WO2023010972A1 - 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用 - Google Patents

一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用 Download PDF

Info

Publication number
WO2023010972A1
WO2023010972A1 PCT/CN2022/095682 CN2022095682W WO2023010972A1 WO 2023010972 A1 WO2023010972 A1 WO 2023010972A1 CN 2022095682 W CN2022095682 W CN 2022095682W WO 2023010972 A1 WO2023010972 A1 WO 2023010972A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
precursor
cobalt
preparation
type modified
Prior art date
Application number
PCT/CN2022/095682
Other languages
English (en)
French (fr)
Inventor
谢英豪
唐剑骁
张学梅
欧彦楠
明帮来
余海军
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022000308.1T priority Critical patent/DE112022000308T5/de
Priority to GB2310060.5A priority patent/GB2618685A/en
Publication of WO2023010972A1 publication Critical patent/WO2023010972A1/zh
Priority to US18/234,876 priority patent/US20230395795A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium-ion battery materials, in particular to a preparation method and application of a high-performance nickel-55-type modified nickel-cobalt lithium manganese oxide material.
  • the commonly used lithium ion cathode materials mainly include lithium cobaltate, lithium nickelate, lithium iron phosphate, etc.
  • lithium nickel cobalt manganese oxide is an improved ternary material as a single doped anion material, which can effectively make up for lithium nickelate and manganate.
  • Lithium and lithium cobalt oxide have excellent electrochemical performance, stable discharge platform, wide working voltage and good safety performance.
  • the existing common preparation methods of nickel-cobalt-lithium manganese oxide such as solid-phase method or co-precipitation method, because the precursor raw material powder is mostly mixed by ball milling or grinding, it is difficult to achieve sufficient mixing of the components, and the dispersion and uniformity are not good.
  • the final product prepared also faces the defects of uneven particle size distribution, agglomeration and low purity. At the same time, the preparation process takes a long time and has low efficiency.
  • the related technology discloses a preparation method of a doped and coated high-performance nickel 55 type modified nickel-cobalt lithium manganese oxide material.
  • the method uses nickel-cobalt-manganese hydroxide as raw material, and adopts chemical nickel plating and doping
  • Precursor powder is prepared with heterogeneous elements, and then mixed with molten metal lithium to react at high temperature to prepare the final material.
  • the inner and outer lithium contents are equal to avoid uneven doping.
  • this preparation method can only realize the nickel distribution gradient between the electroless nickel plating layer and the precursor nickel-containing powder, and the gradual distribution from the inside to the outside cannot be achieved due to the unavoidable agglomeration of the powder during nickel plating; Metal lithium also cannot really penetrate the inside of the precursor because the precursor nucleus itself has no mesoporous space.
  • the obtained materials belong to one-dimensional particle morphology materials. The ion and electron conduction efficiency of this type of material is low, which affects the electrochemical stability of the final product, and there is still room for improvement in material performance.
  • the object of the present invention is to provide a method for preparing a high-performance nickel-55-type modified nickel-cobalt lithium manganese oxide material.
  • the method prepares a mesoporous precursor through a template method combined with an electrospinning method , followed by step-by-step removal of the precursor material of the template by combining electroless nickel plating and molten metal lithium, and finally preparing nickel cobalt lithium manganate material with a gradual distribution structure of nickel elements from the inside to the outside.
  • a kind of preparation method of high performance nickel 55 type modified nickel cobalt lithium manganese oxide material comprises the following steps:
  • step (2) Preparing the precursor dispersion A obtained in step (1) by electrospinning to prepare a nano-membrane, and obtaining the precursor B after drying, heating and heat preservation;
  • step (3) Add the precursor B obtained in step (2) to the nickel plating solution, perform chemical plating, then density gradient centrifugation, take the upper layer solid and clean it to obtain the precursor C;
  • the nickel plating solution includes nickel salt , complexing agent and reducing agent;
  • the mass concentration of described nickel salt is 30 ⁇ 50g/L;
  • the polymer-coated nano-precursor with nickel, cobalt and manganese sources and silica templates is prepared by electrospinning, and the After air sintering, due to the in-situ generation of silica, the overall structure is retained even after the polymer is removed, and the hole channels left by polymer sintering effectively provide effective embedded and attachment sites for subsequent nickel plating, making Electroless nickel plating is realized from the outside to the inside; after the nickel plating layer is infiltrated and coated, the silicon dioxide template is removed with lye, so that distributed mesopores are generated on the precursor in situ, and the mesopores can be penetrated by subsequent molten lithium Channels are provided inside the precursor material, so that the lithium content inside and outside the material is closer to equal, and the final positive electrode material has better ion and electron conduction structure than traditional particle materials; the specific surface area of the material is large,
  • the solvent described in step (1) is deionized water
  • the nickel source includes at least one of nickel acetate, nickel nitrate, and nickel carbonate
  • the cobalt source includes at least one of cobalt acetate, cobalt nitrate, and cobalt carbonate.
  • the manganese source includes at least one of manganese acetate, manganese nitrate, and manganese carbonate
  • the acid includes at least one of hydrochloric acid and sulfuric acid
  • the organic carbon source includes at least one of PVP and PVA.
  • the specific steps of preparing the nanomembrane from the precursor dispersion A in step (2) by electrospinning are as follows: inject the precursor dispersion A into the syringe as the spinning solution, connect the needle of the syringe to the electrode, and use the roller
  • the receiver is connected to the power supply as the counter electrode to prepare the nano film; the voltage of the power supply is set to 12-18kV, the advance rate of the syringe is set to 0.5-0.7mL/min, and the rotational speed of the drum receiver is set to 20-30r/min.
  • the precursor dispersion liquid of the present invention also contains silica colloidal solution, the viscosity is relatively high, if the spinning propulsion rate is too fast and the voltage is too high, the morphology obtained by spinning may be excessively bent, and the uniformity will become poor, and It may cause part of the spinning solution pushed out by the needle to be unable to make a complete precursor, which not only wastes raw materials, but also may dry out and block the needle when it drips out, reducing production efficiency; if the speed is too slow and the voltage is too low, the spinning If the time is too long, the dispersion liquid in the syringe may settle, which also leads to the clogging of the pusher needle.
  • the acceptance distance is 20-30 cm
  • the preparation temperature is 25-28°C.
  • the fibers ejected from the needle can be evenly collected on the roller receiver, and the strict control of room temperature as the reaction temperature can prevent the ejected liquid from the needle from drying out and clogging, and at the same time make the precursor film on the receiver Quick drying and styling.
  • the heating temperature in step (2) is 500-650° C.
  • the holding time is 2-3 hours.
  • the nickel salt in the nickel plating solution described in step (3) includes at least one of nickel sulfate, nickel acetate, nickel carbonate, the complexing agent is EDTA, and the reducing agent is hydrazine hydrate; complexing agent
  • the mass concentration of the reducing agent is 15-45g/L, and the volume concentration of the reducing agent is 60-80mL/L.
  • the nickel plating solution is adjusted to a pH of 11-13 by a pH regulator before use.
  • the solid-to-liquid ratio of the precursor B to the nickel plating solution in step (3) is 1:0.8-1.6 g/mL, the electroless plating time is 15-20 min, and the temperature is 80-85°C.
  • step (3) is carried out by referring to the corresponding steps in CN109860590B.
  • the temperature of the precursor C in step (4) is 60-90° C. when soaked in lye, the lye includes sodium hydroxide solution, and the molar concentration of hydroxide ions in the lye is 1-90°C. 2mol/L.
  • the lye in step (4) is sodium hydroxide solution
  • the time for soaking the precursor C in the lye is 48 hours; the concentration of the sodium hydroxide solution is 1mol/L.
  • the silicon dioxide in the precursor C is mixed and doped with the nickel plating layer and the precursor material, slow soaking in a low-concentration alkali solution can preserve the complete structure of the material as much as possible, and avoid damage to the material due to the rapid dissolution of the silicon dioxide template. structure.
  • the solid-to-liquid ratio of the mesoporous precursor D and the molten lithium metal in step (4) is 1:0.5 to 1 g/mL, and the reaction time after the mesoporous precursor D is uniformly mixed with the molten lithium metal is 3 ⁇ 5h.
  • the metal lithium in the present invention has a low melting point
  • mixing the melted lithium metal with the mesoporous precursor to prepare a solid solution can effectively improve the flow and migration efficiency of lithium, and allow lithium to migrate into the material. Ensure that the material has a uniform composite structure; if the mixing temperature is too low, metal lithium cannot be melted; and if the temperature is too high, the overall structure of the material may be destroyed when preparing a solid solution.
  • the protective atmosphere in the oxygen-containing protective atmosphere in step (4) is nitrogen or argon, and the oxygen concentration in the protective atmosphere is 2-20 ppm.
  • Another object of the present invention is to provide a high-performance nickel 55 type modified nickel cobalt lithium manganese oxide material prepared by the method for preparing the high performance nickel 55 type modified nickel cobalt lithium manganese oxide material.
  • the high-performance nickel 55-type modified nickel-cobalt lithium manganese oxide material in the present invention has a high specific surface area, good electrolyte wettability, and a material structure with high ion and conductivity mobility, and the nickel element in the material is distributed from the inside to the outside. It is gradually changing, and the overall distribution of the material is uniform, and it can show excellent electrochemical performance when applied to the positive electrode material of lithium-ion batteries.
  • Another object of the present invention is to provide a lithium-ion battery, the positive electrode material of the lithium-ion battery comprises the high-performance nickel 55 type modified nickel-cobalt lithium manganese oxide material of the present invention.
  • the beneficial effects of the present invention are that the present invention provides a method for preparing a high-performance nickel-55 modified nickel-cobalt lithium manganese oxide material.
  • the preparation method uses an electrospinning method to prepare polymer-coated nano Precursor, after air sintering, the hole channels left by polymer sintering can effectively provide effective embedded and attachment sites for subsequent nickel plating; after nickel plating, the silica template is removed, so that the precursor can be formed in situ Mesopores are distributed, and the mesopores provide channels for the subsequent penetration of molten lithium into the precursor material, making the lithium content inside and outside the material closer to equal, and the final prepared positive electrode material has better ion and electron conduction than traditional granular materials structure.
  • the present invention also provides the high-performance nickel-55-type modified nickel-cobalt lithium manganese oxide material prepared by the method.
  • the material has a uniform dispersion shape and a large specific surface area, and can effectively reduce the polarization phenomenon of the electrode in the electrochemical reaction process. , so that the charge-discharge capacity of the material is higher, and the cycle stability and rate performance are better.
  • the invention also provides a lithium ion battery containing the high-performance nickel-55 type modified nickel-cobalt lithium manganese oxide material.
  • Fig. 1 is the SEM image of the high-performance nickel 55 type modified nickel-cobalt lithium manganese oxide obtained in Example 1 of the present invention.
  • a kind of embodiment of the preparation method of high performance nickel 55 type modified nickel cobalt lithium manganate material of the present invention comprises the following steps:
  • precursor dispersion A Dissolve nickel acetate, cobalt acetate, and manganese acetate in deionized water, then add hydrochloric acid, PVP and silica colloidal solution and mix uniformly to obtain precursor dispersion A; the PVP accounts for the mass of the overall precursor dispersion 15%; the silica colloidal solution accounts for 40% of the overall precursor dispersion liquid mass; the molar ratio of nickel, cobalt, and manganese in the precursor dispersion A is 55:20:25; the nickel element The concentration in the precursor dispersion A is 1.2mol/L;
  • step (2) Preparing a nano-film with the precursor dispersion A obtained in step (1) by the electrospinning method, after being vacuum-dried, placing it in an air atmosphere and heating it for 600°C and insulated for 2h to obtain the precursor B; the electrospinning method
  • the specific steps are: at a set temperature of 25°C, inject the precursor dispersion A into the syringe as the spinning solution, connect the needle of the syringe to the electrode, and use the drum receiver as the counter electrode to connect to the power supply to prepare a nanofilm;
  • the power supply sets the voltage is 16kV, the advance rate of the syringe is set to 0.5mL/min, the rotational speed of the drum receiver is set to 30r/min, and the electrospinning acceptance distance is set to 25cm;
  • Described nickel plating liquid comprises nickel salt, complexing agent and reducing agent; Described nickel salt is nickel sulfate, and the mass concentration of described nickel sulfate is 60g/ L; the complexing agent is EDTA, and the mass concentration of the EDTA is 40g/L; the reducing agent is hydrazine hydrate, and the volume concentration of the hydrazine hydrate is 70mL/L;
  • Precursor C obtained in step (3) was soaked in 1mol/L sodium hydroxide solution at 80°C for 48 hours, washed and dried to obtain mesoporous precursor D, which was heated to 650°C and calculated according to the solid-to-liquid ratio 1: Mix 0.8g/mL with molten metal lithium at the same temperature and react for 4 hours to complete, place in a protective atmosphere containing oxygen (10ppm) and heat to 700°C for 1 hour, then feed oxygen to continue the reaction for 3 hours, and cool.
  • the high-performance nickel-55-type modified nickel-cobalt-lithium manganese oxide material was obtained, and the material was observed under a scanning electron microscope, as shown in FIG. 1 .
  • precursor dispersion A Dissolve nickel acetate, cobalt acetate, and manganese acetate in deionized water, then add hydrochloric acid, PVP and silica colloidal solution and mix uniformly to obtain precursor dispersion A; the PVP accounts for the mass of the overall precursor dispersion 16%; the silica colloidal solution accounts for 60% of the overall precursor dispersion mass; the molar ratio of nickel, cobalt, and manganese in the precursor dispersion A is 55:15:30; the nickel element The concentration in the precursor dispersion A is 1mol/L;
  • step (2) Preparing the nano-membrane with the precursor dispersion A obtained in step (1) by electrospinning, after being vacuum-dried, placing it in an air atmosphere and heating for 500°C and insulated for 3h to obtain precursor B;
  • the specific steps are: at a set temperature of 28°C, inject the precursor dispersion A into the syringe as the spinning solution, connect the needle of the syringe to the electrode, and use the drum receiver as the counter electrode to connect to the power supply to prepare a nanofilm;
  • the power supply sets the voltage is 13kV, the advance rate of the syringe is set to 0.7mL/min, the rotational speed of the drum receiver is set to 25r/min, and the electrospinning acceptance distance is set to 25cm;
  • Described nickel plating liquid comprises nickel salt, complexing agent and reducing agent; Described nickel salt is nickel sulfate, and the mass concentration of described nickel sulfate is 50g/ L;
  • the complexing agent is EDTA, and the mass concentration of the EDTA is 45g/L;
  • the reducing agent is hydrazine hydrate, and the volume concentration of the hydrazine hydrate is 80mL/L;
  • Precursor C obtained in step (3) was soaked in 2mol/L sodium hydroxide solution at 70°C for 24 hours, washed and dried to obtain mesoporous precursor D, which was heated to 700°C and calculated according to the solid-to-liquid ratio 1:1g/mL mixed with molten metal lithium at the same temperature and reacted for 5 hours to complete, placed in a protective atmosphere containing oxygen (20ppm) and heated to 650°C for 1 hour, then introduced oxygen to continue the reaction for 4 hours, cooled, that is The high-performance nickel 55 type modified nickel cobalt lithium manganese oxide material was obtained.
  • a kind of embodiment of the preparation method of high performance nickel 55 type modified nickel cobalt lithium manganate material of the present invention comprises the following steps:
  • precursor dispersion A Dissolve nickel carbonate, cobalt carbonate, and manganese carbonate in deionized water, then add hydrochloric acid, PVP and silica colloidal solution and mix uniformly to obtain precursor dispersion A; the PVP accounts for the mass of the overall precursor dispersion 12%; the silica colloidal solution accounts for 60% of the mass of the overall precursor dispersion; the molar ratio of nickel, cobalt, and manganese in the precursor dispersion A is 55:10:35; the nickel The concentration in the precursor dispersion A is 1mol/L;
  • step (2) Preparing the nano-membrane with the precursor dispersion A obtained in step (1) by electrospinning, after being vacuum-dried, placing it in an air atmosphere and heating it for 650°C and insulated for 2h to obtain precursor B;
  • the specific steps are: at a set temperature of 25°C, inject the precursor dispersion A into the syringe as the spinning solution, connect the needle of the syringe to the electrode, and use the drum receiver as the counter electrode to connect to the power supply to prepare a nanofilm;
  • the power supply sets the voltage is 15kV, the advance rate of the syringe is set to 0.6mL/min, the rotational speed of the drum receiver is set to 30r/min, and the electrospinning acceptance distance is set to 25cm;
  • Described nickel plating liquid comprises nickel salt, complexing agent and reducing agent; Described nickel salt is nickel sulfate, and the mass concentration of described nickel sulfate is 50g/ L; the complexing agent is EDTA, and the mass concentration of the EDTA is 20g/L; the reducing agent is hydrazine hydrate, and the volume concentration of the hydrazine hydrate is 60mL/L;
  • Precursor C obtained in step (3) was soaked in 2mol/L sodium hydroxide solution at 80°C for 48 hours, washed and dried to obtain mesoporous precursor D, which was heated to 650°C and calculated according to the solid-to-liquid ratio 1:1 mixed with molten metal lithium at the same temperature and reacted for 5 hours to complete, placed in a protective atmosphere containing oxygen (10ppm) and heated to 700°C for 1 hour, then introduced oxygen to continue the reaction for 3 hours, cooled to obtain the obtained
  • the high performance nickel 55 type modified nickel cobalt lithium manganese oxide material is described.
  • a kind of comparative example of the preparation method of high performance nickel 55 type modified nickel cobalt lithium manganate material of the present invention comprises the following steps:
  • precursor dispersion A Dissolve nickel acetate, cobalt acetate, and manganese acetate in deionized water, then add hydrochloric acid, PVP and silica colloidal solution and mix uniformly to obtain precursor dispersion A; the PVP accounts for the mass of the overall precursor dispersion 15%; the silica colloidal solution accounts for 40% of the overall precursor dispersion liquid mass; the molar ratio of nickel, cobalt, and manganese in the precursor dispersion A is 55:20:25; the nickel element The concentration in the precursor dispersion A is 1.2mol/L;
  • step (2) Preparing a nano-film with the precursor dispersion A obtained in step (1) by the electrospinning method, after being vacuum-dried, placing it in an air atmosphere and heating it for 600°C and insulated for 2h to obtain the precursor B; the electrospinning method
  • the specific steps are: at a set temperature of 25°C, inject the precursor dispersion A into the syringe as the spinning solution, connect the needle of the syringe to the electrode, and use the drum receiver as the counter electrode to connect to the power supply to prepare a nanofilm;
  • the power supply sets the voltage is 16kV, the advance rate of the syringe is set to 0.5mL/min, the rotational speed of the drum receiver is set to 30r/min, and the electrospinning acceptance distance is set to 25cm;
  • Precursor B obtained in step (2) was soaked in 2mol/L sodium hydroxide solution at 80°C for 28 hours, washed and dried, and added to the nickel plating solution at a solid-to-liquid ratio of 1:1 g/mL to adjust the plating temperature.
  • the pH of the nickel solution is 12, heated to 85°C and electroless plating is performed for 20 minutes, then density gradient centrifugation, the upper solid is taken and cleaned to obtain precursor C;
  • the nickel plating solution includes a nickel salt, a complexing agent and a reducing agent Described nickel salt is nickel sulfate, and the mass concentration of described nickel sulfate is 60g/L; Described complexing agent is EDTA, and the mass concentration of described EDTA is 30g/L; Described reducing agent is hydrazine hydrate, and described The volume concentration of hydrazine hydrate is 70mL/L;
  • step (3) Heat the precursor C obtained in step (3) to 650°C and mix it uniformly with molten metal lithium at the same temperature at a solid-to-liquid ratio of 1:1 and react for 6 hours to complete, then place it in a protective atmosphere containing oxygen (10ppm) Heating in medium temperature to 700°C for 1 hour, then introducing oxygen to continue the reaction for 3 hours, and cooling to obtain the high performance nickel 55 type modified nickel cobalt lithium manganese oxide material.
  • Example 1 The only difference between this comparative example and Example 1 is that after the precursor dispersion A described in step (2) is dispersed by ultrasonic waves, it is heated in an 80°C water bath while stirring until the solution becomes viscous, and then transferred to a place after vacuum drying. Heating and keeping warm in the air atmosphere to obtain block precursor B, pulverized into powder, adding to nickel plating solution for electroless plating.
  • Example 1 The only difference between this comparative example and Example 1 is that the organic carbon source in step (1) accounts for 5% of the mass of the overall precursor dispersion; the silica colloidal solution accounts for 70% of the mass of the overall precursor dispersion.
  • Example 1 The only difference between this comparative example and Example 1 is that the organic carbon source in step (1) accounts for 20% of the mass of the overall precursor dispersion; the silica colloidal solution accounts for 20% of the mass of the overall precursor dispersion.
  • Example 1 The only difference between this comparative example and Example 1 is that the mesoporous precursor D in step (4) is heated to 800° C. and mixed with molten metal lithium at the same temperature for reaction.
  • nickel-cobalt-manganese hydroxide (the ratio of nickel-cobalt-manganese elements is the same as that of Example 1) was added to 442g of lithium carbonate, ball milled for 5 hours, and then sintered in air at 800°C for 8 hours to obtain a solid-phase nickel-cobalt-manganese oxide material.
  • Example 1 The products obtained in Examples 1 to 3 and Comparative Examples 1 to 6 were used as the positive electrode, and metal lithium was used as the negative electrode to prepare a lithium ion half battery.
  • the first charge and discharge test was carried out at a rate of 1C and a voltage range of 2.9 to 4.3V.
  • the rate of 2000 long-cycle charge-discharge tests is carried out, and the test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用,属于锂离子电池材料领域。本发明所述制备方法以静电纺丝法制备包含二氧化硅模板的聚合物包覆纳米前驱体,经过空气烧结后可有效为后续镀镍提供有效内嵌及附着位点;在镀镍后再去除二氧化硅模板,使前驱体上原位生成分布介孔,所述介孔在后续熔融锂穿透前驱体材料内部提供通道,最终制备的材料相比于传统颗粒材料具有更好的离子、电子传导结构。本发明还公开了所述方法制备的材料,该材料具有均匀的分散形貌,可有效降低电化学反应过程中电极的极化现象,使材料的充放电容量更高,循环稳定性和倍率性能更好。本发明还公开了包含所述高性能镍55型改性镍钴锰酸锂材料的锂离子电池。

Description

一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用 技术领域
本发明涉及锂离子电池材料领域,具体涉及一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用。
背景技术
新能源汽车尤其是电动汽车因其节能环保的优点,现已被广泛推广并有望在本世纪以前全面代替传统燃油汽车。电动汽车的发展关键在于电池,而在汽车动力电池中,锂离子电池因安全性好、比容量高、充放电循环寿命长等优势被认为是最有前途的动力电池之一,而锂离子电池性能的关键性因素则在于其正极材料的选择中。
目前常用的锂离子正极材料主要包括钴酸锂、镍酸锂、磷酸铁锂等,其中镍钴锰酸锂作为单一掺杂阴离子材料的改进型三元材料,可有效弥补镍酸锂、锰酸锂和钴酸锂的不足,具有优异的电化学性能,且放电平台平稳,工作电压宽,安全性能好。然而,现有常用镍钴锰酸锂制备方法中,诸如固相法或共沉淀法等,由于前驱原料粉末多使用球磨或研磨混合,各组分很难达到充分混合,分散性及均匀性不高,制备的最终产品也面临粒度分布不均,存在团聚现象及纯度较低的缺陷,同时制备流程耗时较长,效率较低。
相关技术公开了一种掺杂包覆型高性能镍55型改性镍钴锰酸锂材料的制备方法,该方法以镍钴锰氢氧化物为原料,经预处理后采用化学镀镍及掺杂元素制备前驱体粉料,随后与熔融金属锂混合高温反应制备最终材料,所得产品可实现渐变式镍含量梯度包覆的结构,增加材料寿命;熔融金属锂可深入前驱体内部反应,实现材料的内外锂含量相等,避免掺杂不均。然而该制备方法只能实现化学镀镍层与前驱体含镍粉末两者的镍分布梯度,由于粉末在镀镍时不可避免的产生团聚现象,无法做到真正从里到外的渐变式分布;而金属锂由于前驱体核体本身无介孔空间,同样无法真正穿透前驱体内部。此外,所得材料属于一维颗粒形貌材料,这类材料的离子、电子传导效率低,影响最终产品的电化学稳定性,材料性能还存在提高空间。
发明内容
基于现有技术存在的缺陷,本发明的目的在于提供了一种高性能镍55型改性镍钴锰酸锂 材料的制备方法,该方法通过模板法结合静电纺丝法制备介孔型前驱体,随后以化学镀镍和熔融金属锂结合分步去除模板的前驱体材料,最终制备镍元素由内至外渐变式分布结构的镍钴锰酸锂材料。
为了达到上述目的,本发明采取的技术方案为:
一种高性能镍55型改性镍钴锰酸锂材料的制备方法,包括以下步骤:
(1)将镍源、钴源、锰源溶于溶剂中,随后加入酸、有机碳源和二氧化硅胶体溶液并混合均匀,得前驱体分散液A;所述有机碳源占总体前驱体分散液质量的12~16%;所述二氧化硅胶体溶液占总体前驱体分散液质量的30~60%;所述前驱体分散液A中镍、钴、锰元素的摩尔比为55:x:(45-x),其中x<45;所述镍元素在前驱体分散液A中的浓度为1~1.2mol/L;
(2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经干燥、加热及保温处理后,得前驱体B;
(3)将步骤(2)所得前驱体B加入到镀镍液中,进行化学镀,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐的质量浓度为30~50g/L;
(4)将步骤(3)所得前驱体C采用碱液浸泡24~48h后,洗涤并干燥,得介孔前驱体D,将介孔前驱体D加热至600~700℃并与同等温度的熔融金属锂混合均匀并反应完全后,置于含有氧气的保护气氛中加热至550~700℃反应0.5~1h,再通入氧气继续反应2~5h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料。
本发明所述高性能镍55型改性镍钴锰酸锂材料的制备方法中,以静电纺丝法制备含量镍、钴和锰源以及二氧化硅模板的聚合物包覆纳米前驱体,经过空气烧结后,由于二氧化硅的原位生成,即使聚合物去除后整体结构也得以保留,而聚合物烧结留下的空穴孔道则有效为后续镀镍提供有效内嵌及附着位点,使化学镀镍由外至内地实现;通过镀镍层渗透包覆后,采用碱液将二氧化硅模板去除,使前驱体上原位生成分布介孔,所述介孔可为后续熔融锂穿透前驱体材料内部提供通道,使材料内外的锂含量更接近相等,而最终制备的正极材料相比于传统颗粒材料具有更好的离子、电子传导结构;材料比表面积大,可有效降低电化学反应过程中电极的极化现象,使材料的充放电容量更高,循环稳定性和倍率性能更好。
优选地,步骤(1)所述溶剂为去离子水,所述镍源包括醋酸镍、硝酸镍、碳酸镍中的至少一种,所述钴源包括醋酸钴、硝酸钴、碳酸钴中的至少一种,所述锰源包括醋酸锰、硝酸锰、碳酸锰中的至少一种;所述酸包括盐酸、硫酸中的至少一种,所述有机碳源包括PVP、PVA中的至少一种。
优选地,步骤(2)所述前驱体分散液A通过静电纺丝法制备纳米膜的具体步骤为:将 前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为12~18kV,注射器的推进速率设置为0.5~0.7mL/min,滚筒接收器的转速设置为20~30r/min。
由于本发明所述前驱体分散液中还含有二氧化硅胶体溶液,粘度较大,若纺丝推进速率过快,电压过高,纺丝得到的形貌可能弯曲过度,均匀性变差,且可能导致针头推出的部分纺丝液无法制成完整前驱体,不仅浪费原料,也可能会在滴出时在针头处变干堵塞,降低生产效率;若速率过慢,电压过低,则纺丝时间过长,注射器中分散液可能会发生沉淀,同样导致推进器针头堵塞。
更优选地,所述步骤(2)通过静电纺丝法制备纳米膜时的接受距离为20~30cm,制备温度为25~28℃。
在所述接受距离下,针头喷出的纤维可均匀收集在滚筒接收器上,而严格控制室温作为反应温度可在抑制针头处喷出液变干堵塞的同时,令接收器上的前驱体膜快速干燥定型。
优选地,步骤(2)所述加热的温度为500~650℃,保温的时间为2~3h。
优选地,步骤(3)所述镀镍液中的镍盐包括硫酸镍、醋酸镍、碳酸镍中的至少一种,所述络合剂为EDTA,所述还原剂为水合肼;络合剂的质量浓度为15~45g/L,还原剂的体积浓度为60~80mL/L。
更优选地,所述镀镍液在使用前还通过pH调节剂调节至pH为11~13。
优选地,步骤(3)所述化学镀时前驱体B与镀镍液的固液比为1:0.8~1.6g/mL,化学镀的时间为15~20min,温度为80~85℃。
更优选地,步骤(3)所述密度梯度离心分离参照CN109860590B对应步骤实施。
优选地,步骤(4)所述前驱体C采用碱液浸泡时的温度为60~90℃,所述碱液包括氢氧化钠溶液,所述碱液中氢氧根离子的摩尔浓度为1~2mol/L。
更优选地,步骤(4)所述碱液中为氢氧化钠溶液,碱液浸泡前驱体C的时间为48h;所述氢氧化钠溶液的浓度为1mol/L。
由于所述前驱体C中二氧化硅与镀镍层及前驱材料混合掺杂,采用低浓度的碱液缓慢浸泡可尽可能保留材料的完整结构,避免因二氧化硅模板过快溶解而破坏材料结构。
优选地,步骤(4)所述介孔前驱体D与熔融金属锂的固液比为1:0.5~1g/mL,所述介孔前驱体D与熔融金属锂混合均匀后反应的时间为3~5h。
由于本发明所述金属锂熔点较低,因此将熔融后的金属锂与介孔前驱体混合制备固溶体,可有效提高锂的流动迁移效率,使锂迁移进入材料内部,经过足够时间恒温反应后可保障材料具有均匀的复合结构;若混合温度过低,金属锂无法熔化;而若温度过高,则可能在制备 固溶体时破坏材料整体结构。
优选地,步骤(4)所述含有氧气的保护气氛中保护气氛为氮气或氩气,所述保护气氛中氧气的浓度为2~20ppm。
本发明的另一目的还在于提供所述高性能镍55型改性镍钴锰酸锂材料的制备方法制备的高性能镍55型改性镍钴锰酸锂材料。
本发明所述高性能镍55型改性镍钴锰酸锂材料具有高比表面积,电解液浸润性好,离子、电导迁移率高的材料结构,同时所述材料中镍元素分布从里到外呈渐变式,材料整体分布均匀,应用于锂离子电池正极材料时可展现出优异的电化学性能。
本发明的再一目的在于提供一种锂离子电池,所述锂离子电池的正极材料包含本发明所述高性能镍55型改性镍钴锰酸锂材料。
本发明的有益效果在于,本发明提供了一种高性能镍55型改性镍钴锰酸锂材料的制备方法,该制备方法以静电纺丝法制备包含二氧化硅模板的聚合物包覆纳米前驱体,经过空气烧结后,聚合物烧结留下的空穴孔道则有效为后续镀镍提供有效内嵌及附着位点;在镀镍后再去除二氧化硅模板,使前驱体上原位生成分布介孔,所述介孔在后续熔融锂穿透前驱体材料内部提供通道,使材料内外的锂含量更接近相等,最终制备的正极材料相比于传统颗粒材料具有更好的离子、电子传导结构。本发明还提供了所述方法制备的高性能镍55型改性镍钴锰酸锂材料,该材料具有均匀的分散形貌,比表面积大,可有效降低电化学反应过程中电极的极化现象,使材料的充放电容量更高,循环稳定性和倍率性能更好。本发明还提供了包含所述高性能镍55型改性镍钴锰酸锂材料的锂离子电池。
附图说明
图1为本发明实施例1所得高性能镍55型改性镍钴锰酸锂的SEM图。
具体实施方式
为了更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例及对比例对本发明作进一步说明,其目的在于详细地理解本发明的内容,而不是对本发明的限制。本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。本发明实施所设计的实验试剂及仪器,除非特别说明,均为常用的普通试剂及仪器。
实施例1
本发明所述高性能镍55型改性镍钴锰酸锂材料的制备方法的一种实施例,包括以下步骤:
(1)将醋酸镍、醋酸钴、醋酸锰溶于去离子水中,随后加入盐酸、PVP和二氧化硅胶体 溶液并混合均匀,得前驱体分散液A;所述PVP占总体前驱体分散液质量的15%;所述二氧化硅胶体溶液占总体前驱体分散液质量的40%;所述前驱体分散液A中镍、钴、锰元素的摩尔比为55:20:25;所述镍元素在前驱体分散液A中的浓度为1.2mol/L;
(2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经真空干燥后置于空气气氛中加热600并保温2h,得前驱体B;所述静电纺丝法的具体步骤为:在设定温度25℃下将前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为16kV,注射器的推进速率设置为0.5mL/min,滚筒接收器的转速设置为30r/min,静电纺丝接受距离设置为25cm;
(3)将步骤(2)所得前驱体B按固液比1:1.2g/mL加入到镀镍液中,调节镀镍液pH至12,加热至85℃并进行化学镀20min,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐为硫酸镍,所述硫酸镍的质量浓度为60g/L;所述络合剂为EDTA,所述EDTA的质量浓度为40g/L;所述还原剂为水合肼,所述水合肼的体积浓度为70mL/L;
(4)将步骤(3)所得前驱体C采用1mol/L氢氧化钠溶液在80℃下浸泡48h后,洗涤并干燥,得介孔前驱体D,将其加热至650℃并按固液比1:0.8g/mL与同等温度的熔融金属锂混合均匀并反应4h至完全后,置于含有氧气(10ppm)的保护气氛中加热至700℃反应1h,再通入氧气继续反应3h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料,将所述材料置于扫描电镜下观察,如图1所示。
实施例2
(1)将醋酸镍、醋酸钴、醋酸锰溶于去离子水中,随后加入盐酸、PVP和二氧化硅胶体溶液并混合均匀,得前驱体分散液A;所述PVP占总体前驱体分散液质量的16%;所述二氧化硅胶体溶液占总体前驱体分散液质量的60%;所述前驱体分散液A中镍、钴、锰元素的摩尔比为55:15:30;所述镍元素在前驱体分散液A中的浓度为1mol/L;
(2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经真空干燥后置于空气气氛中加热500并保温3h,得前驱体B;所述静电纺丝法的具体步骤为:在设定温度28℃下将前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为13kV,注射器的推进速率设置为0.7mL/min,滚筒接收器的转速设置为25r/min,静电纺丝接受距离设置为25cm;
(3)将步骤(2)所得前驱体B按固液比1:1.5g/mL加入到镀镍液中,调节镀镍液pH至12,加热至85℃并进行化学镀10min,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐为硫酸镍,所述硫酸镍的质 量浓度为50g/L;所述络合剂为EDTA,所述EDTA的质量浓度为45g/L;所述还原剂为水合肼,所述水合肼的体积浓度为80mL/L;
(4)将步骤(3)所得前驱体C采用2mol/L氢氧化钠溶液在70℃下浸泡24h后,洗涤并干燥,得介孔前驱体D,将其加热至700℃并按固液比1:1g/mL与同等温度的熔融金属锂混合均匀并反应5h至完全后,置于含有氧气(20ppm)的保护气氛中加热至650℃反应1h,再通入氧气继续反应4h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料。
实施例3
本发明所述高性能镍55型改性镍钴锰酸锂材料的制备方法的一种实施例,包括以下步骤:
(1)将碳酸镍、碳酸钴、碳酸锰溶于去离子水中,随后加入盐酸、PVP和二氧化硅胶体溶液并混合均匀,得前驱体分散液A;所述PVP占总体前驱体分散液质量的12%;所述二氧化硅胶体溶液占总体前驱体分散液质量的60%;所述前驱体分散液A中镍、钴、锰元素的摩尔比为55:10:35;所述镍元素在前驱体分散液A中的浓度为1mol/L;
(2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经真空干燥后置于空气气氛中加热650并保温2h,得前驱体B;所述静电纺丝法的具体步骤为:在设定温度25℃下将前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为15kV,注射器的推进速率设置为0.6mL/min,滚筒接收器的转速设置为30r/min,静电纺丝接受距离设置为25cm;
(3)将步骤(2)所得前驱体B按固液比1:1.6g/mL加入到镀镍液中,调节镀镍液pH至12,加热至85℃并进行化学镀18min,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐为硫酸镍,所述硫酸镍的质量浓度为50g/L;所述络合剂为EDTA,所述EDTA的质量浓度为20g/L;所述还原剂为水合肼,所述水合肼的体积浓度为60mL/L;
(4)将步骤(3)所得前驱体C采用2mol/L氢氧化钠溶液在80℃下浸泡48h后,洗涤并干燥,得介孔前驱体D,将其加热至650℃并按固液比1:1与同等温度的熔融金属锂混合均匀并反应5h至完全后,置于含有氧气(10ppm)的保护气氛中加热至700℃反应1h,再通入氧气继续反应3h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料。
对比例1
本发明所述高性能镍55型改性镍钴锰酸锂材料的制备方法的一种对比例,包括以下步骤:
(1)将醋酸镍、醋酸钴、醋酸锰溶于去离子水中,随后加入盐酸、PVP和二氧化硅胶体溶液并混合均匀,得前驱体分散液A;所述PVP占总体前驱体分散液质量的15%;所述二氧化硅胶体溶液占总体前驱体分散液质量的40%;所述前驱体分散液A中镍、钴、锰元素的摩 尔比为55:20:25;所述镍元素在前驱体分散液A中的浓度为1.2mol/L;
(2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经真空干燥后置于空气气氛中加热600并保温2h,得前驱体B;所述静电纺丝法的具体步骤为:在设定温度25℃下将前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为16kV,注射器的推进速率设置为0.5mL/min,滚筒接收器的转速设置为30r/min,静电纺丝接受距离设置为25cm;
(3)将步骤(2)所得前驱体B采用2mol/L氢氧化钠溶液在80℃下浸泡28h后,洗涤并干燥,按固液比1:1g/mL加入到镀镍液中,调节镀镍液pH至12,加热至85℃并进行化学镀20min,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐为硫酸镍,所述硫酸镍的质量浓度为60g/L;所述络合剂为EDTA,所述EDTA的质量浓度为30g/L;所述还原剂为水合肼,所述水合肼的体积浓度为70mL/L;
(4)将步骤(3)所得前驱体C加热至650℃并按固液比1:1与同等温度的熔融金属锂混合均匀并反应6h至完全后,置于含有氧气(10ppm)的保护气氛中加热至700℃反应1h,再通入氧气继续反应3h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料。
对比例2
本对比例与实施例1的差别仅在于,步骤(2)所述前驱体分散液A通过超声分散后,以80℃水浴边搅拌边加热至溶液呈粘稠状,转移至经真空干燥后置于空气气氛中加热并保温得到块状前驱体B,粉碎至粉末状后,加入至镀镍液中进行化学镀。
对比例3
本对比例与实施例1的差别仅在于,步骤(1)所述有机碳源占总体前驱体分散液质量的5%;所述二氧化硅胶体溶液占总体前驱体分散液质量的70%。
对比例4
本对比例与实施例1的差别仅在于,步骤(1)所述有机碳源占总体前驱体分散液质量的20%;所述二氧化硅胶体溶液占总体前驱体分散液质量的20%。
对比例5
本对比例与实施例1的差别仅在于,步骤(4)所述介孔前驱体D加热至800℃后与同等温度熔融金属锂混合反应。
对比例6
将1000g镍钴锰氢氧化物(镍钴锰元素比例与实施例1相同),加入442g碳酸锂,球磨5h后,以800℃在空气中烧结8h,得到固相法镍钴锰酸锂材料。
效果例1
将实施例1~3及对比例1~6所得产品作为正极、金属锂作为负极制备成锂离子半电池,以1C倍率、电压区间为2.9~4.3V进行首次充放电测试,随后以0.5C的倍率进行2000次的长循环充放电测试,测试结果如表1所示。
表1
Figure PCTCN2022095682-appb-000001
从表1可知,相比于优选范围之外的对比例1~5所得产品以及现有技术常使用的固相法制备的产品,由于材料具有均匀的分散形貌及较大的比表面积,实施例1~3所得产品具有更高的放电比容量及循环稳定性,其中实施例1所得产品经过2000次长循环后容量保持率依然达到91.86%。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,包括以下步骤:
    (1)将镍源、钴源、锰源溶于溶剂中,随后加入酸、有机碳源和二氧化硅胶体溶液并混合均匀,得前驱体分散液A;所述有机碳源占总体前驱体分散液质量的12~16%;所述二氧化硅胶体溶液占总体前驱体分散液质量的30~60%;所述前驱体分散液A中镍、钴、锰元素的摩尔比为55:x:(45-x),其中x<45;所述镍元素在前驱体分散液A中的浓度为1~1.2mol/L;
    (2)将步骤(1)所得前驱体分散液A通过静电纺丝法制备纳米膜,经干燥、加热及保温处理后,得前驱体B;
    (3)将步骤(2)所得前驱体B加入到镀镍液中,进行化学镀,然后密度梯度离心分离,取上层固体经清洁处理后,得前驱体C;所述镀镍液包括镍盐、络合剂和还原剂;所述镍盐的质量浓度为30~50g/L;
    (4)将步骤(3)所得前驱体C采用碱液浸泡24~48h后,洗涤并干燥,得介孔前驱体D,将介孔前驱体D加热至600~700℃并与同等温度的熔融金属锂混合均匀并反应完全后,置于含有氧气的保护气氛中加热至550~700℃反应0.5~1h,再通入氧气继续反应2~5h,冷却,即得所述高性能镍55型改性镍钴锰酸锂材料。
  2. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(1)所述溶剂为去离子水,所述镍源包括醋酸镍、硝酸镍、碳酸镍中的至少一种,所述钴源包括醋酸钴、硝酸钴、碳酸钴中的至少一种,所述锰源包括醋酸锰、硝酸锰、碳酸锰中的至少一种;所述酸包括盐酸、硫酸中的至少一种,所述有机碳源包括PVP、PVA中的至少一种。
  3. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(2)所述前驱体分散液A通过静电纺丝法制备纳米膜的步骤为:将前驱体分散液A注入注射器中作为纺丝液,将注射器针头接通电极,以滚筒接收器作为对电极连通电源制备纳米膜;所述电源设置电压为12~18kV,注射器的推进速率设置为0.5~0.7mL/min,滚筒接收器的转速设置为20~30r/min;所述步骤(2)通过静电纺丝法制备纳米膜时的接受距离为20~30cm,制备温度为25~28℃。
  4. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(2)所述加热的温度为500~650℃,保温的时间为2~3h。
  5. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(3)所述镀镍液中的镍盐包括硫酸镍、醋酸镍、碳酸镍中的至少一种,所述络合剂为EDTA, 所述还原剂为水合肼;络合剂的质量浓度为15~45g/L,还原剂的体积浓度为60~80mL/L;优选地,所述镀镍液在使用前还通过pH调节剂调节至pH为11~13。
  6. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(3)所述化学镀时前驱体B与镀镍液的固液比为1:0.8~1.6,化学镀的时间为15~20min,温度为80~85℃。
  7. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(4)所述前驱体C采用碱液浸泡时的温度为60~90℃,所述碱液包括氢氧化钠溶液,所述碱液中氢氧根离子的摩尔浓度为1~2mol/L;步骤(4)所述碱液中为氢氧化钠溶液,碱液浸泡前驱体C的时间为48h;所述氢氧化钠溶液的浓度为1mol/L。
  8. 如权利要求1所述高性能镍55型改性镍钴锰酸锂材料的制备方法,其特征在于,步骤(4)所述介孔前驱体D与熔融金属锂的固液比为1:0.5~1g/mL,所述介孔前驱体D与熔融金属锂混合均匀后反应的时间为3~5h。
  9. 如权利要求1~8任一项所述高性能镍55型改性镍钴锰酸锂材料的制备方法制备的高性能镍55型改性镍钴锰酸锂材料。
  10. 一种锂离子电池,其特征在于,所述锂离子电池的正极材料包含权利要求1~8任一项所述高性能镍55型改性镍钴锰酸锂材料。
PCT/CN2022/095682 2021-08-03 2022-05-27 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用 WO2023010972A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022000308.1T DE112022000308T5 (de) 2021-08-03 2022-05-27 Herstellungsverfahren für und verwendung von modifiziertem hochleistungs-lithium-nickel-mangan-cobalt-oxid(lnmco)-nickel-55-material
GB2310060.5A GB2618685A (en) 2021-08-03 2022-05-27 Preparation method and application of high-performance nickel 55-type modified nickel cobalt lithium manganate material
US18/234,876 US20230395795A1 (en) 2021-08-03 2023-08-16 Preparation method and use of high-performance modified lithium-nickel-manganese-cobalt oxide (lnmco) nickel 55 material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110886828.1 2021-08-03
CN202110886828.1A CN113793935B (zh) 2021-08-03 2021-08-03 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/234,876 Continuation US20230395795A1 (en) 2021-08-03 2023-08-16 Preparation method and use of high-performance modified lithium-nickel-manganese-cobalt oxide (lnmco) nickel 55 material

Publications (1)

Publication Number Publication Date
WO2023010972A1 true WO2023010972A1 (zh) 2023-02-09

Family

ID=79181325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095682 WO2023010972A1 (zh) 2021-08-03 2022-05-27 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用

Country Status (5)

Country Link
US (1) US20230395795A1 (zh)
CN (1) CN113793935B (zh)
DE (1) DE112022000308T5 (zh)
GB (1) GB2618685A (zh)
WO (1) WO2023010972A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793935B (zh) * 2021-08-03 2023-04-11 广东邦普循环科技有限公司 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用
CN116443945B (zh) * 2023-02-21 2024-07-09 广东邦普循环科技有限公司 一种富锂锰基介孔正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560243A (zh) * 2013-11-08 2014-02-05 天津工业大学 一种静电纺丝技术合成LiNi1/3Co1/3Mn1/3O2纳米纤维的制备方法
CN103811747A (zh) * 2014-03-04 2014-05-21 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂材料及其制备方法和应用
CN104201324A (zh) * 2014-07-31 2014-12-10 山东海特电子新材料有限公司 一种模板法合成锂离子电池正极材料镍钴锰酸锂的方法
CN104362335A (zh) * 2014-11-29 2015-02-18 冀明 一种镍钴锰酸锂正极材料的制备方法
CN109860590A (zh) * 2018-11-15 2019-06-07 广东邦普循环科技有限公司 一种镍55型镍钴锰酸锂材料的制备方法及应用
WO2021070564A1 (ja) * 2019-09-16 2021-04-15 川上総一郎 リチウムイオン二次電池用負極活物質とその製造方法、および電極構造体、ならびに二次電池
CN113793935A (zh) * 2021-08-03 2021-12-14 广东邦普循环科技有限公司 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178929B (zh) * 2014-08-19 2017-08-08 中信大锰矿业有限责任公司 静电纺丝制备LiNi1/3Co1/3Mn1/3O2纤维材料的方法
CN108417829A (zh) * 2018-03-13 2018-08-17 成都新柯力化工科技有限公司 一种稳定制备单晶高镍锂电池三元材料的方法
CN109244407A (zh) * 2018-09-17 2019-01-18 贵州永合益环保科技有限公司 一种氧化镁、氧化铝共混包覆镍钴锰酸锂正极材料的方法
CN110282664B (zh) * 2019-06-25 2024-05-10 广东邦普循环科技有限公司 一种镍钴锰酸锂正极材料的生产方法及连续性生产设备
CN112582603A (zh) * 2019-09-27 2021-03-30 天津理工大学 一种锂离子电池高镍层状正极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560243A (zh) * 2013-11-08 2014-02-05 天津工业大学 一种静电纺丝技术合成LiNi1/3Co1/3Mn1/3O2纳米纤维的制备方法
CN103811747A (zh) * 2014-03-04 2014-05-21 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂材料及其制备方法和应用
CN104201324A (zh) * 2014-07-31 2014-12-10 山东海特电子新材料有限公司 一种模板法合成锂离子电池正极材料镍钴锰酸锂的方法
CN104362335A (zh) * 2014-11-29 2015-02-18 冀明 一种镍钴锰酸锂正极材料的制备方法
CN109860590A (zh) * 2018-11-15 2019-06-07 广东邦普循环科技有限公司 一种镍55型镍钴锰酸锂材料的制备方法及应用
WO2021070564A1 (ja) * 2019-09-16 2021-04-15 川上総一郎 リチウムイオン二次電池用負極活物質とその製造方法、および電極構造体、ならびに二次電池
CN113793935A (zh) * 2021-08-03 2021-12-14 广东邦普循环科技有限公司 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用

Also Published As

Publication number Publication date
CN113793935A (zh) 2021-12-14
US20230395795A1 (en) 2023-12-07
CN113793935B (zh) 2023-04-11
GB202310060D0 (en) 2023-08-16
GB2618685A (en) 2023-11-15
DE112022000308T5 (de) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2023010972A1 (zh) 一种高性能镍55型改性镍钴锰酸锂材料的制备方法及应用
CN107403913B (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
CN106848264A (zh) 一种多孔硅氧化物锂离子电池负极材料及其制备方法
CN111333064A (zh) 高性能锂离子电池石墨负极材料及其制备方法
CN106058209B (zh) 多层薄膜的锂离子电池自支撑硅基负极材料及其制备方法
KR20210094623A (ko) 실리콘-산소 복합 음극 재료 및 그 제조 방법과 리튬 이온 전지
CN102790217A (zh) 碳包覆四氧化三铁锂离子电池负极材料及其制备方法
CN106784741B (zh) 一种碳硅复合材料、其制备方法及包含该复合材料的锂离子电池
CN114447325B (zh) 多孔碳材料、其制备方法、负极和锂金属电池
CN110197899B (zh) 一种锂箔的制备方法
KR20230036949A (ko) 리튬 함유 실리콘 산화물 복합 음극재 및 그 제조 방법과 리튬 이온 배터리
CN112490403B (zh) 一种极耳陶瓷涂层厚度均匀的极片及其制备方法
CN105576221A (zh) 一种锂离子电池负极活性材料前驱体和锂离子电池负极活性材料及其制备方法
CN106340621A (zh) 一种锂电池用铁系负极材料及其制备方法
CN112216831B (zh) 一种合成锂离子动力电池高容量负极材料的方法
CN116706050B (zh) 中低镍单晶三元正极材料及其制备方法和电池
CN112271272B (zh) 一种表面有机修饰层保护的三维多孔锂负极及其制备方法和应用
CN117059799A (zh) 石墨负极材料及其制备方法和应用
WO2023226555A1 (zh) 改性磷酸铁前驱体、改性磷酸铁锂及其制备方法
CN114645314B (zh) 一种单晶形貌三元正极材料的制备方法
CN116119739A (zh) 一种离子掺杂的锰基钠离子正极材料及其制备方法与应用
CN109256547A (zh) 一种多孔石墨烯-磷酸铁锂正极材料的制备方法
CN114804095A (zh) 一种球化石墨微粉废料制得的石墨负极活性材料及制备方法和应用
CN110112376B (zh) 一种多孔氧化亚硅/碳复合负极材料的制备方法和应用
CN112938959A (zh) 一种动力电池负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310060

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220527