最后一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的上边界相对所述第一资源的预设频率的偏移;或,所述第二CORESET的下边界相对所述第一资源的预设频率的偏移;
    其中,所述第一资源的预设频率与所述第一资源的中心频率之间的偏移量为预设值;所述预设值大于0。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述频率偏移;所述指示信息为以下信令中的一种或多种:
    系统消息块1SIB1、调度SIB1的下行控制信息DCI以及主信息块MIB。
  4. 根据权利要求3所述的方法,其特征在于,所述指示信息还用于指示所述第二CORESET的带宽、所述第二CORESET的OFDM符号个数。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第二CORESET与CORESET#0除频率位置以外的配置相同,所述CORESET#0由系统信息配置,所述除频率位置以外的配置包括以下至少一项:
    带宽、OFDM符号个数、控制信道元素和资源单元组映射类型cce-REG-MappingType、资源单元组包大小reg-BundleSize、交织器大小interleaverSize、预编码粒度precoderGranularity以及PDCCH的解调参考信号扰码标识pdcch-DMRS-ScramblingID。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,所述CORESET#0由系统信息配置,所述搜索空间集的配置包括以下至少一项:
    监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
  7. 一种资源确定方法,其特征在于,包括:
    确定第一资源的频率位置以及第二控制资源集CORESET的频率位置,所述第一资源为带宽部分BWP或第一CORESET;所述第一CORESET与所述第二CORESET在频域不重叠;
    根据所述第一资源的频率位置以及所述第二CORESET的频率位置,确定频率偏移;所述频率偏移表示第二CORESET相对所述第一资源的频率偏移;
    向终端设备通知所述第一资源的频率位置以及所述频率偏移;
    在所述第二CORESET发送物理下行控制信道PDCCH。
  8. 根据权利要求7所述的方法,其特征在于,所述频率偏移表示:
    所述第二CORESET的第一个资源块RB相对所述第一资源的第一个RB的偏移;或,
    所述第二CORESET的最后一个RB相对所述第一资源的最后一个RB的偏移;或,所述第二CORESET的中心RB相对所述第一资源的中心RB的偏移;或,所述第二CORESET的下边界相对所述第一资源的下边界的偏移;或,所述第二CORESET的上边界相对所述第一资源的上边界的偏移;或,所述第二CORESET的第一个RB的第一个资源单元RE的中心频率相对所述第一资源的第一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对所述第一资源的最后一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的上边界相对所述第一资源的预设频率的偏移;或,所述第二CORESET的下边界相对所述第一资源的预设频率的偏移;
    其中,所述第一资源的预设频率与所述第一资源的中心频率之间的偏移量为预设值;所述预设值大于0。
  9. 根据权利要求7或8所述的方法,其特征在于,通过以下信令中的一种或多种指示所述频率偏移:
    系统消息块1SIB1、调度SIB1的下行控制信息DCI以及主信息块MIB。
  10. 根据权利要求9所述的方法,其特征在于,所述信令还用于指示所述第二CORESET的带宽、所述第二CORESET的OFDM符号个数。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述第二CORESET与CORESET#0除频率位置以外的配置相同,所述CORESET#0由系统信息配置,所述除频率位置以外的配置包括以下至少一项:
    带宽、OFDM符号个数、控制信道元素和资源单元组映射类型cce-REG-MappingType、资源单元组包大小reg-BundleSize、交织器大小interleaverSize、预编码粒度precoderGranularity以及PDCCH的解调参考信号扰码标识pdcch-DMRS-ScramblingID。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,所述CORESET#0由系统信息配置,所述搜索空间集的配置包括以下至少一项:
    监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
  13. 一种通信装置,其特征在于,包括:
    处理单元,用于确定频率偏移和第一资源的频率位置,所述第一资源为带宽部分BWP或第一控制资源集CORESET;所述频率偏移表示第二CORESET相对所述第一资源的频 率偏移,所述第一CORESET与所述第二CORESET在频域不重叠;以及根据所述第一资源的频率位置和所述频率偏移,确定所述第二CORESET的频率位置;
    输入输出单元,用于在所述第二CORESET监听物理下行控制信道PDCCH。
  14. 根据权利要求13所述的装置,其特征在于,所述频率偏移表示:
    所述第二CORESET的第一个资源块RB相对所述第一资源的第一个RB的偏移;或,
    所述第二CORESET的最后一个RB相对所述第一资源的最后一个RB的偏移;或,所述第二CORESET的中心RB相对所述第一资源的中心RB的偏移;或,所述第二CORESET的下边界相对所述第一资源的下边界的偏移;或,所述第二CORESET的上边界相对所述第一资源的上边界的偏移;或,所述第二CORESET的第一个RB的第一个资源单元RE的中心频率相对所述第一资源的第一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对所述第一资源的最后一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的上边界相对所述第一资源的预设频率的偏移;或,所述第二CORESET的下边界相对所述第一资源的预设频率的偏移;
    其中,所述第一资源的预设频率与所述第一资源的中心频率之间的偏移量为预设值;所述预设值大于0。
  15. 根据权利要求13或14所述的装置,其特征在于,所述输入输出单元,还用于:
    接收指示信息,所述指示信息用于指示所述频率偏移;所述指示信息为以下信令中的一种或多种:
    系统消息块1SIB1、调度SIB1的下行控制信息DCI以及主信息块MIB。
  16. 根据权利要求15所述的装置,其特征在于,所述指示信息还用于指示所述第二CORESET的带宽、所述第二CORESET的OFDM符号个数。
  17. 根据权利要求13-16中任一项所述的装置,其特征在于,所述第二CORESET与CORESET#0除频率位置以外的配置相同,所述CORESET#0由系统信息配置,所述除频率位置以外的配置包括以下至少一项:
    带宽、OFDM符号个数、控制信道元素和资源单元组映射类型cce-REG-MappingType、资源单元组包大小reg-BundleSize、交织器大小interleaverSize、预编码粒度precoderGranularity以及PDCCH的解调参考信号扰码标识pdcch-DMRS-ScramblingID。
  18. 根据权利要求13-17中任一项所述的装置,其特征在于,所述第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,所述CORESET#0由系统信息配置,所述搜索空间集的配置包括以下至少一项:
    监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一资源的频率位置以及第二控制资源集CORESET的频率位置,所述第一资源为带宽部分BWP或第一CORESET;所述第一CORESET与所述第二CORESET在频域不重叠;以及根据所述第一资源的频率位置以及所述第二CORESET的频率位置,确定频率偏移;所述频率偏移表示第二CORESET相对所述第一资源的频率偏移;
    输入输出单元,用于向终端设备通知所述第一资源的频率位置以及所述频率偏移;以及在所述第二CORESET发送物理下行控制信道PDCCH。
  20. 根据权利要求19所述的装置,其特征在于,所述频率偏移表示:
    所述第二CORESET的第一个资源块RB相对所述第一资源的第一个RB的偏移;或,
    所述第二CORESET的最后一个RB相对所述第一资源的最后一个RB的偏移;或,所述第二CORESET的中心RB相对所述第一资源的中心RB的偏移;或,所述第二CORESET的下边界相对所述第一资源的下边界的偏移;或,所述第二CORESET的上边界相对所述第一资源的上边界的偏移;或,所述第二CORESET的第一个RB的第一个资源单元RE的中心频率相对所述第一资源的第一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的最后一个RB的第一个资源单元RE的中心频率相对所述第一资源的最后一个RB的第一个RE的中心频率的偏移;或,所述第二CORESET的上边界相对所述第一资源的预设频率的偏移;或,所述第二CORESET的下边界相对所述第一资源的预设频率的偏移;
    其中,所述第一资源的预设频率与所述第一资源的中心频率之间的偏移量为预设值;所述预设值大于0。
  21. 根据权利要求19或20所述的装置,其特征在于,通过以下信令中的一种或多种指示所述频率偏移:
    系统消息块1SIB1、调度SIB1的下行控制信息DCI以及主信息块MIB。
  22. 根据权利要求21所述的装置,其特征在于,所述信令还用于指示所述第二CORESET的带宽、所述第二CORESET的OFDM符号个数。
  23. 根据权利要求19-22中任一项所述的装置,其特征在于,所述第二CORESET与CORESET#0除频率位置以外的配置相同,所述CORESET#0由系统信息配置,所述除频率位置以外的配置包括以下至少一项:
    带宽、OFDM符号个数、控制信道元素和资源单元组映射类型cce-REG-MappingType、资源单元组包大小reg-BundleSize、交织器大小interleaverSize、预编码粒度precoderGranularity以及PDCCH的解调参考信号扰码标识pdcch-DMRS-ScramblingID。
  24. 根据权利要求19-23中任一项所述的装置,其特征在于,所述第二CORESET关联的搜索空间集的配置与CORESET#0关联的搜索空间集的配置相同,所述CORESET#0由系统信息配置,所述搜索空间集的配置包括以下至少一项:
    监听周期、周期偏移、每个监听时机的连续时隙个数、监听时机中的监听符号、候选PDCCH聚合级别、候选PDCCH聚合级别对应的PDCCH候选个数、搜索空间集类型、搜索空间关联的DCI格式。
  25. 一种通信装置,其特征在于,包括:至少一个处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述至少一个处理器,用于执行所述计算机程序或指令,以使得如权利要求1-6中任一项或权利要求7-12中任一项所述的方法被执行。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被计算机执行时,使得如权利要求1-6中任一项或7-12中任一项所述的方法被执行。
  27. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当所述计算机程序或 指令在计算机上运行时,使得上述权利要求1-6中任一项或7-12中任一项所述的方法被执行。
PCT/CN2022/100029 2021-07-31 2022-06-21 一种资源确定方法及通信装置 WO2023011025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110876860.1A CN115696591A (zh) 2021-07-31 2021-07-31 一种资源确定方法及通信装置
CN202110876860.1 2021-07-31

Publications (1)

Publication Number Publication Date
WO2023011025A1 true WO2023011025A1 (zh) 2023-02-09

Family

ID=85059662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100029 WO2023011025A1 (zh) 2021-07-31 2022-06-21 一种资源确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN115696591A (zh)
WO (1) WO2023011025A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392170A (zh) * 2017-08-11 2019-02-26 展讯通信(上海)有限公司 资源分配方法及装置、用户设备、基站、可读存储介质
CN109391426A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
CN109644099A (zh) * 2017-09-25 2019-04-16 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端
CN111817831A (zh) * 2019-07-15 2020-10-23 维沃移动通信有限公司 一种传输方法和通信设备
CN112690028A (zh) * 2018-09-11 2021-04-20 三星电子株式会社 用于高级频率偏移指示的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392170A (zh) * 2017-08-11 2019-02-26 展讯通信(上海)有限公司 资源分配方法及装置、用户设备、基站、可读存储介质
CN109391426A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
CN109644099A (zh) * 2017-09-25 2019-04-16 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端
CN112690028A (zh) * 2018-09-11 2021-04-20 三星电子株式会社 用于高级频率偏移指示的方法和装置
CN111817831A (zh) * 2019-07-15 2020-10-23 维沃移动通信有限公司 一种传输方法和通信设备

Also Published As

Publication number Publication date
CN115696591A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US11272476B2 (en) Paging for low complexity user equipment and/or user equipment in coverage enhancement mode
JP6944881B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US11134523B2 (en) Uplink transmission control method and apparatus and communication system
US11653337B2 (en) Time domain resource allocation method and apparatus
WO2020094019A1 (zh) 信息传输方法及装置
CN112753189A (zh) Pdcch监测跨度和dci格式集合确定
WO2022028374A1 (en) Method and apparatus for pusch repetition in a random access procedure
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019096282A1 (zh) 检测窗指示方法及装置
CN111867074A (zh) 接收数据和发送数据的方法、通信装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020029258A1 (zh) 信息发送和接收方法以及装置
CN111436085B (zh) 通信方法及装置
WO2023109879A1 (zh) 射频链路切换方法和通信装置
WO2023284534A1 (zh) 一种随机接入方法及通信装置
WO2023011025A1 (zh) 一种资源确定方法及通信装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2021134447A1 (zh) 一种通信方法及装置
WO2020063922A1 (zh) 一种检测控制信道的方法及装置
WO2019237347A1 (zh) 资源分配和接收方法、装置及通信系统
WO2024032329A1 (zh) 通信方法、装置及系统
WO2023011372A1 (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE