WO2023007841A1 - センサ付き圧電コイル及び電子機器 - Google Patents
センサ付き圧電コイル及び電子機器 Download PDFInfo
- Publication number
- WO2023007841A1 WO2023007841A1 PCT/JP2022/013956 JP2022013956W WO2023007841A1 WO 2023007841 A1 WO2023007841 A1 WO 2023007841A1 JP 2022013956 W JP2022013956 W JP 2022013956W WO 2023007841 A1 WO2023007841 A1 WO 2023007841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric
- sensor
- coil
- piezoelectric material
- expansion
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 99
- 239000000463 material Substances 0.000 claims description 306
- 239000011162 core material Substances 0.000 claims description 78
- 230000008602 contraction Effects 0.000 claims description 52
- 238000001514 detection method Methods 0.000 claims description 30
- 238000010248 power generation Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 abstract description 17
- 230000004048 modification Effects 0.000 description 33
- 238000012986 modification Methods 0.000 description 33
- 230000005684 electric field Effects 0.000 description 14
- 229920001166 Poly(vinylidene fluoride-co-trifluoroethylene) Polymers 0.000 description 11
- 238000004088 simulation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229920000747 poly(lactic acid) Polymers 0.000 description 8
- 239000004626 polylactic acid Substances 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910010252 TiO3 Inorganic materials 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910000154 gallium phosphate Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/101—Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/60—Piezoelectric or electrostrictive devices having a coaxial cable structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N39/00—Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
Definitions
- This technology relates to technology such as piezoelectric coils.
- Patent Document 1 describes a piezoelectric actuator configured by spirally winding a strip-shaped piezoelectric element on the surface of a coil spring.
- the piezoelectric element when an electric field is applied to the piezoelectric element, the piezoelectric element deforms in the longitudinal direction. Due to the deformation of the piezoelectric element, a torsional moment is generated in the cross section of the coil spring, and the coil spring is deformed in the axial direction.
- Patent Document 2 can be cited as a technology related to this technology.
- the purpose of this technology is to provide technology such as piezoelectric coils that are capable of sensing displacement.
- a piezoelectric coil with a sensor includes a piezoelectric coil and a sensor.
- the piezoelectric coil has a coil-shaped core material and one or more first piezoelectric materials that are helical with respect to the core material, and is expandable and contractible in an expansion/contraction direction.
- the sensor detects displacement due to expansion and contraction of the piezoelectric coil.
- An electronic device includes a piezoelectric coil with a sensor.
- the piezoelectric coil with sensor has a piezoelectric coil and a sensor.
- the piezoelectric coil has a coil-shaped core material and one or more first piezoelectric materials that are helical with respect to the core material, and is expandable and contractible in an expansion/contraction direction.
- the sensor detects displacement due to expansion and contraction of the piezoelectric coil.
- FIG. 1 is a side view showing a sensor-equipped piezoelectric coil according to a first embodiment;
- FIG. It is a top view which shows a piezoelectric coil with a sensor.
- FIG. 4 is a cross-sectional view of a piezoelectric coil with a sensor; It is a figure for demonstrating the operation
- FIG. 10 is a diagram showing simulation results for a first sample (second piezoelectric material: PZT);
- FIG. 10 is a diagram showing simulation results for a second sample (second piezoelectric material: P(VDF-TrFE));
- FIG. 10 is a diagram showing another example of signal detection in displacement sensing
- FIG. 7 is a perspective view showing a sensor-equipped piezoelectric coil according to a second embodiment
- FIG. 4 is a cross-sectional view of the sensor-equipped piezoelectric coil on a plane perpendicular to the length direction of the core. It is a figure which shows the piezoelectric coil with a sensor based on each modification.
- FIG. 1 is a side view showing a sensor-equipped piezoelectric coil 100 according to the first embodiment.
- FIG. 2 is a top view showing the piezoelectric coil 100 with sensor.
- FIG. 3 is a perspective view showing the piezoelectric coil 100 with sensor.
- FIG. 4 is a cross-sectional view of the piezoelectric coil 100 with sensor.
- FIG. 3 shows a basic unit for one round of the sensor-equipped piezoelectric coil 100 .
- FIG. 4 partially shows half of the cross section of the sensor-equipped piezoelectric coil 100 .
- the sensor-equipped piezoelectric coil 100 is configured in the shape of a coil spring, and can be expanded and contracted in the direction of the central axis of the coil (direction of expansion and contraction: see the dashed-dotted line in FIG. 1: Z-axis direction). Note that the overall number of turns in the sensor-equipped piezoelectric coil 100, the number of turns per unit length, and the like can be set arbitrarily.
- the sensor-equipped piezoelectric coil 100 includes a piezoelectric coil 10 that can be expanded and contracted in the central axis direction of the coil, and a displacement sensor 20 that can detect displacement due to expansion and contraction of the piezoelectric coil 10 .
- the displacement value of the piezoelectric coil 10 detected by the displacement sensor 20 is used for feedback control of the sensor-equipped piezoelectric coil 100 or the like.
- the piezoelectric coil 10 includes a coil-shaped core material 11 that can be expanded and contracted in the expansion and contraction direction (the Z-axis direction), three first piezoelectric members 12 spirally wound around the core material 11, and a first and a first electrode portion 13 for applying an electric field in the thickness direction of the piezoelectric material 12 .
- the displacement sensor 20 includes a single second piezoelectric material 21 spirally wound around the core material 11 and a second electrode portion 22 for detecting the voltage generated by the second piezoelectric material 21. including.
- the core material 11 is configured in the shape of a coil spring, and its cross section (the cross section perpendicular to the length direction of the core material 11) is circular.
- the cross section of the core material 11 may be elliptical, polygonal, or the like, and the shape of the cross section is not particularly limited.
- the core material 11 is made of at least one material selected from, for example, graphite, Mg alloy, Al, Ti, SUS, W, Au, Ag, Cu, Pt, ceramics, or polymer resin.
- Each of the first piezoelectric material 12 and the second piezoelectric material 21 is formed in a belt shape that is long in the length direction, short in the width direction, and thin in the thickness direction.
- the number of the first piezoelectric members 12 is three, but the number of the first piezoelectric members 12 may be one, two, four, . There may be, and the number is not particularly limited.
- first piezoelectric member 12 is used to distinguish the plurality of first piezoelectric members 12.
- first piezoelectric members 12a the number of first piezoelectric members 12
- first piezoelectric members 12b the number of first piezoelectric members 12
- first piezoelectric members 12c the number of first piezoelectric members 12
- the first piezoelectric material 12 and the second piezoelectric material 21 are arranged in a direction along the length direction of the core material 11 (see one-dot chain line in FIG. 1).
- the three first piezoelectric members 12 are aligned in the direction along the length of the core member 11 .
- the second piezoelectric member 21 is interposed between the three first piezoelectric members 12 in the direction along the length direction of the core member 11 .
- 11 are arranged in a direction along the length direction of .
- the second piezoelectric members 21 are alternately arranged with the three first piezoelectric members 12 in the direction along the length direction of the core member 11 .
- the first piezoelectric material 12 and the second piezoelectric material 21 are arranged at a predetermined angle (for example, about 45° ⁇ 15°) with respect to the length direction of the core material 11 (see one-dot chain line in FIG. 1). 0° in the length direction).
- Piezoelectric materials 12 and 21 are, for example, Pb(Zr, Ti)O 3 [PZT], PbTiO 3 , Pb(Mg 1/3 Nb 2/3 )O 3 —PbTiO 3 [PMN-PT], Pb(Zn 1 / 3Nb 2/3 )O 3 —PbTiO 3 [PZN-PT], BaTiO 3 [BT], (K, Na)NbO 3 [KNN], KNbO 3 , NaNbO 3 , (K, Na, Li)NbO 3 , (K, Na, Li) (Nb, Ta, Sb) O 3 , (Sr, Ba) Nb 2 O 6 , (Sr, Ca) NaNb 5 O 15 , (Na, K) Ba 2 NbO 15 , BiFeO 3 , Bi4Ti3O12 , ( Bi1 / 2K1/ 2 ) TiO3 , (Bi1 / 2Na1 /2 ) TiO3
- the first piezoelectric material 12 and the second piezoelectric material 21 may be made of the same material, or may be made of different materials.
- the second piezoelectric material 21 is made of a softer (lower Young's modulus) material than the first piezoelectric material 12 . may be
- the first piezoelectric material 12 may be made of PZT
- the second piezoelectric material 21 may be made of polyvinylidene fluoride [PVDF], polylactic acid [PLLA], or the like.
- PVDF polyvinylidene fluoride
- PLLA polylactic acid
- the material used for the insulating portion 1 is typically a material that has insulating properties and is relatively more flexible than the materials used for the first piezoelectric material 12 and the second piezoelectric material 21 .
- a material with a high Materials satisfying this condition include, for example, synthetic resins and synthetic resin foams.
- the reason why a highly flexible material is used for the insulating part 1 is that when the first piezoelectric material 12 and the second piezoelectric material 21 are distorted, the first piezoelectric material 12 and the second piezoelectric material 21 are deformed. In order to prevent the first piezoelectric material 12 and the second piezoelectric material 21 from being damaged by absorbing the influence of pressure, friction, etc. that the material 21 exerts on the adjacent piezoelectric material by the insulating part 1 . is.
- the insulating portion 1 may be a gap formed between the first piezoelectric materials 12 adjacent to each other and between the first piezoelectric material 12 and the second piezoelectric material 21 adjacent to each other (for example, see FIG. 9 described later).
- the first electrode portion 13 is configured to be able to apply a voltage to the first piezoelectric material 12 in the thickness direction of the first piezoelectric material 12 .
- the voltage may be applied in the length direction of the first piezoelectric material 12 .
- the first piezoelectric material 12 is distorted when a voltage is applied by the first electrode portion 13. At this time, the expansion and contraction of the first piezoelectric material 12 in the longitudinal direction is the central axis direction of the piezoelectric coil 10 (FIG. 1). : see dotted line) contributes to deformation.
- the first electrode portion 13 has a core material 11 and surface electrodes 14 that sandwich the first piezoelectric material 12 between the core material 11 and the first piezoelectric material 12 in the thickness direction of the first piezoelectric material 12 .
- One of the core material 11 and the surface electrode 14 is a positive electrode, and the other is a negative electrode.
- the surface electrode 14 is made of various materials such as metal, and is provided in layers on the surface of the first piezoelectric material 12 so as to cover the entire surface of the first piezoelectric material 12 . .
- the surface electrodes 14 are individually provided for the three first piezoelectric members 12 , and are formed in a spiral shape with respect to the core member 11 in the same manner as the first piezoelectric members 12 .
- the second electrode portion 22 is configured to be able to detect the voltage generated in the thickness direction of the second piezoelectric material 21 according to the expansion and contraction of the piezoelectric coil 10 . Although the voltage generated in the thickness direction of the second piezoelectric material 21 is detected in this embodiment, the voltage generated in the length direction of the second piezoelectric material 21 may be detected.
- the second electrode portion 22 has a detection electrode 23 provided on the surface of the second piezoelectric material 21 .
- the detection electrodes 23 are made of various materials such as metal, and are provided in layers on the surface of the second piezoelectric material 21 so as to cover the entire surface of the second piezoelectric material 21 . .
- the detection electrode 23 is formed in a spiral shape with respect to the core material 11, like the second piezoelectric material 21. As shown in FIG.
- the core material 11 plays two roles, one as a coil spring and the other as part of the first electrode portion 13 .
- the material of the core material 11 is a material with relatively high conductivity (for example, graphite, Mg alloy, metals such as Al, Ti, SUS, W, Au, Ag, Cu, and Pt) are used.
- an electrode layer may be specially formed on the surface of the core material 11 by vapor deposition, sputtering, coating, or the like. That is, an electrode layer (back electrode) may be interposed between the surface of the core material 11 and the back surface of the first piezoelectric material 12 .
- the core material 11 does not have to play a role as a part of the first electrode portion 13 , so for example, an insulator or the like can be used as the material of the core material 11 .
- the number of the first piezoelectric members 12 is not particularly limited, but the number of the first piezoelectric members 12 is set to two or more. It is known from simulation results that the piezoelectric response performance of the piezoelectric coil 10 is improved as a result.
- Piezoelectric response performance includes strain and generated force.
- the strain is how much the piezoelectric coil 10 is distorted in the direction of the central axis of the coil (see the dotted line in FIG. 1) when a predetermined electric field is applied to the first piezoelectric material 12, compared to when no electric field is applied. It is the ratio of da (shrinkage).
- the generated force is the force in the central axis direction of the piezoelectric coil 10 generated when a predetermined electric field is applied to the first piezoelectric material 12 .
- both the strain and the generated force are improved compared to the case where the number of the first piezoelectric members 12 is one.
- the number of the first piezoelectric members 12 is preferably within the range of 2 to 10, more preferably within the range of 2 to 7, and more preferably 3. ⁇ 5.
- FIG. 5 is a diagram for explaining the operation of the piezoelectric coil 100 with sensor.
- a drive voltage is applied to each of the three first piezoelectric members 12 via the first electrode portions 13 (surface electrodes 14).
- the three first piezoelectric members 12 are distorted (reverse piezoelectric effect), and stress is generated in the core member 11 .
- the core member 11 expands and contracts in the direction of expansion and contraction, and the entire piezoelectric coil 100 with a sensor expands and contracts in the direction of expansion and contraction.
- the stress generated in the core material 11 is transmitted to the second piezoelectric material 21 through the core material 11 , thereby distorting the second piezoelectric material 21 and generating a voltage (electric field) in the second piezoelectric material 21 . (positive voltage effect).
- the voltage generated by the second piezoelectric material 21 is taken out by the second electrode portion 22 (detection electrode 23).
- the magnitude of the voltage generated by the second piezoelectric material 21 is correlated with the degree of expansion and contraction of the sensor-equipped piezoelectric coil 100 . Therefore, based on the voltage generated by the second piezoelectric material 21, the displacement of the sensor-equipped piezoelectric coil 100 (the extent to which the piezoelectric coil 10 expands and contracts) can be measured.
- Information on the displacement of the sensor-equipped piezoelectric coil 100 is used for feedback control or the like for accurately driving the sensor-equipped piezoelectric coil 100 .
- the first piezoelectric material 12 is distorted (reverse piezoelectric effect) by applying a voltage to the first piezoelectric material 12, and the piezoelectric coil 10 expands and contracts in the expansion and contraction direction.
- the piezoelectric coil 10 is used as a power generating element, the first piezoelectric material 12 is distorted by the expansion and contraction of the piezoelectric coil 10 in the expansion/contraction direction due to an external force, and the first piezoelectric material 12 generates power (positive piezoelectric effect).
- the first electrode portion 13 is used as an electrode for applying a voltage to the first piezoelectric material 12.
- the first electrode portion 13 is used as an electrode for extracting power generated by the first piezoelectric material 12 .
- the piezoelectric coil 10 When the piezoelectric coil 10 is used as a piezoelectric actuator, the displacement information of the piezoelectric coil 10 extracted from the second electrode portion 22 due to the strain of the second piezoelectric material 21 is used to drive the piezoelectric coil 10 accurately. Used for feedback control.
- the displacement information of the piezoelectric coil 10 extracted from the second electrode portion 22 due to the distortion of the second piezoelectric material 21 can be used for the following purposes, for example. Used.
- the piezoelectric coil 10 is expanded and contracted in the expansion and contraction directions by a device that generates an external mechanical force.
- the upper limit is set in the direction in which the piezoelectric coil 10 extends, and the lower limit is set in the direction in which the piezoelectric coil 10 contracts.
- the displacement of the piezoelectric coil 10 exceeds the upper limit and whether it falls below the lower limit.
- the operation of the device that generates the mechanical external force is limited so that the piezoelectric coil 10 is driven within the range below the upper limit and above the lower limit. be. This prevents damage to the piezoelectric coil 10 .
- Second Piezoelectric Material 21 The inventors performed a simulation to determine whether the voltage generated by the second piezoelectric material 21 is of a magnitude that can be measured by the displacement sensor 20 .
- the outermost diameter of the coil is the outermost position of the piezoelectric coil 10 from the central axis of the piezoelectric coil 10 (see the dotted line in FIG. 1) in the radial direction ⁇ 2.
- the winding angle is the angle at which the first piezoelectric material 12 and the second piezoelectric material 21 are wound around the core material 11, and this winding angle is parallel to the length direction of the core material 11. is taken as 0°.
- the occupancy rate is the ratio of how much the surface of the core material 11 is covered by the first piezoelectric material 12 and the second piezoelectric material 21 .
- the electric field applied to the three first piezoelectric members 12 is changed between 0 and 1.5 [kV/mm], and the displacement of the entire sensor-equipped piezoelectric coil 100 (the central axis of the coil direction: see the dotted line in FIG. 1) and the voltage generated in the second piezoelectric material 21 were measured by simulation.
- FIG. 6 is a diagram showing simulation results for the first sample (second piezoelectric material 21: PZT).
- FIG. 7 is a diagram showing simulation results for the second sample (second piezoelectric material 21:P(VDF-TrFE)).
- the horizontal axis indicates the electric field applied to the first piezoelectric material 12.
- the vertical axis on the left indicates the displacement of the sensor-equipped piezoelectric coil 100 as a whole, and the vertical axis on the right indicates the voltage generated in the second piezoelectric material 21 .
- the solid line graph shows the relationship between the voltage applied to the first piezoelectric material 12 and the displacement of the sensor-equipped piezoelectric coil 100 as a whole.
- a broken line graph shows the relationship between the electric field applied to the first piezoelectric member 12 and the voltage generated at the second piezoelectric member 21 .
- P(VDF-TrFE) used as the second piezoelectric material 21 in the second sample shown in FIG. 7 is used as the second piezoelectric material 21 in the first sample shown in FIG. It is a softer material than the commonly used PZT.
- the solid-line graph shown in FIG. 7 has a steeper gradient than the solid-line graph shown in FIG. Specifically, when the same electric field is applied to the first piezoelectric material 12 in the first sample and the second sample, the displacement of the entire sensor-equipped piezoelectric coil 100 in the second sample is (Fig. 7 Reference: solid line), which is about 20% higher than the displacement of the entire sensor-equipped piezoelectric coil 100 in the first sample (see solid line in FIG. 6).
- a softer material such as P(VDF-TrFE) (or PLLA, etc.) is used as the material of the second piezoelectric material 21.
- PZT a softer material
- P(VDF-TrFE) or PLLA, etc.
- P(VDF-TrFE) used as the second piezoelectric material 21 in the second sample shown in FIG. 7 is used as the second piezoelectric material 21 in the first sample shown in FIG.
- This material has a slightly lower piezoelectric performance (piezoelectric constant) than PZT.
- the dashed line graph shown in FIG. 7 has a slightly gentler gradient than the dashed line graph shown in FIG. Specifically, when the same electric field is applied to the first piezoelectric material 12 in the first sample and the second sample, the voltage generated by P(VDF-TrFE) in the second sample is (Fig. 7: see dashed line), about 5% lower than the voltage generated by the PZT in the first sample.
- FIG. 8 is a diagram showing another example of signal detection in displacement sensing.
- the piezoelectric coil 10 is used as a piezoelectric actuator, and the second piezoelectric material 21 is applied with a voltage to drive the piezoelectric actuator together with the first piezoelectric material 12 .
- the second piezoelectric material 21 serves as a part of the displacement sensor 20 for detecting the displacement of the piezoelectric coil 10 and as a part of the driving section that drives the piezoelectric coil 10. It also serves the two roles of
- the detection voltage is superimposed on the drive voltage to generate the input voltage.
- the detection voltage has a lower voltage and a higher frequency than the drive voltage.
- This input voltage is applied to each of the three first piezoelectric members 12 via the first electrodes (surface electrodes 14), and to the second piezoelectric members via the second electrodes (detection electrodes 23). 21.
- the input voltage in which the detection voltage is superimposed on the drive voltage may be applied only to the second piezoelectric material 21 .
- a normal drive voltage on which the detection voltage is not superimposed is input to the first piezoelectric material 12 .
- the input voltage in which the detection voltage is superimposed on the drive voltage is commonly input to the first piezoelectric member 12 and the second piezoelectric member 21, the circuit can be simplified. Advantageous.
- the three first piezoelectric members 12 and the one second piezoelectric member 21 are distorted, and stress is generated on the core member 11 .
- the core member 11 expands and contracts in the direction of expansion and contraction
- the entire piezoelectric coil 100 with a sensor expands and contracts in the direction of expansion and contraction.
- an output current is extracted from the second piezoelectric material 21 via the second electrode portion 22 (detection electrode 23). Then, the detected voltage is used as a reference signal, and the lock-in amplifier filters the same frequency component as the reference signal from the output current to extract only the current value of that component (lock-in detection).
- This current value is in a proportional relationship with the dielectric constant of the second piezoelectric material 21, so by measuring the change in the current value, the change in the dielectric constant of the second piezoelectric material 21 can be measured.
- the change in the dielectric constant of the second piezoelectric material 21 is proportional to the piezoelectric distortion of the second piezoelectric material 21, and the correspondence is 1:1, so the displacement of the piezoelectric coil 10 can be sensed. This makes it possible to measure not only the frequency of motion of the sensor-equipped piezoelectric coil 100 but also the displacement itself of the sensor-equipped piezoelectric coil 100 .
- the same material is used for the first piezoelectric material 12 and the second piezoelectric material 21 .
- the second piezoelectric material 21 also has a role as a part of the drive unit that drives the piezoelectric coil 10 , and the second piezoelectric material 21 (displacement sensor 20 ) controls the movement of the piezoelectric coil 10 . This is because there is no point of view of being restricted.
- the sensor-equipped piezoelectric coil 100 can be easily manufactured. Further, when the same material is used for the first piezoelectric material 12 and the second piezoelectric material 21, a material that is softer and has lower piezoelectric performance than the first piezoelectric material 12 is used as the second piezoelectric material 21. There is an advantage that it is possible to prevent the piezoelectric performance of the sensor-equipped piezoelectric coil 100 from deteriorating compared to when it is used.
- the sensor-equipped piezoelectric coil 100 includes the coil-shaped core material 11 and one or more first piezoelectric materials 12 that are spiral with respect to the core material 11, and expands and contracts. It comprises a piezoelectric coil 10 that can be expanded and contracted in a direction, and a displacement sensor 20 that detects displacement due to expansion and contraction of the piezoelectric coil 10 .
- the piezoelectric coil 100 with a sensor capable of sensing the displacement of the piezoelectric coil 10 in which the first piezoelectric material 12 is helically wound around the coil-shaped core material 11 .
- the second piezoelectric material 21 spirally wound around the core material 11 so as to be alternately arranged with the first piezoelectric material 12 in the direction along the core material 11 is displaced. It functions as part of sensor 20 . Therefore, in this embodiment, it is possible to provide the sensor-equipped piezoelectric coil 100 that is simple and can be miniaturized while having a self-sensing function without the need to provide another displacement sensor separately.
- the piezoelectric performance of the sensor-equipped piezoelectric coil 100 can be improved.
- the displacement sensor 20 (the second piezoelectric material 21) can reduce the effect of limiting its movement.
- the same material as that of the first piezoelectric material 12 can also be used.
- the sensor-equipped piezoelectric coil 100 can be easily manufactured, and deterioration of the piezoelectric performance of the sensor-equipped piezoelectric coil 100 can be prevented.
- the lock-in detection shown in FIG. 8 it is effective to use a common material for the first piezoelectric material 12 and the second piezoelectric material 21 .
- the sensor-equipped piezoelectric coil 100 when used as a piezoelectric actuator, feedback control is performed based on the displacement information detected by the displacement sensor 20, so that the sensor-equipped piezoelectric coil 100 can be accurately driven. Note that when a high voltage is applied to the first piezoelectric material 12, the hysteresis increases and it may become difficult to accurately drive the piezoelectric coil 10. Therefore, performing such feedback control is particularly effective. .
- the sensor-equipped piezoelectric coil 100 When the sensor-equipped piezoelectric coil 100 is used as a power generating element, the sensor-equipped piezoelectric coil 100 is driven in a range below the upper limit and above the lower limit, for example, based on the displacement information detected by the displacement sensor 20. By adjusting the external force, damage to the sensor-equipped piezoelectric coil 100 can be prevented.
- the second piezoelectric material 21 is used as the displacement sensor 20 in this embodiment, any element whose characteristics change due to the distortion of the piezoelectric coil 10 can be used as the displacement sensor. 20 (similarly in the second embodiment).
- a strain gauge or a material such as a carbon composite film whose resistance changes due to strain can be used instead of the second piezoelectric material 21, a strain gauge or a material such as a carbon composite film whose resistance changes due to strain can be used.
- the case where the second piezoelectric material 21 is arranged along the length direction of the core material 11 (see the dashed line in FIG. 1) with respect to the first piezoelectric material 12 will be described.
- the second embodiment a case where the second piezoelectric material 21 is arranged in the stacking direction perpendicular to the length direction of the core material 11 with respect to the first piezoelectric material 12 will be described.
- FIG. 9 is a perspective view showing the sensor-equipped piezoelectric coil 101 according to the second embodiment.
- FIG. 10 is a cross-sectional view of the sensor-equipped piezoelectric coil 101 on a plane perpendicular to the length direction of the core member 11 .
- the sensor-equipped piezoelectric coil 100 includes a piezoelectric coil 10 and a displacement sensor 20b.
- the piezoelectric coil 10 includes a coil-shaped core material 11 that can be expanded and contracted in an expansion/contraction direction, a first piezoelectric material 12 spirally wound around the core material 11, and a thickness direction of the first piezoelectric material 12. and a first electrode portion 13 for applying an electric field to.
- the first electrode portion 13 includes a core material 11 and internal electrodes 15 .
- One of the core material 11 and the internal electrode 15 is a positive electrode, and the other is a negative electrode.
- the internal electrode 15 is provided so as to cover the entire surface of the first piezoelectric material 12 , and has a spiral shape with respect to the core material 11 in the same manner as the first piezoelectric material 12 . Note that the internal electrode 15 is interposed between the first piezoelectric material 12 and the second piezoelectric material 21 .
- the displacement sensor 20b includes a second piezoelectric material 21 and a second electrode portion 22.
- the second piezoelectric material 21 is arranged on the outer side of the first piezoelectric material 12 in the stacking direction, and has a spiral shape with respect to the core material 11 like the first piezoelectric material 12 .
- the second electrode portion 22 includes a detection electrode 23 and detects voltage generated in the thickness direction of the second piezoelectric material 21 .
- the detection electrode 23 is provided so as to cover the entire surface of the second piezoelectric material 21 , and has a spiral shape with respect to the core material 11 like the second piezoelectric material 21 .
- the number of layers in the stacking direction of the first piezoelectric material 12 is one, but the number of layers of the first piezoelectric material 12 may be two or more. The number is not particularly limited.
- the number of layers of the first piezoelectric material 12 is increased (same volume), a larger output (amount of displacement (strain), generated force) can be obtained even with a small applied voltage (piezoelectric actuator), or a small displacement can be obtained. Larger power can be obtained with the amount (distortion) (power generation element).
- the first piezoelectric material 12 and the second piezoelectric material 21 may be made of the same material (for lock-in detection, for example), or may be made of different materials.
- the second piezoelectric material 21 is made of a softer (lower Young's modulus) material than the first piezoelectric material 12 . may be
- the second piezoelectric material 21 is arranged outside the first piezoelectric material 12 in the stacking direction, but it may be arranged inside the first piezoelectric material 12 .
- the second piezoelectric material 21 is interposed between the inner first piezoelectric material 12 and the outer first piezoelectric material 12 . may be
- the second piezoelectric material 21 When the second piezoelectric material 21 is arranged on the outermost side, the second piezoelectric material 21 is greatly distorted compared to when the second piezoelectric material 21 is arranged on the inner side. becomes easier.
- the spiral second piezoelectric material 21 arranged in the stacking direction with respect to the first piezoelectric material 12 functions as part of the displacement sensor 20b. Therefore, similarly to the first embodiment, it is possible to provide the sensor-equipped piezoelectric coil 101 that is simple and can be miniaturized while having a self-sensing function without the need to provide another displacement sensor separately.
- the number of laminations of the first piezoelectric material 12 is set to two or more, it is possible to obtain a larger output (displacement (strain), generated force) even with a small applied voltage (piezoelectric actuator ), or even greater power can be obtained with a small amount of displacement (strain) (power generation element).
- the second piezoelectric material 21 when the second piezoelectric material 21 is arranged on the outermost side, the second piezoelectric material 21 is larger than when the second piezoelectric material 21 is arranged on the inner side. Distortion facilitates displacement detection.
- FIG. 11 is a diagram showing sensor-equipped piezoelectric coils 102 to 105 according to respective modifications.
- the sensor-equipped piezoelectric coils 102 to 105 according to the first modification, the second modification, the third modification, and the fourth modification are referred to in order from the top.
- the configurations of the displacement sensor 20 are different in the first to fourth modifications.
- the configuration of the piezoelectric coil 10 is common to the first to fourth modifications.
- the piezoelectric coil 10 includes a core material 11, a first piezoelectric material 12 spirally wound around the core material 11, and a surface electrode 14 (first electrode) provided on the surface of the first piezoelectric material 12. 13).
- the piezoelectric coil 10 has a gap in the expansion/contraction direction (Z-axis direction). exists.
- the displacement sensor 20 is arranged in such a gap or hollow portion.
- the first to third modifications show an example of the case where the displacement sensor 20 is arranged in the gap in the expansion and contraction direction of the piezoelectric coil 10, and the fourth modification is a hollow portion (diameter An example of a case where the displacement sensor 20 is arranged inside the piezoelectric coil 10 in the direction) is shown.
- a displacement sensor 20c in the sensor-equipped piezoelectric coil 102 according to the first modification is a capacitive displacement sensor.
- the basic unit for one round of the piezoelectric coil 10 is called a unit coil.
- the displacement sensor 20c includes a first electrode 31 and a second electrode 32 for capacitance detection.
- the first electrode 31 is arranged below the upper unit coil, and the second electrode 32 is arranged above the adjacent lower unit coil.
- An insulating layer is interposed between the first electrode 31 and the surface electrode 14, and similarly an insulating layer is interposed between the second electrode 32 and the surface electrode 14. .
- the displacement sensor 20c may be provided in all the gaps in the expansion/contraction direction of the piezoelectric coil 10, or may be provided in some of the gaps. When the displacement sensors 20c are provided in some of the gaps, for example, the displacement sensors 20c can be provided at intervals of one gap (similar to the second modification).
- the distance between the first electrode 31 and the second electrode 32 changes as the piezoelectric coil 10 expands and contracts in the expansion and contraction direction, and the capacitance changes, so the displacement of the sensor-equipped piezoelectric coil 102 is detected. can do.
- a displacement sensor 20d in the sensor-equipped piezoelectric coil 103 according to the second modification is a capacitive displacement sensor as in the first modification.
- the displacement sensor 20d includes a first electrode 41 and a second electrode 42 for capacitance detection.
- the first electrode 41 is provided in the upper unit coil so as to cover the surface of the surface electrode 14 with an insulating layer interposed therebetween. It is configured.
- the second electrode 42 is provided so as to cover the surface of the surface electrode 14 via an insulating layer in the adjacent lower unit coil, and is spirally wound around the core material 11 by, for example, half a turn. It is structured as if
- the piezoelectric coil 10 expands and contracts in the direction of expansion and contraction, thereby changing the distance between the first electrode 41 and the second electrode 42 and changing the capacitance.
- the displacement of the attached piezoelectric coil 102 can be detected.
- the displacement sensor 20e of the sensor-equipped piezoelectric coil 104 according to the third modification is, for example, a piezoelectric (piezoelectric material) or resistance (strain gauge) displacement sensor. be.
- the displacement sensor 20e includes a first sensor section 51 and a second sensor section 52 arranged on both radial ends of the piezoelectric coil 10 with the central axis of the piezoelectric coil 10 interposed therebetween.
- the reason why the first sensor unit 51 and the second sensor unit 52 are arranged on both sides in the radial direction with the central axis of the piezoelectric coil 10 interposed therebetween is to balance the expansion and contraction of the piezoelectric coil 104 with the sensor. is.
- the first sensor unit 51 includes a plurality of first sensors 53 that are linearly arranged in the extension/contraction direction of the piezoelectric coil 10 .
- the second sensor section 52 includes a plurality of second sensors 54 that are linearly arranged in the extension/contraction direction of the piezoelectric coil 10 .
- the upper end of the first sensor 53 is fixed to the lower side of the upper unit coil, and the lower end of the first sensor 53 is fixed to the upper side of the adjacent lower unit coil.
- the upper end of the second sensor 54 is fixed to the lower side of the upper unit coil, and the lower end of the second sensor 54 is fixed to the upper side of the adjacent lower unit coil.
- the piezoelectric coil 10 expands and contracts in the expansion and contraction direction, the voltage, resistance, etc. of the first sensor 53 and the second sensor 54 change. 104 displacement can be detected.
- a relatively soft material for example, the first piezoelectric material
- the material of the displacement sensor 20e. 12 may be used.
- the displacement sensor 20e is of a piezoelectric type
- piezoelectric resin such as PVDF or PLLA
- a relatively soft strain gauge, carbon composite, or the like may be used. Good (same for the fourth modification).
- a displacement sensor 20f of the sensor-equipped piezoelectric coil 105 according to the fourth modification is, for example, a piezoelectric (piezoelectric material) or resistance (strain gauge) displacement sensor. .
- the displacement sensor 20f is arranged in a hollow portion inside the piezoelectric coil 10 in the radial direction.
- the displacement sensor 20 f has, for example, a columnar or cylindrical shape that is long in the expansion and contraction direction (Z-axis direction) of the piezoelectric coil 10 , and its outer peripheral surface is fixed to the inner peripheral surface of the piezoelectric coil 10 .
- the expansion and contraction of the piezoelectric coil 10 in the expansion and contraction direction changes the voltage, resistance, etc. of the displacement sensor 20f. can.
- the displacement sensors 20c to 20f are arranged in the gaps in the expansion/contraction direction of the piezoelectric coil 10 or in the hollow portion inside the piezoelectric coil 10 in the radial direction. be. Even when the displacement sensors 20c to 20f are provided at such locations, the sensor-equipped piezoelectric coil 102 that can be simple and miniaturized while having the self-sensing function is similar to the above-described first and second embodiments. ⁇ 105 can be provided.
- the displacement or deformation amount in the expanding and contracting direction of the piezoelectric coil 10, which varies greatly can be directly sensed, so the measurement accuracy can be improved.
- the sensor-equipped piezoelectric coils 100 to 105 can be mounted on various electronic devices.
- the sensor-equipped piezoelectric coils 100 to 105 may be used in drive systems such as micropumps, camera focus, inkjet printers, microscope stages, and displacement magnifying mechanisms, as well as in automobile engine mounts and automobile suspension shocks. It may be used as an absorber.
- a device including the sensor-equipped piezoelectric coils 100 to 105 according to the present technology is considered to be a device using electronic engineering, so any device is considered to be an electronic device according to the present technology. .
- a piezoelectric coil that has a coil-shaped core material and one or more first piezoelectric materials that are helical with respect to the core material, and that can expand and contract in an expansion and contraction direction;
- a piezoelectric coil with a sensor comprising: a sensor that detects displacement due to expansion and contraction of the piezoelectric coil.
- the sensor-equipped piezoelectric coil according to (3) above The piezoelectric coil with a sensor, wherein the second piezoelectric material is arranged in a direction along the core material with respect to the first piezoelectric material.
- the sensor-equipped piezoelectric coil according to (4) above The piezoelectric coil with a sensor, wherein the second piezoelectric material is alternately arranged with the first piezoelectric material in a direction along the core material.
- the sensor-equipped piezoelectric coil according to (5) above, The one or more first piezoelectric materials include a plurality of first piezoelectric materials arranged in a direction along the core member. Piezoelectric coil with sensor.
- the sensor-equipped piezoelectric coil is a piezoelectric actuator that expands and contracts in the expansion and contraction direction by applying a voltage to the first piezoelectric material, A piezoelectric coil with a sensor, wherein a voltage is applied to the second piezoelectric material to drive the piezoelectric actuator together with the first piezoelectric material.
- the sensor-equipped piezoelectric coil according to (13) above, The voltage applied to the second piezoelectric material is a voltage obtained by superimposing a driving voltage for driving the piezoelectric actuator and a detection voltage for detecting displacement of the piezoelectric actuator. Piezoelectric coil with sensor.
- the piezoelectric coil according to (14) above A piezoelectric coil with a sensor, wherein displacement of the piezoelectric actuator is detected by lock-in detection of the output current of the second piezoelectric material with respect to the detection voltage.
- the sensor-equipped piezoelectric coil according to (1) above The sensor is provided in a gap in the expansion/contraction direction of the piezoelectric coil, or is provided in a hollow portion inside the piezoelectric coil in a radial direction orthogonal to the expansion/contraction direction.
- the sensor-equipped piezoelectric coil according to (16) above, The sensor is a capacitive, piezoelectric or resistive sensor Piezoelectric coil.
- the piezoelectric coil with sensor is a power generation element in which the first piezoelectric material generates power when the piezoelectric coil expands and contracts in the expansion and contraction direction due to an external force.
- a piezoelectric coil that has a coil-shaped core material and one or more first piezoelectric materials that are helical with respect to the core material, and is capable of expanding and contracting in an expansion/contraction direction; and displacement due to expansion/contraction of the piezoelectric coil.
- An electronic device comprising a sensor-equipped piezoelectric coil having a sensor for detecting
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
前記圧電コイルは、コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能である。
前記センサは、前記圧電コイルの伸縮による変位を検出する。
前記センサ付き圧電コイルは、圧電コイルと、センサとを有する。
前記圧電コイルは、コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能である。
前記センサは、前記圧電コイルの伸縮による変位を検出する。
<全体構成及び各部の構成>
図1は、第1実施形態に係るセンサ付き圧電コイル100を示す側面図である。図2は、センサ付き圧電コイル100を示す上面図である。図3は、センサ付き圧電コイル100を示す斜視図である。図4は、センサ付き圧電コイル100の断面図である。
ここで、本実施形態においては、第1の圧電材12の本数については特に制限はないが、第1の圧電12の本数については、2本以上とされることで、1本の場合と比べて、圧電コイル10の圧電応答性能が向上することがシミュレーション結果から分かっている。
次に、第1実施形態に係るセンサ付き圧電コイル100の動作について説明する。図5は、センサ付き圧電コイル100の動作を説明するための図である。
ここで、本実施形態では、主に、圧電コイル10が圧電アクチュエータとして用いられる場合について説明するが、圧電コイル10は発電素子として用いられてもよい。
本発明者らは、第2の圧電材21により発生する電圧が、変位センサ20として測定可能な程度の大きさの電圧であるかどうかのシミュレーションを行った。
コイルの巻き数:1周分の基本単位
芯材11の材料:SUS
第1の圧電材12の材料:ハード系PZTセラミックス
第2の圧電材21の材料:ハード系PZTセラミックス(第1のサンプル)
:P(VDF‐TrFE)(75/25)(第2のサンプル)
第1の圧電材12の数:3本
第2の圧電材21の数:1本
コイルの最外径:1mm
第1圧電材及び第2の圧電材21の巻き付け角:45°
占有率:99.7%
芯材11と、第1の圧電材12及び第2の圧電材21との境界面:固定
次に、変位センシングにおける信号検出の他の例について説明する。図8は、変位センシングにおける信号検出の他の例を示す図である。
以上説明したように、本実施形態におけるセンサ付き圧電コイル100は、コイル状の芯材11と、芯材11に対して螺旋状である1以上の第1の圧電材12とを有し、伸縮方向に伸縮可能な圧電コイル10と、圧電コイル10の伸縮による変位を検出する変位センサ20とを具備している。
次に、本技術の第2実施形態について説明する。なお、第2実施形態以降の説明では、上述の第1実施形態と同様の構成及び機能を有する各部については同一符号を付し、説明を簡略化又は省略する。
第2実施形態では、第1の圧電材12に対して積層方向に配置された螺旋状の第2の圧電材21が、変位センサ20bの一部として機能する。従って、第1実施形態と同様に、別体で他の変位センサを設ける必要がなく、セルフセンシング機能を持ちながら、シンプルで小型化が可能なセンサ付き圧電コイル101を提供可能である。
次に、本技術の各変形例に係るセンサ付き圧電コイル102~105について説明する。図11は、各変形例に係るセンサ付き圧電コイル102~105を示す図である。図11において、上方から順番に、第1の変形例、第2の変形例、第3の変形例、第4の変形例に係るセンサ付き圧電コイル102~105と呼ぶ。
図11の一番上を参照して、第1の変形例に係るセンサ付き圧電コイル102における変位センサ20cは、静電容量式の変位センサである。なお、以降の説明では、圧電コイル10において、一周分の基本単位を単位コイルと呼ぶ。
図11の上から2番目を参照して、第2の変形例に係るセンサ付き圧電コイル103における変位センサ20dは、第1変形例と同様に、静電容量式の変位センサである。
図11の上から3番目を参照して、第3の変形例に係るセンサ付き圧電コイル104の変位センサ20eは、例えば、圧電式(圧電材)、抵抗式(歪みゲージ)等の変位センサである。
図11の一番下を参照して、第4の変形例に係るセンサ付き圧電コイル105の変位センサ20fは、例えば、圧電式(圧電材)、抵抗式(歪みゲージ)等の変位センサである。
以上説明したように、第1の変形例~第4の変形例では、圧電コイル10の伸縮方向の隙間、又は、圧電コイル10の径方向の内側における中空部に変位センサ20c~20fが配置される。このような箇所に変位センサ20c~20fが設けられる場合も、上述の第1実施形態及び第2実施形態と同様に、セルフセンシング機能を持ちながら、シンプルで小型化が可能なセンサ付き圧電コイル102~105を提供可能である。また、第1の変形例~第4の変形例では、変化の大きい圧電コイル10の伸縮方向での変位又は変形量を直接的にセンシングすることができるので、測定精度を向上させることができる。
本技術に係るセンサ付き圧電コイル100~105(圧電アクチュエータ、発電素子)は、各種の電子機器に搭載することができる。例えば、センサ付き圧電コイル100~105は、マイクロポンプ、カメラフォーカス、インクジェットプリンタ、顕微鏡ステージ、変位拡大機構等の駆動系に用いられてもよいし、自動車用のエンジンのマウント、自動車用サスペンションのショックアブゾーバとして用いられてもよい。なお、本技術に係るセンサ付き圧電コイル100~105を含む機器は、電子工学を利用した機器と見做されるので、どのような機器であっても本技術に係る電子機器と見做される。
本技術は以下の構成をとることもできる。
(1)コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能な圧電コイルと、
前記圧電コイルの伸縮による変位を検出するセンサと
を具備するセンサ付き圧電コイル。
(2) 上記(1)に記載のセンサ付き圧電コイルであって、
前記センサは、前記芯材に対して螺旋状である
センサ付き圧電コイル。
(3) 上記(2)に記載のセンサ付き圧電コイルであって、
前記センサは、螺旋状の第2の圧電材を含む
センサ付き圧電コイル。
(4) 上記(3)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材に対して、前記芯材に沿う方向に配置される
センサ付き圧電コイル。
(5) 上記(4)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記芯材に沿う方向で前記第1の圧電材と交互に配置される
センサ付き圧電コイル。
(6) 上記(5)に記載のセンサ付き圧電コイルであって、
前記1以上の第1の圧電材は、前記芯材に沿う方向に並ぶ複数の第1の圧電材を含む
センサ付き圧電コイル。
(7) 上記(3)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材に対して、前記芯材に沿う方向に直交する積層方向に配置される
センサ付き圧電コイル。
(8) 上記(7)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、第1の圧電材に対して、前記積層方向の外側に配置される
センサ付き圧電コイル。
(9) 上記(7)又は(8)に記載のセンサ付き圧電コイルであって、
前記1以上の第1の圧電材は、前記積層方向に積層された複数の第1の圧電材を含む
センサ付き圧電コイル。
(10) 上記(3)~(9)のうちいずれか1つに記載のセンサ付き圧電コイルであって、
前記第1の圧電材及び前記第2の圧電材は、材料が異なる
センサ付き圧電コイル。
(11) 上記(10)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材よりも柔らかい材料により構成される
センサ付き圧電コイル。
(12) 上記(3)~(9)のうちいずれか1つに記載のセンサ付き圧電コイルであって、
前記第1の圧電材及び前記第2の圧電材は、同じ材料である
センサ付き圧電コイル。
(13)上記(3)~(9)のうちいずれか1つに記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記第1の圧電材に電圧が印加されることで前記圧電コイルが前記伸縮方向に伸縮する圧電アクチュエータであり、
前記第2の圧電材は、電圧が印加されて前記第1の圧電材と共に前記圧電アクチュエータを駆動する
センサ付き圧電コイル。
(14)上記(13)に記載のセンサ付き圧電コイルであって、
前記第2の圧電材に印加される電圧は、前記圧電アクチュエータを駆動させるための駆動電圧と、前記圧電アクチュエータの変位を検出するための検出電圧とが重畳された電圧である
センサ付き圧電コイル。
(15) 上記(14)に記載の圧電コイルであって、
前記検出電圧に対する前記第2の圧電材の出力電流がロックイン検出されることで、前記圧電アクチュエータの変位が検出される
センサ付き圧電コイル。
(16) 上記(1)に記載のセンサ付き圧電コイルであって、
前記センサは、前記圧電コイルにおける伸縮方向の隙間に設けられるか、又は、前記伸縮方向に直交する径方向において前記圧電コイルの内側の中空部に設けられる
センサ付き圧電コイル。
(17) 上記(16)に記載のセンサ付き圧電コイルであって、
前記センサは、静電容量式、圧電式、又は抵抗式のセンサである
圧電コイル。
(18) 上記(1)~(17)のうちいずれか1つに記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記第1の圧電材に電圧が印加されることで前記圧電コイルが伸縮方向に伸縮する圧電アクチュエータである
センサ付き圧電コイル。
(19) 上記(1)~(17)のうちいずれか1つに記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記圧電コイルが外力により前記伸縮方向に伸縮することで前記第1の圧電材が発電する発電素子である
センサ付き圧電コイル。
(20) コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能な圧電コイルと、前記圧電コイルの伸縮による変位を検出するセンサとを有するセンサ付き圧電コイルを具備する電子機器。
11…芯材
12…第1の圧電材
20…変位センサ
21…第2の圧電材
100~105…センサ付き圧電コイル
Claims (20)
- コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能な圧電コイルと、
前記圧電コイルの伸縮による変位を検出するセンサと
を具備するセンサ付き圧電コイル。 - 請求項1に記載のセンサ付き圧電コイルであって、
前記センサは、前記芯材に対して螺旋状である
センサ付き圧電コイル。 - 請求項2に記載のセンサ付き圧電コイルであって、
前記センサは、螺旋状の第2の圧電材を含む
センサ付き圧電コイル。 - 請求項3に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材に対して、前記芯材に沿う方向に配置される
センサ付き圧電コイル。 - 請求項4に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記芯材に沿う方向で前記第1の圧電材と交互に配置される
センサ付き圧電コイル。 - 請求項5に記載のセンサ付き圧電コイルであって、
前記1以上の第1の圧電材は、前記芯材に沿う方向に並ぶ複数の第1の圧電材を含む
センサ付き圧電コイル。 - 請求項3に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材に対して、前記芯材に沿う方向に直交する積層方向に配置される
センサ付き圧電コイル。 - 請求項7に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、第1の圧電材に対して、前記積層方向の外側に配置される
センサ付き圧電コイル。 - 請求項7に記載のセンサ付き圧電コイルであって、
前記1以上の第1の圧電材は、前記積層方向に積層された複数の第1の圧電材を含む
センサ付き圧電コイル。 - 請求項3に記載のセンサ付き圧電コイルであって、
前記第1の圧電材及び前記第2の圧電材は、材料が異なる
センサ付き圧電コイル。 - 請求項10に記載のセンサ付き圧電コイルであって、
前記第2の圧電材は、前記第1の圧電材よりも柔らかい材料により構成される
センサ付き圧電コイル。 - 請求項3に記載のセンサ付き圧電コイルであって、
前記第1の圧電材及び前記第2の圧電材は、同じ材料である
センサ付き圧電コイル。 - 請求項3に記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記第1の圧電材に電圧が印加されることで前記圧電コイルが前記伸縮方向に伸縮する圧電アクチュエータであり、
前記第2の圧電材は、電圧が印加されて前記第1の圧電材と共に前記圧電アクチュエータを駆動する
センサ付き圧電コイル。 - 請求項13に記載のセンサ付き圧電コイルであって、
前記第2の圧電材に印加される電圧は、前記圧電アクチュエータを駆動させるための駆動電圧と、前記圧電アクチュエータの変位を検出するための検出電圧とが重畳された電圧である
センサ付き圧電コイル。 - 請求項14に記載の圧電コイルであって、
前記検出電圧に対する前記第2の圧電材の出力電流がロックイン検出されることで、前記圧電アクチュエータの変位が検出される
センサ付き圧電コイル。 - 請求項1に記載のセンサ付き圧電コイルであって、
前記センサは、前記圧電コイルにおける伸縮方向の隙間に設けられるか、又は、前記伸縮方向に直交する径方向において前記圧電コイルの内側の中空部に設けられる
センサ付き圧電コイル。 - 請求項16に記載のセンサ付き圧電コイルであって、
前記センサは、静電容量式、圧電式、又は抵抗式のセンサである
センサ付き圧電コイル。 - 請求項1に記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記第1の圧電材に電圧が印加されることで前記圧電コイルが伸縮方向に伸縮する圧電アクチュエータである
センサ付き圧電コイル。 - 請求項1に記載のセンサ付き圧電コイルであって、
前記圧電コイルは、前記圧電コイルが外力により前記伸縮方向に伸縮することで前記第1の圧電材が発電する発電素子である
センサ付き圧電コイル。 - コイル状の芯材と、前記芯材に対して螺旋状である1以上の第1の圧電材とを有し、伸縮方向に伸縮可能な圧電コイルと、前記圧電コイルの伸縮による変位を検出するセンサとを有するセンサ付き圧電コイル
を具備する電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022003736.9T DE112022003736T5 (de) | 2021-07-27 | 2022-03-24 | Piezoelektrische spule mit sensor und elektronisches gerät |
US18/573,304 US20240288284A1 (en) | 2021-07-27 | 2022-03-24 | Piezoelectric coil with a sensor and electronic apparatus |
KR1020247005599A KR20240036070A (ko) | 2021-07-27 | 2022-03-24 | 센서 부착 압전 코일 및 전자 기기 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021122636 | 2021-07-27 | ||
JP2021-122636 | 2021-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007841A1 true WO2023007841A1 (ja) | 2023-02-02 |
Family
ID=85087837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013956 WO2023007841A1 (ja) | 2021-07-27 | 2022-03-24 | センサ付き圧電コイル及び電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240288284A1 (ja) |
KR (1) | KR20240036070A (ja) |
DE (1) | DE112022003736T5 (ja) |
WO (1) | WO2023007841A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195337A1 (ja) * | 2023-03-23 | 2024-09-26 | ソニーグループ株式会社 | 圧電コイルおよび電子機器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06216424A (ja) * | 1993-01-19 | 1994-08-05 | Toyota Motor Corp | 変形アクチュエータ |
JP2003518752A (ja) * | 1999-12-21 | 2003-06-10 | 1...リミテッド | 電気活性デバイス |
JP2007318960A (ja) * | 2006-05-29 | 2007-12-06 | Institute Of Physical & Chemical Research | センサ機能付き統合型ソフトアクチュエータ |
JP2008216074A (ja) * | 2007-03-05 | 2008-09-18 | Yaskawa Electric Corp | 高分子アクチュエータの伸縮量センシング方法および伸縮量センシング装置 |
JP2009142950A (ja) * | 2007-12-14 | 2009-07-02 | Tohoku Techno Arch Co Ltd | 加工装置 |
JP2011072180A (ja) * | 2009-08-27 | 2011-04-07 | Canon Inc | センサ付きアクチュエータ |
JP2011072181A (ja) * | 2009-08-27 | 2011-04-07 | Canon Inc | センサ付きアクチュエータ |
JP2019110196A (ja) * | 2017-12-18 | 2019-07-04 | 三井化学株式会社 | デバイス及びデバイスシステム |
-
2022
- 2022-03-24 KR KR1020247005599A patent/KR20240036070A/ko unknown
- 2022-03-24 DE DE112022003736.9T patent/DE112022003736T5/de active Pending
- 2022-03-24 WO PCT/JP2022/013956 patent/WO2023007841A1/ja active Application Filing
- 2022-03-24 US US18/573,304 patent/US20240288284A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06216424A (ja) * | 1993-01-19 | 1994-08-05 | Toyota Motor Corp | 変形アクチュエータ |
JP2003518752A (ja) * | 1999-12-21 | 2003-06-10 | 1...リミテッド | 電気活性デバイス |
JP2007318960A (ja) * | 2006-05-29 | 2007-12-06 | Institute Of Physical & Chemical Research | センサ機能付き統合型ソフトアクチュエータ |
JP2008216074A (ja) * | 2007-03-05 | 2008-09-18 | Yaskawa Electric Corp | 高分子アクチュエータの伸縮量センシング方法および伸縮量センシング装置 |
JP2009142950A (ja) * | 2007-12-14 | 2009-07-02 | Tohoku Techno Arch Co Ltd | 加工装置 |
JP2011072180A (ja) * | 2009-08-27 | 2011-04-07 | Canon Inc | センサ付きアクチュエータ |
JP2011072181A (ja) * | 2009-08-27 | 2011-04-07 | Canon Inc | センサ付きアクチュエータ |
JP2019110196A (ja) * | 2017-12-18 | 2019-07-04 | 三井化学株式会社 | デバイス及びデバイスシステム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195337A1 (ja) * | 2023-03-23 | 2024-09-26 | ソニーグループ株式会社 | 圧電コイルおよび電子機器 |
Also Published As
Publication number | Publication date |
---|---|
US20240288284A1 (en) | 2024-08-29 |
KR20240036070A (ko) | 2024-03-19 |
DE112022003736T5 (de) | 2024-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040101150A1 (en) | Piezoelectric driver device with integral sensing layer | |
JP5019120B2 (ja) | 検出センサ | |
WO2023007841A1 (ja) | センサ付き圧電コイル及び電子機器 | |
EP3507794B1 (en) | Piezoelectric actuator and low frequency underwater projector | |
US9837596B2 (en) | Piezoelectric device, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer apparatus | |
US8222797B2 (en) | Information processor and method for the production thereof | |
WO2021215260A1 (ja) | 圧電コイル及び電子機器 | |
US7069795B2 (en) | Sensor using electro active curved helix and double helix | |
JP6690193B2 (ja) | 圧電体層、圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置 | |
Dogan et al. | Solid-state ceramic actuator designs | |
JP5486832B2 (ja) | 圧電アクチュエータの機械出力測定評価方法、制御方法及びこれらの方法を用いた装置 | |
JP5729065B2 (ja) | 薄膜圧電体デバイス | |
JP6673579B2 (ja) | アクチュエータ | |
EP0650642A1 (en) | Ceramic deflection device | |
US20190198748A1 (en) | Self-sensing bending actuator | |
GB2365206A (en) | Piezoelectric driver device with integral piezoresistive sensing layer | |
WO2024195338A1 (ja) | 圧電コイル駆動装置、電子機器、圧電コイル、および圧電コイル駆動方法 | |
JP2021019051A (ja) | 圧電アクチュエータおよびその製造方法 | |
WO2024195337A1 (ja) | 圧電コイルおよび電子機器 | |
Sixta et al. | Experimental investigation of electromechanical properties of amplified piezoelectric actuator | |
JP7394870B2 (ja) | 圧電アクチュエータ | |
JP3729781B2 (ja) | アクチュエータの制御方法 | |
JP7316927B2 (ja) | 圧電memsデバイス、製造方法および駆動方法 | |
Wischke et al. | Resonance tunability of clamped–free piezoelectric cantilevers | |
Dog̃an* et al. | Piezoelectric actuator designs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18573304 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247005599 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247005599 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22848925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |