WO2023216139A1 - 二次电池及其制备方法、电池模块、电池包和用电装置 - Google Patents

二次电池及其制备方法、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023216139A1
WO2023216139A1 PCT/CN2022/092216 CN2022092216W WO2023216139A1 WO 2023216139 A1 WO2023216139 A1 WO 2023216139A1 CN 2022092216 W CN2022092216 W CN 2022092216W WO 2023216139 A1 WO2023216139 A1 WO 2023216139A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
material layer
interface
electrode material
Prior art date
Application number
PCT/CN2022/092216
Other languages
English (en)
French (fr)
Inventor
徐宁波
邹海林
陈培培
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020247008444A priority Critical patent/KR20240039615A/ko
Priority to CN202280045001.0A priority patent/CN117561623A/zh
Priority to PCT/CN2022/092216 priority patent/WO2023216139A1/zh
Publication of WO2023216139A1 publication Critical patent/WO2023216139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, and in particular to a secondary battery and a preparation method thereof, as well as battery modules, battery packs and electrical devices containing the secondary battery.
  • This application was made in view of the above-mentioned problems, and its purpose is to provide a secondary battery with improved cycle and storage performance and a method for producing the same.
  • the present application provides a secondary battery, a preparation method thereof, a battery module, a battery pack and an electrical device.
  • the first aspect of the present application provides a secondary battery, including: a negative electrode sheet including a negative electrode material layer, a positive electrode sheet including a positive electrode material layer, and an electrolyte; the negative electrode material layer, the positive electrode material layer, and the electrolyte solution At least one of them includes an interface passivating agent, which is a compound containing element E selected from the group consisting of lithium, sodium, beryllium, magnesium, potassium, calcium, aluminum, gallium or germanium.
  • an interface passivating agent which is a compound containing element E selected from the group consisting of lithium, sodium, beryllium, magnesium, potassium, calcium, aluminum, gallium or germanium.
  • the surface of the negative electrode material layer has an A-D-E ternary layer, wherein A is selected from alkali metal elements and is different from E, and D is silicon or carbon; the A-D-E ternary layer is formed on the secondary During at least one charging process of the battery, the interface passivating agent acts on the surface of the negative electrode material layer.
  • the secondary battery of the present application has a ternary passivation layer on the surface of the negative electrode material layer, which can significantly reduce the battery impedance and improve the battery cycle life and storage performance.
  • the interface passivating agent is selected from at least one compound of beryllium, magnesium, calcium, aluminum and gallium; optionally, the interface passivating agent is selected from the group consisting of beryllium, magnesium, calcium and aluminum at least one of the compounds. Selecting a compound containing the above metal elements can further improve the stabilizing effect of the ternary layer, thereby more effectively improving the performance of the secondary battery.
  • the interface passivating agent is selected from at least one of the following: substituted or unsubstituted C 1-20 carboxylate, and the substituent is one or more selected from the following: C 1-6 Alkyl, C 2-6 cycloalkyl, hydroxyl, amino, oxo group, acyl, C 1-6 alkylthio, phenyl, benzoylthio, phenylthio and phenoxy; imino acid salts ; Enolate; phosphate; sulfate; sulfonimide salt; sulfonate; benzoate; phthalate; acetylacetonate; inorganic oxygen acid salt; and containing at least two of the non- Double salts of transition metal cations. Choosing the above compounds as interface passivators can more effectively improve the resistance, cycle life and storage performance of secondary batteries.
  • the interface passivator is blended in at least one of the positive electrode material layer, the negative electrode material layer and the electrolyte.
  • the A-D-E ternary layer is selected from: Li-Si-Ca, Li-Si-Mg, Li-Si-Be, Li-Si-Al, Li-C-Ca, Li-C-Mg , Li-C-Be, Li-C-Al, Na-Si-Ca, Na-Si-Mg, Na-Si-Be, Na-Si-Al, Na-C-Ca, Na-C-Mg, Na -C-Be, Na-C-Al ternary layer and combinations thereof; optionally, the A-D-E ternary layer is selected from: Li-Si-Ca, Li-Si-Mg, Li-Si-Be, Li- Si-Al, Na-Si-Ca, Na-Si-Mg, Na-Si-Be, Na-Si-Al ternary layers and their combinations. Including the above-mentioned ternary layer in secondary batteries can effectively improve battery impedance, cycle life and
  • the cathode material layer before the at least one charge, includes 0.001 to 20 wt%, optionally 1 to 10 wt%, based on the total weight of the cathode material layer of the interface passivating agent.
  • the negative electrode material layer before the at least one charge, includes 0.001 to 20 wt%, optionally 0.05 to 5 wt%, based on the total weight of the negative electrode material layer. of the interface passivating agent.
  • the electrolyte before the at least one charge, includes 0.001 to 20 wt%, optionally 0.1 to 5 wt% of the electrolyte, based on the total weight of the electrolyte.
  • the interface passivation agent before the at least one charge, includes 0.001 to 20 wt%, optionally 0.1 to 5 wt% of the electrolyte, based on the total weight of the electrolyte.
  • Controlling the content of the passivating agent within the above range can further improve battery performance.
  • the negative electrode material layer includes a negative electrode active material having a D50 of 1 ⁇ m to 20 ⁇ m, optionally 2 ⁇ m to 10 ⁇ m.
  • a negative electrode active material having a D50 of 1 ⁇ m to 20 ⁇ m, optionally 2 ⁇ m to 10 ⁇ m.
  • the negative electrode material layer includes a negative electrode active material, and the Span value of the negative electrode active material is 0.9 to 1.8, optionally 0.9 to 1.2;
  • D90, D10 and D50 respectively represent the corresponding particle sizes when the cumulative distribution percentage is 90%, 10% and 50%. Choosing a negative active material with a Span value within the above range is conducive to the relative interfacial stability of the material and helps to achieve improved battery performance.
  • a second aspect of the present application provides a secondary battery, which is prepared by the following steps:
  • the uncycled secondary battery is subjected to at least one cycle of charge and discharge.
  • a third aspect of the present application provides a method for preparing a secondary battery, which includes the following steps:
  • the uncycled secondary battery is subjected to at least one cycle of charge and discharge to form an A-D-E ternary layer to obtain the secondary battery; wherein A is selected from alkali metal elements and is different from E, and D is silicon or carbon .
  • a secondary battery having a ternary passivation layer on the surface of the negative electrode material layer can be obtained, thereby improving the impedance, cycle life and storage performance of the secondary battery.
  • the interface passivating agent is selected from at least one compound of beryllium, magnesium, calcium, aluminum and gallium; optionally, the interface passivating agent is selected from the group consisting of beryllium, magnesium, calcium and aluminum at least one of the compounds.
  • the interface passivating agent is selected from at least one of the following: substituted or unsubstituted C 1-20 carboxylate, and the substituent is one or more selected from the following: C 1-6 Alkyl, C 2-6 cycloalkyl, hydroxyl, amino, oxo group, acyl, C 1-6 alkylthio, phenyl, benzoylthio, phenylthio and phenoxy; imino acid salts ; Enolate; phosphate; sulfate; sulfonimide salt; sulfonate; benzoate; phthalate; acetylacetonate; inorganic oxygen acid salt; and containing at least two of the non- Double salts of transition metal cations.
  • the interface passivating agent in step i) is mixed in at least one of the positive electrode material layer, the negative electrode material layer and the electrolyte. Blending makes it easier to form the ternary layer, which can further improve secondary battery performance.
  • a fourth aspect of the present application provides a battery module, which includes the secondary batteries of the first and second aspects of the present application or the secondary battery obtained by the method of the third aspect of the present application.
  • a fifth aspect of the present application provides a battery pack, which includes the battery module of the fourth aspect of the present application.
  • a sixth aspect of the application provides an electrical device, which includes a secondary battery selected from the first and second aspects of the application, a secondary battery obtained by the method of the third aspect, a battery module of the fourth aspect, or At least one of the battery packs of the fifth aspect.
  • the secondary battery of the present application and the secondary battery obtained by using the preparation method of the present application have balanced cycle performance and storage performance, as well as low internal resistance.
  • FIG. 1 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a battery module according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the battery pack according to an embodiment of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of a power consumption device using a secondary battery as a power source according to an embodiment of the present application.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the solid electrolyte interface (SEI) film on the surface of the pole piece plays an important role in improving the cycle performance of secondary batteries.
  • the formation of the SEI membrane consumes the electrolyte (or electrolyte ions in the electrolyte, that is, active ions or charge carrier ions). Therefore, if the SEI membrane is repeatedly damaged and reborn during cycles, the active ion transport kinetics will be reduced, and may even lead to electrolyte depletion and battery cell performance plunge.
  • volume changes to varying degrees during the cycle, affecting the integrity and stability of the SEI layer, thereby damaging battery performance.
  • volume changes significantly (change rate is 100%-300%), and the above problems are more prominent.
  • SEI film layers that can adapt to material volume changes and maintain integrity are pursued.
  • additives are usually added to the electrolyte or the active material or the surface of the pole piece is coated.
  • the SEI layer obtained by these methods cannot adapt well to material volume changes and therefore cannot significantly improve battery performance.
  • existing methods cannot effectively solve the interface problems caused by material volume changes.
  • the challenge lies in the careful balance of loop performance and storage performance. It is known in the art that good storage performance and long cycle life have different or even opposite requirements for SEI films.
  • a relatively flexible and thin SEI is advantageous because it can adapt to the volume change of the anode material and consume less during repeated formation processes, and has low interfacial resistance.
  • a nonporous and robust SEI is advantageous, preventing electrolyte penetration and current leakage.
  • such a thick and poorly flexible SEI may break when the volume of the anode material changes, consuming additional electrolyte, and may also affect ion transfer, resulting in a relatively low initial capacity and slightly poor rate performance.
  • secondary batteries expected in the art should have good overall performance, that is, good cycle performance and storage performance.
  • An object of the present application is to provide a secondary battery with balanced comprehensive performance, that is, good cycle performance and storage performance. Another object of the present application is to provide a method for preparing a secondary battery.
  • the secondary battery of the present application has good comprehensive performance: smaller battery internal resistance after multiple cycles, longer cycle life and better storage performance.
  • the present application proposes a secondary battery, which includes: a negative electrode sheet including a negative electrode material layer, a positive electrode sheet including a positive electrode material layer, and an electrolyte; the negative electrode material layer, the positive electrode material At least one of the layer and the electrolyte includes an interface passivator, the interface passivator being a compound containing the element E selected from the group consisting of lithium, sodium, beryllium, magnesium, potassium, calcium, aluminum, gallium or germanium .
  • the secondary battery undergoes active ion intercalation in the negative electrode material during at least one charge after fresh preparation.
  • a beneficial ternary layer is produced, thereby improving pole piece and battery performance.
  • the active ions may be lithium ions or sodium ions depending on the type of secondary battery.
  • the active ions of lithium-ion secondary batteries are lithium ions
  • the active ions of sodium-ion secondary batteries are sodium ions.
  • the surface of the negative electrode material layer has an A-D-E ternary layer, wherein A is selected from alkali metal elements and is different from E, and D is silicon or carbon; the A-D-E ternary layer is formed on the secondary
  • the interface passivating agent acts on the surface of the negative electrode material layer.
  • the secondary battery of the present application has a ternary layer on the surface of the negative electrode material layer. This layer can stabilize the negative electrode interface and adapt to volume changes, thereby improving the performance of the electrode piece and battery, especially achieving cycle performance and storage performance. careful balance.
  • the advantages of the secondary battery of the present application will be further highlighted, especially with significantly reduced battery impedance and improved battery cycle life and storage performance (for example, especially at higher temperatures). Improved capacity retention after cycling and storage).
  • the secondary battery is a lithium-ion secondary battery or a sodium-ion secondary battery.
  • the interface passivator or the ternary layer of the present application can significantly improve the cycle performance, impedance, etc. of the battery.
  • the secondary battery is a lithium ion secondary battery.
  • the interface passivating agent is a compound of a non-transition metal with an atomic number of no greater than 20.
  • Such compounds may be organic or inorganic compounds.
  • such an interface passivator can easily obtain electrons during electrochemical reactions, making it easier to generate a ternary layer.
  • it is difficult to improve the performance of transition metal compounds in some cases this may be due to the fact that transition metal atoms contain more empty orbitals, which is not conducive to the formation of ternary layers, but may intensify interface reactions.
  • the term "transition metal” has a well-known meaning in the art.
  • the metal elements in the d block and ds block of the periodic table of elements include elements from Groups IIIB to VIIB and Group VIII of the periodic system, excluding the lanthanide series). and actinides; the ds region includes elements from Groups IB to IIB of the periodic table).
  • the metal cation moiety in the interface passivating agent has a valence of 2-5.
  • the interface passivating agent can be selected from at least one compound of lithium, sodium, beryllium, magnesium, potassium, calcium, aluminum, gallium, and germanium; optionally, beryllium, magnesium, potassium, At least one compound of calcium, aluminum, gallium, and germanium.
  • the interface passivating agent is selected from at least one compound of beryllium, magnesium, calcium, aluminum and gallium; optionally, the interface passivating agent is selected from the group consisting of beryllium, magnesium, calcium and aluminum at least one of the compounds. Selecting a compound containing the above metal elements can further improve the effect of the interface passivation layer, thereby more effectively improving the performance of the secondary battery.
  • the interface passivating agent is selected from the group consisting of two or a combination of three compounds of magnesium, aluminum and calcium.
  • the interface passivating agent is selected from at least one of the following: substituted or unsubstituted C 1-20 carboxylate, and the substituent is selected from one or more of the following: C 1-6 alkane Base, C 2-6 cycloalkyl, hydroxyl, amino, oxo group, acyl, C 1-6 alkylthio, phenyl, benzoylthio, phenylthio and phenoxy; imino acid salt; Enolate; phosphate; sulfate; sulfonimide salt; sulfonate; benzoate; phthalate; acetylacetonate; inorganic oxo acid salt; and containing at least two of the non-transitional salts Double salt of metal cations.
  • the interface passivating agent is selected from at least one of the following: calcium propionate, calcium stearate, calcium acetate, calcium cyclohexane butyrate, calcium formate, DL-malic acid Calcium, calcium glycolate, calcium 3-methyl-2-oxobutyrate, calcium levulinate, calcium 2-ethylhexanoate, calcium 2-hydroxy-4-(methylthio)butyrate, DL-glycerin Calcium acid, aluminum stearate, aluminum monostearate, basic aluminum acetate, aluminum terephthalate, aluminum acetate, aluminum oxalate, aluminum distearate, aluminum lactate, magnesium stearate, magnesium lactate, magnesium oxalate , magnesium acetate, magnesium citrate, magnesium valproate, magnesium 2-ethylhexanoate, magnesium 2-ethylbutyrate, magnesium phenoxyacetate, calcium bis(nonafluorobutylsulfonyl)imide, bis(fluorobutyl)imi
  • the interface passivating agent is selected from at least one of fluorosulfonyl imide salts, acetylacetonate salts and inorganic oxyacid salts.
  • the inorganic oxygen acid salt is selected from at least one of metaboric acid, nitric acid, metaphosphoric acid, perchloric acid, phosphoric acid, hypophosphorous acid, sulfuric acid, and aluminum acid.
  • the interface passivating agent is selected from at least one of fluorosulfonimide salts, acetylacetonate salts, fluoroacetylacetonate salts, nitrates, phosphates, perchlorates and sulfates. .
  • the interface passivating agent is selected from the group consisting of calcium bis(nonafluorobutylsulfonyl)imide, calcium nitrate, tris(trifluoro-2,4-pentanedioyl)aluminum, At least one of aluminum phosphate, magnesium hexafluoroacetylacetonate, magnesium perchlorate, beryllium acetylacetonate and beryllium sulfate.
  • the interface passivator is blended in at least one of the positive electrode material layer (or positive electrode slurry), the negative electrode material layer (or negative electrode slurry), and the electrolyte. Directly adding the interface passivating agent into the battery system through blending is more conducive to forming the ternary layer.
  • blended means that the interface passivating agent is directly doped and mixed, and dispersed (or dispersed) in the slurry or electrolyte. Blending does not include coating.
  • the A-D-E ternary layer is selected from: Li-Si-Ca, Li-Si-Mg, Li-Si-Be, Li-Si-Al, Li-C-Ca, Li-C-Mg , Li-C-Be, Li-C-Al, Na-Si-Ca, Na-Si-Mg, Na-Si-Be, Na-Si-Al, Na-C-Ca, Na-C-Mg, Na -C-Be, Na-C-Al ternary layers and their combinations.
  • the A-D-E ternary layer is selected from: Li-Si-Ca, Li-Si-Mg, Li-Si-Be, Li-Si-Al, Na-Si-Ca, Na -Si-Mg, Na-Si-Be, Na-Si-Al ternary layers and their combinations. Including the above-mentioned ternary interface passivation layer in secondary batteries can effectively improve battery impedance, cycle life and storage performance.
  • the ternary layer is formed by an interface passivating agent acting on the surface of the negative electrode material during at least one charging cycle of the secondary battery. In some embodiments, the ternary layer is formed in 1-3, optionally 1-2, and more optionally 1 charging cycle of the secondary battery.
  • the cathode material layer before the at least one charge, includes 0.001 to 20 wt%, optionally 1 to 10 wt%, based on the total weight of the cathode material layer of the interface passivating agent.
  • the negative electrode material layer includes 0.001 to 20 wt%, optionally 0.05 to 5 wt%, based on the total weight of the negative electrode material layer before the at least one charge. % of the interface passivating agent.
  • the electrolyte before the at least one charge, includes 0.001 to 20 wt%, optionally 0.1 to 5 wt%, based on the total weight of the electrolyte.
  • the interface passivation agent optionally, before the at least one charge, the electrolyte includes 0.2 to 5 wt%, optionally 0.3 to 5 wt%, based on the total weight of the electrolyte. % of the interface passivating agent.
  • Controlling the content of the passivating agent within the above range can further improve battery performance. If the content is too low, an effective ternary interface passivation layer cannot be formed; if the content is too high, a ternary phase may also be generated in the bulk phase of the pole piece material layer, reducing the energy density of the battery core.
  • the interface passivating agent in the negative electrode material layer. At this time, the amount of interface passivating agent added is small, thereby achieving the intended purpose while reducing the impact on the electrolyte components or performance.
  • the negative active material layer includes a silicon-based negative active material or a carbon-based negative active material.
  • the negative electrode material layer includes a silicon-based negative electrode active material.
  • the benefits of including the ternary layer of the present invention in the secondary battery are particularly significant.
  • the negative electrode material layer includes a silicon-based negative electrode material (or even consists of a silicon-based negative electrode active material), it is particularly advantageous to add the interface passivator of the present application to such a secondary battery system.
  • the negative active material has a D50 of 1 ⁇ m to 20 ⁇ m, optionally 2 ⁇ m to 10 ⁇ m.
  • the use of materials with the above-mentioned D50 can effectively exert the interface passivation effect of the ternary layer of the present application, significantly improve the performance of the secondary battery, and balance the ease of preparation of the pole piece and its performance superiority.
  • Using materials with D50 within the above range can avoid excessive interface activity caused by excessive material surface area, which is beneficial to the interface passivation layer to effectively achieve the desired performance improvement; at the same time, it can also avoid inhibiting the migration of active ions, which is beneficial to the battery Overall performance improvements.
  • the Span value of the negative active material is 0.9 to 1.8, optionally 0.9 to 1.2;
  • D90, D10 and D50 respectively represent the corresponding particle sizes when the cumulative distribution percentage is 90%, 10% and 50%.
  • the units of D90, D10 and D50 are ⁇ m. Choosing a negative active material with a Span value within the above range is conducive to the relative interfacial stability of the material and helps to achieve improved battery performance.
  • the "Span value” represents the width of the particle size distribution of the material. Span values are dimensionless quantities as defined above. Choosing an anode material with a Span value within the above range is beneficial to the relative interface stability of the material and helps to achieve improved battery performance.
  • the negative active material has a D50 of 1 ⁇ m-20 ⁇ m and a Span value of 0.9-1.8. In other embodiments, the D50 of the negative active material is preferably 3 ⁇ m-10 ⁇ m, and the Span value is preferably 0.9-1.2.
  • a second aspect of the present application provides a secondary battery, which is prepared by the following steps:
  • the uncycled secondary battery is subjected to at least one cycle of charge and discharge.
  • a third aspect of the present application provides a method for preparing a secondary battery, which includes the following steps:
  • the uncycled secondary battery is subjected to at least one cycle of charge and discharge to form an A-D-E ternary layer to obtain the secondary battery; wherein A is selected from alkali metal elements and is different from E, and D is silicon or carbon .
  • the secondary battery finally prepared by the above method is a secondary battery with a ternary passivation layer on the surface of the negative electrode material layer, which has improved impedance, cycle life and storage performance.
  • step i) includes: a) providing a positive electrode slurry, a negative electrode slurry and an electrolyte, wherein an interfacial passivation agent is blended in at least one of the positive electrode slurry, the negative electrode slurry and the electrolyte.
  • step i) includes: b) respectively coating the positive electrode slurry and the negative electrode slurry on at least one surface of the positive electrode current collector and the negative electrode current collector to obtain the positive electrode sheet and the negative electrode sheets, and assemble the positive electrode sheet, the negative electrode slurry and the electrolyte into the non-cycled secondary battery.
  • the interface passivator will directly act on the material layer of the negative electrode sheet to form a ternary layer; for the positive electrode
  • the sheet material layer and/or the electrolyte includes an interface passivator
  • the interface passivator will migrate to the surface of the negative electrode sheet material layer under the action of voltage and generate three Yuan layer.
  • the interface passivator, the active ions of the secondary battery and the negative active material form the ternary layer under the action of voltage.
  • This application improves battery performance by forming a ternary layer on the surface of the negative electrode material layer.
  • At least one cycle of charge and discharge in step ii) is performed at a voltage of 3V to 4.3V.
  • step ii) is a formation step.
  • the term "formation” has a well-known meaning in the art, and generally means the first charging of a freshly prepared secondary battery, during which the intercalation and extraction of lithium ions occurs to activate the negative active material and form the negative electrode at the negative electrode.
  • a passivation layer is formed on the surface of the material layer, for example, a solid electrolyte interface film (SEI film).
  • SEI film solid electrolyte interface film
  • the interface passivating agent is selected from at least one compound of beryllium, magnesium, calcium, aluminum and gallium; optionally, the interface passivating agent is selected from the group consisting of beryllium, magnesium, calcium and aluminum at least one of the compounds.
  • the cathode material layer before the at least one charge, includes 0.001 to 20 wt%, optionally 1 to 10 wt%, based on the total weight of the cathode material layer of the interface passivating agent.
  • the negative electrode material layer includes 0.001 to 20 wt%, optionally 0.05 to 5 wt%, based on the total weight of the negative electrode material layer before the at least one charge. % of the interface passivating agent.
  • the electrolyte before the at least one charge, includes 0.001 to 20 wt%, optionally 0.1 to 5 wt%, based on the total weight of the electrolyte.
  • the interface passivation agent before the at least one charge, includes 0.001 to 20 wt%, optionally 0.1 to 5 wt%, based on the total weight of the electrolyte.
  • the interface passivating agent is added to the positive electrode sheet material slurry, negative electrode sheet material slurry or electrolyte by blending (or mixing).
  • the cathode material slurry includes cathode active material, interface passivator, solvent and optional additives.
  • the cathode material slurry includes 0.001 to 20 wt%, optionally 1 to 10 wt% of the interfacial passivator, based on the dry weight of the cathode material slurry.
  • the negative electrode material slurry includes negative electrode active material, interface passivator, solvent and optional additives.
  • the negative electrode material slurry includes 0.001 to 20 wt%, optionally 0.05 to 5 wt% of the interfacial passivator, based on the dry weight of the negative electrode material slurry.
  • Using the interface passivating agent in the above content range can effectively form a ternary layer on the surface of the negative electrode material layer, thereby passivating and protecting the interface, and improving the performance of the secondary battery.
  • the negative electrode slurry includes negative electrode active material.
  • the negative active material includes silicon-based negative active material or carbon-based negative active material.
  • the negative electrode slurry includes silicon-based negative electrode active material. In the case of negative active materials with large volume changes, the benefits of the interface passivator of the present invention and the ternary layer formed therefrom are particularly significant.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode material layer includes a positive electrode active material.
  • the positive electrode current collector has two surfaces facing each other in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the cathode active material may be a cathode active material known in the art for batteries.
  • the cathode active material may include at least one of the following materials: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as Li Li
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), composites of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon. At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • composites of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon.
  • At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon At least one of composite materials, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive active material is selected from battery active ions (such as lithium ions, sodium ions or potassium ions) that have volume changes during the intercalation-extraction process, and/or material interfaces Materials that have a catalytic effect on the electrolyte.
  • battery active ions such as lithium ions, sodium ions or potassium ions
  • the cathode active material is selected from one or more of the following: lithium iron phosphate (LFP), lithium iron manganese phosphate (LFMP), lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide , lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium-rich materials, sodium oxide compounds or potassium oxide compounds, and compounds obtained by adding other metals to the above compounds, wherein the other metals One or more selected from: transition metals and/or non-transition metals except beryllium, magnesium, calcium and aluminum.
  • transition metals and/or non-transition metals except beryllium, magnesium, calcium and aluminum.
  • the positive electrode film layer optionally further includes a binder.
  • the type and content of the binder are not specifically limited and can be selected according to actual needs.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer optionally further includes a conductive agent.
  • a conductive agent The type and content of the conductive agent are not subject to specific restrictions and can be selected according to actual needs.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following conventional manner: the above-mentioned components for preparing the positive electrode sheet, such as positive active materials, conductive agents, binders and any other components, are dispersed in a solvent (such as N-methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode piece can be obtained.
  • a solvent such as N-methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode material layer disposed on at least one surface of the negative electrode current collector, where the negative electrode material layer includes a negative electrode active material.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base material.
  • the composite current collector can be formed by forming metal materials (copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the negative active material may be a negative active material known in the art for batteries.
  • the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the negative active material is selected from battery active ions (such as sodium ions, lithium ions or potassium ions, etc.) which have volume changes during the intercalation-extraction process, and/ Or a material whose interface has a catalytic effect on the electrolyte.
  • the negative active material is selected from silicon-based negative electrode materials or carbon-based negative electrode materials.
  • the negative active material is selected from one or more of the following: graphite, soft carbon, hard carbon, mesocarbon microspheres, carbon fiber, carbon nanotubes, elemental silicon, silica Compounds, silicon-carbon composites and compounds obtained from the above materials by adding other metals, wherein the other metals are selected from one or more of the following: transition metals and/or non-transition metals other than beryllium, magnesium, calcium and aluminum. Metal.
  • transition metals and/or non-transition metals other than beryllium, magnesium, calcium and aluminum metal.
  • the negative active material is selected from silicon-based negative materials. In some embodiments, the negative active material is selected from one or more of elemental silicon, silicon oxide compounds, and silicon carbon composites.
  • the negative electrode film layer optionally further includes a binder.
  • the type and content of the binder are not subject to specific restrictions and can be selected according to actual needs.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), polysodium acrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer optionally further includes a conductive agent.
  • the type and content of the conductive agent are not subject to specific restrictions and can be selected according to actual needs.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer optionally includes other auxiliaries, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as negative active materials, conductive agents, binders and any other components in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode piece can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays a role in conducting ions between the positive and negative electrodes.
  • the type of electrolyte in this application there is no specific restriction on the type of electrolyte in this application, and it can be selected according to needs.
  • common electrolytes in the art may be liquid, gel, or fully solid. In this application, it mainly refers to liquid electrolytes.
  • the electrolyte is an electrolyte solution.
  • the electrolyte mainly includes electrolyte salt and solvent.
  • the type of electrolyte salt is not particularly limited and can be selected according to actual needs.
  • the electrolyte salt can be selected from at least one of the following: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ) , lithium bisfluoromethanesulfonimide (LiFSI), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium difluorophosphate, lithium difluorooxalate borate, Lithium oxalate borate (LiBOB), lithium difluorodioxalate phosphate, lithium tetrafluorooxalate phosphate and LiN(C x F 2x +1SO
  • electrolyte salts used in lithium ion secondary batteries are only examples. If it is a secondary battery with other active ions, it is the corresponding electrolyte salt, which is not subject to specific restrictions and can be selected according to actual needs.
  • the type of organic solvent of the electrolyte is not particularly limited and can be selected according to actual needs.
  • the organic solvent may include one or more of chain carbonate, cyclic carbonate, carboxylic acid ester, and ether. This application also has no specific restrictions on the types of chain carbonates, cyclic carbonates, carboxylic acid esters, and ethers, and can be selected according to actual needs.
  • the organic solvent may include diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethylene carbonate, propylene carbonate, carbonate One of butenyl ester, ⁇ -butyrolactone, methyl formate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, tetrahydrofuran, dimethyl ether, diethyl ether, and glycol dimethyl ether species or several species.
  • the electrolyte optionally further includes additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and may also include additives that can improve certain properties of the battery, such as additives that improve battery overcharge performance, additives that improve battery high-temperature or low-temperature performance, etc.
  • the electrolyte additive is selected from the group consisting of cyclic carbonate compounds containing unsaturated bonds, halogen-substituted cyclic carbonate compounds, sulfate compounds, sulfite compounds, sultone compounds, disulfonates At least one of an acid compound, a nitrile compound, an aromatic compound, an isocyanate compound, a phosphazene compound, a cyclic acid anhydride compound, a phosphite compound, a phosphate compound, a borate compound, and a carboxylate compound.
  • the secondary battery further includes a separator film.
  • a separator film There is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the positive electrode piece, the negative electrode piece and the separator film can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 1 shows a square-structured secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 can cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • secondary batteries can be assembled into battery modules, and the number of secondary batteries contained in the battery module can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack.
  • the number of battery modules contained in the battery pack can be one or more. Those skilled in the art can select the specific number according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electrical device, which includes at least one of the secondary battery, battery module, or battery pack provided by the present application.
  • the secondary battery, battery module, or battery pack may be used as a power source for the electrical device, or may be used as an energy storage unit for the electrical device.
  • the electric device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, and electric golf carts). , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but are not limited to these.
  • a secondary battery, a battery module or a battery pack can be selected according to its usage requirements.
  • FIG. 6 is an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet, a laptop, etc.
  • the device is usually required to be thin and light, and a secondary battery can be used as a power source.
  • the secondary batteries of the examples and comparative examples of the present application were prepared according to the following methods
  • the content of the interface passivator is the weight percentage (wt%) based on the dry weight of the positive electrode material layer or the negative electrode material layer respectively.
  • the content of the interface passivator is a weight percentage based on the total weight of the electrolyte.
  • the above-mentioned secondary battery is formed: closed atmospheric pressure formation, the formation temperature is 45°C, the current is 0.1C, the voltage is 3-4.3V, and then left to stand, and finally the secondary batteries of the embodiments and comparative examples of the present application are produced.
  • Example 22 Ni1 positive electrode Si1 negative electrode EL2 electrolyte
  • Example 23 Ni1 positive electrode Si1 negative electrode EL3 electrolyte
  • Example 24 Ni1 positive electrode Si3 negative electrode EL1 electrolyte
  • Example 25 Ni1 positive electrode Si3 negative electrode EL2 electrolyte
  • Example 26 Ni1 positive electrode Si3 negative electrode EL3 electrolyte
  • Example 27 Ni2 positive electrode Si3 negative electrode EL3 electrolyte
  • Example 28 Ni0 positive electrode Si4 negative electrode EL0 electrolyte
  • Example 29 Ni0 positive electrode Si5 negative electrode EL0 electrolyte
  • Example 30 Ni0 positive electrode Si0 negative electrode EL4 electrolyte
  • Example 31 Ni3 positive electrode Si0 negative electrode EL0 electrolyte
  • Example 32 Ni4 positive electrode Si0 negative electrode EL0 electrolyte
  • Example 33 Ni5 positive electrode Si0 negative electrode EL0 electrolyte
  • Example 34 Ni6 positive electrode Si0 negative electrode EL0 electrolyte
  • Example 35 Ni7 positive electrode Si
  • the ternary layer can be detected by conventional means in the field such as solid-state nuclear magnetism, X-ray powder diffraction (XRD), X-ray electron spectroscopy (XPS), Raman spectroscopy, or a combination of the above means.
  • XRD X-ray powder diffraction
  • XPS X-ray electron spectroscopy
  • Raman spectroscopy or a combination of the above means.
  • Capacity retention rate (%) of a lithium-ion battery after 1,000 cycles at 45°C (discharge capacity of the 1,000th cycle/discharge capacity of the first cycle) ⁇ 100%.
  • Capacity retention rate (%) of a lithium-ion battery after 300 days of storage at 60°C (discharge capacity after 300 days of storage/discharge capacity of the first cycle) ⁇ 100%.
  • the poor cycle life in Comparative Example 1 is mainly due to the fact that the silicon-carbon composite material contained in the negative electrode has a large volume change during the delithiation-lithium insertion process of the charge and discharge cycle, resulting in an interface composition. The rupture and regeneration of points. After multiple cycles, the interface components thicken. Therefore, the secondary battery of Comparative Example 1 had a large internal resistance after being cycled for 1,000 cycles; and due to the destruction and regrowth of the interface, active lithium was consumed, which also led to a rapid decrease in the capacity retention rate during the cycle.
  • the interface passivation agent contained therein generates a ternary interface passivation layer at the interface between the negative electrode material layer and the electrolyte during charge and discharge cycles, which reduces the negative electrode interface reactivity.
  • the above-mentioned advantages of the secondary battery of the present application will become more and more prominent.
  • the secondary battery of Example 3 includes cobalt salt and the secondary battery of Example 6 includes manganese salt, but they cannot achieve the same beneficial effects as Examples 1-2 and 4-5. , but it will worsen the battery performance.
  • the reason why the secondary battery of Comparative Example 2 has such a poor cycle life is that in addition to the large volume change of the silicon carbon material itself and the structural instability of NCM811, the migration and catalysis of transition metal ions also cause interface One of the important influencing factors of instability.
  • this multivalent salt can form an interface passivation layer with silicon to stabilize the electrode-electrolyte interface.
  • the secondary battery of the present application can significantly improve the capacity retention rate, reduce the impedance of the secondary battery, and improve the performance of the secondary battery.
  • Example 9 contained cobalt salt and the electrolyte of Example 12 contained manganese salt, which did not improve the cycle performance.
  • the secondary batteries of Example 13, Examples 15-16 and 18-19 contain interface passivators of calcium, magnesium, aluminum, and beryllium, which effectively improve the capacity retention rate, reduce battery impedance, and improve battery performance.
  • the secondary batteries of Examples 21-22 contain organic or inorganic salts of calcium, magnesium, aluminum, and beryllium, and therefore have significantly improved cycle performance.
  • the secondary batteries of Examples 23 to 27 contain salts of nickel, cobalt, and manganese, which significantly deteriorate the performance of the secondary batteries.
  • the degree of deterioration can be slightly reduced because the positive electrode and the electrolyte contain beryllium, magnesium or aluminum.
  • Example 28 the negative active material is surface-coated with aluminum phosphate; compared with Comparative Example 2, although it has a certain improvement effect on the performance of the battery, the improvement is smaller.
  • This kind of coating layer has a stable combination and is not easy to interact with the negative active material to produce a ternary layer as described in this application; and after many cycles of the coating layer, it is still inevitable to break the interface layer, so its performance The improvement effect is very limited.
  • interface passivating agent calcium salt into the negative electrode material of Example 7 can significantly improve the overall performance of the secondary battery compared with Comparative Example 2, and the improvement rate is much higher than that of Example 28.
  • two polyvalent salts are introduced. Compared with the introduction of one polyvalent salt in Example 7, the performance of the secondary battery can be significantly improved. It shows that the effect of combined additives is better than that of single salt.
  • Examples 31-50 respectively explored the addition of different amounts of polyvalent salt additives in the positive electrode, negative electrode and electrolyte.
  • the results show that compared with Comparative Example 2 without additives, the secondary batteries of Examples 31-50 contain organic or inorganic salts of calcium, magnesium, aluminum, and beryllium, which have a significant improvement in battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种二次电池,包括:包含负极材料层的负极极片、包含正极材料层的正极极片和电解液,所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗。本申请还涉及一种制备二次电池的方法,以及包含该二次电池的电池模块、电池包和用电装置。本申请的二次电池具备改善的阻抗和平衡的循环性能和存储性能。

Description

二次电池及其制备方法、电池模块、电池包和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种二次电池及其制备方法,以及包含该二次电池的电池模块、电池包和用电装置。
背景技术
电动汽车(EV)和混合动力汽车(HEV)的广泛应用,人们更加关注车辆的使用时间和使用成本,因此,作为车辆的储能装置——二次电池的循环寿命自然成为领域内关注的性能之一。符合期望的是,二次电池的循环性能好,电池寿命长。这不仅降低用户的使用成本,还意味着更少的资源消耗。
现有技术无法有效改善二次电池的循环性能,也难以实现循环性能和存储性能的平衡。因此,本领域需要具有改善的循环和存储性能的二次电池及其制备方法。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种具有改善的循环和存储性能的二次电池及其制备方法。
为了达到上述目的,本申请提供了一种二次电池、及其制备方法、电池模块、电池包和用电装置。
本申请的第一方面提供了一种二次电池,包括:包含负极材料层的负极极片、包含正极材料层的正极极片和电解液;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗。通过包含界面钝化剂,二次电池能够在负极材料层的表面产生有益的三元层。
在任意实施方式中,所述负极材料层的表面具有A-D-E三元层,其中,A选自碱金属元素且与E不同,D是硅或碳;所述A-D-E三元层是在所述二次电池的至少一次充电过程中,由所述界面钝化剂在 所述负极材料层表面作用形成的。本申请的二次电池通过在负极材料层表面具备三元钝化层,能够显著降低的电池阻抗,并且改善电池循环寿命和存储性能。
在任意实施方式中,所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。选择包含上述金属元素的化合物,能够进一步改善三元层的稳定效果,从而更加有效地改善二次电池的性能。
在任意实施方式中,所述界面钝化剂选自以下的至少一种:取代或未取代的C 1-20羧酸盐,取代基为选自以下的一种或多种:C 1-6烷基、C 2-6环烷基、羟基、氨基、氧代基团、酰基、C 1-6烷硫基、苯基、苯甲酰硫基、苯硫基和苯氧基;亚氨基酸盐;烯酸盐;磷酸盐;硫酸盐;磺酰亚胺盐;磺酸盐;苯甲酸盐;苯二甲酸盐;乙酰丙酮盐;无机含氧酸盐;和包含至少两种所述非过渡金属阳离子的复盐。选择上述化合物作为界面钝化剂,能够更有效地改善二次电池的电阻、循环寿命和存储性能。
在任意实施方式中,所述界面钝化剂掺混在所述正极材料层、所述负极材料层和所述电解液的至少一者中。通过将界面钝化剂以掺混方式加入正、负极材料和电解液中,能有效改善二次电池的性能。
在任意实施方式中,所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Li-C-Ca、Li-C-Mg、Li-C-Be、Li-C-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al、Na-C-Ca、Na-C-Mg、Na-C-Be、Na-C-Al三元层及其组合;可选地,所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al三元层及其组合。在二次电池中包含上述三元层,能够有效改善电池阻抗、循环寿命和存储性能。
在任意实施方式中,在所述至少一次充电之前,基于所述正极材料层的总重量计,所述正极材料层包括0.001重量%至20重量%,可选地为1重量%至10重量%的所述界面钝化剂。
在任意实施方式中,在所述至少一次充电之前,基于所述负极材料层的总重量计,所述负极材料层包括0.001重量%至20重量%,可 选地为0.05重量%至5重量%的所述界面钝化剂。
在任意实施方式中,在所述至少一次充电之前,基于所述电解液的总重量计,所述电解液包括0.001重量%至20重量%,可选地为0.1重量%至5重量%的所述界面钝化剂。
将钝化剂的含量控制在上述范围内,能够进一步改进电池性能。
在任意实施方式中,所述负极材料层包括负极活性材料,所述负极活性材料的D50为1μm至20μm,可选地为2μm至10μm。采用具有上述D50的负极活性材料,能够有效发挥本申请的三元界面钝化层的作用,使二次电池的性能明显改善。
在任意实施方式中,所述负极材料层包括负极活性材料,所述负极活性材料的Span值为0.9至1.8,可选为0.9至1.2;
其中
Figure PCTCN2022092216-appb-000001
D90、D10和D50分别表示累积分布百分数为90%、10%和50%时对应的粒径。选择具有上述范围内的Span值的负极活性材料,有利于材料具有相对的界面稳定性,有助于电池性能改善效果的实现。
本申请的第二方面提供一种二次电池,所述二次电池通过以下步骤制备:
i)提供包括负极材料层的负极极片、包括正极材料层的正极极片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
ii)将所述未经循环的二次电池进行至少一次循环充放电。
本申请的第三方面提供一种制备二次电池的方法,其包括以下步骤:
i)提供包括负极材料层的负极极片、包括正极材料层的正极极片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
ii)将所述未经循环的二次电池进行至少一次循环充放电,形成A-D-E三元层,得到所述二次电池;其中,A选自碱金属元素且不同于E,D是硅或碳。
通过上述方法能够得到在负极材料层表面具有三元钝化层的二次电池,从而能够改善二次电池的阻抗、循环寿命和存储性能。
在任意实施方式中,所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。通过选择上述界面钝化剂能够通过有效形成三元层,从而改善二次电池循环、存储等性能。
在任意实施方式中,所述界面钝化剂选自以下的至少一种:取代或未取代的C 1-20羧酸盐,取代基为选自以下的一种或多种:C 1-6烷基、C 2-6环烷基、羟基、氨基、氧代基团、酰基、C 1-6烷硫基、苯基、苯甲酰硫基、苯硫基和苯氧基;亚氨基酸盐;烯酸盐;磷酸盐;硫酸盐;磺酰亚胺盐;磺酸盐;苯甲酸盐;苯二甲酸盐;乙酰丙酮盐;无机含氧酸盐;和包含至少两种所述非过渡金属阳离子的复盐。选择上述界面钝化剂,能够制备得到具有显著改善的电阻、循环寿命和存储性能的二次电池。
在任意实施方式中,所述步骤i)中所述界面钝化剂被掺混在所述正极材料层、所述负极材料层和所述电解液的至少一者中。掺混使得三元层更易形成,从而能够进一步改善二次电池性能。
本申请的第四方面提供了一种电池模块,其包括本申请第一和第二方面的二次电池或通过本申请第三方面的方法得到的二次电池。
本申请的第五方面提供了一种电池包,其包括本申请第四方面的电池模块。
本申请的第六方面提供了一种用电装置,其包括选自本申请第一和第二方面的二次电池、通过第三方面的方法得到的二次电池、第四方面的电池模块或第五方面的电池包中的至少一种。
本申请的二次电池和采用本申请的制备方法得到的二次电池具备平衡的循环性能和存储性能,以及较低的内阻。
附图说明
图1是本申请一实施方式的二次电池的示意图。
图2是图1所示的本申请一实施方式的二次电池的分解图。
图3是本申请一实施方式的电池模块的示意图。
图4是本申请一实施方式的电池包的示意图。
图5是图4所示的本申请一实施方式的电池包的分解图。
图6是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如 整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
电动汽车(EV)和混合动力汽车(HEV)的广泛应用,人们更加关注车辆的使用时间和使用成本。因此,作为车辆的储能装置——二次电池,其循环性能成为领域内关注的重点之一。符合期望的是循环性能好、寿命长的二次电池,这不仅降低用户的使用成本,还意味着更少的资源消耗。
极片表面的固体电解质界面(SEI)膜在改善二次电池的循环性能中起到重要作用。SEI膜的生成会消耗电解液(或电解液中的电解质离子,也即活性离子或电荷载体离子)。因此,如果SEI膜在循环中反复破损和重生,则会降低活性离子传输动力学,甚至可能导致电解液枯竭和电芯性能跳水。
然而,目前常用的正、负极活性材料在循环过程中都会发生不同程度的体积变化,影响SEI层的完整稳定,进而损害电池性能。特别是对于硅基负极活性材料,其体积变化明显(变化率为100%-300%),上述问题更突出。
本领域内追求能够适应材料体积变化并保持完整的SEI膜层,为此通常在电解液中加入添加剂或包覆活性材料或极片表面。但是,这些方法得到的SEI层不能很好地适应材料体积变化,因此不能显著改善电池性能。综上可见,现有方法并不能很有效地解决材料体积变化带来的界面问题。
此外,挑战还在于循环性能和存储性能的谨慎平衡。本领域已知,良好的存储性能和长循环寿命对SEI膜的要求有所不同,甚至恰恰相反。对于循环寿命,相对柔性且薄的SEI是有利的,因为它能适应负极材料的体积变化且在重复形成过程中消耗更少,并且界面阻抗低。然而,对于存储寿命,无孔且坚固的SEI是有利的,其能防止电解质渗透和电流泄漏。但在循环时,如此厚且柔性差的SEI可能在负极材料体积变化时断裂而额外消耗电解质,并且还会影响离子转移,导致相对较低的初始容量和稍差的倍率性能。
但是,本领域内期望的二次电池应当具备良好的综合性能,也即,良好的循环性能和存储性能。
本申请的一个目的是提供一种具备平衡的综合性能,也即良好循环性能和存储性能的二次电池。本申请的再一个目的是提供一种制备二次电池的方法。本申请的二次电池具有良好的综合性能:多圈循环后较小的电池内阻、更长的循环寿命和更好的存储性能。
以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
二次电池及其制备方法
本申请的一个实施方式中,本申请提出了一种二次电池,其包括:包含负极材料层的负极极片、包含正极材料层的正极极片和电解液;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、 镁、钾、钙、铝、镓或锗。不囿于任何理论,通过在正极材料层、电解液和负极材料层的至少一者中包含界面钝化剂,二次电池在新鲜制备之后的至少一次充电过程中,在负极材料发生活性离子嵌入时产生有益的三元层,从而改善极片和电池性能。
在本文中,根据二次电池类型的不同,活性离子可以是锂离子或钠离子。换言之,锂离子二次电池的活性离子是锂离子,钠离子二次电池的活性离子是钠离子。
在一些实施方式中,所述负极材料层的表面具有A-D-E三元层,其中,A选自碱金属元素且与E不同,D是硅或碳;所述A-D-E三元层是在所述二次电池的至少一次充电过程中,由所述界面钝化剂在所述负极材料层表面作用形成的。本申请的二次电池,由于在其负极材料层的表面具有三元层,该层能够稳定负极界面并能够适应体积变化,从而改善极片和电池的性能,特别是能够实现循环性能和存储性能的谨慎平衡。并且,随着充放电循环数的增加,本申请的二次电池的优势还会进一步凸显,特别是具有显著降低的电池阻抗和改善的电池循环寿命和存储性能(例如,特别是在较高温度下循环和储存之后,提高的容量保持率)。
在本文中,“三元层”及其类似表述,所表示的含义相同或相似,能够互换使用。
在一些实施方式中,所述二次电池是锂离子二次电池或钠离子二次电池。在此情况下,本申请的界面钝化剂或所述三元层能够显著改善电池的循环性能、阻抗等。在一些实施方式中,所述二次电池是锂离子二次电池。
在一些实施方式中,界面钝化剂为原子序数不大于20的非过渡金属的化合物。这样的化合物可以是有机或无机化合物。发明人发现,特别是在锂离子二次电池中,以原子序数不大于20的金属元素的化合物作为界面钝化剂较为理想。特别地,选择活泼性低于二次电池的活性离子的金属的化合物作为界面钝化剂是期望的。不囿于理论,这样的界面钝化剂在电化学反应中易得电子,从而更易生成三元层。而与之相比,过渡金属化合物在某些情况下却难以实现性能改善;这可 能是由于过渡金属原子中含有较多的空轨道,不利于形成三元层,反而可能加剧界面反应。
本文中,术语“过渡金属”具有本领域公知的含义,一般元素周期表中d区与ds区的金属元素(d区元素包括周期系第ⅢB至ⅦB族和Ⅷ族的元素,不包括镧系和锕系元素;ds区包括周期表第ⅠB~ⅡB族元素)。
在一些实施方式中,所述界面钝化剂中,金属阳离子部分具有2-5的化合价。在一些实施方式中,所述界面钝化剂可以选自锂、钠、铍、镁、钾、钙、铝、镓、锗的化合物中的至少一种;可选地,铍、镁、钾、钙、铝、镓、锗的化合物中的至少一种。
在一些实施方式中,所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。选择包含上述金属元素的化合物,能够进一步改善界面钝化层的效果,从而更加有效地改善二次电池的性能。
在一些实施方式中,所述界面钝化剂选自:镁、铝和钙的化合物中两者或三者的组合。通过引入这样的界面钝化剂的组合,能够进一步改善电池的内阻及循环、存储性能。
在一些实施方式中,所述界面钝化剂选自以下的至少一种:取代或未取代的C 1-20羧酸盐,取代基选自以下的一种或多种:C 1-6烷基、C 2-6环烷基、羟基、氨基、氧代基团、酰基、C 1-6烷硫基、苯基、苯甲酰硫基、苯硫基和苯氧基;亚氨基酸盐;烯酸盐;磷酸盐;硫酸盐;磺酰亚胺盐;磺酸盐;苯甲酸盐;苯二甲酸盐;乙酰丙酮盐;无机含氧酸盐;和包含至少两种所述非过渡金属阳离子的复盐。
在一些实施方式中,可选地,所述界面钝化剂选自以下的至少一种:丙酸钙、硬脂酸钙、乙酸钙、环己烷丁酸钙、甲酸钙、DL-苹果酸钙、乙醇酸钙、3-甲基-2-氧代丁酸钙、乙酰丙酸钙、2-乙基己酸钙、2-羟基-4-(甲硫基)丁酸钙、DL-甘油酸钙、硬脂酸铝、单硬脂酸铝、碱式乙酸铝、对苯二甲酸铝、醋酸铝、草酸铝、双硬脂酸铝、乳酸铝、硬脂酸镁、乳酸镁、草酸镁、乙酸镁、柠檬酸镁、丙戊酸镁、2-乙基己酸镁、2-乙基丁酸镁、苯氧乙酸镁、双(九氟丁基磺酰基)亚胺钙、 双(氟磺酰)亚胺钙、双(三氟甲基磺酰基)酰亚胺钙、双(三氟甲磺酰基)酰亚胺镁、甲基磺酸钙、2,5-二羟基苯磺酸钙、三氟甲磺酸钙、羟苯磺酸钙、三氟甲磺酸镁、三(三氟磺酸)铝、苯甲酸钙、邻苯二甲酸钙、4-氨基水杨酸钙、乙酰丙酮钙、六氟乙酰丙酮钙、乙酰丙酮铍、乙酰丙酮镁、双(2,4-戊二酮)合镁、三氟乙酰丙酮镁、六氟乙酰丙酮镁、乙酰丙酮铝、三(三氟-2,4-戊二酮酰)铝、偏硼酸钙、硝酸钙、偏磷酸铝、高氯酸铝、磷酸二氢铝、次磷酸铝、磷酸铝、高氯酸镁、偏硼酸镁、硝酸镁、硫酸铍、铝酸钙、三乙基铝、三辛基铝、三正丁基铝、异丙醇二甲基铝、三(十六烷基)铝、二茂镁、二-正丁基镁、正丁基乙基镁、双(乙基环戊二烯基)镁、双(五甲基环戊烯)镁、双(环戊二烯基)镁、双(正丙基环戊二烯基)镁、双(乙基环戊二烯基)镁、双(2-(2-羟苯基)吡啶)铍、双(五甲基环戊二烯基)四氢呋喃钙、异丙醇铝、乙氧基铝、叔丁氧基铝、仲丁醇铝、正丁醇铝、仲丁醇铝、双(2-乙基己酸)羟基铝、甲醇镁、乙醇镁、叔丁醇镁、硅酸镁铝、甲基丙烯酸钙、山梨酸钙(2,4-己二烯酸)、丙烯酸铝、丙烯酸镁、植酸钙、双(2-乙基己基)磷酸半钙、二乙基次膦酸铝、十二烷基硫酸镁、苯丙酮酸钙和丙酮二酸钙。
在一些实施方式中,可选地,所述界面钝化剂选自氟代磺酰亚胺盐、乙酰丙酮盐和无机含氧酸盐中的至少一种。在一些实施方式中,所述无机含氧酸盐选自偏硼酸、硝酸、偏磷酸、高氯酸、磷酸、次磷酸、硫酸、铝酸中的至少一种。在一些实施方式中,所述界面钝化剂选自氟代磺酰亚胺盐、乙酰丙酮盐、氟代乙酰丙酮盐、硝酸盐、磷酸盐、高氯酸盐和硫酸盐中的至少一种。
在一些实施方式中,可选地,所述界面钝化剂选自双(九氟丁基磺酰基)亚胺钙、硝酸钙、三(三氟-2,4-戊二酮酰)铝、磷酸铝、六氟乙酰丙酮镁、高氯酸镁、乙酰丙酮铍和硫酸铍中的至少一种。
选择上述界面钝化剂,能够降低二次电池的电阻,并且实现循环寿命和存储性能的谨慎平衡。
在一些实施方式中,所述界面钝化剂掺混在所述正极材料层(或正极浆料)、所述负极材料层(或负极浆料)和所述电解液的至少一 者中。通过掺混方式直接将界面钝化剂加入电池体系中,更有利于形成所述三元层。
在本文中,“掺混”表示界面钝化剂被直接掺杂混合、使之散布(或分散)在浆料或电解液中。掺混不包括包覆。
在一些实施方式中,所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Li-C-Ca、Li-C-Mg、Li-C-Be、Li-C-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al、Na-C-Ca、Na-C-Mg、Na-C-Be、Na-C-Al三元层及其组合。在一些实施方式中,可选地,所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al三元层及其组合。在二次电池中包含上述三元界面钝化层,能够有效改善电池阻抗、循环寿命和存储性能。
在一些实施方式中,所述三元层是在二次电池的至少一次充电循环中,由界面钝化剂在负极材料表面处发生作用形成的。在一些实施方式中,所述三元层是在所述二次电池的1-3次,可选地1-2次,更可选地1次充电循环中形成。
在一些实施方式中,在所述至少一次充电之前,基于所述正极材料层的总重量计,所述正极材料层包括0.001重量%至20重量%,可选地为1重量%至10重量%的所述界面钝化剂。
在一些实施方式中,其中在所述至少一次充电之前,基于所述负极材料层的总重量计,所述负极材料层包括0.001重量%至20重量%,可选地为0.05重量%至5重量%的所述界面钝化剂。
在一些实施方式中,在所述至少一次充电之前,基于所述电解液的总重量计,所述电解液包括0.001重量%至20重量%,可选地为0.1重量%至5重量%的所述界面钝化剂。在一些实施方式中,可选地,在所述至少一次充电之前,基于所述电解液的总重量计,所述电解液包括0.2重量%至5重量%,可选地0.3重量%至5重量%的所述界面钝化剂。
将钝化剂的含量控制在上述范围内,能够进一步改进电池性能。如果含量过低,则无法形成有效的三元界面钝化层;如果含量过高,则可能在极片材料层体相中也生成三元相,降低电芯的能量密度。
在一些实施方式中,有利的是,在所述负极材料层中包括所述界面钝化剂。此时界面钝化剂的加入量较少,从而在实现预期目的的同时减小对电解质组分或性能影响。
在一些实施方式中,所述负极活性材料层包括硅基负极活性材料或碳基负极活性材料。特别地,在一些实施方式中,所述负极材料层包括硅基负极活性材料。在采用体积变化较大的负极材料的情况下,二次电池中包含本发明的三元层的益处尤为显著。所述负极材料层包括硅基负极材料(甚至是由硅基负极活性材料组成)的情况下,在这样的二次电池体系中加入本申请的界面钝化剂是特别有利的。
在一些实施方式中,所述负极活性材料的D50为1μm至20μm,可选地为2μm至10μm。采用具有上述D50的材料,能够有效发挥本申请的三元层的界面钝化作用,使二次电池的性能明显改善,平衡极片制备容易性和性能优越性。采用D50在上述范围内的材料,能够避免材料比表面积过大而导致的界面活性过高,有利于界面钝化层有效实现期望的性能改善;同时,也能避免抑制活性离子迁移,有利于电池整体性能的改善。
在一些实施方式中,所述负极活性材料的Span值为0.9至1.8,可选为0.9至1.2;
其中
Figure PCTCN2022092216-appb-000002
D90、D10和D50分别表示累积分布百分数为90%、10%和50%时对应的粒径。在本文中,D90、D10和D50的单位为μm。选择具有上述范围内的Span值的负极活性材料,有利于材料具有相对的界面稳定性,有助于电池性能改善效果的实现。
本文中,“Span值”表征材料的粒度分布宽度。Span值是如上文定义的无量纲量。选择具有上述范围内的Span值的负极材料,有利于材料具有相对的界面稳定性,有助于电池性能改善效果的实现。
在一些实施方式中,所述负极活性材料的D50为1μm-20μm,且Span值为0.9-1.8。在另一些实施方式中,所述负极活性材料的D50 优选为3μm-10μm,Span值优选为0.9-1.2。
本申请的第二方面提供一种二次电池,所述二次电池通过以下步骤制备:
i)提供包括负极材料层的负极极片、包括正极材料层的正极极片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
ii)将所述未经循环的二次电池进行至少一次循环充放电。
本申请的第三方面提供一种制备二次电池的方法,其包括以下步骤:
i)提供包括负极材料层的负极极片、包括正极材料层的正极极片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
ii)将所述未经循环的二次电池进行至少一次循环充放电,形成A-D-E三元层,得到所述二次电池;其中,A选自碱金属元素且不同于E,D是硅或碳。
通过上述方法最终制备得到的二次电池是在负极材料层表面具有三元钝化层的二次电池,其具有改善的阻抗、循环寿命和存储性能。
在一些实施方式中,步骤i)包括:a)提供正极浆料、负极浆料和电解液,其中在正极浆料、负极浆料和电解液的至少一者中掺混界面钝化剂。
在一些实施方式中,步骤i)包括:b)分别将所述正极浆料和所述负极浆料涂布在正极集流体和负极集流体的至少一个表面上以获得的正极极片和负极极片,并将所述正极极片、所述负极浆料和所述电解液装配成所述未经循环的二次电池。
不囿于理论,对于负极极片材料层包括界面钝化剂的情况,在所述至少一次循环充放电时,界面钝化剂会直接在负极极片材料层作用形成三元层;对于正极极片材料层和/或电解液包括界面钝化剂的情况,在所述至少一次循环充放电时,所述界面钝化剂会在电压作用下 迁移至负极极片材料层的表面,并生成三元层。举例来说,界面钝化剂、二次电池的活性离子和负极活性材料在电压作用下,形成所述三元层。本申请通过在负极极片材料层的表面形成三元层来实现电池性能的改善。
在一些实施方式中,步骤ii)中所述至少一次循环充放电是在3V至4.3V的电压下进行的。
在一些实施方式中,步骤ii)是化成步骤。
本文中,术语“化成”具有本领域内公知的含义,一般意为对新鲜制备的二次电池进行第一次充电,在此期间发生锂离子的嵌入和脱出,以激活负极活性材料并在负极材料层的表面形成钝化层,例如,固体电解质界面膜(SEI膜)。
在一些实施方式中,所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。
在一些实施方式中,在所述至少一次充电之前,基于所述正极材料层的总重量计,所述正极材料层包括0.001重量%至20重量%,可选地为1重量%至10重量%的所述界面钝化剂。
在一些实施方式中,其中在所述至少一次充电之前,基于所述负极材料层的总重量计,所述负极材料层包括0.001重量%至20重量%,可选地为0.05重量%至5重量%的所述界面钝化剂。
在一些实施方式中,在所述至少一次充电之前,基于所述电解液的总重量计,所述电解液包括0.001重量%至20重量%,可选地为0.1重量%至5重量%的所述界面钝化剂。
在一些实施方式中,界面钝化剂通过掺混(或混合)的方式加入正极极片材料浆料、负极极片材料浆料或电解液中。
正极材料浆料包括正极活性材料、界面钝化剂、溶剂和任选地添加剂。在一些实施方式中,正极材料浆料包括0.001重量%至20重量%,可选地为1重量%至10重量%的界面钝化剂,基于所述正极材料浆料的干重计。
负极材料浆料包括负极活性材料、界面钝化剂、溶剂和任选地添 加剂。在一些实施方式中,负极材料浆料包括0.001重量%至20重量%,可选地为0.05重量%至5重量%的界面钝化剂,基于所述负极材料浆料的干重计。
采用上述含量范围的界面钝化剂,能够有效地在负极极片材料层的表面形成三元层,从而钝化界面、保护界面,实现改善二次电池性能的作用。
在一些实施方式中,所述负极浆料包括负极活性材料。所述负极活性材料包括硅基负极活性材料或碳基负极活性材料。特别地,在一些实施方式中,所述负极浆料包括硅基负极活性材料。在体积变化较大的负极活性材料的情况下,本发明的界面钝化剂及其所形成的三元层的好处尤为显著。
另外,下文针对二次电池的各个组成部分中除界面钝化剂之外的组分进行说明。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极材料层,所述正极材料层包括正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电 池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在本发明的二次电池中,可选地,所述正极活性材料选自电池活性离子(如,锂离子、钠离子或钾离子)在嵌入-脱出过程中有体积变化,和/或材料界面对电解液具有催化作用的材料。在一些实施方式中,所述正极活性材料选自以下的一种或多种:磷酸铁锂(LFP)、磷酸锰铁锂(LFMP)、锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、富锂材料、钠氧化合物或钾氧化合物,以及上述化合物通过添加其他金属而得到的化合物,其中所述其他金属选自以下的一种或多种:过渡金属和/或除铍、镁、钙和铝以外的非过渡金属。但是,本领域技术人员知晓,本发明并不限定于这些材料。
在一些实施方式中,正极膜层还可选地包括粘结剂。粘结剂的种类和含量不受具体限制,可根据实际需求进行选自。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。导电剂的种类和含量不受具体的限制,可根据实际需求进行选择。作为示例,所 述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下常规方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极材料层,所述负极材料层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在本发明所述的二次电池中,可选地,所述负极活性材料选自电池活性离子(如,钠离子、锂离子或钾离子等)在嵌入-脱出过程中有体积变化,和/或材料界面对电解液具有催化作用的材料。在一些 实施方式中,所述负极活性材料选自硅基负极材料或碳基负极材料。在一些实施方式中,可选地,所述负极活性材料选自以下的一种或多种:石墨、软碳、硬碳、中间相碳微球、碳纤维、碳纳米管、单质硅、硅氧化合物、硅碳复合物以及上述材料通过添加其他金属而得到的化合物,其中所述其他金属选自以下的一种或多种:过渡金属和/或除铍、镁、钙和铝以外的非过渡金属。但是,本领域技术人员知晓,本发明并不限定于这些材料。
在一些实施方式中,所述负极活性材料选自硅基负极材料。在一些实施方式中,所述负极活性材料选自单质硅、硅氧化合物、硅碳复合物中的一种或多种。
在一些实施方式中,负极膜层还可选地包括粘结剂。粘结剂的种类和含量也不受具体的限制,可根据实际需求进行选择。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂的种类和含量也不受具体的限制,可根据实际需求进行选择。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,本领域内的常见电解质可以是液态的、凝胶态的或全固态的。在本申请中,主要是指液态的电解质。
在一些实施方式中,所述电解质采用电解液。所述电解液主要包括电解质盐和溶剂。
本申请中,电解质盐的种类没有特别的限制,可根据实际需求进行选择。在一些实施方式中,电解质盐可选自以下的至少一种:六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiCF 3SO 3)、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂(LiBOB)、二氟二草酸磷酸锂、四氟草酸磷酸锂和LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(其中x、y为自然数)。以上仅为针对锂离子二次电池中所采用的电解质盐进行举例,但本发明并不限制于此。如果是具有其他活性离子的二次电池,则为相应的电解质盐,其也不受具体的限制,可根据实际需求进行选择。
本申请中,电解液的有机溶剂的种类没有特别的限制,可根据实际需求进行选择。在一些实施方式中,所述有机溶剂可包括链状碳酸酯、环状碳酸酯、羧酸酯、醚中的一种或几种。本申请对链状碳酸酯、环状碳酸酯、羧酸酯、醚的种类也没有具体的限制,可根据实际需求进行选择。在一些实施方式中,可选地,所述有机溶剂可包括碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、γ-丁内酯、甲酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、四氢呋喃、二甲醚、二乙醚、乙二醇二甲醚中的一种或几种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
在一些实施方式中,所述电解液添加剂选自含有不饱和键的环状碳酸酯化合物、卤素取代的环状碳酸酯化合物、硫酸酯化合物、亚硫酸酯化合物、磺酸内酯化合物、二磺酸化合物、腈化合物、芳香化合物、异氰酸酯化合物、磷腈化合物、环状酸酐化合物、亚磷酸酯化合物、磷酸酯化合物、硼酸酯化合物、羧酸酯化合物中的至少一种。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中, 多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图6是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具 体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请实施例和对比例的二次电池均按照下述方法制备
1.正极极片的制备
按照下表1,将正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,(如果有的话)再向其中加入本申请的界面钝化剂,充分搅拌混合均匀后得到正极浆料。然后将该正极浆料以0.2mg/mm 2的负载量均匀涂覆于正极集流体铝箔上,再经过烘干、冷压、分切为57000mm 2的正极极片。
下文中各表中,在正极材料层或负极材料层包含界面钝化剂的情况下,界面钝化剂的含量分别是以正极材料层或负极材料层的干重计的重量百分比(wt%);在电解液中包含界面钝化剂的情况下,界面钝化剂的含量是以电解液总重量计的重量百分比。
表1
Figure PCTCN2022092216-appb-000003
2.负极极片的制备
按照下表2,将各负极活性物质、导电剂乙炔黑、粘结剂丁苯橡 胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比90:4:4:2溶于溶剂去离子水中,(如果有的话)再向其中加入本申请的界面钝化剂,充分搅拌混合均匀后得到负极浆料。然后将负极浆料一次或多次以0.12mg/mm 2的负载量均匀涂覆在负极集流体铜箔上,经烘干、冷压、分切得到60000mm 2的负极极片。
表2
Figure PCTCN2022092216-appb-000004
*此处“/”表示“和”,也即“双(九氟丁基磺酰基)亚胺钙/高氯酸镁”表示“双(九氟丁基磺酰基)亚胺钙和高氯酸镁”。下文中类似表达方式含义也是如此。
3.电解液的制备
按照下表3,在氩气气氛(H 2O<0.1ppm,O 2<0.1ppm)手套箱中,将有机溶剂碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)按照体积比3/7混合均匀,向混合后的有机溶剂中加入12.5重量%的六氟磷酸锂(LiPF 6)并使之溶解作为电解质盐,再加入1重量%的1,3-丙磺酸内酯(PS),0.5%的硫酸亚乙酯(DTD),0.5%的碳酸亚乙烯酯(VC)和2%的氟代碳酸乙烯酯(FEC)作为添加剂,(如果有的话)再加入本申请的界面钝化剂,搅拌均匀,得到电解液。所有重量百分比均是以电解液的总重量计。
表3
Figure PCTCN2022092216-appb-000005
4.二次电池的制备
(1)按照下表4所示,分别将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间并与之紧贴起到隔离的作用,然后卷绕得到电极组件;将电极组件置于电池壳体中,干燥后以 2.4g/Ah的量注入电解液,得到新鲜制备的二次电池。
(2)将上述二次电池进行化成:封闭常压化成,化成温度45℃,电流0.1C,电压3-4.3V,然后静置,最终制得本申请实施例和对比例的二次电池。
表4
序号 正极极片 负极极片 电解液
对比例1 LFP正极 Si0负极 EL0电解液
对比例2 Ni0正极 Si0负极 EL0电解液
实施例1 LFP正极 Si1负极 EL0电解液
实施例2 LFP正极 Si2负极 EL0电解液
实施例3 LFP正极 Si3负极 EL0电解液
实施例4 LFP正极 Si0负极 EL1电解液
实施例5 LFP正极 Si0负极 EL2电解液
实施例6 LFP正极 Si0负极 EL3电解液
实施例7 Ni0正极 Si1负极 EL0电解液
实施例8 Ni0正极 Si2负极 EL0电解液
实施例9 Ni0正极 Si3负极 EL0电解液
实施例10 Ni0正极 Si0负极 EL1电解液
实施例11 Ni0正极 Si0负极 EL2电解液
实施例12 Ni0正极 Si0负极 EL3电解液
实施例13 Ni1正极 Si0负极 EL0电解液
实施例14 Ni2正极 Si0负极 EL0电解液
实施例15 Ni1正极 Si1负极 EL0电解液
实施例16 Ni1正极 Si2负极 EL0电解液
实施例17 Ni1正极 Si3负极 EL0电解液
实施例18 Ni1正极 Si0负极 EL1电解液
实施例19 Ni1正极 Si0负极 EL2电解液
实施例20 Ni1正极 Si0负极 EL3电解液
实施例21 Ni1正极 Si1负极 EL1电解液
实施例22 Ni1正极 Si1负极 EL2电解液
实施例23 Ni1正极 Si1负极 EL3电解液
实施例24 Ni1正极 Si3负极 EL1电解液
实施例25 Ni1正极 Si3负极 EL2电解液
实施例26 Ni1正极 Si3负极 EL3电解液
实施例27 Ni2正极 Si3负极 EL3电解液
实施例28 Ni0正极 Si4负极 EL0电解液
实施例29 Ni0正极 Si5负极 EL0电解液
实施例30 Ni0正极 Si0负极 EL4电解液
实施例31 Ni3正极 Si0负极 EL0电解液
实施例32 Ni4正极 Si0负极 EL0电解液
实施例33 Ni5正极 Si0负极 EL0电解液
实施例34 Ni6正极 Si0负极 EL0电解液
实施例35 Ni7正极 Si0负极 EL0电解液
实施例36 Ni0正极 Si6负极 EL0电解液
实施例37 Ni0正极 Si7负极 EL0电解液
实施例38 Ni0正极 Si8负极 EL0电解液
实施例39 Ni0正极 Si9负极 EL0电解液
实施例40 Ni0正极 Si10负极 EL0电解液
实施例41 Ni0正极 Si11负极 EL0电解液
实施例42 Ni0正极 Si12负极 EL0电解液
实施例43 Ni0正极 Si13负极 EL0电解液
实施例44 Ni0正极 Si14负极 EL0电解液
实施例45 Ni0正极 Si15负极 EL0电解液
实施例46 Ni0正极 Si0负极 EL5电解液
实施例47 Ni0正极 Si0负极 EL6电解液
实施例48 Ni0正极 Si0负极 EL7电解液
实施例49 Ni0正极 Si0负极 EL8电解液
实施例50 Ni0正极 Si0负极 EL9电解液
5.测试
5.1三元层的检测
可采用固体核磁、X射线粉末衍射(XRD)、X射线电子能谱分析(XPS)、拉曼光谱等本领域常规手段或上述手段的结合来检测三元层。
5.2初始二次电池内阻和1000圈后二次电池内阻
(1)将如上文所述步骤制备得到的二次电池(下文中称为“新制电池”)在45℃下,将该电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后将锂离子电池以1C恒流放电至3.0V,此为一个充放电过程(也即,循环1圈)。如此反复进行上述循环1000圈,得到45℃循环1000圈的二次电池(下文中称为“45℃循环1000圈的电池”)。
(2)在25℃下,将如上所述的新制电池和45℃循环1000圈的电池,均以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后再以1C放电30min,即将二次电池的电量调整到50%电池荷电状态(SOC)。然后将TH2523A交流内阻测试仪(同惠电子)的正、负表笔分别接触两被测二次电池的正、负极,通过内阻测试仪读取电池的内阻值,分别记为初始二次电池内阻和1000圈后二次电池内阻。
5.3 45℃循环1000次容量保持率
该测试采用武汉蓝电。在45℃下,将二次电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后将锂离子电池以1C恒流放电至3.0V,此为一个充放电过程(也即,循环1圈,或首次循环),记录首次循环的放电容量。如此反复进行循环1000圈,记录第1000圈循环的放电容量。按照下式计算二次电池循环1000圈时的容量保持率:
锂离子电池45℃循环1000次后的容量保持率(%)=(第1000圈循环的放电容量/首次循环的放电容量)×100%。
5.4 60℃存储300天容量保持率
在25℃下,以1C恒流充电至电压为4.3V,然后以4.3V恒压充 电至电流为0.05C,然后将锂离子电池以1C恒流放电至3.0V,此为一个充放电过程(也即,循环1圈,或首次循环),此时测试二次电池的首次循环的放电容量。然后将前述满充的二次电池放入60℃恒温箱中存储300天,测试存储300天后的放电容量。
锂离子电池60℃存储300天后的容量保持率(%)=(存储300天后的放电容量/首次循环的放电容量)×100%。
以上测试结果记录于下表5-9中:
表5
Figure PCTCN2022092216-appb-000006
由上表可见,在对比例1中,在正极活性材料为LFP、负极活性材料为硅碳复合材料的二次电池中,不包含本申请的界面钝化剂,该二次电池的循环寿命很差。而相比之下,实施例1-2和4-5的二次电池中含有本申请的界面钝化剂,能够有效提高容量保持率,降低电池阻抗,改善电池性能。
不囿于任何理论,对比例1中这样差的循环寿命主要是由于负极所包含的硅碳复合材料在充放电循环的脱锂-嵌锂过程中,具有较大的体积变化,从而导致界面组分的破裂和重新生成。在多次循环后,界面组分增厚。因此,在对比例1的二次电池进行了1000圈循环后的二次电池内阻大;并且,由于界面的破坏和重新生长,消耗活性锂,也导致循环过程中容量保持率快速降低。此外,由于满充的硅基负极 的界面活性较高,还导致电解液过度消耗,因此60℃存储300天的容量保持率较低。然而,本申请的二次电池,由于其包含的界面钝化剂在充放电循环中于负极材料层与电解液界面处生成三元界面钝化层,降低了负极界面反应活性。并且,随着循环圈数的增加,本申请的二次电池的上述优势会愈加凸显。
此外,上表中数据还可见,实施例3的二次电池中包括钴盐,实施例6的二次电池中包括锰盐,却无法实现如实施例1-2和4-5那样有益的效果,反而令电池性能恶化。
表6
Figure PCTCN2022092216-appb-000007
由上表可见,在对比例2中,在正极活性材料为NCM811、负极活性材料为硅碳复合材料的二次电池中,电池循环寿命很差。然而,实施例7-8(负极材料层中包含界面钝化剂)和10-11(电解液中包含界面钝化剂)的二次电池则显示出显著改进的循环性能。
不囿于任何理论,对比例2的二次电池之所以会具有那样差的循环寿命,除了硅碳材料本身的体积变化大和NCM811的结构不稳定外,过渡金属离子的迁移和催化作用也是导致界面不稳定的重要影响因素之一。
在本申请的实施例7-8和10-11中,通过包括界面钝化剂,这种多价盐可以和硅生成界面钝化层,稳定电极-电解液界面。本申请的二次电池可具有显著提高容量保持率,降低二次电池阻抗,改善二次 电池性能。
而实施例9的负极中含有钴盐,实施例12的电解液中含有锰盐,并未改善循环性能。
表7
Figure PCTCN2022092216-appb-000008
在对比例2中,在NCM811做正极的二次电池中,使用没有改性的硅碳复合材料,二次电池循环寿命很差。
实施例13、实施例15-16和18-19的二次电池中包含钙、镁、铝、铍的界面钝化剂,有效改善了容量保持率,降低电池阻抗,改善电池性能。
而实施例14、17和20中含有镍、钴、锰的盐却恶化了二次电池性能。
表8
Figure PCTCN2022092216-appb-000009
Figure PCTCN2022092216-appb-000010
在对比例2中,在正极材料为NCM811的二次电池中,未使用本申请的界面钝化剂,二次电池循环寿命较差。
实施例21-22的二次电池中含有钙、镁、铝、铍的有机盐或无机盐,因此具有显著改善的循环性能。而实施例23-27的二次电池中含有镍、钴、锰的盐,对二次电池的性能恶化作用明显。其中,实施例24和25中,尽管负极中含有钴可能会恶化性能,但由于其正极和电解液中含铍、镁或铝,可略降低恶化程度。
表9
Figure PCTCN2022092216-appb-000011
实施例28中,对负极活性材料使用磷酸铝进行表面包覆;与对比例2相比,虽然对电池的性能具有一定的改善作用,但改善幅度较小。这种包覆层结合稳定,不易与负极活性材料发生作用产生如本申请所述的三元层;而包覆层在经过多次循环之后,仍难以避免地发生界面层的破裂,因此其性能改善效果非常有限。
实施例7的负极材料中引入界面钝化剂钙盐,与对比例2相比,可以明显改善二次电池的综合性能,且改善幅度远高于实施例28。 实施例29和实施例30的材料中,引入了两种多价盐,与实施例7中引入一种多价盐相比,可以明显改善二次电池的性能。说明组合添加剂的作用效果要优于单一盐的改善作用。
表10
Figure PCTCN2022092216-appb-000012
与实施例2相比,实施例31-50分别探究了在正极、负极和电 解液中添加不同量的多价盐添加剂。结果表明,与不含添加剂的对比例2相比,实施例31-50的二次电池中含有钙、镁、铝、铍的有机盐或无机盐,对电芯性能都具有显著改善的作用。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (19)

  1. 一种二次电池,包括:包含负极材料层的负极极片、包含正极材料层的正极极片和电解液;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗。
  2. 根据权利要求1所述的二次电池,所述负极材料层的表面具有A-D-E三元层,其中,A选自碱金属元素且与E不同,D是硅或碳;所述A-D-E三元层是在所述二次电池的至少一次充电过程中,由所述界面钝化剂在所述负极材料层表面作用形成的。
  3. 根据权利要求1或2所述的二次电池,其中所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。
  4. 根据权利要求1至3中任一项所述的二次电池,其中所述界面钝化剂选自以下的至少一种:取代或未取代的C 1-20羧酸盐,取代基为选自以下的一种或多种:C 1-6烷基、C 2-6环烷基、羟基、氨基、氧代基团、酰基、C 1-6烷硫基、苯基、苯甲酰硫基、苯硫基和苯氧基;亚氨基酸盐;烯酸盐;磷酸盐;硫酸盐;磺酰亚胺盐;磺酸盐;苯甲酸盐;苯二甲酸盐;乙酰丙酮盐;无机含氧酸盐;和包含至少两种所述E的阳离子的复盐。
  5. 根据权利要求1至4中任一项所述的二次电池,其中所述界面钝化剂掺混在所述正极材料层、所述负极材料层和所述电解液的至少一者中。
  6. 根据权利要求1至5中任一项所述的二次电池,其中所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Li-C-Ca、Li-C-Mg、Li-C-Be、Li-C-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al、Na-C-Ca、Na-C-Mg、Na-C-Be、Na-C-Al三元层及其组合;
    可选地,所述A-D-E三元层选自:Li-Si-Ca、Li-Si-Mg、Li-Si-Be、Li-Si-Al、Na-Si-Ca、Na-Si-Mg、Na-Si-Be、Na-Si-Al三元层及其组合。
  7. 根据权利要求2至6中任一项所述的二次电池,其中在所述 至少一次充电之前,基于所述正极材料层的总重量计,所述正极材料层包括0.001重量%至20重量%,可选地为1重量%至10重量%的所述界面钝化剂。
  8. 根据权利要求2至7中任一项所述的二次电池,其中在所述至少一次充电之前,基于所述负极材料层的总重量计,所述负极材料层包括0.001重量%至20重量%,可选地为0.05重量%至5重量%的所述界面钝化剂。
  9. 根据权利要求2至8中任一项所述的二次电池,其中在所述至少一次充电之前,基于所述电解液的总重量计,所述电解液包括0.001重量%至20重量%,可选地为0.1重量%至5重量%的所述界面钝化剂。
  10. 根据权利要求1至9中任一项所述的二次电池,其中所述负极材料层包括负极活性材料,所述负极活性材料的D50为1μm至20μm,可选地为1μm至10μm。
  11. 根据权利要求1至10中任一项所述的二次电池,其中所述负极材料层包括负极活性材料,所述负极活性材料的Span值为0.9至1.8,可选为0.9至1.2;
    其中
    Figure PCTCN2022092216-appb-100001
    D90、D10和D50分别表示累积分布百分数为90%、10%和50%时对应的粒径。
  12. 一种二次电池,所述二次电池通过以下步骤制备:
    i)提供包括负极材料层的负极极片、包括正极材料层的正极极片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
    ii)将所述未经循环的二次电池进行至少一次循环充放电。
  13. 一种制备二次电池的方法,其包括以下步骤:
    i)提供包括负极材料层的负极极片、包括正极材料层的正极极 片和电解液,制得未经循环的二次电池;所述负极材料层、正极材料层和电解液中至少一者中包括界面钝化剂,所述界面钝化剂是包含元素E的化合物,所述E选自锂、钠、铍、镁、钾、钙、铝、镓或锗;
    ii)将所述未经循环的二次电池进行至少一次循环充放电,形成A-D-E三元层,得到所述二次电池;其中,A选自碱金属元素且不同于E,D是硅或碳。
  14. 根据权利要求13所述的方法,其中所述界面钝化剂选自铍、镁、钙、铝和镓的化合物中的至少一种;可选地,所述界面钝化剂选自铍、镁、钙和铝的化合物中的至少一种。
  15. 根据权利要求13或14所述的方法,其中所述界面钝化剂选自以下的至少一种:取代或未取代的C 1-20羧酸盐,取代基为选自以下的一种或多种:C 1-6烷基、C 2-6环烷基、羟基、氨基、氧代基团、酰基、C 1-6烷硫基、苯基、苯甲酰硫基、苯硫基和苯氧基;亚氨基酸盐;烯酸盐;磷酸盐;硫酸盐;磺酰亚胺盐;磺酸盐;苯甲酸盐;苯二甲酸盐;乙酰丙酮盐;无机含氧酸盐;和包含至少两种所述非过渡金属阳离子的复盐。
  16. 根据权利要求13至15中任一项所述的方法,其中步骤i)中所述界面钝化剂被掺混在所述正极材料层、所述负极材料层和所述电解液的至少一者中。
  17. 一种电池模块,其包括权利要求1至12中任一项所述的二次电池或通过权利要求13至16中任一项所述的方法得到的二次电池。
  18. 一种电池包,其包括权利要求17所述的电池模块。
  19. 一种用电装置,其包括选自权利要求1至12中任一项所述的二次电池或通过权利要求13至16中任一项所述的方法得到的二次电池、权利要求17所述的电池模块或权利要求18所述的电池包中的至少一种。
PCT/CN2022/092216 2022-05-11 2022-05-11 二次电池及其制备方法、电池模块、电池包和用电装置 WO2023216139A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247008444A KR20240039615A (ko) 2022-05-11 2022-05-11 이차 전지, 이의 제조 방법, 전지 모듈, 전지 팩 및 전기 장치
CN202280045001.0A CN117561623A (zh) 2022-05-11 2022-05-11 二次电池及其制备方法、电池模块、电池包和用电装置
PCT/CN2022/092216 WO2023216139A1 (zh) 2022-05-11 2022-05-11 二次电池及其制备方法、电池模块、电池包和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092216 WO2023216139A1 (zh) 2022-05-11 2022-05-11 二次电池及其制备方法、电池模块、电池包和用电装置

Publications (1)

Publication Number Publication Date
WO2023216139A1 true WO2023216139A1 (zh) 2023-11-16

Family

ID=88729274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092216 WO2023216139A1 (zh) 2022-05-11 2022-05-11 二次电池及其制备方法、电池模块、电池包和用电装置

Country Status (3)

Country Link
KR (1) KR20240039615A (zh)
CN (1) CN117561623A (zh)
WO (1) WO2023216139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457989A (zh) * 2023-12-22 2024-01-26 合肥国轩高科动力能源有限公司 锂离子电池电解液、锂电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278185A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2015028875A (ja) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 非水電解液二次電池の製造方法
CN104810550A (zh) * 2014-06-13 2015-07-29 万向A一二三系统有限公司 一种含功能添加剂的锂离子电池的制备方法
CN114388811A (zh) * 2022-03-22 2022-04-22 宁德新能源科技有限公司 电化学装置及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278185A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2015028875A (ja) * 2013-07-30 2015-02-12 トヨタ自動車株式会社 非水電解液二次電池の製造方法
CN104810550A (zh) * 2014-06-13 2015-07-29 万向A一二三系统有限公司 一种含功能添加剂的锂离子电池的制备方法
CN114388811A (zh) * 2022-03-22 2022-04-22 宁德新能源科技有限公司 电化学装置及电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117457989A (zh) * 2023-12-22 2024-01-26 合肥国轩高科动力能源有限公司 锂离子电池电解液、锂电池

Also Published As

Publication number Publication date
CN117561623A (zh) 2024-02-13
KR20240039615A (ko) 2024-03-26

Similar Documents

Publication Publication Date Title
US20230231191A1 (en) Electrolyte and electrochemical device thereof and electronic device
WO2023087213A1 (zh) 一种电池包及其用电装置
WO2023004819A1 (zh) 二次电池与含有该二次电池的电池模块、电池包和用电装置
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2021023131A1 (zh) 电解液、锂离子电池及装置
WO2023225799A1 (zh) 二次电池以及包含其的电池模块、电池包及用电装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023164794A1 (zh) 电化学装置及包含该电化学装置的电子装置
WO2023216139A1 (zh) 二次电池及其制备方法、电池模块、电池包和用电装置
CN116526069B (zh) 隔离膜、电池单体、电池和用电装置
US20220216515A1 (en) Electrolyte and electrochemical apparatus
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023010927A1 (zh) 二次电池、电池模块、电池包及用电装置
WO2023060554A1 (zh) 电解液、二次电池和用电装置
WO2023206216A1 (zh) 非水电解液、二次电池、电池模块、电池包和用电装置
WO2023060462A1 (zh) 正极极片、包括其的二次电池、电池模块、电池包和用电装置
WO2023050406A1 (zh) 锂离子电池及包含其的电池模块、电池包和用电装置
WO2023137624A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2023216051A1 (zh) 一种含有环状硅氧烷的二次电池及用电装置
CN116207351B (zh) 电解液、锂二次电池及用电装置
WO2023184784A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2024077544A1 (zh) 电解液及包含其的电池单体、电池和用电装置
WO2023216052A1 (zh) 一种电解液、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280045001.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247008444

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022941099

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022941099

Country of ref document: EP

Effective date: 20240403