WO2023001104A1 - 具有冷却功能的线缆、电流传输设备及电动汽车 - Google Patents

具有冷却功能的线缆、电流传输设备及电动汽车 Download PDF

Info

Publication number
WO2023001104A1
WO2023001104A1 PCT/CN2022/106259 CN2022106259W WO2023001104A1 WO 2023001104 A1 WO2023001104 A1 WO 2023001104A1 CN 2022106259 W CN2022106259 W CN 2022106259W WO 2023001104 A1 WO2023001104 A1 WO 2023001104A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
conductor
cable
cooling
semiconductor cooling
Prior art date
Application number
PCT/CN2022/106259
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110821578.3A external-priority patent/CN113488282A/zh
Priority claimed from CN202121653535.0U external-priority patent/CN215911237U/zh
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to BR112024001184A priority Critical patent/BR112024001184A2/pt
Priority to EP22845269.4A priority patent/EP4376028A1/en
Priority to KR1020247001101A priority patent/KR20240019348A/ko
Priority to CA3226481A priority patent/CA3226481A1/en
Publication of WO2023001104A1 publication Critical patent/WO2023001104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This article relates to the field of electric current transmission, especially a cable with cooling function, electric current transmission equipment and electric vehicles.
  • the new energy vehicle industry has become a vigorously developed industry, such as the electric vehicle industry, but the current long charging time of electric vehicles has become a bottleneck restricting the widespread use of electric vehicles .
  • the current for fast charging electric vehicles reaches 150A ⁇ 400A.
  • the high current brings high heat generation of charging cables, which is also the main reason for limiting the charging current of electric vehicles.
  • the cooling of high-current charging cables mostly adopts liquid cooling and air cooling technologies.
  • the liquid cooling technology has a good cooling effect, it requires additional cooling pipelines, water pumps, and heat sinks.
  • the system structure is complex, the safety and stability requirements are extremely high, and the cost will increase.
  • the air-cooling technology is limited by the installation size and space, and has low cooling efficiency, which will generate additional noise and affect the NVH (Noise, Vibration, Harshness) of the vehicle.
  • NVH Noise, Vibration, Harshness
  • This article is used to solve the problems of complex structure and high cost in conductor cooling in liquid cooling technology in the prior art, and low cooling efficiency and high noise in conductor cooling in air cooling technology.
  • the first aspect of this paper provides a cable with a cooling function, including: a semiconductor cooling module 101, a conductor 102 and a control module 103;
  • the cooling end of the semiconductor cooling module 101 is arranged on at least one side of the conductor 102 for absorbing the heat dissipation of the conductor 102;
  • the semiconductor cooling module 101 is electrically connected to the control module 103 , and the control module 103 is used to control the electrical signal supplied to the semiconductor cooling module 101 .
  • the second aspect of this document provides a current transmission device, including: the cable 100 with cooling function, the charging module 200 and the battery module 300 described in any one of the above-mentioned embodiments;
  • Two ends of the cooling cable 100 are respectively connected to the charging module 200 and the battery module 300 for conducting the electric energy obtained by the charging module 200 to the battery module 300 .
  • control module 103 is connected to a charging module 200 , and the charging module 200 is used to provide electric energy to the control module 103 .
  • a third aspect of this document provides an electric vehicle, including the current transmission device described in any one of the foregoing embodiments.
  • the cable with cooling function, current transmission equipment and electric vehicle provided in this paper by arranging the cooling layer structure made of semiconductor cooling module on the side of the conductor, the semiconductor cooling module is powered by the control module, can be used when the conductor passes high voltage and large current , the heat generated by it is absorbed by the semiconductor cooling module to reduce the temperature rise of the conductor.
  • the cable with cooling function provided in this paper only needs a semiconductor cooling module and a control module to reduce the temperature of the conductor, so it has the advantage of a simple structure.
  • the cable with cooling function provided in this paper only needs to arrange the semiconductor cooling model on the side of the conductor, so it has the advantage of flexible size.
  • the cable with cooling function provided in this paper is supplied by the control module to control the electric signal of the semiconductor cooling module, so that the semiconductor cooling module cools down the conductor. Therefore, it has the advantages of reliable performance, no noise, and no refrigerant pollution.
  • Fig. 1 shows the structural diagram of the cable with cooling function of this embodiment
  • FIGS. 2A and 2B show a cross-sectional view of a cable with a cooling function according to an embodiment of the present invention
  • Fig. 3 shows another cross-sectional view of a cable with a cooling function according to an embodiment of this paper
  • Fig. 4 shows the first circuit diagram of the cable with cooling function of this embodiment
  • Fig. 5 shows the second circuit diagram of the cable with cooling function in this embodiment
  • Figure 6 shows a partial enlarged view of a cable with a cooling function in this embodiment
  • Fig. 7 shows the first flow chart of the process of adjusting the electrical signal of the semiconductor cooling module by the control module of the embodiment of this paper;
  • Fig. 8 shows the second flow chart of the process of adjusting the electrical signal of the semiconductor cooling module by the control module of the embodiment of this paper;
  • Fig. 9 shows the third flow chart of the process of adjusting the electrical signal of the semiconductor cooling module by the control module of the embodiment of this paper;
  • Fig. 10 shows the sectional view of the current transmission device of the embodiment of this paper
  • Fig. 11 shows the structural diagram of the semiconductor cooling module of the embodiment of this paper
  • Fig. 12 shows a structural diagram of the computer device of the embodiment of this paper.
  • Control module
  • Rectification module
  • Insulation protection layer 107. Insulation protection layer
  • the cooling of large current conductors is mainly realized by using liquid cooling and air cooling technologies.
  • the liquid cooling technology requires additional cooling pipelines, water pumps, and heat dissipation devices, etc., which has complex system structures, extremely high requirements for safety and stability, and will also lead to problems of increased costs.
  • the air-cooling technology is limited by the installation size and space, and has the problems of low cooling efficiency, extra noise, and impact on the NVH of the vehicle.
  • a new type of cable with cooling function is provided.
  • the cable with cooling function provided in this paper has the advantages of simple structure, flexible size, reliable performance, no noise, and no refrigerant pollution. The advantages.
  • the cable with cooling function includes: a semiconductor cooling module 101, a conductor 102 and a control module 103;
  • the cooling end of the semiconductor cooling module 101 is disposed on at least one side of the conductor 102 for absorbing heat dissipation from the conductor 102 .
  • the semiconductor cooling module 101 is electrically connected to the control module 103 , and the control module 103 is used to control the electrical signal supplied to the semiconductor cooling module 101 .
  • the semiconductor cooling module 101 is a tool for heat transfer.
  • a current flows through a thermocouple pair formed by connecting an N-type semiconductor material and a P-type semiconductor material, heat transfer will occur between the two ends, and the heat will be transferred from one end to the other end, thereby generating a temperature difference to form cold and heat. end.
  • the semiconductor cooling module 101 described herein also includes a hot end, which is arranged opposite to the cooling end.
  • the semiconductor cooling module 101 can adopt the existing semiconductor cooling module in the prior art, and can also be customized according to the size of the conductor.
  • the semiconductor cooling module 101 can completely cover the conductor 102 , and can also partially cover the conductor 102 .
  • the heat release or heat absorption of the semiconductor cooling module 101 is determined by the magnitude of the current, so the semiconductor cooling module 101 described herein can be used to control the electrical signal (including current) supplied to the semiconductor cooling module 101 through the control module 103 signal and voltage signal), so as to achieve the effect of controlling the temperature rise of the conductor 102, so that the cable with cooling function can work at a stable temperature.
  • the semiconductor cooling module 101 is powered by the control module 103 (such as low-voltage 12V direct current), and the control module 103 can realize the access control of the semiconductor cooling module 101 by controlling the connection between the semiconductor cooling module 101 and the semiconductor cooling module. In specific implementation, it can be controlled by The staff sets the control logic of the semiconductor cooling module 101 according to the actual needs, such as connecting different semiconductor cooling modules 101 in different time periods, or connecting different electrical signals of the conductor 102 to different semiconductor cooling modules 101, this article controls the supply of the control module 103
  • the electrical signal logic of the semiconductor cooling module is not limited, as long as it is logic that can realize electrical signal control, it belongs to the protection scope of this paper. Through the power supply and control method in this paper, the structure of the cable with cooling function can be simplified, the cooling efficiency can be improved, and energy waste can be avoided.
  • the control module 103 can be a central processing unit (Central Processing Unit, CPU), or other programmable general purpose or special purpose microprocessor (Microprocessor), digital signal processor (Digital Signal Processor, DSP), programmable control Module, application specific integrated circuit (Application Specific Integrated Circuit, ASIC) or other similar components or a combination of the above components, the type and model of the control module 103 are not specifically limited herein.
  • CPU Central Processing Unit
  • Microprocessor microprocessor
  • DSP Digital Signal Processor
  • programmable control Module programmable control Module
  • application specific integrated circuit Application Specific Integrated Circuit
  • the semiconductor cooling module 101 may include multiple semiconductor cooling modules 101.
  • the size of the multiple semiconductor cooling modules 101 may be the same or different, specifically according to the size of the conductor Adjustment.
  • the semiconductor cooling module 101 can have a maximum dimension of more than 60mmX60mm, a thickness of less than 4.1mm, a maximum cooling power of 270W, and a maximum temperature difference of more than 60°C in a single layer.
  • each semiconductor cooling module 101 multiple semiconductor cooling modules 101 are electrically connected to the control module 103 in parallel, so that the power supply signal of each semiconductor cooling module 101 can be individually controlled.
  • the multiple semiconductor cooling modules 101 are electrically connected to the control module 103 in series, so that the power supply signals of each semiconductor cooling module 101 are consistent.
  • a plurality of semiconductor cooling modules 101 can be spaced at regular intervals (as shown in FIG. 1, for example, 10 cm, and the specific spacing distance can be determined according to the temperature rise of the semiconductor cooling modules 101), arranged on the side of the conductor 102, and can also be adjacent to ( That is, no gap) is arranged on the side of the conductor 102, and the specific method of arrangement can be determined according to the temperature rise of the conductor 102 in the working state.
  • the ratio of the total area of the cooling end in the semiconductor cooling module 101 to the area of the conductor 102 ranges from 3% to 95%.
  • the inventor selected 13 cables with the same cross-sectional area, the same material, and the same length, and passed the same current. Different ratios of the area of the cooling end covering the conductor 102 in the semiconductor cooling module 101 are used, and the temperature rise of each cable is read and recorded in Table 1.
  • the experimental method is to conduct the same current on the cables covering the ratio of the total area of the cooling end in different semiconductor cooling modules 101 to the area of the conductor 102 in a closed environment, and record the temperature before power-on and the temperature when the temperature is stable after power-on , and make the difference to get the absolute value.
  • a temperature rise of less than 50K is a qualified value.
  • Table 1 Influence of the ratio of the total area of the cooling end to the area of the conductor 102 in different semiconductor cooling modules 101 on the temperature rise of the cable
  • the semiconductor cooling module 101 is fixed on the conductor 102 by means of heat-conducting glue.
  • other methods such as screw fixing, can be used to fix the semiconductor cooling module 101 on the conductor 102 , which will not be discussed in this article. limited.
  • the semiconductor cooling module 101 can be fixed by additionally adding a fixing frame to improve the shock absorption capability.
  • semiconductor cooling modules 101 are provided on both sides of the conductor 102 .
  • multi-stage cooling can also be achieved by superimposing multi-layer semiconductor cooling modules 101, thereby improving the cooling capacity.
  • double-layer semiconductor cooling modules 101 can also be arranged on both sides of the conductor 102 .
  • the heat generated by the cable 100 with cooling function provided in this embodiment will be absorbed by the semiconductor cooling module 101 covered by the conductor 102 when passing high-voltage and high-current, so as to achieve the purpose of reducing the temperature rise of the conductor.
  • the size of the conductor 102 is constant, Capable of carrying higher currents and meeting temperature rise requirements.
  • the cable with cooling function further includes: a rectification module 104, electrically connected between the control module 103 and the conductor 102, for rectifying the electric energy obtained from the conductor 102, The current in the conductor 102 is converted into a supply current for the control module 103 . Because the current and voltage transmitted by the conductor 102 do not necessarily meet the power supply requirements of the control module 103 and the semiconductor cooling module 101, therefore, in order to obtain electrical energy from the conductor 102, it is also necessary to pass the current drawn from the conductor 102 through the rectification module to convert It is the current and voltage that can be used by the control module 103 and the semiconductor cooling module 101 .
  • the power supply setting can be omitted, and the control module is powered by the conductor 102, which can simplify the circuit and reduce a lot of lines for supplying power to the control module 103 and the semiconductor cooling module 101, and at the same time prevent the semiconductor cooling module 101 from being out of power from the external power supply. Unable to work happens.
  • the cable with cooling function further includes: at least one temperature detector, disposed on the conductor, for detecting the temperature value of the conductor; the control module is electrically connected to the temperature detector, and is used for detecting to adjust the electrical signal supplied to the semiconductor cooling module 101 .
  • the cable with cooling function also includes: a plurality of temperature detectors 105, distributed on the conductor 102, for detecting the temperature value of the conductor 102 .
  • a plurality of temperature detectors 105 distributed on the conductor 102, for detecting the temperature value of the conductor 102 .
  • the control module 103 is electrically connected to the temperature detector 105 for adjusting the electrical signal supplied to the semiconductor cooling module 101 according to the temperature value detected by the temperature detector 105 .
  • the process of the control module 103 adjusting the electrical signal supplied to the semiconductor cooling module 101 according to the temperature value detected by the temperature detector 105 includes: calculating the temperature value detected by the temperature detector 105 and the preset temperature rise value of the conductor 102 The difference is input into the PID control strategy to obtain the electrical control signal of the semiconductor cooling module 101; according to the electrical control signal of the semiconductor cooling module 101, the electrical signal supplied to the semiconductor cooling module 101 is adjusted; Wherein, the control parameters in the PID control strategy are adjusted in advance according to the PID control index.
  • the preset temperature rise value can be determined according to the application scenario of the conductor and the maximum temperature rise value that the conductor can withstand. This article does not limit its specific value.
  • the cable with the cooling function provided in this embodiment can detect the temperature and control the heat absorption in real time after adding the temperature control function, so as to realize the closed-loop control.
  • the temperature rise of the conductor can be controlled differently according to the carrying capacity of the conductor under different conditions.
  • control module 103 adjusts the electrical signal supplied to the semiconductor cooling module 101 according to the temperature value detected by the temperature detector 105, including:
  • Step 701 calculate the temperature distribution of the conductor 102 according to the temperature value detected by the temperature detector 105 .
  • the temperature distribution of the conductor 102 can be established by the B-spline interpolation method. During specific implementation, the temperature distribution of the conductor 102 can also be established through other modeling methods. The process of establishing the temperature distribution is not specifically limited herein.
  • Step 702 according to the temperature distribution of the conductor 102 , determine the power supply signal of each semiconductor cooling module 101 on the conductor 102 .
  • the position where the temperature of the conductor 102 is higher corresponds to a greater power supply signal of the semiconductor cooling module 101 .
  • the control module 103 can determine the power supply signal of each semiconductor cooling module 101 on the conductor 102 according to a preset temperature adjustment strategy (as shown in Table 2).
  • Step 703 supplying power to each semiconductor cooling module 101 according to the power supply signal of each semiconductor cooling module 101 .
  • the above step 702 determines the power supply current of each semiconductor cooling module 101 on the conductor 102 according to the temperature distribution of the conductor 102, including:
  • Step 7021 calculating the difference distribution according to the temperature distribution of the conductor 102 and the preset temperature rise value of the conductor 102;
  • Step 7022 adjust the electrical signal supplied to the semiconductor cooling module 101 according to the difference distribution.
  • step 7022 includes: inputting the difference distribution into the PID control strategy to obtain the control signal of the electrical signal of the semiconductor cooling module 101; The electrical signal of the cooling module 101; wherein, the control parameters in the PID control strategy are pre-adjusted according to the PID control index.
  • control module 103 is also electrically connected to the charging module 200 connected to the conductor 102 to obtain the charging and discharging current value and the charging duration, according to the charging and discharging current value , the charging time and the temperature value detected by the temperature detector to adjust the electrical signal supplied to the semiconductor cooling module 101 .
  • control module 103 adjusts the electrical signal supplied to the semiconductor cooling module according to the charge and discharge current value, the charging duration, and the temperature value detected by the temperature detector, including:
  • Step 801 calculate the conductor heat generation according to the charging and discharging current value and the charging time.
  • Step 802 calculate the theoretical temperature rise value of the conductor according to the heat output of the conductor and the material information of the conductor.
  • the heat generated by the conductor is the heat generated by charging and discharging.
  • the theoretical temperature rise value of the conductor can be calculated by the following formula, which can be obtained by fitting the test data obtained from the conductor temperature rise experiment:
  • ⁇ w is the theoretical temperature rise value
  • Q is the heating value of the conductor
  • t is the charging time
  • A is the effective heat dissipation area
  • K T is the comprehensive heat dissipation coefficient of the conductor surface
  • a and K T are the material information of the conductor.
  • Step 803 calculate the actual temperature rise value of the conductor according to the temperature value detected by the temperature detector and the theoretical temperature rise value of the conductor.
  • the execution process of this step includes: first determining the temperature rise correction coefficient according to the temperature value detected by the temperature detector. Specifically, if the temperature detected by the temperature detector is greater than the standard temperature value for temperature rise calculation, the temperature correction coefficient is greater than 1 , and the higher the temperature detected by the temperature detector, the larger the coefficient. If the temperature detected by the temperature detector is lower than the standard temperature value for temperature rise calculation, the temperature correction coefficient is less than 1, and the lower the temperature detected by the temperature detector, the smaller the coefficient.
  • the actual temperature rise value of the conductor is calculated by the following formula:
  • ⁇ w is the theoretical temperature rise value
  • K w is the temperature correction coefficient
  • is the actual temperature rise value
  • Step 804 adjusting the electrical signal supplied to the semiconductor cooling module according to the actual temperature rise of the conductor.
  • This embodiment can combine the charging and discharging information with the temperature value detected by the temperature detector, and the actual temperature rise value predicted in advance, and adjust the electrical signal of the semiconductor cooling module 101 according to the actual temperature rise value, so that the temperature of the conductor reaches the working temperature as soon as possible Within, the efficiency and precision of temperature control can be improved.
  • the above step 804 adjusts the electrical signal supplied to the semiconductor cooling module 101 according to the actual temperature rise value of the conductor 102, including:
  • Step 901 calculating the difference between the actual temperature rise value of the conductor 102 and the preset temperature rise value of the conductor 102;
  • Step 902 inputting the difference value into the PID control strategy to obtain the electric control signal of the semiconductor cooling module 101 .
  • the electrical control signal of the semiconductor cooling module 101 is generated.
  • the conductor 102 The temperature can be controlled within the preset temperature rise value to ensure the safety of the conductor 102. At this time, no electric control signal of the semiconductor cooling module 101 will be generated.
  • control parameters in the PID control strategy are adjusted in advance according to the PID control index.
  • the PID control strategy includes three parts: proportional control, integral control and differential control.
  • PID control indicators include: rise time, overshoot, adjustment time and steady-state error.
  • the adjustment of the control parameters in the PID control strategy can refer to the prior art, and will not be described in detail here.
  • Step 903 adjusting the electrical signal supplied to the semiconductor cooling module 101 according to the electrical control signal of the semiconductor cooling module 101 .
  • control module 103 in order to improve the temperature control accuracy of the conductor and make its calculated value more in line with the actual situation, is also electrically connected to the environmental parameter detection module and the charging module 200 connected to the conductor to detect the temperature from the environmental parameter.
  • the module obtains the environmental parameter information, and obtains the charging and discharging current value and the charging duration from the charging module; according to the environmental parameter information, the charging and discharging current value and the charging duration, adjusts the electrical signal supplied to the semiconductor cooling module.
  • the environment parameter information includes but not limited to: environment humidity, environment temperature, environment pressure and so on.
  • the charging and discharging current value and the charging duration, adjusting the electrical signal supplied to the semiconductor cooling module includes:
  • the execution process of this step includes: firstly, according to the environmental parameter information, determine the temperature rise correction coefficient, specifically, for each environmental parameter information, calculate a correction coefficient (the calculation process of each correction coefficient refers to the above-mentioned embodiment The temperature correction coefficient described above is not described in detail here), and the correction coefficients corresponding to all environmental parameter information are weighted and summed (as shown in the following formula 1) or multiplied (as shown in the following formula 2) to obtain the final correction coefficient; the final correction coefficient is multiplied by The actual temperature rise of the conductor 102 is calculated based on the theoretical temperature rise of the conductor 102 .
  • K a1 ⁇ Kw1 +...+a n ⁇ Kwn (formula one);
  • K is the final correction coefficient; is a coefficient, a 1 ... a n is a known quantity, which can be determined according to the importance of environmental parameters; a is a known quantity; i represents the i-th environmental parameter; K w1 ... K wn is Environment parameter value.
  • the wires connecting the semiconductor cooling module 101 to the control module 103 are arranged in the low-voltage wiring harness 106 .
  • the wiring can be guaranteed to be clear, easy to adjust and replace the semiconductor cooling module, and can also realize safe isolation of the high and low voltage power supply system.
  • the semiconductor cooling module 101 includes: an alumina substrate 1011 , a waterproof protection layer 1012 , a semiconductor P/N layer 1013 , and a power interface 1014 .
  • An alumina substrate 1011, a waterproof protection layer 1012, and a semiconductor P/N layer 1013 are arranged in sequence.
  • the power interface 1014 is electrically connected to the semiconductor P/N layer 1013 .
  • the alumina substrate 1011 constitutes the hot end of the semiconductor cooling module 101 , that is, the heat dissipation end.
  • the semiconductor P/N layer 1013 constitutes the cooling end of the semiconductor cooling module 101 , that is, the heat-absorbing end.
  • the aluminum oxide substrate 1011 is used as the surface of the semiconductor refrigeration module, which can improve the thermal conductivity, make the heat transfer speed faster, the cooling time shorter, the bearable strength is high, and it can be connected flexibly, which can be better pasted on On the conductor, it can effectively absorb the surface stress at the bend of the conductor, and it is not easy to break during installation and use.
  • the core of the semiconductor cooling module is a P-N junction made of special semiconductor materials.
  • thermocouple pair composed of an N-type semiconductor material and a P-type semiconductor material has a current passing through it, heat transfer will occur between the two ends, and the heat will be It will be transferred from one end to the other end, thereby generating a temperature difference to form a hot and cold end, that is, cooling control can be realized by controlling the DC current.
  • the cooling rate of the semiconductor cooling module 101 is 0.05K/s-5K/s.
  • the inventor selected 10 cables with the same cross-sectional area, the same material, and the same length, and passed the same current, using semiconductor cooling modules 101 with different cooling rates. , to cool the cables, and read the temperature rise of each cable, and record it in Table 3.
  • the experimental method is to conduct the same current on the cables of the semiconductor cooling module 101 with different cooling rates in a closed environment, record the temperature before power-on and the temperature when the temperature is stable after power-on, and make a difference to obtain the absolute value.
  • a temperature rise of less than 50K is a qualified value.
  • an insulating protective layer 107 is arranged around the conductor 102, as shown in Figure 2A and Figure 2B, the insulating protective layer 107 is arranged on the conductor 102 and the semiconductor cooling module 101 between, or arranged on the outer surface of the semiconductor cooling module 101 .
  • the material of the insulating protective layer 107 is one of polyvinyl chloride, polyurethane, nylon, polypropylene, silicone rubber, cross-linked polyolefin, synthetic rubber, polyurethane elastomer, cross-linked polyethylene, and polyethylene. one or more combinations.
  • a refractory layer is provided outside the insulating protection layer.
  • the cross section of the conductor 102 is circular, oval, rectangular, polygonal, E-shaped, F-shaped, H-shaped, K-shaped, L-shaped, T-shaped, U-shaped, V-shaped, or W-shaped. Shaped or X-shaped or Y-shaped or Z-shaped or arc-shaped or wave-shaped structure, wherein the arc includes semi-arc, acute-angle arc, obtuse-angle arc and so on.
  • the cross-sectional shape of the conductor 102 is designed in various shapes, which is convenient for the designer to select different shapes of the cross-section of the conductor 102 according to the actual layout environment, so as to reduce the volume of the cable, optimize the environment for cable assembly, and improve the safety of the cable.
  • the material of the conductor 102 described herein may be one or a combination of metals, conductive ceramics, carbon-containing conductors, solid electrolytes, mixed conductors, and conductive polymer materials.
  • the material of the conductor 102 described herein is copper or copper alloy or aluminum or aluminum alloy. Due to the high voltage and high current of electric vehicle cables, it is necessary to use large-diameter wires for current conduction.
  • the conductor material has good electrical conductivity and good ductility, and is the first choice as a cable conductor material.
  • the content of metal aluminum in the earth's crust is about 7.73%. After the refining technology is optimized, the price is relatively low.
  • aluminum is lighter in weight and its conductivity is second only to copper. Aluminum can replace part of copper in the field of electrical connections. Therefore, it is a development trend to replace copper with aluminum in the field of automotive electrical connections.
  • the cable with cooling function also includes: a heat dissipation device, which is arranged on the outside of the semiconductor cooling module 101.
  • the heat dissipation device can be close to the outside of the semiconductor cooling module 101 The side surface, or the outer surface close to the semiconductor cooling module 101, depends on the type of heat sink.
  • the heat dissipation device described herein includes, but is not limited to, a fan, a heat exchanger, a liquid cooling device, and a heat dissipation fin.
  • the heat dissipation fin is preferably made of metal. Wherein, large pieces of equipment such as fans, heat exchangers, and liquid cooling devices are arranged near the semiconductor cooling module 101 , and the cooling fins are arranged close to the semiconductor cooling module 101 .
  • a current transmission device including: the cable 100 with cooling function, the charging module 200 and the battery module 300 described in any of the foregoing embodiments.
  • Both ends of the cooling cable 100 are respectively connected to the charging module 200 and the battery module 300 for conducting the electric energy obtained by the charging module 200 to the battery module 300 .
  • the charging module 200 described herein is a fast charging stand
  • the battery module 300 is a BMS (Battery management system) battery management module.
  • BMS Battery management system
  • control module 103 is also connected to the charging module 200 , and the charging module 200 is used to provide electric energy to the control module 103 .
  • an electric vehicle including the current transmission device described in any one of the foregoing embodiments.
  • the method performed by the control module may be implemented in a computer device, such as a central control device, as shown in FIG. 12 , may include one or more processors 1304, such as one or more central processing units Unit (CPU), each processing unit can implement one or more hardware threads.
  • the computer device 1302 may also include any memory 1306 for storing any kind of information such as codes, settings, data, and the like.
  • the memory 1306 may include any one or combination of the following: any type of RAM, any type of ROM, flash memory device, hard disk, optical disk, and so on. More generally, any memory can use any technology to store information. Further, any memory may provide volatile or non-volatile retention of information.
  • any memory may represent a fixed or removable component of computer device 1302 .
  • processor 1304 executes the associated instructions stored in any memory or combination of memories
  • computing device 1302 may perform any operation of the associated instructions.
  • the computer device 1302 also includes one or more drive mechanisms 1308 for interfacing with any memory, such as a hard disk drive, an optical disk drive, or the like.
  • Computer device 1302 may also include an input/output module 1310 (I/O) for receiving various inputs (via input device 1312 ) and for providing various outputs (via output device 1314 ).
  • One particular output mechanism may include a presentation device 1316 and an associated graphical user interface 1318 (GUI).
  • GUI graphical user interface
  • the input/output module 1310 (I/O), the input device 1312 and the output device 1314 may not be included, and it is only used as a computer device in the network.
  • Computer device 1302 may also include one or more network interfaces 1320 for exchanging data with other devices via one or more communication links 1322 .
  • One or more communication buses 1324 couple together the components described above.
  • Communication link 1322 can be implemented in any manner, for example, through a local area network, wide area network (eg, the Internet), point-to-point connection, etc., or any combination thereof.
  • Communication link 1322 may include any combination of hardwired links, wireless links, routers, gateway functions, name servers, etc. governed by any protocol or combination of protocols.
  • the embodiments of this document also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor, the steps of the above-mentioned method are executed. .
  • the embodiments herein also provide a computer-readable instruction, wherein when the processor executes the instruction, the program therein causes the processor to execute the methods shown in FIGS. 7 to 9 .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the implementation of the embodiments herein. process constitutes any qualification.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solutions in the embodiments herein.
  • each functional unit in each of the embodiments herein may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution in this article is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments herein.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本文提供了一种具有冷却功能的线缆、电流传输设备及电动汽车,属于电流传输领域,其中,具有冷却功能的线缆包括:半导体冷却模块、导体及控制模块;半导体冷却模块的冷却端设置于所述导体至少一侧面,用于吸收所述导体的散热;半导体冷却模块电连接所述控制模块,所述控制模块用于控制供给所述半导体冷却模块的电信号。本文提供的具有冷却功能的线缆具有结构简单、尺寸灵活、性能可靠、不产生噪音、无制冷剂污染的优势。

Description

具有冷却功能的线缆、电流传输设备及电动汽车
本申请要求享有2021年7月20日递交、申请号为202110821578.3、发明名称为“具有冷却功能的线缆、电流传输设备及电动汽车”的中国专利的优先权,该专利的所有内容在此全部引入。本申请还要求享有2021年7月20日递交、申请号为202121653535.0、发明名称为“具有冷却功能的线缆、电流传输设备及电动汽车”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本文涉及电流传输领域,尤其涉及一种具有冷却功能的线缆、电流传输设备及电动汽车。
背景技术
随着世界上的能源危机和日益恶劣的天气变暖的影响,新能源汽车行业成了大力发展的行业,例如电动汽车行业,但是目前的电动汽车充电时间长,成为限制电动汽车普遍使用的瓶颈。目前给电动汽车进行快速充电的电流达到150A~400A,大电流带来的就是充电线缆的高发热量,也是限制电动汽车充电电流的主要原因。
为了解决这个问题,一是急需增大线缆的截面积,降低线缆的发热,但是线缆的成本会大幅度增加。二是采用冷却技术,给线缆进行降温冷却。
现阶段,大电流充电线缆冷却多采用液冷和风冷技术。液冷技术虽然冷却效果好,但需要额外增加冷却管路、水泵和散热装置等,存在系统结构复杂,对安全和稳定性要求极高,还会导致成本提高的问题。风冷技术受安装尺寸空间限制,存在冷却效率低,会产生额外的噪音,影响整车的NVH(Noise、Vibration、Harshness,噪声、振动与声振粗糙度)的问题。
因此,电流传输领域急需一种能够快速对线缆进行降温,提高充电电流,降低线缆的截面积的具有冷却功能的线缆。
发明内容
本文用于解决现有技术中液冷技术对导体冷却存在结构复杂、成本高的问题,风冷技术对导体冷却存在冷却效率低、噪音大的问题。
为了解决上述技术问题,本文第一方面提供一种具有冷却功能的线缆,包括:半导体冷却模块101、导体102及控制模块103;
所述半导体冷却模块101的冷却端设置于所述导体102至少一侧面,用于吸收所述导体102的散热;
所述半导体冷却模块101电连接所述控制模块103,所述控制模块103用于控制供给所述半导体冷却模块101的电信号。
本文的第二方面提供一种电流传输设备,包括:前述任一实施例所述的具有冷却功能的线缆100、充电模块200及电池模块300;
所述具有冷却功能的线缆100的两端分别连接所述充电模块200及所述电池模块300,用于将所述充电模块200获取的电能传导至所述电池模块300。
作为本文的进一步实施例中,控制模块103连接充电模块200,所述充电模块200用于给所述控制模块103提供电能。
本文的第三方面提供一种电动汽车,包括前述任一实施例所述的电流传输设备。
本文提供的具有冷却功能的线缆、电流传输设备及电动汽车,通过将半导体冷却模块制成的冷却层结构设置于导体的侧面,半导体冷却模块由控制模块供电,能够在导体通过高压大电流时,将其产生的热量被半导体冷却模块吸收,达到降低导体温升目的,在导体尺寸一定时,可以承载更大的电流并满足温升要求。本文提供的具有冷却功能的线缆仅需半导体冷却模块、控制模块即可实现导体的降温,因此,具有结构简单的优势。本文提供的具有冷却功能的线缆仅需将半导体冷却模型设置于导体侧面上,因此,具有尺寸灵活的优势。本文提供的具有冷却功能的线缆由控制模块控制半导体冷却模块的电信号供给,从而使得半导体冷却模块对导体降温,因此,具有性能可靠、不产生噪音、无制冷剂污染的优势。
为让本文的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本文实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本文的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本文实施例具有冷却功能的线缆的结构图;
图2A及图2B示出了本文实施例具有冷却功能的线缆的一剖面图;
图3示出了本文实施例具有冷却功能的线缆的另一剖面图;
图4示出了本文实施例具有冷却功能的线缆的第一电路图;
图5示出了本文实施例具有冷却功能的线缆的第二电路图;
图6示出了本文实施例具有冷却功能的线缆的局部放大图;
图7示出了本文实施例控制模块调整半导体冷却模块电信号过程的第一流程图;
图8示出了本文实施例控制模块调整半导体冷却模块电信号过程的第二流程图;
图9示出了本文实施例控制模块调整半导体冷却模块电信号过程的第三流程图;
图10示出了本文实施例电流传输设备的的剖面图;
图11示出了本文实施例半导体冷却模块的结构图;
图12示出了本文实施例计算机设备的结构图。
附图符号说明:
100、具有冷却功能的线缆;
101、半导体冷却模块;
102、导体;
103、控制模块;
104、整流模块;
105、温度检测器;
106、低压线束;
107、绝缘保护层;
200、充电模块;
300、电池模块;
1011、氧化铝基板;
1012、防水保护层;
1013、半导体P/N层;
1014、电源接口;
1302、计算机设备;
1304、处理器;
1306、存储器;
1308、驱动机构;
1310、输入/输出模块;
1312、输入设备;
1314、输出设备;
1316、呈现设备;
1318、图形用户接口;
1320、网络接口;
1322、通信链路;
1324、通信总线。
具体实施方式
下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
本说明书提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的系统或装置产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行。
本文的示意性实施例及其说明用于解释本文,但并不作为对本文的限定。另外,在附图及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
现有技术中,大电流导体的冷却主要采用采用液冷和风冷技术实现。其中,液冷技术需要额外增加冷却管路、水泵和散热装置等,存在系统结构复杂,对安全和稳定性要求极高,还会导致成本提高的问题。风冷技术受安装尺寸空间限制,存在冷却效率低,会产生额外的噪音,影响整车的NVH的问题。
为了解决上述技术问题,本文的一实施例中,提供一种新型具有冷却功能的线缆,本文提供具有冷却功能的线缆具有结构简单、尺寸灵活、性能可靠、不产生噪音、无制冷剂污染的优势。
具体的,如图1及图5所示,具有冷却功能的线缆包括:半导体冷却模块101、导体102及控制模块103;
所述半导体冷却模块101的冷却端设置于所述导体102至少一侧面,用于吸收所述导体102的散热。
所述半导体冷却模块101电连接所述控制模块103,所述控制模块103用于控制供给所述半导体冷却模块101的电信号。
详细的说,在原理上,半导体冷却模块101是一个热传递的工具。当一块N型半导体材料和一块P型半导体材料联结成的热电偶对中有电流通过时,两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端。本文所述的半导体冷却模块101除了包括冷却端外,还包括热端,与冷却端相对设置,半导体冷却模块101可采用现有技术已有的半导体冷却模块,还可根据导体的尺寸进行定制,半导体冷却模块101可完全覆盖导体102,还可部分覆盖导体102。
半导体冷却模块101放热或吸热大小由电流的大小来决定,因此本文所述的半导体冷却模块101通过所述控制模块103,可以用于控制供给所述半导体冷却模块101的电信号(包括电流信号及电压信号),从而达到控制所述导体102温升的效果,使具有冷却功能的线缆能够在一个稳定的温度下工作。
由控制模块103为半导体冷却模块101供电(例如低压12V直流电),控制模块103通过控制与半导体冷却模块101之间连线的导通可实现半导体冷却模块101的接入控制,具体实施时,可由工作人员根据实际需求设置半导体冷却模块101的控制逻辑,例如不同的时间段接入不同的半导体冷却模块101,或导体102不同电信号接入不同的半导体冷却模块101,本文对控制模块103控制供给半导体冷却模块的电信号逻辑不做限定,只要是能够实现电信号控制的逻辑均属于本文保护范围。通过本文的供电及控制方式,能够简化具有冷却功能的线缆的结构,提高冷却效率,避免能源浪费。
控制模块103可以是中央处理单元(Central Processing Unit,CPU),或是其他可编程的一般用途或特殊用途的微处理器(Microprocessor)、数字信号处理器(Digital Signal Processor,DSP)、可编程控制模块、专用集成电路(Application Specific Integrated Circuit,ASIC)或其他类似元件或上述元件的组合,本文对控制模块103类型、型号等不作具体限定。
一些实施方式中,为了使得半导体冷却模块101能够完全贴合在导体102上,半导体冷却模块101可包括多个,多个半导体冷却模块101的尺寸可以相同,也可不同,具体根据导体的尺寸进行调整。
一些实施方式中,半导体冷却模块101外形尺寸最大尺寸可以做到60mmX60mm以上,厚度4.1mm以下,最大制冷功率可达270W,单层最大温差可达60℃以上。
进一步的,为了能够精确控制每个半导体冷却模块101的温度,多个半导体冷却模块101以并联的方式电连接控制模块103,从而能够单独控制每个半导体冷却模块101的供电信号。
进一步的,当多个半导体冷却模块101的型号、功率完全一致时,多个半导体冷却模块101以串联的方式电连接控制模块103,从而使每个半导体冷却模块101的供电信号一致。
多个半导体冷却模块101可每隔固定距离间隔(如图1所示,例如10cm,具体间隔距离可根据半导体冷却模块101的温升情况而定),设置于导体102的侧面,还可紧邻(即无缝隙)的设置于导体102的侧面,具体以何种方式设置,可根据导体102在工作状态下的温升情况确定。
为了保证冷却效果,半导体冷却模块101中冷却端总面积占导体102面积的比例范围为3%至95%。
发明人为了验证半导体冷却模块101中冷却端总面积占导体102面积的比例范围对导体102温升的影响,选用13根相同截面积、相同材质、相同长度的线缆,并通相同的电流,采用不同的半导体冷却模块101中冷却端覆盖导体102的面积比例,并读取各个线缆的温升值,记录在表1中。
实验方法是在封闭的环境中,将覆盖不同半导体冷却模块101中冷却端总面积占导体102面积的比例的线缆,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50k为合格值。
表1:不同半导体冷却模块101中冷却端总面积占导体102面积的比例对线缆温升的影响
Figure PCTCN2022106259-appb-000001
从上表1中可以看出,当半导体冷却模块101中冷却端总面积占导体102面积的比例小于3%时,线缆的温升值小于合格值。覆盖面积的比例越大,温升值越小,但是线缆的使用过程中,必然会有两端的接头,以及中间的转弯区域,是无法覆盖半导体冷却模块101的,因此,发明人将当半导体冷却模块101中冷却端总面积占导体102面积的比例设定为3%至95%。
如图2A所示,半导体冷却模块101通过导热胶固定设置在导体102上,具体实施时,还可采用其它方式,例如螺丝固定,将半导体冷却模块101固定设置在导体102上,本文对此不作限定。对震动等级要求高的工况,可通过额外增加固定架的方式固定半导体冷却模块101,以提高减震能力。
为了提高散热效率,导体102的两侧均设置有半导体冷却模块101。进一步实施例中,根据导体的使用情况,降温需求大时,还可采用多层半导体冷却模块101叠加的方式实现多级制冷,进而提高降温能力。如图3所示,还可在导体102两侧设置双层半导体冷却模块101。
本实施例提供的具有冷却功能的线缆100在通过高压大电流时产生的热量会被导体102外覆的半导体冷却模块101吸收,从而达到降低导体温升的目的,在导体102尺寸一定时,能够承载更大的电流并满足温升要求。
本文的进一步实施例中,如图4所示,具有冷却功能的线缆还包括:整流模块104,电连接于控制模块103与导体102之间,用于对从导体102获取电能进行整流处理,将导体102中的电流转换为控制模块103的供电电流。由于导体102传输的电流和电压,都不一定满足控制模块103和半导体冷却模块101的供电要求,因此,为了能够从导体102中获取电能,还需要将从导体102引出的电流通过整流模块,转化为控制模块103和半导体冷却模块101能够使用的电流和电压。
本实施例可以省去电源设置,由导体102为控制模块进行供电,能够简化电路,减少很多为控制模块103和半导体冷却模块101供电的线路,同时也避免外接电源无电而导致半导体冷却模块101无法工作的情况发生。
本文的进一步实施例中,具有冷却功能的线缆还包括:至少一个温度检测器,设置于导体上,用于检测导体的温度值;控制模块电连接温度检测器,用于根据温度检测器检测的温度值,调整供给半导体冷却模块101的电信号。
本文的进一步实施例中,如图1、图5及图6所示,具有冷却功能的线缆还包括:多个温度检测器105,分布设置于导体102上,用于检测导体102的温度值。具体实施时,温度检测器105布置的越多,且分布越均匀,检测到的温度越符合实际情况。
控制模块103电连接温度检测器105,用于根据温度检测器105检测的温度值,调整供给半导体冷却模块101的电信号。
一些实施方式中,控制模块103根据温度检测器105检测的温度值,调整供给半导体冷却模块101的电信号的过程包括:计算温度检测器105检测的温度值与所述导体102的预设温升值的差值;将所述差值输入至PID控制策略中,得到所述半导体冷却模块101电控制信号;根据所述半导体冷却模块101电控制信号,调整供给所述半导体冷却模块101的电信号;其中,所述PID控制策略中的控制参数预先根据PID控制指标调整。
具体实施时,预设温升值可根据导体应用场景及导体能够承受的最大温升值而定,本文对其具体取值不做限定。
本实施例提供的具有冷却功能的线缆,增加温控功能后可以实时检测温度和控制吸热量,实现闭环控制。可以根据不同条件下导体的载流量对导体进行不同的温升控制。
一具体实施方式中,如图7所示,当温度检测器105为多个时,控制模块103根据温度检测器105检测的温度值,调整供给半导体冷却模块101的电信号包括:
步骤701,根据温度检测器105检测的温度值,计算导体102的温度分布。
具体实施时,可通过B样条插值法建立导体102的温度分布,具体实施时,还可通过其它建模方法建立导体102的温度分布,本文对温度分布建立过程不做具体限定。
步骤702,根据导体102的温度分布,确定导体102上各半导体冷却模块101的供电信号。
本步骤中,导体102温度越高的位置对应的半导体冷却模块101的供电信号越大。具体实施时,控制模块103可根据预先设置的温度调整策略(如表2所示),确定导体102上各半导体冷却模块101的供电信号。
表2温度检测器检测的导体的温度范围与控制模块供电电流的对应关系
温度范围(℃) 电流(A)
X1~X2 Y1
X2~X3 Y2
…… ……
步骤703,按照各半导体冷却模块101的供电信号,为各半导体冷却模块101供电。
本文一实施例中,上述步骤702根据所述导体102的温度分布,确定所述导体102上各所述半导体冷却模块101的供电电流,包括:
步骤7021,根据所述导体102的温度分布及所述导体102的预设温升值,计算差值分布;
步骤7022,根据所述差值分布,调整供给所述半导体冷却模块101的电信号。
具体实施时,步骤7022包括:将所述差值分布输入至PID控制策略中,得到所述半导体冷却模块101电信号的控制信号;根据所述半导体冷却模块101电控制信号,调整供给所述半导体冷却模块101的电信号;其中,所述PID控制策略中的控制参数预先根据PID控制指标调整。
本文的进一步实施例中,为了更精确地调整半导体冷却模块101的电信号,控制模块103还电连接导体102相连的充电模块200,用于获取充放电电流值及充电时长,根据充放电电流值、充电时长及温度检测器检测的温度值,调整供给半导体冷却模块101的电信号。
具体的,如图8所示,控制模块103根据充放电电流值、充电时长及温度检测器检测的温度值,调整供给所述半导体冷却模块的电信号,包括:
步骤801,根据充放电电流值及充电时长,计算导体发热量。
本步骤中,可通过Q=I 2×R×t计算导体发热量,其中,Q为导体发热量,I为充放电电流值,t为充电时长,R为导体的电阻。
步骤802,根据导体发热量及导体的材料信息,计算导体的理论温升值。
导体发热量为充放电发热量。本步骤可通过如下公式计算导体的理论温升值,下述公式可通过导体温升实验所得的测试数据拟合得到:
Figure PCTCN2022106259-appb-000002
其中,τ w为理论温升值,Q为导体发热量,t为充电时长,A为有效散热面积,K T为导体表面综合散热系数,A及K T为导体的材料信息。
根据导体发热量及导体的材料信息,计算导体的理论温升值可参考现有技术,此处不再限定。
步骤803,根据温度检测器检测的温度值及导体的理论温升值,计算导体的实际温升值。
本步骤执行过程包括:先根据所述温度检测器检测的温度值,确定温升修正系数,具体的,若温度检测器检测出的温度大于温升计算标准温度值时,则温度修正系数大于1,且温度检测器检测到的温度越高,系数也大。若温度检测器检测出的温度小于温升计算标准温度值时,则温度修正系数小于1,且温度检测器检测到的温度越低,系数越小。通过如下公式计算所述导体的实际温升值:
τ=K w×τ w
其中,τ w为理论温升值,K w为温度修正系数,τ为实际温升值。
步骤804,根据所述导体的实际温升值,调整供给所述半导体冷却模块的电信号。
本实施例能够根据充放电信息结合温度检测器检测的温度值,还有提前预测得到的实际温升值,并且根据实际温升值,调整半导体冷却模块101的电信号,使得导体的温度尽快达到工作温度之内,能够提高温控的效率及精度。
本文进一步实施例中,如图9所示,为了使半导体冷却模块101电流调整具有自动调节能力,上述步骤804根据导体102的实际温升值,调整供给所述半导体冷却模块101的电信号,包括:
步骤901,计算所述导体102的实际温升值与所述导体102的预设温升值的差值;
步骤902,将差值输入至PID控制策略中,得到半导体冷却模块101电控制信号。
本步骤实施时,只有导体102的实际温升值与预设温升值之间存在偏差时,才产生半导体冷却模块101电控制信号,当导体102的实际温升值与预设温升值相等时,导体102的温度能够控制在预设温升值之内,保证导体102的安全,此时不会产生半导体冷却模块101电控制信号。
其中,PID控制策略中的控制参数预先根据PID控制指标调整。PID控制策略包括:比例控制、积分控制及微分控制三个部分。PID控制指标包括:上升时间、超调量、调节时间和稳态误差。PID控制策略中控制参数的调整可参考现有技术,此处不再详述。
步骤903,根据半导体冷却模块101电控制信号,调整供给半导体冷却模块101的电信号。
本文的进一步实施例中,为了提高导体的温度控制精度,使其计算值更符合实际情况,控制模块103还电连接环境参数检测模块及所述导体相连的充电模块200,用于从 环境参数检测模块获取环境参数信息,从充电模块获取充放电电流值及充电时长;根据环境参数信息、所述充放电电流值及充电时长,调整供给所述半导体冷却模块的电信号。
详细的说,环境参数信息包括但不限于:环境湿度、环境温度、环境压力等。
根据环境参数信息、所述充放电电流值及充电时长,调整供给所述半导体冷却模块的电信号包括:
(1)根据充放电电流值及充电时长,计算导体发热量。
(2)根据导体发热量及导体的材质信息,计算导体102的理论温升值。
(3)根据环境参数信息及导体102的理论温升值,计算导体102的实际温升值。
本步骤中,本步骤执行过程包括:先根据环境参数信息,确定温升修正系数,具体的,对于每一环境参数信息,均计算一修正系数(每一修正系数的计算过程参考前述实施例所述的温度修正系数,此处不再详述),将所有环境参数信息对应的修正系数加权求和(如下公式一所示)或相乘(如下公式二)得到最终修正系数;最终修正系数乘以所述导体102的理论温升值,计算所述导体102的实际温升值。
K=a 1×K w1+……+a n×K wn     (公式一);
K=a 1×K w1×……×K wn      (公式二);
其中,K为最终修正系数;为系数,a 1…a n为已知量,可根据环境参数的重要程度确定;a为已知量;i表示第i个环境参数;K w1…K wn为环境参数值。
(4)根据所述导体102的实际温升值,调整供给所述半导体冷却模块101的电信号。
本文的进一步实施例中,如图1、图6及图10所示,半导体冷却模块101连接控制模块103的导线设置于低压线束106中。
本实施例通过将半导体冷却模块101连接控制模块103的导线设置于低压线束106中,能够保证线路清晰,便于调整及更换半导体冷却模块,同时还可以实现高低压电源系统安全隔离。
本文的进一步实施例中,如图11所示,半导体冷却模块101包括:氧化铝基板1011、防水保护层1012、半导体P/N层1013、电源接口1014。
氧化铝基板1011、防水保护层1012、半导体P/N层1013依次设置。电源接口1014电连接半导体P/N层1013。
氧化铝基板1011构成半导体冷却模块101的热端,即散热端。半导体P/N层1013构成半导体冷却模块101的冷却端,即吸热端。
本实施例通过氧化铝基板1011作为半导体制冷模块的表面,能够提高导热率,使得传热速度更快,制冷时间更短,可承受的强度大,且可柔性连接,能够更好地贴覆在导体上,有效吸收导体弯折处的表面应力,在安装和使用过程中不易破碎。半导体冷却模块芯部采用特种半导体材料构成的P-N结,当一块N型半导体材料和一块P型半导体材料联结成的热电偶对中有电流通过时,两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端,即通过控制直流电流就可以实现制冷控制。
所述半导体冷却模块101的冷却速率为0.05K/s-5K/s。
发明人为了验证半导体冷却模块101的冷却速率对导体102温升的影响,选用10根相同截面积、相同材质、相同长度的线缆,并通相同的电流,采用不同冷却速率的半导体冷却模块101,对线缆进行冷却,并读取各个线缆的温升值,记录在表3中。
实验方法是在封闭的环境中,将采用不同冷却速率的半导体冷却模块101的线缆,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表3:不同冷却速率的半导体冷却模块101对线缆温升的影响
Figure PCTCN2022106259-appb-000003
从上表3中可以看出,当半导体冷却模块101的冷却速率小于0.05K/s时,线缆的温升值小于合格值,半导体冷却模块101的冷却速率越大,温升值越小。但是当半导体冷却模块101的冷却速率大于5K/s时,受线缆本身发热量及半导体冷却模块101自身功率的影响,温升值降低不明显,但是半导体冷却模块101功率却增大,不符合经济性。因此,发明人将半导体冷却模块101的冷却速率设定为0.05K/s-5K/s。
本文的进一步实施例中,为了保证导体的安全,导体102四周设置有绝缘保护层107,如图2A及图2B所示,绝缘保护层107,设置于所述导体102与所述半导体冷却模块101之间,或设置于所述半导体冷却模块101外侧面。
本文的进一步实施例中,绝缘保护层107的材质为聚氯乙烯、聚氨酯、尼龙、聚丙烯、硅橡胶、交联聚烯烃、合成橡胶、聚氨酯弹性体、交联聚乙烯、聚乙烯中的一种或多种的组合。
更进一步的,为了避免因火灾而烧毁导体,绝缘保护层外还设置有耐火层。
本文的进一步实施例中,所述导体102的横截面呈圆形或椭圆形或矩形或多边形或E形或F形或H形或K形或L形或T形或U形或V形或W形或X形或Y形或Z形或弧形或波浪形结构,其中,弧形包括半弧形、锐角弧形、钝角弧形等。导体102的截面形状设计成各种形状,方便设计人员根据实际布置的环境,选择不同形状的导体102的截面,减小线缆的体积,优化线缆装配的环境,提高线缆的安全性。
本文的进一步实施例中,本文所述的导体102的材质可以为金属、导电陶瓷、含碳导体、固体电解质、混合导体、导电高分子材料中的一种或多种的组合。
具体实施时,本文所述的导体102的材质为铜或铜合金或铝或铝合金,电动汽车的线缆由于电压高,电流大,都需要使用大线径的导线进行电流的传导,铜材质的导体材料,导电性能好,延展性好,是作为线缆导体材料的优选。但是,随着铜价日益上涨,使用铜材作为导线的材料成本会越来越高。为此,人们开始寻找金属铜的替代品来降低成本。金属铝在地壳中的含量约为7.73%,提炼技术优化后,价格相对较低,并且相对于铜,铝的重量较轻,导电率仅次于铜,铝在电气连接领域可以替代部分铜。因此,在汽车电气连接领域中以铝代铜是发展趋势。
本文的进一步实施例中,为了进一步提高散热效果,具有冷却功能的线缆还包括:散热装置,设置于所述半导体冷却模块101的外侧,具体实施时,散热装置可靠近半导体冷却模块101的外侧面,或紧贴半导体冷却模块101的外侧面,具体视散热装置类型而定。
本文所述的散热装置包括但不限于风扇、热交换器、液冷装置、散热翼片,散热翼片优选采用金属制作。其中,风扇、热交换器、液冷装置等大件设备设置于靠近半导体冷却模块101的位置,散热翼片紧贴半导体冷却模块101设置。本文的进一步实施例中,如图5所示,还提供一种电流传输设备,包括:前述任一实施例所述的具有冷却功能的线缆100、充电模块200及电池模块300。
具有冷却功能的线缆100的两端分别连接充电模块200及所述电池模块300,用于将充电模块200获取的电能传导至电池模块300。
一些实施方式中,本文所述的充电模块200为快速充电座,电池模块300为BMS(Battery management system)电池管理模块。
本文的进一步实施例中,控制模块103还连接充电模块200,由充电模块200用于给所述控制模块103提供电能。
本文的进一步实施例中,还提供一种电动汽车,包括前述任一实施例所述的电流传输设备。
本文进一步实施例中,控制模块执行的方法可执行于计算机设备中,该计算机设备例如为中控设备,如图12所示,可以包括一个或多个处理器1304,诸如一个或多个中央处理单元(CPU),每个处理单元可以实现一个或多个硬件线程。计算机设备1302还可以包括任何存储器1306,其用于存储诸如代码、设置、数据等之类的任何种类的信息。非限制性的,比如,存储器1306可以包括以下任一项或多种组合:任何类型的RAM,任何类型的ROM,闪存设备,硬盘,光盘等。更一般地,任何存储器都可以使用任何技术来存储信息。进一步地,任何存储器可以提供信息的易失性或非易失性保留。进一步地,任何存储器可以表示计算机设备1302的固定或可移除部件。在一种情况下,当处理器1304执行被存储在任何存储器或存储器的组合中的相关联的指令时,计算机设备1302可以执行相关联指令的任一操作。计算机设备1302还包括用于与任何存储器交互的一个或多个驱动机构1308,诸如硬盘驱动机构、光盘驱动机构等。
计算机设备1302还可以包括输入/输出模块1310(I/O),其用于接收各种输入(经由输入设备1312)和用于提供各种输出(经由输出设备1314))。一个具体输出机构可以包括呈现设备1316和相关联的图形用户接口1318(GUI)。在其他实施例中,还可以不包括输入/输出模块1310(I/O)、输入设备1312以及输出设备1314,仅作为网络中的一台计算机设备。计算机设备1302还可以包括一个或多个网络接口1320,其用于经由一个或多个通信链路1322与其他设备交换数据。一个或多个通信总线1324将上文所描述的部件耦合在一起。
通信链路1322可以以任何方式实现,例如,通过局域网、广域网(例如,因特网)、点对点连接等、或其任何组合。通信链路1322可以包括由任何协议或协议组合支配的硬连线链路、无线链路、路由器、网关功能、名称服务器等的任何组合。
对应于图7-图9中的方法,本文实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法的步骤。
本文实施例还提供一种计算机可读指令,其中当处理器执行所述指令时,其中的程序使得处理器执行如图7至图9所示的方法。
应理解,在本文的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本文实施例的实施过程构成任何限定。
还应理解,在本文实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (24)

  1. 一种具有冷却功能的线缆,其特征在于,包括:半导体冷却模块(101)、导体(102)及控制模块(103);
    所述半导体冷却模块(101)的冷却端设置于所述导体(102)至少一侧面,用于吸收所述导体(102)的散热;
    所述半导体冷却模块(101)电连接所述控制模块(103),所述控制模块(103)用于控制供给所述半导体冷却模块(101)的电信号。
  2. 如权利要求1所述具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)包括多个,且多个所述半导体冷却模块(101)采用并联的方式连接所述控制模块(103)。
  3. 如权利要求1所述具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)包括多个,且多个所述半导体冷却模块(101)采用串联的方式连接所述控制模块(103)。
  4. 如权利要求2或3所述的具有冷却功能的线缆,其特征在于,多个所述半导体冷却模块(101)以预定距离间隔设置于所述导体(102)的至少一侧面。
  5. 如权利要求1所述的具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)中冷却端总面积占所述导体(102)面积的比例范围为3%至95%。
  6. 如权利要求1所述的具有冷却功能的线缆,其特征在于,还包括:整流模块(104),电连接于所述控制模块(103)与所述导体(102)之间,用于对从所述导体(102)获取电能进行整流处理。
  7. 如权利要求1所述的具有冷却功能的线缆,其特征在于,还包括:至少一个温度检测器(105),设置于所述导体(102)上,用于检测所述导体(102)的温度值;
    所述控制模块(103)电连接所述温度检测器(105),用于根据所述温度检测器(105)检测的温度值,调整供给所述半导体冷却模块(101)的电信号。
  8. 如权利要求7所述的具有冷却功能的线缆,其特征在于,当所述温度检测器(105)为多个时,根据所述温度检测器(105)检测的温度值,调整供给所述半导体冷却模块(101)的电信号,包括:
    根据所述温度检测器(105)检测的温度值,计算所述导体(102)的温度分布;
    根据所述导体(102)的温度分布,确定所述导体(102)上各所述半导体冷却模块(101)的供电信号;
    按照各所述半导体冷却模块(101)的供电信号,为各所述半导体冷却模块(101)供电。
  9. 如权利要求7所述的具有冷却功能的线缆,其特征在于,所述控制模块(103)还电连接所述导体(102)相连的充电模块(200),用于获取充放电电流值及充电时长,根据所述充放电电流值、所述充电时长及所述温度检测器(105)检测的温度值,调整供给所述半导体冷却模块(101)的电信号。
  10. 如权利要求9所述的具有冷却功能的线缆,其特征在于,所述控制模块(103)根据所述充放电电流值、所述充电时长及所述温度检测器(105)检测的温度值,调整供给所述半导体冷却模块(101)的电信号,包括:
    根据所述充放电电流值及所述充电时长,计算导体发热量;
    根据所述导体发热量及所述导体(102)的材料信息,计算所述导体(102)的理论温升值;
    根据所述温度检测器(105)检测的温度值及所述导体(102)的理论温升值,计算所述导体(102)的实际温升值;
    根据所述导体(102)的实际温升值,调整供给所述半导体冷却模块(101)的电信号。
  11. 如权利要求10所述的具有冷却功能的线缆,其特征在于,根据所述导体(102)的实际温升值,调整供给所述半导体冷却模块(101)的电信号,包括:
    计算所述导体(102)的实际温升值与所述导体(102)的预设温升值的差值;
    将所述差值输入至PID控制策略中,得到所述半导体冷却模块(101)电控制信号;
    根据所述半导体冷却模块(101)电控制信号,调整供给所述半导体冷却模块(101)的电信号;
    其中,所述PID控制策略中的控制参数预先根据PID控制指标调整。
  12. 如权利要求7所述的具有冷却功能的线缆,其特征在于,所述控制模块(103)还电连接环境参数检测模块及所述导体(102)相连的充电模块(200),用于从所述环境参数检测模块获取环境参数信息,从所述充电模块(200)获取充放电电流值及充电时长;根据所述环境参数信息、所述充放电电流值及所述充电时长,调整供给所述半导体冷却模块(101)的电信号。
  13. 如权利要求1所述的具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)连接所述控制模块(103)的导线设置于低压线束(106)中。
  14. 如权利要求1所述的具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)包括:氧化铝基板(1011)、防水保护层(1012)、半导体P/N层(1013)、电源接口(1014);
    所述氧化铝基板(1011)、防水保护层(1012)、半导体P/N层(1013)依次设置;
    所述电源接口(1014)电连接半导体P/N层(1013)。
  15. 如权利要求14所述的具有冷却功能的线缆,其特征在于,所述半导体冷却模块(101)的冷却速率为0.05K/s-5K/s。
  16. 如权利要求1所述的具有冷却功能的线缆,其特征在于,还包括:绝缘保护层(107),设置于所述导体(102)与所述半导体冷却模块(101)之间,或设置于所述半导体冷却模块(101)外侧面。
  17. 如权利要求16所述的具有冷却功能的线缆,其特征在于,所述绝缘保护层(107)的材质为聚氯乙烯、聚氨酯、尼龙、聚丙烯、硅橡胶、交联聚烯烃、合成橡胶、聚氨酯弹性体、聚乙烯中的一种或多种的组合。
  18. 如权利要求1所述的具有冷却功能的线缆,其特征在于,所述导体(102)的横截面呈圆形或椭圆形或矩形或多边形或E形或F形或H形或K形或L形或T形或U形或V形或W形或X形或Y形或Z形或弧形或波浪形结构。
  19. 如权利要求1所述的具有冷却功能的线缆,其特征在于,所述导体(102)的材质为金属、导电陶瓷、含碳导体、固体电解质、混合导体、导电高分子材料中的一种或多种的组合。
  20. 如权利要求19所述的具有冷却功能的线缆,其特征在于,所述导体(102)的材质为铜或铜合金或铝或铝合金。
  21. 如权利要求1所述的具有冷却功能的线缆,其特征在于,还包括:散热装置,设置于所述半导体冷却模块(101)的外侧。
  22. 一种电流传输设备,其特征在于,包括:权利要求1至21任一项所述的具有冷却功能的线缆(100)、充电模块(200)及电池模块(300);
    所述具有冷却功能的线缆(100)的两端分别连接所述充电模块(200)及所述电池模块(300),用于将所述充电模块(200)获取的电能传导至所述电池模块(300)。
  23. 如权利要求22所述的电流传输设备,其特征在于,所述控制模块(103)连接充电模块(200),所述充电模块(200)用于给所述控制模块(103)提供电能。
  24. 一种电动汽车,其特征在于,包括权利要求22或23所述的电流传输设备。
PCT/CN2022/106259 2021-07-20 2022-07-18 具有冷却功能的线缆、电流传输设备及电动汽车 WO2023001104A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112024001184A BR112024001184A2 (pt) 2021-07-20 2022-07-18 Cabo com função de resfriamento, dispositivo de transmissão de corrente e veículo elétrico
EP22845269.4A EP4376028A1 (en) 2021-07-20 2022-07-18 Cable having cooling function, current transmission device, and electric vehicle
KR1020247001101A KR20240019348A (ko) 2021-07-20 2022-07-18 냉각기능을 가진 케이블, 전류 전송 기기 및 전기 자동차
CA3226481A CA3226481A1 (en) 2021-07-20 2022-07-18 Cable having cooling function, current transmission device, and electric vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110821578.3A CN113488282A (zh) 2021-07-20 2021-07-20 具有冷却功能的线缆、电流传输设备及电动汽车
CN202121653535.0 2021-07-20
CN202110821578.3 2021-07-20
CN202121653535.0U CN215911237U (zh) 2021-07-20 2021-07-20 具有冷却功能的线缆、电流传输设备及电动汽车

Publications (1)

Publication Number Publication Date
WO2023001104A1 true WO2023001104A1 (zh) 2023-01-26

Family

ID=84979997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106259 WO2023001104A1 (zh) 2021-07-20 2022-07-18 具有冷却功能的线缆、电流传输设备及电动汽车

Country Status (5)

Country Link
EP (1) EP4376028A1 (zh)
KR (1) KR20240019348A (zh)
BR (1) BR112024001184A2 (zh)
CA (1) CA3226481A1 (zh)
WO (1) WO2023001104A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079618A (en) * 1990-06-12 1992-01-07 Micron Technology, Inc. Semiconductor device structures cooled by Peltier junctions and electrical interconnect assemblies
JP2006287112A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 半導体装置および車両
CN207474759U (zh) * 2017-11-20 2018-06-08 常州市华晟福涛光电科技有限公司 一种家用防盗新能源汽车充电枪
CN207652897U (zh) * 2017-12-29 2018-07-24 北京冠洁超能新能源科技有限公司 一种基于帕尔帖效应的充电设备冷却装置
CN208781982U (zh) * 2018-09-20 2019-04-23 山东天瀚新能源科技有限公司 一种带温度检测功能的锂离子电池组
CN111426891A (zh) * 2019-11-19 2020-07-17 杭州大和热磁电子有限公司 一种用于电子设备测试的冷却和加热装置及其控制方法
CN212579636U (zh) * 2020-04-13 2021-02-23 中国电器科学研究院股份有限公司 半导体制冷式电动汽车直流充电插头
CN113488282A (zh) * 2021-07-20 2021-10-08 长春捷翼汽车零部件有限公司 具有冷却功能的线缆、电流传输设备及电动汽车
CN215911237U (zh) * 2021-07-20 2022-02-25 长春捷翼汽车零部件有限公司 具有冷却功能的线缆、电流传输设备及电动汽车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079618A (en) * 1990-06-12 1992-01-07 Micron Technology, Inc. Semiconductor device structures cooled by Peltier junctions and electrical interconnect assemblies
JP2006287112A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 半導体装置および車両
CN207474759U (zh) * 2017-11-20 2018-06-08 常州市华晟福涛光电科技有限公司 一种家用防盗新能源汽车充电枪
CN207652897U (zh) * 2017-12-29 2018-07-24 北京冠洁超能新能源科技有限公司 一种基于帕尔帖效应的充电设备冷却装置
CN208781982U (zh) * 2018-09-20 2019-04-23 山东天瀚新能源科技有限公司 一种带温度检测功能的锂离子电池组
CN111426891A (zh) * 2019-11-19 2020-07-17 杭州大和热磁电子有限公司 一种用于电子设备测试的冷却和加热装置及其控制方法
CN212579636U (zh) * 2020-04-13 2021-02-23 中国电器科学研究院股份有限公司 半导体制冷式电动汽车直流充电插头
CN113488282A (zh) * 2021-07-20 2021-10-08 长春捷翼汽车零部件有限公司 具有冷却功能的线缆、电流传输设备及电动汽车
CN215911237U (zh) * 2021-07-20 2022-02-25 长春捷翼汽车零部件有限公司 具有冷却功能的线缆、电流传输设备及电动汽车

Also Published As

Publication number Publication date
KR20240019348A (ko) 2024-02-14
BR112024001184A2 (pt) 2024-04-30
CA3226481A1 (en) 2023-01-26
EP4376028A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
CN202127079U (zh) 一种基于热电制冷的电动汽车动力电池包水冷系统
Li et al. Performance investigation of a battery thermal management system with microencapsulated phase change material suspension
Sheng et al. Lightweight liquid cooling based thermal management to a prismatic hard-cased lithium-ion battery
JP2011514594A (ja) データ・センタ、データ・センタのための可変流コンピュータ冷却システム、および動作方法
CN106255392A (zh) 电气柜的散热控制方法、装置和系统
CN215911237U (zh) 具有冷却功能的线缆、电流传输设备及电动汽车
Lopez et al. Evaluation of combined active and passive thermal management strategies for lithium-ion batteries
US20090205694A1 (en) Thermoelectric Generation Device for Energy Recovery
CN103123509B (zh) 一种单板控温装置及方法
CN109858100B (zh) 一种获取直流电缆载流量临界环境温度的计算方法及系统
WO2023001071A1 (zh) 具有半导体冷却装置的连接器及汽车
CN205283407U (zh) 电力转换装置
WO2023001104A1 (zh) 具有冷却功能的线缆、电流传输设备及电动汽车
CN107871723A (zh) 一种预埋热管的散热板及其应用于电子设备的方法
TWM416886U (en) Heating module applied on battery
CN113488282A (zh) 具有冷却功能的线缆、电流传输设备及电动汽车
WO2024037147A1 (zh) 电池热管理系统、电池包、车辆及电池包的设计方法
CN114902156A (zh) 功率半导体模组散热系统的配置方法及电子设备
Han et al. Thermo-fluid simulation for the thermal design of the IGBT module in the power conversion system
Liu et al. Assessing the impact of current control on the thermal management performance of thermoelectric cooling systems
CN203378182U (zh) 一种可降低控制器温升的装置
Högblom Multiscale simulation methods for thermoelectric generators
Strąk Performance investigation of hybrid photovoltaic thermal-heat with mini-channels for application in electric vehicles
Ishiyama et al. Effect of heat pipes to suppress heat leakage for thermoelectric generator of energy harvesting
Wang et al. Heat dissipation system modeling of three-level converter considering thermal coupling effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247001101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001101

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401000366

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 18290653

Country of ref document: US

Ref document number: 3226481

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001061

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001184

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022845269

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845269

Country of ref document: EP

Effective date: 20240220

ENP Entry into the national phase

Ref document number: 112024001184

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240119