WO2023010781A1 - 电池壳和电池 - Google Patents

电池壳和电池 Download PDF

Info

Publication number
WO2023010781A1
WO2023010781A1 PCT/CN2021/141446 CN2021141446W WO2023010781A1 WO 2023010781 A1 WO2023010781 A1 WO 2023010781A1 CN 2021141446 W CN2021141446 W CN 2021141446W WO 2023010781 A1 WO2023010781 A1 WO 2023010781A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact layer
insulating
battery case
layer
bonding
Prior art date
Application number
PCT/CN2021/141446
Other languages
English (en)
French (fr)
Inventor
张丰学
夏祖见
黄亦农
Original Assignee
国研新能(深圳)技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国研新能(深圳)技术有限公司 filed Critical 国研新能(深圳)技术有限公司
Publication of WO2023010781A1 publication Critical patent/WO2023010781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/153Lids or covers characterised by their shape for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to a battery case and a battery.
  • the main purpose of the present invention is to provide a battery case for button batteries, aiming at solving the technical problem of how to improve the battery processing efficiency.
  • the battery case proposed by the present invention includes a cup-shaped bottom case and a cover for sealing the opening of the bottom case;
  • the bottom shell includes a circular or oval bottom wall and an annular side wall;
  • the cover sequentially includes an outer contact layer, an insulating layer and an inner contact layer from outside to inside;
  • the maximum outer diameter D1 of the outer contact layer is greater than the maximum outer diameter D2 of the inner contact layer, and the circumcenter of the outer contact layer and the inscribed center of the inner contact layer do not overlap each other;
  • the inner contact layer includes an outer electrical connection part, an inner electrode connection part and a conductive adhesive part;
  • the insulating layer includes an insulating adhesive part and an insulating opening part;
  • the external contact layer includes a welding part, a welding bonding part, a welding opening part and an external electrode connection part;
  • the side wall is provided with a welding support part near the opening;
  • the internal electrode connection part is located on the surface of the internal contact layer facing the inside of the battery case, and is used to electrically connect with one pole of the battery cell, so that the internal contact layer and the battery cell form electrical conduction;
  • the external electrode connection part is located on the surface of the external contact layer facing the inside of the battery case, and is used to electrically connect with the other pole of the cell, so that the external contact layer and the cell form electrical conduction;
  • the external electrical connection part is used to electrically connect external electrical equipment
  • the conductive bonding part is used for seamless bonding with the insulating bonding part to enhance the strength of the cover, reduce the direct contact area between the insulating bonding part and the inside of the battery case, and prevent external water penetrate into the battery case;
  • the welding part is used for welding connection with the welding supporting part, so that the sealing of the cover and the bottom case is completed;
  • the welding bonding part is used to strengthen the cover strength and prevent external water from penetrating into the inside of the battery case;
  • the insulating adhesive part is melted with an insulating and electrolyte-resistant material with a heat shrinkage rate of 6% or less at a temperature of 100°C or higher, and the conductive adhesive part is then melted.
  • the soldered adhesive part is seamlessly bonded, and the bonding strength between the conductive adhesive part and the soldered adhesive part is greater than or equal to 1.0N per square millimeter at room temperature, and the insulating adhesive
  • the material of the outer contact layer is stainless steel, and the thickness d4 of the outer contact layer is 0.15mm-0.25mm; and/or, the material of the inner contact layer is stainless steel, and the thickness of the inner contact layer is d5 is 0.05mm-0.25mm.
  • the thickness d4 of the outer contact layer is greater than or equal to the thickness d5 of the inner contact layer.
  • the bonding strength between the insulating bonding part, the conductive bonding part and the soldering bonding part is less than or equal to 5.0 N per square millimeter at normal cooling temperature.
  • a first adhesion enhancement layer is provided on the first surface layer of the conductive bonding part close to the insulating bonding part, for strengthening the bonding strength with the insulating bonding part; and/or A second adhesion-enhancing layer is provided on the second surface layer of the welding bonding part close to the insulating bonding part, for strengthening the bonding strength with the insulating bonding part.
  • the external electrical connection part is located on a side of the insulating opening part and the welding opening part close to the inside of the battery case.
  • the external electrical connection part protrudes from the plane of the conductive adhesive part, protrudes toward the outside of the battery case, and passes through the insulating opening and the welding opening in sequence.
  • the diameter D6 of the connecting portion is less than or equal to half of the maximum outer diameter D2 of the inner contact layer.
  • the battery case further includes a protective member, and the protective member is formed on the outer electrical connection part, the insulating opening part and the welding opening after the cover and the bottom case are sealed.
  • the liquid glue filled in the gap between parts is fixed and formed at room temperature.
  • the present invention also proposes a battery, including a battery cell and the above-mentioned battery case, one pole of the battery cell is electrically connected to the inner electrode connection part of the battery case, and the other pole is connected to the outer electrode of the battery case.
  • the electrode connection parts are electrically connected.
  • the battery case is divided into a bottom case and a cover, and the cover is divided into an outer contact layer, an insulating layer and an inner contact layer.
  • the outer electrode connection part of the contact layer will be connected to the other electrode of the cell, and the outer contact layer and the bottom case can be welded to realize the packaging of the cell. Since the inner contact layer and the outer contact layer are insulated by the insulating layer, the bottom case It will also be insulated from the inner contact layer, thereby preventing the two electrodes of the cell from conducting and shorting each other; since the inner contact layer and the outer contact layer of the cover are pre-insulated, when the cover is packaged into the bottom case, only welding is required.
  • Fig. 1 is the structural explosion view of an embodiment of the battery case of the present invention
  • FIG. 2 is a cross-sectional exploded view of an embodiment of a battery case of the present invention
  • FIG. 3 is a schematic cross-sectional view of an embodiment of a battery case of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an embodiment of the cover of the present invention.
  • the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). If the specific posture changes, the directional indication will also change accordingly.
  • the invention provides a battery case for a button battery.
  • the battery case includes a cup-shaped bottom case 10 and a cover 20 for sealing the opening of the bottom case 10 ;
  • the bottom shell 10 includes a circular or oval bottom wall 11 and an annular side wall 12;
  • the cover 20 sequentially includes an outer contact layer 21 , an insulating layer 22 and an inner contact layer 23 from outside to inside;
  • the maximum outer diameter D1 of the outer contact layer 21 is greater than the maximum outer diameter D2 of the inner contact layer 23, and the circumscribed circle center of the outer contact layer 21 and the inscribed circle center of the inner contact layer 23 do not overlap each other;
  • the inner contact layer 23 includes an outer electrical connection part 231, an inner electrode connection part 232 and a conductive adhesive part 233;
  • the insulating layer 22 includes an insulating adhesive part 221 and an insulating opening part 222;
  • the external contact layer 21 includes a welding part 211, a welding bonding part 212, a welding opening part 213 and an external electrode connecting part 214;
  • the side wall 12 is provided with a welding support portion 121 near the opening;
  • the internal electrode connection part 232 is located on the surface of the internal contact layer 23 facing the inside of the battery case, and is used to electrically connect with one pole of the battery cell 30 so that the internal contact layer 23 and the battery cell 30 Form electrical conduction;
  • the external electrode connection part 214 is located on the surface of the external contact layer 21 facing the inside of the battery case, and is used to electrically connect with the other pole of the battery cell 30 so that the external contact layer 21 and the battery cell 30 Form electrical conduction;
  • the external electrical connection part 231 is used to electrically connect external electrical equipment
  • the conductive adhesive part 233 is used for seamless bonding with the insulating adhesive part 221 to strengthen the strength of the cover 20 and reduce the direct contact area between the insulating adhesive part 221 and the inside of the battery case , Prevent external water from penetrating into the battery case;
  • the welding part 211 is used for welding connection with the welding supporting part 121, so that the sealing between the cover 20 and the bottom case 10 is completed;
  • the welding bonding part 212 is used to strengthen the strength of the cover 20 and prevent external water from penetrating into the battery case;
  • the insulating adhesive part 221 is melted with an insulating and electrolyte-resistant material with a heat shrinkage rate of 6% or less at a temperature of 100° C.
  • the bottom case 10 can be made of stainless steel plate, and the opening of the bottom case 10 faces upwards to accommodate the battery cell 30 and the electrolyte; wherein, the bottom wall 11 and the side wall 12 can be integrally injection-molded or fixed by welding. Do limit.
  • the outer contact layer 21 and the inner contact layer 23 of the cover 20 can be made of stainless steel.
  • the inner electrode connection portion 232 of the inner contact layer 23 faces into the battery case to be connected to one of the electrodes of the battery cell 30; the outer electrical connection portion 231 of the inner contact layer 23 faces toward the battery through the insulating opening 222 and the welding opening 213. outside the shell for electrical connection of external devices.
  • the external electrical connection part 231 can be located on the side of the insulating opening 222 and the welding opening 213 close to the inside of the battery case, or protrude toward the outside of the battery case, and pass through the insulating opening 222 and the welding opening in turn. 213 , which is not limited here, as long as the external electrical connection portion 231 can be exposed to the cover 20 .
  • the welding portion 211 protrudes radially from the peripheral wall of the inner contact layer 23, so that the peripheral wall of the inner contact layer 23 is in contact with the outer contact layer 23.
  • a distance is formed between the soldering support portions 121 to avoid contact between the outer contact layer 21 and the side wall 12 .
  • the circumscribed circle center of the outer contact layer 21 and the inscribed circle center of the inner contact layer 23 do not overlap each other, and the outer contact layer 21 is connected to the side wall 12 of the bottom shell 10, that is, the circle center of the outer contact layer 21 is the same as the circle center of the bottom wall 11 axis, that is to say, the center of circle of the inner contact layer 23 deviates from the central axis of the battery case, so that the outer contact layer 21 protrudes a larger area relative to the peripheral wall of the inner contact layer 23, and the outer electrode connecting portion 214 is formed on this the inner surface of the area.
  • the external electrode connection part 214 is used to electrically connect the other pole of the power supply core 30.
  • the positive pole of the battery core 30 is connected to the internal electrode connection part 232 of the internal contact layer 23, and the negative pole of the battery core 30 can be connected to the external electrode.
  • Connecting part 214 thus, both the positive pole and the negative pole of the battery cell 30 can be connected to the cover 20, so that there is no need to leave a space between the battery cell 30 and the bottom case 10 for the electrodes to extend, thereby reducing the weight of the bottom case 10 volume to reduce the overall volume of the battery.
  • the outer contact layer 21 and the inner contact layer 23 are insulated from each other, so that the bottom case 10 and the cover 20 can be insulated from each other to prevent the electric core 30 from
  • the two electrodes are connected to each other, so that the cover 20 and the bottom case 10 can respectively form two output electrodes of the battery, and the two output electrodes can be prevented from being connected to each other and short-circuited.
  • the outer surface of the outer contact layer 21 and the outer electrical connection portion 231 of the inner contact layer 23 respectively form two output electrodes of the battery, which is not limited here.
  • the welding part 211 is the position where the outer contact layer 21 is used for welding with the welding support part 121 , and the welding part 211 is provided on the peripheral wall of the outer contact layer 21 . After the welding portion 211 is welded to the side wall 12 , the mutual fixing of the cover 20 and the bottom case 10 can be realized, and the electrical conduction between the outer contact layer 21 and the bottom case 10 can be realized.
  • the electrodes of the battery cell 30 may directly contact the internal electrode connection part 232 .
  • the top surface and the bottom surface of the insulating bonding portion 221 are respectively bonded to the conductive bonding portion 233 and the soldering bonding portion 212 to realize the insulating connection between the outer contact layer 21 and the inner contact layer 23 .
  • the outer contact layer 21 is welded and sealed with the side wall 12 , and the inner contact layer 23 and the outer contact layer 21 are seamlessly bonded through the insulating layer 22 , so that the cover 20 can seal the bottom case 10 .
  • the outer contact layer 21 and the side wall 12 are welded, the outer contact layer 21 and the inner contact layer 23 have been insulated and connected in advance, so there is no need to additionally provide an insulating film.
  • the insulating layer 22 is made of a material with insulating properties and anti-electrolyte corrosion, and its thermal shrinkage rate is 6% or less when it is greater than or equal to 100 ° C.
  • the thermal shrinkage rate refers to the volume produced by the thermoplastic material due to its inherent thermal expansion rate. That is to say, when the temperature is greater than or equal to 100°C, the volume change of the insulating layer 22 does not exceed 6% of the original volume, so that the insulating layer 22 can be fully melted and fully bonded with the inner contact layer 23 and the outer contact layer 21. Connect to ensure the bonding effect.
  • the bonding strength between the insulating layer 22 and the conductive bonding portion 233 and the solder bonding portion 212 at normal cooling temperature is greater than or equal to 1.0 N per square millimeter, which can ensure that the insulating layer 22 and the inner contact layer 23 and the outer contact layer 21
  • the bonding stability specifically, the bonding strength between the insulating bonding part 221 and the conductive bonding part 233 and the soldering bonding part 212 is less than or equal to 5.0 N/mm2 at normal cooling temperature, In order to prevent the internal stress of the cover 20 from being too high, the cover 20 can be prevented from being damaged due to internal forces during subsequent processing or use.
  • the thickness d3 of the insulating bonding part 221 is set to 0.01mm-2.5mm, so that the insulating bonding part 221 can stably withstand changes in temperature or external force, so as to improve the bonding stability of the insulating bonding part 221, and at the same time, it can be reasonably controlled
  • the overall thickness dimension of the cover 20 is set to 0.01mm-2.5mm, so that the insulating bonding part 221 can stably withstand changes in temperature or external force, so as to improve the bonding stability of the insulating bonding part 221, and at the same time, it can be reasonably controlled
  • the overall thickness dimension of the cover 20 is set to 0.01mm-2.5mm, so that the insulating bonding part 221 can stably withstand changes in temperature or external force, so as to improve the bonding stability of the insulating bonding part 221, and at the same time, it can be reasonably controlled
  • the overall thickness dimension of the cover 20 is set to 0.01mm-2.5mm, so that the insulating bonding part 2
  • the area of the portion 221 exposed to the electrolyte solution that is, the area of the outer peripheral wall of the insulating layer 22 .
  • the outer peripheral wall area S0 of the insulating layer 22 ⁇ *d3*the maximum outer diameter of the insulating layer 22, that is to say, the maximum outer diameter of the insulating layer 22 should be greater than or equal to D2*1/2, thus, in a reasonable control of the insulating layer 22 thickness, that is, on the basis of reasonably controlling the contact area between the insulating bonding portion 221 and the inside of the battery case, the connection area between the insulating bonding portion 221 and the conductive bonding portion 233 can be effectively increased, so as to reduce the corrosion of the insulating layer 22 by the electrolyte. While reducing the area, the bonding stability between the insulating layer 22 and the inner contact layer 23 is improved.
  • the battery case is divided into a bottom case 10 and a cover 20, and the cover 20 is divided into an outer contact layer 21, an insulating layer 22 and an inner contact layer 23, wherein the inner electrode connecting portion 232 of the inner contact layer 23 will be connected to One pole of the battery cell 30 is electrically connected, and the outer electrode connection part 214 of the outer contact layer 21 is connected to the other electrode of the battery cell 30, and the packaging of the battery cell 30 can be realized after the outer contact layer 21 is welded to the bottom case 10 , since the inner contact layer 23 and the outer contact layer 21 are insulated by the insulating layer 22, the bottom case 10 will also be insulated from the inner contact layer 23, thereby preventing the two electrodes of the electric core 30 from conducting and shorting each other;
  • the inner contact layer 23 and the outer contact layer 21 have been insulated in advance, so when the cover 20 is packaged with the bottom case 10, only the outer contact layer 21 and the bottom case 10 need to be welded, and there is no need to install an insulating film, thereby simplifying the battery.
  • the material of the outer contact layer 21 is stainless steel, and the thickness d4 of the outer contact layer 21 is 0.15mm-0.25mm; and/or, the material of the inner contact layer 23 is stainless steel, and the inner contact layer The thickness d5 of 23 is 0.05mm-0.25mm.
  • the stainless steel can be 304 stainless steel, which contains high nickel and has an austenitic single-phase structure at room temperature. It has high corrosion resistance, good cold forming and weldability, and can be used at low temperature, room temperature and high temperature. High plasticity and toughness. Setting the outer contact layer 21 and the inner contact layer 23 as SUS304 can ensure the structural stability of the cover 20 during processing and the chemical stability when used as a battery case.
  • the thickness d4 of the outer contact layer 21 can make the outer contact layer 21 have sufficient structural strength, and can reasonably control the overall thickness of the cover 20.
  • Setting the thickness d5 of the inner contact layer 23 to 0.05mm-0.25mm can not only make the inner contact layer 23 have sufficient structural strength, but also reasonably control the overall thickness of the cover 20 .
  • the thickness d4 of the outer contact layer 21 is greater than or equal to the thickness d5 of the inner contact layer 23, which can ensure that the outer contact layer 21 has a sufficient peripheral wall area to increase the welding area with the welding support portion 121, thereby improving welding.
  • the thickness d5 of the inner contact layer 23 is less than or equal to the thickness d4 of the outer contact layer 21, which can reduce the resistance of the inner contact layer 23 to the outer contact layer 21 load, so as to prevent the outer contact layer 21 from being deformed and damaged synchronously by excessive internal and external forces.
  • the material of the insulating layer 22 is PP (polypropylene), PFA (copolymer of a small amount of perfluoropropyl perfluorovinyl ether and polytetrafluoroethylene), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene ), ETFE (ethylene-tetrafluoroethylene copolymer), PVC (polyvinyl chloride) in one or more.
  • the size of the insulating opening portion 222 can be reasonably controlled to effectively control the area of the external electrical connection portion 231 and improve the utilization rate of the area of the inner contact layer 23 .
  • the first surface layer of the conductive bonding portion 233 close to the insulating bonding portion 221 is provided with a first adhesion enhancing layer 234 for strengthening the bonding with the insulating bonding portion 221.
  • the bonding strength between the parts 221; and/or, the second surface layer of the welding bonding part 212 close to the insulating bonding part 221 is provided with a second adhesion enhancing layer 215, which is used to strengthen the bonding with the insulating bonding part 212.
  • the specific form of the first adhesion enhancement layer 234 is not limited, as long as the connection area with the insulating bonding portion 221 can be increased to enhance the adhesion strength.
  • the first adhesion enhancing layer 234 can be configured as a protrusion.
  • the second adhesion enhancement layer 215 please refer to the first adhesion enhancement layer 234. It should be noted that the first adhesion enhancement layer 234 and the second adhesion enhancement layer 215 can be indirectly cooperated through the insulating layer 22. , so as to further improve the bonding stability of the outer contact layer 21 , the insulating layer 22 and the inner contact layer 23 .
  • the first adhesion-enhancing layer 234 is the first surface layer of the first stainless steel layer close to the insulating bonding portion 221, which is treated by sandblasting to form a uniform first matte surface. layer; and/or the second adhesion-enhancing layer 215 is the second surface layer of the second stainless steel layer close to the insulating bonding portion 221 which is treated by sandblasting to form a uniform second matte layer.
  • uniformity in this embodiment does not mean absolute uniformity, but a natural uniform matte surface formed after the first surface layer is sandblasted.
  • the first matte layer can make the adhesive force between various parts of the first surface layer and the insulating bonding portion 221 more uniform, so as to avoid stress concentration.
  • the second matte layer can also make the adhesion between various parts of the second surface layer and the insulating bonding part 221 more uniform.
  • Forming the first adhesion-enhancing layer 234 and the second adhesion-enhancing layer 215 through sandblasting can simplify the processing methods of the first adhesion-enhancing layer 234 and the second adhesion-enhancing layer 215 to improve processing efficiency.
  • the first adhesion-enhancing layer 234 is a first inclined piece that protrudes from the first surface layer and has a certain angle of inclination with the first surface layer, and the height of the first inclined piece is less than
  • the second adhesion enhancement layer 215 is a second inclined piece that protrudes from the second surface layer and has a certain angle of inclination with the second surface layer, and the second inclined piece
  • the height is smaller than the thickness of the insulating bonding portion 221, and the first inclined pieces and the second inclined pieces are inclined in opposite directions, and are arranged alternately with each other.
  • the number of the first inclined pieces is multiple and distributed on the first surface layer, and the melted adhesive insulating layer 22 can be filled in the space between two adjacent first inclined pieces, so as to be adhesively connected with the side surfaces of each first inclined piece .
  • the height of the first inclined piece is the vertical distance between the end of the first inclined piece and the first surface layer.
  • the height of the first inclined piece is smaller than the thickness of the insulating bonding part 221, which can avoid contact with the first inclined piece after passing through the insulating bonding part 221.
  • the second stainless steel layer is in contact.
  • the distribution and function of the second inclined slices please refer to the first inclined slices.
  • the first inclined pieces and the second inclined pieces are arranged alternately with each other in the length direction, so that the first inclined pieces and the second inclined pieces inserted into the insulating bonding portion 221 can be adjacent to each other, so that the insulation bonding can be reduced. Based on the thickness of the portion 221 , the outer contact layer 21 and the inner contact layer 23 can be closer to each other, so as to improve the structural strength of the cover 20 .
  • the first adhesion-enhancing layer 234 is a first groove that dents the first surface layer, and the concave direction of the first groove is away from the direction of the insulating adhesive layer; and/or
  • the second adhesion-enhancing layer 215 is a second groove that dents the second surface layer, and the concave direction of the second groove is away from the direction of the insulating adhesive layer.
  • the number of the first grooves is multiple, and the plurality of first grooves are distributed on the first surface layer, and the melted insulating adhesive part 221 can be filled in the first grooves to increase the connection area with the first surface layer, thereby strengthening the The bonding strength between the outer contact layer 21 and the insulating bonding part 221 .
  • the first grooves which will not be repeated here.
  • the external electrical connection part 231 is located on the side of the insulating opening part 222 and the welding opening part 213 close to the inside of the battery case, which can reduce the contact between the internal electrode connecting part 232 and the battery cell 30.
  • the spacing between them makes it easier for the electrodes of the battery cell 30 to be connected to the internal electrode connecting portion 232, so as to simplify the processing method of the battery.
  • the external electrical connection portion 231 protrudes from the plane of the conductive adhesive portion 233 and protrudes toward the outside of the battery case, and passes through the insulating openings in sequence.
  • the hole portion 222 and the solder opening portion 213 , the diameter D6 of the outer electrical connection portion 231 is less than or equal to half of the maximum outer diameter D2 of the inner contact layer 23 .
  • the external electrical connection part 231 protrudes toward the outside of the battery case, which is more convenient for the electrical connection between external equipment and the external electrical connection part 231, so as to improve the convenience of use of the battery.
  • the diameter D6 of the outer electrical connection portion 231 is less than or equal to half of the maximum outer diameter D2 of the inner contact layer 23 , so that the conductive adhesive portion 233 has enough area to bond with the insulating layer 22 to ensure bonding stability. It should be noted that there should be a sufficient distance between the protruding external electrical connection portion 231 and the solder opening 213 of the external contact layer 21 to avoid contact between the external electrical connection portion 231 and the solder bonding portion 212 when the battery case is squeezed.
  • the battery case also includes a protective member (not shown in the figure), and the protective member is formed by sealing the outer electrical connection part 231 and the insulating opening after the cover 20 and the bottom case 10 are sealed.
  • the liquid glue filled in the gap between the part 222 and the welding hole part 213 is fixed and formed at normal temperature.
  • An insulating gap 40 is formed between the external electrical connection part 231 , the insulating opening part 222 and the welding opening part 213 .
  • the insulating gap 40 extends along the circumferential direction of the external electrical connecting part 231 .
  • the protector can not only cover the part of the insulating adhesive portion 221 exposed in the insulating gap 40 , but also effectively isolate the outer electrical connection portion 231 from the welding adhesive portion 212 , thereby preventing the electrical conduction between the outer contact layer 21 and the inner contact layer 23 .
  • setting the protector to be formed by curing liquid glue can not only realize the insulation between the outer contact layer 21 and the inner contact layer 23, but also reduce the force and pressure of the protector on the outer contact layer 21 and the outer electrical connection part 231, so as to avoid external The contact layer 21 and the external electrical connection part 231 are deformed, thereby ensuring the structural stability of the battery case.
  • the insulating layer 22 may include a laminated first adhesive layer, an anti-conduction layer, and a second adhesive layer, wherein the first adhesive layer bonds the outer contact layer 21 to the anti-conduction layer, The second adhesive layer bonds the inner contact layer 23 to the anti-conduction layer, and the anti-conduction layer can ensure that the outer contact layer 21 and the inner contact layer 23 are insulated from each other.
  • the first adhesive layer and the second adhesive layer only need to have adhesive properties, and the anti-conduction layer only needs to have insulating properties. Realizing the two properties of the insulating layer 22 through different functional levels can make The bonding performance and insulation performance of the corresponding layers are strengthened, so as to improve the overall performance of the insulation layer 22 .
  • the present invention also proposes a battery, which includes a battery cell 30 and a battery case.
  • the specific structure of the battery case refers to the above-mentioned embodiments. Since this battery adopts all the technical solutions of all the above-mentioned embodiments, it has at least the advantages of the above-mentioned embodiments. All beneficial effects brought by the technical solution will not be repeated here.
  • one pole of the battery cell 30 is electrically connected to the inner electrode connection portion 232 of the battery case, and the other pole is electrically connected to the outer electrode connection portion 214 of the battery case.
  • the battery can be set as a button battery, and the button battery is mainly used in electronic products to provide electric energy for the electronic products.
  • the electronic product may be an earphone, a watch, etc., and an electronic product with a lower voltage is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明公开一种电池壳和电池,其中,将电池壳分为底壳和封盖,并将封盖分为外接触层、绝缘层和内接触层,其中,内接触层的内电极连接部会与电芯的一极电导通,外接触层的外电极连接部会与电芯的另一电极导通,而外接触层与底壳焊接后可实现对电芯的封装,由于内接触层与外接触层通过绝缘层绝缘,因此底壳也会与内接触层绝缘,从而可防止电芯的两个电极相互导通短路;由于封盖的内接触层与外接触层已预先绝缘,因此在将封盖封装底壳时,只需焊接外接触层与底壳即可,无需再设置绝缘膜,由此可简化电池的封装过程,提高封装效率。

Description

电池壳和电池 技术领域
本发明涉及电池技术领域,特别涉及一种电池壳和电池。
背景技术
现有的纽扣电池,其电池壳由正极壳体和负极壳体拼接形成,正极壳体和负极壳体之间需要绝缘以避免纽扣电池短路;相关技术通过在正极壳体和负极壳体之间设置绝缘膜来实现绝缘,并将正极壳体与负极壳体焊接固定,在加工过程中,绝缘膜的设置难度较大,导致纽扣电池的加工难度较大,降低了加工效率。
发明内容
本发明的主要目的是提出一种电池壳,用于纽扣电池,旨在解决如何提高电池加工效率的技术问题。
为实现上述目的,本发明提出的电池壳包括杯形的底壳和用于密封所述底壳的开口的封盖;
所述底壳包括圆形或者椭圆形的底壁和环形的侧壁;
所述封盖从外到内依次包括外接触层、绝缘层和内接触层;
所述外接触层的最大外径D1大于所述内接触层的最大外径D2,所述外接触层的外接圆心与所述内接触层的内接圆心互不重叠;
所述内接触层包括外电连接部、内电极连接部和导电粘接部;
所述绝缘层包括绝缘粘接部和绝缘开孔部;
所述外接触层包括焊接部、焊接粘接部、焊接开孔部和外电极连接部;
所述侧壁靠近开口处设置有焊接支撑部;
所述内电极连接部位于所述内接触层朝向所述电池壳内的表面,用于与电芯的其中一极电连接,以使所述内接触层与所述电芯形成电导通;
所述外电极连接部位于所述外接触层朝向所述电池壳内的表面,用于与 电芯的另外一极电连接,以使所述外接触层与所述电芯形成电导通;
所述外电极连接部的表面积S1和所述内接触层的表面积S2满足S1<=0.25S5;
所述外电连接部用于电连接外部电设备;
所述导电粘接部用于与所述绝缘粘接部无缝粘接,以加强所述封盖强度、减小所述绝缘粘接部与所述电池壳内部的直接接触面积、防止外部水渗透到电池壳内部;
所述焊接部用于与所述焊接支撑部焊接连接,以使所述封盖与所述底壳完成密封;
所述焊接粘接部用于加强所述封盖强度,以及防止外部水渗透到所述电池壳内部;
所述封盖与所述底壳密封之前,所述绝缘粘接部由在大于等于100℃时热收缩率为6%以下的绝缘防电解液腐蚀的材料融化后,与所述导电粘接部、所述焊接粘接部进行无缝粘接,且在冷却常温下与所述导电粘接部、所述焊接粘接部之间的粘接强度大于等于1.0N每平方毫米,所述绝缘粘接部的厚度d3为0.01mm-2.5mm,所述绝缘粘接部与所述电池壳内部的接触面积S0满足S0>=π*D2*d3*1/2。
可选地,所述外接触层的材质为不锈钢,所述外接触层的厚度d4为0.15mm-0.25mm;和/或,所述内接触层的材质为不锈钢,所述内接触层的厚度d5为0.05mm-0.25mm。
可选地,所述外接触层的厚度d4大于等于所述内接触层的厚度d5。
可选地,所述绝缘粘接部在冷却常温下与所述导电粘接部、所述焊接粘接部之间的粘接强度小于等于5.0N每平方毫米。
可选地,所述绝缘粘接部的面积S3与所述绝缘层的面积S4满足S3/S4>=0.6;和/或,所述绝缘粘接部的面积S3与所述外接触层的面积S5满足S3/S5>=0.5。
可选地,所述导电粘接部靠近所述绝缘粘接部的第一表层设置有第一粘接增强层,用于加强与所述绝缘粘接部之间的粘接强度;和/或,所述焊接粘接部靠近所述绝缘粘接部的第二表层设置有第二粘接增强层,用于加强与所述绝缘粘接部之间的粘接强度。
可选地,所述外电连接部位于所述绝缘开孔部和所述焊接开孔部的靠近所述电池壳内部的一侧。
可选地,所述外电连接部凸出于所述导电粘接部的平面,并朝向所述电池壳外部的方向凸出,且依次穿过绝缘开孔部和焊接开孔部,所述外电连接部的直径D6小于等于所述内接触层的最大外径D2的一半。
可选地,所述电池壳还包括保护件,所述保护件由在所述封盖与所述底壳密封之后,在所述外电连接部、所述绝缘开孔部和所述焊接开孔部之间的间隙所填充的液体胶在常温下固定形成。
本发明还提出一种电池,包括电芯和如上所述的电池壳,所述电芯的其中一极与所述电池壳的内电极连接部电连接,另外一极与所述电池壳的外电极连接部电连接。
本发明将电池壳分为底壳和封盖,并将封盖分为外接触层、绝缘层和内接触层,其中,内接触层的内电极连接部会与电芯的一极电导通,外接触层的外电极连接部会与电芯的另一电极导通,而外接触层与底壳焊接后可实现对电芯的封装,由于内接触层与外接触层通过绝缘层绝缘,因此底壳也会与内接触层绝缘,从而可防止电芯的两个电极相互导通短路;由于封盖的内接触层与外接触层已预先绝缘,因此在将封盖封装底壳时,只需焊接外接触层与底壳即可,无需再设置绝缘膜,由此可简化电池的封装过程,提高封装效率;此外,将绝缘粘接部与电池壳内部的接触面积S0限定为S0>=π*D2*d3*1/2,可增大绝缘粘接部与内接触层和外接触层的粘接面积,从而提高粘接稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明电池壳一实施例的结构爆炸图;
图2为本发明电池壳一实施例的剖面爆炸图;
图3为本发明电池壳一实施例的剖面示意图;
图4为本发明中封盖一实施例的剖面示意图。
附图标号说明:
标号 名称 标号 名称 标号 名称
10 底壳 20 封盖 11 底壁
12 侧壁 21 外接触层 22 绝缘层
23 内接触层 231 外电连接部 232 内电极连接部
233 导电粘接部 221 绝缘粘接部 222 绝缘开孔部
211 焊接部 212 焊接粘接部 213 焊接开孔部
214 外电极连接部 121 焊接支撑部 234 第一粘接增强层
215 第二粘接增强层 30 电芯 40 绝缘间隙
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二” 的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种电池壳,用于纽扣电池。
在本发明实施例中,如图1至图4所示,该电池壳包括杯形的底壳10和用于密封所述底壳10的开口的封盖20;
所述底壳10包括圆形或者椭圆形的底壁11和环形的侧壁12;
所述封盖20从外到内依次包括外接触层21、绝缘层22和内接触层23;
所述外接触层21的最大外径D1大于所述内接触层23的最大外径D2,所述外接触层21的外接圆心与所述内接触层23的内接圆心互不重叠;
所述内接触层23包括外电连接部231、内电极连接部232和导电粘接部233;
所述绝缘层22包括绝缘粘接部221和绝缘开孔部222;
所述外接触层21包括焊接部211、焊接粘接部212、焊接开孔部213和外电极连接部214;
所述侧壁12靠近开口处设置有焊接支撑部121;
所述内电极连接部232位于所述内接触层23朝向所述电池壳内的表面,用于与电芯30的其中一极电连接,以使所述内接触层23与所述电芯30形成电导通;
所述外电极连接部214位于所述外接触层21朝向所述电池壳内的表面,用于与电芯30的另外一极电连接,以使所述外接触层21与所述电芯30形成电导通;
所述外电极连接部214的表面积S1和所述内接触层23的表面积S2满足S1<=0.25S5;
所述外电连接部231用于电连接外部电设备;
所述导电粘接部233用于与所述绝缘粘接部221无缝粘接,以加强所述封盖20强度、减小所述绝缘粘接部221与所述电池壳内部的直接接触面积、 防止外部水渗透到电池壳内部;
所述焊接部211用于与所述焊接支撑部121焊接连接,以使所述封盖20与所述底壳10完成密封;
所述焊接粘接部212用于加强所述封盖20强度,以及防止外部水渗透到所述电池壳内部;
所述封盖20与所述底壳10密封之前,所述绝缘粘接部221由在大于等于100℃时热收缩率为6%以下的绝缘防电解液腐蚀的材料融化后,与所述导电粘接部233、所述焊接粘接部212进行无缝粘接,且在冷却常温下与所述导电粘接部233、所述焊接粘接部212之间的粘接强度大于等于1.0N每平方毫米,所述绝缘粘接部221的厚度d3为0.01mm-2.5mm,所述绝缘粘接部221与所述电池壳内部的接触面积S0满足S0>=π*D2*d3*1/2。
底壳10可采用不锈钢板制成,底壳10的开口朝上,用以容纳电芯30和电解液;其中,底壁11和侧壁12可一体注塑成型,也可焊接固定,在此不做限制。封盖20的外接触层21和内接触层23可采用不锈钢板制成。内接触层23的内电极连接部232朝向电池壳内,用以与电芯30的其中一电极连接;内接触层23的外电连接部231通过绝缘开孔部222和焊接开孔部213朝向电池壳外部,以供外部设备电连接。外电连接部231可以位于绝缘开孔部222和焊接开孔部213靠近电池壳内部的一侧,也可以朝电池壳外部的方向凸出,并依次穿过绝缘开孔部222和焊接开孔部213,在此不做限制,只需满足外电连接部231可外露于封盖20即可。
由于外接触层21的最大外径D1大于所述内接触层23的最大外径D2,即焊接部211会沿径向凸出于内接触层23的周壁,以使内接触层23的周壁与焊接支撑部121之间形成间距,避免外接触层21与侧壁12接触。外接触层21的外接圆心与所述内接触层23的内接圆心互不重叠,外接触层21连接于底壳10的侧壁12,即外接触层21的圆心与底壁11的圆心同轴,也就是说,内接触层23的圆心偏离电池壳的中心轴,从而外接触层21会相对内接触层23的周壁凸出一块面积较大的区域,外电极连接部214即形成于该区域的内表面。外电极连接部214用以供电芯30的另一极电连接,举例而言,电芯30的正极连接于内接触层23的内电极连接部232,则电芯30的负极可连接于外电极连接部214,由此,电芯30的正极和负极均可连接于封盖20,从而电芯 30和底壳10之间不必再留出空间来供电极延伸,由此可减少底壳10的体积,以减少电池的整体体积。
由于外接触层21与内接触层23之间具有绝缘层22,因此,外接触层21与内接触层23相互绝缘,从而使底壳10和封盖20可相互绝缘,以防止电芯30的两个电极相互导通,由此,既可使封盖20和底壳10分别形成电池的两个输出电极,又可避免两个输出电极相互导通而短路。当然,还可以是外接触层21的外表面和内接触层23的外电连接部231分别形成电池的两个输出电极,在此不做限制。将外电极连接部214的表面积S1和所述内接触层23的表面积S2设置为S1<=0.25S5,可合理控制外电极连接部214的表面积,从而增大焊接粘接部212与导电粘接部233的粘接面积,以提高外接触层21与内接触层23的粘接强度,保证封盖20的结构稳定性。
焊接部211即外接触层21用于与焊接支撑部121焊接的位置,焊接部211设于外接触层21的周壁。焊接部211与侧壁12焊接后,既可实现封盖20与底壳10的相互固定,又可实现外接触层21与底壳10的电导通。电芯30的电极可以直接与内电极连接部232接触。绝缘粘接部221的顶面和底面分别与导电粘接部233和焊接粘接部212粘固,以实现外接触层21与内接触层23的绝缘连接。外接触层21与侧壁12焊接密封,内接触层23与外接触层21通过绝缘层22无缝粘接,可实现封盖20对底壳10的封闭。其中,在焊接外接触层21与侧壁12时,外接触层21与内接触层23已预先实现绝缘连接,因此无需再另外设置绝缘膜。
绝缘层22采用具有绝缘性能和防电解液腐蚀的材料制成,其在大于等于100℃时的热收缩率为6%以下,热收缩率是指热塑性材料因其固有的热膨胀率而产生的体积变化,也就是说,在温度大于等于100℃时,绝缘层22的体积变化量不超过原体积的6%,由此可使绝缘层22充分融化后与内接触层23和外接触层21充分连接,以保证粘接效果。绝缘层22在冷却常温下与导电粘接部233、所述焊接粘接部212之间的粘接强度大于等于1.0N每平方毫米,可保证绝缘层22与内接触层23和外接触层21的粘接稳定性;具体地,所述绝缘粘接部221在冷却常温下与所述导电粘接部233、所述焊接粘接部212之间的粘接强度小于等于5.0N/平方毫米,以防止封盖20内部应力过高,从而可避免在后续的加工或使用过程中封盖20因内部作用力而破损。绝缘粘接部 221的厚度d3设置为0.01mm-2.5mm,使得绝缘粘接部221能稳定承受温度或外部作用力的变化,以提高绝缘粘接部221的粘固稳定性,同时能合理控制封盖20的整体厚度尺寸。
所述绝缘粘接部221与所述电池壳内部的接触面积S0满足S0>=π*D2*d3*1/2;需要说明,绝缘粘接部221与电池壳内部的接触面积就是绝缘粘接部221暴露于电解液的面积,也就是绝缘层22的外周壁面积。绝缘层22的外周壁面积S0=π*d3*绝缘层22的最大外径,也就是说,绝缘层22的最大外径应满足大于等于D2*1/2,由此,在合理控制绝缘层22厚度,即合理控制绝缘粘接部221与电池壳内部接触面积的基础上,可有效增大绝缘粘接部221与导电粘接部233的连接面积,以在减少电解液对绝缘层22腐蚀面积的同时,提高绝缘层22与内接触层23的粘接稳定性。
本发明将电池壳分为底壳10和封盖20,并将封盖20分为外接触层21、绝缘层22和内接触层23,其中,内接触层23的内电极连接部232会与电芯30的一极电导通,外接触层21的外电极连接部214会与电芯30的另一电极导通,而外接触层21与底壳10焊接后可实现对电芯30的封装,由于内接触层23与外接触层21通过绝缘层22绝缘,因此底壳10也会与内接触层23绝缘,从而可防止电芯30的两个电极相互导通短路;由于封盖20的内接触层23与外接触层21已预先绝缘,因此在将封盖20封装底壳10时,只需焊接外接触层21与底壳10即可,无需再设置绝缘膜,由此可简化电池的封装过程,提高封装效率;此外,将绝缘粘接部221与电池壳内部的接触面积S0限定为S0>=π*D2*d3*1/2,可增大绝缘粘接部221与内接触层23和外接触层21的粘接面积,从而提高粘接稳定性。
具体地,所述外接触层21的材质为不锈钢,所述外接触层21的厚度d4为0.15mm-0.25mm;和/或,所述内接触层23的材质为不锈钢,所述内接触层23的厚度d5为0.05mm-0.25mm。不锈钢可为304不锈钢,含有较高的镍且在室温下呈奥氏体单相组织,具有较高的耐蚀性,较好的冷作成型和焊接性,在低温、室温及高温下均有较高的塑性和韧性。将外接触层21和内接触层23设置为SUS304,可保证封盖20在加工过程中的结构稳定性,以及作为电池壳体使用时的化学稳定性。
将外接触层21的厚度d4设置为0.15mm-0.25mm,可使外接触层21具有 足够的结构强度,又可合理控制封盖20的整体厚度尺寸。将内接触层23的厚度d5设置为0.05mm-0.25mm,既可使内接触层23具有足够的结构强度,又可合理控制封盖20的整体厚度尺寸。在实际应用中,外接触层21的厚度d4大于等于所述内接触层23的厚度d5,可保证外接触层21具有足够的周壁面积,以增加与焊接支撑部121的焊接面积,从而提高焊接强度,并且提高外接触层21在电池壳被挤压时的受力抗性;而内接触层23的厚度d5小于等于外接触层21的厚度d4,可减少内接触层23对外接触层21的负荷,以防止外接触层21同步受过大的内部作用力和外部作用力而变形损坏。
所述绝缘层22的材质为PP(聚丙烯)、PFA(少量全氟丙基全氟乙烯基醚与聚四氟乙烯的共聚物)、PVDF(聚偏氟乙烯)、PTFE(聚四氟乙烯)、ETFE(乙烯-四氟乙烯共聚物)、PVC(聚氯乙烯)中的一种或多种。
在一实施例中,所述绝缘粘接部221的面积S3与所述绝缘层22的面积S4满足S3/S4>=0.6;和/或,所述绝缘粘接部221的面积S3与所述外接触层21的面积S5满足S3/S5>=0.5,由此,可有效保证绝缘层22与内接触层23的粘接面积,提高绝缘层22与外接触层21的连接稳定性;同时还能合理控制绝缘开孔部222的大小,以有效控制外电连接部231的面积,提高内接触层23的面积利用率。
在一实施例中,如图4所示,所述导电粘接部233靠近所述绝缘粘接部221的第一表层设置有第一粘接增强层234,用于加强与所述绝缘粘接部221之间的粘接强度;和/或,所述焊接粘接部212靠近所述绝缘粘接部221的第二表层设置有第二粘接增强层215,用于加强与所述绝缘粘接部221之间的粘接强度。第一粘接增强层234的具体形式不做限制,只需满足可增大与绝缘粘接部221的连接面积,以加强粘接强度即可。举例而言,第一粘接增强层234可设置为凸起。第二粘接增强层215的具体形式和作用可参考第一粘接增强层234,需要说明的是,第一粘接增强层234与第二粘接增强层215可隔着绝缘层22间接配合,以进一步提高外接触层21、绝缘层22和内接触层23三者的结合稳定性。
具体地,如图4所示,所述第一粘接增强层234为所述第一不锈钢层靠近所述绝缘粘接部221的第一表层通过喷砂进行处理,形成均匀的第一毛面层;和/或所述第二粘接增强层215为所述第二不锈钢层靠近所述绝缘粘接部 221的第二表层通过喷砂进行处理,形成均匀的第二毛面层。可以理解,本实施例中的均匀并非指绝对均匀,而是第一表层经喷砂处理后形成的自然均匀毛面。第一毛面层能使第一表层各个部位与绝缘粘接部221的粘附力更加均匀,从而避免应力集中。同样地,第二毛面层也能使第二表层各个部位与绝缘粘接部221的粘附力更加均匀。通过喷砂处理来形成第一粘接增强层234和第二粘接增强层215,可简化第一粘接增强层234和第二粘接增强层215的加工方式,以提高加工效率。
在另一实施例中,所述第一粘接增强层234为凸出所述第一表层并与所述第一表层具有一定倾斜角度的第一倾斜片,所述第一倾斜片的高度小于所述绝缘粘接部221的厚度,所述第二粘接增强层215为凸出所述第二表层并与所述第二表层具有一定倾斜角度的第二倾斜片,所述第二倾斜片的高度小于所述绝缘粘接部221的厚度,所述第一倾斜片与所述第二倾斜片倾斜方向相反,彼此相互交替设置。第一倾斜片的数量为多个并分布于第一表层,融化的粘接绝缘层22可填充于相邻两第一倾斜片之间的空间,以与各第一倾斜片的侧面粘附连接。第一倾斜片的高度即第一倾斜片末端与第一表层的垂直间距,第一倾斜片的高度小于绝缘粘接部221的厚度,可避免第一倾斜片穿过绝缘粘接部221后与第二不锈钢层接触。第二倾斜片的分布方式和作用可参考第一倾斜片。第一倾斜片和第二倾斜片在长度方向上彼此相互交替设置,可使插入绝缘粘接部221后的第一倾斜片和第二倾斜片能彼此相邻,从而可在不减少绝缘粘接部221厚度的基础上使外接触层21和内接触层23能更加靠近,以提高封盖20的结构强度。
在又一实施例中,所述第一粘接增强层234为凹陷所述第一表层的第一凹槽,所述第一凹槽的凹陷方向远离所述绝缘粘接层方向;和/或第二粘接增强层215为凹陷所述第二表层的第二凹槽,所述第二凹槽的凹陷方向远离所述绝缘粘接层方向。第一凹槽的数量为多个,多个第一凹槽分布于第一表层,融化的绝缘粘接部221能填充于第一凹槽中,以增加与第一表层的连接面积,从而加强外接触层21与绝缘粘接部221的粘接强度。第二凹槽的排布方式和作用可参考第一凹槽,在此不再赘述。
在一实施例中,所述外电连接部231位于所述绝缘开孔部222和所述焊接开孔部213的靠近所述电池壳内部的一侧,可减少内电极连接部232与电 芯30的间距,从而使电芯30的电极更容易与内电极连接部232连接,以简化电池的加工方式。
在另一实施例中,如图3所示,所述外电连接部231凸出于所述导电粘接部233的平面,并朝向所述电池壳外部的方向凸出,且依次穿过绝缘开孔部222和焊接开孔部213,所述外电连接部231的直径D6小于等于所述内接触层23的最大外径D2的一半。外电连接部231朝电池壳外部的方向凸出,更便于外部设备与外电连接部231的电连接,以提高电池的使用便利性。外电连接部231的直径D6小于等于内接触层23的最大外径D2的一半,可使导电粘接部233足有足够的面积来与绝缘层22粘接,以保证粘接稳定性。需要说明,凸出的外电连接部231与外接触层21的焊接开孔部213之间应具有足够的间距,以避免电池壳受挤压时外电连接部231与焊接粘接部212接触。
具体地,所述电池壳还包括保护件(图未示),所述保护件由在所述封盖20与所述底壳10密封之后,在所述外电连接部231、所述绝缘开孔部222和所述焊接开孔部213之间的间隙所填充的液体胶在常温下固定形成。外电连接部231、绝缘开孔部222和焊接开孔部213之间形成绝缘间隙40,绝缘间隙40沿外电连接部231的周向延伸,保护件呈环形安装于绝缘间隙40。保护件既可以覆盖住绝缘粘接部221外露于绝缘间隙40的部分,又可以有效隔离外电连接部231与焊接粘接部212,从而防止外接触层21与内接触层23形成电导通。可以理解,将保护件设置为由液体胶固化形成,既可实现外接触层21与内接触层23绝缘,又可减少保护件对外接触层21和外电连接部231的作用力压强,以避免外接触层21和外电连接部231变形,从而保证电池壳的结构稳定性。
在一实施例中,绝缘层22可包括层叠的第一粘接层、防导通层和第二粘接层,其中,第一粘接层将外接触层21与防导通层粘接,第二粘接层将内接触层23与防导通层粘接,而防导通层可保证外接触层21与内接触层23相互绝缘。如此,第一粘接层和第二粘接层只需具有粘接性能即可,防导通层只需具有绝缘性能即可,通过不同功能层级来实现绝缘层22的两种性能,可使相应层级的粘接性能和绝缘性能更加强化,以提高绝缘层22的整体性能。
本发明还提出一种电池,该电池包括电芯30和电池壳,该电池壳的具体 结构参照上述实施例,由于本电池采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,所述电芯30的其中一极与所述电池壳的内电极连接部232电连接,另外一极与所述电池壳的外电极连接部214电连接。
该电池可设置为纽扣电池,纽扣电池主要应用于电子产品中,以为电子产品提供电能。其中,电子产品可以为耳机、手表等,使用电压较小的电子产品。
以上所述仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种用于纽扣电池的电池壳,其特征在于,
    所述电池壳包括杯形的底壳和用于密封所述底壳的开口的封盖;
    所述底壳包括圆形或者椭圆形的底壁和环形的侧壁;
    所述封盖从外到内依次包括外接触层、绝缘层和内接触层;
    所述外接触层的最大外径D1大于所述内接触层的最大外径D2,所述外接触层的外接圆心与所述内接触层的内接圆心互不重叠;
    所述内接触层包括外电连接部、内电极连接部和导电粘接部;
    所述绝缘层包括绝缘粘接部和绝缘开孔部;
    所述外接触层包括焊接部、焊接粘接部、焊接开孔部和外电极连接部;
    所述侧壁靠近开口处设置有焊接支撑部;
    所述内电极连接部位于所述内接触层朝向所述电池壳内的表面,用于与电芯的其中一极电连接,以使所述内接触层与所述电芯形成电导通;
    所述外电极连接部位于所述外接触层朝向所述电池壳内的表面,用于与电芯的另外一极电连接,以使所述外接触层与所述电芯形成电导通;
    所述外电极连接部的表面积S1和所述内接触层的表面积S2满足S1<=0.25S5;
    所述外电连接部用于电连接外部电设备;
    所述导电粘接部用于与所述绝缘粘接部无缝粘接,以加强所述封盖强度、减小所述绝缘粘接部与所述电池壳内部的直接接触面积、防止外部水渗透到电池壳内部;
    所述焊接部用于与所述焊接支撑部焊接连接,以使所述封盖与所述底壳完成密封;
    所述焊接粘接部用于加强所述封盖强度,以及防止外部水渗透到所述电池壳内部;
    所述封盖与所述底壳密封之前,所述绝缘粘接部由在大于等于100℃时热收缩率为6%以下的绝缘防电解液腐蚀的材料融化后,与所述导电粘接部、所述焊接粘接部进行无缝粘接,且在冷却常温下与所述导电粘接部、所述焊接粘接部之间的粘接强度大于等于1.0N每平方毫米,所述绝缘粘接部的厚度d3 为0.01mm-2.5mm,所述绝缘粘接部与所述电池壳内部的接触面积S0满足S0>=π*D2*d3*1/2。
  2. 如权利要求1所述的电池壳,其特征在于,所述外接触层的材质为不锈钢,所述外接触层的厚度d4为0.15mm-0.25mm;和/或,所述内接触层的材质为不锈钢,所述内接触层的厚度d5为0.05mm-0.25mm。
  3. 如权利要求1所述的电池壳,其特征在于,所述外接触层的厚度d4大于等于所述内接触层的厚度d5。
  4. 如权利要求1所述的电池壳,其特征在于,所述绝缘粘接部在冷却常温下与所述导电粘接部、所述焊接粘接部之间的粘接强度小于等于5.0N每平方毫米。
  5. 如权利要求1所述的电池壳,其特征在于,所述绝缘粘接部的面积S3与所述绝缘层的面积S4满足S3/S4>=0.6;和/或,所述绝缘粘接部的面积S3与所述外接触层的面积S5满足S3/S5>=0.5。
  6. 如权利要求1-5任一项所述的电池壳,其特征在于,所述导电粘接部靠近所述绝缘粘接部的第一表层设置有第一粘接增强层,用于加强与所述绝缘粘接部之间的粘接强度;和/或,所述焊接粘接部靠近所述绝缘粘接部的第二表层设置有第二粘接增强层,用于加强与所述绝缘粘接部之间的粘接强度。
  7. 如权利要求1-5任一项所述的电池壳,其特征在于,所述外电连接部位于所述绝缘开孔部和所述焊接开孔部的靠近所述电池壳内部的一侧。
  8. 如权利要求1-5任一项所述的电池壳,其特征在于,所述外电连接部凸出于所述导电粘接部的平面,并朝向所述电池壳外部的方向凸出,且依次穿过绝缘开孔部和焊接开孔部,所述外电连接部的直径D6小于等于所述内接触层的最大外径D2的一半。
  9. 如权利要求8所述的电池壳,其特征在于,所述电池壳还包括保护件,所述保护件由在所述封盖与所述底壳密封之后,在所述外电连接部、所述绝缘开孔部和所述焊接开孔部之间的间隙所填充的液体胶在常温下固定形成。
  10. 一种电池,其特征在于,包括电芯和如权利要求1至9任一项所述的电池壳,所述电芯的其中一极与所述电池壳的内电极连接部电连接,另外一极与所述电池壳的外电极连接部电连接。
PCT/CN2021/141446 2021-08-06 2021-12-27 电池壳和电池 WO2023010781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110899666.5 2021-08-06
CN202110899666.5A CN113611961A (zh) 2021-08-06 2021-08-06 电池壳和电池

Publications (1)

Publication Number Publication Date
WO2023010781A1 true WO2023010781A1 (zh) 2023-02-09

Family

ID=78307333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141446 WO2023010781A1 (zh) 2021-08-06 2021-12-27 电池壳和电池

Country Status (2)

Country Link
CN (2) CN115911686A (zh)
WO (1) WO2023010781A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911686A (zh) * 2021-08-06 2023-04-04 国研新能(深圳)技术有限公司 电化学存储金属壳体和电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192889A (zh) * 2018-08-22 2019-01-11 珠海微矩实业有限公司 一种微型电池
KR20200007562A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 이차전지 및 이의 제조방법
CN111416068A (zh) * 2020-04-27 2020-07-14 惠州亿纬锂能股份有限公司 一种电子器件及其制作方法
CN112467266A (zh) * 2020-11-30 2021-03-09 惠州市恒泰科技股份有限公司 钢壳扣式电池的制备方法及钢壳扣式电池
CN113611961A (zh) * 2021-08-06 2021-11-05 国研新能(深圳)技术有限公司 电池壳和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007562A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 이차전지 및 이의 제조방법
CN109192889A (zh) * 2018-08-22 2019-01-11 珠海微矩实业有限公司 一种微型电池
CN111416068A (zh) * 2020-04-27 2020-07-14 惠州亿纬锂能股份有限公司 一种电子器件及其制作方法
CN112467266A (zh) * 2020-11-30 2021-03-09 惠州市恒泰科技股份有限公司 钢壳扣式电池的制备方法及钢壳扣式电池
CN113611961A (zh) * 2021-08-06 2021-11-05 国研新能(深圳)技术有限公司 电池壳和电池

Also Published As

Publication number Publication date
CN113611961A (zh) 2021-11-05
CN115911686A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022227650A1 (zh) 电池壳和电池
WO2022227649A1 (zh) 电池壳和电池
CN103138027A (zh) 高导热电池组件
KR101320392B1 (ko) 리튬 폴리머 전지
CN110024179A (zh) 袋型二次电池
CN107204408A (zh) 一种全极耳方形锂电池的及其制备方法
US20230163432A1 (en) Button battery
WO2023010781A1 (zh) 电池壳和电池
CN113966567B (zh) 电芯与用电装置
KR101735512B1 (ko) 개선된 전극 리드 구조를 갖는 이차전지 및 그 제조방법
CN101816053B (zh) 双电层电容器
WO2022227651A1 (zh) 电池壳和电池
CN106784582A (zh) 适用于大倍率放电的锂离子电池以及极片
KR20130122565A (ko) 파우치형 리튬 이차 전지
WO2021088886A1 (zh) 纽扣电池
CN215578756U (zh) 电池壳和电池
EP3065196A1 (en) Rechargeable battery having connecting member
CN215527815U (zh) 电池壳和电池
CN216311912U (zh) 电池壳和电池
WO2023123234A1 (zh) 电芯、电池及用电设备
CN215070154U (zh) 不锈钢复合板和电池
WO2021012685A1 (zh) 层叠极耳、极片、电芯和电池
CN206313059U (zh) 软包锂离子电池及其电芯
CN113346166A (zh) 纽扣电池组件和电子设备
CN206293485U (zh) 具有铜铝复合一体化负极端子的锂电池盖板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE