WO2023010911A1 - 一种驾驶员昏迷处理方法、装置及可读存储介质 - Google Patents

一种驾驶员昏迷处理方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2023010911A1
WO2023010911A1 PCT/CN2022/090404 CN2022090404W WO2023010911A1 WO 2023010911 A1 WO2023010911 A1 WO 2023010911A1 CN 2022090404 W CN2022090404 W CN 2022090404W WO 2023010911 A1 WO2023010911 A1 WO 2023010911A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
coma
vehicle
information
action
Prior art date
Application number
PCT/CN2022/090404
Other languages
English (en)
French (fr)
Inventor
薛海涛
吴婷婷
张亮
班定东
陈炼松
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2023010911A1 publication Critical patent/WO2023010911A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/007Emergency override
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0872Driver physiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the present application relates to the field of automobile safety, in particular to a method, device and readable storage medium for dealing with a driver's coma.
  • the main purpose of the present application is to provide a driver coma treatment method, device and readable storage medium, aiming to solve the technical problem of lack of life safety guarantee when the driver is in a coma emergency.
  • the present application provides a driver coma treatment method, the driver coma treatment method comprising the following steps:
  • the step of detecting the driver's action in real time includes:
  • the driver's actions are analyzed based on the movement information.
  • the drooping motion of the driver's head and/or hands is detected, and the duration of the drooping motion is longer than a preset duration, and the step of determining that the driver's physical state is a coma state includes:
  • the driver's action is acquired, and in response to no detection of the driver's head and/or hand lifting action within a second preset time period, it is determined that the driver's physical state is a coma state.
  • the step of waking up the driver includes:
  • the car audio equipment is turned on, and the car audio equipment is controlled to play warning sounds at a preset volume.
  • the step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • Detect road environment information and control the vehicle to pull over and stop based on the road condition information.
  • the step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • the step of uploading the distress information to the remote monitoring platform further includes:
  • the step of detecting the driver's action in real time it also includes:
  • the present application also provides a driver coma treatment method and device, which includes: a memory, a processor, and a device stored in the memory and operable on the processor.
  • a computer program when the computer program is executed by the processor, the steps of the above-mentioned driver coma treatment method are realized.
  • the present application also provides a readable storage medium, the readable storage medium is a computer-readable storage medium, the driver's coma processing program is stored on the computer-readable storage medium, and the driver When the driver's coma processing program is executed by the processor, the steps of the above-mentioned driver's coma processing method are realized.
  • a driver coma treatment method proposed in the embodiment of the present application realizes a comprehensive and timely monitoring of whether the driver's physical state is abnormal during driving by detecting the driver's actions in real time; by detecting the driver's head and / Or the drooping action of the hand determines that the driver's physical state is in a coma state, and realizes the accurate judgment of whether the driver is in a coma during driving; detects the abnormal state of the driver in time, and accurately judges that the abnormal state is in a coma state , by changing the driving mode of the vehicle to the unmanned driving mode, the normal driving of the vehicle in the driver's coma state is realized, the road conditions are guaranteed to be smooth, the occurrence of traffic accidents is reduced, and the safety of the driver of the vehicle and other surrounding vehicles is guaranteed.
  • the remote monitoring platform can detect the driver's coma state in time, and can make emergency treatment by calling the police, calling for help, taking over some vehicle functions, etc., to ensure the safety of the driver's life .
  • Fig. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of an embodiment of the driver's coma processing method of the present application
  • FIG. 3 is a schematic diagram of a detailed flow chart of step S10 in FIG. 2;
  • FIG. 4 is a schematic diagram of a detailed flowchart of step S20 in FIG. 2 .
  • the main solution of the embodiment of this application is to detect the driver's actions in real time to determine whether the driver is unconscious. If the driver is unconscious, change the driving mode of the vehicle to unmanned driving mode and upload the distress information to the remote monitoring platform.
  • This application provides a solution, so that the driver can be detected in time when the driver suddenly becomes unconscious and emergency treatment can be taken in time, so as to better ensure the life safety of the vehicle, other vehicles and passers-by.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in this embodiment of the present application may be a PC, or may be a mobile terminal device with a display function such as a smart phone, a tablet computer, or a portable computer.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is set to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the terminal may also include a camera, RF (Radio Frequency, radio frequency) circuits, sensors, audio circuits, WiFi modules, etc.
  • sensors such as light sensors, motion sensors and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may turn off the display screen and/or backlight.
  • the gravitational acceleration sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the application of mobile terminal posture (such as horizontal and vertical screen switching, Related games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, tap), etc.; of course, the mobile terminal can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. No longer.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module and a driver's coma processing program.
  • the network interface 1004 is mainly configured to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly configured to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be set to call the driver's coma processing program stored in memory 1005, and perform the following operations:
  • the driver's physical state is a coma state
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • the step of detecting the driver's action in real time comprises:
  • the driver's actions are analyzed based on the movement information.
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • the step of detecting the drooping action of the driver's head and/or hands, and when the duration of the drooping action is longer than the preset duration, the step of determining that the driver's physical state is a coma state includes:
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • the steps of waking up the driver include:
  • the car audio equipment is turned on, and the car audio equipment is controlled to play warning sounds at a preset volume.
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • Detect road environment information and control the vehicle to pull over and stop based on the road condition information.
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • the step of uploading the distress information to the remote monitoring platform also includes:
  • the processor 1001 can call the driver's coma processing program stored in the memory 1005, and also perform the following operations:
  • the first embodiment of a method for treating a driver's coma in the present application provides a method for treating a driver's coma.
  • the method for treating a driver's coma includes:
  • Step S10 detecting the driver's action in real time
  • the executor of this embodiment is a car, and the equipment and devices involved in the method may be installed on the car or connected to the car through network connection, physical connection or other communication methods, which is not limited in this embodiment.
  • Real-time detection can be done by installing a camera directly in front of the driver or other places where the driver's actions can be fully recorded to shoot video or take pictures, setting up sensors, setting up infrared imaging equipment, etc.
  • One or more combinations of methods can affect the driver's appearance, One or more information such as the movement of body parts and the released energy are captured, and the captured data is analyzed to obtain the driver's actions.
  • the movement can be the movement of the whole body, such as: the body is still, the body shakes, etc., or it can be the movement of each part of the body, such as: lifting the head, hands, arms, legs, steps, torso and other parts , sagging, moving left and right, bending, etc.
  • the method of detecting the actions of different body parts of the driver can be to identify the driver's body parts through one or more methods of image features, position, positioning or sensors, and then based on image feature matching, action recognition models, position changes or energy changes
  • One or more ways to analyze the movements of different parts it is also possible to set one or more detectors (such as: infrared sensors, laser detectors, light sensors, etc.) Parameters (such as time, sequence, etc.) to analyze actions and where they occur.
  • the driver's body contour information through infrared imaging technology, match the model to determine different parts of the body, obtain the movement information of different parts to match the model to determine the movements of different parts; wear pressure sensors on the hands to detect hand movements; obtain driving information through the camera
  • the body features of the driver are matched with the feature model to determine the body parts, and then the actions of each part are judged by taking videos or taking continuous photos and matching the action recognition model; the infrared detection detects that the feet emit large heat energy to judge whether the feet are moving, etc.; install sensors on the steering wheel Monitor whether the driver's hands are off the steering wheel; install light sensors on both sides of the neck, outside the waist, outside the shoulders, etc. to detect whether the driver's head is drooping and/or his hands are drooping due to coma.
  • the real-time detection can be kept on all the time, set the switch to be turned on manually, or set the opening conditions (such as: ignition, the vehicle speed reaches the preset value, the driver's seat is equipped with a pressure sensor, etc.) to trigger the opening.
  • the opening conditions such as: ignition, the vehicle speed reaches the preset value, the driver's seat is equipped with a pressure sensor, etc.
  • the step of detecting the driver's action in real time it also includes:
  • the real-time detection device In response to the driving state of the vehicle being running, the real-time detection device is turned on to detect the driver's action in real time; in response to the driving state of the vehicle not being running, the real-time detection device is turned off. Only enabling real-time detection during driving can improve the accuracy of judging the driver's coma state, reduce the misjudgment of the driver's coma, save energy, and extend the service life of the device.
  • Step S20 detecting the drooping motion of the driver's head and/or hands, and the duration of the drooping motion is longer than the preset duration, and determining that the driver's physical state is a coma state;
  • the duration of the action is judged, and the duration is the duration from the start of one action to the start of the next action, so the duration of the drooping action includes the duration of the drooping action
  • the sum of the displacement time and the rest time after the sagging movement is completed and before the next movement begins.
  • the sagging movement time of the hand is 1 second, and the hand has not moved after sagging. After 10 seconds of rest, the hand moves horizontally. Then the duration of the drooping action at this time is 11 seconds.
  • the driver's physical state is a coma state.
  • Step S30 changing the driving mode of the vehicle to an unmanned driving mode
  • the vehicle sends a request to switch the unmanned driving mode, and the server responds to the request to change the driving state of the vehicle.
  • the unmanned driving mode uses on-board sensors to perceive the surrounding environment of the vehicle, and controls the steering and speed of the vehicle according to the road, vehicle position and obstacle information obtained by the perception, so that the vehicle can drive safely and reliably on the road.
  • the vehicle can continue to control the vehicle to drive to the destination, continue to drive on the road, pull over, etc. according to the navigation information connected to the vehicle, which is not limited in this embodiment.
  • the unmanned driving mode may also include safety warning measures, such as turning on the lights and honking the horn to remind surrounding vehicles and pedestrians that the vehicle is in the unmanned driving mode.
  • the step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • the road surface environment information is detected, and the vehicle is controlled to pull over and stop based on the environment information.
  • the road surface environment information is the road surface environment conditions around the vehicle, such as: traffic congestion, whether there are obstacles or pedestrians ahead, current location, lane, traffic light area, crosswalk area, etc.
  • the step of changing the driving mode of the vehicle to the unmanned driving mode it also includes:
  • the control of the vehicle such as speed and direction will be different from normal driving.
  • the speed of the vehicle is low, which may affect the normal driving of other vehicles.
  • Open all The lights can remind and warn the surrounding vehicles. If there is an abnormal situation in this car, the vehicle is driving in an unconventional state. After seeing the warning lights, the surrounding vehicles can adjust the driving route in time, keep an appropriate distance from the abnormal vehicle or drive in a detour, which can effectively avoid traffic accidents. , to ensure the safety of vehicles and personnel.
  • Step S40 uploading the distress message to the remote monitoring platform.
  • the distress information is the information to explain the abnormal situation and request rescue to the remote monitoring platform, including one or more items of distress statement, situation description, driver's vital signs, vehicle location, vehicle information, etc., which is convenient for the staff of the remote monitoring platform It can call the police in time and notify the ambulance for rescue.
  • the step of uploading the distress information to the remote monitoring platform also includes:
  • the driver's pulse, heart rate and other vital signs can be detected.
  • the vehicle information includes vehicle model information, vehicle identification code, vehicle terminal identification code, vehicle owner information, vehicle location and other information required by the remote monitoring platform to take over some functions of the vehicle and carry out rescue.
  • the vital sign information of the driver By obtaining the vital sign information of the driver, it is possible to understand the physical condition of the driver in a coma, and provide reference and help for the follow-up rescue work.
  • the vehicle information By obtaining the vehicle information, the abnormal vehicle can be accurately confirmed, and it is helpful to quickly find the abnormal vehicle for rescue.
  • the rescue time is greatly shortened, and the driver can be rescued in a timely manner.
  • the step of detecting the driver's actions in real time further includes:
  • Step S11 obtaining the body contour information of the driver monitored by the vehicle-mounted infrared sensor in real time;
  • the vehicle-mounted infrared sensor is a sensor installed on the vehicle or arranged on the vehicle to generate a communication connection with the vehicle, and uses the physical properties of infrared rays to measure.
  • the infrared heat energy of the driver monitored by the infrared sensor in real time generates an infrared image, and the driver's body contour information is obtained through the infrared image.
  • Step S12 identifying the head region and the hand region from the body contour information, and obtaining the movement information of the head region and the hand region monitored in real time by the vehicle-mounted infrared sensor;
  • the head area and/or hand area such as the outline of arms and legs, from the acquired body contour information by matching with pre-stored image features, image models, etc., or by combining the positional relationship between the part and the body
  • the features are relatively close, and it can be combined that the arms are in the upper part of the body and connected to the side of the torso, and the legs are in the lower part of the body and connected side by side under the torso; real-time monitoring and tracking of the movement of the head area and/or hand area and acquisition of movement Information, the movement information includes but not limited to: displacement, direction, path, time, image, video, etc.
  • Step S13 analyzing and obtaining the driver's action according to the movement information.
  • the parameter information included in the action is preset, and when the movement information matches the parameter information of a certain action, it is determined that the movement is the matching action.
  • the drooping action is set in advance: a displacement of more than 10cm is generated in the vertical downward direction, horizontal displacement is not required (with or without displacement), and the displacement time is less than 1 second; when the hand is detected to be in the vertical direction If the displacement time of the direction is 800 milliseconds, the displacement of 5 cm will not be judged as a drooping motion. It may be taking something from the pocket or shifting gears, etc.
  • the judgment of the specific motion needs to match the parameter information of the preset motion; when It is detected that the hand has a displacement of 18 cm in the vertical direction, a displacement of 3 cm in the horizontal direction, and a displacement time of 600 milliseconds, then it is judged as a drooping action.
  • the accurate and real-time detection, identification and analysis of the movements of the driver's hand and/or head region are realized through infrared imaging technology, which ensures that the abnormal situation of the driver's coma can be discovered in time, In order to deal with it in time, and the infrared sensor is not affected by light, it can accurately detect the coma situation even at night, in the parking lot or other weak light conditions, ensuring the comprehensiveness of coma detection and better protection The life safety of the driver and other people who may be affected.
  • the detection of the drooping motion of the driver's head and/or hands, and the duration of the drooping motion is longer than The preset duration the steps of determining that the driver's physical state is in a coma state include:
  • Step S21 detecting the drooping motion of the driver's head and/or hands, and the duration of the drooping motion is longer than the first preset duration, and waking up the driver;
  • the driver may be comatose or falling asleep, but the difference between coma and falling asleep is that When falling asleep, it can be awakened by external stimuli such as sound and shaking.
  • the step of waking up the driver includes:
  • the car audio equipment is turned on, and the car audio equipment is controlled to play warning sounds at a preset volume.
  • Today's vehicles are generally equipped with audio equipment, or external audio equipment, and the driver is awakened by playing a warning sound through the on-board audio equipment.
  • the driver can be harmlessly stimulated without modifying the hardware of the vehicle to achieve the goal of waking up. It is a simple and effective method of awakening.
  • Step S22 acquiring the driver's actions, and determining that the driver's physical state is a coma state in response to no detection of the driver's head and/or hand lifting action within a second preset time period.
  • the real-time detection of the driver's actions is obtained, and in response to no lifting of the driver's head and/or hands is detected, that is, the previously drooping head and/or hands are not awakened.
  • Lifting the driver is not awakened, not a sleep state, so it is determined to be in a coma state; when the driver's head and/or hand is lifted in response to detection, it means that the driver is asleep and has been awakened .
  • the embodiment of the present application also proposes a driver coma processing device, wherein the driver coma processing method device includes: a memory, a processor, and a computer program stored in the memory and operable on the processor When the computer program is executed by the processor to execute the method for treating driver coma, the steps of the above-mentioned method for treating driver coma are realized.
  • the embodiment of the present application also proposes a readable storage medium, the readable storage medium is a computer-readable storage medium, wherein the computer-readable storage medium stores a driver coma processing method program, and the driver When the driver's coma treatment method program is executed by the processor, the steps of the above-mentioned driver's coma treatment method are realized.
  • the term “comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article or system comprising that element.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium as described above (such as ROM/RAM , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) execute the methods described in various embodiments of the present application.

Abstract

一种驾驶员昏迷处理方法,包括:实时检测驾驶员的动作;当检测到驾驶员的头部和/或手部的下垂动作,且在所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态;将车辆行驶模式更改为无人驾驶模式;上传求救信息给远程监控平台。该方法为驾驶员发生昏迷的突发状况提供了一种应急处理方法,更好的保障了驾驶员的生命安全,减少了因驾驶员昏迷而可能发生的交通事故。还公开了相应的装置和可读存储介质。

Description

一种驾驶员昏迷处理方法、装置及可读存储介质
本申请要求于2021年8月6号申请的、申请号为202110902975.3的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及汽车安全领域,尤其涉及一种驾驶员昏迷处理方法、装置及可读存储介质。
背景技术
随着社会进步与科技发展,越来越多的车辆出现在了行驶道路上,随之而来是越来越多的交通事故,其中驾驶员在行驶过程中昏迷的新闻层出不穷。驾驶员的昏迷易造成车辆失去控制,交通情况变得恶劣甚至是生命的逝去,而对驾驶员昏迷情况的实时监测及应急处理方法较为缺乏,导致驾驶员发生昏迷的突发状况时生命安全缺乏保障。
技术问题
本申请的主要目的在于提供一种驾驶员昏迷处理方法、装置及可读存储介质,旨在解决驾驶员发生昏迷的突发状况时生命安全缺乏保障的技术问题。
技术解决方案
为实现上述目的,本申请提供一种驾驶员昏迷处理方法,所述驾驶员昏迷处理方法包括以下步骤:
实时检测驾驶员的动作;
检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态;
将车辆行驶模式更改为无人驾驶模式;
上传求救信息给远程监控平台。
在一实施方式中,所述实时检测驾驶员的动作的步骤包括:
获取车载红外传感器实时监测的驾驶员的身体轮廓信息;
从所述身体轮廓信息中识别头部区域和手部区域,获取所述车载红外传感器实时监测的所述头部区域和所述手部区域的移动信息;
根据所述移动信息分析得出驾驶员的动作。
在一实施方式中,所述检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态的步骤包括:
检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于第一预设时长,对驾驶员进行唤醒;
获取驾驶员的动作,响应于在第二预设时长内没有检测到驾驶员的头部和/或手部的抬起动作时,确定驾驶员的身体状态为昏迷状态。
在一实施方式中,所述对驾驶员进行唤醒的步骤包括:
打开车载音响设备,控制所述车载音响设备以预设的音量播放警示音。
在一实施方式中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
检测路面环境信息,基于所述路况信息控制车辆靠边停车。
在一实施方式中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
打开全部车灯以警示其他车辆。
在一实施方式中,所述上传求救信息给远程监控平台的步骤还包括:
连接驾驶员的生命体征采集装置,并获取驾驶员的生命体征信息;
获取车载终端中存储的车辆信息;
上传所述生命体征信息、所述车辆信息和求救信息给远程监控平台。
在一实施方式中,所述实时检测驾驶员的动作的步骤之前,还包括:
判断车辆的行驶状态是否为行驶中;
确定车辆的行驶状态为行驶中,实时检测驾驶员的动作。
此外,为实现上述目的,本申请还提供一种驾驶员昏迷处理方法装置,所述驾驶员昏迷处理方法装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述驾驶员昏迷处理方法的步骤。
此外,为实现上述目的,本申请还提供一种可读存储介质,所述可读存储介质为计算机可读存储介质,所述计算机可读存储介质上存储有驾驶员昏迷处理程序,所述驾驶员昏迷处理程序被处理器执行时实现上述驾驶员昏迷处理方法的步骤。
有益效果
本申请实施例提出的一种驾驶员昏迷处理方法,通过实时检测驾驶员的动作,实现了对驾驶员行驶过程中身体状态是否异常进行了全面且及时的监测;通过检测到驾驶员头部和/或手部的下垂动作确定驾驶员的身体状态为昏迷状态,实现了对驾驶员行驶过程中是否昏迷的准确判断;及时检测到驾驶员的异常状态,且准确判断此异常状态为昏迷状态时,通过将车辆行驶模式更改为无人驾驶模式,实现了驾驶员昏迷状态下车辆的正常行驶,保证了路况的良好畅通,减少了交通事故的发生,进而保证了本车辆驾驶员及周围其他车辆上人员的生命安全;通过上传求救信息给远程监控平台,远程监控平台可以及时发现驾驶员的昏迷状态,且可通过报警、呼救、接管部分车辆功能等方式作出应急处理,保证驾驶员的生命安全。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请驾驶员昏迷处理方法一实施例的流程示意图;
图3为图2中步骤S10的细化流程示意图;
图4为图2中步骤S20的细化流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:实时检测驾驶员的动作,以此判断驾驶员是否昏迷,若驾驶员昏迷,将车辆行驶模式更改为无人驾驶模式并上传求救信息给远程监控平台。
由于社会节奏的加快,人们生活压力的增加,突然昏迷的情况越来越常见,若驾驶员在行驶过程中突然昏迷,一则会导致车辆失去控制,可能会影响路面交通情况,甚至发生车祸,造成人员伤亡;二则若周围车辆和路人较少,虽然可能不会造成车祸及人员伤亡,但同时也很难有人能发现驾驶员的昏迷情况,无法及时报警。
本申请提供一种解决方案,使驾驶员突然昏迷的情况发生时能及时被发现并及时作出应急处理,更好地保证本车辆、其他车辆及路人的生命安全。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端可以是PC,也可以是智能手机、平板电脑、便携计算机等具有显示功能的可移动式终端设备。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002设置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
在一实施方式中,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在移动终端移动到耳边时,关闭显示屏和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;当然,移动终端还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及驾驶员昏迷处理程序。
在图1所示的终端中,网络接口1004主要设置为连接后台服务器,与后台服务器进行数据通信;用户接口1003主要设置为连接客户端(用户端),与客户端进行数据通信;而处理器1001可以设置为调用存储器1005中存储的驾驶员昏迷处理程序,并执行以下操作:
实时检测驾驶员的动作;
检测到驾驶员的头部和/或手部的下垂动作,且在所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态;
将车辆行驶模式更改为无人驾驶模式;
上传求救信息给远程监控平台。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述实时检测驾驶员的动作的步骤包括:
获取车载红外传感器实时监测的驾驶员的身体轮廓信息;
从所述身体轮廓信息中识别头部区域和手部区域,获取所述车载红外传感器实时监测的所述头部区域和所述手部区域的移动信息;
根据所述移动信息分析得出驾驶员的动作。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述检测到驾驶员的头部和/或手部的下垂动作,且在所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态的步骤包括:
检测到驾驶员的头部和/或手部的下垂动作,且在所述下垂动作的持续时长大于第一预设时长,对驾驶员进行唤醒;
获取驾驶员的动作,确定在第二预设时长内没有检测到驾驶员的头部和/或手部的抬起动作时,确定驾驶员的身体状态为昏迷状态。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述对驾驶员进行唤醒的步骤包括:
打开车载音响设备,控制所述车载音响设备以预设的音量播放警示音。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
检测路面环境信息,基于所述路况信息控制车辆靠边停车。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
打开全部车灯以警示其他车辆。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述上传求救信息给远程监控平台的步骤还包括:
连接驾驶员的生命体征采集装置,并获取驾驶员的生命体征信息;
获取车载终端中存储的车辆信息;
上传所述生命体征信息、所述车辆信息和求救信息给远程监控平台。
进一步地,处理器1001可以调用存储器1005中存储的驾驶员昏迷处理程序,还执行以下操作:
所述实时检测驾驶员的动作的步骤之前,还包括:
判断车辆的行驶状态是否为行驶中;
确定车辆的行驶状态为行驶中,实时检测驾驶员的动作。
参照图2,本申请一种驾驶员昏迷处理方法第一实施例提供一种驾驶员昏迷处理方法,所述驾驶员昏迷处理方法包括:
步骤S10,实时检测驾驶员的动作;
本实施例的执行主体为汽车,方法中涉及的设备、装置可以是汽车上安装的或通过网络连接、物理连接或其他通讯方式与汽车连接的,对此,本实施例不加以限制。
实时检测可以通过在驾驶员正前方或其他可以完整记录驾驶员动作的地方安装摄像头拍摄视频或拍照、设置传感器、设置红外成像设备等方式中的一种或多种组合方式对驾驶员的外观、身体部位的移动、释放的能量等一种或多种信息进行捕捉,并对捕捉到的数据进行分析得出驾驶员的动作。
所述动作可以是身体整体的动作,如:身体静止、身体抖动等,也可以是身体各个部位分别的动作,如:头部、手部、手臂、腿部、脚步、躯干等部位的抬起、下垂、左右移动、弯曲等。
检测驾驶员不同身体部位的动作的方法可以是通过图像特征、位置、定位或传感器中一种或多种方式识别驾驶员的身体部位,再根据图像特征匹配、动作识别模型、位置变化或能量变化中一种或多种方式分析不同部位的动作;也可以通过在预判动作会经过的位置设置一个或多个检测器(如:红外传感器、激光检测器、光线传感器等),并通过检测到的参数(如时间、顺序等)分析动作以及动作发生的部位。例如:通过红外成像技术获取驾驶员的身体轮廓信息,匹配模型确定身体不同部位,获取不同部位的移动信息以匹配模型确定不同部位的动作;手部佩戴压力传感器检测手部动作;通过摄像头获取驾驶员的身体特征匹配特征模型确定身体部位,再通过拍摄视频或连续拍照匹配动作识别模型来判断各部位的动作;红外检测到脚部发出较大热能判断脚部在活动等;在方向盘上安装传感器监测驾驶员的双手是否离开方向盘;在颈部两侧、腰部外侧、肩部外侧等处安装光线传感器检测驾驶员是否因为昏迷头部下垂和/或手部下垂等。
所述实时检测可以一直保持开启状态、设置开关手动开启或设置开启条件(如:点火、车速达到预设值、驾驶座设置压力传感器等)触发开启。
具体地,所述实时检测驾驶员的动作的步骤之前,还包括:
判断车辆的行驶状态是否为行驶中;
根据车速、定位变化等信息中的一项或多项判断车辆是否在行驶中,可根据停车时长、熄火等信息中的一项或多项判断车辆是否保持行驶中状态。
确定车辆的行驶状态为行驶中,实时检测驾驶员的动作。
响应于车辆的行驶状态为行驶中,开启实时检测设备,实时检测驾驶员的动作;响应于车辆的行驶状态不为行驶中,关闭实时检测设备。仅在行驶中开启实时检测,可以提高驾驶员昏迷状态判断的准确性,减少驾驶员昏迷的误判,还可以节约能源,延长设备的使用寿命。
步骤S20,检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态;
检测到驾驶员头部和/或手部的下垂动作时,判断动作的持续时长,所述持续时长是从一个动作开始到下一个动作开始之间的时长,因此下垂动作持续时长包括下垂动作的位移时间以及下垂动作位移完成后与下一个动作开始之前的静止时间的总和,例如:手部下垂位移时间为1秒,下垂后手部一直没有动,静止了10秒后,手部水平移动,则此时下垂动作持续时长为11秒。
确定所述下垂动作的持续时长大于预设时长时,确定驾驶员的身体状态为昏迷状态。
步骤S30,将车辆行驶模式更改为无人驾驶模式;
确定驾驶员进入昏迷状态,车辆发送切换无人驾驶模式请求,服务器响应请求更改车辆行驶状态。
无人驾驶模式是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
车辆在无人驾驶模式下,可以根据与车辆连接的导航信息继续控制车辆开往目的地、持续在道路上行驶、靠边停车等,对此,本实施例不加以限制。
所述无人驾驶模式还可以包括安全警示措施,如打开车灯、鸣笛等方式提示周围车辆和行人此车辆处于无人驾驶模式下。
在一实施方式中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
检测路面环境信息,基于所述环境信息控制车辆靠边停车。
通过摄像头、雷达、传感器、导航等设备,检测路面环境信息,控制车辆在无人驾驶模式下,根据路面环境信息寻找适合的位置进行靠边停车,以等待救援。
所述路面环境信息是车辆周围的路面环境情况,如:交通拥挤情况、前方是否有障碍物或行人、当前定位、车道、红绿灯区域、人行横道区域等。
通过检测路面环境信息确定适合靠边停车的位置,既可以保证不违反交通规则以不影响正常交通状况,又可以较好的避开车辆和行人以避免出现交通事故,通过控制车辆及时靠边停车,既可以最小限度的减少对交通的影响,还可以让后续救援人员更好的确定车辆位置以更快的找到昏迷的驾驶员实施救援。
在一实施方式中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
打开全部车灯以警示其他车辆。
当确定驾驶员进入昏迷状态,车辆更改为无人驾驶模式后,车速、方向等车辆的控制与正常驾驶会有一定的差别,如车速较低等,可能会影响其他车辆的正常行驶,打开全部车灯可以提醒警示周围车辆,此车出现异常情况,车辆行驶非常规状态,周围车辆看到警示车灯后能及时调整行驶路线,与异常车辆保持适当车距或绕道行驶,可以有效避免交通事故,保证车辆和人员的生命安全。且打开车灯可以引起周围车辆及行人的注意,大大提高了驾驶员的昏迷情况被发现的概率,且若出现通讯异常等其他异常情况,也能通过路人协助报警以更好的挽救驾驶员的生命安全。
步骤S40,上传求救信息给远程监控平台。
所述求救信息是向远程监控平台说明异常情况并请求救援的信息,包括求救语句、情况说明、驾驶员生命体征、车辆定位、车辆信息等的一项或多项,便于远程监控平台的工作人员能及时报警以及通知救护车进行救援。
具体地,所述上传求救信息给远程监控平台的步骤还包括:
连接驾驶员的生命体征采集装置,并获取驾驶员的生命体征信息;
通过连接驾驶员佩戴的运动手环、手表等收集生命体征的装置,来检测驾驶员的脉搏、心率等生命体征。
获取车载终端中存储的车辆信息;
所述车辆信息包括车型信息、车辆识别码、车载终端识别码、车主信息、车辆定位等远程监控平台接管汽车部分功能及开展救援所需的信息。
上传所述生命体征信息、所述车辆信息和求救信息给远程监控平台。
通过获取驾驶员的生命体征信息可初步了解陷入昏迷的驾驶员的身体状况,为后续救援工作提供参考和帮助,通过获取车辆信息可以准确的确认异常车辆,有助于快速找到异常车辆实施救援,大大缩短了救援时间,驾驶员能更及时的得到救助。
进一步的,参考图3,本申请一种驾驶员昏迷处理方法一实施例中,实时检测驾驶员的动作的步骤还包括:
步骤S11,获取车载红外传感器实时监测的驾驶员的身体轮廓信息;
所述车载红外传感器是车辆上安装的或设置在车辆上与车辆产生通讯连接的一种利用红外线的物理性质来进行测量的传感器。
通过红外传感器实时监测到的驾驶员的红外热能生成红外图像,通过所述红外图像得到驾驶员的身体轮廓信息。
步骤S12,从所述身体轮廓信息中识别头部区域和手部区域,获取所述车载红外传感器实时监测的所述头部区域和所述手部区域的移动信息;
通过与预先储存的图像特征、图像模型等进行匹配的方法,或结合部位与身体的位置关系,从获取到的身体轮廓信息中识别头部区域和/或手部区域,比如手臂和腿的轮廓特征比较接近,可以结合手臂在身体上半部分且连接在躯干侧方,双腿在身体下半部分且并列连接在躯干下方;实时监测跟踪头部区域和/或手部区域的移动并获取移动信息,所述移动信息包括但不限于是:位移、方向、路径、时间、图像、视频等。
步骤S13,根据所述移动信息分析得出驾驶员的动作。
预先设定动作包括的参数信息,当所述移动信息与某个动作的参数信息匹配时,判断所述移动为该相匹配的动作。
例如:若预先设定下垂动作为:在垂直向下的方向产生大于10cm的位移,水平方向位移不做要求(可以有位移也可以没有位移),位移时间小于1秒;当检测到手部在垂直方向的位移时间为800毫秒的5cm的位移,则不会判定为下垂动作,可能是从口袋拿东西或者是换挡等,具体动作的判定需与预先设定的动作的参数信息进行匹配;当检测到手部在垂直方向产生18cm的位移,水平方向产生3cm的位移,位移时间600毫秒,则判定为下垂动作。
在本实施例中,通过红外成像技术实现对驾驶员手部和/或头部区域的动作的准确地、实时地检测、识别和分析,确保了驾驶员出现昏迷的异常情况能被及时发现,才能及时进行应对处理,且红外传感器不受光线影响,即使在夜晚、停车场或其他光线较弱的情况下也能准确检测到昏迷的情况,确保了昏迷情况检测的全面性,更好地保护了驾驶员及其他可能被波及的人的生命安全。
进一步的,参照图4,本申请一种驾驶员昏迷处理方法一实施例中,所述所述检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态的步骤包括:
步骤S21,检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于第一预设时长,对驾驶员进行唤醒;
检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于第一预设时长,驾驶员可能是昏迷或睡着,但昏迷与睡着的不同之处在于睡着时可通过声音、抖动等外界刺激进行唤醒。
具体地,所述对驾驶员进行唤醒的步骤包括:
打开车载音响设备,控制所述车载音响设备以预设的音量播放警示音。
现在的车辆一般都装有音响设备,或外接音响设备,通过车载音响设备播放警示音的方式唤醒驾驶员,不需要对车辆进行硬件上的改装即可对驾驶员进行无害刺激,达到唤醒的效果,是一种简单有效的唤醒方法。
步骤S22,获取驾驶员的动作,响应于在第二预设时长内没有检测到驾驶员的头部和/或手部的抬起动作,确定驾驶员的身体状态为昏迷状态。
当对驾驶员进行唤醒后,获取实时检测的驾驶员的动作,响应于没有检测到驾驶员头部和/或手部的抬起动作,即原先下垂的头部和/手部未因为唤醒而抬起,则驾驶员未被唤醒,不是睡眠状态,因此确定为昏迷状态;响应于检测到驾驶员头部和/或手部的抬起动作时,说明驾驶员是睡着了且已经被唤醒。
在本实施例中,通过对驾驶员进行唤醒的方法,判断驾驶员是睡着还是昏迷,减少了将驾驶员睡着状态误判为昏迷状态而耗费的时间和资源,且若驾驶员在行驶过程中睡着了也是非常危险的,及时唤醒可以有效避免因驾驶员睡着可能导致的交通事故、人员伤亡等,保护了财产和生命安全。
此外本申请实施例还提出一种驾驶员昏迷处理装置,其中,所述驾驶员昏迷处理方法装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行驾驶员昏迷处理方法时实现如上述驾驶员昏迷处理方法的步骤。
此外,本申请实施例还提出一种可读存储介质,所述可读存储介质为计算机可读存储介质,其中,所述计算机可读存储介质上存储有驾驶员昏迷处理方法程序,所述驾驶员昏迷处理方法程序被处理器执行时实现如上述驾驶员昏迷处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种驾驶员昏迷处理方法,其中,所述驾驶员昏迷处理方法包括以下步骤:
    实时检测驾驶员的动作;
    检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态;
    将车辆行驶模式更改为无人驾驶模式;
    上传求救信息给远程监控平台。
  2. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述实时检测驾驶员的动作的步骤包括:
    获取车载红外传感器实时监测的驾驶员的身体轮廓信息;
    从所述身体轮廓信息中识别头部区域和/或手部区域,获取所述车载红外传感器实时监测的所述头部区域和所述手部区域的移动信息;
    根据所述移动信息分析得出驾驶员的动作。
  3. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于预设时长,确定驾驶员的身体状态为昏迷状态的步骤包括:
    检测到驾驶员的头部和/或手部的下垂动作,且所述下垂动作的持续时长大于第一预设时长,对驾驶员进行唤醒;
    获取驾驶员的动作,响应于在第二预设时长内没有检测到驾驶员的头部和/或手部的抬起动作时,确定驾驶员的身体状态为昏迷状态。
  4. 如权利要求3所述的驾驶员昏迷处理方法,其中,所述对驾驶员进行唤醒的步骤包括:
    打开车载音响设备,控制所述车载音响设备以预设的音量播放警示音。
  5. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
    检测路面环境信息,基于所述环境信息控制车辆靠边停车。
  6. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述将车辆行驶模式更改为无人驾驶模式的步骤之后,还包括:
    打开全部车灯以警示其他车辆。
  7. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述上传求救信息给远程监控平台的步骤还包括:
    连接驾驶员的生命体征采集装置,并获取驾驶员的生命体征信息;
    获取车载终端中存储的车辆信息;
    上传所述生命体征信息、所述车辆信息和求救信息给远程监控平台。
  8. 如权利要求1所述的驾驶员昏迷处理方法,其中,所述实时检测驾驶员的动作的步骤之前,还包括:
    判断车辆的行驶状态是否为行驶中;
    确定车辆的行驶状态为行驶中,实时检测驾驶员的动作。
  9. 一种驾驶员昏迷处理装置,其中,所述驾驶员昏迷处理方法装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的驾驶员昏迷处理方法的步骤。
  10. 一种可读存储介质,所述可读存储介质为计算机可读存储介质,其中,所述计算机可读存储介质上存储有驾驶员昏迷处理程序,所述驾驶员昏迷处理程序被处理器执行时实现如权利要求1至8中任一项所述的驾驶员昏迷处理方法的步骤。
PCT/CN2022/090404 2021-08-06 2022-04-29 一种驾驶员昏迷处理方法、装置及可读存储介质 WO2023010911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110902975.3A CN113561982A (zh) 2021-08-06 2021-08-06 一种驾驶员昏迷处理方法、装置及可读存储介质
CN202110902975.3 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023010911A1 true WO2023010911A1 (zh) 2023-02-09

Family

ID=78170723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090404 WO2023010911A1 (zh) 2021-08-06 2022-04-29 一种驾驶员昏迷处理方法、装置及可读存储介质

Country Status (4)

Country Link
JP (1) JP2023024237A (zh)
KR (1) KR20230022386A (zh)
CN (1) CN113561982A (zh)
WO (1) WO2023010911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561982A (zh) * 2021-08-06 2021-10-29 上汽通用五菱汽车股份有限公司 一种驾驶员昏迷处理方法、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860702A (zh) * 2009-04-02 2010-10-13 通用汽车环球科技运作公司 全挡风玻璃平视显示器上的驾驶员瞌睡警报
CN102715912A (zh) * 2012-05-25 2012-10-10 苏州市职业大学 一种驾驶员异常状态检测装置
CN103419716A (zh) * 2012-05-14 2013-12-04 博世汽车部件(苏州)有限公司 车辆及其驾驶员昏沉状态警示系统和方法
CN107878466A (zh) * 2016-09-30 2018-04-06 福特全球技术公司 用于具有自主模式的车辆的唤醒警报
CN207266712U (zh) * 2016-12-08 2018-04-24 合肥芯福传感器技术有限公司 用于监测机动车驾驶员身体状态的车载监测报警系统
CN113561982A (zh) * 2021-08-06 2021-10-29 上汽通用五菱汽车股份有限公司 一种驾驶员昏迷处理方法、装置及可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099774B2 (en) * 2003-01-21 2006-08-29 Byron King GPS based vehicle warning and location system
JP6372388B2 (ja) * 2014-06-23 2018-08-15 株式会社デンソー ドライバの運転不能状態検出装置
CN105818684A (zh) * 2016-04-13 2016-08-03 乐视控股(北京)有限公司 一种行车安全控制方法、车辆处理器及汽车
CN108122371A (zh) * 2016-11-29 2018-06-05 比亚迪股份有限公司 车辆求救系统、车载求救装置和车辆
CN107103731A (zh) * 2017-02-10 2017-08-29 北京羽扇智信息科技有限公司 一种车祸自动报警呼救装置及方法
WO2019030855A1 (ja) * 2017-08-09 2019-02-14 三菱電機株式会社 運転不能状態判定装置および運転不能状態判定方法
JP7024332B2 (ja) * 2017-11-07 2022-02-24 トヨタ自動車株式会社 ドライバモニタシステム
CN108230635A (zh) * 2018-01-02 2018-06-29 深圳市威米通讯有限公司 求救方法及装置
JP7102850B2 (ja) * 2018-03-28 2022-07-20 マツダ株式会社 ドライバ状態判定装置
CN108438000A (zh) * 2018-05-15 2018-08-24 北京兴科迪电子技术研究院 驾驶员突发疾病察觉装置、方法和系统
CN209022757U (zh) * 2018-10-29 2019-06-25 成都云科新能汽车技术有限公司 一种安全驾驶监测系统
CN111369705A (zh) * 2018-12-26 2020-07-03 上海擎感智能科技有限公司 求救方法、求救系统、求救终端及计算机可读存储介质
JP2020135733A (ja) * 2019-02-25 2020-08-31 ダイハツ工業株式会社 ドライバー異常検知装置
JP2021105958A (ja) * 2019-12-27 2021-07-26 マツダ株式会社 ドライバ状態推定装置およびドライバ状態推定方法
CN112455453A (zh) * 2020-12-08 2021-03-09 安徽江淮汽车集团股份有限公司 驾驶员状态检测方法、装置及计算机可读存储介质
CN113128443A (zh) * 2021-04-28 2021-07-16 珠海市魅族科技有限公司 驾驶员驾驶状态的检测方法、装置、电子设备和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860702A (zh) * 2009-04-02 2010-10-13 通用汽车环球科技运作公司 全挡风玻璃平视显示器上的驾驶员瞌睡警报
CN103419716A (zh) * 2012-05-14 2013-12-04 博世汽车部件(苏州)有限公司 车辆及其驾驶员昏沉状态警示系统和方法
CN102715912A (zh) * 2012-05-25 2012-10-10 苏州市职业大学 一种驾驶员异常状态检测装置
CN107878466A (zh) * 2016-09-30 2018-04-06 福特全球技术公司 用于具有自主模式的车辆的唤醒警报
CN207266712U (zh) * 2016-12-08 2018-04-24 合肥芯福传感器技术有限公司 用于监测机动车驾驶员身体状态的车载监测报警系统
CN113561982A (zh) * 2021-08-06 2021-10-29 上汽通用五菱汽车股份有限公司 一种驾驶员昏迷处理方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN113561982A (zh) 2021-10-29
KR20230022386A (ko) 2023-02-15
JP2023024237A (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
KR102552285B1 (ko) 휴대 전자 장치 및 그 동작 방법
JP7155122B2 (ja) 車両制御装置及び車両制御方法
EP3655834B1 (en) Vehicle control device and vehicle control method
US20200216078A1 (en) Driver attentiveness detection system
US11188074B1 (en) Systems and methods for remotely controlling operation of a vehicle
US20190391581A1 (en) Passenger Health Monitoring and Intervention for Autonomous Vehicles
JP6437045B2 (ja) 自動運転車
WO2015131857A2 (zh) 集成摄像头模组和光传感器的视觉辅助方法及装置
JP2018055691A (ja) 自動運転車
US11490843B2 (en) Vehicle occupant health monitor system and method
US20200247422A1 (en) Inattentive driving suppression system
WO2019196625A1 (zh) 监控装置、车辆、监控方法及信息处理装置
JP2004259069A (ja) 車両危険度に応じた警報信号を出力する警報装置
WO2023010911A1 (zh) 一种驾驶员昏迷处理方法、装置及可读存储介质
KR20150106986A (ko) 서버기반 졸음감지 시스템 및 그 방법
JP2020173836A (ja) 自動運転車及び自動運転車用プログラム
JP4517666B2 (ja) 走行支援装置
JP7397575B2 (ja) 信号機制御装置及び信号機制御方法
JP7418683B2 (ja) 評価装置、評価方法
JP7238193B2 (ja) 車両制御装置および車両制御方法
JP7224958B2 (ja) 通知装置及び通知方法
US20230150545A1 (en) Vehicle control device
JP7363378B2 (ja) 運転支援装置、運転支援方法、及び運転支援プログラム
CN116895182A (zh) 交通安全辅助系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE