WO2023010768A1 - 一种空调系统 - Google Patents

一种空调系统 Download PDF

Info

Publication number
WO2023010768A1
WO2023010768A1 PCT/CN2021/140321 CN2021140321W WO2023010768A1 WO 2023010768 A1 WO2023010768 A1 WO 2023010768A1 CN 2021140321 W CN2021140321 W CN 2021140321W WO 2023010768 A1 WO2023010768 A1 WO 2023010768A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
temperature
electronic expansion
expansion valve
Prior art date
Application number
PCT/CN2021/140321
Other languages
English (en)
French (fr)
Inventor
颜鹏
周敏
孙杨
韩飞
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to CN202180097622.9A priority Critical patent/CN117242307A/zh
Publication of WO2023010768A1 publication Critical patent/WO2023010768A1/zh
Priority to US18/405,707 priority patent/US20240151441A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioning, in particular to an air conditioning system.
  • the installer After the indoor unit and outdoor unit of the air conditioning system are installed, the installer usually calculates the amount of additional refrigerant required for the air conditioning system based on the length and diameter of the piping connecting the indoor unit and the outdoor unit. In this case, as the length of the connecting pipe increases, the demand for refrigerant in the air conditioning system will also increase.
  • the refrigerant in the liquid pipe is controlled to be a gas-liquid mixed two-phase refrigerant. Since the density of the two-phase refrigerant is lower than that of the pure liquid refrigerant, the demand for refrigerant in the air-conditioning system can be reduced, and furthermore, no or less addition of refrigerant in the air-conditioning system can be realized.
  • the two-phase refrigerant flows from the indoor unit into the liquid pipe, and after entering the outdoor heat exchanger of the outdoor unit through the liquid pipe, it is unevenly distributed in the outdoor heat exchanger, which is easy to cause
  • the heat exchange and evaporation capacity of the outdoor heat exchanger is insufficient, resulting in a decrease in the heating effect of the air conditioning system.
  • the present disclosure provides an air conditioning system, including an outdoor unit, a liquid pipe for transmitting two-phase refrigerant, and at least one indoor unit; the outdoor unit includes an outdoor heat exchanger, a refrigerant phase change device, and a first pressure reducing device.
  • An electronic expansion valve wherein, at least one indoor unit is connected to the first electronic expansion valve of the outdoor unit through a liquid pipe, and the refrigerant phase change device is respectively connected to the first electronic expansion valve and the outdoor heat exchanger; the refrigerant phase change device , used to receive the two-phase refrigerant flowing out of at least one indoor unit through the liquid pipe through the first electronic expansion valve under the heating condition, and change the two-phase refrigerant into liquid refrigerant; the phase change of the refrigerant The device is also used to transfer the phase-changed liquid refrigerant to the outdoor heat exchanger.
  • FIG. 1 is one of the structural schematic diagrams of an air conditioning system provided by an embodiment of the present disclosure
  • Fig. 2 is one of the pressure-enthalpy diagrams of the air-conditioning system provided by the embodiment of the present disclosure
  • Fig. 3 is the second pressure-enthalpy diagram of the air-conditioning system provided by the embodiment of the present disclosure
  • Fig. 4 is the second structural schematic diagram of the air conditioning system provided by the embodiment of the present disclosure.
  • Fig. 5 is the third structural schematic diagram of the air conditioning system provided by the embodiment of the present disclosure.
  • Fig. 6 is the third pressure-enthalpy diagram of the air-conditioning system provided by the embodiment of the present disclosure.
  • FIG. 7 is the fourth pressure-enthalpy diagram of the air-conditioning system provided by the embodiment of the present disclosure.
  • FIG. 8 is a fourth structural schematic diagram of an air conditioning system provided by an embodiment of the present disclosure.
  • Fig. 9 is the fifth structural schematic diagram of the air conditioning system provided by the embodiment of the present disclosure.
  • Fig. 10 is a sixth structural schematic diagram of an air conditioning system provided by an embodiment of the present disclosure.
  • the air conditioning system 10 includes: an outdoor unit 11, a liquid pipe 12 for transmitting a two-phase refrigerant, and at least one indoor unit (an exemplary embodiment of the present disclosure shows The indoor unit 131 and the indoor unit 132 are mentioned. In the actual application process, there may be more or fewer indoor units. For the convenience of description, the present disclosure will take the indoor unit 132 as an example to describe later) and the Trachea14.
  • the outdoor unit 11 includes an outdoor heat exchanger 111, a refrigerant phase change device 112, a first electronic expansion valve 113 for reducing pressure, a gas-liquid separator 114, a compressor 115, an outdoor fan 116, a four-way reversing valve 117, Oil return capillary 118 and oil separator 119.
  • the indoor unit 132 includes an indoor electronic expansion valve 1321 , an indoor heat exchanger 1322 and an indoor fan 1323 .
  • At least one indoor unit is connected to the first electronic expansion valve 113 of the outdoor unit 11 through the liquid pipe 12, and the refrigerant phase change device 112 is connected to the first electronic expansion valve 113 and the outdoor exchange unit respectively.
  • the heater 111 is connected.
  • At least one indoor unit is also connected to the outdoor unit 11 through the air pipe 14 .
  • the four-way reversing valve 117 is respectively connected to the gas-liquid separator 114 , the air pipe 14 , the oil separator 119 and the outdoor heat exchanger 111 .
  • the gas-liquid separator 114 is connected to the inlet of the compressor 115
  • the oil separator 119 is connected to the inlet of the compressor 115 through the oil return capillary 118
  • the oil separator 119 is also directly connected to the outlet of the compressor 115 .
  • the indoor heat exchanger 1322 is respectively connected to the gas pipe 14 and the indoor electronic expansion valve 1321 , and the indoor electronic expansion valve 1321 is also connected to the liquid pipe 12 .
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the outlet of the compressor 115 passes through the oil separator 119 .
  • the oil separator 119 can separate the lubricating oil from the high-temperature and high-pressure gaseous refrigerant, and transport the lubricating oil back to the compressor 115 through the oil return capillary 118 for reuse.
  • the high-temperature and high-pressure gaseous refrigerant flowing out of the oil separator 119 flows to the air pipe 14 through the four-way reversing valve 117 , and flows to the indoor unit 132 through the air pipe 14 .
  • the indoor heat exchanger 1322 of the indoor unit 132 flows into the high-temperature and high-pressure gaseous refrigerant through the gas pipe 14, the indoor heat exchanger 1322 condenses the high-temperature and high-pressure gaseous refrigerant to obtain a medium-temperature and high-pressure supercooled liquid refrigerant , and transmit medium-temperature and high-pressure subcooled liquid refrigerant to the indoor electronic expansion valve 1321 .
  • the indoor electronic expansion valve 1321 of the indoor unit 132 processes the medium-temperature and high-pressure subcooled liquid refrigerant to obtain a medium-temperature and high-pressure two-phase refrigerant, and transmits the medium-temperature and high-pressure two-phase refrigerant to the outdoor unit 11 through the liquid pipe 12 Refrigerant.
  • the first electronic expansion valve 113 of the outdoor unit 11 After receiving the medium-temperature and high-pressure two-phase refrigerant, the first electronic expansion valve 113 of the outdoor unit 11 depressurizes the medium-temperature and high-pressure two-phase refrigerant flowing through the first electronic expansion valve 113 to obtain medium-temperature and medium-pressure refrigerant. Two-phase refrigerant, and send the two-phase refrigerant of medium temperature and medium pressure to the refrigerant phase change device 112 of the outdoor unit 11.
  • the refrigerant phase change device 112 is configured to receive the two-phase refrigerant flowing out from at least one indoor unit through the liquid pipe 12 through the first electronic expansion valve 113 under the heating condition, and Change the phase of two-phase refrigerant to liquid refrigerant.
  • the refrigerant phase change device 112 is also used to transmit the medium-temperature and medium-pressure liquid refrigerant obtained by the phase change to the outdoor heat exchanger 111 .
  • the outdoor heat exchanger 111 throttles and evaporates the received medium-temperature and medium-pressure liquid refrigerant into a low-temperature and low-pressure superheated gaseous refrigerant.
  • the outdoor heat exchanger 111 flows the low-temperature and low-pressure superheated gaseous refrigerant obtained by throttling evaporation to the gas-liquid separator 114 through the four-way reversing valve 117, and flows to the compressor through the gas-liquid separator 115 imports.
  • the air-conditioning system 10 is provided with a refrigerant phase change device 112 between the liquid pipe 12 and the outdoor heat exchanger 111, it is possible to change the two-phase state in the liquid pipe 12 under heating conditions.
  • the refrigerant undergoes phase change treatment to obtain a liquid refrigerant.
  • the refrigerant entering the outdoor heat exchanger 111 is a liquid refrigerant and can be evenly distributed in the outdoor heat exchanger 111, which can improve the performance of the outdoor heat exchanger 111.
  • the heat exchange evaporation efficiency is high, and the heating effect of the air conditioning system 10 can be ensured.
  • FIG. 2 shows the corresponding pressure-enthalpy diagram of the air-conditioning system 10 under the heating condition.
  • the state point corresponding to the outlet of the compressor 115 is a, and the state point changes from a to state point b and then to state point c after the indoor heat exchange gas is condensed.
  • the refrigerant passes through the indoor electronic expansion valve 1321, the corresponding pressure drop is ⁇ p1, the state point changes from c to state point d, and state point d is a two-phase state refrigerant.
  • the state point changes from d to state e, the corresponding pressure drop is ⁇ p2, and the state point e is in a two-phase state.
  • the state point changes from e to state point f, and the corresponding pressure drop is ⁇ p3.
  • the medium-temperature and medium-pressure refrigerant passes through the refrigerant phase change device 112
  • its state point changes from f to state point g
  • the dryness of the refrigerant changes Small, phase-change liquid refrigerant.
  • the corresponding pressure drop is ⁇ p5
  • the corresponding state point changes from g to state point h.
  • the corresponding state point changes from h to state point k.
  • the compressor 115 of the outdoor unit 11 discharges high-temperature and high-pressure gaseous refrigerant through the oil separator 119 .
  • the oil separator 119 can separate the lubricating oil from the high-temperature and high-pressure gaseous refrigerant, and transport the lubricating oil back to the compressor 115 through the oil return capillary 118 for reuse.
  • the high-temperature and high-pressure gaseous refrigerant flowing out of the oil separator 119 flows to the outdoor heat exchanger 111 through the four-way reversing valve 117 .
  • the high-temperature and high-pressure gaseous refrigerant is condensed by the outdoor heat exchanger 111 to become a medium-temperature and high-pressure two-phase refrigerant, which is then transported to the refrigerant phase change device 112 by the outdoor heat exchanger 111 .
  • the refrigerant phase change device 112 phase-changes the medium-temperature and high-pressure two-phase refrigerant into a medium-temperature and high-pressure supercooled liquid refrigerant, and transmits the medium-temperature and high-pressure liquid refrigerant to the first electronic expansion valve 113 .
  • the first electronic expansion valve 113 decompresses the medium-temperature and high-pressure liquid refrigerant to obtain a medium-temperature and medium-pressure two-phase refrigerant, which is transported to the interior of the indoor unit 132 through the liquid pipe 12 Electronic expansion valve 1321.
  • the indoor electronic expansion valve 1321 of the indoor unit 132 is used to throttle the medium-temperature and medium-pressure two-phase refrigerant flowing through the indoor electronic expansion valve 1321, so as to obtain a low-temperature and low-pressure two-phase refrigerant, and transfer it to the low-temperature and low-pressure two-phase refrigerant.
  • the state refrigerant is sent to the indoor heat exchanger 1322.
  • the indoor heat exchanger 1322 performs heat exchange and evaporation on the low-temperature and low-pressure two-phase refrigerant to obtain a low-temperature and low-pressure superheated gaseous refrigerant, and flows out the obtained low-temperature and low-pressure gaseous refrigerant through the air pipe 14 and the four-way reversing valve 117, flows to the gas-liquid separator 114, and finally enters the inlet of the compressor 115.
  • FIG. 3 shows the corresponding pressure-enthalpy diagram of the air-conditioning system 10 under the cooling condition.
  • the state point corresponding to the outlet of the compressor 115 is a, and the state point changes from a to state point b after the outdoor heat exchange gas is condensed.
  • the state point changes from b to state point c.
  • the corresponding pressure drop is ⁇ p1
  • the corresponding state point changes from c to state point d, which is a two-phase state refrigerant.
  • the state point changes from d to state point e
  • the corresponding pressure drop is ⁇ p2
  • the state point e is in a two-phase state.
  • the refrigerant in the liquid pipe 12 is in a two-phase state, and its density is lower than that of a pure liquid refrigerant, which can reduce the additional amount of refrigerant in the pipe.
  • the refrigerant passes through the indoor electronic expansion valve 1321, the corresponding pressure drop is ⁇ p3, and the corresponding state point changes from e to state point f.
  • the corresponding state point changes from f to state point g.
  • the corresponding pressure drop is ⁇ p5, and the corresponding state point changes from g to state point h.
  • the two-phase refrigerant depressurized by the first electronic expansion valve 113 is in the first temperature and pressure state
  • the refrigerant phase change device 112 includes a tee 1121 , a second electronic expansion valve 1122 and a subcooling heat exchanger 1123 .
  • the first temperature and pressure state is the above-mentioned medium temperature and pressure state.
  • the tee 1121 is respectively connected to the first electronic expansion valve 113 , the second electronic expansion valve 1122 and the subcooling heat exchanger 1123 , and the subcooling heat exchanger 1123 is connected to the second electronic expansion valve 1122 and the outdoor heat exchanger 111 respectively.
  • the second electronic expansion valve 1122 is used to receive the two-phase refrigerant under the first temperature and pressure state obtained by the decompression treatment of the first electronic expansion valve 113 through the three-way 1121 under the heating condition, and to control the first temperature The temperature and pressure of the two-phase refrigerant in the pressure state are lowered to obtain the two-phase refrigerant in the second temperature and pressure state.
  • the second temperature and pressure state is the above-mentioned low temperature and low pressure state.
  • the second electronic expansion valve 1122 is also used to transmit the two-phase refrigerant in the second temperature and pressure state to the subcooling heat exchanger 1123 after obtaining the two-phase refrigerant in the second temperature and pressure state.
  • the subcooling heat exchanger 1123 is used to receive the two-phase refrigerant under the first temperature and pressure state obtained by the decompression treatment of the first electronic expansion valve 113 through the tee 1121 under the heating condition, and pass the received The two-phase refrigerant in the second temperature and pressure state performs heat exchange treatment on the received two-phase refrigerant in the first temperature and pressure state to obtain the liquid refrigerant in the first temperature and pressure state.
  • the subcooling heat exchanger 1123 is also used to transmit the liquid refrigerant in the first state to the outdoor heat exchanger 111 after the liquid refrigerant in the first temperature and pressure state is obtained through heat exchange treatment.
  • the subcooling heat exchanger 1123 is also connected to the gas-liquid separator 114 .
  • the subcooling heat exchanger 1123 is also used to perform heat exchange treatment on the received two-phase refrigerant under the second temperature and pressure state through the received two-phase refrigerant under the first temperature and pressure state, so as to obtain the second the gaseous refrigerant in the second temperature and pressure state, and transmit the gaseous refrigerant in the second temperature and pressure state to the gas-liquid separator 114 .
  • the two-phase refrigerant liquid flowing out of the first electronic expansion valve 113 passes through the tee 1121 and is divided into two paths, and the refrigerant in the auxiliary path flows to the second electronic expansion valve 1122 .
  • the refrigerant in the main path flows to the subcooling heat exchanger 1123 .
  • the corresponding pressure drop is ⁇ p4, and the corresponding state point changes from f to state point i.
  • the refrigerant in the auxiliary path exchanges heat with the refrigerant in the main path in the subcooling heat exchanger 1123 , and the state point corresponding to the refrigerant in the auxiliary path changes from i to state point j. At the same time, the refrigerant in the main path changes from state point f to state point g in the subcooling heat exchanger 1123 .
  • the state point k of the refrigerant in the main circuit and the auxiliary circuit refrigerant at the state point j are mixed in the gas-liquid separator to form the state point l, and then the refrigerant at the state point l enters After the compressor 115, after being compressed by the compressor 115, the corresponding state point changes from 1 to a.
  • the two-phase state of medium temperature and high pressure flowing out of the outdoor heat exchanger 111 passes through the subcooling heat exchanger 1123, and then is divided into two parts from the tee 1121, wherein the auxiliary path flows to the second electronic expansion valve 1122, and the main path flows to the second electronic expansion valve 1122.
  • An electronic expansion valve 113 After passing through the second electronic expansion valve 1122 , the refrigerant is throttled from a medium-temperature and high-pressure refrigerant to a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant in the auxiliary path returns to the subcooling heat exchanger 1123 to exchange with the medium-temperature and high-pressure two-phase refrigerant in the main path in the subcooling heat exchanger 1123. hot.
  • the low-temperature and low-pressure two-phase refrigerant in the auxiliary path changes into a low-temperature and low-pressure superheated gaseous refrigerant, and flows to the gas-liquid separator 114 .
  • the medium-temperature and high-pressure two-phase refrigerant in the main path changes into a medium-temperature and high-pressure subcooled liquid refrigerant, and flows to the first electronic expansion valve 113 .
  • the refrigerant is divided into two paths after passing through the outdoor heat exchanger 111 , and the refrigerant in the main path passes through the subcooling heat exchanger 1123 , and the state point changes from b to state point c.
  • the auxiliary refrigerant passes through the subcooling heat exchanger 1123 and the second electronic expansion valve 1122, the corresponding pressure drop is ⁇ p4, and the corresponding state changes from c to state point i.
  • the refrigerant in the auxiliary path exchanges heat with the refrigerant in the main path in the subcooling heat exchanger 1123 , and the state point corresponding to the refrigerant in the auxiliary path changes from i to j.
  • the auxiliary refrigerant at the state point j and the main refrigerant at the state h are mixed in the gas-liquid separator 114 to become the refrigerant at the state point k, and enter the compressor 115 .
  • the refrigerant at the state point k is compressed in the compressor 115 and then changes to the refrigerant at the state point a.
  • the refrigerant phase change device 112 provided in the embodiments of the present disclosure includes an auxiliary heater 1124 .
  • the auxiliary heat exchanger 1124 is respectively connected with the subcooling heat exchanger 1123 and the gas-liquid separator 114 .
  • the subcooling heat exchanger 1123 is also used to transmit the gaseous refrigerant in the second temperature and pressure state to the gas-liquid separator 114 through the auxiliary heat exchanger 1124 .
  • the auxiliary heater 1124 is used for continuously heating the gaseous refrigerant in the second temperature and pressure state flowing through the auxiliary heater 1124 to maintain the temperature of the gaseous refrigerant in the second temperature and pressure state.
  • an electric heating wire may be disposed in the auxiliary heater 1124 for continuously heating the gaseous refrigerant flowing through the auxiliary heater 1124 .
  • auxiliary heater 1124 may be applicable to the heating working condition of the air conditioning system 10 , and may also be adapted to be used in the cooling working condition of the air conditioning system 10 .
  • Fig. 6 shows the pressure-enthalpy diagram of the auxiliary heater 1124 working under the heating condition.
  • the refrigerant in the auxiliary path and the refrigerant in the main path exchange heat in the subcooling heat exchanger 1123, and the state point corresponding to the refrigerant in the auxiliary path changes from i to state point j' (state point transition to j' because the refrigerant absorbs the heat of the auxiliary heater 1124).
  • the corresponding refrigerant at state point j' is mixed with the refrigerant at state point k to form state point l'.
  • the corresponding state point changes from l' to state point a'.
  • FIG. 7 shows the pressure-enthalpy diagram of the auxiliary heater 1124 working under cooling conditions.
  • the refrigerant in the auxiliary path and the refrigerant in the main path exchange heat in the subcooling heat exchanger 1123, and the state point corresponding to the refrigerant in the auxiliary path changes from i to state point j' (state point The migration to j' is due to the refrigerant absorbing heat from the auxiliary heat heater 1124).
  • the refrigerant at the corresponding state point j' is mixed with the refrigerant at the state point h to form the state point k'.
  • the corresponding state point changes from k' to state point a'.
  • the auxiliary heater 1124 provided by the embodiments of the present disclosure includes a heat conductor and a heat pipe.
  • the heat conductor is bonded to the heating end of the compressor 115, the heat pipe is respectively connected to the subcooling heat exchanger 1123 and the gas-liquid separator 114, and the heat pipe passes through the heat conductor.
  • the auxiliary heater 1124 provided by the embodiments of the present disclosure includes a heat-conducting hose.
  • the heat-conducting hoses are respectively connected to the subcooling heat exchanger 1123 and the gas-liquid separator 114 , and the heat-conducting hoses are attached to the heating end of the compressor 115 .
  • the refrigerant phase change device 112 provided in the embodiments of the present disclosure further includes a three-way valve 1125 .
  • the first port of the three-way valve 1125 is connected to the subcooling heat exchanger 1123, the second port of the three-way valve 1125 is connected to the auxiliary heater 1124, and the third port of the three-way valve 1125 is connected to the gas-liquid separator 114;
  • the three-way valve 1125 is used to realize the connection between the first port and the second port, and the disconnection between the first port and the third port when the degree of superheat of the compressor 115 is greater than or equal to a first preset threshold;
  • the second preset threshold is smaller than the first preset threshold
  • the first preset threshold may be 40°C.
  • the three-way valve 1125 is also used to realize the conduction between the first port and the third port, and the disconnection between the first port and the second port when the degree of superheat of the compressor 115 is less than or equal to the second preset threshold .
  • the second preset threshold may be 15°C.
  • the refrigerant phase change device 112 provided in the embodiment of the present disclosure may further include a first solenoid valve and a second solenoid valve.
  • the first solenoid valve is used for connecting the gas-liquid separator 114 and the subcooling heat exchanger 1123
  • the second solenoid valve is used for connecting the auxiliary heat exchanger 1124 and the subcooling heat exchanger 1123 .
  • the first electromagnetic valve is used to realize conduction when the degree of superheat of the compressor 115 is greater than or equal to a first preset threshold, and when the degree of superheat of the compressor 115 is less than or equal to a second preset threshold, achieve disconnection;
  • the second electromagnetic valve is used to realize conduction when the degree of superheat of the compressor 115 is less than or equal to the first preset threshold, and to realize conduction when the degree of superheat of the compressor 115 is greater than or equal to the second preset threshold, achieve disconnection;
  • the outdoor unit 11 also includes a compressor discharge temperature sensor, an outdoor heat exchanger liquid pipe temperature sensor, an outdoor heat exchanger middle position temperature sensor, an outdoor ambient temperature sensor, and a subcooling heat exchange The temperature sensor of the main circuit of the device and the inlet temperature sensor of the gas-liquid separator.
  • the outdoor heat exchanger liquid pipe temperature sensor is used to detect the temperature of the liquid pipe of the outdoor heat exchanger 111 .
  • the temperature sensor at the middle position of the outdoor heat exchanger is used to detect the temperature at the middle position of the outdoor heat exchanger 111 .
  • the outdoor ambient temperature sensor is used to detect the temperature of the outdoor environment.
  • the main circuit temperature sensor of the subcooling heat exchanger is used to detect the temperature of the main circuit of the subcooling heat exchanger 1123 .
  • the gas-liquid separator inlet temperature sensor is used to detect the inlet temperature of the gas-liquid separator 114 .
  • the indoor unit 132 also includes an indoor unit liquid pipe temperature sensor, an indoor unit suction temperature sensor, an indoor heat exchanger middle position temperature sensor, an indoor unit gas pipe temperature sensor, and an indoor unit liquid pipe temperature sensor.
  • the indoor unit liquid pipe temperature sensor is used to detect the temperature of the indoor unit liquid pipe.
  • the indoor unit suction temperature sensor is used to detect the temperature of air taken in by the indoor unit 132 .
  • the temperature sensor at the middle position of the indoor heat exchanger is used to detect the temperature at the middle position of the indoor heat exchanger 1322 .
  • the air pipe temperature sensor of the indoor unit is used to detect the temperature of the air pipe of the indoor unit 132 .
  • the liquid pipe temperature sensor of the indoor unit is used to detect the temperature of the liquid pipe of the indoor unit 132 .
  • the embodiment of the present disclosure also provides a control method, specifically as follows:
  • the control target of the second electronic expansion valve 1122 is Td_SHo, which is the exhaust superheat of the compressor 115.
  • the control target of the indoor electronic expansion valve 1321 is the superheat degree of the indoor heat exchanger 1322, which is T_SHo, and T_SHo is a preset control constant, which is selected in this disclosure from 0 to 5°C; the indoor heat exchanger
  • T_i the value detected by the temperature sensor at the middle position
  • T_j the value detected by the air pipe temperature sensor of the indoor unit
  • T_i the value detected by the air pipe temperature sensor of the indoor unit
  • ⁇ T_SH T_SH-T_sHo
  • the control target of the first electronic expansion valve 113 is that the degree of superheat of the outdoor heat exchanger 111 is TS_SHO, and TS_SHO is a preset control constant, which is selected as 0-5°C in this disclosure;
  • the value detected by the temperature sensor at the middle position of the device 111 is T_c, and the temperature detected at this position is the inlet temperature of the outdoor heat exchanger 111;
  • the value detected by the temperature sensor at the inlet of the gas-liquid separator is T_f, and the temperature detected at this position is the outdoor heat exchange temperature.
  • the control target of the indoor electronic expansion valve 1321 is Ti_sco, which is the subcooling degree of the indoor heat exchanger 1322, and Ti_sco is a preset control constant, which is selected in this disclosure to be 3-5°C;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统(10),包括室外机(11)、用于传输两相态制冷剂的液管(12),以及至少一个室内机(131、132);室外机(11)包括室外换热器(111)、制冷剂相变装置(112)以及用于降压的第一电子膨胀阀(113);至少一个室内机(131、132)均通过所述液管(12)与所述室外机(11)的所述第一电子膨胀阀(113)连接,制冷剂相变装置(112)分别与所述第一电子膨胀阀(113)以及所述室外换热器(111)连接;制冷剂相变装置(112),用于在制热工况下,通过第一电子膨胀阀(113)接收至少一个室内机(131、132)通过所述液管(12)流出的两相态制冷剂,并将两相态制冷剂相变为液态制冷剂;制冷剂相变装置(112),还用于向室外换热器(111)传输相变得到的液态制冷剂,可提高室外换热器(111)的换热蒸发效率,进而能够保证空调系统(10)的制热效果。

Description

一种空调系统
相关申请的交叉引用
本公开要求在2021年8月3日提交中国专利局、申请号为202110887207.5、发明名称为“一种空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开的一些实施例中。
技术领域
本公开涉及空调技术领域,尤其涉及一种空调系统。
背景技术
空调系统的室内机以及室外机在安装完成后,安装人员通常会根据室内机与室外机之间连接配管的长度及管径,计算空调系统需要追加的制冷剂量。在这种情况下,随着连接配管长度的增加,空调系统对于制冷剂的需求量也会增加。
为了减少或避免制冷剂的注充,相关技术中会在空调系统运行过程中,控制液管中的制冷剂为气液混合的两相态制冷剂。由于两相态制冷剂的密度小于纯液态制冷剂,因此可以减少空调系统对制冷剂的需求量,进而可以实现空调系统的制冷剂免追加或少追加。
在空调系统的制热工况下,两相态制冷剂从室内机流入液管,在通过液管进入室外机的室外换热器之后,在室外换热器中分布不均匀,这就容易使得室外换热器的换热蒸发能力不足,导致空调系统的制热效果下降。
发明内容
本公开提供一种空调系统,包括室外机、用于传输两相态制冷剂的液管,以及至少一个室内机;室外机包括室外换热器、制冷剂相变装置以及用于降压的第一电子膨胀阀;其中,至少一个室内机均通过液管与室外机的第一电子膨胀阀连接,制冷剂相变装置分别与第一电子膨胀 阀以及室外换热器连接;制冷剂相变装置,用于在制热工况下,通过第一电子膨胀阀接收至少一个室内机通过液管流出的两相态制冷剂,并将两相态制冷剂相变为液态制冷剂;制冷剂相变装置,还用于向室外换热器传输相变得到的液态制冷剂。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的空调系统的结构示意图之一;
图2为本公开实施例提供的空调系统的压焓图之一;
图3为本公开实施例提供的空调系统的压焓图之二;
图4为本公开实施例提供的空调系统的结构示意图之二;
图5为本公开实施例提供的空调系统的结构示意图之三;
图6为本公开实施例提供的空调系统的压焓图之三;
图7为本公开实施例提供的空调系统的压焓图之四;
图8为本公开实施例提供的空调系统的结构示意图之四;
图9为本公开实施例提供的空调系统的结构示意图之五;
图10为本公开实施例提供的空调系统的结构示意图之六。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开的一些实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供一种空调系统,如图1所示,空调系统10包括:室外机11、用于传输两相态制冷剂的液管12、至少一个室内机(本公开实 施例示例性的示出了室内机131及室内机132,在实际应用过程中,可以存在更多或者更少的室内机,为便于描述,本公开后续以室内机132为例进行描述)以及用于传输气态制冷剂的气管14。室外机11包括室外换热器111、制冷剂相变装置112、用于降压的第一电子膨胀阀113、气液分离器114、压缩机115、室外风机116、四通换向阀117、回油毛细管118以及油分离器119。以室内机132为例,室内机132包括室内电子膨胀阀1321、室内换热器1322、室内风机1323。
在本公开的一些实施例中,其中,至少一个室内机均通过液管12与室外机11的第一电子膨胀阀113连接,制冷剂相变装置112分别与第一电子膨胀阀113以及室外换热器111连接。
在本公开的一些实施例中,至少一个室内机还通过气管14与室外机11连接。
在本公开的一些实施例中,在室外机11中,四通换向阀117分别与气液分离器114、气管14、油分离器119以及室外换热器111连接。气液分离器114与压缩机115的进口连接,油分离器119通过回油毛细管118与压缩机115的进口连接,油分离器119还直接与压缩机115的出口连接。
在本公开的一些实施例中,在室内机132中,室内换热器1322分别与气管14以及室内电子膨胀阀1321连接,室内电子膨胀阀1321还与液管12连接。
结合图1,以下示出了在制热工况下的各装置或者部件的工作过程。
在制热工况下,压缩机115在工作过程中,从压缩机115的出口流出的高温高压气态制冷剂经过油分离器119。一方面,油分离器119可以将高温高压气态制冷剂中的润滑油分离出来,并将润滑油通过回油毛细管118传输回压缩机115再利用。另一方面,油分离器119流出的高温高压的气态制冷剂经过四通换向阀117流向气管14,并通过气管14流向室内机132。
相应的,室内机132的室内换热器1322通过气管14流入高温高压的气态制冷剂之后,室内换热器1322对高温高压的气态制冷剂进行冷凝处理,以得到中温高压的过冷液态制冷剂,并向室内电子膨胀阀1321 传输中温高压的过冷液态制冷剂。
进一步的,室内机132的室内电子膨胀阀1321对中温高压的过冷液态制冷剂进行处理,得到中温高压的两相态制冷剂,并通过液管12向室外机11传输中温高压的两相态制冷剂。
室外机11的第一电子膨胀阀113在接收到中温高压的两相态制冷剂之后,对流经第一电子膨胀阀113的中温高压的两相态制冷剂进行降压处理,以得到中温中压的两相态制冷剂,并向室外机11的制冷剂相变装置112发送中温中压的两相态制冷剂。
在本公开的一些实施例中,制冷剂相变装置112,用于在制热工况下,通过第一电子膨胀阀113接收至少一个室内机通过液管12流出的两相态制冷剂,并将两相态制冷剂相变为液态制冷剂。
制冷剂相变装置112,还用于向室外换热器111传输相变得到的中温中压的液态制冷剂。
相应的,室外换热器111将接收到的中温中压的液态制冷剂节流蒸发成低温低压的过热气态制冷剂。
在本公开的一些实施例中,室外换热器111将节流蒸发得到的低温低压的过热气态制冷剂通过四通换向阀117流向气液分离器114,并通过气液分离器流向压缩机115的进口。
本公开的一些实施例中,由于空调系统10在液管12与室外换热器111之间设置有制冷剂相变装置112,能够在制热工况下,对液管12中的两相态制冷剂进行相变处理,以得到液态制冷剂,这样一来,进入室外换热器111的制冷剂为液态制冷剂,可以在室外换热器111中均匀分布,即可提高室外换热器111的换热蒸发效率,进而能够保证空调系统10的制热效果。
图2示出了空调系统10在制热工况下对应的压焓图。
如图2所示,可以理解的,压缩机115的出口对应的状态点为a,室内换热气冷凝后状态点从a变为状态点b并变为状态点c。制冷剂经过室内电子膨胀阀1321,对应的压力降为△p1,状态点从c变为状态点d,状态点d为两相态制冷剂。在制冷剂经过液管12之后,状态点由d变为状态e,对应的压力降为△p2,状态点e为两相态。两相态制 冷剂在经过室外机11的第一电子膨胀阀113之后,状态点从e变为状态点f,对应的压力降为△p3。进一步的,中温中压的制冷剂在经过制冷剂相变装置112之后,状态点从f变为状态点g,制冷剂从状态点f变化到状态点g的过程中,制冷剂的干度变小,相变为液态制冷剂。液态制冷剂在经过室外换热器111的分流毛细管之后,对应的压力降为△p5,状态点对应的从g变化为状态点h。液态制冷剂经室外制冷剂蒸发后,对应的状态点从h变化为状态点k。
以下,结合图1,说明本公开实施例涉及的空调系统10,在制冷工况下的各装置或者部件的工作过程。
室外机11的压缩机115排出高温高压的气态制冷剂经过油分离器119。一方面,油分离器119可以将高温高压气态制冷剂中的润滑油分离出来,并将润滑油通过回油毛细管118传输回压缩机115再利用。另一方面,油分离器119流出的高温高压的气态制冷剂经过四通换向阀117流向室外换热器111。高温高压的气态制冷剂经过室外换热器111冷凝,成为中温高压的两相态制冷剂,并由室外换热器111传输至制冷剂相变装置112。
制冷剂相变装置112对中温高压的两相态制冷剂相变层中温高压的过冷液态制冷剂,并将中温高压的液态制冷剂传输至第一电子膨胀阀113。
在本公开的一些实施例中,第一电子膨胀阀113对中温高压的液态制冷剂进行减压,以得到中温中压的两相态制冷剂,并通过液管12输送至室内机132的室内电子膨胀阀1321。
室内机132的室内电子膨胀阀1321用于对流经室内电子膨胀阀1321的中温中压的两相态制冷剂节流,以得到低温低压状态的两相态制冷剂,并向低温低压的两相态制冷剂传输至室内换热器1322。
室内换热器1322对低温低压的两相态制冷剂进行换热蒸发,以得到低温低压的过热气态制冷剂,并将得到的低温低压的气态制冷剂流出,通过气管14以及四通换向阀117,流向气液分离器114,最终进入压缩机115的入口。
图3示出了空调系统10在制冷工况下对应的压焓图。
如图3所示,可以理解的,压缩机115的出口对应的状态点为a,室外换热气冷凝后状态点从a变为状态点b。制冷剂经制冷剂相变装置112之后,状态点从b变化为状态点c。进一步的,制冷剂经过第一电子膨胀阀113之后,对应的压力降为△p1,对应的状态点从c变换为状态点d,状态点d为两相态制冷剂。制冷剂经过液管12之后,状态点从d变化为状态点e,对应的压力降为△p2,状态点e为两相态。液管12内的制冷剂为两相态,密度相对于纯液态的制冷剂较低,可以减少也管内制冷剂的追加量。制冷剂经过室内电子膨胀阀1321,对应的压力降为△p3,对应的状态点从e变化为状态点f。制冷剂在室内换热器1322内蒸发后,对应的状态点从f变化为状态点g。制冷剂经过气管14之后,对应的压力降为△p5,对应的状态点从g变化为状态点h。
在本公开的一些实施例中,如图4所示,本公开实施例提供的空调系统10中,通过第一电子膨胀阀113降压处理的两相态制冷剂为处于第一温度压力状态下的两相态制冷剂,本公开实施例提供的空调系统10中,制冷剂相变装置112包括三通1121、第二电子膨胀阀1122以及过冷换热器1123。
需要说明的,第一温度压力状态即为上述中温中压状态。
三通1121分别连接第一电子膨胀阀113、第二电子膨胀阀1122以及过冷换热器1123,过冷换热器1123分别与第二电子膨胀阀1122以及室外换热器111连接。
以下结合图4,对空调系统10中制冷剂相变装置112在制热工况下的工作原理进行说明。
第二电子膨胀阀1122,用于在制热工况下,通过三通1121接收第一电子膨胀阀113降压处理得到的第一温度压力状态下的二相态制冷剂,并对第一温度压力状态下的二相态制冷剂降温及降压,以得到第二温度压力状态下的二相态制冷剂。
需要说明的,第二温度压力状态即为上述低温低压状态。
第二电子膨胀阀1122,还用于在得到第二温度压力状态下的二相态制冷剂之后,向过冷换热器1123传输第二温度压力状态的二相态制冷剂。
过冷换热器1123,用于在制热工况下,通过三通1121接收第一电子膨胀阀113减压处理得到的第一温度压力状态下的二相态制冷剂,并通过接收到的第二温度压力状态下的二相态制冷剂,对接收到的第一温度压力状态的二相态制冷剂进行换热处理,以得到第一温度压力状态下的液态制冷剂。
过冷换热器1123,还用于在经换热处理得到第一温度压力状态的液态制冷剂之后,向室外换热器111传输第一状态的液态制冷剂。
在本公开的一些实施例中,如图4所示,本公开实施例提供的室外机11中,过冷换热器1123还与气液分离器114连接。
过冷换热器1123还用于通过接收到的第一温度压力状态下的二相态制冷剂,对接收到的第二温度压力状态下的二相态制冷剂进行换热处理,以得到第二温度压力状态下的气态制冷剂,并向气液分离器114传输第二温度压力状态下的气态制冷剂。
以下结合图2,说明过冷换热器1123在制热工况的工作过程中对应的压焓图。
在本公开的一些实施例中,如图2所示,第一电子膨胀阀113流出的两相态制冷液经过三通1121之后分为两路,辅路的制冷剂流向第二电子膨胀阀1122,主路的制冷剂流向过冷换热器1123。辅路的中温中压制冷剂经过第二电子膨胀阀1122之后,对应的压力降为△p4,对应的状态点从f变化为状态点i。辅路制冷剂与主路的制冷剂在过冷换热器1123中换热,辅路制冷剂对应的状态点从i变化为状态点j。同时,主路的制冷剂在过冷换热器1123中从状态点f变化为状态点g。
在本公开的一些实施例中,主路的制冷剂的状态点k与状态点为j的辅路制冷剂,在气液分离器中混合为状态点l,进而,状态点为l的制冷剂进入压缩机115之后,经过压缩机115压缩,对应的状态点从l变化为a。
以下,结合图4,说明本公开实施例中的空调系统10中制冷剂相变装置112在制冷工况下的工作原理。
如图4所示,室外换热器111流出中温高压的两相态经过过冷换热器1123之后,从三通1121分成了两部分,其中辅路流向第二电子膨胀 阀1122,主路流向第一电子膨胀阀113。制冷剂在经过第二电子膨胀阀1122之后,由中温高压状态的制冷剂节流成低温低压的两相态制冷剂。
在本公开的一些实施例中,辅路低温低压的两相态制冷剂重新回到过冷换热器1123中,与过冷换热器1123中主路的中温高压的两相态制冷剂进行换热。辅路低温低压的两相态制冷剂相变为低温低压的过热气态制冷剂,并流向气液分离器114。同时,主路中温高压的两相态制冷剂相变为中温高压的过冷液态制冷剂,并流向第一电子膨胀阀113。
以下结合图3,说明过冷换热器1123在制冷工况的工作过程中对应的压焓图。
可以理解的,如图5所示,制冷剂经室外换热器111后分为2路,主路制冷剂经过过冷换热器1123,状态点从b变化为状态点c。辅路制冷剂经过过冷换热器1123以及第二电子膨胀阀1122之后,对应的压力降为△p4,对应的状态从c变化为状态点i。辅路制冷剂与主路制冷剂在过冷换热器1123内换热,辅路制冷剂对应的状态点从i变化为j。
在本公开的一些实施例中,状态点为j的辅路制冷剂与状态点为h的主路制冷剂在气液分离器114中混合为状态点k的制冷剂,并进入压缩机115。状态点为k的制冷剂在压缩机115中被压缩后,变化为状态点为a的制冷剂。
在本公开的一些实施例中,如图5所示,本公开实施例提供的制冷剂相变装置112中包括辅热器1124。
辅热器1124分别与过冷换热器1123以及气液分离器114连接。
过冷换热器1123还用于通过辅热器1124向气液分离器114传输第二温度压力状态的气态制冷剂。
辅热器1124,用于对流经辅热器1124的第二温度压力状态的气态制冷剂持续加热,以保持第二温度压力状态下的气态制冷剂的温度。
在本公开的一些实施例中,辅热器1124中可以设置有电热丝,用于为流经辅热器1124的气态制冷剂持续加热。
需要说明的,上述辅热器1124可以适用于空调系统10的制热工况,也可以适应用于空调系统10的制冷工况。
图6示出了辅热器1124在制热工况下工作的压焓图。
可以理解的,如图6所示,辅路的制冷剂与主路的制冷剂在过冷换热器1123内换热,辅路制冷剂对应的状态点从i变化为状态点j’(状态点迁移到j’是因为制冷剂吸收了辅热器1124的热量)。相应的状态点为j’的制冷剂与状态点为k的制冷剂混合为状态点l’,制冷剂经过压缩机115后,对应的状态点从l’变化为状态点a’。
图7示出了辅热器1124在制冷工况下工作的压焓图。
可以理解的,如图7所示,辅路的制冷剂与主路的制冷剂在过冷换热器1123内换热,辅路的制冷剂对应的状态点从i变化为状态点j’(状态点迁移到j’是因为制冷剂吸收了辅热器1124的热量)。相应的状态点为j’的制冷剂与状态点为h的制冷剂混合为状态点k’,制冷剂经过压缩机115后,对应的状态点从k’变化为状态点a’。
在本公开的一些实施例中,如图8所示,本公开实施例提供的辅热器1124包括热导体及热导管。热导体与压缩机115的发热端贴合,热导管分别连接过冷换热器1123以及气液分离器114,且热导管穿过热导体。
在本公开的一些实施例中,如图9所示,本公开实施例提供的辅热器1124包括导热软管。
导热软管分别连接过冷换热器1123以及气液分离器114,且导热软管与压缩机115的发热端贴合。
在本公开的一些实施例中,如图10所示,本公开实施例提供的制冷剂相变装置112还包括三通阀1125。
三通阀1125的第一端口连接过冷换热器1123,三通阀1125的第二端口连接辅热器1124,三通阀1125的第三端口连接气液分离器114;
三通阀1125,用于在压缩机115的过热度大于或者等于第一预设阈值的情况下,实现第一端口与第二端口的导通,以及第一端口与第三端口的断开;
其中,第二预设阈值小于第一预设阈值
在本公开的一些实施例中,第一预设阈值可以为40℃。
三通阀1125,还用于在压缩机115的过热度小于或者等于第二预设阈值的情况下,实现第一端口与第三端口的导通,以及第一端口与第 二端口的断开。
在本公开的一些实施例中,第二预设阈值可以为15℃。
在一种设计中,作为三通阀1125的替代性装置,本公开实施例提供的制冷剂相变装置112还可以包括第一电磁阀以及第二电磁阀。
其中,第一电磁阀用于连接气液分离器114以及过冷换热器1123,第二电磁阀用于连接辅热器1124与过冷换热器1123。
第一电磁阀,用于在压缩机115的过热度大于或者等于第一预设阈值的情况下,实现导通,以及在压缩机115的过热度小于或者等于第二预设阈值的情况下,实现断开;
第二电磁阀,用于在压缩机115的过热度小于或者等于第一预设阈值的情况下,实现导通,以及在压缩机115的过热度大于或者等于第二预设阈值的情况下,实现断开;
本公开实施例提供的空调系统10中,室外机11还包括压缩机排气温度传感器,室外换热器液管温度传感器,室外换热器中间位置温度传感器,室外环境温度传感器,过冷换热器主路温度传感器,气液分离器入口温度传感器。
其中,室外换热器液管温度传感器用于检测室外换热器111的液管的温度。室外换热器中间位置温度传感器用于检测室外换热器111的中间位置的温度。室外环境温度传感器用于检测室外环境的温度。过冷换热器主路温度传感器用于检测过冷换热器1123的主路的温度。气液分离器入口温度传感器用于检测气液分离器114的入口温度。
室内机132还包括室内机液管温度传感器,室内机吸入温度传感器,室内换热器中间位置温度传感器,室内机气管温度传感器,室内机液管温度传感器。
其中,室内机液管温度传感器用于检测室内机液管的温度。室内机吸入温度传感器用于检测室内机132吸入空气的温度。室内换热器中间位置温度传感器用于检测室内换热器1322中间位置的温度。室内机气管温度传感器用于检测室内机132气管的温度。室内机液管温度传感器用于检测室内机132液管的温度。
本公开实施例还提供了一种控制方法,具体如下:
在空调系统10的制冷工况下,第一电子膨胀阀113的控制目标为过冷换热器的主路过冷度;主路过冷度的目标值为T_sco为预设控制常数,本公开选择3~5℃;室外换热器液管温度传感器检测的值即为T_b,此位置检测的温度为室外换热器111进口温度;过冷换热器主路温度传感器检测的值即为T_e,二者之间的差值即为过冷却器主路的过冷度,如下式所示:T_sc=T_b-T_e。本公开空调系统过冷却器的主路实际过冷度与目标过冷度之间的差值即为△T_sc,如下式所示:△T_sc=T_sc-T_sco;在△T_sc(n)≥α℃(α为预设控制常数,本公开选择α≥0)的情况下,第一电子膨胀阀113开大;在△T_sc(n)<α的情况下,第一电子膨胀阀113关小(n为空调系统10运行的第n时刻)。
在空调系统10的制冷工况下,第二电子膨胀阀1122的控制目标为压缩机115排气过热度即为Td_SHo,Td_SHo为预设控制常数,本公开选择20~30℃;压缩机115排气温度传感器检测的值即为T_a;室外换热器111中间位置温度传感器检测的值即为T_c,二者之间的差值即为压缩机115排气过热度即为Td_SH,如下式所示:Td_SH=T_a-T_c。本公开空调系统10压缩机115实际排气过热度与目标过热度之间的差值即为△Td_SH,如下式所示:△Td_SH=Td_SH-Td_SHo;在△Td_SH(n)≥β℃(β为预设控制常数,本公开选择β≥0),第二电子膨胀阀1122开大;在△Td_SH(n)<β的情况下,第二电子膨胀阀1122关小(n为空调系统10运行的第n时刻)。
在空调系统10的制冷工况下,室内电子膨胀阀1321的控制目标为室内换热器1322的过热度即为T_SHo,T_SHo为预设控制常数,本公开选择0~5℃;室内换热器中间位置温度传感器检测的值即为T_i、室内机气管温度传感器检测的值即为T_j,2者之间的差值即为室内换热器1322的过热度,即为T_SH=T_j-T_i。本公开空调系统10室内机132实际过热度与目标过热度之间的差值即为△T_SH,如下式所示:△T_SH=T_SH-T_sHo;在△T_SH(n)≥γ℃(γ为预设控制常数,本公开选择γ≥0)的情况下,室内电子膨胀阀1321开大;在△T_SH(n)<γ℃的情况下,室内电子膨胀阀1321关小(n为空调系统运行的第n时刻)。
在空调系统10的制热工况下,第一电子膨胀阀113的控制目标为室外换热器111的过热度为TS_SHO,TS_SHO为预设控制常数,本公开选择0~5℃;室外换热器111中间位置温度传感器检测的值即为T_c,此位置检测的温度为室外换热器111进口温度;气液分离器入口温度传感器检测的值即为T_f,此位置检测的温度为室外换热器出口温度,二者之间的差值即为室外换热器111过热度,如下式所示:TS_SH=T_f-T_c。本公开空调系统10室外机11实际过热度与目标过热度之间的差值即为△TS_SH,如下式所示:△TS_SH=TS_SH-TS_SHo;在△TS_SH(n)≥δ℃(δ为预设控制常数,本公开选择δ≥0)的情况下,第一电子膨胀阀113开大;在△TS_SH(n)<δ的情况下,第一电子膨胀阀113关小(n为空调系统运行的第n时刻)。
在空调系统10的制热工况下,室内电子膨胀阀1321的控制目标为室内换热器1322的过冷度即为Ti_sco,Ti_sco为预设控制常数,本公开选择3~5℃;室内机液管温度传感器检测的值即为T_g、室内换热器中间位置温度传感器检测的值即为T_i,二值之间的差值即为室内换热器1322的过冷度,如下式所示:Ti_sc=T_i-T_g。本公开空调系统10的室内换热器1322实际过冷度与目标过冷度之间的差值即为△Ti_sc,如下式所示:△Ti_sc=Ti_sc-Ti_sco;在△Ti_sc(n)≥η℃(η为预设控制常数,本公开选择η≥0)的情况下,室内电子膨胀阀1321开大;在△Ti_sc(n)<η的情况下,室内电子膨胀阀1321关小(n为空调系统运行的第n时刻)。
以上仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求所述的保护范围为准。

Claims (7)

  1. 一种空调系统,其特征在于,包括室外机、用于传输两相态制冷剂的液管,以及至少一个室内机;所述室外机包括室外换热器、制冷剂相变装置以及用于降压的第一电子膨胀阀;
    其中,所述至少一个室内机均通过所述液管与所述室外机的所述第一电子膨胀阀连接,所述制冷剂相变装置分别与所述第一电子膨胀阀以及所述室外换热器连接;
    所述制冷剂相变装置,用于在制热工况下,通过所述第一电子膨胀阀接收所述至少一个室内机通过所述液管流出的两相态制冷剂,并将两相态制冷剂相变为液态制冷剂;
    所述制冷剂相变装置,还用于向所述室外换热器传输相变得到的液态制冷剂。
  2. 根据权利要求1所述的空调系统,其特征在于,通过所述第一电子膨胀阀降压处理的两相态制冷剂为处于第一温度压力状态下的两相态制冷剂,所述制冷剂相变装置包括三通、第二电子膨胀阀以及过冷换热器;
    所述三通分别连接所述第一电子膨胀阀、所述第二电子膨胀阀以及所述过冷换热器,所述过冷换热器分别与所述第二电子膨胀阀以及所述室外换热器连接;
    所述第二电子膨胀阀,用于在制热工况下,通过所述三通接收所述第一电子膨胀阀降压处理得到的所述第一温度压力状态下的二相态制冷剂,并对所述第一温度压力状态下的二相态制冷剂降温及降压,以得到第二温度压力状态下的二相态制冷剂;
    所述第二电子膨胀阀,还用于在得到所述第二温度压力状态下的二相态制冷剂之后,向所述过冷换热器传输所述第二温度压力状态的二相态制冷剂;
    所述过冷换热器,用于在制热工况下,通过所述三通接收所述第一电子膨胀阀减压处理得到的所述第一温度压力状态下的二相态制冷剂,并通过接收到的所述第二温度压力状态下的二相态制冷剂,对接收到的所述第一温度压力状态的二相态制冷剂进行换热处理,以得到所述第一温度压力状态下的液态制冷剂;
    所述过冷换热器,还用于在经换热处理得到所述第一温度压力状态的液态制冷剂之后,向所述室外换热器传输所述第一状态的液态制冷剂。
  3. 根据权利要求2所述的空调系统,其特征在于,所述室外机还包括气液分离器;
    所述过冷换热器还用于通过接收到的所述第一温度压力状态下的二相态制冷剂,对接收到的所述第二温度压力状态下的二相态制冷剂进行换热处理,以得到所述第二温度压力状态下的气态制冷剂,并向所述气液分离器传输所述第二温度压力状态下的气态制冷剂。
  4. 根据权利要求3所述的空调系统,其特征在于,所述制冷剂相变装置还包括辅热器;
    所述辅热器分别与所述过冷换热器以及气液分离器连接;
    所述过冷换热器还用于通过所述辅热器向所述气液分离器传输所述第二温度压力状态的气态制冷剂;
    所述辅热器,用于对流经所述辅热器的所述第二温度压力状态的气态制冷剂持续加热,以保持所述第二温度压力状态下的气态制冷剂的温度。
  5. 根据权利要求4所述的空调系统,其特征在于,所述室外机还包括压缩机,所述辅热器包括热导体及热导管;所述热导体与所述压缩机的发热端贴合,所述热导管分别连接所述过冷换热器以及所述气液分离器,且所述热导管穿过所述热导体。
  6. 根据权利要求4所述的空调系统,其特征在于,所述室外机还包括压缩机,所述辅热器包括导热软管;
    所述导热软管分别连接所述过冷换热器以及所述气液分离器,且所述导热软管与所述压缩机的发热端贴合。
  7. 根据权利要求4-6中任一项所述的空调系统,其特征在于,所述室外机还包括压缩机,所述制冷剂相变装置还包括三通阀;
    所述三通阀的第一端口连接所述过冷换热器,所述三通阀的第二端口连接所述辅热器,所述三通阀的第三端口连接所述气液分离器;
    所述三通阀,用于在所述压缩机的过热度大于或者等于第一预设阈值的情况下,实现所述第一端口与所述第二端口的导通,以及所述第一端口与所述第三端口的断开;
    所述三通阀,还用于在所述压缩机的过热度小于或者等于第二预设阈值的情况下,实现所述第一端口与所述第三端口的导通,以及所述第一端口与所述第二端口的断开,所述第二预设阈值小于所述第一预设阈值。
PCT/CN2021/140321 2021-08-03 2021-12-22 一种空调系统 WO2023010768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097622.9A CN117242307A (zh) 2021-08-03 2021-12-22 一种空调系统
US18/405,707 US20240151441A1 (en) 2021-08-03 2024-01-05 Air conditioning system and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110887207.5A CN113739275B (zh) 2021-08-03 2021-08-03 一种空调系统
CN202110887207.5 2021-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/405,707 Continuation US20240151441A1 (en) 2021-08-03 2024-01-05 Air conditioning system and control method thereof

Publications (1)

Publication Number Publication Date
WO2023010768A1 true WO2023010768A1 (zh) 2023-02-09

Family

ID=78729969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140321 WO2023010768A1 (zh) 2021-08-03 2021-12-22 一种空调系统

Country Status (3)

Country Link
US (1) US20240151441A1 (zh)
CN (2) CN113739275B (zh)
WO (1) WO2023010768A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739275B (zh) * 2021-08-03 2022-12-13 青岛海信日立空调系统有限公司 一种空调系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258343A (ja) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp 空気調和装置
JP2009228979A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
CN101936600A (zh) * 2010-09-15 2011-01-05 江苏天舒电器有限公司 一种自调节稳态低温热泵热水器及其运行方法
CN107806715A (zh) * 2017-10-25 2018-03-16 珠海格力电器股份有限公司 水冷机组及其节流调控方法
CN111550943A (zh) * 2020-04-26 2020-08-18 珠海格力电器股份有限公司 一种二次节流双冷凝制冷系统、空调器和控制方法
CN112113364A (zh) * 2019-06-22 2020-12-22 青岛海尔空调电子有限公司 一种冷水机组及控制方法
CN212481774U (zh) * 2020-03-24 2021-02-05 浙江科麦人工环境有限公司 一种热泵压机余热辅助除霜装置
CN113739275A (zh) * 2021-08-03 2021-12-03 青岛海信日立空调系统有限公司 一种空调系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728341B1 (ko) * 2006-02-27 2007-06-13 주식회사 대우일렉트로닉스 인젝션 타입 히트펌프 공기조화기
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
CN104748429B (zh) * 2015-03-31 2017-01-18 广东美的暖通设备有限公司 多联机系统
CN106382777A (zh) * 2016-08-29 2017-02-08 珠海格力电器股份有限公司 一种空调系统及过冷器回流冷媒的回流控制方法
CN110645726A (zh) * 2019-10-16 2020-01-03 珠海格力电器股份有限公司 单冷空调系统及其控制方法、热泵空调系统及其控制方法
CN213841111U (zh) * 2020-11-30 2021-07-30 青岛海信日立空调系统有限公司 空调器
CN112594956A (zh) * 2020-12-16 2021-04-02 浙江中广电器股份有限公司 一种降低回液风险的控制系统以及空调器、运行方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258343A (ja) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp 空気調和装置
JP2009228979A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
CN101936600A (zh) * 2010-09-15 2011-01-05 江苏天舒电器有限公司 一种自调节稳态低温热泵热水器及其运行方法
CN107806715A (zh) * 2017-10-25 2018-03-16 珠海格力电器股份有限公司 水冷机组及其节流调控方法
CN112113364A (zh) * 2019-06-22 2020-12-22 青岛海尔空调电子有限公司 一种冷水机组及控制方法
CN212481774U (zh) * 2020-03-24 2021-02-05 浙江科麦人工环境有限公司 一种热泵压机余热辅助除霜装置
CN111550943A (zh) * 2020-04-26 2020-08-18 珠海格力电器股份有限公司 一种二次节流双冷凝制冷系统、空调器和控制方法
CN113739275A (zh) * 2021-08-03 2021-12-03 青岛海信日立空调系统有限公司 一种空调系统

Also Published As

Publication number Publication date
CN113739275A (zh) 2021-12-03
CN117242307A (zh) 2023-12-15
CN113739275B (zh) 2022-12-13
US20240151441A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP5430667B2 (ja) ヒートポンプ装置
US10036562B2 (en) Air-conditioning apparatus
US9683768B2 (en) Air-conditioning apparatus
CN107178833B (zh) 热回收外机系统和空调系统
JP4804396B2 (ja) 冷凍空調装置
CN110332635B (zh) 一种双级压缩多补气制冷热泵系统、控制方法和空调器
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
GB2563776A (en) Air conditioning device
JP6223469B2 (ja) 空気調和装置
CN101680688A (zh) 设有膨胀装置旁路的制冷系统
JP5963971B2 (ja) 空気調和装置
WO2013179334A1 (ja) 空気調和装置
WO2017138108A1 (ja) 空気調和装置
JP2019184207A (ja) 空気調和装置
WO2004013549A1 (ja) 冷凍装置
US11187447B2 (en) Refrigeration cycle apparatus
WO2023010768A1 (zh) 一种空调系统
CN114484944A (zh) 自过冷结构及空调
US9903625B2 (en) Air-conditioning apparatus
JP2006023073A (ja) 空気調和装置
KR101823469B1 (ko) 이원 싸이클을 이용한 부분부하가 적용된 고온 급탕 및 냉난방 장치
CN111121352A (zh) 一种减少漏热的连续融霜制冷控制系统
CN211424782U (zh) 热氟除霜装置及空调机组
JP2004061023A (ja) ヒートポンプ装置
CN102840712A (zh) 制冷循环装置和具有该制冷循环装置的热水供暖装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097622.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE