WO2023008123A1 - 膜付き基材及びその製造方法 - Google Patents

膜付き基材及びその製造方法 Download PDF

Info

Publication number
WO2023008123A1
WO2023008123A1 PCT/JP2022/026833 JP2022026833W WO2023008123A1 WO 2023008123 A1 WO2023008123 A1 WO 2023008123A1 JP 2022026833 W JP2022026833 W JP 2022026833W WO 2023008123 A1 WO2023008123 A1 WO 2023008123A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
refractive index
coated substrate
low refractive
Prior art date
Application number
PCT/JP2022/026833
Other languages
English (en)
French (fr)
Inventor
義正 山口
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023008123A1 publication Critical patent/WO2023008123A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Abstract

赤外線透過レンズに用いたときに、赤外線透過率を効果的に高めることができる、膜付き基材を提供する。 基材2上に多層膜3が設けられている、膜付き基材1であって、多層膜3が、基材2の主面2a上に設けられており、密着層である、第1の層4と、第1の層4上に設けられており、相対的に屈折率が低い低屈折率膜7と、相対的に屈折率が高い高屈折率膜8とを有する、第2の層5と、第2の層5上に設けられており、最外層である、第3の層6とを備え、低屈折率膜7が、YF3及びYbF3のうち少なくとも一方により構成されており、高屈折率膜8が、Geにより構成されている、膜付き基材1。

Description

膜付き基材及びその製造方法
 本発明は、基材上に多層膜が設けられている、膜付き基材及び該膜付き基材の製造方法に関する。
 近年、赤外線を利用した光学機器が広く用いられている。例えば、車載ナイトビジョンやセキュリティシステム等においては、夜間の生体検知に用いられる赤外線センサが備えられている。赤外線センサでは、生体から発せられる波長約8μm~14μmの赤外線が感知されるため、センサ部の前には当該波長範囲の赤外線を透過するレンズやフィルタ等の光学部品が設けられている。
 このような光学部品の一例として、下記の特許文献1には、基材と赤外反射防止膜とからなる光学部品が開示されている。特許文献1において、基材は、ZnSeにより構成されている。また、赤外反射防止膜は、主としてBaFからなる低屈折率層と、ZnSe、ZnSもしくはGeからなる高屈折率層と、アモルファスもしくは異方性を有する材料からなる中間層とにより構成されている。
国際公開第2012/049888号
 しかしながら、特許文献1のように、反射防止膜の材料としてZnSを用いた場合、成膜時に硫黄臭が発生することから、局所排気設備などの専用の設備が必要となり、生産性が低下するという問題がある。また、特許文献1のような反射防止膜を赤外線透過レンズに用いた場合、赤外線透過率をなお十分に高めることが難しいという問題がある。
 本発明の目的は、赤外線透過レンズに用いたときに、赤外線透過率を効果的に高めることができる、膜付き基材及び該膜付き基材の製造方法を提供することにある。
 本発明に係る膜付き基材は、基材上に多層膜が設けられている、膜付き基材であって、前記多層膜が、前記基材の主面上に設けられており、密着層である、第1の層と、前記第1の層上に設けられており、相対的に屈折率が低い低屈折率膜と、相対的に屈折率が高い高屈折率膜とを有する、第2の層と、前記第2の層上に設けられており、最外層である、第3の層とを備え、前記低屈折率膜が、YF及びYbFのうち少なくとも一方により構成されており、前記高屈折率膜が、Geにより構成されていることを特徴としている。
 本発明においては、前記第1の層が、Y及びSiのうち少なくとも一方により構成されていることが好ましい。
 本発明においては、前記第3の層が、Y及びSiのうち少なくとも一方により構成されていることが好ましい。
 本発明においては、前記第2の層において、前記低屈折率膜の総膜厚と前記高屈折率膜の総膜厚との比(低屈折率膜/高屈折率膜)が、2.2以上、15以下であることが好ましい。
 本発明においては、前記第2の層において、前記低屈折率膜及び前記高屈折率膜が交互に積層されていることが好ましい。
 本発明においては、前記低屈折率膜が、YFにより構成されていることが好ましい。
 本発明においては、前記基材が、カルコゲナイドガラスにより構成されていることが好ましい。
 本発明においては、前記多層膜が、反射防止膜であることが好ましい。
 本発明においては、前記膜付き基材が、赤外線透過レンズに用いられることが好ましい。
 本発明に係る膜付き基材の製造方法は、本発明に従って構成される膜付き基材の製造方法であって、前記基材の主面上に、真空蒸着法又はスパッタリング法により、前記第1の層を形成する工程と、前記第1の層上に、真空蒸着法又はスパッタリング法により、前記第2の層を形成する工程と、前記第2の層上に、真空蒸着法又はスパッタリング法により、前記第3の層を形成する工程とを備えることを特徴としている。
 本発明においては、前記第1の層を形成する工程において、前記基材側が相対的に疎な膜構造となり、前記第2の層側が相対的に密な膜構造となるように前記第1の層を成膜することが好ましい。
 本発明においては、前記第1の層を形成する工程において、真空蒸着法により前記第1の層を成膜し、該成膜の途中からイオンアシスト法によりイオンを照射しながら成膜することが好ましい。
 本発明においては、前記第2の層を形成する工程において、真空蒸着法により、成膜レートが0.5nm/sec以下となる条件で、前記低屈折率膜を成膜することが好ましい。
 本発明においては、前記第3の層を形成する工程において、緻密な膜構造となるように前記第3の層を成膜することが好ましい。
 本発明においては、前記第3の層を形成する工程において、真空蒸着法により前記第3の層を成膜し、該成膜の途中からイオンアシスト法によりイオンを照射しながら成膜することが好ましい。
 本発明によれば、赤外線透過レンズに用いたときに、赤外線透過率を効果的に高めることができる、膜付き基材及び該膜付き基材の製造方法を提供することができる。
図1は、本発明の一実施形態に係る膜付き基材を示す模式的断面図である。 図2は、実施例1で得られた膜付き基材の波長3000nm~14000nmにおける透過スペクトルを示す図である。 図3は、実施例1及び比較例1で得られた膜付き基材の波長7000nm~14000nmにおける透過スペクトルを示す図である。 図4は、実施例12で得られた膜付き基材の波長6000nm~14000nmにおける反射スペクトルを示す図である。 図5は、実施例13で得られた膜付き基材の波長4000nm~14000nmにおける透過スペクトルを示す図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 [膜付き基材]
 (反射防止膜)
 図1は、本発明の一実施形態に係る膜付き基材を示す模式的断面図である。図1に示すように、膜付き基材1は、基材2と、多層膜3とを備える。本実施形態において、多層膜3は、反射防止膜である。
 基材2は、求められる特性により様々な材料を用いることができるが、特に赤外線透過レンズに用いる場合は、高い赤外線透過率を有することが好ましい。具体的には、基材2は、厚み2mmでの波長8μm~14μmにおける平均赤外線透過率が、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。
 基材2は、高い赤外線透過率を有する赤外線透過性ガラス、Ge、ZnS等により構成されていることが好ましい。基材2を構成する赤外線透過性ガラスとしては、例えば、カルコゲナイドガラス等が挙げられる。なかでも、赤外線透過率をより一層高める観点からは、基材2が、カルコゲナイドガラスにより構成されていることが好ましい。
 カルコゲナイドガラスは、Teを含有することが好ましい。カルコゲン元素であるTeは、ガラス骨格を形成し、赤外線透過率を高める成分である。Teの含有量は、モル%で、好ましくは20%~99%、より好ましくは40%~95%、さらに好ましくは50%~85%、特に好ましくは60%~85%、最も好ましくは70%~80%である。Teの含有量が少なすぎると、ガラス化しにくくなり、赤外線透過率が低下しやすくなる場合がある。一方、Teの含有量が多すぎると、ガラスの熱安定性が低下しやすく、Te系の結晶が析出しやすくなる場合がある。なお、他のカルコゲン元素Se、Sは、Teより赤外線透過率を向上させにくく、赤外透過限界波長が短くなる場合がある。
 カルコゲナイドガラスは、上記成分以外に、以下の成分を含有していてもよい。
 Geは、赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Geの含有量は、モル%で、好ましくは0%~40%、より好ましくは1%~35%、さらに好ましくは5%~30%、特に好ましくは7%~25%、最も好ましくは10%~20%である。Geの含有量が多すぎると、Ge系の結晶が析出しやすくなる場合があり、原料コストも高くなる傾向がある。
 Gaは、赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Gaの含有量は、モル%で、好ましくは0%~30%、より好ましくは1%~30%、さらに好ましくは3%~25%、特に好ましくは4%~20%、最も好ましくは5%~15%である。Gaの含有量が多すぎると、Ga系の結晶が析出しやすくなる場合があり、原料コストも高くなる傾向がある。
 Agは、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Agの含有量は、モル%で、好ましくは0%~20%、より好ましくは1%~10%である。Agの含有量が多すぎると、ガラス化しにくくなる場合がある。
 Alは、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Alの含有量は、モル%で、好ましくは0%~20%、より好ましくは0%~10%である。Alの含有量が多すぎると、ガラス化しにくくなる場合がある。
 Snは、ガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Snの含有量は、モル%で、好ましくは0%~20%、より好ましくは0%~10%である。Snの含有量が多すぎると、ガラス化しにくくなる場合がある。
 基材2の形状としては、特に限定されず、例えば、円盤状や、矩形板状、レンズ状、プリズム状等が挙げられる。
 基材2の厚みは、特に限定されず、赤外線透過率などに応じて適宜設定することができる。基材2の厚みは、例えば、0.5mm~3mm程度とすることができる。
 図1に示すように、基材2は、対向している第1の主面2a及び第2の主面2bを有する。基材2の第1の主面2a上には、多層膜3が設けられている。なお、本実施形態では、基材2の片側の第1の主面2aにのみ多層膜3が設けられているが、基材2の両側の第1の主面2a及び第2の主面2bの双方に多層膜3が設けられていてもよい。
 多層膜3は、第1の層4と、第2の層5と、第3の層6とを有する。より具体的には、基材2の第1の主面2a上に、密着層である、第1の層4が設けられている。第1の層4上に、第2の層5が設けられている。また、第2の層5上に、最外層である、第3の層6が設けられている。
 本実施形態において、第1の層4は、Y及びSiのうち少なくとも一方により構成されており、Y及びSiのうち少なくとも一方を主成分とする膜である。従って、第1の層4は、Yのみにより構成されていてもよいし、Siのみにより構成されていてもよい。また、Y及びSiの双方により構成されていてもよい。第1の層4がこのような材料により構成される場合、膜付き基材1の赤外線透過率をより一層高めることができる。また、第1の層4とカルコゲナイドガラスなどの基材2との密着性や、第1の層4と第2の層5との密着性をより一層高めることができる。なお、密着性に問題がなければ、第1の層4は、Ge、YF、YbF等を主成分とする膜であってもよい。これらの第1の層4の材料は、1種を単独で用いてもよく、複数種を併用してもよい。
 なお、本明細書において、主成分とする膜とは、膜中にその材料が50%以上含まれている膜のことをいうものとする。当然ながら、その材料を100%含む膜であってもよい。以下においても同様とする。
 第1の層4の厚みは、特に限定されないが、好ましくは10nm以上、より好ましくは30nm以上、好ましくは100nm以下、より好ましくは60nm以下である。
 第2の層5は、相対的に屈折率が低い低屈折率膜7と、相対的に屈折率が高い高屈折率膜8とを有する、多層膜である。本実施形態では、第1の層4上に、低屈折率膜7及び高屈折率膜8がこの順に交互に積層されることにより、第2の層5が構成されている。
 本実施形態において、低屈折率膜7は、YF及びYbFのうち少なくとも一方により構成されており、YF及びYbFのうち少なくとも一方を主成分とする膜である。従って、低屈折率膜7は、YFのみにより構成されていてもよいし、YbFのみにより構成されていてもよい。また、YF及びYbFの双方により構成されていてもよい。低屈折率膜7がこのような材料により構成される場合、膜付き基材1の赤外線透過率をより一層高めることができる。膜付き基材1の赤外線透過率をさらに一層高める観点から、低屈折率膜7は、YFにより構成されていることが好ましい。
 低屈折率膜7の1層当たりの膜厚は、特に限定されないが、好ましくは50nm以上、より好ましくは100nm以上、好ましくは1600nm以下、より好ましくは1300nm以下である。
 また、高屈折率膜8は、Geにより構成されており、Geを主成分とする膜である。高屈折率膜8がこのような材料により構成される場合、膜付き基材1の赤外線透過率をより一層高めることができる。
 高屈折率膜8の1層当たりの膜厚は、特に限定されないが、好ましくは40nm以上、より好ましくは60nm以上、好ましくは300nm以下、より好ましくは200nm以下、さらに好ましくは150nm以下、特に好ましくは100nm以下、最も好ましくは75nm以下である。膜厚をこの範囲にすることで、Ge層による吸収損失を抑制し、赤外線透過率の低下をより一層抑制することができる。また、生産コストをより一層低減できる。
 また、高屈折率膜8の総膜厚は、特に限定されないが、好ましくは100nm以上、より好ましくは150nm以上、好ましくは700nm以下、より好ましくは600nm以下、さらに好ましくは500nm以下、特に好ましくは400nm以下である。総膜厚をこの範囲にすることで、Ge層による吸収損失を抑制し、赤外線透過率の低下をより一層抑制することができる。また、生産コストをより一層低減できる。
 第2の層5全体の厚みとしては、特に限定されないが、好ましくは1000nm以上、より好ましくは1700nm以上、好ましくは3000nm以下、より好ましくは2400nm以下である。
 また、第2の層5を構成する膜全体の層数は、好ましくは3層以上、より好ましくは5層以上、好ましくは10層以下、より好ましくは7層以下である。
 本実施形態において、第3の層6は、Y及びSiのうち少なくとも一方により構成されており、Y及びSiのうち少なくとも一方を主成分とする膜である。従って、第3の層6は、Yのみにより構成されていてもよいし、Siのみにより構成されていてもよい。また、Y及びSiの双方により構成されていてもよい。第3の層6がこのような材料により構成される場合、膜付き基材1の赤外線透過率をより一層高めることができる。また、膜付き基材1の耐候性をより一層高めることができる。もっとも、第3の層6は、Ge、YF、YbF等を主成分とする膜であってもよい。これらの第3の層6の材料は、1種を単独で用いてもよく、複数種を併用してもよい。
 第3の層6の厚みは、特に限定されないが、好ましくは10nm以上、より好ましくは30nm以上、好ましくは100nm以下、より好ましくは60nm以下である。
 本実施形態の膜付き基材1は、上記の構成を備えるので、赤外線透過レンズに用いたときに、赤外線透過率を効果的に高めることができる。
 従来、反射防止膜の材料としてZnSを用いた場合、成膜時に硫黄臭が発生することから、局所排気設備などの専用の設備が必要となり、生産性が低下するという問題があった。また、このような反射防止膜を赤外線透過レンズに用いた場合、赤外線透過率をなお十分に高めることが難しいという問題があった。
 これに対して、本発明者は、基材2上に多層膜3が設けられている、膜付き基材1において、多層膜3の膜構造に着目し、特に第2の層5が、YF及びYbFにより構成されている低屈折率膜7と、Geにより構成されている高屈折率膜8とを有することにより、赤外線透過率を効果的に高めることができることを見出した。
 このように、本実施形態の膜付き基材1では、ZnSを用いずとも赤外線透過率を効果的に高めることができるので、局所排気設備などの専用の設備を必要とせず、生産性を高めることもできる。また、膜付き基材1では、多層膜3が設けられているので、耐候性を高めることもできる。
 本実施形態では、第2の層5において、低屈折率膜7の総膜厚と高屈折率膜8の総膜厚との比(低屈折率膜7/高屈折率膜8)が、好ましくは2.2以上、より好ましくは5以上、さらに好ましくは7以上、特に好ましくは9以上であり、好ましくは15以下、より好ましくは13以下、さらに好ましくは10以下、特に好ましくは9.5以下である。比(低屈折率膜7/高屈折率膜8)が上記範囲内にある場合、赤外線透過率をより一層効果的に高めることができる。
 本実施形態の膜付き基材1は、反射防止膜である多層膜3を用いることにより、赤外線透過率を効果的に高めることができるので、赤外線透過レンズに好適に用いることができる。なかでも、人検知用ナイトビジョンカメラレンズにより好適に用いることができる。
 (反射膜)
 本発明において、多層膜3は反射膜であってもよい。このような反射膜は、例えば、多層膜3を構成する低屈折率膜7や高屈折率膜8の膜厚や層数を調整することにより作製することができる。また、多層膜3が反射膜である場合、膜付き基材1は、反射ミラー等に好適に用いることができる。なお、この場合、基材2は赤外域で吸収のある光学ガラス等により構成されていてもよく、例えば、ホウケイ酸ガラス、石英ガラス等が挙げられる。
 低屈折率膜7の1層当たりの膜厚は、特に限定されないが、好ましくは1000nm以上、より好ましくは1400nm以上、好ましくは2000nm以下、より好ましくは1600nm以下である。
 高屈折率膜8の1層当たりの膜厚は、特に限定されないが、好ましくは300nm以上、より好ましくは450nm以上、好ましくは700nm以下、より好ましくは600nm以下である。
 第2の層5全体の厚みとしては、特に限定されないが、好ましくは8000nm以上、より好ましくは9000nm以上、好ましくは13000nm以下、より好ましくは12000nm以下である。
 また、第2の層5を構成する膜全体の層数は、好ましくは7層以上、より好ましくは9層以上、好ましくは19層以下、より好ましくは15層以下である。
 (光学フィルタ膜)
 本発明において、多層膜3は光学フィルタ膜であってもよい。このような光学フィルタ膜は、例えば、多層膜3を構成する低屈折率膜7や高屈折率膜8の膜厚や層数を調整することにより作製することができる。また、多層膜3が光学フィルタ膜である場合、膜付き基材1は、波長8μm~14μmの赤外線を選択的に透過させることのできる光学フィルタ等に好適に用いることができる。なお、この場合、基材2は光学特性を有するガラス等により構成されていてもよく、例えば石英ガラス、ホウケイ酸ガラス等が挙げられる。
 低屈折率膜7の1層当たりの膜厚は、特に限定されないが、好ましくは400nm以上、より好ましくは800nm以上、好ましくは1700nm以下、より好ましくは1600nm以下である。
 第2の層5を構成する低屈折率膜7の層数は、好ましくは10層以上、より好ましくは14層以上、好ましくは20層以下、より好ましくは18層以下である。
 高屈折率膜8の1層当たりの膜厚は、特に限定されないが、好ましくは80nm以上、より好ましくは200nm以上、好ましくは350nm以下、より好ましくは300nm以下である。
 第2の層5を構成する高屈折率膜8の層数は、好ましくは9層以上、より好ましくは13層以上、好ましくは19層以下、より好ましくは17層以下である。
 第2の層5全体の厚みとしては、特に限定されないが、好ましくは12000nm以上、より好ましくは15000nm以上、好ましくは24000nm以下、より好ましくは20000nm以下である。
 また、第2の層5を構成する膜全体の層数は、好ましくは19層以上、より好ましくは27層以上、好ましくは39層以下、より好ましくは35層以下である。
 以下、膜付き基材1の製造方法の一例について説明する。
 [膜付き基材の製造方法]
 まず、基材2を用意する。次に、基材2の第1の主面2a上に多層膜3を形成する。多層膜3は、基材2の第1の主面2a上に、第1の層4、第2の層5、及び第3の層6をこの順に積層することにより、形成することができる。
 具体的には、第1の層4は、例えば、蒸着法又はスパッタリング法により形成することができる。蒸着法としては、例えば、真空蒸着法、イオンプレーティング真空蒸着法、又はイオンアシスト真空蒸着法が挙げられる。なかでも、第1の層4は、イオンアシスト真空蒸着法により形成することが好ましい。
 真空蒸着法により第1の層4を形成するに際しては、例えば、蒸着源として第1の層4の材料を用い、基板温度を100℃~130℃とし、真空度を1×10-2Pa~2×10-2Paとし、成膜レートを0.3nm/sec~0.5nm/secとし、密着層として成膜することができる。
 第1の層4がYの場合、成膜するに際しては、基材2側が相対的に疎な膜構造となり、第2の層5側が相対的に密な膜構造となるように第1の層4を成膜することが好ましい。この場合、第2の層5による膜応力をより一層低減することができ、基材2からの膜剥がれをより一層生じ難くすることができる。
 このような第1の層4の膜構造は、例えば、第1の層4の成膜の途中でイオンアシスト真空蒸着法によりイオンを照射しながら成膜することによって形成することができる。また、この場合、通常成膜で相対的に疎な膜構造を形成し、成膜が30%~50%進んでから、イオンを照射して相対的に密な膜構造を形成することにより、第1の層4を成膜することが望ましい。さらに、第1の層4の材料として、Yを用いることにより、より一層容易に上記の膜構造を形成することができる。また、第1の層4の材料として、Siを用いる場合は、イオンアシストなしの成膜でも密な膜構造とすることができる。
 第2の層5は、基材2の第1の主面2a上に、低屈折率膜7及び高屈折率膜8を積層することにより形成することができる。
 低屈折率膜7及び高屈折率膜8は、例えば、蒸着法又はスパッタリング法により形成することができる。蒸着法としては、例えば、真空蒸着法、イオンプレーティング真空蒸着法、又はイオンアシスト真空蒸着法が挙げられる。
 真空蒸着法により低屈折率膜7を形成するに際しては、例えば、蒸着源として低屈折率膜7の材料を用い、基板温度を100℃~130℃とし、真空度を1×10-4Pa~7×10-4Paとし、成膜レートを0.1nm/sec~0.5nm/secとし、反射防止膜として成膜することができる。
 真空蒸着法により高屈折率膜8を形成するに際しては、例えば、蒸着源として高屈折率膜8の材料を用い、基板温度100℃~130℃とし、真空度を1×10-4Pa~7×10-4Paとし、成膜レートを10nm/sec~30nm/secとし、反射防止膜として成膜することができる。
 特に、低屈折率膜7が、YFにより構成されている場合、成膜レートを0.5nm/sec以下とすることが好ましく、0.3nm/sec以下とすることがより好ましい。この場合、イットリウム(Y)とフッ素(F)が分離することをより一層抑制することができ、フッ素欠損による赤外線透過率の低下をより一層抑制することができるため、特に電子銃を用いた成膜の場合に有効である。YFのイットリウム(Y)とフッ素(F)の分離をより一層抑制する目的としては、抵抗加熱源やボンバード蒸発源を用いた間接加熱方式による成膜を行うことが好ましい。なお、間接加熱方式の場合は、蒸着材料の分解を抑制できるため、成膜レートはこの限りではない。
 第3の層6は、例えば、蒸着法又はスパッタリング法により形成することができる。蒸着法としては、例えば、真空蒸着法、イオンプレーティング真空蒸着法、又はイオンアシスト真空蒸着法が挙げられる。なかでも、第3の層6は、イオンアシスト真空蒸着法により形成することが好ましい。
 例えば、真空蒸着法により第3の層6を形成するに際しては、蒸着源として第3の層6の材料を用い、基板温度100℃~130℃とし、真空度を1×10-2Pa~2×10-2Paとし、成膜レートを0.3nm/sec~0.5nm/secとし、保護層として成膜することができる。また、イオンアシスト真空蒸着法においては、照射するイオンとして酸素イオンを用いる。
 第3の層6を形成するに際しては、第3の層6が緻密な膜構造となるように成膜することが好ましい。この場合、耐候性や耐傷性をより一層向上させることができる。
 第3の層6にYを用いる場合、成膜するに際しては、第2の層5側が相対的に疎な膜構造となり、最外層側が相対的に密な膜構造となるように第3の層6を成膜することが好ましい。この場合、第3の層6による膜応力をより一層低減することができ、第2の層5からの膜剥がれをより一層生じ難くすることができる。
 このような第3の層6の膜構造は、例えば、第3の層6の成膜の途中でイオンアシスト真空蒸着法によりイオンを照射しながら成膜することによって形成することができる。また、この場合、通常成膜で相対的に疎な膜構造を形成し、成膜が30%~50%進んでから、酸素イオンを照射して相対的に密な膜構造を形成することにより、第3の層6を成膜することが望ましい。さらに、第3の層6の材料として、Yを用いることにより、より一層容易に上記の膜構造を形成することができる。また、第3の層6の材料として、Siを用いる場合は、イオンアシストなしの成膜でも密な膜構造とすることができる。
 なお、第1の層4~第3の層6を成膜するに際しては、多層膜3が、圧縮応力を有するように成膜することが好ましい。この場合、多層膜3の基材2からの膜剥がれをより一層抑制することができる。圧縮応力を有する多層膜3は、第1の層4~第3の層6を成膜するに際し、主として成膜レートを調整することにより形成することができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 ガラス組成として、モル%で、Ge20%、Ga15%、Te65%の組成になるように原料を調合し、原料バッチを得た。次に、純水で洗浄した石英ガラスアンプルを加熱しながら真空排気した後、原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管した。封管された石英ガラスアンプルを溶融炉内で50℃/時間の速度で800℃まで昇温後、9時間保持した。保持時間中、1時間ごとに石英ガラスアンプルの上下を反転し、溶融物を撹拌した。その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することによりガラス母材を得た。得られたガラス母材を切削し、研磨することにより、直径15mm、厚み2mmの円盤状に加工した後、両面を光学研磨することにより基材(カルコゲナイドガラス)を得た。
 次に、得られた基材の一方側主面上に、真空蒸着法により、反射防止膜である多層膜を成膜した。具体的には、蒸着源としてYを用い、真空度を1.5×10-2Pa、成膜レートを0.5nm/secとし、密着層として、基材の一方側主面上に、第1の層としてのY膜を成膜した。なお、Y膜を成膜するに際しては、成膜が40%進んでから、イオンアシスト法により酸素イオンを照射しながら成膜した。
 次に、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとし、反射防止膜として、第1の層上に、低屈折率膜としてのYF膜を成膜した。続いて、蒸着源としてGeを用い、真空度を5×10-4Pa、成膜レートを20nm/secとし、反射防止膜として、YF膜上に、高屈折率膜としてのGe膜を成膜した。この操作を繰り返すことにより、Y膜上に、YF膜とGe膜とが、1層ずつ交互に積層された、合計6層の膜を有する、第2の層を形成した。
 次に、蒸着源としてYを用い、真空度を1.5×10-2Pa、成膜レートを0.3nm/secとし、保護層として、第2の層上に、第3の層としてのY膜を成膜した。なお、Y膜を成膜するに際しては、成膜が40%進んでから、イオンアシスト法により酸素イオンを照射しながら成膜した。
 以上のようにして、実施例1の膜付き基材を得た。なお、成膜の間、基板温度は、120℃とした。また、各層の膜厚は、下記の表1に示す通りである。下記の表1において、1層目~8層目は、基材側から何層目かを示している。
 (実施例2~10)
 各層の膜厚が、下記の表1に示す膜厚となるように変更したこと以外は、実施例1と同様にして、実施例2~10の膜付き基材を得た。なお、実施例3では、下記の表1に示すように、第2の層の層数が、合計で4層となるように成膜した。また、実施例4では、下記の表1に示すように、第2の層の層数が、合計で3層となるように成膜した。
 (実施例11)
 実施例1と同様にして得られた基材の一方側主面上に、真空蒸着法により、反射防止膜である多層膜を成膜した。具体的には、蒸着源としてSiを用い、真空度を5×10-4Pa、成膜レートを0.5nm/secとし、密着層として、基材の一方側主面上に、第1の層としてのSi膜を成膜した。
 得られた第1の層上に、各層の膜厚が、下記の表1に示す膜厚となるように変更したこと以外は、実施例1と同様にして、第2の層を形成した。
 次に、蒸着源としてSiを用い、真空度を5×10-4Pa、成膜レートを0.5nm/secとし、保護層として、第2の層上に、第3の層としてのSi膜を成膜した。
 以上のようにして、実施例11の膜付き基材を得た。なお、成膜の間、基板温度は、120℃とした。また、各層の膜厚は、下記の表1に示す通りである。
 (比較例1)
 実施例1と同様にして得られた基材の一方側主面上に、真空蒸着法により多層膜を成膜した。具体的には、蒸着源としてGeを用い、真空度を5×10-4Pa、成膜レートを20nm/secとし、密着層として、基材の一方側主面上に、高屈折率膜としてのGe膜を成膜した。続いて、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとし、反射防止膜として、Ge膜上に、低屈折率膜としてのYF膜を成膜した。この操作を繰り返すことにより、基材の一方側主面上に、Ge膜とYF膜とが、1層ずつ交互に積層された、合計6層の膜を有する、比較例1の膜付き基材を形成した。なお、成膜の間、基板温度は、120℃とした。また、各層の膜厚は、下記の表1に示す通りである。
 [評価]
 (赤外線透過率)
 実施例1~11及び比較例1で得られた膜付き基材について、FT-IR(フーリエ変換赤外分光光度計)を用いて、透過スペクトルを測定した。
 図2は、実施例1で得られた膜付き基材の波長3000nm~14000nmにおける透過スペクトルを示す図である。また、図3は、実施例1及び比較例1で得られた膜付き基材の波長7000nm~14000nmにおける透過スペクトルを示す図である。
 図3より、実施例1で得られた膜付き基材では、比較例1と比較して、特に波長8000nm(8μm)~14000nm(14μm)の赤外域において、透過率が高められていることがわかる。
 同様にして、実施例2~11で得られた膜付き基材についても透過スペクトルを測定し、波長8μm~14μmにおける平均赤外線透過率を測定した。
 結果を下記の表1に示す。なお、表1においては、低屈折率膜(YF膜)の総膜厚と高屈折率膜(Ge膜)の総膜厚との比(低屈折率膜/高屈折率膜)である膜厚比(YF/Ge)を併せて示している。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~11で得られた膜付き基材では、比較例1と比較して、波長8μm~14μmにおける平均赤外線透過率が高められていることがわかる。比較例1では、最外層が耐候性の劣るYFであるため、成膜後に空気に晒されることで透過率の低下が生じたと考えられる。また、Ge層が厚いため、吸収損失が顕著に発生し、透過率の低下が生じていた。
 (実施例12)
 実施例1と同様にして得られた基材の一方側主面上に、真空蒸着法により、反射膜である多層膜を成膜した。具体的には、蒸着源としてGeを用い、真空度を5×10-4Pa、成膜レートを20nm/secとし、密着層として、基材の一方側主面上に、第1の層としてのGe膜を成膜した。
 次に、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとし、反射膜として、第1の層上に、低屈折率膜としてのYF膜を成膜した。続いて、蒸着源としてGeを用い、真空度を5×10-4Pa、成膜レートを20nm/secとし、反射膜として、YF膜上に、高屈折率膜としてのGe膜を成膜した。この操作を繰り返すことにより、Ge膜上に、YF膜とGe膜とが、1層ずつ交互に積層された、合計9層の膜を有する、第2の層を形成した。
 次に、蒸着源としてGeを用い、真空度を5×10-4Paとし、成膜レートを20nm/secとし、反射膜の最外層として、第2の層上に、第3の層としてのGe膜を成膜した。
 以上のようにして、実施例12の膜付き基材を得た。なお、成膜の間、基板温度は、120℃とした。また、各層の膜厚は、下記の表2に示す通りである。下記の表2において、1層目~11層目は、基材側から何層目かを示している。
Figure JPOXMLDOC01-appb-T000002
 図4は、実施例12で得られた膜付き基材の波長6000nm~14000nmにおける反射スペクトルを示す図である。図4に示すように、実施例12で得られた膜付き基材では、特に波長8000nm(8μm)~14000nm(14μm)付近の赤外域において、反射率が高められていることがわかる。なお、反射スペクトルは、FT-IR(フーリエ変換赤外分光光度計)を用いて測定した。
 (実施例13)
 実施例1と同様にして得られた基材の一方側主面上に、真空蒸着法により、光学フィルタ膜である多層膜を成膜した。具体的には、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとし、密着層として、基材の一方側主面上に、第1の層としてのYF膜を成膜した。
 次に、蒸着源としてGeを用い、真空度を5×10-4Pa、成膜レートを20nm/secとし、光学フィルタ膜として、第1の層上に、高屈折率膜としてのGe膜を成膜した。続いて、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとし、光学フィルタ膜として、Ge膜上に、低屈折率膜としてのYF膜を成膜した。この操作を繰り返すことにより、YF膜上に、Ge膜とYF膜とが、1層ずつ交互に積層された、合計29層の膜を有する、第2の層を形成した。
 次に、蒸着源としてYFを用い、真空度を5×10-4Pa、成膜レートを0.3nm/secとして、第2の層上に、第3の層としてのYF膜を成膜した。
 以上のようにして、実施例13の膜付き基材を得た。なお、成膜の間、基板温度は、120℃とした。また、各層の膜厚は、下記の表3に示す通りである。下記の表3において、1層目~31層目は、基材側から何層目かを示している。
Figure JPOXMLDOC01-appb-T000003
 図5は、実施例13で得られた膜付き基材の波長4000nm~14000nmにおける透過スペクトルを示す図である。図5に示すように、実施例13で得られた膜付き基材では、特に波長8000nm(8μm)~14000nm(14μm)の赤外域において、選択的に透過率が高められていることがわかる。なお、透過スペクトルは、FT-IR(フーリエ変換赤外分光光度計)を用いて測定した。
1…膜付き基材
2…基材
2a…第1の主面
2b…第2の主面
3…多層膜
4…第1の層
5…第2の層
6…第3の層
7…低屈折率膜
8…高屈折率膜

Claims (15)

  1.  基材上に多層膜が設けられている、膜付き基材であって、
     前記多層膜が、
     前記基材の主面上に設けられており、密着層である、第1の層と、
     前記第1の層上に設けられており、相対的に屈折率が低い低屈折率膜と、相対的に屈折率が高い高屈折率膜とを有する、第2の層と、
     前記第2の層上に設けられており、最外層である、第3の層と、
    を備え、
     前記低屈折率膜が、YF及びYbFのうち少なくとも一方により構成されており、
     前記高屈折率膜が、Geにより構成されている、膜付き基材。
  2.  前記第1の層が、Y及びSiのうち少なくとも一方により構成されている、請求項1に記載の膜付き基材。
  3.  前記第3の層が、Y及びSiのうち少なくとも一方により構成されている、請求項1又は2に記載の膜付き基材。
  4.  前記第2の層において、前記低屈折率膜の総膜厚と前記高屈折率膜の総膜厚との比(低屈折率膜/高屈折率膜)が、2.2以上、15以下である、請求項1~3のいずれか1項に記載の膜付き基材。
  5.  前記第2の層において、前記低屈折率膜及び前記高屈折率膜が交互に積層されている、請求項1~4のいずれか1項に記載の膜付き基材。
  6.  前記低屈折率膜が、YFにより構成されている、請求項1~5のいずれか1項に記載の膜付き基材。
  7.  前記基材が、カルコゲナイドガラスにより構成されている、請求項1~6のいずれか1項に記載の膜付き基材。
  8.  前記多層膜が、反射防止膜である、請求項1~7のいずれか1項に記載の膜付き基材。
  9.  赤外線透過レンズに用いられる、請求項1~8のいずれか1項に記載の膜付き基材。
  10.  請求項1~9のいずれか1項に記載の膜付き基材の製造方法であって、
     前記基材の主面上に、真空蒸着法又はスパッタリング法により、前記第1の層を形成する工程と、
     前記第1の層上に、真空蒸着法又はスパッタリング法により、前記第2の層を形成する工程と、
     前記第2の層上に、真空蒸着法又はスパッタリング法により、前記第3の層を形成する工程と、
    を備える、膜付き基材の製造方法。
  11.  前記第1の層を形成する工程において、前記基材側が相対的に疎な膜構造となり、前記第2の層側が相対的に密な膜構造となるように前記第1の層を成膜する、請求項10に記載の膜付き基材の製造方法。
  12.  前記第1の層を形成する工程において、真空蒸着法により前記第1の層を成膜し、該成膜の途中からイオンアシスト法によりイオンを照射しながら成膜する、請求項10又は11に記載の膜付き基材の製造方法。
  13.  前記第2の層を形成する工程において、真空蒸着法により、成膜レートが0.5nm/sec以下となる条件で、前記低屈折率膜を成膜する、請求項10~12のいずれか1項に記載の膜付き基材の製造方法。
  14.  前記第3の層を形成する工程において、緻密な膜構造となるように前記第3の層を成膜する、請求項10~13のいずれか1項に記載の膜付き基材の製造方法。
  15.  前記第3の層を形成する工程において、真空蒸着法により前記第3の層を成膜し、該成膜の途中からイオンアシスト法によりイオンを照射しながら成膜する、請求項10~14のいずれか1項に記載の膜付き基材の製造方法。
PCT/JP2022/026833 2021-07-30 2022-07-06 膜付き基材及びその製造方法 WO2023008123A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021125822A JP2023020448A (ja) 2021-07-30 2021-07-30 膜付き基材及びその製造方法
JP2021-125822 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008123A1 true WO2023008123A1 (ja) 2023-02-02

Family

ID=85086718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026833 WO2023008123A1 (ja) 2021-07-30 2022-07-06 膜付き基材及びその製造方法

Country Status (2)

Country Link
JP (1) JP2023020448A (ja)
WO (1) WO2023008123A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080251A1 (ja) * 2022-10-11 2024-04-18 株式会社シンクロン イットリウム系皮膜及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415703A (en) * 1987-07-09 1989-01-19 Nikon Corp Optical thin film for infra red ray
JPH11281801A (ja) * 1998-03-27 1999-10-15 Minolta Co Ltd 赤外反射防止膜
JP2003149406A (ja) * 2002-07-12 2003-05-21 Topcon Corp 赤外反射防止膜
JP2008268277A (ja) * 2007-04-16 2008-11-06 Sei Hybrid Kk 赤外線透過構造体および赤外線センサー
JP2009086533A (ja) * 2007-10-02 2009-04-23 Sumitomo Electric Hardmetal Corp 赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラー
JP2010103405A (ja) * 2008-10-27 2010-05-06 Victor Co Of Japan Ltd 半導体レーザ素子及びその製造方法
JP2017151408A (ja) * 2016-02-22 2017-08-31 株式会社タムロン 赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置
JP2017214607A (ja) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 光反射鏡の製造方法及び蒸着装置
JP2020516941A (ja) * 2017-04-12 2020-06-11 コーニング インコーポレイテッド 赤外線光学機器の反射防止膜
JP2021081878A (ja) * 2019-11-15 2021-05-27 Agc株式会社 光学素子及び指紋検出装置
WO2021112144A1 (ja) * 2019-12-06 2021-06-10 Agc株式会社 車両用ガラス及びカメラユニット

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415703A (en) * 1987-07-09 1989-01-19 Nikon Corp Optical thin film for infra red ray
JPH11281801A (ja) * 1998-03-27 1999-10-15 Minolta Co Ltd 赤外反射防止膜
JP2003149406A (ja) * 2002-07-12 2003-05-21 Topcon Corp 赤外反射防止膜
JP2008268277A (ja) * 2007-04-16 2008-11-06 Sei Hybrid Kk 赤外線透過構造体および赤外線センサー
JP2009086533A (ja) * 2007-10-02 2009-04-23 Sumitomo Electric Hardmetal Corp 赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラー
JP2010103405A (ja) * 2008-10-27 2010-05-06 Victor Co Of Japan Ltd 半導体レーザ素子及びその製造方法
JP2017151408A (ja) * 2016-02-22 2017-08-31 株式会社タムロン 赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置
JP2017214607A (ja) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 光反射鏡の製造方法及び蒸着装置
JP2020516941A (ja) * 2017-04-12 2020-06-11 コーニング インコーポレイテッド 赤外線光学機器の反射防止膜
JP2021081878A (ja) * 2019-11-15 2021-05-27 Agc株式会社 光学素子及び指紋検出装置
WO2021112144A1 (ja) * 2019-12-06 2021-06-10 Agc株式会社 車両用ガラス及びカメラユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080251A1 (ja) * 2022-10-11 2024-04-18 株式会社シンクロン イットリウム系皮膜及びその製造方法

Also Published As

Publication number Publication date
JP2023020448A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
CA2170192C (fr) Substrat transparent a revetement anti-reflets
JP5163742B2 (ja) 低反射ガラスおよびディスプレイ用保護板
CA2645314C (fr) Substrat transparent antireflet presentant une couleur neutre en reflexion
JP5489824B2 (ja) 反射防止膜及び赤外線用光学素子
CA2800252A1 (fr) Vitrage de controle solaire a faible facteur solaire.
EP3683196B1 (en) Chalcogenide glass material
EP1170602B1 (en) Optical element comprising a superficial mirror coating and method for forming said coating
WO2023008123A1 (ja) 膜付き基材及びその製造方法
AU2001267564A1 (en) Optical element comprising a superficial mirror coating and method for forming said coating
JPH04221901A (ja) シリコン基板またはゲルマニウム基板用反射防止膜
JP2017072748A (ja) 光学フィルターおよび光学フィルターを用いた撮像素子
US11643361B2 (en) Method of increasing strength of glass substrate for optical filter and tempered-glass optical filter made thereby
JPH07209516A (ja) 光学多層膜フィルタ
CN201000491Y (zh) 具有防污增透膜的视窗玻璃镜片
WO2022124030A1 (ja) 光学フィルタ
JP3361621B2 (ja) 赤外域用反射防止膜
JP2006036560A (ja) 光学多層膜付きガラス部材、及び該ガラス部材を用いた光学素子
JP2006072031A (ja) 赤外域用反射防止膜およびこれを用いた赤外線レンズ
JPH07234315A (ja) 光学多層膜フィルタ
JPH10123303A (ja) 反射防止光学部品
CN107102383B (zh) 红外线透射膜、光学膜、防反射膜、光学部件、光学系统及摄像装置
JP3610777B2 (ja) 赤外域用反射防止膜及び透過窓
JP2023037490A (ja) 反射防止膜付き光学部材、及びその製造方法
JP2023145937A (ja) 反射防止膜付き光学部材
JP2023119592A (ja) 光学フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE