WO2021088886A1 - 纽扣电池 - Google Patents

纽扣电池 Download PDF

Info

Publication number
WO2021088886A1
WO2021088886A1 PCT/CN2020/126562 CN2020126562W WO2021088886A1 WO 2021088886 A1 WO2021088886 A1 WO 2021088886A1 CN 2020126562 W CN2020126562 W CN 2020126562W WO 2021088886 A1 WO2021088886 A1 WO 2021088886A1
Authority
WO
WIPO (PCT)
Prior art keywords
button battery
lead
positive electrode
battery according
negative electrode
Prior art date
Application number
PCT/CN2020/126562
Other languages
English (en)
French (fr)
Inventor
赵国荣
辛汉帅
黄凯
欧阳巍
Original Assignee
珠海微矩实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911066931.0A external-priority patent/CN110970580A/zh
Priority claimed from CN202020140489.3U external-priority patent/CN211265619U/zh
Priority claimed from CN202021433034.7U external-priority patent/CN213071223U/zh
Application filed by 珠海微矩实业有限公司 filed Critical 珠海微矩实业有限公司
Publication of WO2021088886A1 publication Critical patent/WO2021088886A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery, and more specifically, to a button battery.
  • the button battery in the related art generally includes a shell composed of two conductive shell halves, the two shell halves being a lower shell and an upper shell, respectively.
  • the lower case has a positive polarity and the upper case has a negative polarity, and the positive and negative electrodes are located at both ends of the button battery.
  • the positive and negative terminals of the circuit board need to be electrically connected to the positive and negative terminals of the button battery respectively. Therefore, the negative terminal of the circuit board is drawn from the upper shell, and the positive terminal is from the bottom.
  • the shell is led out and wound along the shell to the top of the upper shell, and the space utilization rate is low.
  • the technical problem to be solved by the present invention is to provide an improved button battery in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problem is to construct a button battery, which includes a casing and a battery core arranged in the casing, the battery core includes at least one positive electrode sheet and at least one negative electrode sheet;
  • the housing includes a wall, at least one protrusion protruding from the surface of the wall toward or away from the battery core, and at least one lead-out hole that penetrates the wall and the at least one protrusion in the longitudinal direction;
  • the button battery also includes at least one electrical conductor penetrating through the at least one lead-out hole and at least one insulating and sealing body sealingly arranged between the hole wall of the at least one lead-out hole and the at least one electrical conductor, so The at least one electrical conductor is electrically connected to the at least one positive electrode sheet or the at least one negative electrode sheet.
  • each of the protrusions is deformed inwardly to form a pressing part, so as to press and lock the at least one insulating sealing body.
  • the housing includes a lower housing with an opening at the top and an upper housing matching the upper housing. Both the upper housing and the lower housing are made of metal materials, and the wall is formed on the On the shell.
  • the upper case is electrically connected to one of the at least one positive electrode sheet and the at least one negative electrode sheet
  • the at least one electrical conductor is electrically connected to the at least one positive electrode sheet and the at least one negative electrode sheet.
  • the other of the two negative plates is electrically connected.
  • the button battery includes at least two conductive bodies and at least two insulating sealing bodies, and the at least two conductive bodies are electrically connected to the at least one positive electrode sheet and the at least one negative electrode sheet, respectively.
  • the at least one protrusion is stretched and formed from the wall portion toward or away from the battery core;
  • the peripheral edge of the wall portion is hermetically joined to the opening edge of the lower shell by means of laser welding.
  • one end of each of the protrusions away from the wall is spun inwardly to form the squeezing part
  • the angle ⁇ between the pressing part and the protruding part is: 90 0 ⁇ 180 0 .
  • both ends of the at least one insulating sealing body corresponding to the pressing part protrude out of the pressing part.
  • the housing is conductive, and the housing includes a lower housing with an opening at one end and an upper housing fitted at the opening;
  • the button battery further includes at least one positive electrode lug electrically connected to the at least one positive electrode sheet and at least one negative electrode lug electrically connected to the at least one negative electrode sheet, the at least one positive electrode lug and the at least one negative electrode One of the ears is sandwiched between the upper shell and the lower shell and welded to the upper shell and the lower shell, and the other of the at least one positive electrode ear and the at least one negative electrode ear It is electrically connected to the at least one conductor.
  • the welding method is laser soldering.
  • both the upper shell and the lower shell are made of metal materials, the lower shell is in the shape of a cylinder with an open top, and the upper shell is in the shape of a flat plate.
  • the outer ring of one end of the upper shell facing the lower shell is provided with an annular slot, and the annular slot includes a first surface facing the top wall of the lower shell and a first surface facing the lower shell.
  • the annular slot includes a first surface facing the top wall of the lower shell and a first surface facing the lower shell.
  • one of the at least one positive electrode ear and the at least one negative electrode ear is welded to the first surface and the second surface.
  • one of the at least one positive electrode tab and the at least one negative electrode tab is formed by folding an end of one of the at least one positive electrode tab and the at least one negative electrode tab.
  • the other of the at least one positive electrode tab and the at least one negative electrode tab is in a strip shape, and both ends thereof are respectively connected to the other of the at least one positive electrode tab and the at least one negative electrode tab. And the at least one electrical conductor is welded.
  • the battery core is cylindrical
  • the electrical conductor includes a lead-out portion disposed in the lead-out hole, and extends outward from the inner end and outer ring of the lead-out portion and is disposed on the battery core.
  • the flange part
  • the insulating sealing body includes a radial sealing portion and an axial sealing portion integrally coupled to the inner end of the radial sealing portion, and the radial sealing portion is provided between the outer peripheral wall of the lead-out portion and the hole wall of the lead-out hole In between, the axial sealing portion is provided between the end surface of the flange portion and the inner end surface of the lead-out hole.
  • the outer diameter of the axial sealing portion is equivalent to the outer diameter of the flange portion, and the axial sealing portion is interference-fitted on the end surface of the flange portion and the inside of the lead-out hole. Between the end surfaces, the radial sealing portion is interference fit between the outer peripheral wall of the lead-out portion and the hole wall of the lead-out hole.
  • the shell includes a cylindrical lower shell with an opening at the top and an upper shell matching it.
  • the wall is formed on the upper shell, and the protrusion is formed by the wall. The surface of the part extends toward the battery core.
  • the thickness of the upper shell is greater than the thickness of the lower shell.
  • the thickness of the upper shell is 0.2 to 1 mm, and the thickness of the lower shell is 0.05 to 0.5 mm.
  • the outer end surface of the radial sealing portion is flush with the outer end surface of the wall portion or protrudes from the outer end surface of the wall portion, and the outer end surface of the lead-out portion is sealed with the radial direction.
  • the outer end surface of the portion is flush with or protrudes from the outer end surface of the radial sealing portion.
  • both the upper shell and the lower shell are made of metallic conductive materials, and the upper shell is electrically connected to one of the at least one positive electrode sheet and the at least one negative electrode sheet.
  • the at least one electrical conductor is electrically connected to the other of the at least one positive electrode sheet and the at least one negative electrode sheet.
  • the peripheral edge of the wall portion is hermetically joined to the opening edge of the lower shell by means of laser welding.
  • the protruding portion is formed by stretching the wall portion downward in the axial direction, and the protruding portion extends downward into the battery core.
  • the casing is provided with a liquid injection hole for injecting electrolyte into the casing.
  • the battery core is placed in the housing in the form of a spiral winding or a laminated sheet.
  • the structure configuration can make the positive and negative electrodes of the button battery located on the same side, which improves the space utilization rate.
  • FIG. 1 is a schematic diagram of a longitudinal cross-sectional structure of a button battery in a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a longitudinal cross-sectional structure of a button battery in a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of a longitudinal cross-sectional structure of a button battery in a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a longitudinal cross-sectional structure of a button battery in a fourth embodiment of the present invention.
  • Fig. 5 is a schematic plan view of the positive electrode plate in some embodiments of the present invention.
  • FIG. 6 is a schematic diagram of a longitudinal cross-sectional structure of a button battery in a fifth embodiment of the present invention.
  • FIG. 1 shows the button battery in the first embodiment of the present invention.
  • the button battery can be a solid-state battery, a semi-solid battery or a liquid battery. It can include a sealed casing 1, a battery cell 2, an insulating sealing body 3, and a conductive Body 4.
  • the housing 1 includes a lower shell 12 with an opening at the top and a conductive upper shell 11 matching the lower shell 12.
  • the upper case 11 includes a wall 114, a protrusion 111 protruding away from the cell 2 from the surface of the wall 114, and a lead hole 113 penetrating through the wall 114 and the protrusion 111.
  • the central axis of the lead hole 113 can be aligned with the The central axis of the protrusion 111 coincides.
  • the conductor 4 is longitudinally arranged in the lead hole 113, and the insulating sealing body 3 is arranged between the hole wall of the lead hole 113 and the conductor 4 to insulate and isolate the upper shell 11 and the conductor 4.
  • the protruding part 111 deforms inwardly to form a pressing part 112 to lock the insulating and sealing body 3.
  • the number of the lead-out hole 113, the insulating sealing body 3, and the conductive body 4 is not limited to one, and two or more may also be applicable.
  • the battery cell 2 is arranged in the casing 1, which includes at least one positive electrode sheet 21, at least one negative electrode sheet 22, and a separator 23 located between the positive electrode sheet 21 and the negative electrode sheet 22, and the positive electrode sheet 21 is electrically connected to the upper shell 11.
  • the negative electrode sheet 22 is electrically connected to the conductor 4. It is understandable that in other embodiments, the negative electrode sheet 22 may be electrically connected to the upper case 11 and the positive electrode sheet 21 may be electrically connected to the conductor 4.
  • the battery core 2 may be in the form of a spiral winding, or may be in the form of a laminated sheet. In the embodiment shown in FIG. 1, the battery core 2 is in the form of a spiral winding, and its central axis coincides with the central axis of the housing 1. In some embodiments, the battery cell 2 may further include a receiving space 24, and the center axis of the receiving space 24 may coincide with the center axis of the battery core 2. After the winding of the battery core 2 is completed, the winding core is drawn out to form an axial cavity, and the axial cavity forms the accommodating space 24.
  • the conductor 4 is longitudinally penetrated in the insulating sealing body 3, and its two ends are respectively exposed from the two ends of the insulating sealing body 3.
  • the conductor 4 can be longitudinally pierced in the accommodating space 24, the lower end of the conductor 4 can extend to the vicinity of the bottom of the accommodating space 24 to be connected to the lower end of the negative plate 22, and the lower end of the conductor 4 has a certain distance from the bottom wall of the lower shell 12 In order to be insulated and isolated from the lower shell 12.
  • the conductor 4 can be made of a rigid conductive material to enhance pressure resistance; or the conductor 4 can also be made of a flexible conductive material, so that the conductor 4 can be directly connected to electronic components such as a circuit board or load , Without the need for additional welding wires.
  • the housing 1 can be roughly in the shape of a flat cylinder in some embodiments, that is, the diameter of the button battery is larger than its height, the thickness of the housing 1 can be 0.1-1 mm, and the diameter of the housing 1 (The diameter of the coin cell) can be 6mm or more.
  • Both the lower shell 12 and the upper shell 11 can be made of metal materials, such as stainless steel, aluminum, iron, and other materials that can be welded by laser.
  • the lower shell 12 may have a cylindrical shape with an opening at the top. It may include a circular bottom wall 121 and a cylindrical side that surrounds the circumference of the circular bottom wall 121 and is perpendicular to the bottom wall 121 ⁇ 122.
  • the wall 114 can cover the top opening of the lower shell 12 in the shape of a circular flat plate.
  • the peripheral edge of the wall 114 can be sealingly joined to the edge of the opening of the lower shell 12 by laser welding.
  • the side facing away from the cell 2 is stretched and formed.
  • the insulating sealing body 3 is sealed in the lead-out hole 113, and it can be made of flexible insulating materials such as silica gel and rubber, which has better sealing performance.
  • the diameter of the insulating sealing body 3 is larger than the diameter of the lead hole 113, so that the insulating sealing body 3 and the lead hole 113 have an interference fit, and the sealing performance is better.
  • the insulating sealing body 3 can also be fixed by the interference fit.
  • the diameter of the lead hole 113 may be 4 mm or less.
  • the diameter of the lead-out hole 113 may be approximately 5%-35% of the diameter of the housing 1.
  • the protruding portion 111 and the lead-out hole 113 are located in the middle of the wall 114, and the axis thereof may coincide with the center axis of the housing 1 or have a certain included angle.
  • the protrusion 111 and the lead hole 113 may also be located at other positions of the wall 114, for example, near the periphery of the wall 114.
  • the axis is parallel or inclined at a certain angle, and can be designed according to actual needs.
  • the included angle between the protruding portion 111 and the wall portion 114 may be 30 0 -150 0 .
  • the squeezing portion 112 may be formed by spinning the end of the protruding portion 111 away from the wall portion 114 inwardly, which is convenient for processing and manufacturing. After the squeezing portion 112 is spun inward, the squeezing and pressing the insulating sealing body 3 is elastically deformed, so that the insulating sealing body 3 is locked and fixed in the lead hole 113 to avoid falling off.
  • the locking and fixing method has the advantages of simple structure, reliable locking, simple manufacturing process, etc., and there is no need to provide an additional fixing member to fix the insulating sealing body 3, and the space utilization rate is high.
  • the two ends of the insulating sealing body 3 can protrude out of the lead holes 113, the overall height of the insulating sealing body 3 can be 0.5-5 mm, and the height of the two ends protruding from the lead holes 113 can be less than 1 mm. Since the diameter of the insulating sealing body 3 is larger than the diameter of the lead hole 113, the part of the insulating sealing body 3 located in the lead hole 113 is squeezed and contracted, and the part of the insulating sealing body 3 protruding from the lead hole 113 expands and resets, so that the two ends The size of the protruding part is larger than the size of the lead-out hole 113, thereby further improving the sealing effect and the locking effect. In addition, the end of the insulating sealing body 3 corresponding to the pressing portion 112 protrudes out of the pressing portion 112, and the end of the pressing portion 112 can also be embedded in the insulating sealing body 3, and the locking effect is better.
  • the protruding portion 111 may be in the shape of a vertical cylinder, the pressing portion 112 may be in the shape of a truncated cone, and the angle ⁇ between the pressing portion 112 and the protrusion 111 is an obtuse angle, that is, 90 0 ⁇ 180 0 , It is convenient for spinning to form and lock the insulating sealing body 3.
  • the angle ⁇ between the pressing portion 112 and the projecting portion 111 may be between 1200-1600, within this range, guarantee good locking effect.
  • the circuit board When the button battery is connected to the circuit board, the circuit board can be provided with a relief hole corresponding to the protrusion 111, through which the relief hole and the protrusion 111 are inserted into each other, thereby effectively integrating with the circuit board space and increasing the energy density of the battery cell. In addition, It can also facilitate the installation and positioning of the circuit board.
  • the lead-out hole 113 can also be used to inject electrolyte into the casing 1. After the lead-out hole 113 is filled, the insulating sealing body 3 can be inserted for sealing, so there is no need to open an additional injection hole. In other embodiments, a liquid injection hole (not shown) may be separately opened on the wall 114 for injecting electrolyte into the casing 1.
  • the button battery may further include a blocking member (not shown) for blocking the liquid injection hole after the liquid injection is completed.
  • a lower shell 12 is provided, and the battery core 2 is arranged in the lower shell 12;
  • FIG. 2 shows a button battery in a second embodiment of the present invention.
  • the button battery can be a solid-state battery, a semi-solid battery or a liquid battery. It can include a sealed casing 1, a battery core 2, an insulating sealing body 3, and a conductive Body 4.
  • the housing 1 includes a lower shell 12 with an opening at the top and a conductive upper shell 11 matching the lower shell 12.
  • the upper case 11 includes a wall 114, a protrusion 111 protruding from the surface of the wall 114 toward the cell 2, a lead-out hole 113 penetrating the wall 114 and the protrusion 111, and a penetrating wall 114 for feeding into the housing 1.
  • the conductor 4 is longitudinally arranged in the lead hole 113, and the insulating sealing body 3 is arranged between the hole wall of the lead hole 113 and the conductor 4 to insulate and isolate the upper shell 11 and the conductor 4.
  • the protruding part 111 deforms inwardly to form a pressing part 112 to lock the insulating and sealing body 3. Understandably, the number of the lead-out hole 113, the insulating sealing body 3, and the conductive body 4 is not limited to one, and two or more may also be applicable.
  • the battery cell 2 is arranged in the casing 1, which includes at least one positive electrode sheet 21, at least one negative electrode sheet 22, and a separator 23 located between the positive electrode sheet 21 and the negative electrode sheet 22, and the positive electrode sheet 21 is electrically connected to the upper shell 11.
  • the negative electrode sheet 22 is electrically connected to the conductor 4. It is understandable that in other embodiments, the negative electrode sheet 22 may be electrically connected to the upper case 11 and the positive electrode sheet 21 may be electrically connected to the conductor 4.
  • the battery core 2 may be in the form of a spiral winding, or may be in the form of a laminated sheet. In the embodiment shown in FIG. 2, the battery core 2 is in the form of a spiral winding, and its central axis coincides with the central axis of the housing 1.
  • the battery cell 2 may further include a receiving space 24 into which the protruding portion 111 and the pressing portion 112 extend.
  • the central axis of the accommodating space 24 may coincide with the central axis of the battery 2.
  • the protruding portion 111 and the squeezing portion 112 extend into the axial cavity, so that the space utilization rate of the button battery can be improved.
  • the protruding portion 111 and the pressing portion 112 are located below the top surface of the wall portion 114, when external electronic components such as circuit boards are needed, the mounting positions of the circuit boards and other electronic components are not limited, and the versatility is higher.
  • the conductor 4 is longitudinally penetrated in the insulating sealing body 3, and its two ends are respectively exposed from the two ends of the insulating sealing body 3.
  • the conductor 4 can be longitudinally pierced in the accommodating space 24, the lower end of the conductor 4 can extend to the vicinity of the bottom of the accommodating space 24 to be connected to the lower end of the negative plate 22, and the lower end of the conductor 4 has a certain distance from the bottom wall of the lower shell 12 In order to be insulated and isolated from the lower shell 12.
  • the conductor 4 can be made of a rigid conductive material to enhance pressure resistance; or the conductor 4 can also be made of a flexible conductive material, so that the conductor 4 can be directly connected to electronic components such as a circuit board or load , Without the need for additional welding wires.
  • the housing 1 can be in the shape of a flat cylinder in some embodiments, and the lower housing 12 and the upper housing 11 can be made of metal materials, such as stainless steel, aluminum, iron and other metal materials that can be welded by laser. to make.
  • the lower shell 12 may be in the shape of a cylinder with an opening at the top
  • the wall 114 may be a flat plate covering the top opening of the lower shell 12
  • the peripheral edge of the wall 114 may be laser welded to the lower shell 12 The edges of the opening are sealed together.
  • the insulating sealing body 3 is sealed in the lead-out hole 113, and it can be made of flexible insulating materials such as silica gel and rubber, which has better sealing performance.
  • the protruding portion 111 and the lead-out hole 113 are located in the middle of the wall 114, and the protruding portion 111 can be stretched from the middle of the wall 114 to the side facing the battery core 2.
  • the central axis of the protrusion 111 and the lead hole 113 may coincide with the central axis of the housing 1, or the central axis of the protrusion 111 and the lead hole 113 may also have a certain angle with the central axis of the housing 1.
  • the protruding portion 111 and the lead-out hole 113 can also be located at other positions of the wall portion 114, for example, they can also be located near the periphery of the wall portion 114.
  • the squeezing portion 112 may be formed by spinning the end of the protruding portion 111 away from the wall portion 114 inwardly, which is convenient for processing and manufacturing. After the squeezing part 112 is rotated inward, it presses the insulating sealing body 3 to be elastically deformed, so that the insulating sealing body 3 is locked and fixed in the lead hole 113 to avoid falling off.
  • the locking and fixing method has the advantages of simple structure, reliable locking, simple manufacturing process, etc., and there is no need to provide an additional fixing member to fix the insulating sealing body 3, and the space utilization rate is high.
  • Both ends of the insulating sealing body 3 can protrude out of the lead holes 113 respectively.
  • the included angle ⁇ between the squeezing portion 112 and the protruding portion 111 is an obtuse angle, that is, 90 0 ⁇ 180 0 , which is convenient for spinning to form and lock the insulating sealing body 3.
  • the angle ⁇ between the pressing portion 112 and the projecting portion 111 may be between 1200-1600, within this range, guarantee good locking effect.
  • the liquid injection hole 115 is used to inject electrolyte into the casing 1. After the liquid injection is completed through the liquid injection hole 115, the plugging member 5 is inserted to seal the liquid injection hole 115.
  • a lower shell 12 is provided, and the battery core 2 is arranged in the lower shell 12;
  • Figure 3 shows the button battery in the third embodiment of the present invention.
  • the button battery includes a sealed casing 1, a battery cell 2, two insulating and sealing bodies 3, and two The conductor 4 is electrically connected to the positive electrode sheet 21 and the negative electrode sheet 22 of the cell 2 respectively.
  • the housing 1 includes a lower housing 12 with an opening at the top and an upper housing 11 matching it.
  • the lower housing 12 and the upper housing 11 can be made of stainless steel, aluminum, iron and other metal materials that can be welded by laser. Or made of laser weldable plastics such as Peek.
  • the upper shell 11 includes a wall 114, two protrusions 111 protruding away from the cell 2 from the surface of the wall 114, and two lead holes 113 penetrating the two protrusions 111 and the wall 114 respectively.
  • the two electrical conductors 4 are respectively arranged in the two lead-out holes 113 along the longitudinal direction, and the two insulating sealing bodies 3 are respectively arranged between the wall of the two lead-out holes 113 and the two electrical conductors 4 to respectively The two electrical conductors 4 are separated from the wall 114.
  • the two protruding parts 111 are respectively deformed inwardly to form a pressing part 112 to lock the two insulating and sealing bodies 3. Understandably, the number of the protruding portion 111, the lead-out hole 113, the insulating sealing body 3, and the conductive body 4 is not limited to two, and more than two may also be applicable. In other embodiments, the two protrusions 111 may also be respectively provided on different sides of the housing 1, that is, the two protrusions 111 may also be formed on the upper shell 11 and the lower shell 12 respectively.
  • the two protrusions 111 are respectively located near the periphery of the wall 114. Further, the two protrusions 111 may be symmetrically arranged on two opposite sides of the wall 114, respectively. In other embodiments, the two protrusions 111 may also be located at other positions of the wall 114, for example, one of the protrusions 111 is located near the periphery of the wall 114, and the other is located at the middle of the wall 114.
  • the insulating sealing body 3 is sealed and plugged in the lead hole 113 and has an interference fit with the lead hole 113. Both ends of the insulating sealing body 3 can protrude out of the lead holes 113 respectively. Since the diameter of the insulating sealing body 3 is larger than the diameter of the lead hole 113, the part of the insulating sealing body 3 located in the lead hole 113 is squeezed and contracted, and the part of the insulating sealing body 3 protruding from the lead hole 113 expands and resets, so that the two ends The size of the protruding part is larger than the size of the lead-out hole 113, thereby further improving the sealing effect and the locking effect.
  • the end of the insulating sealing body 3 corresponding to the pressing portion 112 protrudes out of the pressing portion 112, and the end of the pressing portion 112 can also be embedded in the insulating sealing body 3, and the locking effect is better.
  • the end of the insulating sealing body 3 opposite to the battery core 2 protrudes out of the wall 114, and there is a certain gap between the battery core 2 and the battery core 2 to provide a space for temperature deformation of the battery core 2 and prevent the battery core 2 from contacting the upper part
  • the shell 11 contacts with a short circuit, which is more safe.
  • the conductor 4 is longitudinally penetrated in the insulating sealing body 3.
  • One end (upper end) of the conductor 4 away from the core 2 can extend out of the insulating sealing body 3, and the other end (lower end) can be flush with or extend out of the insulating sealing body 3.
  • FIGS 4-5 show a button battery in a fourth embodiment of the present invention.
  • the button battery can be a solid-state battery, a semi-solid battery or a liquid battery, and it can include a sealed conductive housing 1 and arranged in the housing 1.
  • the battery core 2 insulates and seals through the conductor 3 of the housing 1, the positive lug 201 electrically connected to the positive electrode of the battery core 2, and the negative electrode lug 202 electrically connected to the negative electrode of the battery core 2.
  • the casing 1 and the conductor 3 are electrically connected to the positive ear 201 and the negative ear 202 respectively, and are respectively used as the positive and negative lead electrodes of the button battery for external electronic components such as circuit boards or loads.
  • the housing 1 and the conductor 3 may be electrically connected to the negative electrode ear 202 and the positive electrode ear 201 respectively; the number of the conductor 3, the negative electrode ear 202, and the positive electrode ear 201 is also not limited. For one, two or more than two can also be applied.
  • the electric core 2 can be placed in the housing 1 in the form of a spiral winding, and its axis can coincide with the central axis of the housing 1.
  • the cell 2 may include at least one positive electrode sheet 21, at least one negative electrode sheet 22, and at least one separator 23 arranged between the at least one positive electrode sheet 21 and the at least one negative electrode sheet 22.
  • the positive electrode sheet 21 can be formed by coating a semiconductor material (such as lithium cobaltate), a conductive agent (such as acetylene black) and a binder (such as PVDF) on a positive electrode current collector (such as aluminum foil), and the negative electrode sheet 22 can be made of a conductive material.
  • the positive electrode lug 201 is electrically connected to the at least one positive electrode sheet 21, which can be formed by folding the end of the at least one positive electrode sheet 21 away from the winding core, which can reduce the space of inactive material, and can also avoid the welding of the positive electrode lug 201 and the positive electrode sheet 21.
  • the technological process improves the efficiency of the product manufacturing process.
  • the negative tab 202 is electrically connected to the at least one negative tab 22.
  • the negative tab 202 can be a metal conductive tape such as copper tape or aluminum tape, and can be integrally joined to the at least one negative tab 22 by welding. Understandably, in other embodiments, the positive electrode tab 201 and the positive electrode tab 21 can also be separately manufactured and then connected together, and the negative electrode tab 202 can also be formed by folding the end of the at least one negative electrode tab 22 away from the winding core. In other embodiments, the battery cell 2 may also be placed in the housing 1 in the form of a laminate.
  • the housing 1 can be made of metal materials, such as stainless steel, aluminum, iron, and other metal materials that can be welded by laser.
  • the housing 1 may be roughly flat cylindrical, and its diameter is greater than its height.
  • the height of the housing 1 may be 0.1-0.9 times its diameter, for example 0.25-0.7 times.
  • the thickness of the housing 1 may be 0.1-1 mm, for example 0.13-0.35 mm.
  • the casing 1 may include a cylindrical lower casing 12 with an opening at the top and a circular flat upper casing 11 matched with it.
  • the periphery of the upper casing 11 and the opening edge of the lower casing 12 are sealingly combined with each other. together.
  • the upper shell 11 may also be provided with a liquid injection hole 112 for injecting electrolyte into the shell 1.
  • the button battery may further include a blocking member (not shown) for blocking the liquid injection hole 112 after the liquid injection is completed.
  • the upper shell 11 is provided with a lead-out hole 110 for the conductor 3 to pass through.
  • An insulating sealing body 4 is sealably plugged between the wall of the lead-out hole 110 and the conductor 3, and the insulating sealing body 4 connects the conductor 3 and the upper shell 11 are insulated.
  • the insulating sealing body 4 can be made of insulating materials such as insulating glue, ceramic coating film, or glass coating film.
  • the cross-section of the insulating sealing body 4 is roughly I-shaped, and the cross-sectional size of the end portions at both ends thereof is larger than the cross-sectional size of the middle connecting portion.
  • the middle connecting portion of the insulating sealing body 4 is longitudinally penetrated in the lead hole 110, and both ends abut against the upper and lower sides of the upper shell 11 respectively, so that the insulating sealing body 4 is clamped and fixed in the lead hole 110 to avoid Fall off.
  • the conductive body 3 is inserted into the insulating sealing body 4 in the longitudinal direction, and its two ends are respectively exposed from the two ends of the insulating sealing body 4.
  • the conductor 3 may be rigid and may be made of metal conductive materials such as stainless steel, aluminum, iron, copper, etc., to enhance compression resistance, and its shape may be elongated, T-shaped, or I-shaped.
  • the conductor 3 is T-shaped and includes a head 31 with a larger size and a rod 32 connected to the head 31.
  • the rod portion 32 penetrates the insulating sealing body 4 in the longitudinal direction, and the head portion 31 is located outside the casing 1 to facilitate the external lead wire.
  • the conductor 3 can also be flexible, so that when an external circuit board or load and other electronic components are needed, the conductor 3 can be directly connected to the electronic components without additional welding. lead.
  • the positive lug 201 is sandwiched between the periphery of the upper shell 11 and the opening edge of the lower shell 12, and can be integrated with the upper shell 11 and the lower shell 12 by laser soldering, which increases the welding firmness and reliability. Good, the welding temperature is low, and the process flow of separate welding of the positive electrode lug 201 and the upper shell 11 can be avoided, and the production process efficiency of the product can be improved.
  • the outer ring of one end of the upper shell 11 facing the lower shell 12 may be provided with an annular slot 111.
  • the annular slot 111 includes a first surface A facing the top wall of the lower shell 12 and an inner wall facing the lower shell 12.
  • the positive lug 201 can be welded together with the first side A and the second side B to increase the welding area and improve the reliability of the welding.
  • a lead hole 110 and a liquid injection hole 112 are respectively formed on the upper shell 11;
  • the end of the positive electrode sheet 21 away from the winding core is directly used as the positive electrode ear 201, placed on the edge of the opening of the lower case 12, and the upper case 11 is fastened to fit, and the upper case 11, the lower case 12, and the positive electrode ear are connected by laser soldering. 201 welded together.
  • Fig. 6 shows a button battery in the fifth embodiment of the present invention, which may include a housing 1 with a lead-out hole 110, a cylindrical battery core 2 arranged in the housing 1 along the axial direction
  • the casing 1, the electric core 2, the conductor 3 and the insulating and sealing body 4 can all be arranged coaxially.
  • the button battery can be roughly in the shape of a flat cylinder, that is, the outer diameter of the button battery is larger than its height.
  • the outer diameter of the casing 1 (the outer diameter of the button battery) may be 4.5-40 mm, preferably 6-30 mm. mm.
  • the housing 1 may include a cylindrical lower housing 12 with an opening at the top and an upper housing 11 matching it.
  • the upper case 11 may include a flat wall 111 and a cylindrical protrusion 112 formed integrally extending from the surface of the wall 111 toward the cell 2.
  • the lead-out hole 110 may be formed on the upper shell 11 and may penetrate the wall portion 111 and the protruding portion 112 in the axial direction. Since the lead-out hole 110 is formed on the upper shell 11, and to ensure airtightness, the upper shell 11 needs to have a certain thickness.
  • the lower shell 12 can be made thin, and its thickness can be smaller than the thickness of the upper shell 11.
  • the thickness of the upper shell 11 may be 0.2 to 1 mm
  • the thickness of the lower shell 12 may be 0.05 to 0.5 mm.
  • Both the lower shell 12 and the upper shell 11 can be made of metal conductive materials, such as stainless steel, aluminum, iron, and other materials that can be welded by laser.
  • the peripheral edge of the wall 111 can be hermetically combined with the opening edge of the lower shell 12 by means of laser welding, and the protruding portion 112 can be formed by stretching the wall 111 downward in the axial direction.
  • the upper shell 11 may also be provided with a liquid injection hole (not shown) for injecting electrolyte into the shell 1.
  • the button battery may also include a blocking member (not shown) for blocking the liquid injection hole after the liquid injection is completed.
  • the cell 2 may include at least one positive electrode sheet 21, at least one negative electrode sheet 22, and at least one separator 23 arranged between the at least one positive electrode sheet 21 and the at least one negative electrode sheet 22.
  • the positive electrode sheet 21 may include a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector.
  • the positive current collector may be a conductive metal foil such as aluminum foil
  • the positive active material layer may include a positive active material, a conductive agent, and a binder.
  • the positive electrode active material can usually be a semiconductor material such as lithium cobaltate
  • the conductive agent can be acetylene black
  • the binder can be PVDF.
  • the negative electrode sheet 22 may include a negative electrode current collector and a negative electrode active material layer coated on the negative electrode current collector.
  • the negative current collector may be a conductive metal foil such as copper foil
  • the negative active material layer may include a negative active material layer (for example, a conductive material such as graphite), a conductive agent (for example, acetylene black), and a thickener (such as CMC) and adhesives (such as SBR).
  • the winding core is drawn out to form an axial cavity whose central axis coincides with the central axis of the battery 2 ,
  • the protrusion 112 extends downward into the axial cavity, which improves the space utilization rate of the button battery.
  • the positive electrode sheet 21 is electrically connected to the upper shell 11, and the negative electrode sheet 22 is electrically connected to the conductor 3.
  • the upper shell 11 and the conductor 3 respectively serve as the positive and negative output interfaces of the button battery for external electronic components such as circuit boards or loads.
  • the positive and negative output ports of the battery are led out from the same side (upper side) of the battery, and the button battery has a high space utilization rate.
  • the negative electrode sheet 22 may be electrically connected to the upper case 11, and the positive electrode sheet 21 may be electrically connected to the conductor 3.
  • the lower end of the conductor 3 is arranged in the axial cavity of the cell 2, and the upper end is arranged in the lead hole 110.
  • the conductor 3 may have a stepped cylindrical shape, which may include a cylindrical lead portion 31 and a flange portion 32 formed by an inner end (lower end) of the lead portion 31 located in the housing 1 and an outer ring extending radially outward.
  • the lead part 31 is arranged in the lead hole 110 along the axial direction, and the outer diameter of the lead part 31 is small, so that the hole diameter of the lead hole 110 can be made smaller, which is beneficial to the sealing of the lead hole 110.
  • the flange portion 32 is arranged in the axial cavity of the battery core 2 along the axial direction.
  • the flange portion 32 has a larger outer diameter, which can axially squeeze the insulating and sealing body 4, thereby further improving the resistance to the lead hole 110. seal.
  • the insulating sealing body 4 can be cylindrical, and it can be made of elastic materials such as silica gel.
  • the insulating sealing body 4 is squeezed by the conductor 3 and the upper shell 11 to achieve radial and axial sealing of the lead hole 110.
  • the insulating sealing body 4 may include a cylindrical radial sealing portion 41 and an axial sealing portion 42 integrated with the inner end (lower end) of the radial sealing portion 41, and the radial sealing portion 41 is interference-fitted on the outer circumference of the lead portion 31 Between the wall and the hole wall of the lead hole 110, the axial sealing portion 42 is interference fit between the upper end surface of the flange portion 32 and the lower end surface of the lead hole 110.
  • the outer diameter of the axial sealing portion 42 is greater than the outer diameter of the radial sealing portion 41, and the outer diameter of the axial sealing portion 42 may be equivalent to the outer diameter of the flange portion 32 and the outer diameter of the protruding portion 112.
  • the inner ring and the outer ring of the radial sealing portion 41 may be respectively provided with at least one ring of annular convex hulls, so as to respectively press the at least one ring of annular convex hulls against the outer side of the radial sealing part 41 by interference.
  • the wall and the inner side wall of the lead-out hole 110 can further improve the sealing effect of the insulating sealing body 4.
  • the outer end surface (upper end surface) of the radial sealing portion 41 may be flush or substantially flush with the outer end surface of the wall portion 111. In other embodiments, the outer end of the radial sealing portion 41 may also protrude from the wall 111. Since the outer diameter of the radial sealing portion 41 is slightly larger than the diameter of the lead hole 110, the radial sealing portion 41 is located in the lead hole 110.
  • the middle part is squeezed and contracted, and the part of the upper end of the radial sealing portion 41 protruding from the lead-out hole 110 expands and resets, so that the size of the upper end projecting part is larger than the size of the lead-out hole 110, thereby improving the insulating sealing body 4 and the lead-out hole The bonding power between 110.
  • the outer end surface of the lead-out portion 31 can protrude from the outer end surface of the radial sealing portion 41 to facilitate connection and conduction with external equipment.
  • the outer end surface of the lead-out portion 31 may also be flush or substantially flush with the outer end surface of the radial sealing portion 41, and may be connected to an external device by welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明涉及一种纽扣电池,包括壳体以及设置于所述壳体内的电芯,所述电芯包括至少一个正极片和至少一个负极片;所述壳体包括壁部、由所述壁部的表面朝向或背离所述电芯凸出的至少一个突出部以及沿纵向贯穿所述壁部和所述至少一个突出部的至少一个引出孔。所述纽扣电池还包括穿设于所述至少一个引出孔内的至少一个导电体以及密封地设置于所述至少一个引出孔的孔壁与所述至少一个导电体之间的至少一个绝缘密封体,所述至少一个导电体与所述至少一个正极片或所述至少一个负极片电性连接。该结构配置可使纽扣电池的正、负极位于同一侧,提高空间利用率。

Description

纽扣电池 技术领域
本发明涉及一种电池,更具体地说,涉及一种纽扣电池。
背景技术
相关技术中的纽扣电池通常包括由两个可导电的壳体半部组成的壳体,该两个壳体半部分别为下壳和上壳。通常,下壳具有正极性,上壳具有负极性,正、负极位于该纽扣电池的两端。在一些应用场合如需要安装电路板时,因电路板的正、负极接口分别需与纽扣电池的正、负极电性连接,因此电路板的负极接口从上壳上引出,而正极接口则从下壳引出并沿着壳体绕至上壳的上方,空间利用率较低。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的纽扣电池。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种纽扣电池,包括壳体以及设置于所述壳体内的电芯,所述电芯包括至少一个正极片和至少一个负极片;所述壳体包括壁部、由所述壁部的表面朝向或背离所述电芯凸出的至少一个突出部以及沿纵向贯穿所述壁部和所述至少一个突出部的至少一个引出孔;所述纽扣电池还包括穿设于所述至少一个引出孔内的至少一个导电体以及密封地设置于所述至少一个引出孔的孔壁与所述至少一个导电体之间的至少一个绝缘密封体,所述至少一个导电体与所述至少一个正极片或所述至少一个负极片电性连接。
在一些实施例中,每一所述突出部均向内变形形成挤压部,以挤压并锁紧所述至少一个绝缘密封体。
在一些实施例中,所述壳体包括顶部具有开口的下壳和与之相匹配的上壳,所述上壳和所述下壳均采用金属材料制成,所述壁部形成于所述上壳上。
在一些实施例中,所述上壳与所述至少一个正极片和所述至少一个负极片二者之一电性连接,所述至少一个导电体与所述至少一个正极片和所述至少一个负极片二者之另一电性连接。
在一些实施例中,所述纽扣电池包括至少两个导电体以及至少两个绝缘密封体,所述至少两个导电体分别与所述至少一个正极片和所述至少一个负极片电性连接。
在一些实施例中,所述至少一个突出部分别由所述壁部向朝向或背离所述电芯的一侧拉伸成型;
所述壁部的周缘通过激光焊接的方式与所述下壳的开口边缘密封地结合在一起。
在一些实施例中,每一所述突出部远离所述壁部的一端向内旋压形成所述挤压部;
所述挤压部与所述突出部之间的夹角α为:90 0<α<180 0
在一些实施例中,所述至少一个绝缘密封体与所述挤压部相对应的一端均伸出所述挤压部之外。
在一些实施例中,所述壳体可导电,所述壳体包括一端设有开口的下壳以及配合在所述开口处的上壳;
所述纽扣电池还包括与所述至少一个正极片电性连接的至少一个正极耳和与所述至少一个负极片电性连接的至少一个负极耳,所述至少一个正极耳和所述至少一个负极耳中的一个夹设于所述上壳和所述下壳之间并与所述上壳和所述下壳焊接在一起,所述至少一个正极耳和所述至少一个负极耳中的另一个与所述至少一个导电体电性连接。
在一些实施例中,所述焊接方式为激光锡焊。
在一些实施例中,所述上壳和所述下壳均采用金属材料制成,所述下壳呈顶部开口的筒状,所述上壳呈平板状。
在一些实施例中,所述上壳朝向所述下壳的一端外圈设有环形开槽,所述环形开槽包括面向所述下壳的顶壁的第一面以及面向所述下壳的内壁的第二面,所述至少一个正极耳和所述至少一个负极耳中的一个与所述第一面和所述第二面均贴合焊接在一起。
在一些实施例中,所述至少一个正极耳和所述至少一个负极耳中的一个由所述至少一个正极片和所述至少一个负极片中的一个的一端翻折形成。
在一些实施例中,所述至少一个正极耳和所述至少一个负极耳中的另一个呈带状,且其两端分别与所述至少一个正极片和所述至少一个负极片中的另一个以及所述至少一个导电体焊接。
在一些实施例中,所述电芯呈筒状,所述导电体包括设置于所述引出孔中的引出部以及由所述引出部的内端外圈向外延伸并设置于所述电芯中的凸缘部;
所述绝缘密封体包括径向密封部和一体结合于所述径向密封部内端的轴向密封部,所述径向密封部设置于所述引出部的外周壁和所述引出孔的孔壁之间,所述轴向密封部设置于所述凸缘部的端面和所述引出孔的内端面之间。
在一些实施例中,所述轴向密封部的外径与所述凸缘部的外径相当,所述轴向密封部过盈配合于所述凸缘部的端面和所述引出孔的内端面之间,所述径向密封部过盈配合于所述引出部的外周壁和所述引出孔的孔壁之间。
在一些实施例中,所述壳体包括顶部设有开口的圆筒状下壳以及与之相匹配的上壳,所述壁部形成于所述上壳上,所述突出部由所述壁部的表面朝向所述电芯延伸。
在一些实施例中,所述上壳的厚度大于所述下壳的厚度。
在一些实施例中,所述上壳的厚度为0.2~1mm,所述下壳的厚度为0.05~0.5mm。
在一些实施例中,所述径向密封部的外端面与所述壁部的外端面齐平或凸出于所述壁部的外端面,所述引出部的外端面与所述径向密封部的外端面齐平或凸出于所述径向密封部的外端面。
在一些实施例中,所述上壳和所述下壳均采用金属导电材料制成,所述上壳与所述至少一个正极片和所述至少一个负极片二者之一电性连接,所述至少一个导电体与所述至少一个正极片和所述至少一个负极片二者之另一电性连接。
在一些实施例中,所述壁部的周缘通过激光焊接的方式与所述下壳的开口边缘密封地结合在一起。
在一些实施例中,所述突出部由所述壁部沿轴向向下拉伸成型,所述突出部向下伸入到所述电芯中。
在一些实施例中,所述壳体上开设有用于往所述壳体中注入电解液的注液孔。
在一些实施例中,所述电芯采用螺旋绕组的形式或叠片的形式放置于所述壳体中。
有益效果
实施本发明至少具有以下有益效果:该结构配置可使纽扣电池的正、负极位于同一侧,提高空间利用率。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例中纽扣电池的纵向剖面结构示意图;
图2是本发明第二实施例中纽扣电池的纵向剖面结构示意图;
图3是本发明第三实施例中纽扣电池的纵向剖面结构示意图;
图4是本发明第四实施例中纽扣电池的纵向剖面结构示意图;
图5是本发明一些实施例中正极片的平面展开示意图;
图6是本发明第五实施例中纽扣电池的纵向剖面结构示意图。
本发明的实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来 实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,术语“内”、“外”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,本文所使用的术语“竖直”、“水平”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、 “安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1示出了本发明第一实施例中的纽扣电池,该纽扣电池可以为固态电池、半固态电池或液态电池,其可包括密封的壳体1、电芯2、绝缘密封体3以及导电体4。壳体1包括顶部具有开口的下壳12和与之相匹配的可导电的上壳11。该上壳11包括壁部114、由壁部114的表面背离电芯2凸出的突出部111、以及贯穿壁部114和突出部111的引出孔113,该引出孔113的中轴线可与该突出部111的中轴线重合。导电体4纵向设置于引出孔113内,绝缘密封体3设置于引出孔113的孔壁与导电体4之间,以将上壳11和导电体4绝缘隔离。突出部111向内变形形成挤压部112,以锁紧绝缘密封体3。可以理解地,该引出孔113、绝缘密封体3、导电体4的数量也不局限于一个,两个或两个以上也可以适用。
电芯2设置于该壳体1中,其包括至少一个正极片21和至少一个负极片22以及位于正极片21和负极片22之间的隔离片23,正极片21与上壳11电性连接,负极片22与导电体4电性连接。可以理解地,在其他实施例中,也可以是负极片22与上壳11电性连接,正极片21与导电体4电性连接。
电芯2可采用螺旋绕组的形式,也可以采用叠片的形式。在图1所示的实施例中,电芯2采用螺旋绕组的形式,且其中轴线与壳体1的中轴线重合。该电芯2在一些实施例中还可包括收容空间24,该收容空间24的中轴线可与该电芯2的中轴线重合。电芯2卷绕完成后,抽出卷芯,形成一轴向空腔,该轴向空腔形成收容空间24。
导电体4纵向穿设于绝缘密封体3中,且其两端分别从绝缘密封体3的两端露出。导电体4可纵向穿设于收容空间24中,导电体4的下端可延伸至收容空间24的底部附近与负极片22的下端连接,且导电体4的下端距离下壳12的底壁具有一定的间距,以便与下壳12绝缘隔离。
导电体4可采用刚性的导电材料制成,以增强抗压性;或者,导电体4也可采用柔性的导电材料制成,以使导电体4可直接连接至电路板或负载等电子元件上,而不需要额外焊接导线。
再如图1所示,壳体1在一些实施例中大致可呈扁圆柱状,即该纽扣电池的直径尺寸大于其高度尺寸,壳体1的厚度可以为0.1-1mm,壳体1的直径(纽扣电池的直径)可以为6mm以上。下壳12和上壳11均可采用金属材料制成,例如不锈钢、铝、铁等可激光熔接的材料制成。下壳12在一些实施例中可呈顶部带有开口的圆筒状,其可包括一圆形底壁121以及围绕在该圆形底壁121周缘且垂直于该底壁121的圆筒状侧壁122。壁部114可呈圆形平板状覆盖在下壳12的顶部开口上,壁部114的周缘可通过激光焊接的方式与下壳12的开口边缘密封地结合在一起,突出部111可由壁部114向背离电芯2的一侧拉伸成型。
绝缘密封体3密封塞设于引出孔113中,其可采用硅胶、橡胶等柔性绝缘材料制成,密封性能更好。绝缘密封体3的直径大于引出孔113的孔径,以使绝缘密封体3与引出孔113之间过盈配合,密封性更好,还可通过该过盈配合固定绝缘密封体3。引出孔113的孔径可以为4mm以下。优选地,引出孔113的孔径可大致为壳体1的直径的5%-35%。
在本实施例中,突出部111、引出孔113位于壁部114的中部位置,其中轴线可与壳体1的中轴线重合或具有一定的夹角。在其他实施例中,突出部111、引出孔113也可位于壁部114的其他位置,例如,壁部114的周缘附近,突出部111、引出孔113的中轴线也可与壳体1的中轴线平行或呈一定夹角倾斜设置,可根据实际需求进行设计。在一些实施例中,突出部111与壁部114之间的夹角可以为30 0-150 0
在一些实施例中,挤压部112可由突出部111远离壁部114的一端向内旋压形成,便于加工制作。挤压部112向内旋压后,挤压压迫绝缘密封体3发生弹性变形,从而将绝缘密封体3锁紧并固定于引出孔113中,避免脱落。该锁紧固定方式具有结构简单、锁紧可靠、工艺制作简单等优点,且无需额外设置一个固定件来将绝缘密封体3固定,空间利用率较高。
绝缘密封体3的两端可分别伸出引出孔113之外,绝缘密封体3的整体高度可以为0.5-5mm,其两端伸出引出孔113的高度分别可以为1mm以下。由于绝缘密封体3的直径大于引出孔113的孔径,绝缘密封体3位于引出孔113中的部分受挤压收缩,绝缘密封体3两端伸出引出孔113的部分膨胀复位,使该两端伸出部分的尺寸大于引出孔113的尺寸,从而进一步提高了密封效果和锁紧效果。此外,绝缘密封体3与挤压部112相对应的一端伸出挤压部112之外,还可使挤压部112 的该端部嵌入到绝缘密封体3中,锁紧效果更好。
该突出部111可呈竖直的圆筒状,该挤压部112可呈圆台状,该挤压部112与突出部111之间的夹角α为钝角,即90 0<α<180 0,方便旋压形成并锁紧绝缘密封体3。在一些实施例中,挤压部112与突出部111之间的夹角α可在120 0-160 0之间,在此范围内,能保证具有良好的锁紧效果。
当该纽扣电池外接电路板时,电路板上可对应突出部111开设有避让孔,通过该避让孔与突出部111相互插接,从而有效与电路板空间结合,提升电芯能量密度,此外,还可便于电路板的安装和定位。
该引出孔113还可用于向壳体1内注入电解液,通过引出孔113注液完成后,塞入绝缘密封体3进行密封即可,从而无需额外开设注液孔。在其他实施例中,也可在壁部114上单独开设一个注液孔(未图示),用于往壳体1中注入电解液。该纽扣电池还可包括封堵件(未图示),用于在注液完成之后,将该注液孔封堵住。
上述纽扣电池在制作时,可采用如下步骤:
S1、提供下壳12,将电芯2设置于下壳12中;
S2、提供形成有壁部114、突出部111、以及引出孔113的上壳11;
S3、将壁部114的周缘激光焊接于下壳12上,形成壳体1;
S4、通过引出孔113向壳体1内注入电解液;
S5、将绝缘密封体3塞入引出孔113中,并将导电体4穿过绝缘密封体3;
S6、将突出部111远离壁部114的一端向内旋压形成挤压部112,以锁紧绝缘密封体3。
图2示出了本发明第二实施例中的纽扣电池,该纽扣电池可以为固态电池、半固态电池或液态电池,其可包括密封的壳体1、电芯2、绝缘密封体3以及导电体4。壳体1包括顶部具有开口的下壳12和与之相匹配的可导电的上壳11。该上壳11包括壁部114、由壁部114的表面朝向电芯2凸出的突出部111、贯穿壁部114和突出部111的引出孔113、贯穿壁部114用于向壳体1内注入电解液的注液孔115、以及设置于注液孔115内用于将注液孔115封堵密封的封堵件5。导电体4纵向设置于引出孔113内,绝缘密封体3设置于引出孔113的孔壁与导电体4之间,以将上壳11和导电体4绝缘隔离。突出部111向内变形形成挤压部112,以锁紧绝缘密封体3。可以理解地,该引出孔113、绝缘密封体3、导电体4的数量也不局限于一个,两个或两个以上也可以适用。
电芯2设置于该壳体1中,其包括至少一个正极片21和至少一个负极片22以及位于正极片21和负极片22之间的隔离片23,正极片21与上壳11电性连接,负极片22与导电体4电性连接。可以理解地,在其他实施例中,也可以是负极片22与上壳11电性连接,正极片21与导电体4电性连接。
电芯2可采用螺旋绕组的形式,也可以采用叠片的形式。在图2所示的实施例中,电芯2采用螺旋绕组的形式,且其中轴线与壳体1的中轴线重合。该电芯2在一些实施例中还可包括收容空间24,突出部111、挤压部112伸入到该收容空间24中。该收容空间24的中轴线可与该电芯2的中轴线重合。电芯2卷绕完成后,抽出卷芯,形成一轴向空腔,该轴向空腔形成收容空间24。突出部111、挤压部112伸入到该轴向空腔中,从而可提高该纽扣电池的空间利用率。此外,由于突出部111、挤压部112位于壁部114的顶面以下,在需要外接电路板等电子元件时,电路板等电子元件的安装位置不受限,通用性更高。
导电体4纵向穿设于绝缘密封体3中,且其两端分别从绝缘密封体3的两端露出。导电体4可纵向穿设于收容空间24中,导电体4的下端可延伸至收容空间24的底部附近与负极片22的下端连接,且导电体4的下端距离下壳12的底壁具有一定的间距,以便与下壳12绝缘隔离。
导电体4可采用刚性的导电材料制成,以增强抗压性;或者,导电体4也可采用柔性的导电材料制成,以使导电体4可直接连接至电路板或负载等电子元件上,而不需要额外焊接导线。
再如图2所示,壳体1在一些实施例中可呈扁圆柱状,下壳12和上壳11均可采用金属材料制成,例如不锈钢、铝、铁等可激光熔接的金属材料制成。下壳12在一些实施例中可呈顶部带有开口的圆筒状,壁部114可呈平板状覆盖在下壳12的顶部开口上,壁部114的周缘可通过激光焊接的方式与下壳12的开口边缘密封地结合在一起。
绝缘密封体3密封塞设于引出孔113中,其可采用硅胶、橡胶等柔性绝缘材料制成,密封性能更好。在本实施例中,突出部111、引出孔113位于壁部114的中部位置,突出部111可由壁部114的中部向朝向电芯2的一侧拉伸成型。突出部111、引出孔113的中轴线可与壳体1的中轴线重合,或者,突出部111、引出孔113的中轴线也可与壳体1的中轴线之间具有一定的夹角。在其他实施例中,该突出部111、引出孔113也可位于壁部114的其他位置,例如,其也可位于壁部114的周缘附近。
在一些实施例中,挤压部112可由突出部111远离壁部114的一端向内旋压形成,便于加工制作。挤压部112向内旋压后,压迫绝缘密封体3发生弹性变形,从而将绝缘密封体3锁紧并固定于引出孔113中,避免脱落。该锁紧固定方式具有结构简单、锁紧可靠、工艺制作简单等优点,且无需额外设置一个固定件来将绝缘密封体3固定,空间利用率较高。
绝缘密封体3的两端可分别伸出引出孔113之外。该挤压部112与突出部111之间的夹角α为钝角,即90 0<α<180 0,方便旋压形成并锁紧绝缘密封体3。在一些实施例中,挤压部112与突出部111之间的夹角α可在120 0-160 0之间,在此范围内,能保证具有良好的锁紧效果。
注液孔115用于向壳体1内注入电解液,通过注液孔115注液完成后,塞入封堵件5将该注液孔115封堵密封住。
上述纽扣电池在制作时,可采用如下步骤:
S1、提供下壳12,将电芯2设置于下壳12中;
S2、提供形成有壁部114、突出部111、引出孔113、以及注液孔115的上壳11;
S3、将绝缘密封体3塞入引出孔113中,并将导电体4穿过绝缘密封体3;
S4、将突出部111远离壁部114的一端向内旋压形成挤压部112,以锁紧绝缘密封体3;
S5、将壁部114的周缘激光焊接于下壳12上,形成壳体1;
S6、通过注液孔115向壳体1内注入电解液,注液完成后,塞入封堵件5将该注液孔115封堵密封。
图3示出了本发明第三实施例中的纽扣电池,其与第一实施例的主要区别在于:该纽扣电池包括密封的壳体1、电芯2、两个绝缘密封体3以及两个导电体4,该两个导电体4分别与电芯2的正极片21、负极片22电性连接。
在本实施例中,壳体1包括顶部具有开口的下壳12和与之相匹配的上壳11,该下壳12和上壳11可采用不锈钢、铝、铁等可激光熔接的金属材料制成,或者采用Peek等可激光焊接的塑料制成。该上壳11包括壁部114、由壁部114的表面背离电芯2凸出的两个突出部111、以及分别贯穿该两个突出部111和壁部114的两个引出孔113。该两个导电体4分别沿纵向设置于该两个引出孔113内,该两个绝缘密封体3分别设置于该两个引出孔113的孔壁与该两个导电体4之间,以分别将该两个导电体4和壁部114隔离。该两个突出部111分别向内变形形成挤压部112,以锁紧该两个绝缘密封体3。可以理解地,该突出部111、引出孔113、绝缘密封体3、导电体4的数量也不局限于两个,两个以上也可以适用。在其他实施例中,该两个突出部111也可分别设置于壳体1的不同侧上,即该两个突出部111也可分别形成于上壳11和下壳12上。
在本实施例中,该两个突出部111分别位于壁部114的周缘附近,进一步地,该两个突出部111可分别对称设置于壁部114的两相对侧。在其他实施例中,该两个突出部111也可位于壁部114的其他位置,例如,其中一个突出部111位于壁部114的周缘附近,另一个位于壁部114的中部位置。
绝缘密封体3密封塞设于引出孔113中,且与引出孔113过盈配合。绝缘密封体3的两端可分别伸出引出孔113之外。由于绝缘密封体3的直径大于引出孔113的孔径,绝缘密封体3位于引出孔113中的部分受挤压收缩,绝缘密封体3两端伸出引出孔113的部分膨胀复位,使该两端伸出部分的尺寸大于引出孔113的尺寸,从而进一步提高了密封效果和锁紧效果。此外,绝缘密封体3与挤压部112相对应的一端伸出挤压部112之外,还可使挤压部112 的该端部嵌入到绝缘密封体3中,锁紧效果更好。绝缘密封体3与电芯2相对的一端伸出壁部114之外,且与电芯2之间具有一定的间隙,以提供给电芯2温度变形的空间,还可避免电芯2与上壳11接触发生短路,安全性更高。
导电体4纵向穿设于绝缘密封体3中,导电体4背离电芯2的一端(上端)可伸出绝缘密封体3之外,另一端(下端)可与绝缘密封体3齐平或伸出绝缘密封体3之外。导电体4的下端与电芯2之间具有一定的间隙,导电体4的下端可通过引线与电芯2的上端连接。
图4-5示出了本发明第四实施例中的纽扣电池,该纽扣电池可以为固态电池、半固态电池或液态电池,其可包括密封的可导电壳体1、设置于壳体1中的电芯2、绝缘密封地穿过壳体1的导电体3、与电芯2的正极电性连接的正极耳201、以及与电芯2的负极电性连接的负极耳202。壳体1、导电体3分别与正极耳201、负极耳202电性连接,并分别作为该纽扣电池的正负导出电极使用,用于外接电路板或负载等电子元器件。可以理解地,在其他实施例中,也可以是壳体1、导电体3分别与负极耳202、正极耳201电性连接;该导电体3、负极耳202、正极耳201的数量也不局限于一个,两个或两个以上也可以适用。
电芯2在一些实施例中可采用螺旋绕组的形式放置于壳体1中,其中轴线可与壳体1的中轴线重合。电芯2可包括至少一个正极片21、至少一个负极片22以及设置于该至少一个正极片21和至少一个负极片22之间的至少一个隔离片23。通常,正极片21可采用半导体材料(例如钴酸锂)加导电剂(例如乙炔黑)和粘合剂(例如PVDF)涂在正极集流体(例如铝箔)上形成,负极片22可采用导体材料(例如石墨)加导电剂(例如乙炔黑)、增稠剂(例如CMC)及粘结剂(例如SBR)涂在负极集流体(例如铜箔)上形成。正极耳201与该至少一个正极片21电性连接,其可由该至少一个正极片21远离卷芯的一端翻折形成,可减少非活性物质空间,还可避免正极耳201与正极片21焊接的工艺流程,提升产品制程效率。负极耳202与该至少一个负极片22电性连接,通常负极耳202可以为铜带或铝带等金属导电带,并可通过焊接的方式一体结合于该至少一个负极片22上。可以理解地,在其他实施例中,正极耳201、正极片21也可分别单独制造后连接在一起,负极耳202也可由该至少一个负极片22远离卷芯的一端翻折形成。在另一些实施例中,电芯2也可以采用叠片的形式放置于壳体1中。
壳体1可采用金属材料制成,例如不锈钢、铝、铁等可激光熔接的金属材料制成。壳体1在一些实施例中大致可呈扁圆柱形,其直径尺寸大于其高度尺寸。在一些实施例中,壳体1的高度可以为其直径的0.1-0.9倍,例如0.25-0.7倍。壳体1的厚度可以为0.1-1mm,例如0.13-0.35mm。
壳体1在一些实施例中可包括顶部具有开口的圆筒状下壳12和与之相匹配的圆形平板状上壳11,上壳11的周缘与下壳12的开口边缘密封地结合在一起。上壳11上还可设置有注液孔112,用于往壳体1中注入电解液。该纽扣电池还可包括封堵件(未图示),用于在注液完成之后,将注液孔112封堵住。
上壳11上贯穿设置有用于供导电体3穿过的引出孔110,引出孔110的孔壁和导电体3之间可密封地塞设有一绝缘密封体4,该绝缘密封体4将导电体3和上壳11相绝缘。绝缘密封体4可采用绝缘胶、陶瓷加覆膜、或者玻璃加覆膜等绝缘材料制成。在本实施例中,绝缘密封体4的截面大致呈工字型,其两端端部的截面尺寸大于中间连接部的截面尺寸。绝缘密封体4的中间连接部沿纵向穿设于引出孔110中,两端端部分别抵靠于上壳11的上下两侧,从而将绝缘密封体4卡紧固定于引出孔110中,避免脱落。
导电体3沿纵向穿设于绝缘密封体4中,且其两端分别从绝缘密封体4的两端露出。导电体3在一些实施例中可呈刚性并可采用不锈钢、铝、铁、铜等金属导电材料制成,以增强抗压性,其形状可以呈长条形、T型、或工型等。在本实施例中,导电体3呈T型,其包括尺寸较大的头部31以及与该头部31相连接的杆部32。杆部32沿纵向穿设在绝缘密封体4中,头部31位于壳体1外,便于外接引线。可以理解地,在其他实施例中,该导电体3也可以呈柔性,这样在需要外接电路板或负载等电子元器件时,导电体3可直接连接到电子元器件上,而不需要额外焊接引线。
正极耳201夹设于上壳11的周缘和下壳12的开口边缘之间,并可通过激光锡焊的方式与上壳11和下壳12一体结合在一起,焊接牢固度增加,可靠性更好,焊接温度较低,且可避免正极耳201与上壳11单独焊接的工艺流程,提升产品制程效率。在一些实施例中,上壳11朝向下壳12的一端外圈可设有一环形开槽111,环形开槽111包括面向下壳12的顶壁的第一面A以及面向下壳12的内壁的第二面B,正极耳201可与该第一面A和第二面B均贴合焊接在一起,增加焊接面积,提高焊接可靠性。
上述纽扣电池在制造时,可采用如下步骤:
(1)              提供下壳12和上壳11;
(2)              在上壳11上分别形成引出孔110和注液孔112;
(3)              提供绝缘密封体4,并将绝缘密封体4塞入到引出孔110中;
(4)              提供导电体3,并将导电体3穿设至绝缘密封体4中;
(5)              将电芯2放置于下壳12中,将其负极片22通过负极耳202焊接连接至导电体3上;
(6)              将正极片21远离卷芯的一端直接作为正极耳201,放置于下壳12的开口边缘上,扣上上壳11配合好,通过激光锡焊的方式将上壳11、下壳12、正极耳201焊接在一起。
(7)              通过注液孔112往壳体1中注入电解液;
(8)              用封堵件将注液孔112密封。
图6示出了本发明第五实施例中的纽扣电池,其可包括开设有引出孔110的壳体1、沿轴向设置于壳体1内的圆筒状电芯2、沿轴向设置于引出孔110和电芯2中的柱状导电体3以及将引出孔110密封的筒状绝缘密封体4。壳体1、电芯2、导电体3以及绝缘密封体4均可同轴设置。该纽扣电池大致可呈扁圆柱状,即纽扣电池的外径尺寸大于其高度尺寸。在一些实施例中,壳体1的外径(纽扣电池的外径)可以为4.5~40mm,优选为6~30 mm。
壳体1在一些实施例中可包括顶部具有开口的圆筒状下壳12和与之相匹配的上壳11。上壳11可包括平板状壁部111以及由壁部111的表面朝向电芯2一体延伸形成的圆筒状突出部112。引出孔110可形成于上壳11上,其可沿轴向贯穿壁部111和突出部112。由于引出孔110形成于上壳11上,并且要确保密封性,上壳11需具有一定的厚度。为提高纽扣电池的空间利用率,下壳12可以做薄,其厚度可小于上壳11的厚度。在一些实施例中,上壳11厚度可以为0.2~1mm,下壳12的厚度为0.05~0.5mm。
下壳12和上壳11均可采用金属导电材料制成,例如不锈钢、铝、铁等可激光熔接的材料制成。壁部111的周缘可通过激光焊接的方式与下壳12的开口边缘密封地结合在一起,突出部112可由壁部111沿轴向向下拉伸成型。
上壳11上还可设置有注液孔(未图示),用于往壳体1中注入电解液。该纽扣电池还可包括封堵件(未图示),用于在注液完成之后,将注液孔封堵住。
电芯2可包括至少一个正极片21、至少一个负极片22以及设置于至少一个正极片21和至少一个负极片22之间的至少一个隔离片23。正极片21可包括正极集流体以及涂覆于正极集流体至少一个表面上的正极活性物质层。在一些实施例中,该正极集流体可以为铝箔等导电金属箔,该正极活性物质层可包括正极活性物质、导电剂和粘合剂。以锂离子电池为例,该正极活性物质通常可以为钴酸锂等半导体材料,该导电剂可以为乙炔黑,该粘合剂可以为PVDF。负极片22可包括负极集流体以及涂覆于该负极集流体上的负极活性物质层。在一些实施例中,该负极集流体可以为铜箔等导电金属箔,该负极活性物质层可包括负极活性物质层(例如石墨等导体材料)、导电剂(例如乙炔黑)、增稠剂(例如CMC)及粘结剂(例如SBR)。该至少一个正极片21、至少一个负极片22以及至少一个隔离片23围绕一长圆柱状卷芯卷绕完成后,抽出卷芯,形成一中轴线与电芯2的中轴线重合的轴向空腔,突出部112向下伸入到该轴向空腔中,提高纽扣电池的空间利用率。
正极片21与上壳11电性连接,负极片22与导电体3电性连接。上壳11、导电体3分别作为纽扣电池的正、负输出接口,用于外接电路板或负载等电子元器件。该纽扣电池在使用时,电池的正、负输出接口都从电池的同一侧(上侧)引出,纽扣电池的空间利用率较高。可以理解地,在其他实施例中,也可以是负极片22与上壳11电性连接,正极片21与导电体3电性连接。
导电体3的下端设置于电芯2的轴向空腔中,上端设置于引出孔110中。导电体3可呈阶梯圆柱状,其可包括圆柱状引出部31以及由引出部31位于壳体1内的内端(下端)外圈沿径向向外延伸形成的凸缘部32。引出部31沿轴向设置于引出孔110中,引出部31的外径较小,从而可使引出孔110的孔径较小,利于对引出孔110的密封。凸缘部32沿轴向设置于电芯2的轴向空腔中,凸缘部32的外径较大,其可对绝缘密封体4产生轴向挤压,从而进一步提高对引出孔110的密封。
绝缘密封体4可呈圆筒状,其可采用硅胶等弹性材料制成,通过导电体3与上壳11对绝缘密封体4实施挤压实现对引出孔110的径向和轴向密封。绝缘密封体4可包括圆筒状的径向密封部41和一体结合于径向密封部41内端(下端)的轴向密封部42,径向密封部41过盈配合于引出部31的外周壁和引出孔110的孔壁之间,轴向密封部42过盈配合于凸缘部32的上端面和引出孔110的下端面之间。轴向密封部42的外径大于径向密封部41的外径,且轴向密封部42的外径可与凸缘部32的外径以及突出部112的外径相当。装配时,导电体3的引出部31在穿过绝缘密封体4到壳体1外部时,会对径向密封部41产生横向(径向)挤压,使径向密封部41产生径向挤压变形以抵紧突出部112的内侧壁,对引出孔110实施径向密封;上壳11在扣盖时会对轴向密封部42产生纵向(轴向)挤压,轴向密封部42产生轴向挤压形变以抵紧于上壳11和凸缘部32之间,对引出孔110实施轴向密封,从而提高对引出孔110的密封性,防止从引出孔110漏液。在一些实施例中,径向密封部41的内圈、外圈分别可设置有至少一圈环形凸包,以分别通过该至少一圈环形凸包过盈抵紧于径向密封部41的外侧壁、引出孔110的内侧壁上,可进一步提高绝缘密封体4的密封效果。
在一些实施例中,径向密封部41的外端面(上端面)可与壁部111的外端面齐平或大致齐平。在其他实施例中,径向密封部41的外端也可凸出于壁部111外,由于径向密封部41的外径略大于引出孔110的孔径,径向密封部41位于引出孔110中的部分受挤压收缩,径向密封部41的上端伸出引出孔110的部分膨胀复位,使该上端伸出部分的尺寸大于引出孔110的尺寸,从而可提高绝缘密封体4与引出孔110之间的结合力。
引出部31的外端面可凸出于径向密封部41的外端面,便于与外部设备连接导通。在其他实施例中,引出部31的外端面也可与径向密封部41的外端面齐平或大致齐平,可通过焊接的方式与外部设备连接导通。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (25)

  1. 一种纽扣电池,包括壳体以及设置于所述壳体内的电芯,所述电芯包括至少一个正极片和至少一个负极片;其特征在于,所述壳体包括壁部、由所述壁部的表面朝向或背离所述电芯凸出的至少一个突出部以及沿纵向贯穿所述壁部和所述至少一个突出部的至少一个引出孔;所述纽扣电池还包括穿设于所述至少一个引出孔内的至少一个导电体以及密封地设置于所述至少一个引出孔的孔壁与所述至少一个导电体之间的至少一个绝缘密封体,所述至少一个导电体与所述至少一个正极片或所述至少一个负极片电性连接。
  2. 根据权利要求1所述的纽扣电池,其特征在于,每一所述突出部均向内变形形成挤压部,以挤压并锁紧所述至少一个绝缘密封体。
  3. 根据权利要求2所述的纽扣电池,其特征在于,所述壳体包括顶部具有开口的下壳和与之相匹配的上壳,所述上壳和所述下壳均采用金属材料制成,所述壁部形成于所述上壳上。
  4. 根据权利要求3所述的纽扣电池,其特征在于,所述上壳与所述至少一个正极片和所述至少一个负极片二者之一电性连接,所述至少一个导电体与所述至少一个正极片和所述至少一个负极片二者之另一电性连接。
  5. 根据权利要求2所述的纽扣电池,其特征在于,所述纽扣电池包括至少两个导电体以及至少两个绝缘密封体,所述至少两个导电体分别与所述至少一个正极片和所述至少一个负极片电性连接。
  6. 根据权利要求3所述的纽扣电池,其特征在于,所述至少一个突出部分别由所述壁部向朝向或背离所述电芯的一侧拉伸成型;
    所述壁部的周缘通过激光焊接的方式与所述下壳的开口边缘密封地结合在一起。
  7. 根据权利要求3-6任一项所述的纽扣电池,其特征在于,每一所述突出部远离所述壁部的一端向内旋压形成所述挤压部;
    所述挤压部与所述突出部之间的夹角α为:90 0<α<180 0
  8. 根据权利要求7所述的纽扣电池,其特征在于,所述至少一个绝缘密封体与所述挤压部相对应的一端均伸出所述挤压部之外。
  9. 根据权利要求1所述的纽扣电池,其特征在于,所述壳体可导电,所述壳体包括一端设有开口的下壳以及配合在所述开口处的上壳;
    所述纽扣电池还包括与所述至少一个正极片电性连接的至少一个正极耳和与所述至少一个负极片电性连接的至少一个负极耳,所述至少一个正极耳和所述至少一个负极耳中的一个夹设于所述上壳和所述下壳之间并与所述上壳和所述下壳焊接在一起,所述至少一个正极耳和所述至少一个负极耳中的另一个与所述至少一个导电体电性连接。
  10. 根据权利要求9所述的纽扣电池,其特征在于,所述焊接方式为激光锡焊。
  11. 根据权利要求9所述的纽扣电池,其特征在于,所述上壳和所述下壳均采用金属材料制成,所述下壳呈顶部开口的筒状,所述上壳呈平板状。
  12. 根据权利要求11所述的纽扣电池,其特征在于,所述上壳朝向所述下壳的一端外圈设有环形开槽,所述环形开槽包括面向所述下壳的顶壁的第一面以及面向所述下壳的内壁的第二面,所述至少一个正极耳和所述至少一个负极耳中的一个与所述第一面和所述第二面均贴合焊接在一起。
  13. 根据权利要求9-12任一项所述的纽扣电池,其特征在于,所述至少一个正极耳和所述至少一个负极耳中的一个由所述至少一个正极片和所述至少一个负极片中的一个的一端翻折形成。
  14. 根据权利要求9-12任一项所述的纽扣电池,其特征在于,所述至少一个正极耳和所述至少一个负极耳中的另一个呈带状,且其两端分别与所述至少一个正极片和所述至少一个负极片中的另一个以及所述至少一个导电体焊接。
  15. 根据权利要求1所述的纽扣电池,其特征在于,所述电芯呈筒状,所述导电体包括设置于所述引出孔中的引出部以及由所述引出部的内端外圈向外延伸并设置于所述电芯中的凸缘部;
    所述绝缘密封体包括径向密封部和一体结合于所述径向密封部内端的轴向密封部,所述径向密封部设置于所述引出部的外周壁和所述引出孔的孔壁之间,所述轴向密封部设置于所述凸缘部的端面和所述引出孔的内端面之间。
  16. 根据权利要求15所述的纽扣电池,其特征在于,所述轴向密封部的外径与所述凸缘部的外径相当,所述轴向密封部过盈配合于所述凸缘部的端面和所述引出孔的内端面之间,所述径向密封部过盈配合于所述引出部的外周壁和所述引出孔的孔壁之间。
  17. 根据权利要求15所述的纽扣电池,其特征在于,所述壳体包括顶部设有开口的圆筒状下壳以及与之相匹配的上壳,所述壁部形成于所述上壳上,所述突出部由所述壁部的表面朝向所述电芯延伸。
  18. 根据权利要求17所述的纽扣电池,其特征在于,所述上壳的厚度大于所述下壳的厚度。
  19. 根据权利要求17所述的纽扣电池,其特征在于,所述上壳的厚度为0.2~1mm,所述下壳的厚度为0.05~0.5mm。
  20. 根据权利要求17所述的纽扣电池,其特征在于,所述径向密封部的外端面与所述壁部的外端面齐平或凸出于所述壁部的外端面,所述引出部的外端面与所述径向密封部的外端面齐平或凸出于所述径向密封部的外端面。
  21. 根据权利要求17所述的纽扣电池,其特征在于,所述上壳和所述下壳均采用金属导电材料制成,所述上壳与所述至少一个正极片和所述至少一个负极片二者之一电性连接,所述至少一个导电体与所述至少一个正极片和所述至少一个负极片二者之另一电性连接。
  22. 22.根据权利要求21所述的纽扣电池,其特征在于,所述壁部的周缘通过激光焊接的方式与所述下壳的开口边缘密封地结合在一起。
  23. 根据权利要求21所述的纽扣电池,其特征在于,所述突出部由所述壁部沿轴向向下拉伸成型,所述突出部向下伸入到所述电芯中。
  24. 根据权利要求1所述的纽扣电池,其特征在于,所述壳体上开设有用于往所述壳体中注入电解液的注液孔。
  25. 根据权利要求1所述的纽扣电池,其特征在于,所述电芯采用螺旋绕组的形式或叠片的形式放置于所述壳体中。
PCT/CN2020/126562 2019-11-04 2020-11-04 纽扣电池 WO2021088886A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911066931.0 2019-11-04
CN201911066931.0A CN110970580A (zh) 2019-11-04 2019-11-04 纽扣电池及其制作方法
CN202020140489.3 2020-01-21
CN202020140489.3U CN211265619U (zh) 2020-01-21 2020-01-21 纽扣电池
CN202021433034.7U CN213071223U (zh) 2020-07-20 2020-07-20 纽扣电池
CN202021433034.7 2020-07-20

Publications (1)

Publication Number Publication Date
WO2021088886A1 true WO2021088886A1 (zh) 2021-05-14

Family

ID=75849746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126562 WO2021088886A1 (zh) 2019-11-04 2020-11-04 纽扣电池

Country Status (1)

Country Link
WO (1) WO2021088886A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725527A (zh) * 2021-09-02 2021-11-30 上海兰钧新能源科技有限公司 扣式电池及制备方法和应用
CN115295948A (zh) * 2022-09-09 2022-11-04 北京胜能能源科技有限公司 一种哑铃电池、电池模组和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252873A (en) * 1979-07-30 1981-02-24 Battery Engineering, Inc. Seal for electrochemical cell
CN106159350A (zh) * 2015-04-27 2016-11-23 深圳金山电池有限公司 一种纽扣型锂离子二次电池及其制备方法
CN207587781U (zh) * 2017-12-15 2018-07-06 珠海微矩实业有限公司 纽扣电池
CN110459705A (zh) * 2019-09-05 2019-11-15 重庆市紫建电子有限公司 一种提升径向空间利用率的纽扣电池
CN110970580A (zh) * 2019-11-04 2020-04-07 黄凯 纽扣电池及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252873A (en) * 1979-07-30 1981-02-24 Battery Engineering, Inc. Seal for electrochemical cell
CN106159350A (zh) * 2015-04-27 2016-11-23 深圳金山电池有限公司 一种纽扣型锂离子二次电池及其制备方法
CN207587781U (zh) * 2017-12-15 2018-07-06 珠海微矩实业有限公司 纽扣电池
CN110459705A (zh) * 2019-09-05 2019-11-15 重庆市紫建电子有限公司 一种提升径向空间利用率的纽扣电池
CN110970580A (zh) * 2019-11-04 2020-04-07 黄凯 纽扣电池及其制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725527A (zh) * 2021-09-02 2021-11-30 上海兰钧新能源科技有限公司 扣式电池及制备方法和应用
CN113725527B (zh) * 2021-09-02 2023-09-01 上海兰钧新能源科技有限公司 扣式电池及制备方法和应用
CN115295948A (zh) * 2022-09-09 2022-11-04 北京胜能能源科技有限公司 一种哑铃电池、电池模组和车辆
CN115295948B (zh) * 2022-09-09 2024-03-29 北京胜能能源科技有限公司 一种哑铃电池、电池模组和车辆

Similar Documents

Publication Publication Date Title
WO2020063584A1 (zh) 顶盖组件及其制造方法、顶盖板的制造方法和电池单体
WO2022033564A1 (zh) 一种电池外壳及电池
KR100467703B1 (ko) 캡 조립체 및 이를 채용한 이차전지
US6387566B1 (en) Battery with laminated insulator/metal/insulator case
CN109065822A (zh) 纽扣电池
US20110104562A1 (en) Secondary battery
JP2011527488A (ja) 電極タブとカバープレートとの接続構造
CN211629137U (zh) 纽扣电池
JP2009087613A (ja) 角型電池
WO2021088886A1 (zh) 纽扣电池
KR100751310B1 (ko) 캡 조립체 및, 그것을 구비한 각형 2 차 전지
WO2021244272A1 (zh) 扣式电池及电子设备
WO2023006050A1 (zh) 一种电池及电子产品
CN109216596A (zh) 一种电池
WO2023000629A1 (zh) 一种无极耳锂离子电池及其制作方法
CN114784428A (zh) 顶盖组件及二次电池
CN101645520A (zh) 一种电池装配方法
KR101113557B1 (ko) 이차전지
CN209029466U (zh) 纽扣电池
CN110970580A (zh) 纽扣电池及其制作方法
CN113013526B (zh) 电池盖板、电池以及电池的制备方法
CN211265619U (zh) 纽扣电池
WO2020062295A1 (zh) 锂电芯、智能电池及锂电芯的制造方法
WO2019113970A1 (zh) 纽扣电池及其制作方法
CN211265518U (zh) 纽扣电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884092

Country of ref document: EP

Kind code of ref document: A1