WO2023008101A1 - 光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法 - Google Patents

光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法 Download PDF

Info

Publication number
WO2023008101A1
WO2023008101A1 PCT/JP2022/026525 JP2022026525W WO2023008101A1 WO 2023008101 A1 WO2023008101 A1 WO 2023008101A1 JP 2022026525 W JP2022026525 W JP 2022026525W WO 2023008101 A1 WO2023008101 A1 WO 2023008101A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
clad
core
emitter
light
Prior art date
Application number
PCT/JP2022/026525
Other languages
English (en)
French (fr)
Inventor
彰 吉川
圭 鎌田
隆雅 矢島
力輝斗 村上
育宏 庄子
Original Assignee
国立大学法人東北大学
株式会社C&A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社C&A filed Critical 国立大学法人東北大学
Priority to JP2023538372A priority Critical patent/JPWO2023008101A1/ja
Priority to EP22849167.6A priority patent/EP4379426A1/en
Publication of WO2023008101A1 publication Critical patent/WO2023008101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images

Definitions

  • the present invention relates to an optical fiber luminous body, a luminous body array, and a radiation measuring device in which the core is composed of a luminous body.
  • An optical fiber illuminator with a core of a scintillator (illuminant) used for measuring radiation such as ⁇ -rays, X-rays, ⁇ -rays, and neutron rays is used as a sensor element for measuring radiation.
  • a scintillator illuminant
  • X-rays X-rays
  • ⁇ -rays neutron rays
  • Patent Document 1 An optical fiber illuminator with a core of a scintillator (illuminant) used for measuring radiation such as ⁇ -rays, X-rays, ⁇ -rays, and neutron rays is used as a sensor element for measuring radiation.
  • an optical fiber light emitter one made of plastic has been proposed (Patent Document 1).
  • halide crystals are known as materials from which strong scintillation light can be obtained.
  • halide crystals are deliquescent, they are not easy to process in the atmosphere, and there is a problem that it is not easy to produce an optical fiber light emitter having a halide crystal as a core.
  • the present invention has been made to solve the above-described problems, and aims to make it possible to more easily produce an optical fiber light emitter having a halide crystal as a core.
  • a method for producing an optical fiber luminous body according to the present invention includes a first step of accommodating a core material made of a halide having a lower melting point than that of the clad material in a cylindrical container made of a clad material having thermoplasticity; a second step of forming an optical fiber luminous body comprising a core composed of a halide crystal and a clad composed of a clad material by heating and stretching a container containing a halide, Crystals emit light when exposed to radiation.
  • a method for producing an optical fiber luminous body according to the present invention includes a first step of preparing a cylindrical clad, a second step of melting a halide having a lower melting point than a material constituting the clad to form a melt, and and a fourth step of cooling and solidifying the melt contained in the clad to form a halide crystal, thereby forming an optical fiber light emitting body having a halide crystal as a core. and the halide crystal emits light when irradiated with radiation.
  • the third step is to absorb the melt into the clad to accommodate the melt in the clad.
  • the third step is to push the melt into the clad to accommodate the melt in the clad.
  • the first step is to prepare a clad array in which a plurality of clads are bundled, and the third step is to accommodate the melt in each clad of the clad array.
  • a method for producing an optical fiber luminous body includes a first step of accommodating a core material made of a halide having a lower melting point than a material constituting the clad in a cylindrical clad, and melting the core material accommodated in the clad. a second step; and a third step of forming an optical fiber light emitting body having a halide crystal as a core by cooling and solidifying the molten core material to form a halide crystal, wherein the halide crystal is emits light when exposed to radiation.
  • An optical fiber light emitter comprises a core made of a light-emitting halide crystal and a clad made of a thermoplastic material.
  • An optical fiber luminous body according to the present invention comprises a core made of a scintillator and a clad. At least one state within K.
  • optical fiber luminous body it is a multi-core fiber having a plurality of cores in the same fiber body.
  • the diameter of the core, the thickness of the clad, and the outer diameter decrease from one end side to the other end side.
  • the cores are rectangular in cross-section and arranged in a rectangular shape in the cross-sectional direction.
  • An optical fiber luminous body comprises a core composed of a eutectic having two crystal phases and a clad, and at least one of the crystal phases emits light by radiation.
  • the average crystal grain size of the two crystal phases is 30 ⁇ m or less.
  • the refractive index difference between the two crystal phases is 0.1 or less at the emission wavelength.
  • the average crystal grain size of the two crystal phases is 30 ⁇ m or less.
  • the core is composed of an oxide crystal or a halide crystal that emits light when irradiated with radiation.
  • a radiation measuring device includes the optical fiber light emitter described above.
  • a light emitter array according to the present invention is obtained by bundling a plurality of the above-described optical fiber light emitters.
  • a radiation measuring device includes the above-described light emitter array.
  • a radiation measuring apparatus includes an optical fiber illuminator composed of a core and a cladding made of a scintillator that emits light when irradiated with radiation, a first sensor that detects light reaching one end of the optical fiber illuminator, and an optical fiber.
  • a second sensor that detects light reaching the other end of the light emitter, and at least one of a difference in light detection time and a difference in the amount of light detected between the first sensor and the second sensor. and an arithmetic circuit for determining the incident position of radiation.
  • the optical fiber emitter is formed in a coil shape.
  • a halide having a melting point lower than that of the material is placed in a cylindrical container made of a thermoplastic material, and the container is heated and stretched.
  • An optical fiber luminous body having a core of can be more easily produced.
  • FIG. 1A is a configuration diagram showing an intermediate process of a method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 1B is a configuration diagram showing an intermediate process of the method for manufacturing the optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing the configuration of the optical fiber emitter according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing the configuration of another optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 4A is a configuration diagram showing an intermediate process of another method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 1A is a configuration diagram showing an intermediate process of another method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 4B is a configuration diagram showing an intermediate process of another method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 5 is a configuration diagram showing an intermediate process of another method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention.
  • FIG. 6 is a flow chart illustrating a method for manufacturing an optical fiber light emitter according to Embodiment 2 of the present invention.
  • FIG. 7A is a perspective view showing the configuration of a clad array 200 in an intermediate process for explaining another method of manufacturing an optical fiber light emitter according to Embodiment 2 of the present invention.
  • FIG. 7B is a perspective view showing the configuration of the cladding array 200 in an intermediate process for explaining another method of manufacturing an optical fiber light emitter according to Embodiment 2 of the present invention.
  • FIG. 8 is a flow chart for explaining a method for manufacturing an optical fiber light emitter according to Embodiment 3 of the present invention.
  • FIG. 9 is a perspective view showing the configuration of an optical fiber emitter 300 according to Embodiment 4 of the present invention.
  • FIG. 10 is a perspective view showing the configuration of an optical fiber emitter 300a according to Embodiment 4 of the present invention.
  • FIG. 11 is a perspective view showing the configuration of an optical fiber emitter 300b according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view showing the configuration of an optical fiber emitter 300c according to Embodiment 4 of the present invention.
  • FIG. 13 is a photograph of the waveguiding state of scintillator light generated by an optical fiber emitter that was actually produced.
  • FIG. 14 is a photograph showing the result of electron microscopic observation of the core of the end face of the optical fiber emitter actually produced.
  • FIG. 15 is a configuration diagram showing the configuration of the radiation measuring device according to the embodiment of the present invention.
  • Embodiment 1 a method for manufacturing an optical fiber light emitter according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A and 1B.
  • a core material 102 is placed in a cylindrical container 101 (first step).
  • the container 101 is made of a thermoplastic clad material.
  • the container 101 can be made of, for example, heat-resistant glass such as borosilicate glass.
  • the core material 102 is a halide with a lower melting point than the cladding material.
  • the core material 102 can be, for example, materials for obtaining halide crystals such as Tl:CsI, Eu: SrI2 , CeBr3 , Ce: LaBr3 , Ce: LaCl3 , CaI2 .
  • the containment (filling) of the core material 102 into the container 101 be performed in a humidity free (humidity controlled) environment.
  • the containment of the core material 102 in the container 101 can be carried out in an argon atmosphere with zero humidity.
  • the container 101 containing the core material 102 is heated by the heater 151 and stretched.
  • the core material 102 contained in the container 101 is melted and crystallized to form an optical fiber light emitting body 105 comprising a core 103 composed of a halide crystal and a clad 104 composed of a clad material.
  • Halide crystals emit light when exposed to radiation.
  • Halide crystals have a higher refractive index than the cladding material.
  • Halide crystals are, for example, Tl:CsI, Eu:SrI 2 , CeBr 3 , Ce:LaBr 3 , Ce:LaCl 3 , and CaI 2 crystals.
  • the above-described process of heating and stretching the container 101 containing the core material 102 is also performed in a humidity-free environment.
  • the stretching described above can be carried out in an argon atmosphere with zero humidity.
  • the container 101 is sealed to prevent the accommodated core material 102 from being exposed to the outside air.
  • the stretching can be carried out in air.
  • the container 101 can be softened and stretched by heating, and the core material 102 can be melted and crystallized. Further, when the core material 102 is melted and crystallized to form the core 103, the core 103 is covered with the clad 104, so that the core 103 is not exposed to the surrounding atmosphere and deliquescence does not occur. Needless to say, the core material 102 can be easily accommodated in the container 101 in an atmosphere with zero humidity. As described above, according to Embodiment 1, the optical fiber emitter 105 having a halide crystal core can be produced very easily.
  • an optical fiber luminous body 105 having a core 103 made of a halide crystal that emits light and a clad 104 made of a thermoplastic material is obtained by the manufacturing method of Embodiment 1 described above.
  • the clad 104 is made of glass, for example.
  • the optical fiber emitter 105a may be a multi-core fiber having multiple cores 103 in the same fiber body. Also, a light emitter array in which a plurality of optical fiber light emitters 105 are bundled can be used.
  • the optical fiber emitter 105 optical fiber emitter 105a
  • Embodiment 1 a sensor element and combining a light receiving element capable of receiving scintillation light emitted by the core 103 and guided through the optical fiber emitter 105
  • radiation measurement can be performed. It can be used as a device.
  • the above-described radiation measuring apparatus can be configured using the above-described light emitter array as a sensor element.
  • a container 111 having a plurality of cylindrical storage portions 112 is prepared, and the core material 102 is stored in each storage portion 112 (first step).
  • the container 111 is made of a thermoplastic clad material.
  • the container 111 can be made of, for example, heat-resistant glass such as borosilicate glass.
  • the container 111 containing the core material 102 in each container 112 is heated by the heater 151 and stretched.
  • the core material 102 contained in each containing portion 112 is melted and crystallized, and an optical fiber light emission composed of a plurality of cores 103 made of halide crystals and a clad 104a made of a clad material is obtained.
  • Body 105a can be formed (second step).
  • the optical fiber emitter 105a becomes a multi-core fiber.
  • a cylindrical heat-resistant glass container having a length of 200 mm, an outer diameter of 25 mm, and an inner diameter of 20 mm was prepared.
  • the heat-resistant glass has a softening point of 820°C.
  • a predetermined amount of thallium iodide [TlI] powder and cesium iodide [CsI] powder are mixed to form a mixed powder, which is placed in a container. It was housed (filled) inside the A mixed powder obtained by mixing TlI powder and CsI powder is melted by heating to form a melt. ] crystals (melting point 621° C.) are obtained.
  • the upper part of the container filled with raw materials (mixed powder) was fixed, the lower part of the container was heated to 820°C, and the bottom part of the container was pulled downward while heating. This step was also performed in an argon atmosphere with zero humidity.
  • the pull-down speed was 1 km/h.
  • the optical fiber luminous body produced by pulling down was wound up by a winding device.
  • the optical fiber emitter was made with an outer diameter of 100 ⁇ m and a length of 10 m.
  • the produced optical fiber luminous body had an inner diameter of the clad of 80 ⁇ m, and a core of Tl:CsI crystal was formed here.
  • the outer shape of the formed core is 80 ⁇ m.
  • the core of the fabricated optical fiber luminous body showed luminescence at 550 nm due to radiation excitation and optical excitation, and it was confirmed that the light was guided to the end of the optical fiber luminous body.
  • 250,000 optical fiber light emitters thus produced were bundled with an adhesive to form a light emitter array of 5 cm square, and cut to a thickness of 2 mm.
  • the resulting emitter array exhibited a spatial resolution of 120 ⁇ m for X-rays.
  • a cylindrical container made of a thermoplastic material contains a halide having a lower melting point than the material, and is stretched by heating.
  • Optical fiber emitters with halide crystal cores can be made more easily. Also, by using an optical fiber emitter, a super-high-resolution radiation measuring device can be realized.
  • a tubular clad is prepared.
  • the cladding can be composed of a heat resistant glass such as borosilicate glass.
  • a halide having a melting point lower than that of the clad material is melted to form a melt.
  • the melt of the halide is prepared and placed in a predetermined container (such as a crucible).
  • the halides can be Tl:CsI, Eu: SrI2 , CeBr3 , Ce: LaBr3 , Ce: LaCl3 , CaI2 , BaCl2 , and the like. Since this type of material is deliquescent, it is important to perform the melt preparation described above in a humidity-free (humidity-controlled) environment.
  • the clad is filled with the melt.
  • the melt can be accommodated in the clad by sucking up the melt into the clad through an opening at one end of the clad.
  • one end of the clad is immersed in the melt contained in the container described above, and the air inside the clad is exhausted from the other end of the clad, thereby sucking up the melt into the clad.
  • the melt can be accommodated in the clad by pushing up the melt into the clad through the opening at one end of the clad.
  • a fourth step S104 the melt accommodated in the clad is cooled and solidified to form halide crystals, thereby forming an optical fiber light emitter having a halide crystal core.
  • Halide crystals emit light when exposed to radiation.
  • Halide crystals have a higher refractive index than the material that makes up the cladding.
  • Halide crystals are, for example, crystals of Tl:CsI, Eu:SrI 2 , CeBr 3 , Ce:LaBr 3 , Ce:LaCl 3 , CaI 2 and BaCl 2 .
  • a clad array 200 in which a plurality of clads 201 are bundled can be prepared (first step).
  • the melt is accommodated in each clad 201 of the clad array 200 (third step).
  • one end side of the prepared clad array 200 is immersed in a container 202 containing the melt of the halide, and the melt is sucked up inside each clad 201 to obtain a clad array.
  • Each clad 201 of 200 can contain a melt.
  • one end side of the prepared clad array 200 is immersed in the container 202 containing the melt of the halide, and the melt is pushed up into the inside of each clad 201, so that each clad 201 of the clad array 200 It can contain a melt.
  • the molten halide After being accommodated in the cladding, the molten halide is covered with the cladding, so it does not come into contact with the surrounding atmosphere, and problems such as deliquescence do not occur. Needless to say, the melting of halides in an atmosphere with zero humidity can be easily carried out. As described above, according to Embodiment 2, an optical fiber light emitter having a halide crystal as a core can be produced very easily.
  • a core material made of a halide having a lower melting point than the material constituting the clad is placed in the cylindrical clad.
  • the cladding can be composed of a heat resistant glass such as borosilicate glass.
  • the core material is a halide with a lower melting point than the cladding material.
  • the core material can be, for example, a material for obtaining halide crystals, such as Tl:CsI, Eu: SrI2 , CeBr3 , Ce: LaBr3 , Ce: LaCl3 , CaI2 , BaCl2 .
  • the cladding is filled with the core material in a humidity-free (controlled humidity) environment.
  • the inclusion of the core material in the cladding can be performed in an argon atmosphere with zero humidity.
  • the core material accommodated in the clad is melted.
  • the core material can be melted by heating the clad containing the core material with a heater to a temperature at which the core material melts. Since the clad has a higher melting point than the core material, the clad does not melt.
  • a third step S123 the molten core material is cooled and solidified to form a halide crystal, thereby forming an optical fiber light emitting body having a halide crystal as a core.
  • Halide crystals emit light when exposed to radiation.
  • Halide crystals have a higher refractive index than the cladding material.
  • Halide crystals are, for example, crystals of Tl:CsI, Eu:SrI 2 , CeBr 3 , Ce:LaBr 3 , Ce:LaCl 3 , CaI 2 and BaCl 2 .
  • the above-described melting and solidification of the core material can be performed in the atmosphere.
  • the core material When the core material is melted and crystallized to form a core, the core is covered with a clad, so it is not exposed to the surrounding atmosphere, and problems such as deliquescence do not occur. Needless to say, the core material can be easily accommodated in the clad in an atmosphere with zero humidity. Thus, according to Embodiment 3, an optical fiber luminous body having a halide crystal as a core can be produced very easily.
  • an irregular columnar shape such as a cylinder or a polygonal column can be used, and a plurality of such cores can be arrayed in parallel in the clad.
  • the melting point of the core material is lower than that of the clad material. It is possible to improve the performance of the luminophore in terms of light output, fluorescence lifetime, and energy resolution.
  • the halide melt contained in the clad is cooled and solidified to form halide crystals. Since an optical fiber luminous body having a core of is formed, an optical fiber luminous body having a halide crystal as a core can be more easily produced.
  • an optical fiber emitter 300 according to Embodiment 4 of the present invention will be described with reference to FIG.
  • the difference in thermal expansion coefficient between the core and the clad is large, cracks and voids occur in the internal crystal due to temperature changes, etc., resulting in deterioration of the scintillator performance such as a decrease in transmittance and a decrease in the amount of light emitted. , the performance as a radiation detector deteriorates as a result.
  • expansion and cracking of the cladding may occur, damaging the optical fiber emitter. Cracks may also occur in the clad when the core has a higher thermal conductivity than the clad. For example, in the manufacturing process of an optical fiber luminous body, cooling proceeds preferentially from the fibrous core, and thermal strain between the cladding and the core increases, resulting in cracking.
  • the optical fiber luminous body 300 solves the above-described problem, and includes a core 301 made of a scintillator and a clad 302.
  • the difference in thermal expansion coefficient between the core 301 and the clad 302 is 60 ⁇ . At least one of within 10 -6 /K and within 30 W/m/K of heat conduction rate difference.
  • the core 301 can be composed of a halide crystal that emits light when exposed to radiation.
  • the above-described optical fiber illuminator can be produced by storing a core material in a cylindrical container made of a clad material and heating and stretching the container containing the core material with a heater. By heating and drawing in this manner, the core material housed in the container is melted and crystallized to form an optical fiber light emitter.
  • a borosilicate glass tube (cylindrical container) having an outer diameter of 20 mm and an inner diameter of 16 mm was filled with raw materials for each core material shown in Table 1 below, and the silicate glass tube filled with the core material was filled with argon gas. .
  • a silicate glass tube becomes a clad material. After that, the inside of the furnace was locally heated to the softening point (780° C.) of the borosilicate glass by a heater, and the borosilicate glass tube filled with the core material was drawn.
  • an optical fiber luminous body having a core and a clad having an inner diameter of 80 ⁇ m was produced for TlCsI, Tl:NaI, Ce:LaBr 3 , CeBr 3 and Eu:SrI 2 .
  • An optical fiber emitter having an outer diameter of 100 ⁇ m, an inner diameter of 80 ⁇ m, and a total length of 3000 m was produced without defects such as cracks. Furthermore, we confirmed the phenomenon that scintillator light is generated by UV excitation or radiation excitation, and the light is guided in the core, and it was found that it functions as an optical fiber light emitter.
  • quartz glass having an outer diameter of 20 mm and an inner diameter of 16 mm was used as a clad material, the quartz glass was filled with a raw material of Cr:Al 2 O 3 , and the quartz glass tube was filled with argon gas. The temperature was locally raised to the softening point (1700° C.) of quartz glass by , and stretching was performed. As a result, the quartz glass reacted with the Cr: Al2O3 raw material during the temperature rising process, and a compound was produced in which the quartz glass tube and Cr: Al2O3 reacted , the quartz glass tube was broken, and the optical fiber light emitter was destroyed. could not be molded. Materials such as oxides that react below the softening point of glass materials were not suitable as core materials.
  • quartz glass having an outer diameter of 20 mm and an inner diameter of 16 mm was used as a clad material
  • the quartz glass was filled with a Tb:GdAlO 3 /Al 2 O 3 eutectic raw material
  • the quartz glass tube was filled with argon gas.
  • a heater was used to locally raise the temperature to about 1700° C., which is the melting point of the Tb:GdAlO 3 /Al 2 O 3 eutectic and the softening point of quartz glass, and stretching was performed.
  • the quartz glass reacted with the raw material of Tb:GdAlO 3 /Al 2 O 3 during the heating process, the quartz glass tube was broken, and the optical fiber emitter could not be molded.
  • An oxide eutectic that reacts below the softening point of the glass material was also not suitable as a core material.
  • the core be a crystal that is transparent to the scintillator light. Therefore, the scintillator forming the core preferably has 100 or less grains per 1 mm square, more preferably 2 or less grains per 1 mm square. This is because, when scintillator light generated by UV excitation or radiation excitation propagates through the core, the light is attenuated due to scattering and absorption at grain boundaries, and the performance as a radiation detector deteriorates.
  • a borosilicate glass tube (cylindrical container) having an outer diameter of 20 mm and an inner diameter of 16 mm was filled with a raw material of LaBr 3 :Ce (melting point: 783°C, refractive index: 1.9) as a core material, and argon gas was introduced into the glass tube. filled.
  • a heater was used to locally raise the temperature above the softening point of the borosilicate glass (830° C.) for stretching.
  • an optical fiber emitter having a core of Cs 2 LiYCl 6 :Ce scintillator with an inner diameter of 160 ⁇ m was produced.
  • An optical fiber emitter having an outer diameter of 200 ⁇ m, an inner diameter of 160 ⁇ m, and a total length of 1000 m was produced without defects such as cracks.
  • emission spectrum was measured by X-ray excitation, emission with a peak at 370 nm was confirmed.
  • This optical fiber luminous body generates scintillator light by UV excitation or radiation excitation, and a phenomenon in which the light is guided in the core was confirmed, and it was found that it functions as an optical fiber luminous body.
  • the optical fiber emitter obtained above was cut to a length of 10 mm, the end face was mirror-polished, and the end face was optically bonded to a photomultiplier tube.
  • the optical fiber emitter is irradiated with ⁇ -rays of 662 keV from the 137Cs source, and the signal from the photomultiplier tube is input to the preamplifier and waveform shaping amplifier, and input to the multichannel analyzer to obtain a pulse.
  • the amount of luminescence was measured by a counting method.
  • a pulse-height spectrum was successfully acquired, a photoelectric absorption peak corresponding to ⁇ -rays of 662 keV was confirmed, and an emission amount of 40000 photons/MeV was obtained.
  • Observation by EBSD of the core at the end face of the optical fiber illuminator having an inner diameter of 160 ⁇ m confirmed that the LaBr 3 :Ce crystals were densely packed inside the cladding, and 6 grains were found inside.
  • the optical fiber luminous body having a total length of 1000 m obtained above was cut to a length of 10 mm. Thereafter, the core was melted by heating above the melting point of LaBr 3 :Ce, and unidirectional solidification was performed in the longitudinal direction of the fiber at a speed of 0.1 mm/min for recrystallization. Observation by EBSD of the core of the end face of the optical fiber light emitter with an inner diameter of 160 ⁇ m revealed that the LaBr 3 :Ce crystal was densely packed inside the cladding and one grain was confirmed inside, indicating that it was a single crystal. One thing has been confirmed.
  • the end faces were mirror-polished, optically bonded to a photomultiplier tube, irradiated with 662 keV ⁇ -rays from a 137Cs radiation source, and the amount of light emitted was measured by a pulse counting method.
  • a pulse-height spectrum was successfully obtained, a photoelectric absorption peak corresponding to ⁇ -rays of 662 keV was confirmed, and an emission amount of 6000 photons/MeV was obtained.
  • a hollow borosilicate glass tube having an outer diameter of 200 ⁇ m, an inner diameter of 160 ⁇ m, and 10 mm was filled with powder obtained by pulverizing LaBr 3 :Ce scintillator as a core material. After that, the end face was optically bonded to a photomultiplier tube, irradiated with 662 keV gamma rays from a 137Cs radiation source, and the amount of light emitted was measured by the pulse counting method. could not be detected. When the core of the end face of the optical fiber emitter with an inner diameter of 160 ⁇ m was observed by SEM, 80 crystal grains and voids around the crystal grains were confirmed inside.
  • the ratio of the initial outer diameter to the inner diameter of the glass tube used for fabrication is the ratio of the core to clad thickness of the optical fiber emitter.
  • the core-to-cladding thickness ratio can be optimized for the target radiation energy and particle characteristics. Furthermore, it is possible to optimize the core diameter from 0.1 ⁇ m to 5 mm.
  • the ratio of the diameter of the core 301 to the thickness of the cladding 302 can range from 10000:1 to 1:10000. Since the clad is a radiation-insensitive region, the wider the core, the higher the sensitivity of the radiation detector.
  • the optical fiber emitter 300a can also be a multi-core fiber having a plurality of cores 301 in the same fiber body (cladding 302a). Also, a light emitter array in which a plurality of optical fiber light emitters 105 are bundled can be used.
  • the diameter of the core 301, the thickness of the clad 302, and the outer diameter should be reduced from one end to the other end of the optical fiber emitter 300b.
  • each pixel of the two-dimensional image sensor corresponds to each core 301, and the two-dimensional image sensor is arranged on one end side of the optical fiber emitter 300b. In this state, the other end side is placed near the observation target.
  • the pitch of each pixel of a two-dimensional image sensor is generally about 10 ⁇ m.
  • each pixel of the two-dimensional image sensor can correspond to each core 301 on one end side.
  • the pitch of each core 301 can be set to 1 ⁇ m, for example.
  • the other end of the optical fiber light emitter 300b manufactured in this manner is placed near the observation target, the radiation generated in the observation target enters the other end of the optical fiber light emitter 300b.
  • each of the plurality of cores 301 emits light according to the intensity of the incident radiation.
  • the emitted light is guided through the optical fiber emitter 300b and reaches one end of the optical fiber emitter 300b.
  • the emitted light reaching one end of the optical fiber emitter 300b is received by each pixel of the two-dimensional image sensor.
  • the optical fiber emitter 300b is a multi-core fiber consisting of 1000 ⁇ 1000 cores 301.
  • a radiation image showing the intensity distribution of the generated radiation is received with 1000 ⁇ 1000 pixels at a pitch of 1 ⁇ m.
  • 1000 ⁇ 1000 pixels with a pitch of 10 ⁇ m which are picked up by a two-dimensional image sensor.
  • a plurality of cores 301a each having a rectangular cross section and a clad 302b can be provided with an optical fiber emitter 300c.
  • the optical fiber emitter 300c is a multi-core fiber.
  • the plurality of cores 301a are arranged in a rectangular shape in the cross-sectional direction.
  • each pixel is rectangular in plan view, and each pixel is arranged in a rectangular shape.
  • the optical fiber light emitter 300c for the two-dimensional image sensor having such a light-receiving surface, the geometrical relationship between each pixel of the two-dimensional image sensor and the end surface of each core 301a of the optical fiber light emitter 300c is improved. Correspondence can be matched. As a result, the light (optical image) emitted from one end of the optical fiber emitter 300c can be received by the two-dimensional image sensor with high light detection efficiency.
  • the clad 302b is a region insensitive to radiation, the wider the core 301a, the better the sensitivity.
  • This optical fiber luminous body has a core made of a scintillator and a clad, and the core is made of a eutectic having two crystal phases. At least one crystalline phase of the eutectic that constitutes the core emits light when exposed to radiation.
  • the core and the clad may have at least one of a difference in thermal expansion coefficient within 60 ⁇ 10 ⁇ 6 /K and a difference in heat conduction rate within 30 W/m/K.
  • the refractive index difference between the two crystal phases of the eutectic that constitutes the core can be 0.1 or less at the emission wavelength.
  • the difference in refractive index between the crystal phases of the eutectic constituting the core is preferably 0.1 or less, more preferably 0.05, and still more preferably 0.02 or less, so that light is emitted by radiation excitation. Light is guided through the core without attenuation.
  • the transparency at the emission wavelength is high, and even if the length of the optical fiber light emitter is increased, attenuation of guided light can be reduced.
  • the average grain size of the two crystal phases of the eutectic that constitutes the core can be made sufficiently close to the emission wavelength.
  • the average grain size of each of the two crystalline phases of the eutectic that constitutes the core can be preferably 30 ⁇ m or less.
  • the average grain size of the two crystalline phases of the eutectic that constitutes the core can be as small as 5 ⁇ m or less, more preferably 0.5 ⁇ m or less. By doing so, light emitted by radiation excitation is guided through the core without being attenuated. It is possible to reduce scattering of light at grain boundaries, reduce attenuation of light passing through the core, and improve rectilinearity. As a result, according to Embodiment 5, the transparency at the emission wavelength is high, and even if the length of the optical fiber light emitter is increased, attenuation of guided light can be reduced.
  • the crystal phase consists of at least one of Pr, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Dy, Er, Tm, Yb, Tl, Pb, Bi, Ag, Ti, and Cr as a luminescent center. It is preferable that the rare earth element is contained in an amount of 0.001 mol % or more with respect to the total substance amount of the crystal phase of the core.
  • the crystalline phase includes a halide represented by the chemical formula A x B y C z X x +2y +3z (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1), where A is Li, An element containing at least one of Na, K, Rb, Cs, and Cd, where B is Zn, Be, Mg, Ca, Sr, Ba, and C is Y, Ce, La, Gd, Lu, Bi, Ga, It is an element containing at least one of Al, Hf and Zr, and X is an element containing at least one of F, Cl, Br, I, Tl, Se, O, P and S.
  • a borosilicate glass tube (cylindrical container) with an outer diameter of 10 mm and an inner diameter of 8 mm was filled with a eutectic material (melting point: 428°C) composed of NaI and CsI with Tl as the luminescence center, and argon was introduced into the glass tube. filled with gas.
  • a heater was used to locally raise the temperature to the softening point (780° C.) of the borosilicate glass, and stretching was performed at a speed of 0.1 m/min.
  • an optical fiber luminous body having a core composed of a NaI/CsI:Tl eutectic scintillator and having an inner diameter of 160 ⁇ m was produced.
  • An optical fiber emitter having an outer diameter of 200 ⁇ m, an inner diameter of 160 ⁇ m, and a total length of 1000 m was produced without defects such as cracks.
  • This optical fiber luminous body functions as an optical fiber luminous body by confirming the phenomenon that each crystal phase of NaI:Tl and CsI:Tl generates scintillator light by UV excitation or radiation excitation, and the light is guided in the core. I found out.
  • the obtained optical fiber illuminator was cut into a length of 10 mm, the end face was mirror-polished, and the end face was optically bonded to a photomultiplier tube.
  • the optical fiber luminous body was irradiated with 662 keV ⁇ -rays from a 137Cs radiation source, and the amount of luminescence was measured by a pulse counting method.
  • a pulse-height spectrum was successfully acquired, a photoelectric absorption peak corresponding to ⁇ -rays of 662 keV was confirmed, and an emission amount of 25000 photons/MeV was obtained.
  • the average grain size of each crystal phase of NaI:Tl and CsI:Tl was 15 ⁇ m.
  • a borosilicate glass tube (cylindrical container) with an outer diameter of 20 mm and an inner diameter of 16 mm was filled with a eutectic material (melting point: 428°C) composed of NaI and CsI with Tl as the luminescence center, and argon was introduced into the glass tube. filled with gas.
  • a heater was used to locally raise the temperature to the softening point (780° C.) of the borosilicate glass, and stretching was performed at a rate of 1 m/min.
  • an optical fiber luminous body having a core composed of a NaI/CsI:Tl eutectic scintillator and having an inner diameter of 160 ⁇ m was produced.
  • An optical fiber emitter having an outer diameter of 200 ⁇ m, an inner diameter of 160 ⁇ m, and a total length of 1000 m was produced without defects such as cracks.
  • This optical fiber luminous body was confirmed to function as an optical fiber luminous body by confirming the phenomenon that each crystal phase of NaI:Tl and CsI:Tl generates scintillator light by UV excitation or radiation excitation, and the light is guided in the core. found (Fig. 13).
  • the obtained optical fiber illuminator was cut into a length of 10 mm, the end face was mirror-polished, and the end face was optically bonded to a photomultiplier tube.
  • the optical fiber luminous body was irradiated with 662 keV ⁇ -rays from a 137Cs radiation source, and the amount of luminescence was measured by a pulse counting method.
  • a pulse-height spectrum was successfully obtained, a photoelectric absorption peak corresponding to ⁇ -rays of 662 keV was confirmed, and an emission amount of 33000 photons/MeV was obtained.
  • FIG. 14 shows a backscattered electron image obtained by observing the core.
  • the black part was NaI and the white part was the eutectic with CsI.
  • the emission peak wavelength of CsI:Tl was 0.55 nm, but the optical fiber luminous body with the NaI/CsI:Tl eutectic core having an average particle size of 0.3 ⁇ m had an average particle size of 15 ⁇ m.
  • the amount of luminescence was greater than that of an optical fiber luminous body having a core of NaI/CsI:Tl eutectic.
  • the average grain size sufficiently smaller than the emission wavelength of the scintillator core, it is possible to reduce the scattering of light at the crystal grain boundaries, reduce the attenuation of light passing through the core, and improve the straightness. Therefore, the amount of light emitted from the optical fiber emitter is increased.
  • T the linear transmittance
  • the light attenuation coefficient
  • t the thickness of the core.
  • the sum of the sample-specific absorption coefficient and the scattering term, but the latter can be considered for a core that does not absorb the wavelength of the scintillator light.
  • ⁇ g 3 ⁇ 2 d g ⁇ ng 2 / ⁇ 2 (2).
  • ⁇ p 6p ⁇ 2 d p ⁇ n p 2 / ⁇ 2 (3).
  • is the wavelength of light
  • p is the porosity
  • d g is the average grain size of the crystal phase
  • d p is the diameter of the holes
  • ⁇ ng is the maximum refractive index n1 of the crystal phase having birefringence
  • It is the difference ( ⁇ n g n1 ⁇ n2) of the average value n2.
  • ⁇ n p is the difference between the average refractive index n1 of the crystal and the refractive index n p of the substance filling the holes. ”.
  • the refractive index difference between different crystal phases is sufficiently small, the light propagates through the eutectic with sufficient straightness, so the probability of total reflection at the critical angle or more at the clad interface is high. It becomes possible to obtain an optical waveguide similar to that of a general optical fiber.
  • the difference in refractive index between different crystal phases is greater than 0.1, the straightness of light deteriorates due to scattering of light within the crystal phase with a higher refractive index and scattering of light at crystal boundaries. , the probability of light penetrating into the glass clad within the critical angle increases, and the optical waveguide performance deteriorates.
  • This radiation measuring device comprises an optical fiber emitter 300 , a first sensor 311 , a second sensor 312 and an arithmetic circuit 313 .
  • the optical fiber light emitter 300 is the optical fiber light emitter described in each of the above-described embodiments, and is composed of a core and a clad made of a scintillator that emits light when irradiated with radiation.
  • the first sensor 311 detects light reaching one end of the optical fiber emitter 300 .
  • the second sensor 312 detects light reaching the other end of the optical fiber emitter 300 .
  • Arithmetic circuit 313 obtains incident position 331 of radiation on optical fiber emitter 300 from at least one of the difference in light detection time and the difference in detected light quantity between first sensor 311 and second sensor 312 .
  • the arithmetic circuit 313 is a computer device that includes a CPU (Central Processing Unit), a main memory, an external memory, etc., and the CPU operates according to a program developed in the main memory (executes the program). By doing so, each function described above can be realized.
  • CPU Central Processing Unit
  • the optical fiber emitter 300 can be formed in a coil shape.
  • the optical fiber light emitter 300 formed in a coil shape can be used by winding it around a measurement object 351 that generates radiation, such as a nuclear reactor or an accelerator.
  • the first sensor 311 detects the light approximately 500 ns after the incident radiation.
  • the second sensor 312 detects light approximately 100 ns after the incident radiation. Note that the speed of light is calculated as 30 cm/ns.
  • the photon quantity measured by the first sensor 311 is 9000 photons, and the photon quantity measured by the second sensor 312 is 10000 photons.
  • the arithmetic circuit 313 obtains the position of the incident radiation in the optical fiber emitter 300 based on the above-described difference in light detection time of 400 ns or the difference in light amount of 1000 photons. In addition, by using the optical fiber emitter 300 formed in a coil shape, it is possible to three-dimensionally identify the position where the radiation is incident.
  • At least one of the core and the clad has a difference in thermal expansion coefficient within 60 ⁇ 10 ⁇ 6 /K and a difference in heat transfer rate within 30 W/m/K. , it is possible to suppress damage to the optical fiber emitter due to temperature changes.
  • the core is composed of a eutectic having two crystal phases, it is possible to improve mass productivity and ease of handling in practical use.
  • a eutectic has a lower melting point than a single crystal such as a single crystal, and cracks and voids are less likely to occur, making it more permissible to bend as a fiber.
  • a halide having a melting point lower than that of the material is placed in a cylindrical container made of a thermoplastic material, and the container is heated and stretched.
  • An optical fiber luminous body with a core can be more easily produced.
  • a method for producing an optical fiber luminous body characterized in that it emits light by.
  • Appendix 2 A first step of preparing a cylindrical clad, a second step of melting a halide having a melting point lower than that of a material forming the clad to form a melt, and a third step of accommodating the melt in the clad. and a fourth step of cooling and solidifying the melt accommodated in the clad to form the halide crystal, thereby forming an optical fiber light emitter having the halide crystal as a core, A method for producing an optical fiber light emitter, wherein the halide crystal emits light when irradiated with radiation.
  • Appendix 3 In the method for producing an optical fiber luminous body according to Appendix 2, the third step is characterized in that the melt is contained in the clad by sucking the melt into the interior of the clad. Method.
  • the third step includes pushing up the melt into the clad to accommodate the melt in the clad.
  • Appendix 5 In the method for producing an optical fiber luminous body according to any one of Appendices 2 to 4, the first step prepares a clad array in which a plurality of the clads are bundled, and the third step prepares each of the clad arrays. A method for producing an optical fiber light emitter, wherein the melt is contained in the clad.
  • a method for producing an optical fiber luminous body characterized in that it emits light by.
  • a fiber optic illuminator comprising a core of a luminous halide crystal and a cladding of a thermoplastic material.
  • An optical fiber illuminator characterized in that:
  • optical fiber luminous body according to appendix 7 or 8, wherein the optical fiber luminous body is a multi-core fiber having a plurality of said cores in the same fiber body.
  • Appendix 10 The optical fiber luminous body according to appendix 9, wherein the diameter of the core, the thickness of the clad, and the outer diameter decrease from one end to the other end.
  • An optical fiber luminous body comprising a core composed of a eutectic having two crystalline phases and a cladding, wherein at least one of said crystalline phases emits light upon radiation.
  • Appendix 13 13
  • Appendix 14 13 The optical fiber luminous body according to appendix 12, wherein the refractive index difference between the two crystal phases is 0.1 or less at the emission wavelength.
  • Appendix 15 15. The optical fiber light emitter according to appendix 14, wherein the two crystal phases have an average crystal grain size of 30 ⁇ m or less.
  • Appendix 16 16. The optical fiber luminous body according to any one of Appendices 7 to 15, wherein the core is composed of an oxide crystal or a halide crystal that emits light when irradiated with radiation.
  • Appendix 17 A radiation measuring device comprising the optical fiber light emitter according to any one of Appendices 7 to 16.
  • Appendix 18 A light emitter array in which a plurality of optical fiber light emitters according to any one of Appendices 7 to 16 are bundled.
  • a radiation measuring device comprising the light emitter array of appendix 18.
  • An optical fiber luminous body composed of a core and a cladding made of a scintillator that emits light when irradiated with radiation, a first sensor for detecting light reaching one end of the optical fiber luminous body, and the other end of the optical fiber luminous body.
  • a second sensor that detects incoming light, and the position of incidence of radiation on the optical fiber emitter is determined by at least one of a difference in light detection time and a difference in amount of light detected between the first sensor and the second sensor.
  • a radiation measuring device comprising an arithmetic circuit for obtaining
  • Appendix 21 21.
  • 101 container, 102... core material, 103... core, 104... clad, 105... optical fiber emitter, 151... heater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

筒状の容器(101)にコア材料(102)を収容する(第1工程)。容器(101)は、熱可塑性を有するクラッド材料から構成されている。容器(101)は、例えば、珪ホウ酸ガラスなどの耐熱性ガラスから構成することができる。コア材料(102)は、クラッド材料より融点が低いハロゲン化物である。次に、コア材料(102)を収容した容器(101)を、ヒータ(151)で加熱して延伸し、ハロゲン化物の結晶から構成されたコア(103)と、クラッド材料から構成されたクラッド(104)とからなる光ファイバー発光体(105)を形成する。

Description

光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法
 本発明は、コアを発光体から構成した光ファイバー発光体、発光体アレー、および放射線測定装置に関する。
 γ線、X線、α線、中性子線などの放射線を測定する放射線測定に用いられているシンチレータ(発光体)をコアとする光ファイバー発光体が、放射線を測定するためのセンサ素子などとして利用されている。例えば、光ファイバー発光体として、プラスチックから構成されたものが提案されている(特許文献1)。
 また、複数の結晶相からなる共晶体シンチレータが報告され、屈折率が大きいシンチレータをファイバー状とし、この周囲を屈折率の低いマトリックス相で覆って配列した光導波型共晶体構造となるときに、分解能に優れたシンチレータが得られることが知られている(特許文献2参照)。従って、シンチレータによるコアを、同一のファイバー本体に複数備えるマルチコアファイバーとすることで、放射線に対する位置分解能を有するセンサなどが実現可能である。
特許第6868643号公報 特許第6468820号公報
 ところで、ハロゲン化物結晶は、強いシンチレーション光が得られる材料として知られている。しかしながら、ハロゲン化物結晶は、潮解性を有するため、大気中での加工などが容易ではなく、ハロゲン化物結晶をコアとする光ファイバー発光体を作製することが容易ではないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、ハロゲン化物結晶をコアとする光ファイバー発光体がより容易に作製できるようにすることを目的とする。
 本発明に係る光ファイバー発光体の作製方法は、熱可塑性を有するクラッド材料から構成された筒状の容器に、クラッド材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、コア材料を収容した容器を加熱して延伸することで、ハロゲン化物の結晶から構成されたコアと、クラッド材料から構成されたクラッドとからなる光ファイバー発光体を形成する第2工程とを備え、ハロゲン化物の結晶は、放射線の照射により発光する。
 本発明に係る光ファイバー発光体の作製方法は、筒状のクラッドを用意する第1工程と、クラッドを構成する材料より融点が低いハロゲン化物を溶融して融液を形成する第2工程と、クラッドに融液を収容する第3工程と、クラッドに収容された融液を冷却して固化してハロゲン化物の結晶とすることで、ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第4工程とを備え、ハロゲン化物の結晶は、放射線の照射により発光する。
 上記光ファイバー発光体の作製方法の一構成例において、第3工程は、融液をクラッドの内部に吸い上げることで、クラッドに融液を収容する。
 上記光ファイバー発光体の作製方法の一構成例において、第3工程は、融液をクラッドの内部に押し上げることで、クラッドに融液を収容する。
 上記光ファイバー発光体の作製方法の一構成例において、第1工程は、クラッドを複数束ねたクラッドアレイを用意し、第3工程は、クラッドアレイの各々のクラッドに融液を収容する。
 本発明に係る光ファイバー発光体の作製方法は、筒状のクラッドに、クラッドを構成する材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、クラッドに収容したコア材料を溶融する第2工程と、溶融したコア材料を冷却して固化してハロゲン化物の結晶とすることで、ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第3工程とを備え、ハロゲン化物の結晶は、放射線の照射により発光する。
 本発明に係る光ファイバー発光体は、発光するハロゲン化物結晶からなるコアと、熱可塑性を有する材料から構成されたクラッドとを備える。
 本発明に係る光ファイバー発光体は、シンチレータからなるコアと、クラッドとを備え、コアとクラッドとは、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態とされている。
 上記光ファイバー発光体の一構成例において、同一のファイバー本体に複数のコアを有するマルチコアファイバーとされている。
 上記光ファイバー発光体の一構成例において、コアの径、クラッドの厚さ、および外径が、一端側から他端側にかけて小さくなっている。
 上記光ファイバー発光体の一構成例において、コアは、断面視矩形とされ、断面方向に矩形配列されている。
 本発明に係る光ファイバー発光体は、2つの結晶相を有する共晶体から構成されたコアと、クラッドとを備え、少なくとも1つの結晶相が放射線により発光する。
 上記光ファイバー発光体の一構成例において、2つの結晶相の平均結晶粒径が30μm以下とされている。
 上記光ファイバー発光体の一構成例において、2つの結晶相の間の屈折率差が発光波長において0.1以下とされている。
 上記光ファイバー発光体の一構成例において、2つの結晶相の平均結晶粒径が30μm以下とされている。
 上記光ファイバー発光体の一構成例において、コアは、放射線の照射により発光する酸化物結晶あるいはハロゲン化物結晶から構成されている。
 本発明に係る放射線測定装置は、上述した光ファイバー発光体を備える。
 本発明に係る発光体アレーは、上述した光ファイバー発光体を複数束ねたものである。
 本発明に係る放射線測定装置は、上記発光体アレーを備える。
 本発明に係る放射線測定装置は、放射線の照射により発光するシンチレータからなるコアとクラッドとから構成された光ファイバー発光体と、光ファイバー発光体の一端側に到達する光を検知する第1センサと、光ファイバー発光体の他端側に到達する光を検知する第2センサと、第1センサと第2センサとの間の、光検知時刻の差および検知した光量の差の少なくとも1つにより光ファイバー発光体における放射線の入射位置を求める演算回路とを備える。
 上記放射線測定装置の一構成例において、光ファイバー発光体は、コイル状に形成されている。
 以上説明したように、本発明によれば、熱可塑性を有する材料から構成された筒状の容器に、材料より融点が低いハロゲン化物を収容し、これらを加熱して延伸するので、ハロゲン化物結晶をコアとする光ファイバー発光体がより容易に作製できる。
図1Aは、本発明の実施の形態1に係る光ファイバー発光体の作製方法の途中工程を示す構成図である。 図1Bは、本発明の実施の形態1に係る光ファイバー発光体の作製方法の途中工程を示す構成図である。 図2は、本発明の実施の形態1に係る光ファイバー発光体の構成を示す斜視図である。 図3は、本発明の実施の形態1に係る他の光ファイバー発光体の構成を示す斜視図である。 図4Aは、本発明の実施の形態1に係る他の光ファイバー発光体の作製方法の途中工程を示す構成図である。 図4Bは、本発明の実施の形態1に係る他の光ファイバー発光体の作製方法の途中工程を示す構成図である。 図5は、本発明の実施の形態1に係る他の光ファイバー発光体の作製方法の途中工程を示す構成図である。 図6は、本発明の実施の形態2に係る光ファイバー発光体の作製方法を説明するフローチャートである。 図7Aは、本発明の実施の形態2に係る他の光ファイバー発光体の作製方法を説明する途中工程のクラッドアレイ200の構成を示す斜視図である。 図7Bは、本発明の実施の形態2に係る他の光ファイバー発光体の作製方法を説明する途中工程のクラッドアレイ200の構成を示す斜視図である。 図8は、本発明の実施の形態3に係る光ファイバー発光体の作製方法を説明するフローチャートである。 図9は、本発明の実施の形態4に係る光ファイバー発光体300の構成を示す斜視図である。 図10は、本発明の実施の形態4に係る光ファイバー発光体300aの構成を示す斜視図である。 図11は、本発明の実施の形態4に係る光ファイバー発光体300bの構成を示す斜視図である。 図12は、本発明の実施の形態4に係る光ファイバー発光体300cの構成を示す断面図である。 図13は、実際に作製した光ファイバー発光体で発生したシンチレータ光の導波状態を撮影した写真である。 図14は、実際に作製した光ファイバー発光体の端面のコアを電子顕微鏡により観察した結果を示す写真である。 図15は、本発明の実施の形態に係る放射線測定装置の構成を示す構成図である。
 以下、本発明の実施の形態1に係る光ファイバー発光体の作製方法について説明する。
[実施の形態1]
 以下、本発明の実施の形態1に係る光ファイバー発光体の作製方法について図1A、図1Bを参照して説明する。
 まず、図1Aに示すように、筒状の容器101にコア材料102を収容する(第1工程)。容器101は、熱可塑性を有するクラッド材料から構成されている。容器101は、例えば、ホウケイ酸ガラスなどの耐熱性ガラスから構成することができる。コア材料102は、クラッド材料より融点が低いハロゲン化物である。コア材料102は、例えば、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2などのハロゲン化物の結晶を得るための材料とすることができる。この種の材料は、潮解性があるため、容器101へのコア材料102の収容(充填)は、湿度がない(湿度が制御された)環境で実施することが重要となる。例えば、湿度0のアルゴン雰囲気で、容器101へのコア材料102の収容を実施することができる。
 次に、図1Bに示すように、コア材料102を収容した容器101を、ヒータ151で加熱して延伸する。これにより、容器101に収容しているコア材料102を溶融して結晶化し、ハロゲン化物の結晶から構成されたコア103と、クラッド材料から構成されたクラッド104とからなる光ファイバー発光体105を形成する(第2工程)。ハロゲン化物の結晶は、放射線の照射により発光するものである。ハロゲン化物の結晶は、クラッド材料より高い屈折率を有する。ハロゲン化物の結晶は、例えば、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2の結晶である。
 上述した、コア材料102を収容した容器101を加熱により延伸する工程も、湿度がない環境で実施することが重要となる。例えば、湿度0のアルゴン雰囲気で、上述した延伸を実施することができる。また、前述した容器101へのコア材料102の収容において、容器101へコア材料102を収容した後、容器101を封止して、収容したコア材料102が外気に触れない状態としておけば、上述した延伸は、大気中で実施することができる。
 容器101を構成するクラッド材料は、コア材料102より融点が高いため、加熱により、容器101を軟化させて延伸するとともに、コア材料102を溶融して結晶化させることができる。また、コア材料102を溶融・結晶化してコア103とした時点では、コア103はクラッド104に覆われているため、周囲の大気に触れることがなく、潮解するなども問題が発生しない。また、湿度0とした雰囲気における容器101へのコア材料102の収容は、容易に実施できることはいうまでもない。このように、実施の形態1によれば、ハロゲン化物結晶をコアとする光ファイバー発光体105が、極めて容易に作製できる。
 上述した実施の形態1の作製方法により、図2に示すように、発光するハロゲン化物結晶からなるコア103と、熱可塑性を有する材料から構成されたクラッド104とを備える光ファイバー発光体105が得られる。クラッド104は、例えば、ガラスから構成されている。この種のハロゲン化物結晶によるコアは、屈折率n=~1.8であり、屈折率n=1.46~1.5のガラスによるクラッド104との間には、一般的な光ファイバー以上の臨界角が達成できる。また、図3に示すように、光ファイバー発光体105aは、同一のファイバー本体に複数のコア103を有するマルチコアファイバーとすることもできる。また、光ファイバー発光体105を複数束ねた発光体アレーとすることができる。
 例えば、実施の形態1に係る光ファイバー発光体105(光ファイバー発光体105a)をセンサ素子とし、コア103が発して光ファイバー発光体105を導波するシンチレーション光を受光できる受光素子を組み合わせることで、放射線測定装置としての使用が可能となる。また、上述した発光体アレーをセンサ素子として、上述した放射線測定装置を構成することができる。
 また、マルチコアファイバーとする場合、次に示すように作製することができる。例えば、まず、図4Aに示すように、円柱状の収容部112を複数備える容器111を用意し、各々の収容部112にコア材料102を収容する(第1工程)。容器111は、熱可塑性を有するクラッド材料から構成されている。容器111は、例えば、ホウケイ酸ガラスなどの耐熱性ガラスから構成することができる。
 次に、図4Bに示すように、各々の収容部112にコア材料102を収容した容器111を、ヒータ151で加熱して延伸する。これにより、各々の収容部112に収容しているコア材料102を溶融して結晶化し、ハロゲン化物の結晶から構成された複数のコア103と、クラッド材料から構成されたクラッド104aとからなる光ファイバー発光体105aを形成することができる(第2工程)。光ファイバー発光体105aは、マルチコアファイバーとなる。
 また、図5に示すように、複数の容器101を束ねてヒータ151で加熱して延伸することで、コア103とクラッド104とからなる光ファイバー発光体105を複数束ねたアレー状態に形成することができる。
 次に、実施例を用いて詳細に説明する。まず、長さ200mm、外径25mm、内径20mmの円筒形状の耐熱性ガラス製の容器を用意した。耐熱性ガラスは、軟化点が820℃である。次に、湿度0のアルゴン雰囲気において、各々を所定の量としたヨウ化タリウム[TlI]の粉体と、ヨウ化セシウム[CsI]の粉体とを混合して混合粉体とし、これを容器の内部に収容(充填)した。TlIの粉体とCsIの粉体とを混合した混合粉体を、加熱することで溶解して融液とし、この融液を適宜に冷却することで、タリウム活性化ヨウ化セシウム[Tl:CsI]の結晶(融点621℃)が得られる。
 次に、原料(混合粉体)を充填した容器の上部を固定し、容器の下部を820℃に加熱し、加熱しながら容器の底部を下方に引き下げた。この工程も、湿度0のアルゴン雰囲気で実施した。引き下げの速度は、1km毎時とした。また、引き下げにより作製される光ファイバー発光体は、巻き取り装置で巻き取った。光ファイバー発光体は、外径100μm、長さ10mに作製された。また、作製された光ファイバー発光体は、クラッドの内径が80μmとなり、ここに、Tl:CsI結晶によるコアが形成された。形成されたコアの外形は、80μmとなる。
 作製した光ファイバー発光体のコアは、放射線励起および光励起により550nmの発光を示し、光ファイバー発光体の終端に光が導波する様子が確認された。作製した光ファイバー発光体を、接着剤を用いて250000本束ね、5cm角の発光体アレーを作製し、厚さ2mmに切断した。得られた発光体アレーは、X線に対し、120μmの位置分解能を示した。
 以上に説明したように、実施の形態1によれば、熱可塑性を有する材料から構成された筒状の容器に、材料より融点が低いハロゲン化物を収容し、これらを加熱して延伸するので、ハロゲン化物結晶をコアとする光ファイバー発光体がより容易に作製できるようになる。また、光ファイバー発光体を用いることで、超高分解能な放射線測定装置が実現できる。
[実施の形態2]
 次に、本発明の実施の形態2に係る光ファイバー発光体の作製方法について、図6を参照して説明する。
 まず、第1工程S101で、筒状のクラッドを用意する。クラッドは、ホウケイ酸ガラスなどの耐熱性ガラスから構成することができる。次に、第2工程S102で、クラッドを構成する材料より融点が低いハロゲン化物を溶融して融液を形成する。例えば、所定の容器(坩堝など)の中に上記ハロゲン化物の融液を作製して収容する。ハロゲン化物は、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2,BaCl2などとすることができる。この種の材料は、潮解性があるため、湿度がない(湿度が制御された)環境で、上述した融液の作製を実施することが重要となる。
 次に、第3工程S103で、クラッドに融液を収容(充填)する。例えば、クラッドの一端側の開口より、クラッドの内部に融液を吸い上げることで、クラッドに融液を収容することができる。例えば、クラッドの一端側を、上述した容器に収容されている融液に浸漬し、クラッドの他端側よりクラッドの内部の空気を排気することで、クラッドの内部に融液を吸い上げることができる。また、クラッドの一端側の開口より、クラッドの内部に融液を押し上げることで、クラッドに融液を収容することができる。例えば、クラッドの一端側を、上述した容器に収容されている融液に浸漬した状態で、融液の液面に対して、クラッドの他端側より高い圧力を加えることで、クラッドの内部に融液を押し上げることができる。
 次に、第4工程S104で、クラッドに収容された融液を冷却して固化してハロゲン化物の結晶とすることで、ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する。ハロゲン化物の結晶は、放射線の照射により発光するものである。ハロゲン化物の結晶は、クラッドを構成する材料より高い屈折率を有する。ハロゲン化物の結晶は、例えば、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2,BaCl2の結晶である。クラッドへハロゲン化物の融液を収容した後、クラッドを封止して、収容した融液が外気に触れない状態としておけば、上述した固化は、大気中で実施することができる。
 また、第1工程では、図7Aに示すように、クラッド201を複数束ねたクラッドアレイ200を用意することができる(第1工程)。この場合、クラッドアレイ200の各々のクラッド201に融液を収容する(第3工程)。例えば、図7Bに示すように、上記ハロゲン化物の融液を収容した容器202に、用意したクラッドアレイ200の一端側を浸漬し、各々のクラッド201の内部に融液を吸い上げることで、クラッドアレイ200の各々のクラッド201に融液を収容することができる。また、上記ハロゲン化物の融液を収容した容器202に、用意したクラッドアレイ200の一端側を浸漬し、各々のクラッド201の内部に融液を押し上げることで、クラッドアレイ200の各々のクラッド201に融液を収容することができる。
 溶融したハロゲン化物は、クラッドに収容された後では、クラッドに覆われているため、周囲の大気に触れることがなく、潮解するなども問題が発生しない。また、湿度0とした雰囲気におけるハロゲン化物の溶融は、容易に実施できることはいうまでもない。このように、実施の形態2によれば、ハロゲン化物の結晶をコアとする光ファイバー発光体が、極めて容易に作製できる。
[実施の形態3]
 次に、本発明の実施の形態3に係る光ファイバー発光体の作製方法について、図8を参照して説明する。
 まず、第1工程S121で、筒状のクラッドに、クラッドを構成する材料より融点が低いハロゲン化物からなるコア材料を収容する。クラッドは、ホウケイ酸ガラスなどの耐熱性ガラスから構成することができる。コア材料は、クラッド材料より融点が低いハロゲン化物である。コア材料は、例えば、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2,BaCl2などのハロゲン化物の結晶を得るための材料とすることができる。この種の材料は、潮解性があるため、クラッドへのコア材料の収容(充填)は、湿度がない(湿度が制御された)環境で実施することが重要となる。例えば、湿度0のアルゴン雰囲気で、クラッドへのコア材料の収容を実施することができる。
 次に、第2工程S122で、クラッドに収容したコア材料を溶融する。例えば、コア材料を収容したクラッドを、コア材料が溶融する温度にまでヒータで加熱することで、コア材料を溶融させることができる。クラッドは、コア材料より融点が高いため、クラッドが溶融することはない。
 次に、第3工程S123で、溶融したコア材料を冷却して固化してハロゲン化物の結晶とすることで、ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する。ハロゲン化物の結晶は、放射線の照射により発光するものである。ハロゲン化物の結晶は、クラッド材料より高い屈折率を有する。ハロゲン化物の結晶は、例えば、Tl:CsI,Eu:SrI2,CeBr3,Ce:LaBr3,Ce:LaCl3,CaI2,BaCl2の結晶である。
 クラッドへコア材料を収容した後、クラッドを封止して、収容したコア材料が外気に触れない状態としておけば、上述したコア材料の溶融および固化は、大気中で実施することができる。
 コア材料を溶融・結晶化してコアとした時点では、コアはクラッドに覆われているため、周囲の大気に触れることがなく、潮解するなども問題が発生しない。また、湿度0とした雰囲気におけるクラッドへのコア材料の収容は、容易に実施できることはいうまでもない。このように、実施の形態3によれば、ハロゲン化物結晶をコアとする光ファイバー発光体が、極めて容易に作製できる。
 コアの形状は、円柱、多角柱など、不定形の柱状を用いることができ、当該のコアがクラッド内に複数が並列に配置されたアレー形状とすることができる。
 コア材料はクラッド材よりも融点が低いため、コア材料を溶融・結晶化してコアとした後、再度コア材料をクラッド内で溶融・固化し、再結晶化させることで、コア材料の結晶品質を向上し、発光量、蛍光寿命、エネルギー分解能の発光体の性能を向上することが可能である。
 以上に説明したように、実施の形態2,実施の形態3によれば、クラッドに収容されたハロゲン化物の融液を冷却して固化してハロゲン化物の結晶とすることで、ハロゲン化物の結晶をコアとする光ファイバー発光体を形成するので、ハロゲン化物結晶をコアとする光ファイバー発光体がより容易に作製できるようになる。
[実施の形態4]
 次に、本発明の実施の形態4に係る光ファイバー発光体300について、図9を参照して説明する。上述した光ファイバー発光体は、コアとクラッドとの熱膨張係数差が大きい場合、温度変化などにより内部の結晶にクラックやボイドが生じ、透過率の低下や発光量の減少といったシンチレータ性能の劣化が生じ、結果として放射線検出器としての性能が劣化する。さらに、クラッドの膨張や割れが生じ、光ファイバー発光体が破損する。クラッドに対しコアの熱伝導率が大きい場合にも、クラッドに割れが生じる場合がある。例えば、光ファイバー発光体の製造過程では、ファイバー状となったコアから優先的に冷却が進み、クラッドとコアとの間の熱ひずみが大きくなり割れが生じるものと考えられる。
 実施の形態4に係る光ファイバー発光体300は、上述した問題を解消するものであり、シンチレータからなるコア301と、クラッド302とを備え、コア301とクラッド302とは、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態とされたものである。コア301は、放射線の照射により発光するハロゲン化物結晶から構成することができる。
 例えば、クラッド材からなる筒状の容器にコア材料を収容し、コア材料を収容した容器をヒータで加熱して延伸することで、上述した光ファイバー発光体を作製することができる。このように加熱延伸することで、容器に収容しているコア材料は溶融して結晶化し、光ファイバー発光体とすることができる。
 実際に作製した結果について説明する。外径20mm内径16mmのほう珪酸ガラス管(筒状の容器)内に、以下の表1の各コア材の原料を充填し、さらに、コア材が充填された珪酸ガラス管にアルゴンガスを充填した。珪酸ガラス管は、クラッド材となる。この後、炉内をヒータにより、ほう珪酸ガラスの軟化点(780℃)まで局所的に昇温し、コア材を充填したほう珪酸ガラス管の延伸を行った。
Figure JPOXMLDOC01-appb-T000001
 この結果、TlCsI,Tl:NaI、Ce:LaBr3、CeBr3、Eu:SrI2について、内径80μmに形成されたコアとクラッドとによる光ファイバー発光体が作製できた。割れなどの欠陥がなく外径100μm、内径80μm、全長3000mの光ファイバー発光体が作製できた。さらに、UV励起や放射線励起によりシンチレータ光を生じ、コア内を光が導波する現象を確認し、光ファイバー発光体として機能することが分かった。
 Cr:Al23は、珪酸ガラス管をクラッド材とした上述した条件において溶融せず、光ファイバー発光体を成型できなかった。また比較例として、Pb、Naに関しては、ほう珪酸ガラス管が割れ、光ファイバー発光体を成型できなかった。
 また、比較例として、外径20mm内径16mmの石英ガラスをクラッド材とし、この石英ガラス内にCr:Al23の原料を充填し、さらに石英ガラス管内にアルゴンガスを充填し、これらをヒータにより石英ガラスの軟化点(1700℃)まで局所的に昇温し、延伸を行った。この結果、昇温過程で石英ガラスとCr:Al23の原料が反応し、石英ガラス管とCr:Al23が反応した化合物を生じて石英ガラス管が破損し、光ファイバー発光体を成型できなかった。ガラス材の軟化点以下で反応する酸化物などの材料はコア材として適さなかった。
 また、外径20mm内径16mmの石英ガラスをクラッド材とし、この石英ガラス内にTb:GdAlO3/Al23共晶体の原料を充填し、さらに石英ガラス管内にアルゴンガスを充填し、これらをヒータによりTb:GdAlO3/Al23共晶体の融点かつ石英ガラスの軟化点である1700℃程度まで局所的に昇温し、延伸を行った。この結果、昇温過程石英ガラスとTb:GdAlO3/Al23の原料が反応し、石英ガラス管が破損し、光ファイバー発光体を成型できなかった。ガラス材の軟化点以下で反応する酸化物共晶体もコア材として適さなかった。
 ところで、コアはシンチレータ光に対して透明な結晶体であることが望ましい。このため、コアを構成するシンチレータは、グレインが1mm平方あたり100個以下、より望ましくはグレインが1mm平方あたり2個以下であることがより望ましい。なぜならば、UV励起や放射線励起により生じるシンチレータ光がコアを導波する際に、グレイン境界面での散乱や吸収により光が減衰し、放射線検出器としての性能が劣化するためである。
 以下、実際に作製した結果について説明する。外径20mm内径16mmのほう珪酸ガラス管(筒状の容器)内に、コア材としてLaBr3:Ce(融点783℃、屈折率:1.9)の原料を充填し、ガラス管内にアルゴンガスを充填した。ヒータにより、ほう珪酸ガラスの軟化点以上(830℃)に局所的に昇温し、延伸を行った。この結果、Cs2LiYCl6:Ceシンチレータからなるコアが、内径160μmに形成された光ファイバー発光体が作製できた。割れなどの欠陥がなく外径200μm、内径160μm、全長1000mの光ファイバー発光体が作製できた。X線励起により発光スペクトルを測定したところ、370nmをピークとする発光が確認された。この光ファイバー発光体が、UV励起や放射線励起によりシンチレータ光を生じ、コア内を光が導波する現象を確認し、光ファイバー発光体として機能することが分かった。
 上記で得られた光ファイバー発光体を10mmの長さに切断し、端面を鏡面研磨し、端面を光電子増倍管に光学接着した。この状態で、137Cs線源からの662keVのγ線を光ファイバー発光体に照射し、光電子増倍管からの信号を前置増幅器および波形成型増幅器に入力し、マルチチャンネルアナライザーに入力することで、パルスカウンティング法による発光量を計測した。この結果、波高スペクトルの取得に成功し、662keVのγ線に相当する光電吸収ピークが確認され、40000photon/MeVの発光量が得られた。内径160μmとされている光ファイバー発光体の端面のコアをEBSDにより観察したところ、LaBr3:Ce結晶はクラッド内部に密に充填されており、内部に6個のグレインが確認された。
 さらに上記で得られた全長1000mの光ファイバー発光体を10mmの長さに切断した。この後、LaBr3:Ceの融点以上に加熱し、コアを溶融させ、0.1mm/minの速度でファイバー長手方向に一方向凝固を行い、再結晶化を行った。内径160μmとされている光ファイバー発光体の端面のコアをEBSDにより観察したところ、LaBr3:Ce結晶はクラッド内部に密に充填されており、内部に1個のグレインが確認され、単結晶体であることが確認された。この後、端面を鏡面研磨し、端面を光電子増倍管に光学接着し、137Cs線源からの662keVのγ線を照射し、パルスカウンティング法による発光量を計測した。この結果、波高スペクトルの取得に成功し、662keVのγ線に相当する光電吸収ピークを確認し、6000photon/MeVの発光量を得た。
 さらに比較例として、外径200μm、内径160μm、10mmの中空ほう珪酸ガラス管内にコア材としてLaBr3:Ceシンチレータを粉砕した粉末を充填した。この後、端面を光電子増倍管に光学接着し、137Cs線源からの662keVのγ線を照射し、パルスカウンティング法による発光量を計測したところ、明瞭な光電吸収ピークを確認できず発光量は検出できなかった。内径160μmとされている光ファイバー発光体の端面のコアをSEMにより観察したところ、内部に80個の結晶粒と結晶粒周辺の空隙が確認された。
 上記の結果から、作製した光ファイバー発光体に対し、内部のコアのみを溶融し再結晶化させることで、結晶グレインの数を少なくすることができ、理想的には単結晶とすることができる。コアが単結晶となった光ファイバー発光体の方が、発光量がより大きかった。光ファイバー発光体のコアを再結晶化することでシンチレータ特性を向上することができることがわかった。一方で、結晶体ではなく、粉末がコアとなった場合には、UV励起や放射線励起により生じるシンチレータ光がコアを導波する際に、結晶粒や空隙の存在のため散乱や吸収により光が減衰したため、明瞭な光電吸収ピークを確認できず発光量は検出できなかったものと考えられる。
 作製に用いるガラス管の最初の外径と内径の比が、光ファイバー発光体のコア対クラッドの厚みの比となるため、ガラス管の仕様を変えて延伸することで、放射線検出器の目的、検出対象の放射線エネルギー、粒子の特徴に合わせて、コア対クラッドの厚みの比を最適化できる。さらにコアの径が0.1μm~5mm径まで最適化も可能となる。コア301の径とクラッド302の厚さとの比は、10000:1~1:10000の範囲とすることができる。クラッドは、放射線に対し不感な領域になるので、コアができるだけ広いほうが放射線検出器としての感度が向上する。
 ところで、図10に示すように、光ファイバー発光体300aは、同一のファイバー本体(クラッド302a)に複数のコア301を有するマルチコアファイバーとすることもできる。また、光ファイバー発光体105を複数束ねた発光体アレーとすることができる。
 また、マルチコアファイバーとする場合、図11に示すように、コア301の径、クラッド302の厚さ、および外径が、一端側から他端側にかけて小さくする構成とした光ファイバー発光体300bとすることができる。例えば、2次元イメージセンサの各画素を各コア301に対応させる状態で、光ファイバー発光体300bの一端側に2次元イメージセンサを配置する。この状態で、他端側を観察対象の近傍に配置する。
 2次元イメージセンサの各画素のピッチは、一般的に10μm程度である。光ファイバー発光体300bの一端側は、各コア301のピッチを10μmとして光ファイバー発光体300bを作製すれば、一端側では、2次元イメージセンサの各画素を各コア301に対応させることができる。
 一方、光ファイバー発光体300bの他端は、例えば、各コア301のピッチを1μmとすることができる。このように作製した光ファイバー発光体300bの他端を観察対象の近傍に配置すると、観察対象で発生した放射線は、光ファイバー発光体300bの他端に入射する。放射線が入射した光ファイバー発光体300bの他端では、複数のコア301ごとに、入射した放射線の強度に応じた発光を生じる。生じた発光は、光ファイバー発光体300bを導波して、光ファイバー発光体300bの一端に到達する。光ファイバー発光体300bの一端に到達した発光は、2次元イメージセンサの各画素で受光される。
 例えば、2次元イメージセンサの画素数を、1000×1000とし、光ファイバー発光体300bは、1000×1000本のコア301からなるマルチコアファイバーとする。光ファイバー発光体300bの他端では、1μmピッチの1000×1000画素で、発生した放射線の強度分布を示す放射線画像が受け付けられるが、この放射線画像は、光ファイバー発光体300bの一端側に到達することで、10μmピッチの1000×1000画素となり、2次元イメージセンサで撮像されることになる。
 このように、光ファイバー発光体300bを用いることで、他端で受け付けた1μmピッチの解像度の放射線画像を、画素ピッチが10μmの2次元イメージセンサの受光領域にまで拡大することができる。この逆も可能である。
 また、図12に示すように、断面視矩形とした複数のコア301aと、クラッド302bとに光ファイバー発光体300cとすることができる。光ファイバー発光体300cは、マルチコアファイバーとされている。複数のコア301aは、断面方向に矩形配列されている。
 一般に、2次元イメージセンサは、各画素が、平面視で矩形とされ、また、各画素は、矩形配列されている。このような受光面とされている2次元イメージセンサに対し、光ファイバー発光体300cを用いることで、2次元イメージセンサの各画素と、光ファイバー発光体300cの各コア301aの端面との幾何学的な対応関係を一致させることができる。この結果、光ファイバー発光体300cの一端側から出射される光(光学像)が、高い光検出効率で2次元イメージセンサにおいて受光することができる。また、クラッド302bは、放射線に対し不感な領域になるので、コア301aができるだけ広いほうが、感度が向上する。
[実施の形態5]
 次に、本発明の実施の形態5に係る光ファイバー発光体について説明する。この光ファイバー発光体は、シンチレータからなるコアと、クラッドとを備え、コアを、2つの結晶相を有する共晶体から構成されたものである。コアを構成する共晶体は、少なくとも1つの結晶相が放射線により発光する。
 共晶体とすることで、単結晶などの単一の結晶体に比べて、融点が低くなり、クラックやボイドが発生しづらくなり、ファイバーとしての曲げが許容されることから、量産性や実用時の取り扱いの容易さが向上する。なお、コアとクラッドとは、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態とされたものとすることもできる。
 また、コアを構成する共晶体の2つの結晶相の間の屈折率差は、発光波長において0.1以下とすることができる。コアを構成する共晶体の、それぞれの結晶相の屈折率差が、好ましくは0.1以下、より好ましくは0.05、さらに好ましくは0.02以下と小さくすることで、放射線励起によって発光した光が減衰することなくコア中を導波する。この結果、実施の形態5によれば、発光波長における透明度が高く、光ファイバー発光体を長くしても、導波光の減衰が少ないものとすることができる。
 また、コアを構成する共晶体の2つの結晶相の平均粒径を、発光波長に対し十分に近いサイズとすることができる。また、コアを構成する共晶体の2つの結晶相の平均粒径は、それぞれ、好ましくは30μm以下とすることができる。コアを構成する共晶体の2つの結晶相の平均粒径は、より好ましくは5μm以下、さらに好ましくは0.5μm以下と小さくすることができる。このようにすることで、放射線励起によって発光した光が、減衰することなくコア中を導波する。結晶粒界での光の散乱を低減し、コア内を通過する光の減衰を低減し、直進性を高めることができる。この結果、実施の形態5によれば、発光波長における透明度が高く、光ファイバー発光体を長くしても、導波光の減衰が少ないものとすることができる。
 共晶体では、結晶相の粒径λと固化速度:vには、「λ2∝σα/β・D(A-B) L/v」の関係式があることが知られている。ここで、σα/β:界面エネルギー、D(A-B) L:相互拡散係数である。界面エネルギーおよび相互拡散係数は、共晶体の化学組成により固有の値であり、結晶相の粒径の二乗は、固化速度に反比例する。すなわち、固化速度が早ければ早いほど結晶相の粒径は小さくなる。
 結晶相は、発光中心としてPr、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Dy、Er、Tm、Yb、Tl、Pb、Bi、Ag、Ti、Crのうち少なくとも一種からなる希土類元素を、コアの結晶相の総物質量に対して0.001mol%以上含有することが好ましい。結晶相は、化学式Axyzx+2y+3z(0≦x<1、0<y≦1、0<z≦1)で表されるハロゲン化物を含み、Aは、Li、Na、K、Rb、Cs,Cd,のうち少なくとも一種を含む元素であり、BはZn,Be、Mg、Ca、Sr、Ba,CはY,Ce,La,Gd,Lu,Bi,Ga,Al,Hf,Zrのうち少なくとも一種を含む元素であり、XはF、Cl、Br、I、Tl,Se,O,P,Sのうち少なくとも一種を含む元素である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以下、実際に作製した結果について説明する。外径10mm内径8mmのほう珪酸ガラス管(筒状の容器)内に、Tlを発光中心とし、コア材としてNaIとCsIからなる共晶体(融点428℃)の原料を充填し、ガラス管内にアルゴンガスを充填した。ヒータにより、ほう珪酸ガラスの軟化点(780℃)まで局所的に昇温し、0.1m/分の速度で延伸を行った。この結果、NaI/CsI:Tl共晶体シンチレータからなるコアが、内径160μmに形成された光ファイバー発光体が作製できた。割れなどの欠陥がなく外径200μm、内径160μm、全長1000mの光ファイバー発光体が作製できた。この光ファイバー発光体が、UV励起や放射線励起により、NaI:TlおよびCsI:Tlの各結晶相がシンチレータ光を生じ、コア内を光が導波する現象を確認し、光ファイバー発光体として機能することが分かった。
 得られた光ファイバー発光体を10mmの長さに切断し、端面を鏡面研磨し、端面を光電子増倍管に光学接着した。この状態で、137Cs線源からの662keVのγ線を光ファイバー発光体に照射し、パルスカウンティング法による発光量を計測した。この結果、波高スペクトルの取得に成功し、662keVのγ線に相当する光電吸収ピークが確認され、25000photon/MeVの発光量が得られた。内径160μmとされている光ファイバー発光体の端面のコアを電子顕微鏡により観察したところ、NaI:TlおよびCsI:Tlの各結晶相の平均粒径は15μmであった。
 外径20mm内径16mmのほう珪酸ガラス管(筒状の容器)内に、Tlを発光中心とし、コア材としてNaIとCsIからなる共晶体(融点428℃)の原料を充填し、ガラス管内にアルゴンガスを充填した。ヒータにより、ほう珪酸ガラスの軟化点(780℃)まで局所的に昇温し、1m/分の速度で延伸を行った。この結果、NaI/CsI:Tl共晶体シンチレータからなるコアが、内径160μmに形成された光ファイバー発光体が作製できた。割れなどの欠陥がなく外径200μm、内径160μm、全長1000mの光ファイバー発光体が作製できた。この光ファイバー発光体が、UV励起や放射線励起によりNaI:TlおよびCsI:Tlの各結晶相がシンチレータ光を生じ、コア内を光が導波する現象を確認し、光ファイバー発光体として機能することが分かった(図13)。
 得られた光ファイバー発光体を10mmの長さに切断し、端面を鏡面研磨し、端面を光電子増倍管に光学接着した。この状態で、137Cs線源からの662keVのγ線を光ファイバー発光体に照射し、パルスカウンティング法による発光量を計測した。この結果、波高スペクトルの取得に成功し、662keVのγ線に相当する光電吸収ピークが確認され、33000photon/MeVの発光量が得られた。内径160μmとされている光ファイバー発光体の端面のコアを電子顕微鏡により観察したところ、NaI:TlおよびCsI:Tlの各結晶相の平均粒径は0.3μmであった。図14に、コアを観察した反射電子像を示す。図14において、黒色部がNaIであり白色部がCsIとなる共晶体であった。
 共晶体コアの製造では、延伸速度を速くすることで、溶融したコアの凝固速度が速くなる。これにより、各結晶相の平均粒径が小さくなる傾向があった。CsI:Tlの発光ピーク波長は0.55nmであったが、平均粒径が0.3μmとなったNaI/CsI:Tl共晶体をコアとする光ファイバー発光体の方が、平均粒径が15μmのNaI/CsI:Tl共晶体をコアとする光ファイバー発光体よりも発光量が大きかった。平均粒径をシンチレータコアの発光波長に対して十分に小さくすることで、結晶粒界での光の散乱を低減し、コア内を通過する光の減衰を低減し、直進性を高めることができたため、光ファイバー発光体の発光量が高くなった。
 光ファイバー発光体内部で生じるシンチレータ光に対するコア内部の透光性は、「T=e-γt・・・(1)」で示される直線透過率Tで評価することができる。ここで、γは光の減衰係数,tはコアの厚みである。γは試料固有の吸収係数と散乱項の和であるが,シンチレータ光の波長に対し吸収のないコアでは,後者を考えればよい。光ファイバー発光体内部のコアにおける主な光の散乱は、共晶体の各結晶相の屈折率の違いによる粒界散乱(γg)と、粒界における空孔による散乱(γp)である(γ=γg+γp)。
 それぞれの散乱については,光学理論に基づき定式化がなされている。Rayleigh-Gan’s-Debyeモデルに基づく定式化によれば、γgは、「γg=3π2gΔng 2/λ2・・・(2)」と表わされる。また、γpは、「γp=6pπ2pΔnp 2/λ2・・・式(3)」と表わされる。ここでλは光の波長、pは空孔率、dgは結晶相の平均粒径dpは空孔の直径、Δngは複屈折を有する結晶相の最大屈折率n1と、屈折率の平均値n2の差(Δng=n1-n2)である。またΔnpは、結晶の平均屈折率n1と空孔を満たす物質の屈折率npと差であるが、後者は通常空気(屈折率1)を想定しているので「Δnp=n1-1」である。
 式(2)より,共晶体の各結晶相の屈折率差が十分に小さければ、Δngが0に近づくこととなり、γgが0に近づくこととなり、散乱における粒界の影響がなくなる。すなわち式(1)における直線透過率Tが1に近づくこととなり、高い直線透過率が実現できる。空孔のない共晶体からなるコアの場合、γpが0に近づき、さらに結晶相の平均粒径dgが小さくなるほどγpが小さくなり、コア内部での光の散乱による減衰はないことになる。これが共晶体コアであり,複数の結晶相を含みながら単結晶やガラスと同等以上の透光性を持つことになる。
 これらの結果から、異なる結晶相の間の屈折率差が十分に小さいと、十分な直進性をもって共晶体を光が伝播していくため、クラッド界面での臨界角以上で全反射する確率が高くなり、一般的な光ファイバーと同様の光導波を得ることができる。一方で、異なる結晶相の間の屈折率差が0.1より大きい場合、屈折率がより大きい結晶相内での光の散乱と結晶境界での光の散乱により、光の直進性が劣化し、臨界角以内でのガラスクラッドへの光の突き抜けが生じる確率が高くなり、光導波性能が劣化する。
 次に、本発明の実施の形態に係る放射線測定装置について、図15を参照して説明する。この放射線測定装置は、光ファイバー発光体300と、第1センサ311と、第2センサ312と、演算回路313とを備える。
 光ファイバー発光体300は、前述した各実施の形態で説明した光ファイバー発光体であり、放射線の照射により発光するシンチレータからなるコアとクラッドとから構成されている。第1センサ311は、光ファイバー発光体300の一端側に到達する光を検知する。また、第2センサ312は、光ファイバー発光体300の他端側に到達する光を検知する。
 演算回路313は、第1センサ311と第2センサ312との間の、光検知時刻の差および検知した光量の差の少なくとも1つにより光ファイバー発光体300における放射線の入射位置331を求める。演算回路313は、CPU(Central Processing Unit;中央演算処理装置)と主記憶装置と外部記憶装置となどを備えたコンピュータ機器とし、主記憶装置に展開されたプログラムによりCPUが動作する(プログラムを実行する)ことで、上述した各機能が実現されるようにすることができる。
 例えば、光ファイバー発光体300は、コイル状に形成することができる。コイル状に形成した光ファイバー発光体300は、原子炉や加速器などの放射線が発生する測定対象351に巻き付けて用いることができる。
 例えば、放射線が入射した位置が、光ファイバー発光体300の一端から150m、他端から30mの場合を考える。この場合、第1センサ311では、放射線が入射した時点から約500ns後に光を検知する。一方、第2センサ312では、放射線が入射した時点から約100ns後に光を検知する。なお、光の速さを、30cm/nsとして計算している。また、第1センサ311で測定される光子量は、9000光子となり、第2センサ312で測定される光子量は、10000光子となる。
 演算回路313では、上述した光検知時刻の差400ns、または、光量の差1000光子を元に、光ファイバー発光体300における放射線が入射した位置を求める。また、コイル状に形成した光ファイバー発光体300を用いることで、放射線が入射した位置を、3次元的に特定することができる。
 以上に説明したように、実施の形態4によれば、コアとクラッドとを、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態としたので、温度変化による光ファイバー発光体の破損が抑制できるようになる。
 また、実施の形態5によれば、コアを、2つの結晶相を有する共晶体から構成するので、量産性を向上させ、実用時の取り扱いの容易さを向上させることができる。共晶体は、単結晶などの単一の結晶体に比べて、融点が低くなり、クラックやボイドが発生しづらくなり、ファイバーとしての曲げをさらに許容させることができるようになる。
 以上説明したように、本発明によれば、熱可塑性を有する材料から構成された筒状の容器に、材料より融点が低いハロゲン化物を収容し、これらを加熱して延伸するので、ハロゲン化物結晶をコアとする光ファイバー発光体がより容易に作製できるようになる。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されるが、以下には限られない。
[付記1]
 熱可塑性を有するクラッド材料から構成された筒状の容器に、前記クラッド材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、前記コア材料を収容した前記容器を加熱して延伸することで、前記ハロゲン化物の結晶から構成されたコアと、前記クラッド材料から構成されたクラッドとからなる光ファイバー発光体を形成する第2工程とを備え、前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
[付記2]
 筒状のクラッドを用意する第1工程と、前記クラッドを構成する材料より融点が低いハロゲン化物を溶融して融液を形成する第2工程と、前記クラッドに前記融液を収容する第3工程と、前記クラッドに収容された前記融液を冷却して固化して前記ハロゲン化物の結晶とすることで、前記ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第4工程とを備え、前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
[付記3]
 付記2記載の光ファイバー発光体の作製方法において、前記第3工程は、前記融液を前記クラッドの内部に吸い上げることで、前記クラッドに前記融液を収容することを特徴とする光ファイバー発光体の作製方法。
[付記4]
 付記2記載の光ファイバー発光体の作製方法において、前記第3工程は、前記融液を前記クラッドの内部に押し上げることで、前記クラッドに前記融液を収容することを特徴とする光ファイバー発光体の作製方法。
[付記5]
 付記2~4のいずれか1項に記載の光ファイバー発光体の作製方法において、前記第1工程は、前記クラッドを複数束ねたクラッドアレイを用意し、前記第3工程は、前記クラッドアレイの各々の前記クラッドに前記融液を収容することを特徴とする光ファイバー発光体の作製方法。
[付記6]
 筒状のクラッドに、前記クラッドを構成する材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、前記クラッドに収容した前記コア材料を溶融する第2工程と、溶融した前記コア材料を冷却して固化して前記ハロゲン化物の結晶とすることで、前記ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第3工程とを備え、前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
[付記7]
 発光するハロゲン化物結晶からなるコアと、熱可塑性を有する材料から構成されたクラッドとを備える光ファイバー発光体。
[付記8]
 シンチレータからなるコアと、クラッドとを備え、前記コアと前記クラッドとは、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態とされていることを特徴とする光ファイバー発光体。
[付記9]
 付記7または8記載の光ファイバー発光体において、同一のファイバー本体に複数の前記コアを有するマルチコアファイバーとされていることを特徴とする光ファイバー発光体。
[付記10]
 付記9記載の光ファイバー発光体において、前記コアの径、前記クラッドの厚さ、および外径が、一端側から他端側にかけて小さくなっていることを特徴とする光ファイバー発光体。
[付記11]
 付記9記載の光ファイバー発光体において、前記コアは、断面視矩形とされ、断面方向に矩形配列されていることを特徴とする光ファイバー発光体。
[付記12]
 2つの結晶相を有する共晶体から構成されたコアと、クラッドとを備え、少なくとも1つの前記結晶相が放射線により発光することを特徴とする光ファイバー発光体。
[付記13]
 付記12記載の光ファイバー発光体において、2つの前記結晶相の平均結晶粒径が30μm以下とされていることを特徴とする光ファイバー発光体。
[付記14]
 付記12記載の光ファイバー発光体において、2つの前記結晶相の間の屈折率差が発光波長において0.1以下とされていることを特徴とする光ファイバー発光体。
[付記15]
 付記14記載の光ファイバー発光体において、2つの前記結晶相の平均結晶粒径が30μm以下とされていることを特徴とする光ファイバー発光体。
[付記16]
 付記7~15のいずれか1項に記載の光ファイバー発光体において、前記コアは、放射線の照射により発光する酸化物結晶あるいはハロゲン化物結晶から構成されていることを特徴とする光ファイバー発光体。
[付記17]
 付記7~16のいずれかの光ファイバー発光体を備える放射線測定装置。
[付記18]
 付記7~16のいずれかの光ファイバー発光体を複数束ねた発光体アレー。
[付記19]
 付記18の発光体アレーを備える放射線測定装置。
[付記20]
 放射線の照射により発光するシンチレータからなるコアとクラッドとから構成された光ファイバー発光体と、前記光ファイバー発光体の一端側に到達する光を検知する第1センサと、前記光ファイバー発光体の他端側に到達する光を検知する第2センサと、前記第1センサと前記第2センサとの間の、光検知時刻の差および検知した光量の差の少なくとも1つにより前記光ファイバー発光体における放射線の入射位置を求める演算回路とを備える放射線測定装置。
[付記21]
 付記20記載の放射線測定装置において、前記光ファイバー発光体は、コイル状に形成されていることを特徴とする放射線測定装置。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…容器、102…コア材料、103…コア、104…クラッド、105…光ファイバー発光体、151…ヒータ。

Claims (21)

  1.  熱可塑性を有するクラッド材料から構成された筒状の容器に、前記クラッド材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、
     前記コア材料を収容した前記容器を加熱して延伸することで、前記ハロゲン化物の結晶から構成されたコアと、前記クラッド材料から構成されたクラッドとからなる光ファイバー発光体を形成する第2工程と
     を備え、
     前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
  2.  筒状のクラッドを用意する第1工程と、
     前記クラッドを構成する材料より融点が低いハロゲン化物を溶融して融液を形成する第2工程と、
     前記クラッドに前記融液を収容する第3工程と、
     前記クラッドに収容された前記融液を冷却して固化して前記ハロゲン化物の結晶とすることで、前記ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第4工程と
     を備え、
     前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
  3.  請求項2記載の光ファイバー発光体の作製方法において、
     前記第3工程は、前記融液を前記クラッドの内部に吸い上げることで、前記クラッドに前記融液を収容する
     ことを特徴とする光ファイバー発光体の作製方法。
  4.  請求項2記載の光ファイバー発光体の作製方法において、
     前記第3工程は、前記融液を前記クラッドの内部に押し上げることで、前記クラッドに前記融液を収容する
     ことを特徴とする光ファイバー発光体の作製方法。
  5.  請求項2~4のいずれか1項に記載の光ファイバー発光体の作製方法において、
     前記第1工程は、前記クラッドを複数束ねたクラッドアレイを用意し、
     前記第3工程は、前記クラッドアレイの各々の前記クラッドに前記融液を収容する
     ことを特徴とする光ファイバー発光体の作製方法。
  6.  筒状のクラッドに、前記クラッドを構成する材料より融点が低いハロゲン化物からなるコア材料を収容する第1工程と、
     前記クラッドに収容した前記コア材料を溶融する第2工程と、
     溶融した前記コア材料を冷却して固化して前記ハロゲン化物の結晶とすることで、前記ハロゲン化物の結晶をコアとする光ファイバー発光体を形成する第3工程と
     を備え、
     前記ハロゲン化物の結晶は、放射線の照射により発光することを特徴とする光ファイバー発光体の作製方法。
  7.  発光するハロゲン化物結晶からなるコアと、
     熱可塑性を有する材料から構成されたクラッドと
     を備える光ファイバー発光体。
  8.  シンチレータからなるコアと、クラッドとを備え、
     前記コアと前記クラッドとは、熱膨張係数差が60×10-6/K以内、および熱伝統率差が30W/m/K以内の少なくとも一方の状態とされている
     ことを特徴とする光ファイバー発光体。
  9.  請求項7または8記載の光ファイバー発光体において、
     同一のファイバー本体に複数の前記コアを有するマルチコアファイバーとされていることを特徴とする光ファイバー発光体。
  10.  請求項9記載の光ファイバー発光体において、
     前記コアの径、前記クラッドの厚さ、および外径が、一端側から他端側にかけて小さくなっていることを特徴とする光ファイバー発光体。
  11.  請求項9記載の光ファイバー発光体において、
     前記コアは、断面視矩形とされ、断面方向に矩形配列されていることを特徴とする光ファイバー発光体。
  12.  2つの結晶相を有する共晶体から構成されたコアと、
     クラッドと
     を備え、
     少なくとも1つの前記結晶相が放射線により発光することを特徴とする光ファイバー発光体。
  13.  請求項12記載の光ファイバー発光体において、
     2つの前記結晶相の平均結晶粒径が30μm以下とされていることを特徴とする光ファイバー発光体。
  14.  請求項12記載の光ファイバー発光体において、
     2つの前記結晶相の間の屈折率差が発光波長において0.1以下とされていることを特徴とする光ファイバー発光体。
  15.  請求項14記載の光ファイバー発光体において、
     2つの前記結晶相の平均結晶粒径が30μm以下とされていることを特徴とする光ファイバー発光体。
  16.  請求項7または8記載の光ファイバー発光体において、
     前記コアは、放射線の照射により発光する酸化物結晶あるいはハロゲン化物結晶から構成されていることを特徴とする光ファイバー発光体。
  17.  請求項7または8の光ファイバー発光体を備える放射線測定装置。
  18.  請求項7または8の光ファイバー発光体を複数束ねた発光体アレー。
  19.  請求項18の発光体アレーを備える放射線測定装置。
  20.  放射線の照射により発光するシンチレータからなるコアとクラッドとから構成された光ファイバー発光体と、
     前記光ファイバー発光体の一端側に到達する光を検知する第1センサと、
     前記光ファイバー発光体の他端側に到達する光を検知する第2センサと、
     前記第1センサと前記第2センサとの間の、光検知時刻の差および検知した光量の差の少なくとも1つにより前記光ファイバー発光体における放射線の入射位置を求める演算回路と
     を備える放射線測定装置。
  21.  請求項20記載の放射線測定装置において、
     前記光ファイバー発光体は、コイル状に形成されていることを特徴とする放射線測定装置。
PCT/JP2022/026525 2021-07-27 2022-07-01 光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法 WO2023008101A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023538372A JPWO2023008101A1 (ja) 2021-07-27 2022-07-01
EP22849167.6A EP4379426A1 (en) 2021-07-27 2022-07-01 Optical fiber emitter, emitter array, radiation measurement device, and optical fiber emitter production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021122335 2021-07-27
JP2021-122335 2021-07-27
JP2022024806 2022-02-21
JP2022-024806 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023008101A1 true WO2023008101A1 (ja) 2023-02-02

Family

ID=85086805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026525 WO2023008101A1 (ja) 2021-07-27 2022-07-01 光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法

Country Status (3)

Country Link
EP (1) EP4379426A1 (ja)
JP (1) JPWO2023008101A1 (ja)
WO (1) WO2023008101A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100147A (en) * 1980-01-16 1981-08-11 Fujikura Ltd Manufacture of two-component ionic crystal optical fiber
JPS56111805A (en) * 1980-02-08 1981-09-03 Fujikura Ltd Ion crystal optical fiber
JPS63143508A (ja) * 1986-12-05 1988-06-15 Kokusai Denshin Denwa Co Ltd <Kdd> フツ化物ガラスフアイバ用プリフオ−ムとその製造方法
JPH0980156A (ja) * 1995-09-18 1997-03-28 Power Reactor & Nuclear Fuel Dev Corp 放射線量測定方法および装置
JP6468820B2 (ja) 2014-11-28 2019-02-13 キヤノン株式会社 シンチレータ結晶体及びそれを用いた放射線検出器
CN111913208A (zh) * 2020-06-05 2020-11-10 华南理工大学 一种纤芯熔融法制备的闪烁光纤探头、闪烁光纤器件及方法
JP6868643B2 (ja) 2016-12-15 2021-05-12 株式会社クラレ プラスチックシンチレーションファイバ及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100147A (en) * 1980-01-16 1981-08-11 Fujikura Ltd Manufacture of two-component ionic crystal optical fiber
JPS56111805A (en) * 1980-02-08 1981-09-03 Fujikura Ltd Ion crystal optical fiber
JPS63143508A (ja) * 1986-12-05 1988-06-15 Kokusai Denshin Denwa Co Ltd <Kdd> フツ化物ガラスフアイバ用プリフオ−ムとその製造方法
JPH0980156A (ja) * 1995-09-18 1997-03-28 Power Reactor & Nuclear Fuel Dev Corp 放射線量測定方法および装置
JP6468820B2 (ja) 2014-11-28 2019-02-13 キヤノン株式会社 シンチレータ結晶体及びそれを用いた放射線検出器
JP6868643B2 (ja) 2016-12-15 2021-05-12 株式会社クラレ プラスチックシンチレーションファイバ及びその製造方法
CN111913208A (zh) * 2020-06-05 2020-11-10 华南理工大学 一种纤芯熔融法制备的闪烁光纤探头、闪烁光纤器件及方法

Also Published As

Publication number Publication date
JPWO2023008101A1 (ja) 2023-02-02
EP4379426A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
KR101538194B1 (ko) 중성자 검출용 신틸레이터 및 중성자 검출 장치
JP5103879B2 (ja) シンチレータ用結晶及び放射線検出器
JP3668755B2 (ja) シンチレーション材料およびシンチレーション導波路素子
RU2638158C2 (ru) Композиция сцинтиллятора, устройство детектора излучения и способ регистрации высокоэнергетического излучения
JP5719837B2 (ja) シンチレータ結晶材料、シンチレータおよび放射線検出器
US20140166889A1 (en) Transparent glass scintillators, methods of making same and devices using same
EP0779254B1 (en) Radiation imaging device comprising a photostimulable luminescence glass
JP6043031B2 (ja) 中性子シンチレーター及び中性子検出器
JPWO2012011506A1 (ja) ホスウィッチ型熱中性子検出器
US5640017A (en) Remote radiation detection device with inorganic scintillating detecting crystal and fiber optic
CN115852480A (zh) 一种发光金属卤化物闪烁体、制备方法和应用
EP2463251A1 (en) Methods of incorporating materials of interest in glass optical waveguides
JP2013024731A (ja) 放射線検出装置
WO2023008101A1 (ja) 光ファイバー発光体、発光体アレー、放射線測定装置、および光ファイバー発光体の作製方法
US9899114B2 (en) Lead-loaded structured solid organic scintillator
JP5868329B2 (ja) 中性子シンチレーター
JP2015111107A (ja) シンチレータおよび放射線検出器
JP2014198831A (ja) シンチレータ結晶
JP6271909B2 (ja) シンチレータ結晶体及び放射線検出器
JP5634285B2 (ja) コルキライト型結晶、中性子検出用シンチレーター及び中性子線検出器
WO2012011505A1 (ja) 放射線検出器
JP2017149883A (ja) シンチレータおよび放射線検出器
Chen et al. Transparent BaCl 2: Eu 2+ glass-ceramic scintillator
Bilki et al. New radiation-hard wavelength shifting fibers
US9829584B1 (en) Bismuth-charged structured solid organic scintillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538372

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2024104686

Country of ref document: RU

Ref document number: 2022849167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849167

Country of ref document: EP

Effective date: 20240227