WO2023005217A1 - 一种5g光通信模块用多层结构封装陶瓷及其制备方法 - Google Patents

一种5g光通信模块用多层结构封装陶瓷及其制备方法 Download PDF

Info

Publication number
WO2023005217A1
WO2023005217A1 PCT/CN2022/080314 CN2022080314W WO2023005217A1 WO 2023005217 A1 WO2023005217 A1 WO 2023005217A1 CN 2022080314 W CN2022080314 W CN 2022080314W WO 2023005217 A1 WO2023005217 A1 WO 2023005217A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
layer
ceramic layer
radio frequency
optical communication
Prior art date
Application number
PCT/CN2022/080314
Other languages
English (en)
French (fr)
Inventor
胡元云
周恒斌
李爱华
谭金刚
汪涛
尤源
Original Assignee
嘉兴佳利电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴佳利电子有限公司 filed Critical 嘉兴佳利电子有限公司
Publication of WO2023005217A1 publication Critical patent/WO2023005217A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to the technical field of 5G optical communication modules, and more specifically relates to a multilayer structure packaging ceramic for 5G optical communication modules and a preparation method thereof.
  • the shell of the 5G optical communication module is composed of metal and ceramic parts to form an airtight structural cavity.
  • the ceramic circuit substrate and bare chips are packaged inside the metal shell through the post-packaging process, providing high-strength mechanical support, airtight protection, internal and external circuit connections, and photoelectric signal conversion. and other functions, the electrical and optical signals of the optical communication device are transmitted through the input and output ports of the shell, and the heat generated by high-speed and high-frequency signal transmission is conducted to the outside of the package shell through the ceramic with good thermal conductivity and the shell, providing high-reliability package ceramics and shells .
  • 3G/4G optical communication modules use glass packaging or ceramic packaging, which mainly solves the technology of electronic control lines and conduction lines.
  • 5G optical communication modules require high-frequency characteristics and high transmission rates, and the insertion loss value of packaging ceramics is required. , Reflection loss value, and low lead wire on-resistance value meet certain requirements.
  • the first object of the present invention is to provide a multi-layer structure packaging ceramic for 5G optical communication modules.
  • the second purpose of the invention is to provide a method for preparing a multilayer structure packaging ceramic for a 5G optical communication module.
  • the present invention adopts the following technical solution: a multi-layer structure packaging ceramic for a 5G optical communication module, including at least four layers of ceramic blocks stacked on each other, which are respectively the first ceramic layer and the second ceramic layer.
  • the upper surface of the second ceramic layer is also provided with a ground layer on the radio frequency circuit, and a plurality of strip lines are arranged on the third ceramic layer at intervals, and the strip lines include
  • the radio frequency circuit group and the electric control circuit group, the strip line adopts the thick film printing method, and the electric control circuit group and the radio frequency circuit group are printed on the third ceramic layer through tungsten paste, and the upper surface of the fourth ceramic layer
  • the lower ground layer of the radio frequency line is provided, the upper ground layer of the radio frequency line and the lower ground layer of the radio frequency line respectively cover the upper surface and the lower surface of the radio frequency line group, the upper surface of the first ceramic layer is provided with the upper ground layer of the shell, and the fourth ceramic layer
  • the lower surface of the layer is provided with the lower ground layer of the shell, and the upper ground layer of the shell and the lower ground layer of the shell are connected by the first ground connection line and the second ground connection line.
  • the arrangement of the radio frequency circuit group and the electric control circuit group on the third ceramic layer is as follows, from one end to the other end of the third ceramic layer, the first electric control circuit, the second electric control circuit, the second electric circuit A radio frequency grounding line, a radio frequency line, a second radio frequency grounding line, a third control circuit, a fourth control circuit, a fifth control circuit and a sixth control circuit.
  • the distance B between the ground layer above the radio frequency line and the ground layer below the radio frequency line is 1.1mm-1.6mm.
  • the width W of the stripline is 0.25mm-0.4mm; the distance S between two adjacent striplines is 0.45mm-0.8mm, and the thickness T of the stripline is 12um.
  • the width of the first ceramic layer and the second ceramic layer is the same and is A
  • the width of the third ceramic layer and the fourth ceramic layer is the same and is B
  • A is smaller than B
  • the first ceramic layer and the second ceramic layer are U-shaped, and the end faces of the U-shaped opening are flush with the sides of the third ceramic layer and the fourth ceramic layer.
  • the two ground connection wires respectively extend from the two open end surfaces of the U-shape to the sides of the third ceramic layer and the fourth ceramic layer.
  • one ends of all the striplines gather together and are located in the U-shaped openings of the first ceramic layer and the second ceramic layer.
  • the stripline adopts a thick film printing method, and the electric control circuit group and the radio frequency circuit group are printed on the corresponding ceramic block through tungsten paste.
  • the ceramic block adopts alumina ceramics with a thermal conductivity of 14-21W/mK and an Al 2 O 3 content of 90%-96%.
  • the ceramic block adopts alumina ceramics with a dielectric constant of 9.2-9.8 and an Al 2 O 3 content of 90%-96%.
  • the preparation method of a multilayer structure packaging ceramic for a 5G optical communication module as described above comprises the following steps: Step 1, select 90%-96% oxidation Aluminum ceramic powder, adding sintering aids, colorants, and polyvinyl butyral binders, plasticizers, dispersants, defoamers, and ball milling to prepare a ceramic slurry with a certain viscosity; step 2 1.
  • the ceramic slurry in step 1 is prepared into a green ceramic film tape with a certain thickness with cohesiveness through tape casting equipment; step 3, the green ceramic film tape is respectively sliced, punched, and cavity punched according to the process; Step 4.
  • Step 5 Print the upper ground layer of the casing, the lower ground layer of the casing, the strip line, the upper ground layer of the RF circuit, and the lower ground layer of the RF circuit on the corresponding ceramic blocks; Step 5.
  • the first The ceramic layer, the second ceramic layer, the third ceramic layer and the fourth ceramic layer are stacked to form a ceramic block; step 6, the ceramic block is subjected to warm isostatic pressing, cutting, and sintering to obtain a single black alumina package Ceramics; step 7, printing the sintered packaging ceramics with external connection lines, and then sintering to obtain multilayer structure packaging ceramics for 5G optical communication high-frequency and high-speed modules, wherein the first grounding connection line and the second grounding connection line connect the shell The upper ground plane and the lower ground plane of the housing are connected to form a common ground.
  • the beneficial effects of the present invention are as follows: the present invention realizes excellent radio frequency performance in the frequency range of 2GHz-40GHz by adopting a stripline structure and designing a special stripline distribution structure: 1) Insertion loss ⁇ -1dB; 2) Reflection loss ⁇ -15dB, which meets the requirements of 5G optical communication optical modules for radio frequency characteristics; 3) Low lead on-resistance value ⁇ 0.2 ⁇ ; transmission rate can meet 10Gbps, 25 Gbps, 40 Gbps, 100 Gbps, meeting the transmission rate requirements of 5G optical communication optical modules.
  • Fig. 1 is a schematic diagram of the explosion structure of the present invention.
  • Fig. 2 is a schematic diagram of the overall structure of the present invention.
  • the reference signs in the figure are: 1, the first ceramic layer; 11, the ground layer on the casing; 2, the second ceramic layer; 21, the ground layer on the radio frequency circuit; 3, the third ceramic layer; 31, the first control circuit Line; 32, the second control circuit; 33, the first radio frequency grounding line; 34, the radio frequency line; 35, the second radio frequency grounding line; 36, the third control circuit; 37, the fourth control circuit; 38, the first Five control circuit; 39.
  • the fourth ceramic layer 41.
  • the ground layer under the radio frequency circuit; 42. The ground layer under the shell; 5.
  • the second ground connection line The second ground connection line .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more, unless otherwise clearly defined.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a 5G optical communication module as shown in Figure 1 and Figure 2 has a multilayer structure packaging ceramic, including at least four layers of ceramic blocks stacked on each other, which are respectively the first Ceramic layer 1, second ceramic layer 2, third ceramic layer 3 and fourth ceramic layer 4, the upper surface of the second ceramic layer 2 is also provided with a grounding layer 21 on the radio frequency circuit, and the third ceramic layer 3 is arranged at intervals There are a plurality of striplines, the striplines include a radio frequency line group and a control circuit group, the upper surface of the fourth ceramic layer 4 is provided with a ground layer 41 under the radio frequency line, and the ground layer 21 on the radio frequency line is connected with the radio frequency line The lower ground layer 41 respectively covers the upper surface and the lower surface of the radio frequency line group, the upper surface of the first ceramic layer 1 is provided with the upper ground layer 11 of the housing, and the lower surface of the fourth ceramic layer 4 is provided with the lower ground layer 42 of the housing, In addition, the upper ground layer 11 of
  • the widths of the first ceramic layer 1 and the second ceramic layer 2 are the same and are A, the widths of the third ceramic layer 1 and the fourth ceramic layer 2 are the same and are B, and A is smaller than B.
  • the first ceramic layer 1 and the second ceramic layer 2 are U-shaped, and the end faces of the U-shaped openings are flush with the sides of the third ceramic layer 3 and the fourth ceramic layer 4, and the first ground connection wire 5,
  • the second ground connection wires 6 respectively extend from the two U-shaped open ends to the sides of the third ceramic layer 3 and the fourth ceramic layer 4 .
  • One ends of all striplines gather together and are located in the U-shaped openings of the first ceramic layer 1 and the second ceramic layer 2 .
  • the stripline adopts a thick film printing method, and the electric control circuit group and the radio frequency circuit group are printed on the corresponding ceramic blocks through tungsten paste.
  • the arrangement of the radio frequency circuit group and the electric control circuit group on the third ceramic layer 3 is as follows, from one end to the other end of the third ceramic layer 3, the first electric control circuit 31, the second electric control circuit 32, the second electric circuit A radio frequency grounding line 33 , a radio frequency line 34 , a second radio frequency grounding line 35 , a third control circuit 36 , a fourth control circuit 37 , a fifth control circuit 38 and a sixth control circuit 39 .
  • the distance B between the upper ground layer 21 of the radio frequency line and the lower ground layer 41 of the radio frequency line is 1.1mm-1.6mm.
  • the width W of the stripline is 0.25mm-0.4mm; the distance S between two adjacent striplines is 0.45mm-0.8mm, and the thickness T of the stripline is 12um.
  • the ceramic block adopts alumina ceramics with a thermal conductivity of 14-21W/mK and an Al 2 O 3 content of 90%-96%.
  • the ceramic block adopts alumina ceramics with a dielectric constant of 9.2-9.8 and an Al 2 O 3 content of 90%-96%.
  • the use of low dielectric constant materials can increase signal transmission speed and reduce signal transmission delay; combined with the design of microstrip line or stripline structure circuits, the RF performance and transmission rate of packaged ceramics can meet optical communication requirements. High-frequency and high-speed use of optical modules is required.
  • a kind of preparation method of multi-layer structure packaging ceramics for 5G optical communication module of the present invention comprises the following steps: Step 1, select 90%-96% alumina ceramic powder, add sintering aid, coloring agent, and polyethylene Alcohol butyral binder, plasticizer, dispersant, defoamer, ball milling and mixing to prepare a ceramic slurry with a certain viscosity; step 2, preparing the ceramic slurry in step 1 through tape casting equipment into a certain thickness of green ceramic film tape with cohesiveness; step 3, slice, punch, and cavity the green porcelain film tape according to the process; The shape line, the upper ground layer of the radio frequency line, and the lower ground layer of the radio frequency line are respectively printed on the corresponding ceramic blocks; step 5, according to the overall structure of the package ceramic, the first ceramic layer, the second ceramic layer, the third ceramic layer and the fourth ceramic layer The ceramic layers are stacked to form a ceramic block; step 6, the ceramic block is subjected to hot isostatic pressing, cutting, and sintering to obtain a single black alumina package
  • the radio frequency circuit of the present invention and main parameter, performance are as following table.
  • the invention makes the insertion loss index, reflection loss index and low lead wire on-resistance value of the radio frequency line meet the high-frequency and high-speed characteristic requirements of the optical 5G communication module.
  • the invention can be applied to high-frequency and high-speed modules of 5G optical communication within the Sub6GHz frequency range.
