WO2023002845A1 - 電子装置及びその制御方法 - Google Patents

電子装置及びその制御方法 Download PDF

Info

Publication number
WO2023002845A1
WO2023002845A1 PCT/JP2022/026752 JP2022026752W WO2023002845A1 WO 2023002845 A1 WO2023002845 A1 WO 2023002845A1 JP 2022026752 W JP2022026752 W JP 2022026752W WO 2023002845 A1 WO2023002845 A1 WO 2023002845A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
storage battery
internal resistance
voltage
control circuit
Prior art date
Application number
PCT/JP2022/026752
Other languages
English (en)
French (fr)
Inventor
義晴 増田
友里 西住
和之 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023536679A priority Critical patent/JPWO2023002845A1/ja
Priority to EP22845779.2A priority patent/EP4376251A1/en
Priority to CN202280045616.3A priority patent/CN117581440A/zh
Publication of WO2023002845A1 publication Critical patent/WO2023002845A1/ja
Priority to US18/536,682 priority patent/US20240128786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop

Definitions

  • the present disclosure relates to an electronic device and its control method.
  • Electronic devices such as portable personal computers operate with power supplied by a storage battery attached or connected. Such electronic devices are required to control their power consumption so that they operate within the range of power that can be supplied by the storage battery.
  • Patent Document 1 discloses a technique for controlling peak power in an electronic device that includes multiple processors operating as master devices and multiple devices operating as slave devices.
  • the electronic device of Patent Document 1 when operated by power supplied by a battery device, allows the processor to use the device when the total power consumption of the device is less than or equal to a predetermined value calculated from the remaining battery power. .
  • the present disclosure provides an electronic device and its control method that can control power consumption with higher accuracy than ever before.
  • An electronic device includes: a storage battery; a charging circuit for charging the storage battery; a load device operated by power of the storage battery; a voltage sensor that detects the charging voltage and discharging voltage of the storage battery; a current sensor that detects the charging current and discharging current of the storage battery; a control circuit; The control circuit is calculating an internal resistance of the storage battery based on the charging voltage and the charging current; calculating an allowable power that indicates the maximum power that the load device can obtain from the storage battery, based on the discharge voltage, the discharge current, and the internal resistance; A control signal is sent to the load device so that the load device operates with power equal to or less than the allowable power.
  • the electronic device According to the electronic device according to one aspect of the present disclosure, it is possible to control power consumption with higher precision than before.
  • FIG. 1 is a block diagram showing the configuration of an electronic device 1 according to an embodiment
  • FIG. 2 is a block diagram showing the configuration of a charging circuit 11 of FIG. 1
  • FIG. FIG. 2 is a flowchart showing charging control processing executed by a control circuit 14 of FIG. 1
  • FIG. 4 is a graph illustrating calculation of internal resistances Ra(1) to Ra(6) by repeatedly executing steps S1 to S11 in FIG. 3
  • 4 is a graph illustrating calculation of internal resistance Ra(i) by performing steps S3 to S8 of FIG. 3
  • FIG. 4 is a table showing correction coefficients related to the temperature Temp of the battery cell 12a, used in step S8 of FIG. 3
  • FIG. 2 is a flowchart showing discharge control processing executed by a control circuit 14 of FIG.
  • FIG. 2 is a flowchart showing interrupt processing executed by a control circuit 14 of FIG. 1; FIG.
  • FIG. 1 is a block diagram showing the configuration of an electronic device 1 according to an embodiment.
  • the electronic device 1 includes a battery pack 12 and is operable by power supplied by the battery pack 12 .
  • the electronic device 1 may be, for example, a portable personal computer (for example, a notebook computer, a tablet computer), a mobile phone, or the like.
  • Electronic device 1 is connected to AC power supply 2 via AC/DC converter 3 .
  • the AC/DC converter 3 converts AC power supplied from the AC power supply 2 into DC power and supplies the DC power to the electronic device 1 , and the electronic device 1 operates with the power supplied from the AC/DC converter 3 . , and charges the internal battery pack 12 .
  • the electronic device 1 includes a charging circuit 11, a battery pack 12, a DC/DC converter 13, a control circuit 14, a switch SW, and a load device 20.
  • thick lines indicate power lines
  • thin lines indicate signal lines
  • the charging circuit 11 charges the battery pack 12 with the power supplied from the AC/DC converter 3 .
  • the charging circuit 11 supplies power to the battery pack 12 at a variable voltage and variable current according to the charging rate of the battery pack 12, for example, in one of constant current mode, constant voltage mode, and constant power mode. .
  • the battery pack 12 includes multiple battery cells 12a, a current sensor 12b, a voltage sensor 12c, a temperature sensor 12d, and a nonvolatile memory 12e.
  • Each battery cell 12a is a rechargeable secondary battery.
  • a plurality of battery cells 12a are connected in series and/or in parallel and have a predetermined internal resistance Rd as a whole.
  • the internal resistance Rd of the battery pack 12 is calculated by the control circuit 14 as described later.
  • the current sensor 12b detects a current supplied from the charging circuit 11 to the battery pack 12 (hereinafter also referred to as “charging current Ib” of the battery pack 12) and notifies the charging circuit 11 and the control circuit 14 of it.
  • the current sensor 12b detects the current supplied from the battery pack 12 to the load device 20 via the DC/DC converter 13 (hereinafter also referred to as “discharge current Id” of the battery pack 12) and to notify.
  • the voltage sensor 12c detects the voltage across the positive and negative electrodes of the battery pack 12 and notifies the charging circuit 11 and the control circuit 14 of the voltage.
  • the voltages of the battery pack 12 during charging and discharging are also referred to as “charging voltage Vb” and “discharging voltage Vd” of the battery pack 12, respectively.
  • the temperature sensor 12d detects the temperature of each battery cell 12a and notifies the control circuit 14 of it.
  • the nonvolatile memory 12 e stores the internal resistance Rd of the battery pack 12 calculated by the control circuit 14 .
  • the battery pack 12 may be configured to be detachable from the electronic device 1 or may be built into the electronic device 1 .
  • the battery pack 12 is an example of a storage battery.
  • the switch SW selectively transfers one of the power supplied from the AC/DC converter 3 and the power discharged from the battery pack 12 to the DC/DC converter 13 under the control of the control circuit 14. supply.
  • the DC/DC converter 13 generates one DC voltage or a plurality of different DC voltages from the power supplied from the AC/DC converter 3 or the power discharged from the battery pack 12, and converts the generated DC voltages into It is supplied to the load device 20 .
  • the control circuit 14 controls the operation of the charging circuit 11 , the switch SW, and the central processing unit (CPU) 21 of the load device 20 .
  • the control circuit 14 may be, for example, a microcontroller of a type called an EC (Embedded Controller) for computers.
  • the load device 20 includes a central processing unit (CPU) 21, a memory 22, a storage device 23, a display device 24, an input device 25, and a communication interface (I/F) 26.
  • the CPU 21 executes programs stored in the storage device 23 and controls operations of other components 22 to 26 of the load device 20 .
  • the memory 22 temporarily stores programs and data necessary for the operation of the electronic device 1 .
  • the storage device 23 stores programs and data necessary for the operation of the electronic device 1 .
  • Storage device 23 may include, for example, a solid state drive or hard disk drive.
  • the display device 24 displays the results of the programs executed by the CPU 21 .
  • Input device 25 receives user input that controls the operation of electronic device 1 .
  • Input device 25 includes, for example, a keyboard and pointing device.
  • the communication interface 26 is communicably connected to an external device via a wired line and/or a wireless line.
  • the communication interface 26 may include an interface for connecting to peripheral devices such as USB (Universal Serial Bus).
  • “n” is a predetermined maximum value dependent on the CPU 21 .
  • the P0 performance state the CPU 21 operates at its maximum performance and consumes maximum power.
  • the P1 performance state the CPU 21 operates with less performance than in the P0 performance state and with less power than in the P0 performance state. Thereafter, as the number of "Px" increases, the performance and power consumption of the CPU 21 decrease, and in the Pn performance state, the CPU 21 operates at its lowest performance and consumes the lowest power while maintaining the active state.
  • the CPU 21 is an example of an arithmetic circuit.
  • FIG. 2 is a block diagram showing the configuration of the charging circuit 11 of FIG.
  • the charging circuit 11 includes a DC/DC converter 31 , a charging control circuit 32 , a reference voltage source 33 and a comparator 34 .
  • the DC/DC converter 31 is, for example, a step-up/step-down power converter including a plurality of switching elements, an inductor, a pulse width modulation circuit, and the like.
  • the charging control circuit 32 controls the operation of the DC/DC converter 31 based on the charging voltage Vb detected by the voltage sensor 12c and the charging current Ib detected by the current sensor 12b.
  • the charging control circuit 32 calculates the charging rate of the battery pack 12 based on the charging voltage Vb and the charging current Ib, and converts DC/DC to generate the desired voltage and desired current according to the charging rate. It controls the switching frequency and duty ratio of each switching element of the converter 31 . Also, the charging control circuit 32 suspends and resumes charging of the battery pack 12 according to the control signal from the control circuit 14 .
  • a reference voltage source 33 generates a reference voltage representing a predetermined threshold voltage Vmin. The threshold voltage Vmin indicates a low voltage at which the electronic device 1 may be interrupted.
  • the comparator 34 generates an interrupt signal and sends it to the control circuit 14 and the CPU 21 when the discharge voltage Vd detected by the voltage sensor 12c becomes smaller than the threshold voltage Vmin.
  • the control circuit 14 calculates the internal resistance Rd of the battery pack 12 based on the charging voltage Vb and the charging current Ib of the battery pack 12 .
  • the control circuit 14 calculates the allowable power W indicating the maximum power that the CPU 21 can acquire from the battery pack 12 based on the discharge voltage Vd, discharge current Id, and internal resistance Rd of the battery pack 12 .
  • the control circuit 14 sends a control signal to the CPU 21 so that the CPU 21 operates with power equal to or less than the allowable power W.
  • control circuit 14 corrects the internal resistance Rd and recalculates the allowable power W when there is a risk that the discharge voltage Vd of the battery pack 12 will drop and the electronic device 1 will be momentarily interrupted.
  • the CPU 21 selectively operates in one of a plurality of performance states according to the control signal from the control circuit 14 so that the CPU 21 operates with power equal to or less than the allowable power.
  • the control circuit 14 may set some threshold power for the CPU 21 for the purpose of thermal management of the CPU 21 .
  • the PL4 (Power Limit 4) threshold power used by Intel Corporation's intel (registered trademark) core processors may be set and the operating frequency of the CPU 21 may be limited to prevent power spikes exceeding PL4. .
  • the control circuit 14 controls the operation of the electronic device 1 by executing charge control processing, discharge control processing, and interrupt processing, which will be described below.
  • FIG. 3 is a flow chart showing charging control processing executed by the control circuit 14 of FIG.
  • the control circuit 14 measures the internal resistance Rd of the battery pack 12 while charging the battery pack 12 .
  • step S1 the control circuit 14 sets the parameter i to 1.
  • the control circuit 14 measures the internal resistance a plurality of N times while charging the battery pack 12, and calculates the average of the plurality of internal resistances.
  • a parameter i is a parameter representing the number of internal resistance measurements.
  • step S2 the control circuit 14 sets the threshold Th(i) of the charging rate of the battery pack 12.
  • the control circuit 14 reduces the internal resistance Ra(i) of the battery pack 12 each time the charging rate of the battery pack 12 reaches one of a plurality of predetermined threshold values Th(i). Measure.
  • FIG. 4 is a graph explaining calculation of internal resistances Ra(1) to Ra(6) by repeatedly executing steps S1 to S11 in FIG.
  • the plurality of threshold values Th(i) are values corresponding to the number of repetitions of steps S1 to S11 (parameter i: number of internal resistance measurements).
  • the larger the parameter i the larger the plurality of thresholds Th(i).
  • the control circuit 14 controls the internal resistances Ra(1) to Ra (6) are measured respectively.
  • the control circuit 14 measures the charging voltage Vb of the battery pack 12 using the voltage sensor 12c and measures the charging current Ib of the battery pack 12 using the current sensor 12b.
  • the control circuit 14 may periodically measure the charging voltage Vb and the charging current Ib at a frequency of, for example, several tens of milliseconds to several hundreds of milliseconds.
  • the control circuit 14 also calculates the charging rate of the battery pack 12 based on the charging voltage Vb of the battery pack 12 . Basically, there is a fixed relationship between the voltage of the storage battery and the charging rate, so the charging rate can be roughly estimated from the voltage.
  • step S4 the control circuit 14 determines whether or not the charging rate of the battery pack 12 has reached the threshold value Th(i). If YES, the process proceeds to step S5, and if NO, the process returns to step S3. .
  • step S5 the control circuit 14 controls the charging circuit 11 to temporarily stop charging the battery pack 12.
  • step S6 the control circuit 14 uses the voltage sensor 12c to detect the voltage Va of the battery pack 12 after a predetermined waiting time of one second or less has passed since the charging of the battery pack 12 was stopped.
  • step S7 the control circuit 14 measures the temperature Temp of each battery cell 12a using the temperature sensor 12d.
  • step S8 the control circuit 14 calculates the internal resistance Ra(i) of the battery pack 12 based on the voltages Va, Vb, current Ib, and temperature Temp of the battery pack 12.
  • FIG. 5 is a graph illustrating calculation of internal resistance Ra(i) by performing steps S3-S8 of FIG.
  • the upper part of FIG. 5 shows the voltage of the battery pack 12 detected by the voltage sensor 12c
  • the lower part of FIG. 5 shows the current of the battery pack 12 detected by the current sensor 12b.
  • the control circuit 14 obtains the voltage Vb and the current Ib immediately before the charging of the battery pack 12 is stopped.
  • the control circuit 14 acquires the voltage Va of the battery pack 12 at time t2 after a waiting time of 1 second has elapsed since the charging of the battery pack 12 was stopped.
  • the control circuit 14 calculates the internal resistance Ra(i) by dividing the potential difference between the voltages Vb and Va by the current Ib as in the following equation.
  • "immediately before" the charging of the battery pack 12 is stopped means a time within one second from the time t1.
  • Ra(i) (Vb-Va)/Ib
  • the inventors of the present invention determined the internal resistance based on the potential difference between the voltage Vb immediately before the charging of the battery pack 12 was stopped and the voltage Va after a waiting time of one second or less after the charging of the battery pack 12 was stopped. It was experimentally confirmed that by calculating Ra(i), the contribution of the reactance component X can be reduced and the resistance component R can be exclusively extracted.
  • FIG. 6 is a table showing correction coefficients related to the temperature Temp of the battery cell 12a used in step S8 of FIG.
  • the control circuit 14 corrects the internal resistance Ra(i) based on the temperature Temp of the battery cell 12a. Specifically, the control circuit 14 multiplies the internal resistance Ra(i) by a correction coefficient k according to the temperature Temp of each battery cell 12a when the internal resistance Ra(i) is measured.
  • the temperature Temp gradually increases in the order of T1 ⁇ 25 degrees ⁇ T2 ⁇ T3.
  • the correction coefficient k is set so as to convert the internal resistance measured at each temperature T1, T2, T3 into the internal resistance measured at the normal temperature of 25°C.
  • step S9 the control circuit 14 controls the charging circuit 11 to resume charging the battery pack 12 after detecting the voltage Va (see time t3 in FIG. 5).
  • the control circuit 14 may restart charging of the battery pack 12, for example, 60 seconds after stopping charging of the battery pack 12.
  • step S11 the control circuit 14 increments the parameter i by 1 and returns to step S2.
  • the control circuit 14 repeats temporarily stopping charging of the battery pack 12 (step S5), calculating the internal resistance Ra(i) (step S8), and restarting charging of the battery pack 12 (step S9).
  • a plurality of internal resistances Ra(1) to Ra(N) are obtained.
  • step S13 the control circuit 14 reads the previously calculated internal resistance Rd as the internal resistance Rd(old) from the nonvolatile memory 12e.
  • the internal resistance Rd of the battery pack 12 can be measured while the battery pack 12 is being charged.
  • the potential difference between the voltage Vb immediately before the charging of the battery pack 12 is stopped and the voltage Va after the standby time of one second or less has elapsed after the charging of the battery pack 12 is stopped is By calculating the internal resistance Ra(i) based on the above, the contribution of the reactance component X can be reduced and the resistance component R can be exclusively extracted. Therefore, according to the charging control process of FIG. 3, the internal resistance Rd of the battery pack 12 can be measured with high accuracy.
  • the waiting time from when the charging of the battery pack 12 is stopped until the voltage Va is measured is determined by the resistance component R of the internal resistance Rd being the electrolyte transfer resistance, the lead resistance, and the charge transfer resistance. It is set so as to include high-frequency components caused by, for example,
  • the lower limit of the standby time is set to be longer than the duration of the load generated during control.
  • the upper limit of the standby time is arbitrary, but if the standby time is increased, as described above, the contribution of the reactance component X in the calculation of the internal resistance increases, and the calculated value of the internal resistance becomes excessive. Therefore, the power that can be supplied will be underestimated.
  • the control circuit 14 performs the charging control shown in FIG. processing may be performed. As a result, even when the electronic device 1 is powered off, the battery pack 12 can be charged and the internal resistance Rd of the battery pack 12 can be measured.
  • FIG. 7 is a flow chart showing discharge control processing executed by the control circuit 14 of FIG. The discharge control process is executed to supply power from the battery pack 12 to the load device 20 when power supply from the external AC power supply 2 and the AC/DC converter 3 to the electronic device 1 stops.
  • step S21 the control circuit 14 controls the switch SW to start discharging from the battery pack 12 when the power supply from the external AC power supply 2 and the AC/DC converter 3 to the electronic device 1 is stopped. . Instead, the control circuit 14 initiates discharging from the battery pack 12 when the electronic device 1 is powered on while the electronic device 1 is not connected to the AC power supply 2 and the AC/DC converter 3.
  • step S22 the control circuit 14 reads the internal resistance Rd from the nonvolatile memory 12e.
  • step S23 the control circuit 14 measures the discharge voltage Vd of the battery pack 12 using the voltage sensor 12c, measures the discharge current Id of the battery pack 12 using the current sensor 12b, and measures the battery discharge current Id using the temperature sensor 12d.
  • the temperature Temp of the pack 12 is measured.
  • step S24 the control circuit 14 determines in which of the plurality of charging rate ranges Cd the charging rate is included based on the discharging voltage Vd and the discharging current Id of the battery pack 12.
  • FIG. 8 is a table used to calculate the charging rate range Cd in step S24 of FIG.
  • Cd0 represents a charge rate of 0-49%
  • Cd50 represents a charge rate of 50-79%
  • Cd80 represents a charge rate of 80-100%.
  • the control circuit 14 determines in which of the charging rate ranges Cd0, Cd50, and Cd80 the charging rate is included based on the discharging voltage Vd and the discharging current Id.
  • the charging rate can be roughly calculated from the voltage.
  • the voltage changes according to the magnitude of the flowing current. See also size.
  • the control circuit 14 determines the maximum power W1 that can be output from the battery pack 12 based on the charging rate range Cd and temperature Temp of the battery pack 12.
  • the maximum power W1 indicates the maximum power that can be output from the battery pack 12 when the internal resistance Rd of the battery pack 12 is equal to the maximum value Rmax.
  • FIG. 9 is a table used to determine the maximum power W1 that can be output from the battery pack 12 in step S25 of FIG.
  • the control circuit 14 determines which of 10W, 20W, 30W, 40W and 45W the maximum power W1 is based on the charging rate range Cd and the temperature Temp.
  • the control circuit 14 uses the following equation based on the maximum power W1 that can be output from the battery pack 12 and the internal resistance Rd of the battery pack 12, and the CPU 21 determines whether the battery pack Calculate the allowable power W, which indicates the maximum power obtainable from 12.
  • W (W1 ⁇ W2) ⁇ ((Rmax+Re)/(Rd+Re))+W2
  • W2 indicates the minimum power that must be output from the battery pack 12, including power consumed by components other than the CPU 21 of the electronic device 1.
  • FIG. Re represents the circuit resistance of the electronic device 1 other than the internal resistance Rd of the battery pack 12 .
  • the maximum power W1 that can be output from the battery pack 12 is determined based on the charging rate range Cd of the battery pack 12, and the charging rate range Cd is based on the discharge voltage Vd and the discharge current Id of the battery pack 12. determined by Equivalently, therefore, the allowable power W is determined based on the discharge voltage Vd, the discharge current Id, and the internal resistance Cd of the battery pack 12 . Also, since the maximum power W1 that can be output from the battery pack 12 is determined based on the temperature Temp of the battery pack 12, the allowable power W is equivalently corrected by the temperature Temp.
  • step S27 the control circuit 14 sets the allowable power W to the CPU 21.
  • the CPU 21 is set to one of the plurality of performance states so that only power equal to or less than the allowable power W is obtained from the battery pack 12 .
  • step S28 the control circuit 14 measures the discharge voltage Vd of the battery pack 12 using the voltage sensor 12c, measures the discharge current Id of the battery pack 12 using the current sensor 12b, and measures the battery discharge current Id using the temperature sensor 12d.
  • the temperature Temp of the pack 12 is measured.
  • step S29 control circuit 14 determines whether any of the discharge voltage Vd, discharge current Id, and temperature Temp measured in step S28 has significantly varied from the corresponding previously measured value. If YES, the process returns to step S24, and if NO, the process returns to step S28.
  • "significantly fluctuates” means that the discharge voltage Vd or the discharge current Id changes to such an extent that it is necessary to change the charging rate range Cd in the table of FIG. 8, or that the maximum power W1 changes in the table of FIG. This means that the charging rate range Cd or temperature Temp changes to such an extent that a change is required.
  • the allowable power of the CPU 21 can be set based on the internal resistance Rd of the battery pack 12 measured by performing the charge control process of FIG. Thereby, the power consumption of the CPU 21 can be controlled with higher precision than in the conventional art based on the correct internal resistance Rd.
  • FIG. 10 is a flow chart showing interrupt processing executed by the control circuit 14 of FIG.
  • the interrupt processing when the electronic device 1 is operating with the power discharged from the battery pack 12 (that is, during execution of the discharge control processing in FIG. 7), the discharge voltage of the battery pack 12 decreases and the electronic device 1 Executed when there is a risk of an instantaneous interruption.
  • the charging circuit 11 generates an interrupt signal and sends it to the control circuit 14 and the CPU 21 when the discharge voltage Vd detected by the voltage sensor 12c becomes smaller than the threshold voltage Vmin.
  • the interrupt signal may be, for example, the prochot signal used by Intel Corporation's intel core processors.
  • the prochot signal is asserted when the processor is hot, causing the processor to transition to the Pn performance state.
  • the CPU 21 operates at its lowest performance while maintaining an active state, and makes a transition to a state that consumes the lowest power, thereby avoiding a momentary power failure of the electronic device 1 .
  • step S ⁇ b>31 the control circuit 14 receives an interrupt signal from the charging circuit 11 .
  • step S32 the control circuit 14 reads the internal resistance Rd from the nonvolatile memory 12e.
  • step S33 the control circuit 14 corrects the internal resistance Rd by a predetermined correction coefficient greater than 1, such as 1.05, so as to increase the internal resistance Rd.
  • step S34 the control circuit 14 stores the corrected internal resistance Rd in the nonvolatile memory 12e.
  • step S35 the control circuit 14 measures the discharge voltage Vd of the battery pack 12 using the voltage sensor 12c, measures the discharge current Id of the battery pack 12 using the current sensor 12b, and measures the battery discharge current Id using the temperature sensor 12d.
  • the temperature Temp of the pack 12 is measured.
  • step S36 the control circuit 14 determines in which of the plurality of charging rate ranges Cd the charging rate is included based on the discharging voltage Vd and the discharging current Id of the battery pack 12, as in step S24 of FIG. to decide.
  • step S37 the control circuit 14 determines the maximum power W1 that can be output from the battery pack 12 based on the charging rate range Cd and temperature Temp of the battery pack 12, as in step S25 of FIG.
  • step S38 similarly to step S26 in FIG. Calculate the allowable power W, which indicates the maximum power
  • step S39 the control circuit 14 sets the allowable power W to the CPU 21.
  • the CPU 21 terminates the Pn performance state started in response to the prochot signal, and is set to one of a plurality of performance states so that only power equal to or less than the allowable power W is obtained from the battery pack 12. be.
  • step S39 the control circuit 14 returns to the discharge control process of FIG.
  • the internal resistance Rd is calculated to be smaller than the actual value, a value larger than the actual allowable power W will be set in the CPU 21 .
  • the interrupt processing of FIG. 10 when the discharge voltage of the battery pack 12 drops and there is a risk of an instantaneous power failure of the electronic device 1, by correcting the internal resistance Rd and recalculating the allowable power W, It is possible to control the power consumption of the CPU 21 with high accuracy while avoiding the instantaneous interruption of the electronic device 1 .
  • An electronic device 1 includes a battery pack 12, a charging circuit 11 that charges the battery pack 12, a load device 20 that operates with the power of the battery pack 12, and charging voltage and discharging voltage of the battery pack 12. , a current sensor 12b for detecting charging current and discharging current of the battery pack 12, and a control circuit .
  • Control circuit 14 calculates the internal resistance of battery pack 12 based on the charging voltage and charging current, and the maximum load device 20 can obtain from battery pack 12 based on the discharging voltage, discharging current, and internal resistance. Allowable power indicating power is calculated, and a control signal is sent to the load device 20 so that the load device 20 operates with power equal to or less than the allowable power.
  • the control circuit 14 may control the charging circuit 11 to temporarily stop charging the battery pack 12 when charging the battery pack 12 .
  • the control circuit 14 detects the charging voltage (first voltage) of the battery pack 12 immediately before the charging of the battery pack 12 is stopped.
  • the control circuit 14 detects the second voltage of the battery pack 12 after a predetermined waiting time of one second or less has passed since the charging of the battery pack 12 was stopped.
  • the control circuit 14 detects a first current that is the charging current immediately before the charging of the battery pack 12 is stopped.
  • the control circuit 14 also calculates the internal resistance by dividing the potential difference between the first and second voltages by the first current.
  • the control circuit 14 controls the charging circuit 11 to resume charging the battery pack 12 after detecting the second voltage.
  • the internal resistance Ra ( By calculating i), the internal resistance Rd of the battery pack 12 can be measured with high accuracy.
  • the control circuit 14 repeatedly suspends charging of the battery pack 12, calculates the internal resistance, and resumes charging of the battery pack 12, thereby performing a plurality of You can get the internal resistance.
  • the control circuit 14 calculates the allowable power based on the discharge voltage, the discharge current, and the average of the multiple internal resistances.
  • the internal resistance Rd of the battery pack 12 can be measured with high accuracy.
  • the control circuit 14 may calculate a moving average of the previously calculated internal resistance and the newly calculated internal resistance. In this case, the control circuit 14 calculates the allowable power based on the discharge voltage, the discharge current, and the moving average of the internal resistance.
  • the internal resistance Rd of the battery pack 12 can be measured with high accuracy.
  • the electronic device 1 may further include a temperature sensor 12d that detects the temperature of the battery pack 12.
  • the control circuit 14 corrects the internal resistance and allowable power based on the temperature of the battery pack 12 .
  • control circuit 14 increases the internal resistance by a predetermined correction coefficient greater than 1 when the discharge voltage becomes lower than the predetermined threshold.
  • the internal resistance may be corrected as follows. In this case, control circuit 14 calculates the allowable power based on the discharge voltage, discharge current, and corrected internal resistance.
  • the load device 20 may include an arithmetic circuit.
  • the arithmetic circuit may have multiple performance states each operating with different power.
  • the control circuit 14 selectively operates in one of the plurality of performance states according to the control signal so that the arithmetic circuit operates with power equal to or less than the allowable power.
  • a control method for an electronic device 1 controls an electronic device that includes a battery pack 12 and a load device that operates with the power of the battery pack 12 .
  • the method includes calculating the internal resistance of the battery pack 12 based on the charging voltage and charging current of the battery pack 12 .
  • the method includes calculating an allowable power that indicates the maximum power that the load device can obtain from the battery pack 12 based on the discharge voltage and discharge current of the battery pack 12 and the internal resistance.
  • the method includes controlling the load device such that the load device operates at power below the allowable power.
  • the control circuit 14 may control not only the CPU 21 but also any arithmetic circuit having a plurality of performance states each operating with different power.
  • the arithmetic circuit may be, for example, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or the like.
  • the charging circuit 11 generates an interrupt signal and sends it to the control circuit 14 and the CPU 21 when the discharge voltage Vd becomes smaller than the threshold voltage Vmin.
  • the control circuit 14 comprises a reference voltage source for generating a reference voltage representative of the threshold voltage Vmin, and when the discharge voltage Vd becomes less than the threshold voltage Vmin, the control circuit 14 outputs an interrupt signal. It may be generated and sent to the CPU 21 .
  • a different temperature Temp and correction coefficient k than those shown in FIG. 6 may be used depending on the specifications of each battery cell 12a. Also, depending on the specifications of each battery cell 12a, other charging rate ranges Cd different from those shown in FIG. 8 may be used. Also, depending on the specifications of each battery cell 12a, other maximum powers W1 with different ranges and numbers than those shown in FIG. 9 may be used.
  • the internal resistance Ra(i) of the battery pack 12 is corrected using the table of the temperature Temp and the correction coefficient k. (i) may be corrected.
  • the charging rate range Cd is determined using the table of the discharge voltage Vd and the discharge current Id, but the control circuit 14 uses some formula instead of the table to calculate the charging rate range Cd.
  • the maximum power W1 is determined using the table of the charging rate range Cd and the temperature Temp, but the control circuit 14 uses some formula instead of the table to calculate the maximum power W1. good too.
  • the current sensor 12b and the voltage sensor 12c may be provided outside the battery pack 12.
  • the internal resistance of the battery pack 12 may be stored in non-volatile memory inside the control circuit 14 .
  • the electronic device it is possible to control power consumption with higher accuracy than before, and improve usability of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電子装置は、バッテリーパックと、バッテリーパックに充電する充電回路と、バッテリーパックの電力により動作する負荷装置と、バッテリーパックの充電電圧及び放電電圧を検出する電圧センサと、バッテリーパックの充電電流及び放電電流を検出する電流センサと、制御回路とを備える。制御回路は、充電電圧及び充電電流に基づいてバッテリーパックの内部抵抗を計算し、放電電圧、放電電流、及び内部抵抗に基づいて、負荷装置がバッテリーパックから取得可能な最大電力を示す許容電力を計算し、負荷装置が許容電力以下の電力で動作するように負荷装置に制御信号を送る。

Description

電子装置及びその制御方法
 本開示は、電子装置及びその制御方法に関する。
 携帯型のパーソナルコンピュータなどの電子装置は、装着又は接続された蓄電池によって供給される電力により動作する。このような電子装置は、蓄電池によって供給可能な電力の範囲内で動作するように、その電力消費を制御することが求められる。
 特許文献1は、マスタデバイスとして動作する複数のプロセッサとスレーブデバイスとして動作する複数のデバイスを備える電子装置において、そのピーク電力を制御する技術を開示している。特許文献1の電子装置は、バッテリー装置により供給される電力により動作する場合、デバイスの全消費電力がバッテリー残量から計算される所定値以下であるとき、デバイスを利用することをプロセッサに許可する。
特開2006-195945号公報
 蓄電池は、使用し続けることにより劣化し、その結果、供給可能な電力及び電力量が減少する。従って、蓄電池の設計値のみに基づいて蓄電池のエネルギー残量を計算する場合、蓄電池が劣化すると、蓄電池によって供給可能な電力を正確に計算することができなくなる。
 本開示は、従来よりも高精度に電力消費を制御することができる電子装置及びその制御方法を提供する。
 本開示の一態様に係る電子装置は、
 蓄電池と、
 前記蓄電池に充電する充電回路と、
 前記蓄電池の電力により動作する負荷装置と、
 前記蓄電池の充電電圧及び放電電圧を検出する電圧センサと、
 前記蓄電池の充電電流及び放電電流を検出する電流センサと、
 制御回路とを備え、
 前記制御回路は、
 前記充電電圧及び前記充電電流に基づいて前記蓄電池の内部抵抗を計算し、
 前記放電電圧と、前記放電電流と、前記内部抵抗とに基づいて、前記負荷装置が前記蓄電池から取得可能な最大電力を示す許容電力を計算し、
 前記負荷装置が前記許容電力以下の電力で動作するように前記負荷装置に制御信号を送る。
 本開示の一態様に係る電子装置によれば、従来よりも高精度に電力消費を制御することができる。
実施形態に係る電子装置1の構成を示すブロック図である。 図1の充電回路11の構成を示すブロック図である。 図1の制御回路14によって実行される充電制御処理を示すフローチャートである。 図3のステップS1~S11を繰り返し実行することによる内部抵抗Ra(1)~Ra(6)の計算を説明するグラフである。 図3のステップS3~S8を実行することによる内部抵抗Ra(i)の計算を説明するグラフである。 図3のステップS8において使用される、バッテリーセル12aの温度Tempに関する補正係数を示すテーブルである。 図1の制御回路14によって実行される放電制御処理を示すフローチャートである。 図7のステップS24において充電率範囲Cdを計算するために使用されるテーブルである。 図7のステップS25においてバッテリーパック12から出力可能な最大電力W1を決定するために使用されるテーブルである。 図1の制御回路14によって実行される割り込み処理を示すフローチャートである。
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 [実施形態]
 [実施形態の構成]
 図1は、実施形態に係る電子装置1の構成を示すブロック図である。電子装置1は、バッテリーパック12を備え、バッテリーパック12によって供給される電力により動作可能である。電子装置1は、例えば、携帯型のパーソナルコンピュータ(例えば、ノートブック型コンピュータ、タブレット型コンピュータ)、携帯電話機などであってもよい。電子装置1は、AC/DC変換器3を介して交流電源2に接続される。AC/DC変換器3は、交流電源2から供給される交流電力を直流電力に変換して電子装置1に供給し、電子装置1は、AC/DC変換器3から供給された電力により動作し、また、内部のバッテリーパック12に充電する。
 電子装置1は、充電回路11、バッテリーパック12、DC/DC変換器13、制御回路14、スイッチSW、及び負荷装置20を備える。
 図1において、太線は電力線を示し、細線は信号線を示す。
 充電回路11は、AC/DC変換器3から供給された電力により、バッテリーパック12に充電する。充電回路11は、バッテリーパック12の充電率に応じて可変な電圧及び可変な電流で、例えば、定電流モード、定電圧モード、及び定電力モードのいずれかで、バッテリーパック12に電力を供給する。
 バッテリーパック12は、複数のバッテリーセル12a、電流センサ12b、電圧センサ12c、温度センサ12d、及び不揮発性メモリ12eを備える。各バッテリーセル12aは、充放電可能な二次電池である。複数のバッテリーセル12aは、互いに直列及び/又は並列に接続され、それらの全体として所定の内部抵抗Rdを有する。バッテリーパック12の内部抵抗Rdは、後述するように制御回路14によって計算される。電流センサ12bは、充電回路11からバッテリーパック12に供給される電流(以下、バッテリーパック12の「充電電流Ib」ともいう)を検出して充電回路11及び制御回路14に通知する。また、電流センサ12bは、バッテリーパック12からDC/DC変換器13を介して負荷装置20に供給される電流(以下、バッテリーパック12の「放電電流Id」ともいう)を検出して制御回路14に通知する。電圧センサ12cは、バッテリーパック12の正極及び負極にわたる電圧を検出して充電回路11及び制御回路14に通知する。以下、充電時及び放電時におけるバッテリーパック12の電圧をそれぞれ、バッテリーパック12の「充電電圧Vb」及び「放電電圧Vd」ともいう。温度センサ12dは、各バッテリーセル12aの温度を検出して制御回路14に通知する。不揮発性メモリ12eは、制御回路14によって計算されたバッテリーパック12の内部抵抗Rdを格納する。
 バッテリーパック12は、電子装置1に対して着脱可能であるように構成されてもよく、電子装置1に内蔵されてもよい。
 バッテリーパック12は、蓄電池の一例である。
 スイッチSWは、AC/DC変換器3から供給された電力と、バッテリーパック12から放電された電力とのうちの一方を、制御回路14の制御下で選択的に、DC/DC変換器13に供給する。
 DC/DC変換器13は、AC/DC変換器3から供給された電力又はバッテリーパック12から放電された電力により、1つの直流電圧又は互いに異なる複数の直流電圧を発生し、発生した直流電圧を負荷装置20に供給する。
 制御回路14は、充電回路11、スイッチSW、及び負荷装置20の中央処理装置(CPU)21の動作を制御する。制御回路14は、例えば、コンピュータのためのEC(Embedded Controller)と呼ばれるタイプのマイクロコントローラであってもよい。
 負荷装置20は、中央処理装置(CPU)21、メモリ22、記憶装置23、表示装置24、入力装置25、及び通信インターフェース(I/F)26を備える。CPU21は、記憶装置23に格納されたプログラムを実行し、負荷装置20の他の構成要素22~26の動作を制御する。メモリ22は、電子装置1の動作に必要なプログラム及びデータを一時的に記憶する。記憶装置23は、電子装置1の動作に必要なプログラム及びデータを格納する。記憶装置23は、例えば、ソリッドステートドライブ又はハードディスクドライブを含んでもよい。表示装置24は、CPU21によって実行されたプログラムの結果を表示する。入力装置25は、電子装置1の動作を制御するユーザ入力を受ける。入力装置25は、例えば、キーボード及びポインティングデバイスを含む。通信インターフェース26は、有線回線及び/又は無線回線を介して外部装置に通信可能に接続される。通信インターフェース26は、USB(Universal Serial Bus)など、周辺機器に接続するためのインターフェースを含んでもよい。
 CPU21は、互いに異なる電力でそれぞれ動作する複数のパフォーマンス状態を有する。これらのパフォーマンス状態は、例えば、ACPI(Advanced Configuration and Power Interface)仕様書によって定義される、Pxパフォーマンス状態(x=0,1,…,n)であってもよい。ここで、「n」は、CPU21に依存する予め決められた最大値である。P0パフォーマンス状態において、CPU21は、その最大性能で動作し、最大の電力を消費する。P1パフォーマンス状態において、CPU21は、P0パフォーマンス状態の場合よりも低い性能で動作し、P0パフォーマンス状態の場合よりも小さな電力で動作する。以後、「Px」の数字が増大するにつれてCPU21の性能及び消費電力が低下し、Pnパフォーマンス状態において、CPU21は、アクティブ状態を維持しながら、その最低性能で動作し、最小の電力を消費する。
 CPU21は、演算回路の一例である。
 図2は、図1の充電回路11の構成を示すブロック図である。充電回路11は、DC/DC変換器31、充電制御回路32、基準電圧源33、及び比較器34を備える。DC/DC変換器31は、例えば、複数のスイッチング素子、インダクタ、及びパルス幅変調回路などを備える、昇降圧型の電力変換器である。充電制御回路32は、電圧センサ12cによって検出された充電電圧Vb及び電流センサ12bによって検出された充電電流Ibに基づいて、DC/DC変換器31の動作を制御する。具体的には、充電制御回路32は、充電電圧Vb及び充電電流Ibに基づいてバッテリーパック12の充電率を計算し、充電率に応じて所望電圧及び所望電流を発生するように、DC/DC変換器31の各スイッチング素子のスイッチング周波数及びデューティ比を制御する。また、充電制御回路32は、制御回路14からの制御信号に従って、バッテリーパック12の充電を一時停止及び再開する。基準電圧源33は、所定のしきい値電圧Vminを表す基準電圧を発生する。しきい値電圧Vminは、電子装置1の瞬断が発生するおそれがある低い電圧を示す。比較器34は、電圧センサ12cによって検出された放電電圧Vdがしきい値電圧Vminよりも小さくなったとき、割り込み信号を発生して制御回路14及びCPU21に送る。
 再び図1を参照すると、制御回路14は、バッテリーパック12の充電電圧Vb及び充電電流Ibに基づいて、バッテリーパック12の内部抵抗Rdを計算する。制御回路14は、バッテリーパック12の放電電圧Vd、放電電流Id、及び内部抵抗Rdに基づいて、CPU21がバッテリーパック12から取得可能な最大電力を示す許容電力Wを計算する。制御回路14は、CPU21が許容電力W以下の電力で動作するようにCPU21に制御信号を送る。
 また、制御回路14は、バッテリーパック12の放電電圧Vdが低下して電子装置1の瞬断が発生するおそれがあるとき、内部抵抗Rdを補正して許容電力Wを再計算する。
 CPU21は、制御回路14からの制御信号に従って、CPU21が許容電力以下の電力で動作するように、複数のパフォーマンス状態のうちの1つで選択的に動作する。
 制御回路14は、CPU21の熱管理の目的で、CPU21に対して何らかのしきい値電力を設定してもよい。例えば、インテル コーポレーションのintel(登録商標) coreプロセッサによって使用されるPL4(Power Limit 4)のしきい値電力を設定し、PL4を超える電力スパイクを防ぐようにCPU21の動作周波数を制限してもよい。
 [実施形態の動作]
 制御回路14は、以下に説明する充電制御処理、放電制御処理、及び割り込み処理を実行することにより、電子装置1の動作を制御する。
 [充電制御処理]
 図3は、図1の制御回路14によって実行される充電制御処理を示すフローチャートである。バッテリーパック12は、使用し続けることにより劣化して内部抵抗Rdが増大し、その結果、供給可能な電力及び電力量が減少する。充電制御処理において、制御回路14は、バッテリーパック12に充電しながら、バッテリーパック12の内部抵抗Rdを測定する。
 ステップS1において、制御回路14は、パラメータiを1に設定する。本実施形態では、バッテリーパック12の内部抵抗を測定するために、制御回路14は、バッテリーパック12の充電中に内部抵抗を複数N回にわたって測定し、複数個の内部抵抗の平均を計算する。パラメータiは、内部抵抗の測定回数を表すパラメータである。
 ステップS2において、制御回路14は、バッテリーパック12の充電率のしきい値Th(i)を設定する。本実施形態では、制御回路14は、バッテリーパック12の充電率が予め決められた複数のしきい値Th(i)のいずれかに到達するごとに、バッテリーパック12の内部抵抗Ra(i)を測定する。
 図4は、図3のステップS1~S11を繰り返し実行することによる内部抵抗Ra(1)~Ra(6)の計算を説明するグラフである。図4の例では、バッテリーパック12の充電率について、6個のしきい値Th(1)=65%、Th(2)=70%、Th(3)=75%、Th(4)=80%、Th(5)=85%、及びTh(6)=90%を使用する。すなわち、複数のしきい値Th(i)は、ステップS1~S11の繰り返しの回数(パラメータi:内部抵抗の測定回数)に応じた値である。ここでは、パラメータiが大きくなるほど、複数のしきい値Th(i)は大きくなっている。図4の例では、制御回路14は、バッテリーパック12の充電率がしきい値Th(1)~Th(6)に到達するごとに、対応するバッテリーパック12の内部抵抗Ra(1)~Ra(6)をそれぞれ測定する。
 再び図3を参照すると、ステップS3において、制御回路14は、電圧センサ12cを用いてバッテリーパック12の充電電圧Vbを測定し、電流センサ12bを用いてバッテリーパック12の充電電流Ibを測定する。制御回路14は、例えば数十ミリ秒~数百ミリ秒の頻度で、充電電圧Vb及び充電電流Ibを周期的に測定してもよい。ステップS3においてさらに、制御回路14は、バッテリーパック12の充電電圧Vbに基づいて、バッテリーパック12の充電率を計算する。基本的に、蓄電池の電圧と充電率とには一定の関係があるので、電圧から充電率を概算することができる。
 ステップS4において、制御回路14は、バッテリーパック12の充電率がしきい値Th(i)に到達したか否かを判断し、YESのときはステップS5に進み、NOのときはステップS3に戻る。
 ステップS5において、制御回路14は、バッテリーパック12の充電を一時的に停止するように充電回路11を制御する。
 ステップS6において、制御回路14は、バッテリーパック12の充電を停止してから1秒以下の予め決められた待機時間の経過後、電圧センサ12cを用いてバッテリーパック12の電圧Vaを検出する。
 ステップS7において、制御回路14は、温度センサ12dを用いて各バッテリーセル12aの温度Tempを測定する。
 ステップS8において、制御回路14は、バッテリーパック12の電圧Va,Vb、電流Ib、及び温度Tempに基づいて、バッテリーパック12の内部抵抗Ra(i)を計算する。
 図5は、図3のステップS3~S8を実行することによる内部抵抗Ra(i)の計算を説明するグラフである。図5の上段は、電圧センサ12cによって検出されるバッテリーパック12の電圧を示し、図5の下段は、電流センサ12bによって検出されるバッテリーパック12の電流を示す。図5の例では、バッテリーパック12の電圧が電圧Vbに到達したとき、バッテリーパック12の充電率がしきい値Th(i)に到達する。このため、時刻t1において、バッテリーパック12の充電が一時的に停止され、バッテリーパック12の電流はゼロになる。制御回路14は、バッテリーパック12の充電を停止する直前における電圧Vb及び電流Ibを取得する。その後、制御回路14は、バッテリーパック12の充電を停止してから1秒間の待機時間の経過後、時刻t2において、バッテリーパック12の電圧Vaを取得する。制御回路14は、次式のように電圧Vb,Vaの電位差を電流Ibにより除算することで、内部抵抗Ra(i)を計算する。一例において、バッテリーパック12の充電を停止する「直前」とは、時刻t1から1秒以内の時刻を意味する。
Ra(i)=(Vb-Va)/Ib
 バッテリーパック12の内部抵抗は、複素インピーダンスZ=R+jXで表され、抵抗成分R及びリアクタンス成分Xに分解することができる。内部抵抗の計算におけるリアクタンス成分Xの寄与分が大きいと、内部抵抗の計算値が過大になり、バッテリーパック12によって供給可能な電力を小さく見積もってしまうことになる。従って、内部抵抗の計算におけるリアクタンス成分Xの寄与分を低減し、専ら抵抗成分Rに基づいて内部抵抗を計算することが求められる。本発明者らは、バッテリーパック12の充電を停止する直前の電圧Vbと、バッテリーパック12の充電を停止してから1秒以下の待機時間の経過後の電圧Vaとの電位差に基づいて内部抵抗Ra(i)を計算することにより、リアクタンス成分Xの寄与分を低減し、専ら抵抗成分Rを抽出できることを実験的に確認した。
 図6は、図3のステップS8において使用される、バッテリーセル12aの温度Tempに関する補正係数を示すテーブルである。各バッテリーセル12aの温度Tempが変動すると、バッテリーパック12によって供給可能な電力もまた変動する。従って、制御回路14は、バッテリーセル12aの温度Tempに基づいて内部抵抗Ra(i)を補正する。具体的には、制御回路14は、内部抵抗Ra(i)を測定したときの各バッテリーセル12aの温度Tempに応じて、内部抵抗Ra(i)に補正係数kを乗算する。図6の例では、温度Tempは、T1<25度<T2<T3の順で次第に増大する。補正係数kは、各温度T1,T2,T3で測定された内部抵抗を、25℃の常温で測定された内部抵抗に換算するように設定される。
 再び図3を参照すると、ステップS9において、制御回路14は、電圧Vaの検出後、バッテリーパック12の充電を再開するように充電回路11を制御する(図5の時刻t3を参照)。制御回路14は、例えばバッテリーパック12の充電を停止してから60秒後に、バッテリーパック12の充電を再開してもよい。
 ステップS10において、制御回路14は、パラメータiが予め決められた最大値N(図4の例では、N=6)に到達したか否かを判断し、YESのときはステップS12に進み、NOのときはステップS11に進む。言いかえると、ステップS10において、制御回路14は、予め決められたすべてのしきい値Th(i)に対応するすべての内部抵抗Ra(i)を計算したか否かを判断する。
 ステップS11において、制御回路14は、パラメータiを1だけインクリメントして、ステップS2に戻る。制御回路14は、バッテリーパック12の充電の一時的な停止(ステップS5)、内部抵抗Ra(i)の計算(ステップS8)、及びバッテリーパック12の充電の再開(ステップS9)を繰り返すことで、複数の内部抵抗Ra(1)~Ra(N)を取得する。
 ステップS12において、制御回路14は、内部抵抗Ra(1)~Ra(N)の平均により内部抵抗Rmを計算する。例えば、図4に示すように、バッテリーパック12の充電中に内部抵抗Ra(i)を6回測定する場合には、平均の内部抵抗Rmは次式により計算される。
Rm=[Ra(1)+Ra(2)+…+Ra(6)]/6
 制御回路14は、平均の内部抵抗Rmを計算する前に、取得された内部抵抗Ra(1)~Ra(N)が外れ値であるか否かを判断してもよい。この場合、制御回路14は、外れ値である内部抵抗Ra(i)を除外し、残りの内部抵抗Ra(j)(1≦j≦N,i≠j)の平均により内部抵抗Rmを計算する。
 また、制御回路14は、許容される内部抵抗の下限値Rmin及び上限値Rmaxを予め設定し、計算された内部抵抗Rmが下限値Rminよりも小さい又は上限値Rmaxよりも大きい場合、内部抵抗Rmの値を丸めてもよい。例えば、Rm>Rmaxである場合、測定結果Rm=Rmaxとして処理してもよい。
 ステップS13において、制御回路14は、不揮発性メモリ12eから、以前に計算された内部抵抗Rdを内部抵抗Rd(old)として読み出す。
 ステップS14において、制御回路14は、以前に計算された内部抵抗Rd(old)と、新たに計算された内部抵抗Rmとの移動平均により、更新された内部抵抗Rd(new)を計算する。例えば、以前に計算された内部抵抗Rd(old)に対して3/4の重み付けを与える場合、更新された内部抵抗Rd(new)は次式により計算される。
Rd(new)=Rd(old)×3/4+Rm×1/4
 以上のように、制御回路14は、以前に計算された内部抵抗Rd(old)と、内部抵抗Rd(old)の重み(3/4)と、新たに計算された内部抵抗Rmと、内部抵抗Rmの重み(1/4)とを用いて、更新された内部抵抗Rd(new)としての加重移動平均を計算している。ステップS15において、制御回路14は、更新された内部抵抗Rd(new)を内部抵抗Rdとして不揮発性メモリ12eに格納し、処理を終了する。
 図3の充電制御処理によれば、バッテリーパック12に充電しながら、バッテリーパック12の内部抵抗Rdを測定することができる。
 図3の充電制御処理によれば、バッテリーパック12の充電を停止する直前の電圧Vbと、バッテリーパック12の充電を停止してから1秒以下の待機時間の経過後の電圧Vaとの電位差に基づいて内部抵抗Ra(i)を計算することにより、リアクタンス成分Xの寄与分を低減し、専ら抵抗成分Rを抽出することができる。従って、図3の充電制御処理によれば、バッテリーパック12の内部抵抗Rdを高精度に測定することができる。
 図3の充電制御処理では、バッテリーパック12の充電を停止してから電圧Vaを測定するまでの待機時間は、内部抵抗Rdの抵抗成分Rが、電解液移動抵抗、リード抵抗、及び電荷移動抵抗などに起因する高周波成分を含むように設定される。待機時間の下限は、制御時に発生する負荷の継続時間以上に設定される。待機時間の上限は任意であるが、待機時間を増大させると、前述したように、内部抵抗の計算におけるリアクタンス成分Xの寄与分が大きくなって内部抵抗の計算値が過大になり、バッテリーパック12によって供給可能な電力を小さく見積もってしまうことになる。
 電子装置1がAC/DC変換器3を介して交流電源2に接続されているのであれば、電子装置1の電源がオフされているときであっても、制御回路14は図3の充電制御処理を実行してもよい。これにより、電子装置1の電源がオフされているときであっても、バッテリーパック12に充電し、バッテリーパック12の内部抵抗Rdを測定することができる。
 [放電制御処理]
 図7は、図1の制御回路14によって実行される放電制御処理を示すフローチャートである。放電制御処理は、外部の交流電源2及びAC/DC変換器3から電子装置1への電力供給が停止したとき、バッテリーパック12から負荷装置20に電力を供給するために実行される。
 ステップS21において、制御回路14は、外部の交流電源2及びAC/DC変換器3から電子装置1への電力供給が停止したとき、バッテリーパック12からの放電を開始するようにスイッチSWを制御する。それに代わって、制御回路14は、電子装置1が交流電源2及びAC/DC変換器3に接続されていない状態で電子装置1の電源がオンされたとき、バッテリーパック12からの放電を開始してもよい。
 ステップS22において、制御回路14は、不揮発性メモリ12eから内部抵抗Rdを読み出す。
 ステップS23において、制御回路14は、電圧センサ12cを用いてバッテリーパック12の放電電圧Vdを測定し、電流センサ12bを用いてバッテリーパック12の放電電流Idを測定し、温度センサ12dを用いてバッテリーパック12の温度Tempを測定する。
 ステップS24において、制御回路14は、バッテリーパック12の放電電圧Vd及び放電電流Idに基づいて、充電率が複数の充電率範囲Cdのうちのいずれに含まれるかを決定する。
 図8は、図7のステップS24において充電率範囲Cdを計算するために使用されるテーブルである。図8の例では、Cd0は、0~49%の充電率を表し、Cd50は、50~79%の充電率を表し、Cd80は、80~100%の充電率を表す。制御回路14は、放電電圧Vd及び放電電流Idに基づいて、充電率が充電率範囲Cd0、Cd50、及びCd80のうちのいずれに含まれるかを決定する。
 前述したように、基本的に、蓄電池の電圧と充電率とには一定の関係があり、無負荷であれば、電圧から充電率を概算することができる。しかしながら、負荷がある場合、すなわち、放電電流(又は充電電流)が流れている場合には、流れた電流の大きさに応じて電圧が変位するので、充電率範囲Cdを決定するために電流の大きさも参照する。
 再び図7を参照すると、ステップS25において、制御回路14は、バッテリーパック12の充電率範囲Cd及び温度Tempに基づいて、バッテリーパック12から出力可能な最大電力W1を決定する。最大電力W1は、バッテリーパック12の内部抵抗Rdが最大値Rmaxに等しい場合にバッテリーパック12から出力可能な最大の電力を示す。
 図9は、図7のステップS25においてバッテリーパック12から出力可能な最大電力W1を決定するために使用されるテーブルである。制御回路14は、充電率範囲Cd及び温度Tempに基づいて、最大電力W1が10W、20W、30W、40W、及び45Wのうちのいずれであるかを決定する。
 再び図7を参照すると、ステップS26において、制御回路14は、バッテリーパック12から出力可能な最大電力W1と、バッテリーパック12の内部抵抗Rdとに基づいて、次式を用いて、CPU21がバッテリーパック12から取得可能な最大電力を示す許容電力Wを計算する。
W=(W1-W2)×((Rmax+Re)/(Rd+Re))+W2
 ここで、W2は、電子装置1のCPU21以外の構成要素によって消費される電力などを含む、バッテリーパック12から出力しなければならない最小電力を示す。また、Reは、バッテリーパック12の内部抵抗Rd以外の電子装置1の回路抵抗を示す。
 前述したように、バッテリーパック12から出力可能な最大電力W1は、バッテリーパック12の充電率範囲Cdに基づいて決定され、充電率範囲Cdは、バッテリーパック12の放電電圧Vd及び放電電流Idに基づいて決定される。従って、等価的に、許容電力Wは、バッテリーパック12の放電電圧Vd、放電電流Id、及び内部抵抗Cdに基づいて決定される。また、バッテリーパック12から出力可能な最大電力W1は、バッテリーパック12の温度Tempに基づいて決定されているので、等価的に、許容電力Wは、温度Tempによって補正されている。
 ステップS27において、制御回路14は、許容電力WをCPU21に設定する。これにより、CPU21は、許容電力W以下の電力のみをバッテリーパック12から取得するように、複数のパフォーマンス状態のうちの1つに設定される。
 ステップS28において、制御回路14は、電圧センサ12cを用いてバッテリーパック12の放電電圧Vdを測定し、電流センサ12bを用いてバッテリーパック12の放電電流Idを測定し、温度センサ12dを用いてバッテリーパック12の温度Tempを測定する。
 ステップS29において、制御回路14は、ステップS28において測定された放電電圧Vd、放電電流Id、及び温度Tempのいずれかが、以前に測定された対応する値から有意に変動したか否かを判断し、YESのときはステップS24に戻り、NOのときはステップS28に戻る。ここで、「有意に変動する」とは、図8のテーブルにおいて充電率範囲Cdの変更が必要になるほど放電電圧Vdもしくは放電電流Idが変化すること、又は、図9のテーブルにおいて最大電力W1の変更が必要になるほど充電率範囲Cd又は温度Tempが変化することを意味する。
 図7の放電制御処理によれば、図3の充電制御処理を行うことによって測定されたバッテリーパック12の内部抵抗Rdに基づいてCPU21の許容電力を設定することができる。これにより、正確な内部抵抗Rdに基づいて、CPU21の電力消費を従来よりも高精度に制御することができる。
 [割り込み処理]
 図10は、図1の制御回路14によって実行される割り込み処理を示すフローチャートである。割り込み処理は、電子装置1がバッテリーパック12から放電された電力により動作している場合(すなわち、図7の放電制御処理の実行中)、バッテリーパック12の放電電圧が低下して電子装置1の瞬断が発生するおそれがあるときに実行される。
 前述したように、充電回路11は、電圧センサ12cによって検出された放電電圧Vdがしきい値電圧Vminよりも小さくなったとき、割り込み信号を発生して制御回路14及びCPU21に送る。
 割り込み信号は、例えば、インテル コーポレーションのintel coreプロセッサによって使用されるprochot信号であってもよい。prochot信号は、プロセッサが高温であるときにアサートされ、プロセッサをPnパフォーマンス状態に遷移させる。prochot信号を用いることにより、CPU21は、アクティブ状態を維持しながら、その最低性能で動作し、最小の電力を消費する状態に遷移させるので、電子装置1の瞬断が回避される。
 ステップS31において、制御回路14は、充電回路11から割り込み信号を受信する。
 ステップS32において、制御回路14は、不揮発性メモリ12eから内部抵抗Rdを読み出す。
 ステップS33において、制御回路14は、1より大きい予め決められた補正係数、例えば1.05により、内部抵抗Rdを増大させるように内部抵抗Rdを補正する。
 ステップS34において、制御回路14は、補正された内部抵抗Rdを不揮発性メモリ12eに格納する。
 ステップS35において、制御回路14は、電圧センサ12cを用いてバッテリーパック12の放電電圧Vdを測定し、電流センサ12bを用いてバッテリーパック12の放電電流Idを測定し、温度センサ12dを用いてバッテリーパック12の温度Tempを測定する。
 ステップS36において、制御回路14は、図7のステップS24と同様に、バッテリーパック12の放電電圧Vd及び放電電流Idに基づいて、充電率が複数の充電率範囲Cdのうちのいずれに含まれるかを決定する。
 ステップS37において、制御回路14は、図7のステップS25と同様に、バッテリーパック12の充電率範囲Cd及び温度Tempに基づいて、バッテリーパック12から出力可能な最大電力W1を決定する。
 ステップS38において、制御回路14は、図7のステップS26と同様に、バッテリーパック12から出力可能な最大電力W1と、バッテリーパック12の内部抵抗Rdとに基づいて、CPU21がバッテリーパック12から取得可能な最大電力を示す許容電力Wを計算する。
 ステップS39において、制御回路14は、許容電力WをCPU21に設定する。これにより、CPU21は、prochot信号に応じて開始されたPnパフォーマンス状態を終了し、許容電力W以下の電力のみをバッテリーパック12から取得するように、複数のパフォーマンス状態のうちの1つに設定される。
 ステップS39の実行後、制御回路14は、図7の放電制御処理に戻る。
 内部抵抗Rdを実際より小さく計算してしまった場合、実際の許容電力Wより大きな値がCPU21に設定されてしまう。図10の割り込み処理によれば、バッテリーパック12の放電電圧が低下して電子装置1の瞬断が発生するおそれがあるとき、内部抵抗Rdを補正して許容電力Wを再計算することにより、電子装置1の瞬断を回避しながら、CPU21の電力消費を高精度に制御することができる。
 [実施形態の効果等]
 本開示の一態様に係る電子装置1は、バッテリーパック12と、バッテリーパック12に充電する充電回路11と、バッテリーパック12の電力により動作する負荷装置20と、バッテリーパック12の充電電圧及び放電電圧を検出する電圧センサ12cと、バッテリーパック12の充電電流及び放電電流を検出する電流センサ12bと、制御回路14とを備える。制御回路14は、充電電圧及び充電電流に基づいてバッテリーパック12の内部抵抗を計算し、放電電圧と、放電電流と、内部抵抗とに基づいて、負荷装置20がバッテリーパック12から取得可能な最大電力を示す許容電力を計算し、負荷装置20が許容電力以下の電力で動作するように負荷装置20に制御信号を送る。
 このように、測定されたバッテリーパック12の内部抵抗Rdに基づいて負荷装置20の許容電力を設定することにより、従来よりも高精度に電力消費を制御することができる。
 本開示の一態様に係る電子装置1によれば、制御回路14は、バッテリーパック12の充電時において、バッテリーパック12の充電を一時的に停止するように充電回路11を制御してもよい。この場合、制御回路14は、バッテリーパック12の充電を停止する直前におけるバッテリーパック12の充電電圧(第1の電圧)を検出する。また、制御回路14は、バッテリーパック12の充電を停止してから1秒以下の予め決められた待機時間の経過後におけるバッテリーパック12の第2の電圧を検出する。また、制御回路14は、バッテリーパック12の充電を停止する直前における充電電流である第1の電流を検出する。また、制御回路14は、第1及び第2の電圧の電位差を第1の電流により除算することで内部抵抗を計算する。また、制御回路14は、第2の電圧の検出後、バッテリーパック12の充電を再開するように充電回路11を制御する。
 このように、バッテリーパック12の充電を停止する直前の電圧Vbと、バッテリーパック12の充電を停止してから1秒以下の待機時間の経過後の電圧Vaとの電位差に基づいて内部抵抗Ra(i)を計算することにより、バッテリーパック12の内部抵抗Rdを高精度に測定することができる。
 本開示の一態様に係る電子装置1によれば、制御回路14は、バッテリーパック12の充電の一時的な停止、内部抵抗の計算、及びバッテリーパック12の充電の再開を繰り返すことで、複数の内部抵抗を取得してもよい。この場合、制御回路14は、放電電圧と、放電電流と、複数の内部抵抗の平均とに基づいて、許容電力を計算する。
 このように、複数の内部抵抗の平均を計算することにより、バッテリーパック12の内部抵抗Rdを高精度に測定することができる。
 本開示の一態様に係る電子装置1によれば、制御回路14は、以前に計算された内部抵抗と、新たに計算された内部抵抗との移動平均を計算してもよい。この場合、制御回路14は、放電電圧と、放電電流と、内部抵抗の移動平均とに基づいて、許容電力を計算する。
 このように、内部抵抗の移動平均を計算することにより、バッテリーパック12の内部抵抗Rdを高精度に測定することができる。
 本開示の一態様に係る電子装置1によれば、電子装置1は、バッテリーパック12の温度を検出する温度センサ12dをさらに備えてもよい。この場合、制御回路14は、バッテリーパック12の温度に基づいて内部抵抗及び許容電力を補正する。
 このように、バッテリーパック12の温度に基づいて内部抵抗及び許容電力を補正することにより、高精度に電力消費を制御することができる。
 本開示の一態様に係る電子装置1によれば、制御回路14は、放電電圧が予め決められたしきい値より小さくなった場合、1より大きい予め決められた補正係数により内部抵抗を増大させるように内部抵抗を補正してもよい。この場合、制御回路14は、放電電圧と、放電電流と、補正された内部抵抗とに基づいて、許容電力を計算する。
 このように、内部抵抗Rdを補正して許容電力Wを再計算することにより、電子装置1の瞬断を回避しながら、負荷装置20の電力消費を高精度に制御することができる。
 本開示の一態様に係る電子装置1によれば、負荷装置20は演算回路を含んでもよい。
 これにより、CPU21などの演算回路の電力消費を従来よりも高精度に制御することができる。
 本開示の一態様に係る電子装置1によれば、演算回路は、互いに異なる電力でそれぞれ動作する複数のパフォーマンス状態を有してもよい。この場合、制御回路14は、制御信号に従って、演算回路が許容電力以下の電力で動作するように、複数のパフォーマンス状態のうちの1つで選択的に動作する。
 これにより、CPU21などの演算回路の電力消費を従来よりも高精度に制御することができる。
 本開示の一態様に係る電子装置1の制御方法は、バッテリーパック12と、バッテリーパック12の電力により動作する負荷装置とを備えた電子装置を制御する。本方法は、バッテリーパック12の充電電圧及び充電電流に基づいてバッテリーパック12の内部抵抗を計算するステップを含む。本方法は、バッテリーパック12の放電電圧及び放電電流と、内部抵抗とに基づいて、負荷装置がバッテリーパック12から取得可能な最大電力を示す許容電力を計算するステップを含む。本方法は、負荷装置が許容電力以下の電力で動作するように負荷装置を制御するステップを含む。
 このように、測定されたバッテリーパック12の内部抵抗Rdに基づいて負荷装置20の許容電力を設定することにより、従来よりも高精度に電力消費を制御することができる。
 [他の実施形態]
 以上のように、本出願において開示する技術の例示として、実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。また、上記実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
 そこで、以下、他の実施形態を例示する。
 制御回路14は、CPU21に限らず、互いに異なる電力でそれぞれ動作する複数のパフォーマンス状態を有する任意の演算回路を制御してもよい。演算回路は、例えば、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などであってもよい。
 図1の例では、放電電圧Vdがしきい値電圧Vminよりも小さくなったとき、充電回路11が割り込み信号を発生して制御回路14及びCPU21に送っている。それに代わって、制御回路14が、しきい値電圧Vminを表す基準電圧を発生する基準電圧源を備え、放電電圧Vdがしきい値電圧Vminよりも小さくなったとき、制御回路14が割り込み信号を発生してCPU21に送ってもよい。
 各バッテリーセル12aの仕様に応じて、図6に示すものとは異なる温度Temp及び補正係数kが使用されてもよい。また、各バッテリーセル12aの仕様に応じて、図8に示すものとは異なる他の充電率範囲Cdが使用されてもよい。また、各バッテリーセル12aの仕様に応じて、図9に示すものとは異なる範囲及び個数を有する他の最大電力W1が使用されてもよい。
 図6の例では、温度Temp及び補正係数kのテーブルを用いてバッテリーパック12の内部抵抗Ra(i)を補正したが、制御回路14は、テーブルに代えて何らかの計算式を用いて内部抵抗Ra(i)を補正してもよい。また、図8の例では、放電電圧Vd及び放電電流Idのテーブルを用いて充電率範囲Cdを決定したが、制御回路14は、テーブルに代えて何らかの計算式を用いて充電率範囲Cdを計算してもよい。また、図9の例では、充電率範囲Cd及び温度Tempのテーブルを用いて最大電力W1を決定したが、制御回路14は、テーブルに代えて何らかの計算式を用いて最大電力W1を計算してもよい。
 電流センサ12b及び電圧センサ12cは、バッテリーパック12の外部に設けられてもよい。
 バッテリーパック12が着脱可能ではなく電子装置1に内蔵される場合、バッテリーパック12の内部抵抗は、制御回路14の内部の不揮発性メモリに格納されてもよい。
 以上のように、本開示における技術の例示として、実施形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示の一態様に係る電子装置によれば、従来よりも高精度に電力消費を制御することができ、電子装置のユーザビリティを向上することができる。
1 電子装置
2 交流電源
3 AC/DC変換器
11 充電回路
12 バッテリーパック
12a バッテリーセル
12b 電流センサ
12c 電圧センサ
12d 温度センサ
12e 不揮発性メモリ
13 DC/DC変換器
14 制御回路
20 負荷装置
21 中央処理装置(CPU)
22 メモリ
23 記憶装置
24 表示装置
25 入力装置
26 通信インターフェース(I/F)
31 DC/DC変換器
32 充電制御回路
33 基準電圧源
34 比較器
SW スイッチ

Claims (12)

  1.  蓄電池と、
     前記蓄電池に充電する充電回路と、
     前記蓄電池の電力により動作する負荷装置と、
     前記蓄電池の充電電圧及び放電電圧を検出する電圧センサと、
     前記蓄電池の充電電流及び放電電流を検出する電流センサと、
     制御回路とを備え、
     前記制御回路は、
     前記充電電圧及び前記充電電流に基づいて前記蓄電池の内部抵抗を計算し、
     前記放電電圧と、前記放電電流と、前記内部抵抗とに基づいて、前記負荷装置が前記蓄電池から取得可能な最大電力を示す許容電力を計算し、
     前記負荷装置が前記許容電力以下の電力で動作するように前記負荷装置に制御信号を送る、電子装置。
  2.  前記制御回路は、
     前記蓄電池の充電時において、前記蓄電池の充電を一時的に停止するように前記充電回路を制御し、
     前記蓄電池の充電を停止する直前における前記充電電圧である第1の電圧を検出し、
     前記蓄電池の充電を停止してから1秒以下の予め決められた待機時間の経過後における前記蓄電池の第2の電圧を検出し、
     前記蓄電池の充電を停止する直前における前記充電電流である第1の電流を検出し、
     前記第1及び第2の電圧の電位差を前記第1の電流により除算することで前記内部抵抗を計算し、
     前記第2の電圧の検出後、前記蓄電池の充電を再開するように前記充電回路を制御する、請求項1記載の電子装置。
  3.  前記制御回路は、
     前記充電電圧に基づいて前記蓄電池の充電率を計算し、
     前記充電率がしきい値に到達したか否かを判断し、
     前記充電率が前記しきい値に到達したと判断したとき、前記蓄電池の充電を一時的に停止するように前記充電回路を制御する、請求項2記載の電子装置。
  4.  前記制御回路は、
     前記蓄電池の充電の一時的な停止、前記内部抵抗の計算、及び前記蓄電池の充電の再開を繰り返すことで、複数の内部抵抗を取得し、
     前記放電電圧と、前記放電電流と、前記複数の内部抵抗の平均とに基づいて、前記許容電力を計算する、請求項2記載の電子装置。
  5.  前記制御回路は、
     前記充電電圧に基づいて前記蓄電池の充電率を計算し、
     前記充電率が前記繰り返しの回数に応じたしきい値に到達したか否かを判断し、
     前記充電率が前記繰り返しの回数に応じたしきい値に到達したと判断したとき、前記蓄電池の充電を一時的に停止するように前記充電回路を制御する、請求項4記載の電子装置。
  6.  前記制御回路は、
     以前に計算された内部抵抗と、計算された前記内部抵抗との移動平均を計算し、
     前記放電電圧と、前記放電電流と、前記移動平均とに基づいて、前記許容電力を計算する、請求項1~5のうちの1つに記載の電子装置。
  7.  前記制御回路は、
     以前に計算された内部抵抗と、前記以前に計算された内部抵抗の重みと、計算された前記内部抵抗と、計算された前記内部抵抗の重みとを用いて、加重移動平均を計算し、
     前記放電電圧と、前記放電電流と、前記加重移動平均とに基づいて、前記許容電力を計算する、請求項1~5のうちの1つに記載の電子装置。
  8.  前記電子装置は、前記蓄電池の温度を検出する温度センサをさらに備え、
     前記制御回路は、前記蓄電池の温度に基づいて前記内部抵抗及び前記許容電力を補正する、請求項1~7のうちの1つに記載の電子装置。
  9.  前記制御回路は、前記放電電圧が予め決められたしきい値より小さくなった場合、
     1より大きい予め決められた補正係数により前記内部抵抗を増大させるように前記内部抵抗を補正し、
     前記放電電圧と、前記放電電流と、前記補正された内部抵抗とに基づいて、前記許容電力を計算する、請求項1~8のうちの1つに記載の電子装置。
  10.  前記負荷装置は演算回路を含む、請求項1~9のうちの1つに記載の電子装置。
  11.  前記演算回路は、
     互いに異なる電力でそれぞれ動作する複数のパフォーマンス状態を有し、
     前記制御信号に従って、前記演算回路が前記許容電力以下の電力で動作するように、前記複数のパフォーマンス状態のうちの1つで選択的に動作する、請求項10記載の電子装置。
  12.  蓄電池と、蓄電池の電力により動作する負荷装置とを備えた電子装置の制御方法であって、
     前記蓄電池の充電電圧及び充電電流に基づいて前記蓄電池の内部抵抗を計算ステップと、
     前記蓄電池の放電電圧及び放電電流と、前記内部抵抗とに基づいて、前記負荷装置が前記蓄電池から取得可能な最大電力を示す許容電力を計算するステップと、
     前記負荷装置が前記許容電力以下の電力で動作するように前記負荷装置を制御するステップとを含む、電子装置の制御方法。
PCT/JP2022/026752 2021-07-21 2022-07-05 電子装置及びその制御方法 WO2023002845A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023536679A JPWO2023002845A1 (ja) 2021-07-21 2022-07-05
EP22845779.2A EP4376251A1 (en) 2021-07-21 2022-07-05 Electronic device and control method therefor
CN202280045616.3A CN117581440A (zh) 2021-07-21 2022-07-05 电子装置及其控制方法
US18/536,682 US20240128786A1 (en) 2021-07-21 2023-12-12 Electronic device and method for controlling electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120373 2021-07-21
JP2021-120373 2021-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/536,682 Continuation US20240128786A1 (en) 2021-07-21 2023-12-12 Electronic device and method for controlling electronic device

Publications (1)

Publication Number Publication Date
WO2023002845A1 true WO2023002845A1 (ja) 2023-01-26

Family

ID=84979143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026752 WO2023002845A1 (ja) 2021-07-21 2022-07-05 電子装置及びその制御方法

Country Status (5)

Country Link
US (1) US20240128786A1 (ja)
EP (1) EP4376251A1 (ja)
JP (1) JPWO2023002845A1 (ja)
CN (1) CN117581440A (ja)
WO (1) WO2023002845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295449A (zh) * 2023-05-25 2023-06-23 吉林大学 水下自主航行器路径指示方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165545A (ja) * 2003-12-01 2005-06-23 Sony Corp 電子機器及びバッテリーパック
JP2006129588A (ja) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd 二次電池の電力制御方法及び電源装置
JP2006195945A (ja) 2004-12-14 2006-07-27 Matsushita Electric Ind Co Ltd 電子装置及びそのピーク電力制御方法
JP2010130798A (ja) * 2008-11-27 2010-06-10 Sanyo Electric Co Ltd ハイブリッドカーの充放電制御方法
JP2011257219A (ja) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd 二次電池の内部抵抗又は開放電圧を演算する演算装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165545A (ja) * 2003-12-01 2005-06-23 Sony Corp 電子機器及びバッテリーパック
JP2006129588A (ja) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd 二次電池の電力制御方法及び電源装置
JP2006195945A (ja) 2004-12-14 2006-07-27 Matsushita Electric Ind Co Ltd 電子装置及びそのピーク電力制御方法
JP2010130798A (ja) * 2008-11-27 2010-06-10 Sanyo Electric Co Ltd ハイブリッドカーの充放電制御方法
JP2011257219A (ja) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd 二次電池の内部抵抗又は開放電圧を演算する演算装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295449A (zh) * 2023-05-25 2023-06-23 吉林大学 水下自主航行器路径指示方法及装置

Also Published As

Publication number Publication date
US20240128786A1 (en) 2024-04-18
JPWO2023002845A1 (ja) 2023-01-26
CN117581440A (zh) 2024-02-20
EP4376251A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
JP5527895B2 (ja) 二次電池の制御装置および制御方法
TWI445277B (zh) A charging system, a charging method, and an information processing device
US20090153100A1 (en) Charging control apparatus controlling charging current and control method therefore
US6771042B2 (en) Method and apparatus for implementing smart management of a rechargeable battery
US8203314B2 (en) Surface temperature dependent battery cell charging system
JP5843051B2 (ja) パック電池、及び、二次電池の放電制御方法
JP5506498B2 (ja) 二次電池の充電装置および充電方法
JP6219687B2 (ja) 半導体装置、電池パック及び携帯端末
JP2008228408A (ja) 電池パック、充電器および充電方法
JP5971397B2 (ja) 電池パック
US20240128786A1 (en) Electronic device and method for controlling electronic device
TWI643423B (zh) 電子系統與充電方法
JP2010124629A (ja) 電池パック
JP5332559B2 (ja) 充電装置
JP2010259321A (ja) バッテリー充電器およびバッテリーを充電する方法
US20220255435A1 (en) Bidirectional switching converter and operating method thereof
JP2016096647A (ja) 太陽光発電システム、太陽光発電システムにおける充電制御方法
JP2004015876A (ja) リチウムイオン電池用充電電圧設定装置
JP5587941B2 (ja) 無停電電源装置及び無停電電源供給方法
JP2011182479A (ja) リチウムイオン組電池の充電システムおよび充電方法
TWI763242B (zh) 供電電路及其電源分配方法
JP5014933B2 (ja) 充電制御回路およびそれを利用した電子機器
KR20170142055A (ko) 배터리 충전 장치 및 방법
TW202122817A (zh) 電子裝置
JP2014149165A (ja) 直流電源装置、直流電源装置における蓄電池の劣化判定方法、及び蓄電池劣化判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536679

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045616.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022845779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845779

Country of ref document: EP

Effective date: 20240221