WO2023000255A1 - 一种电解液、锂离子电池和用电装置 - Google Patents

一种电解液、锂离子电池和用电装置 Download PDF

Info

Publication number
WO2023000255A1
WO2023000255A1 PCT/CN2021/107852 CN2021107852W WO2023000255A1 WO 2023000255 A1 WO2023000255 A1 WO 2023000255A1 CN 2021107852 W CN2021107852 W CN 2021107852W WO 2023000255 A1 WO2023000255 A1 WO 2023000255A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
ion battery
cyclic ester
mass fraction
Prior art date
Application number
PCT/CN2021/107852
Other languages
English (en)
French (fr)
Inventor
吴则利
韩昌隆
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180010209.4A priority Critical patent/CN115868062A/zh
Priority to JP2022551386A priority patent/JP2023537443A/ja
Priority to EP21930592.7A priority patent/EP4145580A4/en
Priority to PCT/CN2021/107852 priority patent/WO2023000255A1/zh
Priority to KR1020227029845A priority patent/KR20230015879A/ko
Publication of WO2023000255A1 publication Critical patent/WO2023000255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to an electrolyte, a lithium ion battery, a battery module, a battery pack and an electrical device.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields.
  • This application is carried out in view of the above-mentioned problems, and its purpose is to provide an electrolyte that can effectively improve the high-temperature storage performance and high-temperature cycle performance of the battery, and provide lithium-ion batteries, battery modules, battery packs and Electrical installations.
  • the first aspect of the present application provides an electrolytic solution
  • the electrolytic solution includes an electrolyte salt and an organic solvent
  • the electrolyte salt includes a lithium salt
  • the organic solvent includes a cyclic ester
  • the lithium salt The mass fraction W1 in the electrolyte and the mass fraction W2 of the cyclic ester in the electrolyte satisfy
  • the The range is 0.5 to 1.06, and 0.8 to 1.0 is optional.
  • the mass fraction B of the mass of the cyclic ester relative to the mass of the organic solvent is 5%-18%, optionally 13%-16%.
  • the lithium salt includes at least one of lithium bisfluorosulfonimide and lithium hexafluorophosphate
  • the cyclic ester includes at least one of ethylene carbonate and propylene carbonate. kind.
  • the sum of the molar concentration C1 of the lithium bisfluorosulfonyl imide and the molar concentration C2 of the lithium hexafluorophosphate is 0.86-1.4M.
  • the electrolytic solution of the present application includes a film-forming additive, and the mass fraction A of the film-forming additive in the electrolytic solution and the mass fraction W2 of the cyclic ester in the electrolytic solution satisfy:
  • the second aspect of the present application provides a lithium-ion battery, including the electrolyte solution, separator, negative electrode sheet and positive electrode sheet described in the first aspect of the application.
  • the loading capacity H (in g) of the negative electrode material on the surface of the current collector of 1540.25 mm and the mass fraction W of the cyclic ester in the electrolyte meet Relational formula:
  • the electrolytes containing both cyclic esters and lithium salts have good electrical conductivity, oxidation resistance, system stability and suitable Viscosity, and can improve the conductivity of the negative electrode interface film, so that the lithium-ion battery containing it has significantly improved high-temperature storage performance and high-temperature cycle performance, while having good power performance.
  • FIG. 1 is a schematic diagram of a lithium-ion battery according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the lithium ion battery according to one embodiment of the present application shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of an electrical device using a lithium-ion battery as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • the inventors of the present application found that: for lithium-ion battery electrolytes, the addition of cyclic ester solvents to the electrolyte can significantly improve the dissociation function of lithium salts, thereby significantly improving the overall performance of the electrolyte.
  • Conductivity while improving the composition of the negative electrode interface film, effectively preventing further side reactions of the solvent on the surface of the negative electrode, has an important role in improving the electrochemical performance of the battery.
  • the viscosity of cyclic esters is significantly higher than that of other types of common solvents, which increases the viscosity of the electrolyte system, which is not conducive to the transmission of lithium ions, and is also detrimental to the electrochemical performance of the battery.
  • the inventors have also found that for lithium-ion batteries containing cyclic ester solvents, compared with normal temperature environments, the storage performance and cycle performance of batteries in high-temperature environments are greatly deteriorated. After in-depth research and analysis by the inventors, it is speculated that it may be : High temperature promotes cyclic ester solvents to accumulate more quickly and in large quantities on the surface of the positive electrode, and high temperature accelerates the decomposition of cyclic esters enriched on the surface of the positive electrode. The high temperature environment ultimately leads to the cycle performance and storage performance of the battery.
  • the electrolyte formula of the present application is especially suitable for ternary lithium-ion batteries with high nickel atomic content, even for ternary lithium-ion batteries with ultra-high nickel atomic content.
  • the electrolyte formulation of the present application is especially suitable for improving the cycle performance, storage performance and power performance of lithium-ion batteries at high temperature.
  • the first aspect of the present application provides an electrolytic solution, the electrolytic solution includes an electrolyte salt and an organic solvent, the electrolytic salt includes a lithium salt, the organic solvent includes a cyclic ester, and the lithium salt is contained in the electrolytic solution
  • the mass fraction W1 in and the mass fraction W2 of the cyclic ester in the electrolyte satisfy
  • the lithium salt of the present application can be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, lithium trifluoromethanesulfonate , lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the cyclic ester of the present application may be selected from one or more of ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and ethylene carbonate (VEC). It can be at least one of ethylene carbonate and propylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC ethylene carbonate
  • the mass fraction of the lithium salt in the electrolyte refers to the mass of the total mass of all types of lithium salts in the electrolyte Fraction.
  • the mass fraction of the cyclic esters in the electrolyte refers to the total mass fraction of all types of cyclic esters in the electrolyte. quality score.
  • the purpose of this application is to develop an electrolyte formula that has good electrical conductivity, oxidation resistance, system stability, and suitable viscosity, and can improve the electrical conductivity of the negative electrode interface film.
  • the electrolyte system has good electrical conductivity, oxidation resistance, system stability and suitable viscosity, and improves the conductivity of the negative electrode interface film, and improves the cyclic ester solvent in the
  • the enrichment rate and enrichment amount of the positive electrode slow down the oxidative decomposition of the positive electrode, and the corresponding lithium-ion battery has good high-temperature cycle performance and high-temperature storage performance.
  • the ratio of the lithium salt to the cyclic ester in the commercial electrolyte solution on the market Usually, it is above 1.5.
  • the ratio of lithium salt to cyclic ester is too high at this time, so the oxidative decomposition reaction at the positive electrode is very serious, which seriously deteriorates the battery performance of high-temperature storage gas production and high-temperature cycle, and
  • the lithium-ion battery electrolyte field has not made the ratio of lithium salt to cyclic ester solvent Breakthrough 1.5.
  • the application developed The electrolyte system has significantly improved the high-temperature storage performance and high-temperature cycle performance of the battery. See Table 1 for details.
  • the The range is 0.5 to 1.06, and 0.8 to 1.0 is optional. See Table 1 for details.
  • the scope of the electrolyte can further optimize the composition of the electrolyte, so that the electrolyte forms a good solvation structure, which promotes the electrolyte to form a better conductive inorganic-organic composite interface film on the surface of the positive and negative electrodes, which can not only make the battery It has significantly improved high-temperature storage performance and high-temperature cycle performance, and also has good power performance.
  • a numerical range consisting of any specific point value in Table 1 can be selected.
  • the mass fraction B of the mass of the cyclic ester relative to the mass of the organic solvent is 5% to 18%, optionally 13% to 16% %.
  • the content of cyclic esters relative to the mass of organic solvents is basically maintained at more than 20%, which may easily lead to serious gas production in high-temperature storage and poor high-temperature cycle performance.
  • the present application reduces the content of cyclic esters to 5% to 18% by rationally adjusting the specific substance types and contents of the electrolyte, and the high-temperature storage performance, high-temperature cycle performance and power performance of the battery are significantly improved.
  • B By further limiting the value of B in the range of 13% to 16%, the high-temperature cycle performance and high-temperature storage performance of the lithium-ion battery are further improved. See Table 2 for details.
  • B can be selected from the numerical range formed by any specific point value in Table 2.
  • the lithium salt may be at least one of lithium bisfluorosulfonyl imide and lithium hexafluorophosphate.
  • LiFSI lithium bisfluorosulfonimide
  • the inventors found that using the mixed salt of LiPF 6 and LiFSI at the same time, and by comparing the molar concentration C1 of the lithium bisfluorosulfonyl imide to the molar concentration C2 of the lithium hexafluorophosphate within a reasonable range, it can not only make up for the loss of electrolyte conductivity due to the reduction in the amount of cyclic ester, but also effectively prevent the corrosion of aluminum foil by lithium salts, which is conducive to further improving the high-temperature cycle performance and high-temperature storage performance of the battery. See Table 3 for details.
  • a numerical range consisting of any specific point value in Table 3 can be selected.
  • the sum of the molar concentrations of the lithium bisfluorosulfonyl imide and the lithium hexafluorophosphate is 0.86-1.4M, optionally 1-1.4M.
  • the sum of the molar concentrations of lithium bisfluorosulfonyl imide and lithium hexafluorophosphate may be selected from the numerical range formed by any specific point value in Table 4.
  • the electrolytic solution of the present application includes a film-forming additive, and the mass fraction A of the film-forming additive in the electrolytic solution is the same as the mass fraction of the cyclic ester in the electrolytic solution W2 satisfies:
  • the film-forming additive may be at least one of fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinyl sulfate (DTD), and 1,3-propane sultone (PS).
  • Cyclic ester solvents will participate in the film formation of positive and negative electrodes in the formation process of lithium-ion batteries, but the film formation quality of cyclic esters alone may not be sufficient to maintain the good cycle performance of the battery, and it can be improved when used in combination with film-forming additives. Film quality.
  • the formed electrolyte can ensure positive
  • the high-quality film formation of the negative electrode can also make the cyclic ester matched with it exert its maximum effective effect (improving the conductivity of the electrolyte as a whole), corresponding to lithium-ion batteries with good high-temperature cycle performance and high-temperature storage performance, and at the same time Also combined with good power performance. See Table 5 for details.
  • a numerical range consisting of any of the specified point values in Table 5 may be selected, optionally within the range of 11.9-13.5.
  • the lithium ion battery of the present application also includes a positive electrode sheet, a separator, and a negative electrode sheet.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode film layer arranged on at least one surface of the positive electrode collector, and the positive electrode film layer includes a positive electrode active material.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • a separator is also included in the lithium ion battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the present application also provides a lithium ion battery, including the electrolyte solution described in the first aspect of the present application.
  • the lithium-ion battery prepared by the electrolyte solution of the present application with Ni-Co-Mn layered ternary positive electrode active material has significantly improved electrochemical performance, and the amount of cyclic ester in the electrolyte is the same as the nickel in the ternary positive electrode active material.
  • the atomic content x has a fitness relation. Generally speaking, the higher the nickel atom content in the ternary positive electrode active material, the stronger the activity of the corresponding ternary positive electrode active material, but during the use of the battery, the ternary positive electrode active material with high nickel atom content will intensify the oxygen release on the surface of the positive electrode , thereby intensifying the oxidative decomposition of cyclic esters and other solvents.
  • the inventors of the present application found that when the amount of the electrolyte used in the present application and the nickel atom content x satisfy a certain matching relationship, that is , it has unexpected technical effects: it can effectively improve the oxygen release problem of high-nickel batteries, and can effectively slow down the oxidative decomposition of cyclic esters on the surface of the positive electrode.
  • the corresponding ternary lithium-ion battery has excellent cycle performance and power performance. See Table 6 for details.
  • the nickel atomic content x may be above 0.5, and optionally, the nickel atomic content may be 0.5, 0.65, 0.8, 0.96. See Table 8 for details.
  • the electrolyte formula of the present application is especially suitable for ternary lithium-ion batteries with high nickel atomic content. Even ternary lithium-ion batteries with ultra-high nickel atomic content have excellent high-temperature storage performance, high-temperature cycle performance and power performance .
  • the loading amount H (in g) of the negative electrode material on the surface of the current collector of 1540.25 mm and the mass fraction W2 of the cyclic ester in the electrolyte meet Relational formula:
  • the lithium ion battery of the present application is a case battery.
  • a lithium ion battery can include an outer packaging.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the lithium-ion battery can be a hard case, such as a hard plastic case, an aluminum case, a steel case, and the like.
  • the outer packaging of the lithium-ion battery can also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 1 shows a lithium-ion battery 5 with a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the lithium-ion battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • FIG. 3 is an example of an electrical device.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • the electrolyte of embodiment 1-1 refers to the electrolyte used in the preparation process of the lithium ion battery of embodiment 1-1;
  • the positive electrode sheet of embodiment 1-1 refers to embodiment 1
  • the negative pole pole piece of embodiment 1-1 refers to the positive pole pole piece used in the lithium ion battery preparation process of embodiment 1-1;
  • Examplementation The separator of example 1-1 refers to the separator used in the preparation process of the lithium ion battery of embodiment 1-1;
  • the lithium ion battery of embodiment 1-1 refers to the positive electrode, A lithium-ion battery prepared by a separator, a negative electrode, and an electrolyte.
  • Nickel-cobalt-manganese ternary material LiMO 2 , M is a Ni-Co-Mn solid solution, see the specific ratios in each embodiment
  • NMP N-Methylpyrrolidone
  • Acetylene black (Guangdong Kaijin New Energy Technology Co., Ltd.)
  • Ethylene carbonate (EC, CAS: 96-49-1, Shanghai McLean Biotechnology Co., Ltd.)
  • EMC Ethyl methyl carbonate
  • LiPF 6 LiPF 6 , CAS: 21324-40-3, Guangzhou Tianci High-tech Materials Co., Ltd.
  • Lithium bisfluorosulfonyl imide LiFSI, CAS: 171611-11-3, Guangzhou Tianci High-tech Materials Co., Ltd.
  • Fluoroethylene carbonate (FEC, CAS: 114435-02-8, Guangzhou Tianci High-tech Materials Co., Ltd.)
  • the positive electrode active material nickel-cobalt-manganese ternary material LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • the binder polyvinylidene fluoride and the conductive agent acetylene black according to the mass ratio of 8:1:1
  • the positive electrode slurry was obtained under the action of a stirrer; the positive electrode slurry was evenly coated on the positive electrode current collector aluminum foil with a thickness of 13 ⁇ m in the amount of 0.28g (dry weight) /1540.25mm2 ; the aluminum foil was dried at room temperature and then transferred to 120°C Oven drying for 1 hour, and then cold pressing and slitting to obtain positive electrode sheets.
  • Negative electrode slurry is mixed with 0.18g (dry weight )/1540.25mm 2 was uniformly coated on the negative electrode current collector copper foil with a thickness of 8 ⁇ m; after the copper foil was dried at room temperature, it was transferred to an oven at 120°C to dry for 1 hour, and then cold pressed and cut to obtain negative electrode sheets.
  • the isolation film was purchased from Cellgard, and the model was cellgard2400.
  • the positive electrode, separator, and negative electrode in order, so that the separator is between the positive and negative electrodes for isolation, and then wind the bare cell; the bare cell with a capacity of 4.3Ah Put it in the outer packaging foil, inject 8.6g of the above-mentioned prepared electrolyte into the dried battery, and go through processes such as vacuum packaging, standing, forming, and shaping to obtain a lithium-ion battery.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 18.17g EC and 72.68g EMC to the beaker respectively. , 9g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for the examples.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 10.10g EC and 81.74g EMC to the beaker respectively. , 8g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 12.83g EC, 75.64 8g EMC to the beaker , 11.38g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 12.67g EC and 74.68g EMC to the beaker respectively. , 12.5g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 9.86g EC and 79.74g EMC to the beaker respectively. , 10.25g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 82.98g EC and 4.37g EMC to a beaker respectively. , 12.5g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 10.44g EC and 78.03g EMC to the beaker respectively. , 11.38g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 2.93g PC and 94.67g EMC to the beaker respectively. , 2.25g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 4.80g PC and 91.29g EMC to the beaker respectively. , 3.75g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 7.51g PC and 86.34g EMC to the beaker respectively. , 6g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 9.25g PC and 83.22g EMC to the beaker respectively. , 7.38g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 11.76g PC and 78.71g EMC to the beaker respectively. , 9.38g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 13.38g PC and 75.84g EMC to the beaker respectively. , 10.63g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 15.72g PC and 71.62g EMC to the beaker, 12.5g LiPF 6 , 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 17.22g PC and 68.88g EMC to the beaker respectively. , 13.75g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 13.92g EC and 73.55g EMC to the beaker respectively. , 12.38g LiPF 6 , and 0.15g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 14.04g EC and 73.32g EMC to the beaker respectively. , 11.90g LiPF 6 , and 0.73g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 15.5g EC and 70.55g EMC to the beaker respectively. , 6.25g LiPF 6 , and 7.7g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 15.82g EC and 69.94g EMC to the beaker respectively. , 5g LiPF 6 , and 9.24g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 16.04g EC and 69.53g EMC to the beaker respectively. , 4.17g LiPF 6 , and 10.27g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16.39g EC and 68.85g EMC respectively to the beaker , 2.78g LiPF 6 , and 11.98g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16.57g EC and 68.51g EMC to the beaker respectively. , 2.08g LiPF 6 , and 12.83g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16.62g EC and 68.43g EMC to the beaker respectively. , 1.92g LiPF 6 , and 13.03g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 10.85g EC and 79.39g EMC to the beaker respectively. , 4.38g LiPF 6 , and 5.39g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 13.18g EC and 74.97g EMC to the beaker respectively , 5.31g LiPF 6 , and 6.55g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 15.5g EC and 70.55g EMC to the beaker respectively. , 6.25g LiPF 6 , and 7.70g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 21.7g EC and 58.77g EMC to the beaker respectively. , 8.75g LiPF 6 , and 10.78g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 22.48g EC and 57.3g EMC to the beaker respectively. , 9.06g LiPF 6 , and 11.17g LiFSI were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 12.30g EC and 72.55g EMC to the beaker respectively. , 11.44g LiPF 6 , 0.15gLiFSI, and 3.55gFEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 10.35g EC and 75.87g EMC to the beaker respectively. , 9.63g LiPF 6 , 0.15gLiFSI, and 4gFEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 12.51g EC and 70.89g EMC to a beaker respectively. , 11.75g LiPF 6 , 0.15gLiFSI, and 4.7gFEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 10.76g EC and 73.31g EMC to the beaker respectively , 10.13g LiPF 6 , 0.15g LiFSI, and 5.65g FEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the preparation steps of the electrolyte are: in an argon atmosphere glove box with a water content ⁇ 10ppm, add 11.03g EC and 71.29g EMC to the beaker respectively , 10.63g LiPF 6 , 0.15gLiFSI, and 6.9gFEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole.
  • the difference is that the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 13.55g EC and 66.17g EMC to the beaker respectively. , 13.13g LiPF 6 , 0.15gLiFSI, and 7gFEC were fully stirred and dissolved to obtain the electrolyte solution for this example.
  • the manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.99 Co 0.005 Mn 0.005 O 2 .
  • the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 46.286g EC, 39.43g EMC, 4.13g LiPF 6 , and 10.16gLiFSI to a beaker and stir and dissolve them to obtain This embodiment uses electrolyte solution.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.69 Co 0.16 Mn 0.15 O 2 .
  • the preparation steps of the electrolyte are as follows: In an argon atmosphere glove box with a water content of ⁇ 10ppm, add 34.28g EC, 51.43g EMC, 4.13g LiPF 6 , 10.16gLiFSI to a beaker and stir to dissolve them fully to obtain This embodiment uses electrolyte solution.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.47 Co 0.15 Mn 0.38 O 2 .
  • the preparation steps of the electrolyte are as follows: In an argon atmosphere glove box with a water content of ⁇ 10ppm, add 27.86g EC, 57.85g EMC, 4.13g LiPF 6 , and 10.16gLiFSI to a beaker and stir to dissolve them fully to obtain This embodiment uses electrolyte solution.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.32 Co 0.19 Mn 0.57 O 2 .
  • the preparation steps of the electrolyte are as follows: In an argon atmosphere glove box with a water content of ⁇ 10ppm, add 23.14g EC, 62.57g EMC, 4.13g LiPF 6 , and 10.16gLiFSI to a beaker, stir and dissolve them to obtain This embodiment uses electrolyte solution.
  • the manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.25 Co 0.18 Mn 0.57 O 2 .
  • the preparation steps of the electrolyte are as follows: In an argon atmosphere glove box with a water content of ⁇ 10ppm, add 20.06g EC, 65.65g EMC, 4.13g LiPF 6 , 10.16gLiFSI to a beaker, stir and dissolve them to obtain This embodiment uses electrolyte solution.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 1.698mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are: In an argon atmosphere glove box, 30.57g EC, 63.31g EMC, and 6.11g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.873mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are: In an argon atmosphere glove box, 17.47g EC, 73.80g EMC, and 8.73g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.192mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are: In the argon atmosphere glove box, 9.61g EC, 82.71g EMC, and 7.69g LiPF 6 were respectively added to the beaker and stirred thoroughly to dissolve to obtain the electrolyte solution for this embodiment.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.158mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are as follows: when the water content is ⁇ 10ppm In an argon atmosphere glove box, 12.67g EC, 75.94g EMC, and 11.4g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.115mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are: In an argon atmosphere glove box, 12.67g EC, 74.67g EMC, and 12.67g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this embodiment.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.09mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are as follows: when the water content is ⁇ 10ppm In an argon atmosphere glove box, 12.67g EC, 74.67g EMC, and 12.67g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this embodiment.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the negative electrode coating amount of this example is 0.079mg/1540.25mm 2 , in addition, the preparation steps of the electrolyte are: In an argon atmosphere glove box, 12.67g EC, 74.67g EMC, and 12.67g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte used in this example.
  • the preparation process of the lithium-ion battery refers to Example 1-1 as a whole, the difference is that the coating amount of the negative electrode in this example is 0.058 mg/1540.25 mm 2 , in addition, the preparation steps of the electrolyte are as follows: when the water content is ⁇ 10 ppm In an argon atmosphere glove box, 9.61g EC, 80.3g EMC, and 10.09g LiPF 6 were respectively added to a beaker and fully stirred and dissolved to obtain the electrolyte solution for this embodiment.
  • the manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16g EC, 69.6g EMC, and 14.4g LiPF 6 into a beaker, stir and dissolve to obtain this example Use electrolyte.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.65 Co 0.05 Mn 0.3 O 2 .
  • the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16g EC, 69.6g EMC, and 14.4g LiPF 6 into a beaker, stir and dissolve to obtain this example Use electrolyte.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.85 Co 0.05 Mn 0.1 O 2 .
  • the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16g EC, 69.6g EMC, and 14.4g LiPF 6 into a beaker, stir and dissolve to obtain this example Use electrolyte.
  • Example 1-1 The manufacturing process of the lithium-ion battery is generally referred to in Example 1-1, except that the positive electrode active material ternary material used in this example is LiNi 0.96 Co0 .02 Mn 0.02 O 2 .
  • the preparation steps of the electrolyte are as follows: in an argon atmosphere glove box with a water content of ⁇ 10ppm, add 16g EC, 69.6g EMC, and 14.4g LiPF 6 into a beaker, stir and dissolve to obtain this example Use electrolyte.
  • the lithium-ion batteries of the above examples and comparative examples were charged to 4.25V at a charge rate of 1C, then charged at a constant voltage until the current was less than 0.05C, and then discharged for 30min at a discharge rate of 1C.
  • Examples 8-1 to 8-4 illustrate that several types of LiNix Co y Mnz O 2 ternary positive electrode active materials are currently commonly used, that is, ternary materials with nickel atom contents of 0.5, 0.65, 0.85, and 0.96, respectively.
  • the positive electrode active material and the corresponding lithium-ion battery prepared have both good high-temperature cycle capacity retention, high-temperature storage capacity retention and initial discharge DCR.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂离子电池电解液,通过限定锂离子电池电解液中环状酯与锂盐的相对配比,使同时含有环状酯和锂盐的电解液兼具良好的导电率、耐氧化性、体系稳定性以及合适的粘度,并且能够改善负极界面膜的导电性,从而使锂离子电池具有显著改善的高温存储性能、高温循环性能,同时兼具良好的功率性能。

Description

一种电解液、锂离子电池和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种电解液、锂离子电池、电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。
但是,当锂离子电池装配到上述等用电装置以后,由于受到装配空间限制以及用电装置其他部件放热的影响,会造成电池的实际工作环境温度较高,因此仅仅提升常温下电池的循环和存储性能并不能有效提高电池在实际用电装置中的循环和存储性能,因此,开发和设计出具一款高温循环性能优良的锂离子电池具有巨大的实用价值。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种能够有效改善电池高温存储性能和高温循环性能的电解液,并提供包括本申请电解液的锂离子电池、电池模块、电池包和用电装置。
为了达到上述目的,本申请的第一方面提供了一种电解液,所述电解液包括电解质盐和有机溶剂,所述电解质盐包括锂盐,所述有机 溶剂包括环状酯,所述锂盐在所述电解液中的质量分数W1与所述环状酯在所述电解液中的质量分数W2满足
Figure PCTCN2021107852-appb-000001
在任意实施方式中,本申请所述电解液中,所述
Figure PCTCN2021107852-appb-000002
范围为0.5~1.06,可选为0.8~1.0。
在任意实施方式中,本申请的电解液中,所述环状酯的质量相对于所述有机溶剂的质量计的质量分数B为5%~18%,可选为13%~16%。
在任意实施方式中,本申请的电解液中,所述锂盐包括双氟磺酰亚胺锂、六氟磷酸锂中的至少一种,所述环状酯包括碳酸乙烯酯、碳酸丙烯酯中的至少一种。
在任意实施方式中,本申请的电解液中,所述双氟磺酰亚胺锂的摩尔浓度C1与所述六氟磷酸锂的摩尔浓度C2之和为0.86-1.4M。
在任意实施方式中,本申请的电解液包括成膜添加剂,所述成膜添加剂在所述电解液中的质量分数A与所述环状酯在所述电解液中的质量分数W2满足:
Figure PCTCN2021107852-appb-000003
本申请第二方面提供一种锂离子电池,包括本申请第一方面所述的电解液、隔离膜、负极极片和正极极片。
在任意实施方式中,所述正极极片包括正极活性材料LiNi xCo yMn zO 2,x+y+z=1,所述环状酯在所述电解液中的质量分数W2与所述镍原子含量x满足关系式:
Figure PCTCN2021107852-appb-000004
在任意实施方式中,所述正极极片包括正极活性材料 LiNi xCo yMn zO 2,x+y+z=1,从搭配本申请电解液的角度,所述镍原子含量x为0.5以上,可选为0.65、0.8、0.96。
在任意实施方式中,本申请的锂离子电池中,负极材料在1540.25mm 2集流体表面上的负载量H(单位为g)与所述环状酯在所述电解液中的质量分数W2满足关系式:
Figure PCTCN2021107852-appb-000005
[有益效果]
本申请通过限定锂离子电池电解液中环状酯与锂盐的相对配比,使同时含有环状酯和锂盐的电解液兼具良好的电导率、耐氧化性、体系稳定性以及合适的粘度,并且能够改善负极界面膜的导电性,从而使包含其的锂离子电池具有显著改善的高温存储性能和高温循环性能,同时兼具良好的功率性能。
附图说明
图1是本申请一实施方式的锂离子电池的示意图。
图2是图1所示的本申请一实施方式的锂离子电池的分解图。
图3是本申请一实施方式的将锂离子电池用作电源的用电装置的示意图。
附图标记说明:
5锂离子电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的电解液、锂离子电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细 说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b), 表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
经过长期制备电解液的经验,本申请发明人发现:对锂离子电池电解液而言,环状酯类溶剂添加到电解液中能够显著改善锂盐的解离功能,从而显著提高电解液的整体电导率,同时改善负极界面膜的组成,有效防止溶剂在负极表面的进一步副反应,具有改善电池电化学性能的重要作用。
但是,经过大量实验发现,当电解液中应用该类环状酯溶剂时,相比于其他类型的溶剂,环状酯类溶剂容易在正极表面富集,并且富集在正极表面的环状酯容易被氧化分解,加剧电解液中溶剂组分的流失,并产生大量气体,最终恶化电池的循环性能和存储性能。其次, 环状酯类的粘度显著高于其他类型常用溶剂的粘度,使电解液的体系粘度增大,不利于锂离子传输,同样对电池的电化学性能不利。
并且,发明人还发现,对于内部包含环状酯类溶剂的锂离子电池,相比于常温环境,高温环境下电池的存储性能和循环性能大幅恶化,经过发明人深入研究分析,推测其可能为:高温促使环状酯类溶剂更快速、更大量地富集在正极表面,同时高温加快了富集在正极表面的环状酯的分解,高温的环境最终导致电池的循环性能和存储性能。
基于此,发明人经过大量实验发现,通过协同调节电解液中环状酯和锂盐的相对含量在特定范围内,在能够充分确保电解液具有较高电导率的前提下,显著改善这类环状酯溶剂在正极的富集速率和富集量,减缓其正极的氧化分解,同时使电解液体系的粘度也得到显著改善,最终显著改善了应用了环状酯溶剂的锂离子电池在高温下的循环性能、存储性能和功率性能。
本申请的电解液配方尤其适用于高镍原子含量的三元锂离子电池,即使是具有超高镍原子含量的三元锂离子电池。
本申请的电解液配方尤其适用于改善高温下锂离子电池的高温下的循环性能、存储性能和功率性能。
[电解液]
本申请的第一方面提供了一种电解液,所述电解液包括电解质盐和有机溶剂,所述电解质盐包括锂盐,所述有机溶剂包括环状酯,所述锂盐在所述电解液中的质量分数W1与所述环状酯在所述电解液中的质量分数W2满足
Figure PCTCN2021107852-appb-000006
本申请的锂盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
本申请的环状酯可选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯(BC)、碳酸乙烯亚乙酯(VEC)中的一种以上。可选为碳酸乙烯酯、碳酸丙烯酯中的至少一种。
需要说明的是,当电解液中锂盐的种类有一种以上时,“所述锂盐在所述电解液中的质量分数”是指所有种类锂盐的总质量在所述电解液中的质量分数。同理,当电解液中环状酯的种类有一种以上时,“所述环状酯在所述电解液中的质量分数”是指所有种类环状酯的总质量在所述电解液中的质量分数。
本申请旨在开发出一种兼具良好的电导率、耐氧化性、体系稳定性以及合适的粘度,并且能够改善负极界面膜的导电性的电解液配方。经过大量实验发现,电解液中环状酯含量与锂盐含量满足特定的搭配关系时
Figure PCTCN2021107852-appb-000007
开发出的电解液具有意料不到的有益效果,电解液体系兼具良好的电导率、耐氧化性、体系稳定性以及合适的粘度,且改善负极界面膜的导电性,改善环状酯溶剂在正极的富集速率和富集量,减缓其正极的氧化分解,对应的锂离子电池兼具良好的高温循环性能、高温存储性能。
发明人通过大量调研发现,市场上的商用电解液为了使锂离子电池用电解液具有优异的电导率,其锂盐与环状酯的比值
Figure PCTCN2021107852-appb-000008
通常都在1.5以上,然而实际上,此时锂盐与环状酯的比是过高的,因此在正极处的氧化分解反应非常严重,严重恶化高温存储产气和高温循环的电池性能,并且经过多年的发展,锂离子电池电解液领域都未使锂盐与环状酯溶剂的比值
Figure PCTCN2021107852-appb-000009
突破1.5。经过大量实验,本申请开发出
Figure PCTCN2021107852-appb-000010
的电解液体系,使电池高温存储性能、高温循环性能得到显著改善。具体参见表1。
在一些实施方式中,可选地,本申请电解液中,所述
Figure PCTCN2021107852-appb-000011
范围为0.5~1.06,可选为0.8~1.0。具体参见表1。
通过进一步限定
Figure PCTCN2021107852-appb-000012
的范围,能够进一步优化电解液的成分,使电解液形成一种良好的溶剂化结构,该结构促使电解液在正负极表面形成导电性更好的无机-有机复合界面膜,不仅可以使电池具有显著改善的高温存储性能和高温循环性能,同时兼具良好的功率性能。
可选地,
Figure PCTCN2021107852-appb-000013
可以选自由表1中任一具体点值构成的数值范围。
在一些实施方式中,可选地,本申请电解液中,所述环状酯的质量相对于所述有机溶剂的质量计的质量分数B为5%~18%,可选为13%~16%。
经过充分调研,目前市面含有环状酯溶剂的电解液中,环状酯相对于有机溶剂的质量计的含量基本维持在20%以上,容易导致电池存 在高温存储产气严重以及高温循环性能差的问题。本申请通过合理调配电解液的具体物质种类及含量,将环状酯的含量降低到5%~18%,电池的高温存储性能、高温循环性能以及功率性能得到显著改善。通过进一步限定B的数值在13%~16%范围内,锂离子电池的高温循环性能和高温存储性能得到进一步提高。具体参见表2。
可选地,B可以选自由表2中任一具体点值构成的数值范围。
在一些实施方式中,可选地,本申请电解液中,所述锂盐可选为双氟磺酰亚胺锂、六氟磷酸锂中的至少一种。
在一些实施方式中,所述双氟磺酰亚胺锂的摩尔浓度C1与所述六氟磷酸锂的摩尔浓度C2之比
Figure PCTCN2021107852-appb-000014
为0.05-5,可选为1-3.5。
在本申请中,由于限制了环状碳酸酯的含量,其对锂盐的解离能力受到了一定的限制,电解液电导率会受到一定程度的影响。通过大量实验筛选,发明人发现用双氟磺酰亚胺锂(LiFSI)替代LiPF 6能够提高电解液电导率,但LiFSI单独使用会加快铝箔腐蚀。但发明人发现,同时使用LiPF 6与LiFSI的混合盐,并通过将所述双氟磺酰亚胺锂的摩尔浓度C1与所述六氟磷酸锂的摩尔浓度C2之比
Figure PCTCN2021107852-appb-000015
限定在合理范围内,既能够弥补因环状酯用量降低损失的电解液电导率,又能够有效防止锂盐对铝箔的腐蚀,有利于进一步提高电池的高温循环性能和高温存储性能。具体参见表3。
可选地,
Figure PCTCN2021107852-appb-000016
可以选自由表3中任一具体点值构成的数值范围。
在一些实施方式中,可选地,所述双氟磺酰亚胺锂与所述六氟磷酸锂的摩尔浓度之和为0.86-1.4M,可选地为1-1.4M。
进一步限制LiFSI与LiPF 6总浓度在合适范围内,是因为锂盐浓度过高时电解液的粘度过大,不仅降低电池的高温循环和高温存储性能,还会降低电池功率性能;相反,总浓度过低,有效迁移的锂离子含量过少,电池高温循环性能与高温存储性能较差。具体参见表4。
可选地,双氟磺酰亚胺锂与所述六氟磷酸锂的摩尔浓度之和可以选自由表4中任一具体点值构成的数值范围。
在一些实施方式中,可选地,本申请的电解液包括成膜添加剂,所述成膜添加剂在所述电解液中的质量分数A与所述环状酯在所述电解液中的质量分数W2满足:
Figure PCTCN2021107852-appb-000017
所述成膜添加剂可选为氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、硫酸乙烯酯(DTD)、1,3-丙磺酸内酯(PS)中的至少一种。
环状酯溶剂会参与锂离子电池化成过程中正负极的成膜,但仅靠环状酯成膜,其成膜质量可能不足,不能维持电池良好的循环性能,与成膜添加剂复合使用则可以改善成膜质量。
经过大量实验统计,本申请电解液中成膜添加剂的质量分数A与所述环状酯在所述电解液中的质量分数W2满足本申请的关系式时,所形成的电解液既能够保证正负极的高质量成膜,又能使与之搭配的环状酯发挥出其最大有效效果(整体提高电解液电导率),对应 锂离子电池兼具良好的高温循环性能和高温存储性能,同时还兼具良好的功率性能。具体参见表5。
可选地,
Figure PCTCN2021107852-appb-000018
可以选自由表5中任一具体点值构成的数值范围,可选地在11.9-13.5范围内。
本申请的锂离子电池还包括正极极片、隔离膜、负极极片。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电 池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意 其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料, 还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[隔离膜]
在一些实施方式中,锂离子电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚 乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
[锂离子电池]
本申请还提供一种锂离子电池,包括本申请第一方面所述的电解液。
在一些实施方式中,本申请的锂离子电池包括正极极片和本申请第一方面的电解液,正极极片包括式LiNi xCo yMn zO 2,x+y+z=1所示的正极材料;其中,所述环状酯在所述电解液中的质量分数W2与所述镍原子含量x满足关系式:
Figure PCTCN2021107852-appb-000019
本申请的电解液搭配Ni-Co-Mn层状三元正极活性材料制备的锂离子电池具有显著改善的电化学性能,所述电解液中环状酯的用量与三元正极活性材料中的镍原子含量x具有适配性关系。一般来说,三元正极活性材料中的镍原子含量越高,对应三元正极活性材料的活性越强,但是电池使用过程中,高镍原子含量的三元正极活性材料会加剧正极表面释氧,从而加剧环状酯及其他溶剂的氧化分解。经过大量实验,本申请发明人发现当本申请电解液用量与镍原子含量x满足一定适配关系时,即
Figure PCTCN2021107852-appb-000020
时,具有出人意料的技术效果:能够 有效改善高镍电池的释氧问题,并能够有效减缓正极表面环状酯的氧化分解,对应的三元锂离子电池兼具优良的循环性能和功率性能。具体参见表6。
在一些实施方式中,可选地,所述镍原子含量x可以为0.5以上,可选地,所述镍原子含量可以为0.5、0.65、0.8、0.96。具体可参见表8。
本申请的电解液配方尤其适用于高镍原子含量的三元锂离子电池,即使是具有超高镍原子含量的三元锂离子电池,也兼具优良的高温存储性能、高温循环性能以及功率性能。
在一些实施方式中,本申请的锂离子电池中,负极材料在1540.25mm 2集流体表面上的负载量H(单位为g)与所述环状酯在所述电解液中的质量分数W2满足关系式:
Figure PCTCN2021107852-appb-000021
可选地,
Figure PCTCN2021107852-appb-000022
经过大量实验,本申请发明人发现当本申请电解液中环状酯的用量与负极材料负载量H具有协同增效作用,当二者满足一定适配关系时,即
Figure PCTCN2021107852-appb-000023
时,对锂离子电池整体的电化学性能起到显著改善作用。具体参见表7。
在一些实施方式中,本申请的锂离子电池为壳体电池。
在一些实施方式中,锂离子电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,锂离子电池的外包装可以是硬壳,例如硬塑 料壳、铝壳、钢壳等。锂离子电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对锂离子电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的锂离子电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。锂离子电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
图3是作为一个示例的用电装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为本领域通常使用的可以通过市购获得的常规产品。本申请实施例中各成分的含量,如果没有特别说明,均以不含结晶水的质量计。
以下描述用语:“实施例1-1的电解液”是指实施例1-1的锂离子电池制备过程中的所用的电解液;“实施例1-1的正极极片”是指实施例1-1的锂离子电池制备过程中的所用的正极极片;“实施例1-1的负极极片”是指实施例1-1的锂离子电池制备过程中的所用的正极极片;“实施例1-1的隔离膜”是指实施例1-1的锂离子电池制备过程中的所用的隔离膜;“实施例1-1的锂离子电池”是指由实施例1-1的正极、隔离膜、负极、电解液制备而成的锂离子电池。
本申请实施例涉及的原材料来源如下:
镍钴锰三元材料(LiMO 2,M为Ni-Co-Mn固溶体,其具体比例详见各实施例)
人造石墨(广东凯金新能源科技股份有限公司)
N-甲基吡咯烷酮(NMP,CAS:872-50-4,上海麦克林生物科技有限公司)
聚偏氟乙烯(CAS:24937-79-9,上海麦克林生物科技有限公司)
乙炔黑(广东凯金新能源科技股份有限公司)
导电剂碳黑(广东凯金新能源科技股份有限公司)
丙烯酸酯(CAS:25067-02-1,上海麦克林生物科技有限公司)
碳酸乙烯酯(EC,CAS:96-49-1,上海麦克林生物科技有限公司)
碳酸二甲酯(DMC,CAS:616-38-6,上海麦克林生物科技有限公司)
碳酸甲乙酯(EMC,CAS:623-53-0,上海麦克林生物科技有限公司)
六氟磷酸锂(LiPF 6,CAS:21324-40-3,广州天赐高新材料股份有限 公司)
双氟磺酰亚胺锂盐(LiFSI,CAS:171611-11-3,广州天赐高新材料股份有限公司)
氟代碳酸乙烯酯(FEC,CAS:114435-02-8,广州天赐高新材料股份有限公司)
实施例1-1
【电解液的制备】
在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入32.64g EC、,60.84g EMC,6.25g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
【正极极片的制备】
将正极活性材料镍钴锰三元材料(LiNi 0.8Co 0.1Mn 0.1O 2)、粘结剂聚偏氟乙烯、导电剂乙炔黑按照质量比8:1:1进行混合,加入溶剂NMP,在真空搅拌机作用下获得正极浆料;将正极浆料以0.28g(干重)/1540.25mm 2的量均匀涂敷在厚度为13μm的正极集流体铝箔上;将铝箔在室温晾干后转移至120℃烘箱干燥1h,然后经过冷压、分切得到正极极片。
【负极极片的制备】
将人造石墨、导电剂碳黑、粘结剂丙烯酸酯按照质量比92:2:6进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料;将负极浆料以0.18g(干重)/1540.25mm 2的量均匀涂覆在厚度为8μm的负极集流体铜箔上;将铜箔在室温晾干后转移至120℃烘箱干燥1h,然后经过冷压、分切得到负极极片。
【隔离膜】
隔离膜采购自Cellgard企业,型号为cellgard2400。
【锂离子电池的制备】
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间起到隔离的作用,然后卷绕得到裸电芯;将容量为4.3Ah的裸电芯置于外包装箔中,将上述制备好的8.6g电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
实施例1-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入18.17g EC,72.68g EMC,9g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到实施例用电解液。
实施例1-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入10.10g EC,81.74g EMC,8g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例1-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.83g EC,75.64 8g EMC,11.38g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例1-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.67g EC,74.68g EMC,12.5g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例1-6
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入9.86g EC,79.74g EMC,10.25g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
对比例1
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入82.98g EC,4.37g EMC,12.5g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
对比例2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入10.44g EC,78.03g EMC,11.38g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中 分别加入2.93g PC,94.67g EMC,2.25g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入4.80g PC,91.29g EMC,3.75g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入7.51g PC,86.34g EMC,6g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入9.25g PC,83.22g EMC,7.38g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入11.76g PC,78.71g EMC,9.38g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-6
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入13.38g PC,75.84g EMC,10.63g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-7
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入15.72gPC,71.62g EMC,12.5g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例2-8
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入17.22g PC,68.88g EMC,13.75g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入13.92g EC,73.55g EMC,12.38g LiPF 6,0.15gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入14.04g EC,73.32g EMC,11.90g LiPF 6,0.73gLiFSI,充分 搅拌溶解后得到本实施例用电解液。
实施例3-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入15.5g EC,70.55g EMC,6.25g LiPF 6,7.7gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入15.82g EC,69.94g EMC,5g LiPF 6,9.24gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16.04g EC,69.53g EMC,4.17g LiPF 6,10.27gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-6
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16.39g EC,68.85g EMC,2.78g LiPF 6,11.98gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-7
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解 液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16.57g EC,68.51g EMC,2.08g LiPF 6,12.83gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例3-8
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16.62g EC,68.43g EMC,1.92g LiPF 6,13.03gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例4-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入10.85g EC,79.39g EMC,4.38g LiPF 6,5.39gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例4-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入13.18g EC,74.97g EMC,5.31g LiPF 6,6.55gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例4-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入15.5g EC,70.55g EMC,6.25g LiPF 6,7.70gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例4-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入21.7g EC,58.77g EMC,8.75g LiPF 6,10.78gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例4-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入22.48g EC,57.3g EMC,9.06g LiPF 6,11.17gLiFSI,充分搅拌溶解后得到本实施例用电解液。
实施例5-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.30g EC,72.55g EMC,11.44g LiPF 6,0.15gLiFSI,3.55gFEC充分搅拌溶解后得到本实施例用电解液。
实施例5-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入10.35g EC,75.87g EMC,9.63g LiPF 6,0.15gLiFSI,4gFEC充分搅拌溶解后得到本实施例用电解液。
实施例5-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中 分别加入12.51g EC,70.89g EMC,11.75g LiPF 6,0.15gLiFSI,4.7gFEC充分搅拌溶解后得到本实施例用电解液。
实施例5-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入10.76g EC,73.31g EMC,10.13g LiPF 6,0.15gLiFSI,5.65gFEC充分搅拌溶解后得到本实施例用电解液。
实施例5-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入11.03g EC,71.29g EMC,10.63g LiPF 6,0.15gLiFSI,6.9gFEC充分搅拌溶解后得到本实施例用电解液。
实施例5-6
锂离子电池的制备过程整体上参照实施例1-1,区别在于,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入13.55g EC,66.17g EMC,13.13g LiPF 6,0.15gLiFSI,7gFEC充分搅拌溶解后得到本实施例用电解液。
实施例6-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.99Co 0.005Mn 0.005O 2。除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入46.286g EC,39.43g EMC,4.13g LiPF 6,10.16gLiFSI充分搅拌溶解后得到本实施例用电解液。
实施例6-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.69Co 0.16Mn 0.15O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入34.28g EC,51.43g EMC,4.13g LiPF 6,10.16gLiFSI充分搅拌溶解后得到本实施例用电解液。
实施例6-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.47Co 0.15Mn 0.38O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入27.86g EC,57.85g EMC,4.13g LiPF 6,10.16gLiFSI充分搅拌溶解后得到本实施例用电解液。
实施例6-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.32Co 0.19Mn 0.57O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入23.14g EC,62.57g EMC,4.13g LiPF 6,10.16gLiFSI充分搅拌溶解后得到本实施例用电解液。
实施例6-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.25Co 0.18Mn 0.57O 2。除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入20.06g EC,65.65g EMC,4.13g LiPF 6,10.16gLiFSI 充分搅拌溶解后得到本实施例用电解液。
实施例7-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量1.698mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入30.57g EC,63.31g EMC,6.11g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.873mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入17.47g EC,73.80g EMC,8.73g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.192mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入9.61g EC,82.71g EMC,7.69g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.158mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入 12.67g EC,75.94g EMC,11.4g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-5
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.115mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.67g EC,74.67g EMC,12.67g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-6
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.09mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.67g EC,74.67g EMC,12.67g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-7
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.079mg/1540.25mm 2,除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入12.67g EC,74.67g EMC,12.67g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例7-8
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例的负极涂敷量0.058mg/1540.25mm 2,除此之外,电解液的制备步 骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入9.61g EC,80.3g EMC,10.09g LiPF 6充分搅拌溶解后得到本实施例用电解液。
实施例8-1
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.5Co 0.2Mn 0.3O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16g EC,69.6g EMC,14.4g LiPF 6,充分搅拌溶解后得到本实施例用电解液。
实施例8-2
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.65Co 0.05Mn 0.3O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16g EC,69.6g EMC,14.4g LiPF 6,充分搅拌溶解后得到本实施例用电解液。
实施例8-3
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施例采用的正极活性材料三元材料为LiNi 0.85Co 0.05Mn 0.1O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16g EC,69.6g EMC,14.4g LiPF 6,充分搅拌溶解后得到本实施例用电解液。
实施例8-4
锂离子电池的制备过程整体上参照实施例1-1,区别在于该实施 例采用的正极活性材料三元材料为LiNi 0.96Co0 .02Mn 0.02O 2
除此之外,电解液的制备步骤为:在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入16g EC,69.6g EMC,14.4g LiPF 6,充分搅拌溶解后得到本实施例用电解液。
【相关参数及电池性能测试】
1、初始放电DCR(直流电阻,Directive Current Resistance)测试
在25℃下,将上述实施例和对比例的锂离子电池分别以1C的充电倍率充电到4.25V,随后恒压充电到电流小于0.05C,然后1C放电倍率下放电30min,此时电池的SOC为50%,此时电压记为V1;随后以4C的放电倍率(4C下对应的电流为I)放电30s,此时电压记为V2,则锂离子电池的初始放电DCR=(V1-V2)/I,具体数值参见表1~表8。
2、60℃循环性能测试
在60℃下,将电池以1C恒流充电至4.25V,再以4.25V恒定电压充电至电流为0.05C,搁置5min,再以1C恒流放电至2.5V,所得容量记为初始容量C 0。对上述同一个电池重复以上步骤,并同时开始计数,记录循环第300次后电池的放电容量C 300,则循环300次后电池循环容量保持率P=C 300/C 0*100%。
按照上述过程分别测试实施例和对比例的锂离子电池,具体数值参见表1~表8。
3、60℃存储性能测试
在25℃下,将电池以0.5C恒流充电至4.25V,再以4.25V恒定 电压充电至电流为0.05C,搁置5min后,再以0.5C恒流放电至2.5V,此时放电容量记为初始容量C 0
将上述电池再以0.5C恒流充电至4.25V,再以4.25V恒定电压充电至电流为0.05C,之后将该电池放入60℃的恒温箱,储存60天后取出。将取出的电池放置于25℃大气环境下,待锂离子电池温度完全降至25℃后,对锂离子电池以0.5C恒流放电至2.5V,再以0.5C恒流充电至4.25V,最后再将锂离子电池以0.5V恒流放电至2.5V,此时的放电容量为C1,则存储60天后电池的高温存储容量保持率M=C1/C 0×100%。
按照上述过程分别测试其他实施例和对比例,具体数值参见表1~表8。
表1:锂盐与环状酯的相对比例对电池性能的影响
Figure PCTCN2021107852-appb-000024
Figure PCTCN2021107852-appb-000025
表2:环状酯在有机溶剂的含量对电池性能的影响
Figure PCTCN2021107852-appb-000026
表3:不同锂盐的相对含量对电池性能的影响
Figure PCTCN2021107852-appb-000027
Figure PCTCN2021107852-appb-000028
表4:锂盐总浓度对电池性能的影响
Figure PCTCN2021107852-appb-000029
表5:
Figure PCTCN2021107852-appb-000030
对电池性能的影响
Figure PCTCN2021107852-appb-000031
Figure PCTCN2021107852-appb-000032
表6:电池中其他参数对电池性能的影响
Figure PCTCN2021107852-appb-000033
表7:电池中其他参数对电池性能的影响
Figure PCTCN2021107852-appb-000034
Figure PCTCN2021107852-appb-000035
表8:电池中其他参数对电池性能的影响
Figure PCTCN2021107852-appb-000036
根据表1可知,上述所有实施例对应锂离子电池的高温循环容量保持率、高温存储容量保持率显著高于对比例1-2,同时,所有实施例的初始放电DCR也低于对比例1-2。
综合比较实施例1-1~实施例1-6,当
Figure PCTCN2021107852-appb-000037
时,锂离子电池的高温循环容量保持率都高于75%,高温存储容量保持率都高于80%,并且初始放电DCR也都在20.5mΩ以内。进一步地,当
Figure PCTCN2021107852-appb-000038
锂离子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
综合比较实施例2-1~实施例2-8,在
Figure PCTCN2021107852-appb-000039
的值一定时,当B的值在5%~18%范围时,锂离子电池的高温循环容量保持率都高于75%,高温存储容量保持率都高于80%,并且初始放电DCR不超过17.2mΩ。进一步地,当B的值在13%~16%范围时,锂离子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
综合比较实施例3-1~实施例3-8,在
Figure PCTCN2021107852-appb-000040
C1+C2的值为定值时,当
Figure PCTCN2021107852-appb-000041
的值在0.05-5范围时,锂离子电池的高温循环容量保持率都高于78.5%,高温存储容量保持率都高于81%,并且初始放电DCR不超过17mΩ。进一步地,当
Figure PCTCN2021107852-appb-000042
的值在1-3.5范围时,锂离子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
综合比较实施例4-1~实施例4-5,在
Figure PCTCN2021107852-appb-000043
的值为定值时,当(C1+C2)的值在0.86-1.4M范围时,锂离子电池的高温循环容量保持率都高于81.5%,高温存储容量保持率都高于82.3%,并且初始放电DCR不超过17mΩ。进一步地,当(C1+C2)的值在1-1.4范围时,锂离子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
综合比较实施例5-1~实施例5-6,当
Figure PCTCN2021107852-appb-000044
为定值时,当
Figure PCTCN2021107852-appb-000045
的值在10-16范围内时,锂离子电池的高温循环容量保持率都高于83%,高温存储容量保持率都高于84%,并且初始放电DCR不超过16.5mΩ。进一步地,当
Figure PCTCN2021107852-appb-000046
的值在11.9-13.5范围内时,锂离 子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
综合比较实施例6-1~实施例6-5,当
Figure PCTCN2021107852-appb-000047
的值在0.5-0.72范围内时,锂离子电池的高温循环容量保持率都高于81.3%,高温存储容量保持率都高于82%,并且初始放电DCR不超过17mΩ。
综合比较实施例7-1~实施例7-8,当
Figure PCTCN2021107852-appb-000048
为定值时,当
Figure PCTCN2021107852-appb-000049
的值在20-166范围内时,锂离子电池的高温循环容量保持率都高于81.5%,高温存储容量保持率都不低于81.3%,并且初始放电DCR不超过16.9mΩ。进一步地,当
Figure PCTCN2021107852-appb-000050
的值在50-141范围内时,锂离子电池的高温循环容量保持率、高温存储容量保持率和初始放电DCR得到进一步改善。
实施例8-1~实施例8-4说明,针对当前LiNi xCo yMn zO 2三元正极活性材料常用的几种类型,即镍原子含量分别为0.5、0.65、0.85、0.96的三元正极活性材料,其对应制备的锂离子电池都兼具良好的高温循环容量保持率、高温存储容量保持率和初始放电DCR。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (11)

  1. 一种电解液,包括电解质盐和有机溶剂,其特征在于,
    所述电解质盐包括锂盐,所述有机溶剂包括环状酯,所述锂盐在所述电解液中的质量分数W1与所述环状酯在所述电解液中的质量分数W2满足
    Figure PCTCN2021107852-appb-100001
  2. 根据权利要求1所述的电解液,其特征在于,
    所述
    Figure PCTCN2021107852-appb-100002
    范围为0.5~1.06,可选为0.8~1.0。
  3. 根据权利要求1或2所述的电解液,其特征在于,
    所述环状酯的质量相对于所述有机溶剂的质量计的质量分数B为5%~18%,可选为13%~16%。
  4. 根据权利要求1-3中任一项所述的电解液,其特征在于,
    所述电解质盐包括双氟磺酰亚胺锂、六氟磷酸锂中的至少一种,所述环状酯包括碳酸乙烯酯、碳酸丙烯酯中的至少一种。
  5. 根据权利要求4中所述的电解液,其特征在于,
    所述双氟磺酰亚胺锂的摩尔浓度C1与所述六氟磷酸锂的摩尔浓度C2之比
    Figure PCTCN2021107852-appb-100003
    为0.05-5,可选为1-3.5;可选地,所述双氟磺酰亚胺锂与所述六氟磷酸锂的摩尔浓度之和(C1+C2)为0.86-1.4M。
  6. 根据权利要求1-5中任一项所述的电解液,其特征在于,
    包括成膜添加剂,所述成膜添加剂在所述电解液中的质量分数A 与所述环状酯在所述电解液中的质量分数W2满足:
    Figure PCTCN2021107852-appb-100004
    Figure PCTCN2021107852-appb-100005
  7. 一种锂离子电池,其特征在于,
    包括正极极片、负极极片和权利要求1-6中任一项所述的电解液。
  8. 根据权利要求7所述的锂离子电池,其特征在于,
    所述正极极片包括正极活性材料LiNi xCo yMn zO 2,x+y+z=1,所述环状酯在所述电解液中的质量分数W2与镍原子含量x满足关系式:
    Figure PCTCN2021107852-appb-100006
  9. 根据权利要求8所述的锂离子电池,其特征在于,
    所述镍原子含量x为0.5以上,可选为0.65、0.8、0.96。
  10. 根据权利要求7-9中任一项所述的锂离子电池,其特征在于,
    负极材料在1540.25mm 2集流体表面上的负载量H(单位为g)与所述环状酯在所述电解液中的质量分数W2满足关系式:
    Figure PCTCN2021107852-appb-100007
  11. 一种用电装置,其特征在于,
    包括权利要求7-10中任一项所述的锂离子电池。
PCT/CN2021/107852 2021-07-22 2021-07-22 一种电解液、锂离子电池和用电装置 WO2023000255A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180010209.4A CN115868062A (zh) 2021-07-22 2021-07-22 一种电解液、锂离子电池和用电装置
JP2022551386A JP2023537443A (ja) 2021-07-22 2021-07-22 電解液、リチウムイオン電池および電気設備
EP21930592.7A EP4145580A4 (en) 2021-07-22 2021-07-22 ELECTROLYTE SOLUTION, LITHIUM ION BATTERY AND ELECTRICAL DEVICE
PCT/CN2021/107852 WO2023000255A1 (zh) 2021-07-22 2021-07-22 一种电解液、锂离子电池和用电装置
KR1020227029845A KR20230015879A (ko) 2021-07-22 2021-07-22 전해액, 리튬이온 전지 및 전기 기기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107852 WO2023000255A1 (zh) 2021-07-22 2021-07-22 一种电解液、锂离子电池和用电装置

Publications (1)

Publication Number Publication Date
WO2023000255A1 true WO2023000255A1 (zh) 2023-01-26

Family

ID=84980336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107852 WO2023000255A1 (zh) 2021-07-22 2021-07-22 一种电解液、锂离子电池和用电装置

Country Status (5)

Country Link
EP (1) EP4145580A4 (zh)
JP (1) JP2023537443A (zh)
KR (1) KR20230015879A (zh)
CN (1) CN115868062A (zh)
WO (1) WO2023000255A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN105489933A (zh) * 2014-09-16 2016-04-13 惠州Tcl金能电池有限公司 锂离子电池电解液及其制备方法、以及锂离子电池
CN109994777A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 电解液及二次电池
CN110233291A (zh) * 2019-05-31 2019-09-13 骆驼集团新能源电池有限公司 一种平衡高低温的12v启停宽温带锂电池电解液
CN110444810A (zh) * 2018-05-04 2019-11-12 宁德时代新能源科技股份有限公司 电解液及二次电池
CN110752408A (zh) * 2019-11-01 2020-02-04 珠海冠宇电池有限公司 一种电解液及其制备方法和锂离子电池
WO2021127999A1 (zh) * 2019-12-24 2021-07-01 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置
WO2021127997A1 (zh) * 2019-12-24 2021-07-01 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406124B (zh) * 2015-12-31 2019-03-19 哈尔滨工业大学 一种提高锂离子电池高温及高电压性能的电解液及其在锂离子电池中的应用
JP6696211B2 (ja) * 2016-02-19 2020-05-20 住友電気工業株式会社 リチウムイオン二次電池
CN107611479B (zh) * 2017-09-08 2022-10-11 广东天劲新能源科技股份有限公司 锂离子动力电池电解液及锂离子二次电池
CN110828893B (zh) * 2018-08-09 2021-06-08 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池
CN110190332B (zh) * 2019-06-20 2020-02-11 东莞东阳光科研发有限公司 高镍三元正极材料体系电池用电解液及锂离子电池
CN112054242A (zh) * 2020-08-04 2020-12-08 昆山宝创新能源科技有限公司 电解液及其应用
CN111900481A (zh) * 2020-08-28 2020-11-06 浙江工业大学 一种用于高镍正极材料锂离子电池的电解液
CN112216870B (zh) * 2020-11-16 2023-11-10 湖南航天磁电有限责任公司 一种高镍锂离子电池的耐高温高电压电解液
CN112635832A (zh) * 2020-12-22 2021-04-09 银隆新能源股份有限公司 一种锂离子电池电解液及其锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258357A1 (en) * 2011-04-11 2012-10-11 Sb Limotive Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN105489933A (zh) * 2014-09-16 2016-04-13 惠州Tcl金能电池有限公司 锂离子电池电解液及其制备方法、以及锂离子电池
CN109994777A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 电解液及二次电池
CN110444810A (zh) * 2018-05-04 2019-11-12 宁德时代新能源科技股份有限公司 电解液及二次电池
CN110233291A (zh) * 2019-05-31 2019-09-13 骆驼集团新能源电池有限公司 一种平衡高低温的12v启停宽温带锂电池电解液
CN110752408A (zh) * 2019-11-01 2020-02-04 珠海冠宇电池有限公司 一种电解液及其制备方法和锂离子电池
WO2021127999A1 (zh) * 2019-12-24 2021-07-01 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置
WO2021127997A1 (zh) * 2019-12-24 2021-07-01 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的装置

Also Published As

Publication number Publication date
EP4145580A1 (en) 2023-03-08
EP4145580A4 (en) 2023-11-01
CN115868062A (zh) 2023-03-28
KR20230015879A (ko) 2023-01-31
JP2023537443A (ja) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2023087937A1 (zh) 一种电化学装置及电子装置
CN102427123B (zh) 锂离子二次电池及其正极片
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023185206A1 (zh) 一种电化学装置及包含其的电器
WO2024099377A1 (zh) 一种电解液及包括该电解液的电池
WO2023197807A1 (zh) 正极材料及其制备方法、复合正极材料、正极极片及二次电池
WO2023174050A1 (zh) 三元正极材料、其制造方法以及使用其的二次电池
US20230387416A1 (en) Positive electrode plate, secondary battery and preparation method thereof and battery module, battery pack and power consuming device comprising the secondary battery
US20230117520A1 (en) Electrolytic solution, secondary battery, and power consumption apparatus
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023082925A1 (zh) 一种正极材料、正极极片、二次电池、电池模块、电池包及用电装置
WO2023137624A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023216139A1 (zh) 二次电池及其制备方法、电池模块、电池包和用电装置
WO2023000255A1 (zh) 一种电解液、锂离子电池和用电装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2024077513A1 (zh) 电池单体、电池和用电装置
WO2023225793A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023184784A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2023130210A1 (zh) 二次电池的补锂方法及充放电方法
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2024077514A1 (zh) 电解液、电池单体、电池和用电装置
WO2023130249A1 (zh) 电解液及使用其的二次电池、电池模块、电池包以及用电装置
WO2023137625A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2024087013A1 (zh) 电极组件、电池单体、电池和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022551386

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021930592

Country of ref document: EP

Effective date: 20221028

NENP Non-entry into the national phase

Ref country code: DE