  • the invention discloses an excellent high-frequency characteristic material with low dielectric constant and low dielectric loss, a packaging ceramic designed with a multi-layer strip line structure and a preparation method thereof. It is mainly used in 5G optical communication high-speed network high-speed optical modules and their packaging. Using high thermal conductivity 90%-96% black alumina ceramics, the circuit of radio frequency signal and low on-resistance adopts the stripline structure design method, which realizes the insertion loss index, reflection loss index and on-resistance index at high frequency and high speed. Market use requirements and ensure mass production consistency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种5G光通信模块用多层结构封装陶瓷及其制备方法,包括至少四层相互叠合的陶瓷块,分别为第一陶瓷层(1)、第二陶瓷层(2)、第三陶瓷层(3)和第四陶瓷层(4),第二陶瓷层(2)上表面还设有射频线路上接地层(21),第三陶瓷层(3)上相互间隔设置有多条带状线,带状线包括射频线路组和控电线路组,第四陶瓷层(4)的上表面设有射频线路下接地层(41),射频线路上接地层(21)与射频线路下接地层(41)分别将射频线路组的上表面和下表面覆盖,第一陶瓷层(1)上表面设有外壳上接地层(11),第四陶瓷层(4)的下表面设有外壳下接地层(42),且外壳上接地层(11)和外壳下接地(42)层通过第一接地连接线(5)、第二接地连接线(6)连接。多层结构封装陶瓷实现了高频高速下插入损耗指标、反射损耗指标、导通电阻指标满足市场使用要求和确保量产一致性。

Description

一种5G光通信模块用多层结构封装陶瓷及其制备方法 技术领域
本发明涉及5G光通信模组技术领域,更具体地说,是涉及一种5G光通信模块用多层结构封装陶瓷及其制备方法。
背景技术
5G光通信模块外壳由金属和陶瓷部件构成气密结构腔体,陶瓷电路基板和裸芯片通过后封装工艺封装在金属外壳内部,提供高强度机械支撑、气密保护、内外电路连接、光电信号转换等功能,光通信器件的电信号和光信号通过外壳的输入输出端口传输,因高速、高频信号传输产生的热量通过导热性良好陶瓷和外壳传导到封装外壳外部,提供高可靠性封装陶瓷及外壳。
传统3G/4G光通信模组采用玻璃封装或封装陶瓷,主要解决电控线路和导通线路技术,5G光通信模组对高频特性和高传输速率提出要求,需要封装陶瓷射频性能插入损耗值、反射损耗值、低引线导通电阻值满足一定要求。
技术问题
为了解决上述技术问题,本发明的第一个目的在于提供一种5G光通信模块用多层结构封装陶瓷,该陶瓷的射频性能、传速速率满足光通信光模块高频高速使用要求,本发明的第二个目的在于提供一种5G光通信模块用多层结构封装陶瓷的制备方法。
技术解决方案
为了实现上述第一个发明目的,本发明采用以下技术方案:一种5G光通信模块用多层结构封装陶瓷,包括至少四层相互叠合的陶瓷块,分别为第一陶瓷层、第二陶瓷层、第三陶瓷层和第四陶瓷层,所述第二陶瓷层上表面还设有射频线路上接地层,第三陶瓷层上相互间隔设置有多条带状线,所述带状线包括射频线路组和控电线路组,所述带状线采用厚膜印刷方式,并通过钨浆将控电线路组、射频线路组印刷在第三陶瓷层上,所述第四陶瓷层的上表面设有射频线路下接地层,射频线路上接地层与射频线路下接地层分别将射频线路组的上表面和下表面覆盖,第一陶瓷层上表面设有外壳上接地层,所述第四陶瓷层的下表面设有外壳下接地层,且外壳上接地层和外壳下接地层通过第一接地连接线、第二接地连接线连接。
作为优选方案:所述第三陶瓷层上的射频线路组和控电线路组的布置方式如下,从第三陶瓷层的一端至另一端依次设置第一控电线路、第二控电线路、第一射频接地线、射频线路、第二射频接地线、第三控电线路、第四控电线路、第五控电线路和第六控电线路。
作为优选方案:所述射频线路上接地层与射频线路下接地层的距离B为1.1mm-1.6mm。
作为优选方案:所述带状线的宽度W为0.25mm-0.4mm;相邻两条带状线的距离S为0.45mm-0.8mm,所述带状线的厚度T为12um。
作为优选方案:所述第一陶瓷层、第二陶瓷层的宽度相同且为A,所述第三陶瓷层、第四陶瓷层的宽度相同且为B,A小于B。
作为优选方案:所述第一陶瓷层、第二陶瓷层成U型,且U型开口的端面与第三陶瓷层、第四陶瓷层的侧边齐平,所述第一接地连接线、第二接地连接线分别由U型两个开口端面延伸至第三陶瓷层、第四陶瓷层的侧边。
作为优选方案:所有带状线的一端相互聚拢,且位于第一陶瓷层、第二陶瓷层的U型开口内。
作为优选方案:所述带状线采用厚膜印刷方式,并通过钨浆将控电线路组、射频线路组印刷在对应的陶瓷块上。
作为优选方案:所述陶瓷块采用导热系数为14-21W/mK且Al 2O 3含量在90%-96%氧化铝陶瓷。
作为优选方案:所述陶瓷块采用介电常数为9.2-9.8且Al 2O 3含量在90%-96%氧化铝陶瓷。
为了实现上述第二个发明目的,本发明采用以下技术方案:如上所述的一种5G光通信模块用多层结构封装陶瓷的制备方法,包括如下步骤:步骤1、选用90%-96%氧化铝陶瓷粉,添加烧结助剂、着色剂,以及聚乙烯醇缩丁醛粘合剂、塑化剂、分散剂、消泡剂,进行球磨混合,制备成具有一定粘度的陶瓷浆料;步骤2、将步骤1中的陶瓷浆料通过流延成型设备制备成具有粘结性的一定厚度的生瓷膜带;步骤3、将生瓷膜带按工艺制程分别进行切片、冲片、冲腔;步骤4、将外壳上接地层、外壳下接地层、带状线、射频线路上接地层、射频线路下接地层分别印刷在相应的陶瓷块上;步骤5、根据封装陶瓷整体结构,将第一陶瓷层、第二陶瓷层、第三陶瓷层和第四陶瓷层进行叠合,叠合成陶瓷巴块;步骤6、将陶瓷巴块进行温等静压、切割、烧结,获得单个黑色氧化铝封装陶瓷;步骤7、将烧结后的封装陶瓷进行外部连接线路印刷,再烧结,获得5G光通信高频高速模组用多层结构封装陶瓷,其中第一接地连接线、第二接地连接线将外壳上接地层和外壳下接地层连接起来,形成共同接地。
有益效果
与现有技术相比,本发明的有益效果为:本发明通过采用带状线结构,并设计了特殊的带状线的分布结构,实现了在2GHz-40GHz频率范围优异的射频性能:1)插入损耗≧-1dB;2)反射损耗≦-15dB,满足5G光通信光模块对射频特性要求;3)低引线导通电阻值≦0.2Ω;传输速率可满足10Gbps、25 Gbps、40 Gbps、100 Gbps,满足5G光通信光模块对传输速率要求。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。
图1为本发明的爆炸结构示意图。
图2为本发明的整体结构示意图。
图中的附图标记为:1、第一陶瓷层;11、外壳上接地层;2、第二陶瓷层;21、射频线路上接地层;3、第三陶瓷层;31、第一控电线路;32、第二控电线路;33、第一射频接地线;34、射频线路;35、第二射频接地线;36、第三控电线路;37、第四控电线路;38、第五控电线路;39、第六控电线路;4、第四陶瓷层;41、射频线路下接地层;42、外壳下接地层;5、第一接地连接线;6、第二接地连接线。
本发明的最佳实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、部件和/或它们的组合。
此外,在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,除非另有明确的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图与实施例对本发明作进一步说明:如图1和图2所示的一种5G光通信模块用多层结构封装陶瓷,包括至少四层相互叠合的陶瓷块,分别为第一陶瓷层1、第二陶瓷层2、第三陶瓷层3和第四陶瓷层4,所述第二陶瓷层2上表面还设有射频线路上接地层21,第三陶瓷层3上相互间隔设置有多条带状线,所述带状线包括射频线路组和控电线路组,所述第四陶瓷层4的上表面设有射频线路下接地层41,射频线路上接地层21与射频线路下接地层41分别将射频线路组的上表面和下表面覆盖,第一陶瓷层1上表面设有外壳上接地层11,所述第四陶瓷层4的下表面设有外壳下接地层42,且外壳上接地层11和外壳下接地层42通过第一接地连接线5、第二接地连接线6连接。
所述第一陶瓷层1、第二陶瓷层2的宽度相同且为A,所述第三陶瓷层1、第四陶瓷层2的宽度相同且为B,A小于B。所述第一陶瓷层1、第二陶瓷层2成U型,且U型开口的端面与第三陶瓷层3、第四陶瓷层4的侧边齐平,所述第一接地连接线5、第二接地连接线6分别由U型两个开口端面延伸至第三陶瓷层3、第四陶瓷层4的侧边。所有带状线的一端相互聚拢,且位于第一陶瓷层1、第二陶瓷层2的U型开口内。
所述带状线采用厚膜印刷方式,并通过钨浆将控电线路组、射频线路组印刷在对应的陶瓷块上。
所述第三陶瓷层3上的射频线路组和控电线路组的布置方式如下,从第三陶瓷层3的一端至另一端依次设置第一控电线路31、第二控电线路32、第一射频接地线33、射频线路34、第二射频接地线35、第三控电线路36、第四控电线路37、第五控电线路38和第六控电线路39。
所述射频线路上接地层21与射频线路下接地层41的距离B为1.1mm-1.6mm。所述带状线的宽度W为0.25mm-0.4mm;相邻两条带状线的距离S为0.45mm-0.8mm,所述带状线的厚度T为12um。
所述陶瓷块采用导热系数为14-21W/mK且Al 2O 3含量在90%-96%氧化铝陶瓷。所述陶瓷块采用介电常数为9.2-9.8且Al 2O 3含量在90%-96%氧化铝陶瓷。在微波高频电路中,采用低介电常数材料,可以提升信号传输速度,降低信号传输时延;结合设计微带线或带状线结构电路,使封装陶瓷射频性能、传速速率满足光通信光模块高频高速使用要求。
本发明所述的一种5G光通信模块用多层结构封装陶瓷的制备方法,包括如下步骤:步骤1、选用90%-96%氧化铝陶瓷粉,添加烧结助剂、着色剂,以及聚乙烯醇缩丁醛粘合剂、塑化剂、分散剂、消泡剂,进行球磨混合,制备成具有一定粘度的陶瓷浆料;步骤2、将步骤1中的陶瓷浆料通过流延成型设备制备成具有粘结性的一定厚度的生瓷膜带;步骤3、将生瓷膜带按工艺制程分别进行切片、冲片、冲腔;步骤4、将外壳上接地层、外壳下接地层、带状线、射频线路上接地层、射频线路下接地层分别印刷在相应的陶瓷块上;步骤5、根据封装陶瓷整体结构,将第一陶瓷层、第二陶瓷层、第三陶瓷层和第四陶瓷层进行叠合,叠合成陶瓷巴块;步骤6、将陶瓷巴块进行温等静压、切割、烧结,获得单个黑色氧化铝封装陶瓷;步骤7、将烧结后的封装陶瓷进行外部连接线路印刷,再烧结,获得5G光通信高频高速模组用多层结构封装陶瓷,其中第一接地连接线、第二接地连接线将外壳上接地层和外壳下接地层连接起来,形成共同接地。
本发明的射频线路及主要参数、性能如下表。
[援引加入(细则20.6) 20.05.2022] 

Figure WO-DOC-FIGURE-1
本发明使该射频线路插入损耗指标、反射损耗指标、低引线导通电阻值满足光5G通信模组高频高速特性要求。本发明可应用于Sub6GHz频段范围内的5G光通信高频高速模组。
本发明公开了一种采用低介电常数低介电损耗的优良高频特性材料、采用多层带状线结构设计的封装陶瓷及其制备方法。主要应用于5G光通信高网络高速光模块及其封装。采用高导热特性90%-96%黑色氧化铝陶瓷,射频信号、低导通电阻的电路采用带状线结构设计方法,实现了高频高速下插入损耗指标、反射损耗指标、导通电阻指标满足市场使用要求和确保量产一致性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种5G光通信模块用多层结构封装陶瓷,其特征在于:包括至少四层相互叠合的陶瓷块,分别为第一陶瓷层(1)、第二陶瓷层(2)、第三陶瓷层(3)和第四陶瓷层(4),所述第二陶瓷层(2)上表面还设有射频线路上接地层(21),第三陶瓷层(3)上相互间隔设置有多条带状线,所述带状线包括射频线路组和控电线路组,所述带状线采用厚膜印刷方式,并通过钨浆将控电线路组、射频线路组印刷在第三陶瓷层(3)上,所述第四陶瓷层(4)的上表面设有射频线路下接地层(41),射频线路上接地层(21)与射频线路下接地层(41)分别将射频线路组的上表面和下表面覆盖,第一陶瓷层(1)上表面设有外壳上接地层(11),所述第四陶瓷层(4)的下表面设有外壳下接地层(42),且外壳上接地层(11)和外壳下接地层(42)通过第一接地连接线(5)、第二接地连接线(6)连接。
  2. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述第三陶瓷层(3)上的射频线路组和控电线路组的布置方式如下,从第三陶瓷层(3)的一端至另一端依次设置第一控电线路(31)、第二控电线路(32)、第一射频接地线(33)、射频线路(34)、第二射频接地线(35)、第三控电线路(36)、第四控电线路(37)、第五控电线路(38)和第六控电线路(39)。
  3. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述射频线路上接地层(21)与射频线路下接地层(41)的距离B为1.1mm-1.6mm,所述带状线的宽度W为0.25mm-0.4mm;相邻两条带状线的距离S为0.45mm-0.8mm,所述带状线的厚度T为12um。
  4. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述第一陶瓷层(1)、第二陶瓷层(2)的宽度相同且为A,所述第三陶瓷层(1)、第四陶瓷层(2)的宽度相同且为B,A小于B。
  5. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述第一陶瓷层(1)、第二陶瓷层(2)成U型,且U型开口的端面与第三陶瓷层(3)、第四陶瓷层(4)的侧边齐平,所述第一接地连接线(5)、第二接地连接线(6)分别由U型两个开口端面延伸至第三陶瓷层(3)、第四陶瓷层(4)的侧边。
  6. 根据权利要求5所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所有带状线的一端相互聚拢,且位于第一陶瓷层(1)、第二陶瓷层(2)的U型开口内。
  7. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述陶瓷块采用导热系数为14-21W/mK且Al 2O 3含量在90%-96%氧化铝陶瓷。
  8. 根据权利要求1所述的一种5G光通信模块用多层结构封装陶瓷,其特征在于:所述陶瓷块采用介电常数为9.2-9.8且Al 2O 3含量在90%-96%氧化铝陶瓷。
  9. 如权利要求1至8任意一项所述的一种5G光通信模块用多层结构封装陶瓷的制备方法,其特征在于,包括如下步骤:
    步骤1、选用90%-96%氧化铝陶瓷粉,添加烧结助剂、着色剂,以及聚乙烯醇缩丁醛粘合剂、塑化剂、分散剂、消泡剂,进行球磨混合,制备成具有一定粘度的陶瓷浆料;
    步骤2、将步骤1中的陶瓷浆料通过流延成型设备制备成具有粘结性的一定厚度的生瓷膜带;
    步骤3、将生瓷膜带按工艺制程分别进行切片、冲片、冲腔;
    步骤4、将外壳上接地层(11)、外壳下接地层(42)、带状线、射频线路上接地层(21)、射频线路下接地层(41)分别印刷在相应的陶瓷块上;
    步骤5、根据封装陶瓷整体结构,将第一陶瓷层(1)、第二陶瓷层(2)、第三陶瓷层(3)和第四陶瓷层(4)进行叠合,叠合成陶瓷巴块;
    步骤6、将陶瓷巴块进行温等静压、切割、烧结,获得单个黑色氧化铝封装陶瓷;
    步骤7、将烧结后的封装陶瓷进行外部连接线路印刷,再烧结,获得5G光通信高频高速模组用多层结构封装陶瓷,其中第一接地连接线(5)、第二接地连接线(6)将外壳上接地层(11)和外壳下接地层(42)连接起来,形成共同接地。
PCT/CN2022/080314 2021-07-26 2022-03-11 一种5g光通信模块用多层结构封装陶瓷及其制备方法 WO2023005217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110843532.1A CN113640927B (zh) 2021-07-26 2021-07-26 一种5g光通信模块用多层结构封装陶瓷及其制备方法
CN202110843532.1 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023005217A1 true WO2023005217A1 (zh) 2023-02-02

Family

ID=78418289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080314 WO2023005217A1 (zh) 2021-07-26 2022-03-11 一种5g光通信模块用多层结构封装陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN113640927B (zh)
WO (1) WO2023005217A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640927B (zh) * 2021-07-26 2022-10-21 嘉兴佳利电子有限公司 一种5g光通信模块用多层结构封装陶瓷及其制备方法
CN114217389B (zh) * 2021-12-16 2023-03-14 武汉光迅科技股份有限公司 一种光模块中发射高速信号线布局实现方法和装置
CN115343812B (zh) * 2022-08-22 2023-10-17 德阳三环科技有限公司 输入输出构件和制备方法及封装基座和光器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922325A (en) * 1987-10-02 1990-05-01 American Telephone And Telegraph Company Multilayer ceramic package with high frequency connections
US20030111243A1 (en) * 2001-12-14 2003-06-19 Lars Lindberg Feedthrough interconnection assembly
CN1654997A (zh) * 2004-02-02 2005-08-17 Jds尤尼弗思公司 具有陶瓷封装的小型光学分组件
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
CN201039143Y (zh) * 2007-04-24 2008-03-19 宁波萨基姆波导研发有限公司 一种移动终端射频电路与天线的连接结构
US20140126917A1 (en) * 2011-12-27 2014-05-08 Sumitomo Electric Industries, Ltd. Optical module and optical transceiver installing the same
CN105244324A (zh) * 2015-11-10 2016-01-13 河北中瓷电子科技有限公司 电子封装用陶瓷绝缘子及其制作方法
CN105810591A (zh) * 2016-04-20 2016-07-27 中国电子科技集团公司第十三研究所 高频、高速陶瓷封装外壳用封闭腔结构陶瓷件的制作方法
CN113640927A (zh) * 2021-07-26 2021-11-12 嘉兴佳利电子有限公司 一种5g光通信模块用多层结构封装陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456172B1 (en) * 1999-10-21 2002-09-24 Matsushita Electric Industrial Co., Ltd. Multilayered ceramic RF device
JP2009111132A (ja) * 2007-10-30 2009-05-21 Kyocera Corp 多層配線基板
CN104051352A (zh) * 2014-06-13 2014-09-17 中国电子科技集团公司第五十五研究所 基于高温共烧陶瓷的毫米波芯片外壳及其制造方法
CN105024556A (zh) * 2015-07-09 2015-11-04 中国科学院自动化研究所 基于低温共烧陶瓷混合集成的dc-dc变换器及其制造方法
CN105347777B (zh) * 2015-11-30 2018-08-31 中国电子科技集团公司第五十五研究所 应用于高频电路的低损耗高温共烧氧化铝黑瓷的制备方法
CN109757027A (zh) * 2019-01-26 2019-05-14 深圳莱必德科技股份有限公司 一种超导高频高速线路板及其制造方法
CN109856734A (zh) * 2019-02-11 2019-06-07 武汉电信器件有限公司 一种光器件的管壳

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922325A (en) * 1987-10-02 1990-05-01 American Telephone And Telegraph Company Multilayer ceramic package with high frequency connections
US20030111243A1 (en) * 2001-12-14 2003-06-19 Lars Lindberg Feedthrough interconnection assembly
CN1654997A (zh) * 2004-02-02 2005-08-17 Jds尤尼弗思公司 具有陶瓷封装的小型光学分组件
CN1721899A (zh) * 2004-02-11 2006-01-18 Jds尤尼弗思公司 小型光学分组件
CN201039143Y (zh) * 2007-04-24 2008-03-19 宁波萨基姆波导研发有限公司 一种移动终端射频电路与天线的连接结构
US20140126917A1 (en) * 2011-12-27 2014-05-08 Sumitomo Electric Industries, Ltd. Optical module and optical transceiver installing the same
CN105244324A (zh) * 2015-11-10 2016-01-13 河北中瓷电子科技有限公司 电子封装用陶瓷绝缘子及其制作方法
CN105810591A (zh) * 2016-04-20 2016-07-27 中国电子科技集团公司第十三研究所 高频、高速陶瓷封装外壳用封闭腔结构陶瓷件的制作方法
CN113640927A (zh) * 2021-07-26 2021-11-12 嘉兴佳利电子有限公司 一种5g光通信模块用多层结构封装陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113640927B (zh) 2022-10-21
CN113640927A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023005217A1 (zh) 一种5g光通信模块用多层结构封装陶瓷及其制备方法
US5369379A (en) Chip type directional coupler comprising a laminated structure
CN112018066B (zh) 基于htcc的高频垂直互联结构及封装结构
CN110357419B (zh) 一种玻璃组合物和毫米波低温共烧陶瓷材料及其制备方法
CN102201607A (zh) 基于ltcc技术的微带-带状线转换
CN103420670B (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN115986356B (zh) 一种基于htcc的宽带电桥
CN108878055B (zh) 应用于高温共烧陶瓷的高导电率金属化层的制备方法
US11006521B2 (en) Wiring base plate, electronic device package, and electronic device
CN208208947U (zh) 小型化siw表贴式环行器
CN216671978U (zh) 一种提升射频信号传输性能的陶瓷管壳
JP3588224B2 (ja) 高周波用配線基板
CN216561103U (zh) 一种5g光通信模块用多层结构封装陶瓷
CN105024556A (zh) 基于低温共烧陶瓷混合集成的dc-dc变换器及其制造方法
JP3847103B2 (ja) 光電子実装回路基板及び実装基板
CN211700526U (zh) 5G用低波动30dB集成耦合片
JP2006279199A (ja) 高周波線路−導波管変換器
JP3774336B2 (ja) 高周波用配線基板およびその製造方法
Jantunen et al. Multilayer resonators and a bandpass filter fabricated from a novel low-temperature co-fired ceramic
JP3997520B2 (ja) 非可逆回路素子
CN115566414B (zh) 一种多层微波介质陶瓷滤波天线及其制备方法
JP2001016007A (ja) 伝送線路を有する配線基板
JP3377917B2 (ja) 半導体素子収納用パッケージ
JP4391284B2 (ja) 多層基板の製造方法
CN211700517U (zh) 一种适用于Ku波段的LTCC带通滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE