WO2023000384A1 - 显示面板及移动终端 - Google Patents

显示面板及移动终端 Download PDF

Info

Publication number
WO2023000384A1
WO2023000384A1 PCT/CN2021/110472 CN2021110472W WO2023000384A1 WO 2023000384 A1 WO2023000384 A1 WO 2023000384A1 CN 2021110472 W CN2021110472 W CN 2021110472W WO 2023000384 A1 WO2023000384 A1 WO 2023000384A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting unit
light emitting
compensation layer
Prior art date
Application number
PCT/CN2021/110472
Other languages
English (en)
French (fr)
Inventor
杨付强
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/438,278 priority Critical patent/US20230023178A1/en
Publication of WO2023000384A1 publication Critical patent/WO2023000384A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/167Electron transporting layers between the light-emitting layer and the anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present application relates to the display field, in particular to a display panel and a mobile terminal.
  • Organic Light Emitting Diodes Organic Light Emitting Diodes
  • LED Light-Emitting Diode
  • the hole-common layer and the electron-common layer are shared in adjacent sub-pixels, when a voltage is input to the sub-pixel, the holes generated by the anode or the electrons generated by the cathode are transported to the corresponding common layer through the corresponding common layer. In the adjacent sub-pixels, the start-up voltage of the sub-pixels is inaccurate, which leads to the technical problem of color shift in the low gray scale of the OLED display.
  • the present application provides a display panel and a mobile terminal to improve the technical problem of color shift in low grayscale of the existing OLED display panel.
  • the present application provides a display panel, including a first electrode, a light emitting device layer and a second electrode stacked in sequence;
  • the light-emitting device layer includes a plurality of first light-emitting units emitting light of a first color, a plurality of first compensation layers corresponding to the first light-emitting units, and hole transport layers and Electron transport layer;
  • the first compensation layer is located between the first electrode and the first light-emitting unit, and the hole transport rate of the first compensation layer is greater than the hole transport rate of the hole transport layer; and/or or,
  • the first compensation layer is located between the second electrode and the first light emitting unit, and the electron transport rate of the first compensation layer is greater than that of the electron transport layer.
  • the first compensation layer is located between the first electrode and the first light emitting unit
  • the first compensation layer includes hole-type dopants with electron-withdrawing groups.
  • the concentration of the hole-type dopant is 1% to 6%, and the hole-type dopant includes at least one of HAT-CN, F4-TCNQ, SbCl5 or FeCl3.
  • the display panel includes a pixel definition layer, the pixel definition layer includes a plurality of pixel openings, and the first light emitting unit is located in the pixel openings;
  • the first electrode includes a first portion corresponding to the pixel opening, and an orthographic projection of the first portion on the second electrode is located within an orthographic projection of the first compensation layer on the second electrode.
  • the first compensation layer is located between the second electrode and the first light emitting unit
  • the first compensation layer includes electron-type dopants with electron-donating groups.
  • the concentration of the electronic dopant is 1% to 6%, and the electronic dopant includes alkali metal or alkali metal salt.
  • the orthographic projection of the first light emitting unit on the second electrode is located within the orthographic projection of the first compensation layer on the second electrode.
  • the light-emitting device layer further includes a plurality of second light-emitting units emitting light of a second color, and a plurality of second light-emitting units located between the first electrode and the second light-emitting units or/and the second light-emitting units. a second compensation layer between the electrode and the second light emitting unit;
  • the emission colors of the first light emitting unit and the second light emitting unit are different, and the thicknesses of the first compensation layer and the second compensation layer are different.
  • the first light emitting unit is a red light emitting unit
  • the second light emitting unit is a green light emitting unit
  • the film thickness of the second compensation layer is greater than that of the first compensation layer.
  • the light-emitting device layer further includes a plurality of third light-emitting units emitting light of a third color, and a third light-emitting unit located between the first electrode and the third light-emitting unit or/and the second light-emitting unit. a third compensation layer between the electrode and the third light emitting unit;
  • the third light emitting unit is a blue light emitting unit, and the thickness of the first compensation layer is greater than the thickness of the third compensation layer.
  • the present application also proposes a mobile terminal, wherein the mobile terminal includes a terminal body and a display panel, and the terminal body and the display panel are combined into one; wherein,
  • the display panel includes a first electrode, a light emitting device layer and a second electrode stacked in sequence;
  • the light-emitting device layer includes a plurality of first light-emitting units emitting light of a first color, a plurality of first compensation layers corresponding to the first light-emitting units, and hole transport layers and Electron transport layer;
  • the first compensation layer is located between the first electrode and the first light-emitting unit, and the hole transport rate of the first compensation layer is greater than the hole transport rate of the hole transport layer; and/or or,
  • the first compensation layer is located between the second electrode and the first light emitting unit, and the electron transport rate of the first compensation layer is greater than that of the electron transport layer.
  • the first compensation layer is located between the first electrode and the first light emitting unit
  • the first compensation layer includes hole-type dopants with electron-withdrawing groups.
  • the concentration of the hole-type dopant is 1% to 6%, and the hole-type dopant includes at least one of HAT-CN, F4-TCNQ, SbCl5 or FeCl3.
  • the display panel includes a pixel definition layer, the pixel definition layer includes a plurality of pixel openings, and the first light emitting unit is located in the pixel openings;
  • the first electrode includes a first portion corresponding to the pixel opening, and an orthographic projection of the first portion on the second electrode is located within an orthographic projection of the first compensation layer on the second electrode.
  • the first compensation layer is located between the second electrode and the first light emitting unit
  • the first compensation layer includes electron-type dopants with electron-donating groups.
  • the concentration of the electronic dopant is 1% to 6%, and the electronic dopant includes an alkali metal or an alkali metal salt.
  • the orthographic projection of the first light emitting unit on the second electrode is located within the orthographic projection of the first compensation layer on the second electrode.
  • the light-emitting device layer further includes a plurality of second light-emitting units emitting light of a second color, and a plurality of second light-emitting units located between the first electrode and the second light-emitting units or/and the second light-emitting units. a second compensation layer between the electrode and the second light emitting unit;
  • the emission colors of the first light emitting unit and the second light emitting unit are different, and the thicknesses of the first compensation layer and the second compensation layer are different.
  • the first light emitting unit is a red light emitting unit
  • the second light emitting unit is a green light emitting unit
  • the film thickness of the second compensation layer is greater than that of the first compensation layer.
  • the light emitting device layer further includes a plurality of third light emitting units emitting light of a third color, and a third light emitting unit located between the first electrode and the third light emitting unit or/and the second light emitting unit. a third compensation layer between the electrode and the third light emitting unit;
  • the third light emitting unit is a blue light emitting unit, and the thickness of the first compensation layer is greater than the thickness of the third compensation layer.
  • the light-emitting device layer of the display panel includes a plurality of first light-emitting units and a plurality of first compensation layers corresponding to the first light-emitting units, and the first compensation layer is located in the first light-emitting unit
  • the hole transport rate of the first compensation layer is greater than the hole transport rate of the hole transport layer
  • the electron transport rate of the first compensation layer is greater than the electron transport rate of the electron transport layer
  • a compensation layer is provided on at least one side of the light-emitting unit, which improves the electron or/and hole transmission rate in the light-emitting unit, compensates the start-up voltage of the light-emitting unit, and improves the technical problem of color shift of the display panel at low gray scale.
  • Fig. 1 is the first cross-sectional view of the display panel of the present application
  • Fig. 2 is a schematic structural diagram of the light-emitting unit in the display panel of the present application
  • FIG. 3 is a second cross-sectional view of the display panel of the present application.
  • FIG. 4 is a third cross-sectional view of the display panel of the present application.
  • FIG. 5 is a schematic diagram of the first structure of the display panel of the present application.
  • FIG. 6 is a schematic diagram of the second structure of the display panel of the present application.
  • Fig. 7 is a comparison diagram of the experimental structure of the display panel of the present application and the current display panel;
  • FIG. 8 is a step diagram of the manufacturing method of the display panel of the present application.
  • 9a to 9h are flow charts of the method for manufacturing the display panel of the present application.
  • FIG. 10 is a schematic diagram of the chemical structure of HAT-CN in this application.
  • Fig. 11 is a schematic diagram of the chemical structure of F4-TCNQ in this application.
  • the present application provides a display panel 100 , which includes a first electrode, a light emitting device layer 80 and a second electrode stacked in sequence.
  • the light emitting device layer 80 may include a plurality of first light emitting units 21 emitting light of a first color, a plurality of first compensation layers 31 corresponding to the first light emitting units 21, and a plurality of first compensation layers 31 located on the first light emitting unit.
  • the first compensation layer 31 is located between the first electrode and the first light emitting unit 21, and the hole transport rate of the first compensation layer 31 is greater than that of the hole transport layer 206 hole transport rate; and/or, the first compensation layer 31 is located between the second electrode and the first light-emitting unit 21, and the electron transport rate of the first compensation layer 31 is greater than the electron transport rate The electron transport rate of layer 207.
  • the present application proposes a display panel 100.
  • the light emitting device layer 80 of the display panel 100 includes a plurality of first light emitting units 21 and a plurality of first compensation layers 31 corresponding to the first light emitting units 21.
  • the first compensation layer 31 is located at On at least one side of the first light-emitting unit 21, the hole transport rate of the first compensation layer 31 is greater than the hole transport rate of the hole transport layer 206, and/or, the electron transport rate of the first compensation layer 31 is greater than that of the electron transport layer 207.
  • the electron transmission rate of the light-emitting unit; the application improves the transmission rate of electrons or/and holes in the light-emitting unit by setting a compensation layer on at least one side of the light-emitting unit, compensates the start-up voltage of the light-emitting unit, and improves the display panel 100 in low gray There is a technical problem of color cast when stepping.
  • the electrodes on both sides of the light emitting device layer 80 are generally an anode and a cathode, the following description will be made with the first electrode being the anode layer 201 and the second electrode being the cathode layer 204 .
  • FIG. 1 is a first cross-sectional view of a display panel 100 of the present application.
  • the display panel 100 may include an array substrate 10, a light emitting functional layer 200 disposed on the array substrate 10, and an encapsulation layer 300 located on the light emitting functional layer 200, the light emitting functional layer 200 It includes an anode layer, a light emitting device layer 80 on the anode layer 201 , and a cathode layer 204 on the light emitting device layer 80 , and the light emitting device layer 80 includes a plurality of light emitting units 20 .
  • the array substrate 10 may include a substrate 11 and a driving circuit layer 12 on the substrate 11 .
  • the substrate 11 can be a flexible substrate or a rigid substrate.
  • the material of the substrate 11 can be made of glass, quartz and other materials; when the substrate 11 is a flexible substrate, the material of the substrate 11 can be polyamide imine and other materials.
  • the driving circuit layer 12 may include a plurality of thin film transistors 13 .
  • the thin film transistor 13 may be of etch barrier type, back channel etching type, or top gate thin film transistor type, and is not specifically limited.
  • a top gate thin film transistor may include an active layer 121 on the substrate 11, a gate insulating layer 122 on the active layer 121, a gate layer 123 on the gate insulating layer 122, a The inter-insulation layer 124 on the gate layer 123 , the source-drain layer 125 on the inter-insulation layer 124 , and the flat layer 126 on the source-drain layer 125 .
  • the above-mentioned top-gate thin film transistor is not limited to a single-gate structure, and may also be configured as a double-gate structure.
  • the display panel 100 further includes a pixel definition layer 40 disposed on the same layer as the light-emitting functional layer 200 , and the pixel definition layer 40 includes a plurality of pixel openings 401 .
  • the light-emitting functional layer 200 may include an anode layer 201 disposed on the planar layer 126, a plurality of light-emitting units 20 disposed on the anode layer 201, and a cathode layer 204 disposed on the light-emitting unit 20 layer,
  • the light emitting unit 20 is located in the pixel opening 401, one light emitting unit 20 corresponds to one pixel opening 401, the anode layer 201 is used to provide holes for absorbing electrons, and the cathode layer 204 is used to provide The electrons required by the light emitting unit 20 .
  • each of the light emitting units 20 may include a hole transport layer 206 on the anode layer 201, a light emitting layer 203 on the hole transport layer 206, a light emitting layer on the light emitting layer The electron transport layer 207 on the electron transport layer 203 , and the cathode layer 204 on the electron transport layer 207 .
  • the first light emitting unit 21 may be a red light emitting unit
  • the second light emitting unit 22 may be a green light emitting unit
  • the third light emitting unit 23 may be a blue light emitting unit.
  • the holes generated in the anode layer 201 may be transported to the adjacent cell through the hole transport layer 206. Electrons generated in the light emitting unit 20 or in the cathode layer 204 may be transferred to the adjacent light emitting unit 20 through the electron transport layer 207 .
  • the second light emitting unit 22 starts to emit light
  • holes generated by the anode layer 201 or electrons generated by the cathode layer 204 may be transported to the first light emitting unit 21 or the first light emitting unit 21 through the corresponding transport layer.
  • the second light-emitting unit 22 leaks electricity, that is, the second light-emitting unit 22 cannot display a predetermined brightness, and when the first light-emitting unit 21 and the third light-emitting unit 23 are in a non-light-emitting state,
  • the input of holes or electrons in 22 may cause the first light-emitting unit 21 and the third light-emitting unit 23 to emit weaker light, resulting in a technical problem of color shift in the low gray scale of the display panel 100 .
  • the light-emitting functional layer 200 further includes a first compensation layer 31 disposed on at least one side of at least one light-emitting unit 20, and the first compensation layer 31 The layer 31 is used to compensate the start-up voltage of the light-emitting unit 20 .
  • the first compensation layer 31 may include the first compensation layer 31 located between the anode layer 201 and the first light emitting unit 21 .
  • the first compensation layer 31 can be prepared by doping at least one organic/inorganic substance, and using processes such as blending or doping, and the first compensation layer 31 can include hole-type dopants, such as HAT-CN (see Figure 10), F4-TCNQ (see Figure 11), SbCl5 (antimony pentachloride) or FeCl3 (ferric chloride), etc.
  • the hole-type dopant since the hole-type dopant has more free holes, the hole-type dopant has a stronger electron-withdrawing group, and when the anode layer 201 and the cathode layer 204 input a corresponding voltage , an electron-withdrawing group in the hole-type dopant can absorb an electron from the first compensation layer 31 and retain a hole, and the retained hole is under the action of the voltage of the anode layer 201 and the cathode layer 204 Transported to the first light-emitting unit 21 through the hole transport layer 206, and combined with the electrons transported from the cathode layer 204 to generate a light source; therefore, the first compensation layer 31 is equivalent to the first light-emitting unit 21 start-up voltage for compensation.
  • the thickness of the first compensation layer 31 and the content of dopants in the first compensation layer 31 are positively correlated with the corresponding compensation voltage.
  • the film thickness of the first compensation layer 31 may be 5 nm to 80 nm.
  • the film thickness of the first compensation layer 31 is less than 5 nm, the film thickness is too thin, the evaporation process is difficult, and the formed film layer may appear discontinuous; when When the film thickness of the first compensation layer 31 is greater than 80 nm, the film thickness is too large, which may lead to failure of the microcavity effect of the light emitting unit 20 and affect the luminous efficiency of the light emitting unit 20 .
  • the film thickness of the first compensation layer 31 may be 15 nm to 30 nm.
  • the concentration of the dopant in the first compensation layer 31 may be 0.5% to 20%.
  • the concentration of the dopant in the first compensation layer 31 is less than 0.5%, the concentration of the dopant is too low may lead to uneven distribution of the dopant in the film layer, reducing the manufacturing process. stability; when the dopant concentration in the first compensation layer 31 is greater than 20%, the luminous efficiency and luminous lifetime of the first light-emitting unit 21 may be affected due to the high doping concentration of the dopant.
  • the dopant concentration in the first compensation layer 31 may be 1% to 6%.
  • the present application arranges the first compensation layer 31 between the anode layer 201 and the first light-emitting unit 21, and the dopants in the first compensation layer 31 absorb electrons and generate holes, and pass through the corresponding
  • the hole transport layer 206 provides holes to the first light-emitting unit 21, which increases the rate of transporting holes to the light-emitting unit, and then compensates the start-up voltage of the first light-emitting unit 21 to ensure that the first light-emitting The starting voltage of the unit 21 is normal; at the same time, according to the leakage of the first light-emitting unit 21, the thickness of the first compensation layer 31 and the concentration of hole-type dopants in the first compensation layer 31 are adaptively adjusted, Making the first light emitting unit 21 display a preset brightness at a low gray scale alleviates the technical problem of color shift of the display panel 100 at a low gray scale, and improves the accuracy of the color emitted by the display panel 100 .
  • the anode layer 201 includes a first portion corresponding to the pixel opening 401 , and the orthographic projection of the first portion on the cathode layer 204 is located at the first compensation layer 31 on the cathode layer 204 In the orthographic projection on .
  • the first part of the anode layer 201 is the part of the pixel definition layer 40 not covering the anode layer 201 , that is, the part of the anode layer 201 exposed in the pixel opening 401 .
  • the holes generated by the anode layer 201 are transported to the adjacent light-emitting unit 20 through the hole transport layer 206, if the first compensation layer 31 does not completely cover the first part of the anode layer 201 , the holes generated by the first part of the anode layer 201 may be transported to the adjacent light emitting unit 20 through the hole transport layer 206 directly in contact with the first part of the anode layer 201 .
  • the first compensation layer 31 completely covers the first part of the anode layer 201, preventing the holes generated by the first part of the anode layer 201 from directly passing through the hole transport layer 206 to the adjacent light emitting unit 20 , and the holes passing through the first compensation layer 31 can be transported into the light-emitting unit 20 under the action of the electric field formed by the anode layer 201 and the cathode layer 204 , while the holes generated by the first compensation layer 31 have an effect on the light-emitting unit 20
  • the starting voltage is compensated so that the light emitting unit 20 displays a preset brightness at low grayscale, which alleviates the technical problem of color shift of the display panel 100 at low grayscale, and improves the accuracy of the color emitted by the display panel 100 .
  • FIG. 3 is a second cross-sectional view of the display panel 100 of the present application.
  • the first compensation layer 31 may be located between the cathode layer 204 and the first light emitting unit 21 .
  • the first compensation layer 31 can be prepared by doping at least one organic/inorganic substance by blending or doping.
  • the first compensation layer 31 can include electronic dopants, such as alkali metal or alkali Metal salts (such as Li, Cs and their salts).
  • the electron-type dopant since the electron-type dopant has more free electrons, the electron-type dopant has a strong hole-absorbing group, which can also be called an electron-donating group.
  • a hole-absorbing group in the electronic dopant can absorb a hole and retain an electron from the first compensation layer 31, and the retained electron is in the anode layer 201 and the cathode layer.
  • the electron transport layer 207 is transported to the first light-emitting unit 21, and combined with the holes transported from the anode layer 201 to generate a light source; therefore, the first compensation layer 31 is equivalent to the The startup voltage of the first light emitting unit 21 is compensated.
  • the thickness of the first compensation layer 31 and the concentration of electron-type dopants in the first compensation layer 31 may refer to the embodiment in FIG. 1 , which will not be repeated here.
  • the present application arranges the first compensation layer 31 between the cathode layer 204 and the first light-emitting unit 21, and the dopants in the first compensation layer 31 absorb holes and generate electrons, and pass through the corresponding
  • the electron transport layer 207 provides electrons to the first light emitting unit 21, increases the rate of electron transfer to the light emitting unit, and then compensates the start-up voltage of the first light emitting unit 21, so as to ensure that the first light emitting unit 21 The starting voltage is normal; at the same time, according to the leakage of the first light-emitting unit 21, the thickness of the first compensation layer 31 and the concentration of hole-type dopants in the first compensation layer 31 are adaptively adjusted, so that the first A light-emitting unit 21 displays a preset brightness at low grayscale, which alleviates the technical problem of color shift of the display panel 100 at low grayscale, and improves the accuracy of the color emitted by the display panel 100 .
  • the orthographic projection of the first light emitting unit 21 on the cathode layer 204 may be located within the orthographic projection of the first compensation layer 31 on the cathode layer 204 . Similar to the anode layer 201, since the electrons generated by the cathode layer 204 are transported to the adjacent light emitting unit 20 through the electron transport layer 207, if the first compensation layer 31 does not divide the region between the cathode layer 204 and the light emitting unit If isolated, holes generated in the cathode layer 204 may be transported to the adjacent light-emitting unit 20 through the electron-transport layer 207 directly in contact with the light-emitting unit.
  • FIG. 4 is a third cross-sectional view of the display panel 100 of the present application.
  • the first compensation layer 31 can be located between the cathode layer 204 and the first light emitting unit 21 , and between the anode layer 201 and the first light emitting unit 21 at the same time.
  • the structure in FIG. 4 corresponds to a combination of the embodiments in FIGS. 1 and 3 .
  • the first compensation layer 31 located between the anode layer 201 and the first light emitting unit 21 may include hole-type dopants, and the layer located between the cathode layer 204 and the first light emitting unit 21
  • the first compensation layer 31 may include electronic dopants, and the thickness and concentration parameters of the two may refer to the embodiments in FIG. 1 and FIG. 3 .
  • the light leakage of the green sub-pixel is more serious, followed by the light leakage of the red sub-pixel, and the light leakage of the blue sub-pixel is relatively weak, so for Sub-pixels of different colors have different color shifts.
  • the electrical compensation layer 30 may include a first compensation layer 31 corresponding to the first light emitting unit 21 and a second compensation layer 32 corresponding to the second light emitting unit 22, and the position setting of the second compensation layer 32 may be Set with reference to the position of the first compensation layer 31 .
  • the film thicknesses of the first compensation layer 31 and the second compensation layer 32 may be different.
  • the first light emitting unit 21 may be a red light emitting unit
  • the second light emitting unit 22 may be a green light emitting unit. Since the color shift phenomenon of the green sub-pixel is the most serious, followed by the red sub-pixel, and the color shift phenomenon of the blue sub-pixel is the weakest, the present application makes the film thickness of the second compensation layer 32 larger than that of the first compensation layer 32 .
  • the film thickness of the first compensation layer 31 may be smaller than the film thickness of the second compensation layer 32 .
  • the concentration of dopants in the first compensation layer 31 and the second compensation layer 32 can be adaptively adjusted according to sub-pixels of different colors, that is, the thickness of the electrical compensation layer 30 and the The concentration of the dopant is adjusted at the same time to meet the corresponding start-up voltage required by the light-emitting unit 20 and the cavity length and thickness required by the microcavity effect.
  • FIG. 6 is a schematic diagram of the second structure of the display panel 100 of the present application.
  • the electrical compensation layer 30 may include a first compensation layer 31 corresponding to the first light-emitting unit 21, a second compensation layer 32 corresponding to the second light-emitting unit 22, and a second compensation layer 32 corresponding to the third light-emitting unit 23.
  • the thicknesses of the third compensation layer 33 , the first compensation layer 31 , the second compensation layer 32 and the third compensation layer 33 are different.
  • the first light emitting unit 21 may be a red light emitting unit
  • the second light emitting unit 22 may be a green light emitting unit
  • the third light emitting unit 23 may be a blue light emitting unit. Since the color shift phenomenon of the green sub-pixel is the most serious, followed by the red sub-pixel, and the color shift phenomenon of the blue sub-pixel is the weakest, the present application makes the film thickness of the second compensation layer 32 larger than that of the first compensation layer 32 .
  • the thickness of layer 31, the thickness of the first compensation layer 31 is greater than the thickness of the third compensation layer 33, that is, the color shift phenomenon of the green sub-pixel is serious, the thickness of the second compensation layer 32 is the largest, and the thickness of the blue sub-pixel The color shift phenomenon of the pixel is the weakest, and the thickness of the third compensation layer 33 is the smallest.
  • the concentrations of dopants in the first compensation layer 31, the second compensation layer 32, and the third compensation layer 33 can be adaptively adjusted according to sub-pixels of different colors, that is, The thickness of the electrical compensation layer 30 and the concentration of the dopant are simultaneously adjusted to meet the start-up voltage required by the light emitting unit 20 and the cavity length and thickness required by the microcavity effect.
  • the thickness of the blue light-emitting unit can be greater than the thickness of the red light-emitting unit, The thickness of the red light emitting unit may be greater than that of the green light emitting unit.
  • the light emitting unit 20 includes a cavity length adjustment layer disposed between the anode layer 201 and the electrical compensation layer 30 202.
  • the thickness of the cavity length adjustment layer 202 of different luminous colors is different.
  • the cavity length adjusting layer 202 is not only used to adjust the flatness of the film layer, but also used to adjust the luminous efficiency of the light emitting unit 20 .
  • the anode layer 201 can be made of a total reflection material
  • the cathode layer 204 can be made of a semi-reflection material, and in order to avoid the interference of the light inside the microcavity,
  • the ratio of the thickness of the microcavity formed by the anode layer 201 and the cathode layer 204 to the wavelength of the corresponding luminescent color is 0.5m:1, where m is a positive integer.
  • the specific working principle is the same as that of the top emission type and will not be repeated here.
  • the current anode layer 201 is generally composed of three layers of metal, such as a laminated structure of indium tin oxide, metallic silver, and indium tin oxide.
  • the light will be reflected to the cathode layer 204 through the silver metal, and in order to ensure the luminous efficiency of the light emitting unit 20 , the distance between the luminescent center of the light emitting layer 203 and the surface of the silver metal needs to meet a certain distance requirement.
  • the distance between the center of the luminescent layer 203 and the preset position of the anode layer 201 is 0.5n ⁇
  • is the wavelength of the luminescent color corresponding to the luminescent layer 203
  • n is a positive integer, that is,
  • the distance between the center of the light-emitting layer 203 and the surface of the metallic silver in the anode layer 201 is 0.5n ⁇ .
  • the required cavity length adjustment layer 202 since the cavity length adjustment layer 202 is arranged between the anode layer 201 and the electrical compensation layer 30, and according to the limitation of the distance between the center of the light emitting layer 203 and the metal silver, for different luminous colors, the required cavity The length adjustment layers 202 have different thicknesses. For example, since red light has the largest wavelength and blue light has the smallest wavelength, the thickness of the cavity length adjustment layer 202 corresponding to red light is the largest, and the thickness of the cavity length adjustment layer 202 corresponding to blue light is the smallest.
  • FIG. 7 is a comparison diagram of the experimental structure of the display panel of the present application and the current display panel.
  • FIG. 7 respectively lists three graphs of no electrical compensation layer, with electrical compensation layer and other sub-pixels.
  • the solid line in Figure 7 is the curve comparison diagram of the green sub-pixel, and the dotted line is the curve diagram of the red sub-pixel or the blue sub-pixel.
  • the same brightness can be achieved for different schemes, for example, at low grayscale brightness values
  • the voltage value required for no electrical compensation layer in the current display panel is 2.27V
  • the voltage value required for setting the electrical compensation layer in the display panel of the present application is 2.18V
  • the realization The voltage value required for the same brightness is reduced, and the electrical compensation layer realizes voltage compensation for the light emitting unit.
  • the voltage required to achieve the same brightness is smaller.
  • the starting voltage is 2.26V, and the color shift value is 0.005 ⁇ 0.007;
  • the starting voltage is 2.09V, and the color shift value is 0.003 ⁇ 0.004;
  • CIEx low gray scale
  • CIEx(L255) the CIE value of the green sub-pixel at high gray scale. According to the data in the above table, the start-up voltage of the green sub-pixel is reduced from 2.26V to 2.09V, and the color shift value at low grayscale is reduced by 0.002 ⁇ 0.003. improve.
  • the material of the cavity length adjustment layer 202, the hole injection layer 205, the light emitting layer 203, the hole transport layer 206, the electron transport layer 207 and the electron injection layer 208 can be but not limited to organic small molecule materials, the cavity
  • the length adjustment layer 202 , the hole injection layer 205 , the hole transport layer 206 , the light emitting layer 203 , the electron transport layer 207 and the electron injection layer 208 can all be formed by an evaporation process.
  • the cavity length adjustment layer 202 can be at least one of the hole-type organic small molecules 2TNATA, NPB, and TAPC, and is deposited on the anode layer 201 or the electrical electrode layer by vacuum evaporation using a fine metal mask. Formed on the compensation layer 30 , the film thickness of the cavity length adjustment layer 202 may be 20 nm to 180 nm.
  • the electron transport layer 207 and the electron injection layer 208 can be at least one of TPBi, BPhen, TmPyPB, and the thickness of the electron transport layer 207 and the electron injection layer 208 can be 20nm to 80nm.
  • the thickness of the light emitting layer 203 may be 20nm to 50nm.
  • the material of the cathode layer 204 can be at least one of Yb, Ca, Mg, and Ag, for example, an AgMg alloy formed of Ag and Mg at a ratio of 10:1, and the cathode layer 204 The thickness may be 8nm to 20nm.
  • the encapsulation layer may be a thin film encapsulation layer, which may include a first inorganic layer, a first organic layer on the first inorganic layer, and a second organic layer on the first organic layer. Inorganic layer. The specific structure will not be repeated here.
  • the present application proposes a display panel 100.
  • the light emitting device layer 80 of the display panel 100 includes a plurality of first light emitting units 21 and a plurality of first compensation layers 31 corresponding to the first light emitting units 21.
  • the first compensation layer 31 is located at On at least one side of the first light-emitting unit 21, the hole transport rate of the first compensation layer 31 is greater than the hole transport rate of the hole transport layer 206, and/or, the electron transport rate of the first compensation layer 31 is greater than that of the electron transport layer 207.
  • the electron transmission rate of the light-emitting unit; the application improves the transmission rate of electrons or/and holes in the light-emitting unit by setting a compensation layer on at least one side of the light-emitting unit, compensates the start-up voltage of the light-emitting unit, and improves the display panel 100 in low gray There is a technical problem of color cast in the step.
  • the present application also proposes a method for manufacturing a display panel 100, including:
  • the array substrate 10 may include a substrate 11 and a driving circuit layer 12 on the substrate 11 .
  • the substrate 11 can be a flexible substrate or a rigid substrate.
  • the material of the substrate 11 can be made of glass, quartz and other materials; when the substrate 11 is a flexible substrate, the material of the substrate 11 can be polyamide imine and other materials.
  • the driving circuit layer 12 may include a plurality of thin film transistors 13 .
  • the thin film transistor 13 may be of etch barrier type, back channel etching type, or top gate thin film transistor type, and is not specifically limited.
  • a top gate thin film transistor may include an active layer 121 on the substrate 11, a gate insulating layer 122 on the active layer 121, a gate layer 123 on the gate insulating layer 122, a The inter-insulation layer 124 on the gate layer 123 , the source-drain layer 125 on the inter-insulation layer 124 , and the flat layer 126 on the source-drain layer 125 .
  • the above-mentioned top-gate thin film transistor is not limited to a single-gate structure, and may also be configured as a double-gate structure.
  • step S20 may include:
  • the anode layer 201 can be made of three layers of metal, such as a laminated structure of indium tin oxide, metal silver and indium tin oxide, the anode layer 201 includes a plurality of anodes, one anode and one display The sub-pixels of the panel 100 correspond.
  • the anode layer 201 After forming the anode layer 201 , it further includes: forming a pixel definition layer 40 on the anode layer 201 .
  • the pixel definition layer 40 is patterned to form a plurality of pixel openings 401 , and the pixel openings 401 expose part of the anode.
  • the first compensation layer 31 is located in the pixel opening 401 . Meanwhile, the first compensation layer 31 can also be deposited before forming the pixel definition layer 40 , that is, it can cover the exposed part of the anode layer 201 .
  • the first compensation layer 31 can be prepared by doping at least one organic/inorganic substance, and using processes such as blending or doping, and the first compensation layer 31 can include hole-type dopants, such as HAT-CN (see Figure 10), F4-TCNQ (see Figure 11), SbCl5 (antimony pentachloride) or FeCl3 (ferric chloride), etc.
  • hole-type dopants such as HAT-CN (see Figure 10), F4-TCNQ (see Figure 11), SbCl5 (antimony pentachloride) or FeCl3 (ferric chloride), etc.
  • the film thickness of the first compensation layer 31 may be 5 nm to 80 nm.
  • the film thickness of the first compensation layer 31 is less than 5 nm, the film thickness is too thin, the evaporation process is difficult, and the formed film layer may appear discontinuous; when When the film thickness of the first compensation layer 31 is greater than 80 nm, the film thickness is too large, which may lead to failure of the microcavity effect of the light emitting unit 20 and affect the luminous efficiency of the light emitting unit 20 .
  • the film thickness of the first compensation layer 31 may be 15 nm to 30 nm.
  • the concentration of the dopant in the first compensation layer 31 may be 0.5% to 20%.
  • the concentration of the dopant in the first compensation layer 31 is less than 0.5%, the concentration of the dopant is too low may lead to uneven distribution of the dopant in the film layer, reducing the manufacturing process. stability; when the dopant concentration in the first compensation layer 31 is greater than 20%, the luminous efficiency and luminous lifetime of the light emitting unit 20 may be affected due to the high doping concentration of the dopant.
  • the dopant concentration in the first compensation layer 31 may be 1% to 6%.
  • the light-emitting functional layer 200 may include a first light-emitting unit 21, a second light-emitting unit 22, and a third light-emitting unit 23.
  • the first light-emitting unit 21, the second light-emitting unit The light emitting colors of the unit 22 and the third light emitting unit 23 are different from each other, for example, the first light emitting unit 21 can be a red light emitting unit, the second light emitting unit 22 can be a green light emitting unit, and the third light emitting unit can be a red light emitting unit. 23 may be a blue light emitting unit.
  • the material of the cathode layer 204 may be at least one of Yb, Ca, Mg, and Ag, for example, an AgMg alloy formed of Ag and Mg at a ratio of 10:1, so The thickness of the cathode layer 204 may be 8nm to 20nm.
  • the hole-type dopant has a strong electron-withdrawing group, and when the anode layer 201 and the cathode layer 204 input a corresponding voltage, an electron-withdrawing group in the hole-type dopant can be extracted from
  • the electrical compensation layer 30 absorbs an electron and retains a hole, and the retained hole is transported to the second light-emitting unit 22 through the hole transport layer 206 under the action of the voltage of the anode layer 201 and the cathode layer 204, And combined with the electrons transported from the cathode layer 204 to generate a light source.
  • the first compensation layer 31 is equivalent to compensating the starting voltage of the first light emitting unit 21 .
  • the thickness of the first compensation layer 31 and the content of dopants in the first compensation layer 31 are positively correlated with the corresponding compensation voltage.
  • step S20 may also include:
  • the first compensation layer 31 can be prepared by doping at least one organic substance/inorganic substance and using processes such as blending or doping, and the first compensation layer 31 can include electronic dopants , such as an alkali metal or an alkali metal salt.
  • the electron-type dopant has a stronger hole-absorbing group, and when the anode layer 201 and the cathode layer 204 input a corresponding voltage, a hole-absorbing group in the electron-type dopant can be drawn from One hole is absorbed and one electron is retained in the second compensation sublayer, and the retained electron is transported to the first light-emitting unit 21 through the electron transport layer 207 under the action of the voltage of the anode layer 201 and the cathode layer 204, and Combined with holes transported from the anode layer 201 to generate a light source; therefore, the first compensation layer 31 is equivalent to compensating the start-up voltage of the first light emitting unit 21 .
  • the encapsulation layer 300 may be a thin film encapsulation layer, which may include a first inorganic layer, a first organic layer on the first inorganic layer, and a first organic layer on the first A second inorganic layer on the organic layer. The specific structure will not be repeated here.
  • the light-emitting functional layer 200 may also include a cavity length adjustment layer 202, and the cavity length adjustment layer 202 may be formed on the anode layer 201 by evaporation process, please refer to the specific process and structure. See description above.
  • the present application also proposes a display module, wherein the display module includes the above-mentioned display panel, a polarizer layer disposed on the display panel, and a cover layer disposed on the polarizer layer.
  • the present application also proposes a mobile terminal.
  • the mobile terminal includes a terminal body and the above-mentioned display panel, and the terminal body and the display panel are combined into one.
  • the present application proposes a display panel 100.
  • the light emitting device layer 80 of the display panel 100 includes a plurality of first light emitting units 21 and a plurality of first compensation layers 31 corresponding to the first light emitting units 21.
  • the first compensation layer 31 is located at On at least one side of the first light-emitting unit 21, the hole transport rate of the first compensation layer 31 is greater than the hole transport rate of the hole transport layer 206, and/or, the electron transport rate of the first compensation layer 31 is greater than that of the electron transport layer 207.
  • the electron transmission rate of the light-emitting unit; the application improves the transmission rate of electrons or/and holes in the light-emitting unit by setting a compensation layer on at least one side of the light-emitting unit, compensates the start-up voltage of the light-emitting unit, and improves the display panel 100 in low gray There is a technical problem of color cast when stepping.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提出了一种显示面板及移动终端;显示面板的发光器件层包括多个第一发光单元和多个与第一发光单元对应设置的第一补偿层,第一补偿层位于第一发光单元的至少一侧,第一补偿层的空穴传输速率大于空穴传输层的空穴传输速率,和/或,第一补偿层的电子传输速率大于电子传输层的电子传输速率。

Description

显示面板及移动终端 技术领域
本申请涉及显示领域,尤其涉及一种显示面板及移动终端。
背景技术
在平板显示技术中,有机发光二极管(Organic Light-Emitting Diode,OLED)显示器具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高和功耗低等众多优点,逐渐成为继液晶显示器后的第三代显示技术。
在当前OLED显示器的结构中,由于相邻子像素中共用空穴共通层和电子共通层,当电压输入至子像素时,阳极产生的空穴或阴极产生的电子通过对应的共通层传输至相邻的子像素中,使子像素的启动电压不准确,导致OLED显示器在低灰阶时出现色偏的技术问题。
因此,亟需一种显示面板以解决上述技术问题。
技术问题
本申请提供一种显示面板及移动终端,以改善现有OLED显示面板在低灰阶时出现色偏的技术问题。
技术解决方案
本申请提供了一种显示面板,包括依次堆叠设置的第一电极、发光器件层和第二电极;
所述发光器件层包括多个发射第一颜色光线的第一发光单元和多个与第一发光单元对应设置的第一补偿层、以及位于所述第一发光单元两侧的空穴传输层和电子传输层;
其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间,所述第一补偿层的空穴传输速率大于所述空穴传输层的空穴传输速率;和/或,
所述第一补偿层位于所述第二电极与所述第一发光单元之间,所述第一补偿层的电子传输速率大于所述电子传输层的电子传输速率。
在本申请的显示面板中,所述第一补偿层位于所述第一电极与所述第一发光单元之间;
其中,所述第一补偿层包括具有吸电子基团的空穴型掺杂物。
在本申请的显示面板中,所述空穴型掺杂物的浓度为1%至6%,所述空穴型掺杂物包括HAT-CN、F4-TCNQ、SbCl5或FeCl3中至少一种。
在本申请的显示面板中,所述显示面板包括像素定义层,所述像素定义层包括多个像素开口,所述第一发光单元位于所述像素开口内;
所述第一电极包括与所述像素开口对应的第一部分,所述第一部分在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
在本申请的显示面板中,所述第一补偿层位于所述第二电极与所述第一发光单元之间;
其中,所述第一补偿层包括具有给电子基团的电子型掺杂物。
在本申请的显示面板中,所述电子型掺杂物的浓度为1%至6%,所述电子型掺杂物包括碱金属或碱金属盐。
在本申请的显示面板中,所述第一发光单元在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
在本申请的显示面板中,所述发光器件层还包括多个发射第二颜色光线的第二发光单元、和位于所述第一电极与所述第二发光单元之间或/和所述第二电极与所述第二发光单元之间的第二补偿层;
其中,所述第一发光单元和所述第二发光单元的发光颜色相异,所述第一补偿层和所述第二补偿的厚度不相同。
在本申请的显示面板中,所述第一发光单元为红色发光单元,所述第二发光单元为绿色发光单元;
所述第二补偿层的膜层厚度大于所述第一补偿层的厚度。
在本申请的显示面板中,所述发光器件层还包括多个发射第三颜色光线的第三发光单元、和位于所述第一电极与所述第三发光单元之间或/和所述第二电极与所述第三发光单元之间的第三补偿层;
其中,所述第三发光单元为蓝色发光单元,所述第一补偿层的厚度大于所述第三补偿层的厚度。
本申请还提出了一种移动终端,其中,所述移动终端包括终端主体和显示面板,所述终端主体和所述显示面板组合为一体;其中,
所述显示面板包括依次堆叠设置的第一电极、发光器件层和第二电极;
所述发光器件层包括多个发射第一颜色光线的第一发光单元、多个与第一发光单元对应设置的第一补偿层、以及位于所述第一发光单元两侧的空穴传输层和电子传输层;
其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间,所述第一补偿层的空穴传输速率大于所述空穴传输层的空穴传输速率;和/或,
所述第一补偿层位于所述第二电极与所述第一发光单元之间,所述第一补偿层的电子传输速率大于所述电子传输层的电子传输速率。
在本申请的移动终端中,所述第一补偿层位于所述第一电极与所述第一发光单元之间;
其中,所述第一补偿层包括具有吸电子基团的空穴型掺杂物。
在本申请的移动终端中,所述空穴型掺杂物的浓度为1%至6%,所述空穴型掺杂物包括HAT-CN、F4-TCNQ、SbCl5或FeCl3中至少一种。
在本申请的移动终端中,所述显示面板包括像素定义层,所述像素定义层包括多个像素开口,所述第一发光单元位于所述像素开口内;
所述第一电极包括与所述像素开口对应的第一部分,所述第一部分在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
在本申请的移动终端中,所述第一补偿层位于所述第二电极与所述第一发光单元之间;
其中,所述第一补偿层包括具有给电子基团的电子型掺杂物。
在本申请的移动终端中,所述电子型掺杂物的浓度为1%至6%,所述电子型掺杂物包括碱金属或碱金属盐。
在本申请的移动终端中,所述第一发光单元在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
在本申请的移动终端中,所述发光器件层还包括多个发射第二颜色光线的第二发光单元、和位于所述第一电极与所述第二发光单元之间或/和所述第二电极与所述第二发光单元之间的第二补偿层;
其中,所述第一发光单元和所述第二发光单元的发光颜色相异,所述第一补偿层和所述第二补偿的厚度不相同。
在本申请的移动终端中,所述第一发光单元为红色发光单元,所述第二发光单元为绿色发光单元;
所述第二补偿层的膜层厚度大于所述第一补偿层的厚度。
在本申请的移动终端中,所述发光器件层还包括多个发射第三颜色光线的第三发光单元、和位于所述第一电极与所述第三发光单元之间或/和所述第二电极与所述第三发光单元之间的第三补偿层;
其中,所述第三发光单元为蓝色发光单元,所述第一补偿层的厚度大于所述第三补偿层的厚度。
有益效果
本申请提出了一种显示面板及移动终端;显示面板的发光器件层包括多个第一发光单元和多个与第一发光单元对应设置的第一补偿层,第一补偿层位于第一发光单元的至少一侧,第一补偿层的空穴传输速率大于空穴传输层的空穴传输速率,和/或,第一补偿层的电子传输速率大于电子传输层的电子传输速率;本申请通过在发光单元的至少一侧设置补偿层,提高了发光单元中电子或/和空穴的传输速率,补偿了发光单元的启动电压,改善了显示面板在低灰阶时出现色偏的技术问题。
附图说明
图1为本申请显示面板的第一种剖面图;
图2为本申请显示面板中发光单元的结构简图;
图3为本申请显示面板的第二种剖面图;
图4为本申请显示面板的第三种剖面图;
图5为本申请显示面板的第一种结构简图;
图6为本申请显示面板的第二种结构简图;
图7为本申请显示面板与当前显示面板的实验结构对比图;
图8为本申请显示面板制作方法步骤图;
图9a至9h为本申请显示面板制作方法的流程图;
图10为本申请中HAT-CN的化学结构示意图;
图11为本申请中F4-TCNQ的化学结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在当前OLED显示器的结构中,当电压输入至子像素时,阳极产生的空穴或阴极产生的电子通过对应的共通层传输至相邻的子像素中,使子像素的启动电压不准确,导致OLED显示器在低灰阶时出现色偏的技术问题。本申请提出了下列技术方案以解决上述技术问题。
请参阅图1至图6,本申请提供了一种显示面板100,包括依次堆叠设置的第一电极、发光器件层80和第二电极。
在本实施例中,所述发光器件层80可以包括多个发射第一颜色光线的第一发光单元21和多个与第一发光单元21对应设置的第一补偿层31、以及位于所述第一发光单元两侧的空穴传输层和电子传输层。
在本实施例中,所述第一补偿层31位于所述第一电极与所述第一发光单元21之间,所述第一补偿层31的空穴传输速率大于所述空穴传输层206的空穴传输速率;和/或,所述第一补偿层31位于所述第二电极与所述第一发光单元21之间,所述第一补偿层31的电子传输速率大于所述电子传输层207的电子传输速率。
本申请提出了一种显示面板100,显示面板100的发光器件层80包括多个第一发光单元21和多个与第一发光单元21对应设置的第一补偿层31,第一补偿层31位于第一发光单元21的至少一侧,第一补偿层31的空穴传输速率大于空穴传输层206的空穴传输速率,和/或,第一补偿层31的电子传输速率大于电子传输层207的电子传输速率;本申请通过在发光单元的至少一侧设置补偿层,提高了发光单元中电子或/和空穴的传输速率,补偿了发光单元的启动电压,改善了显示面板100在低灰阶时出现色偏的技术问题。
需要说明的是,由于发光器件层80两侧的电极一般为阳极和阴极,因此下文将以所述第一电极为阳极层201,所述第二电极为阴极层204进行描述。
现结合具体实施例对本申请的技术方案进行描述。
请参阅图1,图1为本申请显示面板100的第一种剖面图。
在本实施例中,所述显示面板100可以包括阵列基板10、设置于所述阵列基板10上的发光功能层200以及位于所述发光功能层200上的封装层300,所述发光功能层200包括阳极层、位于所述阳极层201上的发光器件层80、位于所述发光器件层80上的阴极层204,所述发光器件层80包括多个发光单元20。
在本实施例中,所述阵列基板10可以包括衬底11及位于所述衬底11上的驱动电路层12。所述衬底11可以为柔性衬底或刚性衬底。当所述衬底11为刚性衬底时,所述衬底11材料可以为玻璃、石英等材料制备;当所述衬底11为柔性衬底时,所述衬底11的材料可以为聚酰亚胺等材料。
在本实施例中,所述驱动电路层12可以包括多个薄膜晶体管13。所述薄膜晶体管13可以为蚀刻阻挡型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如,顶栅薄膜晶体管可以包括位于所述衬底11上的有源层121、位于所述有源层121上的栅绝缘层122、位于所述栅绝缘层122上的栅极层123、位于所述栅极层123上的间绝缘层124、位于所述间绝缘层124上的源漏极层125、以及位于所述源漏极层125上的平坦层126。上述顶栅薄膜晶体管不限于单栅极结构,还可以设置为双栅极结构等。
在本申请的显示面板100中,所述显示面板100还包括与所述发光功能层200同层设置的像素定义层40,所述像素定义层40包括多个像素开口401。所述发光功能层200可以包括设置于所述平坦层126上的阳极层201、设置于所述阳极层201上的多个发光单元20以及设置于所述发光单元20层上的阴极层204,所述发光单元20位于所述像素开口401内,一所述发光单元20与一所述像素开口401对应,所述阳极层201用于提供吸收电子的空穴,所述阴极层204用于提供所述发光单元20所需的电子。
请参阅图1和图2,每一所述发光单元20可以包括位于所述阳极层201上的空穴传输层206、位于所述空穴传输层206上的发光层203、位于所述发光层203上的电子传输层207、以及位于所述电子传输层207上的阴极层204。图1所示的发光功能层200可以包括第一发光单元21、第二发光单元22和第三发光单元23,所述第一发光单元21、所述第二发光单元22和所述第三发光单元23的发光颜色互不相同,例如所述第一发光单元21可以为红色发光单元,所述第二发光单元22可以为绿色发光单元,所述第三发光单元23可以为蓝色发光单元。
在图1的结构中,由于相邻发光单元20的空穴传输层206和所述电子传输层207是共用的,因此阳极层201产生的空穴可能通过空穴传输层206传输至相邻的发光单元20中,或者阴极层204产生的电子可能通过电子传输层207传递至相邻的发光单元20中。例如,在显示面板100的低灰阶状态,当第二发光单元22开始发光时,阳极层201产的空穴或阴极层204产生的电子可能通过对应的传输层传输至第一发光单元21或第三发光单元23中,导致第二发光单元22漏电,即第二发光单元22无法显示预定亮度,同时当第一发光单元21和第三发光单元23处于非发光状态时,而第二发光单元22中空穴或电子的输入,可能导致第一发光单元21和第三发光单元23发出较微弱的光,导致显示面板100在低灰阶时出现色偏的技术问题。
在本实施例中,在所述发光单元20的发光方向上,所述发光功能层200还包括设置于至少一所述发光单元20的至少一侧的第一补偿层31,所述第一补偿层31用于补偿所述发光单元20的启动电压。
在本实施例中,请参阅图1,所述第一补偿层31可以包括位于所述阳极层201与所述第一发光单元21之间的第一补偿层31。所述第一补偿层31可以通过掺杂至少一种有机物/无机物,并利用共混或掺杂等工艺制备,所述第一补偿层31可以包括空穴型掺杂物,例如HAT-CN(见图10)、F4-TCNQ(见图11)、SbCl5(五氯化锑)或FeCl3(三氯化铁)等。
在本实施例中,由于空穴型掺杂物具有较多游离的空穴,因此空穴型掺杂物具有较强的吸电子基团,而当阳极层201和阴极层204输入对应电压时,空穴型掺杂物中的一个吸电子基团可以从所述第一补偿层31中吸走一个电子以及保留一个空穴,保留的空穴在阳极层201和阴极层204的电压作用下通过空穴传输层206传输至所述第一发光单元21中,且与从阴极层204传输过来的电子结合以产生光源;因此,所述第一补偿层31相当于对所述第一发光单元21的启动电压进行补偿。
在本实施例中,第一补偿层31的厚度和第一补偿层31中掺杂物的含量与对应的补偿电压呈正相关。例如,所述第一补偿层31的厚度越厚,在相同比例的情况下掺杂物的含量越多,所述第一补偿层31对第一发光单元21的补偿电压越大,因此本实施例可以根据不同子像素的漏电情况,对所述电学补偿的厚度进行适应性调整。
在本实施例中,所述第一补偿层31的膜层厚度可以为5nm至80nm。对于当前显示面板100的制程工艺,当第一补偿层31的膜层厚度小于5nm时,膜层厚度过于单薄,蒸镀工艺难度较大,所形成的膜层可能会出现非连续的情况;当第一补偿层31的膜层厚度大于80nm时,膜层厚度过大,可能导致发光单元20的微腔效应失效,影响发光单元20的发光效率。
在本实施例中,所述第一补偿层31的膜层厚度可以为15nm至30nm。
在本实施例中,所述第一补偿层31中掺杂物的浓度可以为0.5%至20%。对于当前显示面板100的制程工艺,当所述第一补偿层31中掺杂物的浓度小于0.5%时,掺杂物的浓度过低可能导致膜层中掺杂物的分布不均,降低制程的稳定性;当所述第一补偿层31中掺杂物的浓度大于20%时,可能因掺杂物的掺杂浓度过高而影响第一发光单元21的发光效率和发光寿命。
在本实施例中,所述第一补偿层31中掺杂物的浓度可以为1%至6%。
在本实施例中,本申请通过在阳极层201与第一发光单元21之间设置第一补偿层31,第一补偿层31中的掺杂物通过吸入电子以及产生空穴,并通过对应的空穴传输层206向所述第一发光单元21提供空穴,提高了向发光单元传输空穴的速率,进而对所述第一发光单元21的启动电压进行补偿,以保证所述第一发光单元21的启动电压正常;同时,根据第一发光单元21的漏电情况,对所述第一补偿层31的厚度和所述第一补偿层31中空穴型掺杂物的浓度进行适应性调整,以使第一发光单元21在低灰阶时显示预设亮度,缓解了显示面板100在低灰阶时出现色偏的技术问题,提高了显示面板100发光颜色的准确度。
请参阅图1,所述阳极层201包括与所述像素开口401对应的第一部分,所述第一部分在所述阴极层204上的正投影位于所述第一补偿层31在所述阴极层204上的正投影内。所述阳极层201的第一部分为所述像素定义层40未覆盖所述阳极层201的部分,即阳极层201在所述像素开口401裸露的部分。
在本实施例中,由于阳极层201产生的空穴通过空穴传输层206传输至相邻的发光单元20,因此若所述第一补偿层31未将所述阳极层201的第一部分完全覆盖,则所述阳极层201的第一部分产生的空穴可能通过与阳极层201的第一部分直接接触的空穴传输层206传输至相邻的发光单元20中。
在本实施例中,所述第一补偿层31将阳极层201的第一部分完全覆盖,避免阳极层201的第一部分产生的空穴直接通过空穴传输层206传递至相邻的发光单元20中,而经过第一补偿层31的空穴可以在阳极层201和阴极层204所形成的电场的作用下传输至发光单元20中,同时第一补偿层31所产生的空穴对发光单元20的启动电压进行补偿,以使发光单元20在低灰阶时显示预设亮度,缓解了显示面板100在低灰阶时出现色偏的技术问题,提高了显示面板100发光颜色的准确度。
请参阅图3,图3为本申请显示面板100的第二种剖面图。所述第一补偿层31可以位于所述阴极层204与所述第一发光单元21之间。所述第一补偿层31可以通过掺杂至少一种有机物/无机物,并利用共混或掺杂等工艺制备,所述第一补偿层31可以包括电子型掺杂物,例如碱金属或碱金属盐(如Li,Cs及其盐类)。
在本实施例中,由于电子型掺杂物具有较多游离的电子,因此电子型掺杂物具有较强的吸空穴基团,也可以称为给电子基团,而当阳极层201和阴极层204输入对应电压时,电子型掺杂物中的一个吸空穴基团可以从所述第一补偿层31中吸走一个空穴以及保留一个电子,保留的电子在阳极层201和阴极层204的电压作用下通过电子传输层207传输至所述第一发光单元21中,且与从阳极层201传输过来的空穴结合以产生光源;因此,所述第一补偿层31相当于对所述第一发光单元21的启动电压进行补偿。
在本实施例中,所述第一补偿层31的厚度和所述第一补偿层31中电子型掺杂物的浓度可以参考图1中的实施例,此处不在赘述。
在本实施例中,本申请通过在阴极层204与第一发光单元21之间设置第一补偿层31,第一补偿层31中的掺杂物通过吸入空穴以及产生电子,并通过对应的电子传输层207向所述第一发光单元21提供电子,提高了向发光单元传输电子的速率,进而对所述第一发光单元21的启动电压进行补偿,以保证所述第一发光单元21的启动电压正常;同时,根据第一发光单元21的漏电情况,对所述第一补偿层31的厚度和所述第一补偿层31中空穴型掺杂物的浓度进行适应性调整,以使第一发光单元21在低灰阶时显示预设亮度,缓解了显示面板100在低灰阶时出现色偏的技术问题,提高了显示面板100发光颜色的准确度。
在本实施例中,所述第一发光单元21在所述阴极层204上的正投影可以位于所述第一补偿层31在所述阴极层204上的正投影内。与阳极层201类似,由于阴极层204产生的电子通过电子传输层207传输至相邻的发光单元20,因此若所述第一补偿层31未将所述阴极层204与发光单元之间的区域隔离,则所述阴极层204的第产生的空穴可能通过与发光单元直接接触的电子传输层207传输至相邻的发光单元20中。
请参阅图4,图4为本申请显示面板100的第三种剖面图。所述第一补偿层31可以同时位于所述阴极层204与所述第一发光单元21、以及所述阳极层201和所述第一发光单元21之间。图4中的结构相当于图1和图3中实施例的结合。位于所述阳极层201和所述第一发光单元21之间的所述第一补偿层31可以包括空穴型掺杂物,位于所述阴极层204和所述第一发光单元21之间的所述第一补偿层31可以包括电子型掺杂物,二者的厚度及浓度参数可以参考图1和图3中的实施例。
对于显示面板100的低灰阶状态,在红绿蓝三种子像素中,绿色子像素的漏光较为严重,其次为红色子像素出现漏光的情况,蓝色子像素出现漏光的现象较弱,因此对于不同颜色的子像素,色偏的情况各不相同。
请参阅图5,图5为本申请显示面板100的第一种结构简图。所述电学补偿层30可以包括与所述第一发光单元21对应的第一补偿层31与所述第二发光单元22对应的第二补偿层32,所述第二补偿层32的位置设置可以参考第一补偿层31的位置进行设置。
在本实施例中,所述第一补偿层31和所述第二补偿层32的膜层厚度可以不相同。
根据上述限定,所述第一发光单元21可以为红色发光单元,所述第二发光单元22可以为绿色发光单元。由于绿色子像素出现色偏现象最严重,其次为红色子像素,蓝色子像素的色偏现象最弱,因此本申请通过将所述第二补偿层32的膜层厚度大于所述第一补偿层31的膜层厚度,即绿色子像素的色偏现象较严重,所述第二补偿层32的厚度膜层最大,蓝色子像素的色偏现象最弱,不进行补偿层的设置,所述第一补偿层31的膜层厚度可以小于第二补偿层32的膜层厚度。
另外,本实施例还可以根据不同颜色的子像素,对所述第一补偿层31、所述第二补偿层32中掺杂物的浓度进行适应性调节,即对电学补偿层30的厚度及掺杂物的浓度同时调节,以满足对应发光单元20所需要的启动电压及微腔效应所需要的腔长厚度。
请参阅图6,图6为本申请显示面板100的第二种结构简图。所述电学补偿层30可以包括与所述第一发光单元21对应的第一补偿层31、与所述第二发光单元22对应的第二补偿层32、与所述第三发光单元23对应的第三补偿层33,所述第一补偿层31、所述第二补偿层32以及所述第三补偿层33的膜层厚度各不相同。
根据上述限定,所述第一发光单元21可以为红色发光单元,所述第二发光单元22可以为绿色发光单元,所述第三发光单元23可以为蓝色发光单元。由于绿色子像素出现色偏现象最严重,其次为红色子像素,蓝色子像素的色偏现象最弱,因此本申请通过将所述第二补偿层32的膜层厚度大于所述第一补偿层31的厚度,所述第一补偿层31的厚度大于所述第三补偿层33的厚度,即绿色子像素的色偏现象较严重,所述第二补偿层32的厚度最大,蓝色子像素的色偏现象最弱,所述第三补偿层33的厚度最小。
另外,本实施例还可以根据不同颜色的子像素,对所述第一补偿层31、所述第二补偿层32以及所述第三补偿层33中掺杂物的浓度进行适应性调节,即对电学补偿层30的厚度及掺杂物的浓度同时调节,以满足发光单元20所需要的启动电压及微腔效应所需要的腔长厚度。
由于发光材料的固有特性,红色发光单元、绿色发光单元以及蓝色发光单元的发光效率和发光寿命均不相同。其中,由于绿色发光单元的发光寿命和发光效率最优,蓝色发光单元和发光寿命最差,因此在进行厚度设置时,所述蓝色发光单元的厚度可以大于所述红色发光单元的厚度,所述红色发光单元的厚度可以大于所述绿色发光单元的厚度。
在本申请的显示面板100中,请参阅图6,为了保证膜层结构的平整性,所述发光单元20包括设置于所述阳极层201和所述电学补偿层30之间的腔长调节层202,不同发光颜色的所述腔长调节层202的厚度不相同。
在本实施例中,所述腔长调节层202除了用于调整膜层的平整性,所述腔长调节层202还可以用于调节发光单元20的发光效率。例如,当所述显示面板100为顶发射型时,所述阳极层201可以由全反射材料构成,所述阴极层204可以由半反射材料构成,而为了避免位于微腔内部的光线的干涉,所述阳极层201和所述阴极层204所形成的微腔的厚度需要与对应发光颜色的波长的比值为0.5m:1,m为正整数。同理,当所述显示面板100为底发射型时,具体工作原理与顶发射型相同此处不再赘述。
对于顶发射型显示面板100,当前的阳极层201一般由三层金属构成,例如氧化铟锡、金属银以及氧化铟锡的叠层结构,由于金属银为全反射材料,而发光层203发出的光线将经过金属银反射至阴极层204,而为了保证发光单元20的发光效率,发光层203的发光中心至金属银的表面需要满足一定的间距要求。
在本实施例中,所述发光层203的中心与所述阳极层201预设位置的间距为0.5nλ,λ为与所述发光层203对应的发光颜色的波长,n为正整数,即所述发光层203的中心与所述阳极层201中金属银的表面的间距为0.5nλ。
在本实施例中,由于腔长调节层202设置于阳极层201与电学补偿层30之间,而根据所述发光层203的中心与金属银的间距限制,对于不同发光颜色,所需要的腔长调节层202的厚度不相同。例如,由于红光的波长最大,蓝光的波长最小,因此红光对应的所述腔长调节层202的厚度最大,蓝光对应的所述腔长调节层202的厚度最小。
请参阅图7,图7为本申请显示面板与当前显示面板的实验结构对比图。图7分别列出了无电学补偿层、有电学补偿层以及其他子像素的三条曲线图。图7中的实线为绿色子像素的曲线对比图,虚线为红色子像素或蓝色子像素的曲线图,图中曲线可以看出,对于不同方案实现相同亮度,例如在低灰阶亮度值为20cd/m2时,当前显示面板中无电学补偿层所需要的电压值为2.27V,而本申请显示面板中设置电学补偿层所需要的电压值为2.18V,与当前技术方案相比,实现相同亮度所需要的电压值减小,电学补偿层对发光单元实现了电压补偿。另外,对于红色或蓝色子像素,由于绿色子像素的发光效率较高,因此实现相同亮度所需要的电压较小。
对于在低灰阶状态,以绿色子像素为例,具体结果如下:
在无电学补偿层的情况下,启动电压为2.26V,色偏值为0.005~0.007;
在有电学补偿层的情况下,启动电压为2.09V,色偏值为0.003~0.004;
本实验的色偏值的计算公式为:
∆CIE=CIEx(低灰阶)-CIEx(L255);
其中,CIEx(低灰阶)为绿色子像素在低灰阶时的CIE值,CIEx(L255)为绿色子像素在高灰阶时的CIE值。根据上表中的数据显示,绿色子像素的启动电压从2.26V减少至2.09V,低灰阶下的色偏值下降了0.002~0.003,因此有电学补偿层对所述显示面板由较大的改善。
在本实施例中,腔长调节层202、空穴注入层205、发光层203、空穴传输层206、电子传输层207以及电子注入层208的材料可以为但不限于有机小分子材料,腔长调节层202、空穴注入层205、空穴传输层206、发光层203、电子传输层207以及电子注入层208均可以通过蒸镀工艺形成。
在本实施例中,所述腔长调节层202可以为空穴型有机小分子2TNATA、NPB、TAPC中的至少一种,利用金属精细掩模板,以及通过真空蒸镀沉积在阳极层201或电学补偿层30上形成,所述腔长调节层202的膜层厚度可以为20nm至180nm。
在本实施例中,所述电子传输层207和所述电子注入层208可以为TPBi、BPhen、TmPyPB中的至少一种,所述电子传输层207和所述电子注入层208的厚度可以为20nm至80nm。
在本实施例中,所述发光层203的厚度可以为20nm至50nm。
在本实施例中,所述阴极层204的材料可以为Yb、Ca、Mg、Ag中的至少一种,例如,Ag和Mg以10:1的比例形成的AgMg合金,所述阴极层204的厚度可以为8nm至20nm。
在上述实施例中,所述封装层可以为薄膜封装层,其可以包括第一无机层、位于所述第一无机层上的第一有机层、以及位于所述第一有机层上的第二无机层。具体结构此处不再赘述。
本申请提出了一种显示面板100,显示面板100的发光器件层80包括多个第一发光单元21和多个与第一发光单元21对应设置的第一补偿层31,第一补偿层31位于第一发光单元21的至少一侧,第一补偿层31的空穴传输速率大于空穴传输层206的空穴传输速率,和/或,第一补偿层31的电子传输速率大于电子传输层207的电子传输速率;本申请通过在发光单元的至少一侧设置补偿层,提高了发光单元中电子或/和空穴的传输速率,补偿了发光单元的启动电压,改善了显示面板100在低灰阶时出现色偏的技术问题。
请参阅图8,本申请还提出了一种显示面板100的制作方法,包括:
S10、提供一阵列基板10;
请参阅图9a,所述阵列基板10可以包括衬底11及位于所述衬底11上的驱动电路层12。所述衬底11可以为柔性衬底或刚性衬底。当所述衬底11为刚性衬底时,所述衬底11材料可以为玻璃、石英等材料制备;当所述衬底11为柔性衬底时,所述衬底11的材料可以为聚酰亚胺等材料。
在本实施例中,所述驱动电路层12可以包括多个薄膜晶体管13。所述薄膜晶体管13可以为蚀刻阻挡型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如,顶栅薄膜晶体管可以包括位于所述衬底11上的有源层121、位于所述有源层121上的栅绝缘层122、位于所述栅绝缘层122上的栅极层123、位于所述栅极层123上的间绝缘层124、位于所述间绝缘层124上的源漏极层125、以及位于所述源漏极层125上的平坦层126。上述顶栅薄膜晶体管不限于单栅极结构,还可以设置为双栅极结构等。
S20、在所述衬底11基板上形成发光功能层200;
在本实施例中,步骤S20可以包括:
S201、在所述阵列基板10上形成阳极层201;
请参阅图9b,所述阳极层201可以由三层金属构成,例如氧化铟锡、金属银以及氧化铟锡的叠层结构,所述阳极层201包括多个阳极,一个所述阳极与一个显示面板100的子像素对应。
在形成所述阳极层201之后,还包括:在所述阳极层201上形成像素定义层40。
请参阅图9c,所述像素定义层40经图案化处理形成多个像素开口401,所述像素开口401使部分所述阳极裸露。
S202、在阳极层201上形成第一补偿材料层,以及对所述第一补偿材料层进行空穴型掺杂物掺杂,以形成第一补偿层31;
请参阅图9d,所述第一补偿层31位于所述像素开口401内。同时,所述第一补偿层31也可以在形成像素定义层40之前进行沉积,即可以将裸露的部分阳极层201覆盖。
所述第一补偿层31可以通过掺杂至少一种有机物/无机物,并利用共混或掺杂等工艺制备,所述第一补偿层31可以包括空穴型掺杂物,例如HAT-CN(见图10)、F4-TCNQ(见图11)、SbCl5(五氯化锑)或FeCl3(三氯化铁)等。
在本实施例中,所述第一补偿层31的膜层厚度可以为5nm至80nm。对于当前显示面板100的制程工艺,当第一补偿层31的膜层厚度小于5nm时,膜层厚度过于单薄,蒸镀工艺难度较大,所形成的膜层可能会出现非连续的情况;当第一补偿层31的膜层厚度大于80nm时,膜层厚度过大,可能导致发光单元20的微腔效应失效,影响发光单元20的发光效率。
在本实施例中,所述第一补偿层31的膜层厚度可以为15nm至30nm。
在本实施例中,所述第一补偿层31中掺杂物的浓度可以为0.5%至20%。对于当前显示面板100的制程工艺,当所述第一补偿层31中掺杂物的浓度小于0.5%时,掺杂物的浓度过低可能导致膜层中掺杂物的分布不均,降低制程的稳定性;当所述第一补偿层31中掺杂物的浓度大于20%时,可能因掺杂物的掺杂浓度过高而影响发光单元20的发光效率和发光寿命。
在本实施例中,所述第一补偿层31中掺杂物的浓度可以为1%至6%。
S203、在所述第一补偿层31上形成多个发光单元20;
请参阅图9e,在本实施例中,所述发光功能层200可以包括第一发光单元21、第二发光单元22和第三发光单元23,所述第一发光单元21、所述第二发光单元22和所述第三发光单元23的发光颜色互不相同,例如所述第一发光单元21可以为红色发光单元,所述第二发光单元22可以为绿色发光单元,所述第三发光单元23可以为蓝色发光单元。
S204、在多个所述发光单元20上形成阴极层204;
请参阅图9f,在本实施例中,所述阴极层204的材料可以为Yb、Ca、Mg、Ag中的至少一种,例如,Ag和Mg以10:1的比例形成的AgMg合金,所述阴极层204的厚度可以为8nm至20nm。
在本实施例中,空穴型掺杂物具有较强的吸电子基团,而当阳极层201和阴极层204输入对应电压时,空穴型掺杂物中的一个吸电子基团可以从所述电学补偿层30中吸走一个电子以及保留一个空穴,保留的空穴在阳极层201和阴极层204的电压作用下通过空穴传输层206传输至所述第二发光单元22中,且与从阴极层204传输过来的电子结合以产生光源。
在本实施例中,所述第一补偿层31相当于对所述第一发光单元21的启动电压进行补偿。
在本实施例中,第一补偿层31的厚度和第一补偿层31中掺杂物的含量与对应的补偿电压呈正相关。例如,所述第一补偿层31的厚度越厚,在相同比例的情况下掺杂物的含量越多,所述第一补偿层31对第一发光单元21的补偿电压越大,因此本实施例可以根据不同子像素的漏电情况,对所述电学补偿的厚度进行适应性调整。
在本实施例中,请参阅图9g,步骤S20还可以包括:
S211、在所述阵列基板10上形成阳极层201;
S212、在所述阳极层201上形成多个发光单元20;
S213、在多个所述发光单元20上形成第一补偿材料层,以及对所述第一补偿材料层进行电子型掺杂物掺杂,以形成第一补偿层31;
S214、在所述第一补偿层31上形成阴极层204;
在本实施例中,所述第一补偿层31可以通过掺杂至少一种有机物/无机物,并利用共混或掺杂等工艺制备,所述第一补偿层31可以包括电子型掺杂物,例如碱金属或碱金属盐。
在本实施例中,电子型掺杂物具有较强的吸空穴基团,而当阳极层201和阴极层204输入对应电压时,电子型掺杂物中的一个吸空穴基团可以从所述第二补偿子层中吸走一个空穴以及保留一个电子,保留的电子在阳极层201和阴极层204的电压作用下通过电子传输层207传输至所述第一发光单元21中,且与从阳极层201传输过来的空穴结合以产生光源;因此,所述第一补偿层31相当于对所述第一发光单元21的启动电压进行补偿。
S30、在所述发光功能层200上形成封装层300。
请参阅图9h,在本实施例中,所述封装层300可以为薄膜封装层,其可以包括第一无机层、位于所述第一无机层上的第一有机层、以及位于所述第一有机层上的第二无机层。具体结构此处不再赘述。
在本实施例中,请参阅图6,所述发光功能层200还可以包括腔长调节层202,所述腔长调节层202可以通过蒸镀工艺形成于阳极层201上,具体工艺和结构请参阅上述描述。
本申请还提出了一种显示模组,其中,所述显示模组包括上述显示面板、设置于所述显示面板上的偏光片层、及设置于所述偏光片层上的盖板层。
本申请还提出了一种移动终端,所述移动终端包括终端主体和上述显示面板,所述终端主体和所述显示面板组合为一体。
本申请提出了一种显示面板100,显示面板100的发光器件层80包括多个第一发光单元21和多个与第一发光单元21对应设置的第一补偿层31,第一补偿层31位于第一发光单元21的至少一侧,第一补偿层31的空穴传输速率大于空穴传输层206的空穴传输速率,和/或,第一补偿层31的电子传输速率大于电子传输层207的电子传输速率;本申请通过在发光单元的至少一侧设置补偿层,提高了发光单元中电子或/和空穴的传输速率,补偿了发光单元的启动电压,改善了显示面板100在低灰阶时出现色偏的技术问题。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种显示面板,其中,包括依次堆叠设置的第一电极、发光器件层和第二电极;
    所述发光器件层包括多个发射第一颜色光线的第一发光单元、多个与第一发光单元对应设置的第一补偿层、以及位于所述第一发光单元两侧的空穴传输层和电子传输层;
    其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间,所述第一补偿层的空穴传输速率大于所述空穴传输层的空穴传输速率;和/或,
    所述第一补偿层位于所述第二电极与所述第一发光单元之间,所述第一补偿层的电子传输速率大于所述电子传输层的电子传输速率。
  2. 根据权利要求1所述的显示面板,其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间;
    其中,所述第一补偿层包括具有吸电子基团的空穴型掺杂物。
  3. 根据权利要求2所述的显示面板,其中,所述空穴型掺杂物的浓度为1%至6%,所述空穴型掺杂物包括HAT-CN、F4-TCNQ、SbCl5或FeCl3中至少一种。
  4. 根据权利要求2所述的显示面板,其中,所述显示面板包括像素定义层,所述像素定义层包括多个像素开口,所述第一发光单元位于所述像素开口内;
    所述第一电极包括与所述像素开口对应的第一部分,所述第一部分在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
  5. 根据权利要求1所述的显示面板,其中,所述第一补偿层位于所述第二电极与所述第一发光单元之间;
    其中,所述第一补偿层包括具有给电子基团的电子型掺杂物。
  6. 根据权利要求5所述的显示面板,其中,所述电子型掺杂物的浓度为1%至6%,所述电子型掺杂物包括碱金属或碱金属盐。
  7. 根据权利要求5所述的显示面板,其中,所述第一发光单元在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
  8. 根据权利要求2所述的显示面板,其中,所述发光器件层还包括多个发射第二颜色光线的第二发光单元、和位于所述第一电极与所述第二发光单元之间或/和所述第二电极与所述第二发光单元之间的第二补偿层;
    其中,所述第一发光单元和所述第二发光单元的发光颜色相异,所述第一补偿层和所述第二补偿的厚度不相同。
  9. 根据权利要求8所述的显示面板,其中,所述第一发光单元为红色发光单元,所述第二发光单元为绿色发光单元;
    所述第二补偿层的膜层厚度大于所述第一补偿层的厚度。
  10. 根据权利要求9所述的显示面板,其中,所述发光器件层还包括多个发射第三颜色光线的第三发光单元、和位于所述第一电极与所述第三发光单元之间或/和所述第二电极与所述第三发光单元之间的第三补偿层;
    其中,所述第三发光单元为蓝色发光单元,所述第一补偿层的厚度大于所述第三补偿层的厚度。
  11. 一种移动终端,其中,所述移动终端包括终端主体和显示面板,所述终端主体和所述显示面板组合为一体;其中,
    所述显示面板包括依次堆叠设置的第一电极、发光器件层和第二电极;
    所述发光器件层包括多个发射第一颜色光线的第一发光单元、多个与第一发光单元对应设置的第一补偿层、以及位于所述第一发光单元两侧的空穴传输层和电子传输层;
    其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间,所述第一补偿层的空穴传输速率大于所述空穴传输层的空穴传输速率;和/或,
    所述第一补偿层位于所述第二电极与所述第一发光单元之间,所述第一补偿层的电子传输速率大于所述电子传输层的电子传输速率。
  12. 根据权利要求11所述的移动终端,其中,所述第一补偿层位于所述第一电极与所述第一发光单元之间;
    其中,所述第一补偿层包括具有吸电子基团的空穴型掺杂物。
  13. 根据权利要求12所述的移动终端,其中,所述空穴型掺杂物的浓度为1%至6%,所述空穴型掺杂物包括HAT-CN、F4-TCNQ、SbCl5或FeCl3中至少一种。
  14. 根据权利要求12所述的移动终端,其中,所述显示面板包括像素定义层,所述像素定义层包括多个像素开口,所述第一发光单元位于所述像素开口内;
    所述第一电极包括与所述像素开口对应的第一部分,所述第一部分在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
  15. 根据权利要求11所述的移动终端,其中,所述第一补偿层位于所述第二电极与所述第一发光单元之间;
    其中,所述第一补偿层包括具有给电子基团的电子型掺杂物。
  16. 根据权利要求15所述的移动终端,其中,所述电子型掺杂物的浓度为1%至6%,所述电子型掺杂物包括碱金属或碱金属盐。
  17. 根据权利要求15所述的移动终端,其中,所述第一发光单元在所述第二电极上的正投影位于所述第一补偿层在所述第二电极上的正投影内。
  18. 根据权利要求12所述的移动终端,其中,所述发光器件层还包括多个发射第二颜色光线的第二发光单元、和位于所述第一电极与所述第二发光单元之间或/和所述第二电极与所述第二发光单元之间的第二补偿层;
    其中,所述第一发光单元和所述第二发光单元的发光颜色相异,所述第一补偿层和所述第二补偿的厚度不相同。
  19. 根据权利要求18所述的移动终端,其中,所述第一发光单元为红色发光单元,所述第二发光单元为绿色发光单元;
    所述第二补偿层的膜层厚度大于所述第一补偿层的厚度。
  20. 根据权利要求19所述的移动终端,其中,所述发光器件层还包括多个发射第三颜色光线的第三发光单元、和位于所述第一电极与所述第三发光单元之间或/和所述第二电极与所述第三发光单元之间的第三补偿层;
    其中,所述第三发光单元为蓝色发光单元,所述第一补偿层的厚度大于所述第三补偿层的厚度。
PCT/CN2021/110472 2021-07-22 2021-08-04 显示面板及移动终端 WO2023000384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,278 US20230023178A1 (en) 2021-07-22 2021-08-04 Display panel and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110832723.8 2021-07-22
CN202110832723.8A CN113629202A (zh) 2021-07-22 2021-07-22 显示面板

Publications (1)

Publication Number Publication Date
WO2023000384A1 true WO2023000384A1 (zh) 2023-01-26

Family

ID=78380628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110472 WO2023000384A1 (zh) 2021-07-22 2021-08-04 显示面板及移动终端

Country Status (2)

Country Link
CN (1) CN113629202A (zh)
WO (1) WO2023000384A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033387A1 (en) * 2002-08-16 2004-02-19 Yi-Fan Wang Organic electroluminescent device
US20090079337A1 (en) * 2007-09-20 2009-03-26 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, and Electronic Device
CN109599413A (zh) * 2017-09-30 2019-04-09 上海和辉光电有限公司 一种显示面板和显示装置
CN109755400A (zh) * 2018-12-28 2019-05-14 云谷(固安)科技有限公司 一种发光元件以及显示面板
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112909191A (zh) * 2021-01-22 2021-06-04 京东方科技集团股份有限公司 发光器件结构及其制备方法、显示基板和显示装置
CN112909196A (zh) * 2021-02-05 2021-06-04 合肥维信诺科技有限公司 显示面板及其制备方法
CN113066938A (zh) * 2021-03-23 2021-07-02 京东方科技集团股份有限公司 发光器件、显示基板和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280684B (zh) * 2015-09-14 2019-03-12 上海和辉光电有限公司 一种oled显示面板及其制备方法
KR102594014B1 (ko) * 2016-08-03 2023-10-27 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
CN106653803B (zh) * 2016-11-21 2019-06-14 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
CN108878495B (zh) * 2018-06-29 2021-06-11 云谷(固安)科技有限公司 显示面板、其制造方法及显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033387A1 (en) * 2002-08-16 2004-02-19 Yi-Fan Wang Organic electroluminescent device
US20090079337A1 (en) * 2007-09-20 2009-03-26 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, and Electronic Device
CN109599413A (zh) * 2017-09-30 2019-04-09 上海和辉光电有限公司 一种显示面板和显示装置
CN109755400A (zh) * 2018-12-28 2019-05-14 云谷(固安)科技有限公司 一种发光元件以及显示面板
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112909191A (zh) * 2021-01-22 2021-06-04 京东方科技集团股份有限公司 发光器件结构及其制备方法、显示基板和显示装置
CN112909196A (zh) * 2021-02-05 2021-06-04 合肥维信诺科技有限公司 显示面板及其制备方法
CN113066938A (zh) * 2021-03-23 2021-07-02 京东方科技集团股份有限公司 发光器件、显示基板和显示装置

Also Published As

Publication number Publication date
CN113629202A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
KR101429537B1 (ko) 유기발광소자
CN102738194B (zh) 有机电致发光显示装置
JP2012015097A (ja) 表示装置
KR20140079273A (ko) 백색 유기 발광 소자
CN107093674B (zh) 一种有机发光显示面板、制备方法及其显示装置
KR20090132004A (ko) 유기 발광 표시장치
US20240057368A1 (en) Display panel and manufacturing method therefor, and display apparatus
WO2015186741A1 (ja) 有機el素子、及び製造方法
KR100844788B1 (ko) 유기발광소자의 제조방법 및 이에 의하여 제조된유기발광소자
US20150255741A1 (en) Organic light emitting diode device
KR20120047003A (ko) 백색 유기 발광 소자 및 이를 이용한 표시 장치
CN112310307A (zh) Oled显示面板
US20210336177A1 (en) Oled display panel and oled display device
US11581512B2 (en) Display panel and method of fabricating the same
US11539017B2 (en) Display substrate having spacer for spacing apart carrier injection layer portions of two adjacent sub-pixels, and manufacturing method thereof
KR100844004B1 (ko) 유기전계발광 소자용 투명 도전막의 제조 방법
KR102101202B1 (ko) 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
CN111477755B (zh) 有机发光二极管器件及其制作方法、和显示面板
CN113964279A (zh) 顶发射有机电致发光元件和顶发射有机电致发光器件
KR20090031148A (ko) 전계발광소자
KR20050014437A (ko) 유기 전계 발광 소자와, 이를 이용한 평판 표시 장치와,이를 제조하기 위한 방법
WO2023000384A1 (zh) 显示面板及移动终端
US20230023178A1 (en) Display panel and mobile terminal
US11302887B2 (en) Organic electroluminescent diode device having light-emitting layer disposed on electron injection layer, display panel, and manufacturing method thereof
US11690241B2 (en) OLED with auxiliary electrode contacting electron transport layer

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE