WO2023000242A1 - 电路板组件、发光组件及其制作方法 - Google Patents

电路板组件、发光组件及其制作方法 Download PDF

Info

Publication number
WO2023000242A1
WO2023000242A1 PCT/CN2021/107777 CN2021107777W WO2023000242A1 WO 2023000242 A1 WO2023000242 A1 WO 2023000242A1 CN 2021107777 W CN2021107777 W CN 2021107777W WO 2023000242 A1 WO2023000242 A1 WO 2023000242A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
circuit board
emitting
solder
chip
Prior art date
Application number
PCT/CN2021/107777
Other languages
English (en)
French (fr)
Inventor
刘鹏
夏志强
安金鑫
齐二龙
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2021/107777 priority Critical patent/WO2023000242A1/zh
Publication of WO2023000242A1 publication Critical patent/WO2023000242A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to the field of light-emitting chips, in particular to a circuit board component, a light-emitting component and a manufacturing method thereof.
  • Mini LED light-emitting
  • diode light-emitting diode
  • the current process of mass transfer solutions generally includes : Use a transient substrate, paste double-sided adhesive on the transient substrate, and then attach the Mini
  • the LED chips are transferred to the transient substrate for arrangement, and the Mini LED chips arranged on the transient substrate are aligned with the circuit board, and then the Mini LED chips are soldered to the corresponding pads on the circuit board with a solder mask ; After soldering, remove the transient substrate, and press black glue on the circuit board to align the adjacent Mini
  • the LED chips are subjected to light-blocking treatment, then baked to cure the black glue and then remove the black glue residue on the surface of the Mini LED chip; then press the translucent glue on the circuit board as the packaging layer, and then bake the translucent glue to make it its cured.
  • the current mass transfer solution can greatly improve the efficiency, but the process is still relatively complicated, the efficiency is low, and the material cost and labor cost are high.
  • the purpose of this application is to provide a circuit board assembly, a light-emitting assembly and a manufacturing method thereof, aiming to solve the problems in the related art that the manufacturing process of the light-emitting assembly is complicated, the manufacturing efficiency is low, and the manufacturing cost is high. .
  • the application provides a circuit board assembly, comprising:
  • a circuit board the circuit board is provided with a plurality of chip bonding areas, and a pad corresponding to an electrode of at least one light-emitting chip is provided in the chip bonding area;
  • a solder-proof light-shielding layer includes a solder-proof light-shielding wall located on the circuit board between adjacent chip bonding regions, and the solder-proof light-shielding wall blocks adjacent The light emitted by the light emitting chip in the chip bonding area.
  • the above-mentioned circuit board assembly includes a circuit board provided with a plurality of chip bonding regions, and a solder resist light shielding layer arranged on the circuit board, and the solder resist light shield layer includes An anti-solder light-shielding wall, which can not only block the light emitted by the light-emitting chips in the adjacent chip bonding area, prevent light from happening, but also play the role of anti-soldering; that is, The solder resist light-shielding layer can replace the solder resist layer on the traditional circuit board.
  • the present application also provides a light-emitting assembly, including the above-mentioned circuit board assembly;
  • the lighting assembly also includes:
  • a light-transmitting encapsulation layer disposed on each of the light-emitting chips and each of the solder-proof light-shielding walls.
  • the above-mentioned light-emitting component is pre-formed with a solder-proof light-shielding layer for solder-proofing and light-crossing prevention on the circuit board used, and the solder-proof light-shielding layer can replace the solder-proof layer on the traditional circuit board.
  • the solder-proof light-shielding layer can replace the solder-proof layer on the traditional circuit board.
  • the solder resist material there is no increase in process and cost; when making light-emitting components, it is possible to omit the need to additionally press the black layer on the circuit board after bonding the light-emitting chip on the circuit board.
  • the present application also provides a method for manufacturing the above-mentioned light-emitting component, including:
  • the side of the light-transmitting packaging layer provided with the light-emitting chip is pressed against the side of the circuit board provided with the chip bonding area, and the electrodes of each of the light-emitting chips are connected to the corresponding electrodes of the light-emitting chips.
  • the corresponding pads in the chip bonding area are bonded.
  • each light-emitting chip is directly transferred to the light-transmitting encapsulation layer and corresponds to each chip bonding area on the circuit board, that is, the light-transmitting encapsulation layer is directly used to replace the traditional transient substrate, and then the The side of the light-transmitting packaging layer with the light-emitting chip is pressed against the side of the circuit board with the chip bonding area, and the electrodes of each light-emitting chip are bonded to the corresponding pads in the corresponding chip bonding area.
  • the traditional transient substrate is no longer needed, and it is no longer necessary to form double-sided adhesive on the transient substrate, transfer the light-emitting chip to the transient substrate, and remove the transient substrate, which can simplify the process of light-emitting components.
  • solder-proof light-shielding layer for solder-proofing and light-crossing prevention, and the solder-proof light-shielding layer can replace traditional
  • the solder resist layer on the circuit board is only a replacement of the solder resist material for the circuit board factory, and there is no increase in process and cost; when making light-emitting components, it can be omitted after bonding the light-emitting chip on the circuit board Additional processes such as pressing the black glue layer, baking the black glue layer, and removing the residual black glue on the light-emitting chip can further simplify the manufacturing process, greatly reduce the length of the process, and omit the traditional solder mask layer. The material cost and the labor cost are further reduced, and the thickness of the manufactured light-emitting component is smaller.
  • the application provides a circuit board assembly, a light-emitting assembly and a manufacturing method thereof, in which each light-emitting chip is directly transferred to the light-transmitting packaging layer and corresponds to each chip bonding area on the circuit board, that is, directly uses the light-emitting packaging
  • the layer replaces the traditional transient substrate, and then the side of the light-transmitting packaging layer with the light-emitting chip is pressed against the side of the circuit board with the chip bonding area, and the electrodes of each light-emitting chip are bonded to the corresponding chip.
  • the above process no longer needs the traditional transient substrate, nor does it need to form double-sided adhesive on the transient substrate, transfer the light-emitting chip to the transient substrate, and remove the temporary substrate.
  • State-of-the-art substrate and other processes can simplify the production process of light-emitting components, improve production efficiency, reduce material and equipment costs and labor costs;
  • the solder resist light shielding layer can replace the solder resist layer on the traditional circuit board.
  • solder resist material For the circuit board factory, only the solder resist material is replaced, and there is no increase in process and cost; After bonding on the circuit board, additional processes such as pressing the vinyl layer, baking the vinyl layer, and removing the residual vinyl on the light-emitting chip are performed on the circuit board, so the manufacturing process can be further simplified and the process time can be greatly reduced , and the traditional solder resist layer can be omitted, further reducing the material cost and labor cost, and the thickness of the light-emitting component produced is smaller.
  • FIG. 1 is a structural schematic diagram of a circuit board assembly provided in an embodiment of the present application
  • FIG. 2 is a second schematic diagram of the structure of the circuit board assembly provided by the embodiment of the present application.
  • Fig. 3 is a sectional view of the circuit board assembly shown in Fig. 1 and Fig. 2;
  • FIG. 4 is a schematic diagram of the third structure of the circuit board assembly provided by the embodiment of the present application.
  • Fig. 5 is a structural schematic diagram 4 of the circuit board assembly provided by the embodiment of the present application.
  • Fig. 6 is a sectional view of the circuit board assembly shown in Fig. 4 and Fig. 5;
  • Fig. 7 is a schematic structural diagram of a light-emitting component provided by another optional embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a method for manufacturing a light-emitting component provided in another optional embodiment of the present application.
  • Fig. 9 is a schematic diagram of the manufacturing process of the light-emitting component provided by another alternative embodiment of the present application.
  • the process of the mass transfer solution generally includes: using a transient substrate, pasting double-sided adhesive on the transient substrate, and then transferring the Mini LED chips to the transient substrate for arrangement, and placing the Mini LED chips arranged on the transient substrate.
  • the LED chip is aligned with the circuit board, and then the Mini The LED chip is soldered to the corresponding pad on the circuit board with a solder mask; after soldering, the transient substrate is removed, and black glue is pressed on the circuit board to align the adjacent Mini
  • the LED chips are subjected to light-blocking treatment, then baked to cure the black glue and then remove the black glue residue on the surface of the Mini LED chip; then press the translucent glue on the circuit board as the packaging layer, and then bake the translucent glue to make it its cured.
  • the current mass transfer solution can greatly improve the efficiency, but the process is still relatively complicated, the efficiency is low, and the material cost and labor cost are high.
  • This embodiment provides a circuit board assembly, including:
  • the circuit board may be, but not limited to, a display backplane for display.
  • the display backplane may be a printed circuit board, or may be a glass integrated with a circuit to form a circuit board
  • the specific materials of the substrate and the like are not limited here.
  • the circuit board may be, but not limited to, various circuit boards for lighting.
  • the circuit board in this embodiment is provided with a plurality of chip bonding areas, and the chip bonding areas are provided with pads corresponding to the electrodes of at least one light-emitting chip. That is to say, in this embodiment, one light-emitting chip can be set in a chip bonding area, and two or more light-emitting chips can also be set according to requirements. The specific number of settings can be flexibly set according to application requirements. Here No longer.
  • the number of chips disposed in each chip bonding area on the circuit board may be the same. In some other application examples, the number of chips disposed in each chip bonding area on the circuit board may be at least partly different.
  • the light-emitting colors of the light-emitting chips arranged in the chip bonding regions may be the same or different, or partly the same, partly different, etc., which can be flexibly set according to requirements.
  • the light-emitting chip in this embodiment can be a light-emitting chip of ordinary size (that is, larger than the micron scale), or a light-emitting chip of the micron scale, for example, it can include but is not limited to Mini At least one of LED chips and Micro LED chips; and the size of the light-emitting chips arranged in the bonding area of each chip may be the same or different, or partly the same or partly different.
  • the chip bonding area may be provided only on one of the front and back of the circuit board; the chip bonding area may also be provided on both the front and the back of the circuit board according to requirements, at this time
  • the light-emitting chip can be arranged on the front and back of the circuit board according to the requirement, and the light-emitting chip can also be arranged on only one side thereof according to the requirement.
  • the circuit board assembly also includes a solder-proof light-shielding layer, which can replace the solder-proof layer on the traditional circuit board, and can play the role of solder-proof, anti-oxidation and waterproof. And so on.
  • the solder resist light shielding layer in this embodiment includes a solder resist light shielding wall located on the circuit board between adjacent chip bonding regions, and the solder resist light shielding wall blocks the light-emitting chips in the adjacent chip bonding regions The emitted light, thereby preventing the occurrence of light channeling.
  • the distribution of multiple chip bonding areas on the circuit board can be flexibly set according to application requirements, for example, it can be arranged in an array, or distributed in a straight line, or distributed in a triangle, or according to other rules to distribute.
  • a solder resist light blocking wall may also be provided between each adjacent chip bonding area, or a solder resist light blocking wall may be provided only between a part of adjacent chip bonding areas.
  • a solder resist light blocking wall is provided, and for adjacent chip bonding areas where the spacing is greater than or equal to The anti-solder light blocking wall may not be set between the adjacent chip bonding areas required by the anti-channeling distance.
  • solder-proof light-shielding wall can be set as but not limited to a black solder-proof light-shielding wall; of course, in some examples, it can also be set as other colors, as long as it can meet the above requirements.
  • the material of the anti-solder light-shielding wall can be but not limited to glue. At least one of resin, silica gel, etc. is used but not limited to.
  • the first distance LI from the side of the solder-proof light-shielding wall away from the circuit board to the circuit board can be set, which is equal to the light-emitting chip after it is bonded in the chip bonding area.
  • the second distance L2 from the side of the chip away from the circuit board to the circuit board; and the specific values of L1 and L2 can be flexibly set according to application requirements.
  • L1 can also be set slightly larger than L2, as long as the subsequent chips are thermally bonded.
  • At least one side of the solder resist light blocking wall facing the chip bonding area can also be set as a reflective surface, so as to reflect the light on the side and improve the light extraction efficiency.
  • the light-emitting surface can also be set as a rough surface.
  • circuit board assembly shown in the accompanying drawings is used as an example for description below.
  • FIG. 1 An exemplary circuit board assembly is shown in FIG. 1, which includes a circuit board 1, on which a plurality of chip bonding areas 11 are provided, and each chip bonding area 11 is provided with electrodes corresponding to light-emitting chips. pad 111.
  • the multiple chip bonding regions 11 shown in FIG. 1 are distributed in an array on the circuit board; it should be understood that the distribution of the multiple chip bonding regions 11 is not limited to the array distribution, and can be flexibly set according to requirements.
  • the circuit board assembly also includes a solder-proof light-shielding layer 2, and the solder-proof light-shielding layer 2 includes a plurality of solder-proof light-shielding walls 21, and a plurality of solder-proof light-shielding walls 21 are respectively arranged on adjacent rows of each row. Between the chip bonding areas 11, after the subsequent light-emitting chips are bonded in the chip bonding areas 11, in the row direction, each anti-soldering light blocking wall 21 can prevent light from crossing between the light-emitting chips in the adjacent chip bonding areas 11. .
  • FIG. 3 the cross-sectional view of the circuit board assembly shown in FIG. 1 along the direction A-A is shown in FIG. 3 .
  • the solder-proof light-shielding wall 21 shown in FIG. 1 is only set between adjacent chip light-emitting areas 11, but according to the solder-proof requirements, etc., the specific area covered by the solder-proof light-shielding wall 21 on the circuit board can also be flexible according to requirements. set up. For example, an example is shown in FIG. 2 . Compared with the solder resist light shielding wall 21 shown in FIG. 1 , the difference is that the solder resist light shielding wall 21 extends to between adjacent chip bonding regions 11 in the column direction. A solder-proof light-shielding wall 21 is provided between each column of chip bonding areas 11 . Wherein, the sectional view of the circuit board assembly shown in FIG. 2 along the direction B-B is shown in FIG. 3 .
  • FIG. 4 The setting of the solder-proof light-shielding wall 21 in yet another example of this embodiment is shown in FIG. 4 .
  • Each room is provided with a welding-proof light-shielding wall 21.
  • FIG. 6 the sectional view of the circuit board assembly shown in FIG. 4 along the direction C-C is shown in FIG. 6 .
  • the spacing between the adjacent chip bonding regions 11 in the row direction is greater than the anti-channeling distance requirements, no or no solder mask may be provided between the adjacent chip bonding regions 11 in the row direction.
  • the sectional view of the circuit board assembly shown in FIG. 5 along the D-D direction is also shown in FIG. 6 .
  • the circuit board assembly provided by the above examples includes a circuit board 1 provided with a plurality of chip bonding regions 11, and a solder resist light shielding layer 2 arranged on the circuit board 1, the solder resist light shielding layer 2 It includes a solder-proof light-shielding wall 21 located between adjacent chip bonding areas 11.
  • the setting method of the solder-proof light-shielding wall 21 is flexible and adaptable, and it can block the adjacent chip bonding areas 11.
  • the light emitted by the light-emitting chip inside can prevent the occurrence of flashing light, and can also play the role of anti-soldering; that is, the anti-soldering light-shielding layer 2 can replace the anti-soldering layer on the traditional circuit board 1, for circuit boards As far as the factory is concerned, only the solder resist material is replaced, and there is no increase in the process and cost; and for the subsequent production of light-emitting components such as display panels, it can be omitted to bond the light-emitting chip on the circuit board and then perform additional processing on the circuit board 1.
  • Pressing the vinyl layer, baking the vinyl layer, and removing the residual vinyl on the light-emitting chip can simplify the manufacturing process, greatly reduce the length of the process, and can omit the traditional solder mask, reducing material costs and labor costs , and can reduce the thickness of the manufactured light-emitting component.
  • the circuit board 1 can also include a traditional solder resist layer (such as a paint layer, etc.), and the solder resist light blocking wall 21 in this example can be replaced with a light blocking wall with a light blocking effect, and The light-shielding wall is arranged on the solder resist layer, and this equivalent alternative solution will not be repeated here.
  • a traditional solder resist layer such as a paint layer, etc.
  • This embodiment provides a light-emitting assembly made by using the circuit board assembly shown in the above-mentioned embodiments.
  • the light-emitting assembly can be a display assembly, such as a display panel, or a lighting assembly.
  • the circuit board assembly shown in the above embodiments it also includes:
  • the light-emitting chip can be a light-emitting chip of a normal size (that is, greater than a micron level), or a light-emitting chip of a micron level, for example, it can include but is not limited to a Mini At least one of LED chips and Micro LED chips.
  • the light-transmitting encapsulation layer arranged on each light-emitting chip and each anti-soldering light-shielding wall; the light emitted by the light-emitting chip is emitted through the light-transmitting encapsulation layer.
  • solder-proof light-shielding layer is pre-formed between adjacent chip bonding areas for solder-proofing and light-crossing prevention, and the solder-proof light-shielding layer can replace the anti-soldering light-shielding layer on the traditional circuit board
  • the solder layer only replaces the solder resist material, and there is no increase in process and cost; when making light-emitting components, it can be omitted to bond the light-emitting chip on the circuit board and then press the circuit board additionally.
  • the structure of the light-transmitting encapsulation layer in this embodiment can be flexibly set according to application requirements.
  • the light-transmitting encapsulation layer includes Translucent glue layer.
  • the material of the translucent adhesive layer in this embodiment can be flexibly selected, for example, epoxy resin, silica gel or polyimide can be selected but not limited to.
  • the thickness of the translucent adhesive layer can also be flexibly set according to requirements, for example, the thickness of the translucent adhesive layer can be but not limited to 30 microns to 50 microns.
  • the thickness of the translucent adhesive layer can be set to, but not limited to, 30 microns, 33 microns, 35 microns, 40 microns, 42 microns, 45 microns, 48 microns or 50 microns.
  • the light-transmitting encapsulation layer may further include a transparent cover disposed on the translucent adhesive layer.
  • the transparent cover is a rigid cover whose transparency is greater than that of the translucent adhesive layer.
  • the material of the transparent cover plate in this embodiment can also be flexibly selected, for example, glass, epoxy resin, silica gel or polyimide can be selected but not limited to.
  • the thickness of the transparent cover can also be flexibly set according to requirements, for example, the thickness of the transparent cover can be but not limited to 100 microns to 150 microns.
  • the thickness of the transparent cover can be set to but not limited to 100 microns, 110 microns, 115 microns, 120 microns, 128 microns, 130 microns, 135 microns, 140 microns, 148 microns or 150 microns, etc. .
  • the light-emitting component includes a circuit board 1 , and the circuit board 1 is provided with a plurality of chip bonding regions 11 , and each chip bonding region 11 is provided with pads corresponding to electrodes of the light-emitting chip.
  • a plurality of solder resist light shielding walls 21 are respectively arranged between adjacent chip bonding regions 11 in each row.
  • the light-emitting component also includes a light-emitting chip 3 bonded in each chip bonding area 11 on the circuit board 1, wherein the electrodes 31 of the light-emitting chip 3 are connected to the corresponding pads in the chip bonding area 11 through conductive materials such as solder or conductive glue. Bond.
  • the light-emitting assembly also includes a light-transmitting encapsulation layer 4 disposed on each light-emitting chip 3 and the solder-proof light-shielding wall 21 . And because on the circuit board 1 adopted, a solder-proof light-shielding wall for solder-proofing and light-crossing prevention is pre-formed between adjacent chip bonding regions 11, and the solder-proof light-shielding wall can replace the traditional circuit board.
  • the solder resist layer is only a replacement of the solder resist material for the circuit board factory, and there is no increase in the process and cost; when making the light-emitting component, it can be omitted after bonding the light-emitting chip on the circuit board, and additionally on the circuit board 1 Pressing the black glue layer, baking the black glue layer, and removing the residual black glue on the light-emitting chip can simplify the manufacturing process, greatly reduce the length of the process, and can omit the traditional solder mask layer, reducing material costs and Labor cost, and the thickness of the light-emitting component is smaller due to the omission of the traditional solder mask.
  • the first distance LI from the side away from the circuit board 1 to the circuit board 1 is provided with the solder-proof light-shielding wall 21, which is equal to that after the light-emitting chip 3 is bonded in the chip bonding area 11, the light-emitting chip 3 is far away from the circuit board. 1 to the second distance L2 of the circuit board 1, so as to ensure the anti-light-blocking effect of the solder-proof light-blocking wall 21.
  • the light-transmitting encapsulation layer 4 in this example includes a translucent adhesive layer 41 disposed on each light-emitting chip 3 and each solder-proof light-shielding wall 21 .
  • the translucent adhesive layer 41 in this example is made of silica gel.
  • the translucent adhesive layer 41 is a thermosetting adhesive with a thickness of 40 microns.
  • the light-transmitting encapsulation layer 4 may further include a transparent cover 42 disposed on the translucent adhesive layer 41 .
  • the transparent cover 42 is a rigid cover, and its transparency is greater than that of the translucent adhesive layer.
  • the material of the transparent cover 42 is glass, and its thickness is 130 microns.
  • the light-emitting component shown in FIG. 7 has a smaller thickness due to the omission of the traditional solder resist layer on the circuit board 1 , and its manufacturing process is simpler, with higher efficiency and lower cost.
  • This embodiment also provides a display screen, which includes a display screen frame, and the light-emitting components shown in the above examples arranged in the display screen frame.
  • FIG. 8 The manufacturing method of the light-emitting component provided in this embodiment is shown in Figure 8, which includes but is not limited to:
  • the light-emitting chip can be directly transferred from the growth substrate to the light-transmitting encapsulation layer, thereby omitting the use of a transient substrate, improving production efficiency, and reducing equipment costs. Material costs.
  • the side of the light-transmitting encapsulation layer carrying the light-emitting chip may have viscosity (low viscosity or high viscosity can be used), and the light-emitting chip can be fixed on the light-transmitting encapsulation layer through this viscosity. .
  • S802 Press the side of the light-transmitting packaging layer with the light-emitting chip against the side of the circuit board with the chip bonding area, and connect the electrodes of each light-emitting chip to the corresponding pads in the corresponding chip bonding area. Bond.
  • each light-emitting chip falls into its corresponding chip bonding area on the circuit board, and each light-emitting chip
  • the electrodes and the corresponding pads in the chip bonding area are electrically connected through a conductive material, and the conductive material can be, but not limited to, solder or a conductive adhesive layer.
  • each light-emitting chip is directly transferred to the light-transmitting encapsulation layer and corresponds to each chip bonding area on the circuit board, that is, the light-transmitting encapsulation layer is directly used to replace the traditional The transient substrate, and then press the side of the light-transmitting packaging layer with the light-emitting chip to the side of the circuit board with the chip bonding area, and connect the electrodes of each light-emitting chip to the corresponding chip bonding area.
  • the above process no longer requires the traditional transient substrate, nor does it need to form double-sided adhesive on the transient substrate, transfer the light-emitting chip to the transient substrate, and remove the transient substrate.
  • the light-shielding layer can replace the solder mask layer on the traditional circuit board.
  • the circuit board factory it only replaces the solder mask material, and there is no increase in process and cost; when making light-emitting components, it is possible to omit placing the light-emitting chip on the circuit board After bonding, additional processes such as pressing the vinyl layer, baking the vinyl layer, and removing the residual vinyl on the light-emitting chip are carried out on the circuit board, so the manufacturing process can be further simplified, the process time can be greatly reduced, and the process can be omitted.
  • the traditional solder mask further reduces material cost and labor cost, and the thickness of the light-emitting component produced is smaller.
  • the light-transmitting encapsulation layer in S801 includes a semi-transparent adhesive layer in a semi-cured state; transferring each light-emitting chip to the light-transmitting encapsulation layer in S801 includes:
  • Each light-emitting chip is transferred to the translucent adhesive layer, and each light-emitting chip is fixed on the translucent adhesive layer through the viscosity of the translucent adhesive layer.
  • the light-transmitting encapsulation layer further includes a transparent cover plate, and before transferring each light-emitting chip to the translucent adhesive layer, it also includes disposing the translucent adhesive layer on the transparent cover plate.
  • the first solder is provided on the electrodes of the light-emitting chips in S801, and the second solder is provided on the pads in the chip bonding area on the circuit board in S802;
  • the bonding of the electrodes to the corresponding pads in the corresponding chip bonding area may include but not limited to:
  • the curing temperature of the translucent adhesive layer can be set to be greater than or equal to the melting temperatures of the first solder and the second solder.
  • the curing temperature of the translucent glue layer is equal to the melting temperature of the first solder and the second solder, then the first solder on the electrodes of each light-emitting chip and the second solder on the pads in the bonding area of each chip Second, the solder is heated to melt, so that during the bonding process between the electrodes of each light-emitting chip and the corresponding pads in the corresponding chip bonding area, the translucent adhesive layer in the semi-cured state is also heated, so that the semi-transparent adhesive layer Layer curing can further improve production efficiency.
  • the solidification temperature of the translucent adhesive layer can be set to be higher than the melting temperature of the first solder and the second solder, for example, the solidification temperature of the translucent adhesive layer is greater than or equal to 160° C.
  • the temperature is less than or equal to 150°C, for example, 130°C to 150°C.
  • this embodiment will be described below by taking the manufacturing process of the light-emitting component in this example as an example, as shown in Figure 9, which includes but is not limited to:
  • S901 Transfer each light-emitting chip 3 to the translucent adhesive layer 41 of the light-transmitting encapsulation layer 4 according to the layout of each chip bonding area 11 on the circuit board 1 .
  • the translucent adhesive layer 41 is in a semi-cured state at this time, and its curing temperature is greater than or equal to 160°C.
  • the first solder is provided on the electrode 31 of the light emitting chip 3 .
  • S902 press the side of the light-transmitting encapsulation layer 4 provided with the light-emitting chip 3 , that is, the side of the translucent adhesive layer 41 provided with the light-emitting chip 3 , with the side of the circuit board 1 provided with the chip bonding area 11 . After pressing, the electrodes 31 of each light-emitting chip 3 are butted with the corresponding pads in the chip bonding area 11 .
  • S903 Heat the first solder on the electrode 31 of each light-emitting chip 3 and the second solder on the corresponding pad in the corresponding chip bonding area to melt to complete the bonding; in this example, the first solder and the second solder The melting temperature of the solder is 150°C or less. In an application example, S903 may be performed by but not limited to laser welding.
  • this example also includes heating the semi-transparent adhesive layer 41 in a semi-cured state to cure it. For example, place it in an oven to bake, so that the translucent adhesive layer 41 in a semi-cured state is completely cured.
  • the manufacturing method of the light-emitting component shown in FIG. 9 directly uses the light-transmitting encapsulation layer 4 to replace the traditional transient substrate, and transfers each light-emitting chip 3 to the light-transmitting encapsulation layer 4 and bonds with each chip on the circuit board 1. 11 corresponding to each other, and then it is relatively pressed against the side of the circuit board 1 provided with the chip bonding area 11, and the electrodes 31 of each light-emitting chip 3 are bonded to the corresponding pads in the corresponding chip bonding area 11; the above In the process, the traditional transient substrate is no longer needed, nor is it necessary to form double-sided adhesive on the transient substrate, transfer the light-emitting chip to the transient substrate, and remove the transient substrate.
  • solder-proof light-shielding layer 2 can replace the solder-proof layer on the traditional circuit board 1.
  • the circuit board 1 factory only the solder-proof material is replaced, and there is no increase in process and cost;
  • additional steps such as pressing the black glue layer on the circuit board 1, baking the black glue layer, and removing the residual black glue on the light-emitting chip can be omitted.
  • the manufacturing process can be further simplified, the manufacturing process time can be greatly reduced, and the traditional solder resist layer can be omitted, so that the thickness of the light-emitting component produced is smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

一种电路板组件、发光组件及其制作方法,包括设有多个芯片键合区(11)的电路板(1),以及设于电路板(1)上的防焊挡光层(2),该防焊挡光层(2)包括设于相邻芯片键合区(11)之间的防焊挡光墙(21)。

Description

电路板组件、发光组件及其制作方法 技术领域
本申请涉及发光芯片领域,尤其涉及一种电路板组件、发光组件及其制作方法。
背景技术
随着市场对于微米级发光芯片,例如Mini LED(light-emitting diode,发光二极管)芯片的直显产品的需求日益增大,各家公司也都推出了相应的各个间距及尺寸的产品。随着市场竞争加大,传统“固晶,刷锡膏,过炉”的工艺进行已逐渐无法满足需求,各公司也推出了相应的巨量转移方案,目前的巨量转移方案的过程一般包括:采用暂态基板,在暂态基板上贴双面胶,然后将Mini LED芯片转移至暂态基板上进行排列,将暂态基板上排列的Mini LED芯片与电路板进行对位,然后将Mini LED芯片与设有防焊层的电路板上所对应的焊盘进行焊接;在焊接后,再去除暂态基板,在电路板上压黑胶以对相邻的Mini LED芯片进行挡光处理,然后烘烤使得黑胶固化后再去除Mini LED芯片表面上的黑胶残留;然后再在电路板上压半透明胶作为封装层,再对半透明胶进行烘烤使其固化。目前的巨量转移方案相对传统的回流焊工艺,效率可提升很多,但工序仍相对复杂,效率低,材料成本及人工成本高。
因此,如何简化显示产品等发光组件的制作工艺,提升制作效率,降低制作成本是目前亟需解决的问题。
技术问题
鉴于上述现有技术的不足,本申请的目的在于提供一种电路板组件、发光组件及其制作方法,旨在解决相关技术中,发光组件的制作工艺复杂,制作效率低,制作成本高的问题。
技术解决方案
本申请提供一种电路板组件,包括:
电路板,所述电路板上设有多个芯片键合区,所述芯片键合区内设有与至少一颗发光芯片的电极对应的焊盘;
防焊挡光层,所述防焊挡光层包括设于所述电路板上,位于相邻所述芯片键合区之间的防焊挡光墙,所述防焊挡光墙阻挡相邻所述芯片键合区内的发光芯片所发出的光。
上述电路板组件,其包括设有多个芯片键合区的电路板,以及设于电路板上的防焊挡光层,该防焊挡光层包括设于位于相邻芯片键合区之间的防焊挡光墙,该防焊挡光墙既能阻挡相邻芯片键合区内的发光芯片所发出的光,起到防止窜光的情况发生,又能起到防焊作用;也即该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;而对于后续制作显示面板等发光组件时,则可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,减少材料成本以及人工成本,且可减小制得的发光组件的厚度。
基于同样的发明构思,本申请还提供一种发光组件,包括如上所述的电路板组件;
所述发光组件还包括:
键合于各所述芯片键合区内的发光芯片;
设于各所述发光芯片及各所述防焊挡光墙之上的透光封装层。
上述发光组件,由于其采用的电路板上预先形成有用于防焊及防止窜光的防焊挡光层,且该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,减少材料成本以及人工成本,且发光组件的厚度更小。
基于同样的发明构思,本申请还提供一种如上所述的发光组件的制作方法,包括:
将各所述发光芯片转移至所述透光封装层上,各所述发光芯片在所述透光封装层上的分布,与所述电路板上的各所述芯片键合区相对应;
将所述透光封装层上设有所述发光芯片的一面,与所述电路板上设有所述芯片键合区的一面相对压合,将各所述发光芯片的电极与对应的所述芯片键合区内相对应的所述焊盘键合。
上述发光组件的制作方法,直接将各发光芯片转移至透光封装层上并与电路板上的各芯片键合区相对应,也即直接利用透光封装层代替传统的暂态基板,然后将透光封装层上设有发光芯片的一面,与电路板上设有芯片键合区的一面相对压合,并将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合;以上过程中不再需要传统的暂态基板,也不再需要在暂态基板上形成双面胶以及将发光芯片转移至暂态基板上、以及去除暂态基板等工艺,可简化发光组件的制作工艺,提升制作效率,降低材料和设备成本以及人工成本;且由于采用的电路板上预先形成有用于防焊及防止窜光的防焊挡光层,且该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可进一步简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,进一步减少材料成本以及人工成本,且制得的发光组件的厚度更小。
有益效果
本申请提供的一种电路板组件、发光组件及其制作方法,直接将各发光芯片转移至透光封装层上并与电路板上的各芯片键合区相对应,也即直接利用透光封装层代替传统的暂态基板,然后将透光封装层上设有发光芯片的一面,与电路板上设有芯片键合区的一面相对压合,并将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合;以上过程中不再需要传统的暂态基板,也不再需要在暂态基板上形成双面胶以及将发光芯片转移至暂态基板上、以及去除暂态基板等工艺,可简化发光组件的制作工艺,提升制作效率,降低材料和设备成本以及人工成本;且由于采用的电路板上预先形成有用于防焊及防止窜光的防焊挡光层,且该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可进一步简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,进一步减少材料成本以及人工成本,且制得的发光组件的厚度更小。
附图说明
图1为本申请实施例提供的电路板组件结构示意图一;
图2为本申请实施例提供的电路板组件结构示意图二;
图3为图1和图2所示的电路板组件的剖视图;
图4为本申请实施例提供的电路板组件结构示意图三;
图5为本申请实施例提供的电路板组件结构示意图四;
图6为图4和图5所示的电路板组件的剖视图;
图7为本申请另一可选实施例提供的发光组件结构示意图;
图8为本申请又一可选实施例提供的发光组件制作方法流程示意图;
图9为本申请又一可选实施例提供的发光组件制作过程示意图;
附图标记说明:
1-电路板,11-芯片键合区,111-焊盘,2-防焊挡光层,21-防焊挡光墙,3-发光芯片,31-电极,4-透光封装层,41-半透明胶层,42-透明盖板。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
相关技术中,巨量转移方案的过程一般包括:采用暂态基板,在暂态基板上贴双面胶,然后将Mini LED芯片转移至暂态基板上进行排列,将暂态基板上排列的Mini LED芯片与电路板进行对位,然后将Mini LED芯片与设有防焊层的电路板上所对应的焊盘进行焊接;在焊接后,再去除暂态基板,在电路板上压黑胶以对相邻的Mini LED芯片进行挡光处理,然后烘烤使得黑胶固化后再去除Mini LED芯片表面上的黑胶残留;然后再在电路板上压半透明胶作为封装层,再对半透明胶进行烘烤使其固化。目前的巨量转移方案相对传统的回流焊工艺,效率可提升很多,但工序仍相对复杂,效率低,材料成本及人工成本高。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施例提供了一种电路板组件,包括:
电路板,本实施例的一种示例中,该电路板可以为但不限于用于显示的显示背板,该显示背板可以为印制电路板,也可以为集成有电路构成电路板的玻璃基板等,对于其具体材质在此不做限制。在本实施例的另一些示例中,该电路板可以为但不限于照明用的各种电路板。
本实施例中的电路板上设有多个芯片键合区,该芯片键合区内设有与至少一颗发光芯片的电极对应的焊盘。也即在本实施例中,一个芯片键合区内可以设置一颗发光芯片,也可根据需求设置两颗及两颗以上的发光芯片,对于具体设置的数量可根据应用需求灵活设置,在此不再赘述。
且应当理解的是,在一种应用示例中,电路板上的各芯片键合区内设置的芯片颗数可以相同。在另一些应用示例中,电路板上各芯片键合区内设置的芯片颗数可以至少部分不同。对于各芯片键合区内设置的发光芯片的发光颜色可以相同,也可不同,或部分相同,部分不同等,具体都可根据需求灵活设置。在本实施例中的发光芯片可以为普通尺寸(即大于微米级)的发光芯片,也可为微米级的发光芯片,例如可以包括但不限于Mini LED芯片、Micro LED芯片中的至少一种;且对于各芯片键合区内设置的发光芯片的尺寸可以相同,也可不同,或部分相同,部分不同等。
应当理解的是,在一些示例中,可以仅在电路板的正面和背面的其中一面上设置芯片键合区;也可以根据需求在电路板的正面和背面上都设置芯片键合区,此时则可根据需求在电路板的正面和背面上设置发光芯片,也可根据需求仅在其中的一面上设置发光芯片。
在本实施例中,电路板组件还包括防焊挡光层,该防焊挡光层可替换传统电路板上的防焊层,其能起到防焊作用,还可起到防氧化、防水等作用。本实施例中的防焊挡光层包括设于电路板上,位于相邻芯片键合区之间的防焊挡光墙,该防焊挡光墙阻挡相邻芯片键合区内的发光芯片所发出的光,从而防止窜光的情况发生。
应当理解的是,在本实施例中,电路板上的多个芯片键合区的分布可以根据应用需求灵活设置,例如可以呈阵列设置,也可呈直线分布,或呈三角形分布或根据其他规则进行分布。且在本实施例中,也可以在每相邻的芯片键合区之间设置防焊挡光墙,也可仅在一部分相邻的芯片键合区之间设置防焊挡光墙。例如,对于相邻芯片键合区之间的间距小于防窜光间距要求的相邻芯片键合区之间,则设置防焊挡光墙,对于相邻芯片键合区之间的间距大于等于防窜光间距要求的相邻芯片键合区之间,则可不设置防焊挡光墙。
在本实施例中,防焊挡光墙可设置为但不限于黑色的防焊挡光墙;当然,在一些示例中,也可设置为其他颜色,只要其能满足上述需求即可。
在本实施例的一些示例中,防焊挡光墙的材质可以为但不限于胶,例如一种应用场景中,该防焊挡光墙可为但不限于黑胶墙,且其具体材质可以采用但不限于树脂、硅胶等中的至少一种。
在本实施例的一些示例中,为了保证挡光效果,可以设置防焊挡光墙远离电路板的一面至电路板的第一距离LI,等于发光芯片键合于芯片键合区内后,发光芯片远离电路板的一面至电路板的第二距离L2;且L1和L2的具体取值可根据应用需求灵活设置。当然,在一些应用场景中,也可设置L1略大于L2,只要保证后续芯片热压键合即可。
在一些示例中,为了进一步提升出光效率,还可将防焊挡光墙朝向芯片键合区的至少一个侧面设置为反光面,从而将设置该侧面的光反射出去,提升出光效率。且为了进一步提升出光效率,还可将该发光面设置为粗糙面。
为了便于理解,下面结合附图所示的电路板组件为示例进行说明。
一种示例所示的电路板组件参见图1所示,其包括电路板1,电路板1上设有多个芯片键合区11,各芯片键合区11内设有与发光芯片的电极对应的焊盘111。图1所示的多个芯片键合区11在电路板上成阵列分布;应当理解的是,该多个芯片键合区11的分布方式并不限于阵列分布,可根据需求灵活设置。参见图1所示,电路板组件还包括防焊挡光层2,该防焊挡光层2包括多个防焊挡光墙21,多个防焊挡光墙21分别设置在各行的相邻芯片键合区11之间,后续发光芯片键合于芯片键合区11内后,在行方向上,各防焊挡光墙21可以防止相邻芯片键合区11内的发光芯片之间窜光。其中,图1所示的电路板组件在A-A方向上的剖视图参见图3所示。
在本示例中,对于列方向上的各相邻芯片键合区11之间的间距大于防窜光间距要求时,列方向上的各相邻芯片键合区11之间则可不设置或设置防焊挡光墙21,反之,则设置防焊挡光墙21。
图1所示的防焊挡光墙21仅在相邻芯片发光区域11之间设置,但根据防焊需求等,对于防焊挡光墙21在电路板上具体覆盖的区域也可根据需求灵活设置。例如一种示例参见图2所示,其与图1所示的防焊挡光墙21相比的区别在于,防焊挡光墙21延伸至列方向上的相邻芯片键合区11之间的区域,也即覆盖各列芯片键合区11之间都设有一条防焊挡光墙21。其中,图2所示的电路板组件在B-B方向上的剖视图参见图3所示。
本实施例又一示例中的防焊挡光墙21的设置参见图4所示,其与图3所示的防焊挡光墙21的设置相比,区别在于在各行芯片键合区11之间都设有一条防焊挡光墙21。其中,图4所示的电路板组件在C-C方向上的剖视图参见图6所示。在本示例中,对于行方向上的各相邻芯片键合区11之间的间距大于防窜光间距要求时,行方向上的各相邻芯片键合区11之间则可不设置或设置防焊挡光墙21,反之,则设置防焊挡光墙21,例如一种设置示例参见图5所示。其中,图5所示的电路板组件在D-D方向上的剖视图也参见图6所示。
可见,上述各示例所提供的电路板组件,其包括设有多个芯片键合区11的电路板1,以及设于电路板1上的防焊挡光层2,该防焊挡光层2包括设于位于相邻芯片键合区11之间的防焊挡光墙21,该防焊挡光墙21的设置方式灵活多变,适应性好,且既能阻挡相邻芯片键合区11内的发光芯片所发出的光,起到防止窜光的情况发生,又能起到防焊作用;也即该防焊挡光层2可代替传统电路板1上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;而对于后续制作显示面板等发光组件时,则可省略将发光芯片在电路板上键合后,在电路板1上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,可简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,减少材料成本以及人工成本,且可减小制得的发光组件的厚度。
当然,在一些示例中,电路板1上也可包括传统的防焊层(例如油漆层等),本示例中的防焊挡光墙21则可替换成具有挡光效果的挡光墙,且该挡光墙设置在防焊层上,对于这种等同替代方案在此不再赘述。
另一可选实施例:
本实施例提供了一种利用上述实施例所示的电路板组件制得的发光组件,该发光组件可以为显示组件,例如显示面板,也可以为照明组件。其除了包括如上述实施例所示的电路板组件外,还包括:
键合于电路板上的各芯片键合区内的发光芯片,该发光芯片可以为普通尺寸(即大于微米级)的发光芯片,也可为微米级的发光芯片,例如可以包括但不限于Mini LED芯片、Micro LED芯片中的至少一种。
设于各发光芯片及各防焊挡光墙之上的透光封装层;发光芯片发出的光通过透光封装层射出。且由于其采用的电路板上,在相邻芯片键合区之间预先形成有用于防焊及防止窜光的防焊挡光层,且该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,减少材料成本以及人工成本,且发光组件由于省略了传统的防焊层,其厚度更小。
应当理解的是,本实施例中透光封装层的结构可以根据应用需求灵活设置,例如,一种示例中,该透光封装层包括设于各发光芯片及各防焊挡光墙之上的半透明胶层。本实施例中的半透明胶层的材质可以灵活选择,例如可以选择但不限于环氧树脂、硅胶或聚酰亚胺。且在本实施例中,半透明胶层的厚度也可以根据需求灵活设置,例如,半透明胶层的厚度可为但不限于30微米至50微米。例如,在一些应用场景中,半透明胶层的厚度值可以设置为但不限于30微米、33微米、35微米、40微米、42微米、45微米、48微米或50微米等。
在本实施例的另一示例中,透光封装层还可包括设于半透明胶层之上的透明盖板。其中该透明盖板为刚性盖板,其透明度大于半透明胶层。本实施例中的透明盖板的材质也可以灵活选择,例如可以选择但不限于玻璃、环氧树脂、硅胶或聚酰亚胺。且在本实施例中,透明盖板的厚度也可以根据需求灵活设置,例如,透明盖板的厚度可为但不限于100微米至150微米。例如,在一些应用场景中,透明盖板的厚度值可以设置为但不限于100微米、110微米、115微米、120微米、128微米、130微米、135微米、140微米、148微米或150微米等。
为了便于理解,下面结合附图对发光组件进行示例说明。
参见图7所示,发光组件包括其包括电路板1,电路板1上设有多个芯片键合区11,各芯片键合区11内设有与发光芯片的电极对应的焊盘。多个防焊挡光墙21分别设置在各行的相邻芯片键合区11之间。发光组件还包括键合于电路板1上的各芯片键合区11内的发光芯片3,其中发光芯片3的电极31通过焊料或导电胶等导电材料与芯片键合区11内对应的焊盘键合。发光组件还包括设于各发光芯片3和防焊挡光墙21上的透光封装层4。且由于采用的电路板1上,在相邻芯片键合区11之间预先形成有用于防焊及防止窜光的防焊挡光墙,且该防焊挡光墙可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板1上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,减少材料成本以及人工成本,且发光组件由于省略了传统的防焊层,发光组件的厚度更小。且在本示例中,设置防焊挡光墙21远离电路板1的一面至电路板1的第一距离LI,等于发光芯片3键合于芯片键合区11内后,发光芯片3远离电路板1的一面至电路板1的第二距离L2,从而保证防焊挡光墙21的防挡光效果。
参见图7所示,本示例中的透光封装层4包括设于各发光芯片3及各防焊挡光墙21之上的半透明胶层41。本示例中的半透明胶层41的材质为硅胶。且在本实施例中,半透明胶层41为热固化型胶,其厚度为40微米。透光封装层4还可包括设于半透明胶层41之上的透明盖板42。其中该透明盖板42为刚性盖板,其透明度大于半透明胶层,本示例中透明盖板42的材质为玻璃,其厚度为130微米。
图7所示的发光组件,由于省略了电路板1上传统的防焊层,其厚度更小,且其制作工艺更为简单,效率更高,成本更低。
本实施例还提供了一种显示屏,其包括显示屏框架,以及设于显示屏框架内的上述各示例所示的发光组件。
又一可选实施例:
为了便于理解,本实施例下面以上述实施例所示的发光组件的制作方法示例进行说明。
本实施例提供的发光组件的制作方法参见图8所示,其包括但不限于:
S801:将各发光芯片转移至透光封装层上,各发光芯片在透光封装层上的分布,与电路板上的各芯片键合区相对应。
在本实施例中,可以根据电路板上各芯片键合区的布局,直接从生长基板上将发光芯片转移至透光封装层上,从而省略暂态基板的使用,提升制作效率,降低设备及材料成本。当然,在一些示例中,也可以先将发光芯片从生长基板转移至暂态基板上后,再根据电路板上各芯片键合区的布局,从暂态基板上将发光芯片转移至透光封装层上。
在本实施例中,透光封装层承载发光芯片的一面可具有黏性(采用低黏性即可,也可采用高黏性),发光芯片可通过该黏性固设于透光封装层上。
S802:将透光封装层上设有发光芯片的一面,与电路板上设有芯片键合区的一面相对压合,将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合。
将透光封装层上设有发光芯片的一面,与电路板上设有芯片键合区的一面相对压合后,各发光芯片落入电路板上各自对应的芯片键合区内,各发光芯片的电极与芯片键合区内对应的焊盘通过导电材料实现电连接,该导电材料可以采用但不限于焊料、导电胶层。
可见,图8所示的发光组件的制作方法,直接将各发光芯片转移至透光封装层上并与电路板上的各芯片键合区相对应,也即直接利用透光封装层代替传统的暂态基板,然后将透光封装层上设有发光芯片的一面,与电路板上设有芯片键合区的一面相对压合,并将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合;以上过程中不再需要传统的暂态基板,也不再需要在暂态基板上形成双面胶以及将发光芯片转移至暂态基板上、以及去除暂态基板等工艺,可简化发光组件的制作工艺,提升制作效率,降低材料和设备成本以及人工成本;且由于采用的电路板上预先形成有用于防焊及防止窜光的防焊挡光层,且该防焊挡光层可代替传统电路板上的防焊层,针对电路板厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片在电路板上键合后,在电路板上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可进一步简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,进一步减少材料成本以及人工成本,且制得的发光组件的厚度更小。
在本实施例的一种示例中,S801中的透光封装层包括处于半固化状态的半透明胶层;S801中将各发光芯片转移至透光封装层上包括:
将各发光芯片转移至半透明胶层上,各发光芯片通过半透明胶层的黏性固定在半透明胶层上。
在本实施例的又一种示例中,透光封装层还包括透明盖板,将各发光芯片转移至半透明胶层上之前,还包括先将半透明胶层设于透明盖板上。
在本实施例中,在S801中的发光芯片的电极上设有第一焊料,S802中的电路板上的芯片键合区内的焊盘上设有第二焊料;S802中将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合可包括但不限于:
将各发光芯片的电极上的第一焊料以及各芯片键合区内的焊盘上的第二焊料加热使其融化,从而使得各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合。
且在本实施例中,当半透明胶层采用热固化胶层时,可设置半透明胶层的固化温度,大于等于第一焊料以及第二焊料的熔融温度。例如:
在一种示例中,半透明胶层的固化温度等于第一焊料以及第二焊料的熔融温度,则将各发光芯片的电极上的第一焊料以及各芯片键合区内的焊盘上的第二焊料加热使其融化,从而使得各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合过程中,处于半固化状态的半透明胶层也进行加热,从而使得半透明胶层固化,可进一步提升制作效率。
在另一示例中,可设置半透明胶层的固化温度大于第一焊料以及第二焊料的熔融温度,例如,半透明胶层的固化温度大于等于160℃,第一焊料以及第二焊料的熔融温度小于等于150℃,例如可取130℃至150℃。在本示例中,将各发光芯片的电极与对应的芯片键合区内相对应的焊盘键合后,还可包括但不限于:对半透明胶层加热使其固化。为了便于理解,本实施例下面以本示例中的发光组件的制作过程为示例进行说明,参见图9所示,其包括但不限于:
S901:根据电路板1上各芯片键合区11的布局,将各发光芯片3转移至透光封装层4的半透明胶层41上。半透明胶层41此时处于半固化状态,其固化温度大于等于160℃。发光芯片3的电极31上设有第一焊料。
S902:将透光封装层4上设有发光芯片3的一面,也即半透明胶层41上设有发光芯片3的一面,与电路板1上设有芯片键合区11的一面相对压合,压合后各发光芯片3的电极31与芯片键合区11内对应的焊盘对接。
S903:对各发光芯片3的电极31上的第一焊料和对应的芯片键合区内相对应的焊盘上的第二焊料加热使其融化完成键合;本示例中第一焊料和第二焊料的熔融温度小于等于150℃。一种应用示例中,可通过但不限于激光焊接方式执行S903。
在执行完S903之后,本示例中还包括对处于半固化状态的半透明胶层41加热使其固化。例如置于烤箱烘烤,使处于半固化状态的半透明胶层41完全固化。
图9所示的发光组件的制作方法,直接利用透光封装层4代替传统的暂态基板,将各发光芯片3转移至透光封装层4上并与电路板1上的各芯片键合区11相对应,然后与电路板1上设有芯片键合区11的一面相对压合,并将各发光芯片3的电极31与对应的芯片键合区11内相对应的焊盘键合;以上过程中不再需要传统的暂态基板,也不再需要在暂态基板上形成双面胶以及将发光芯片转移至暂态基板上、以及去除暂态基板等工艺,可将焊接、压膜两道工序合并,并去掉双面胶,降低材料成本,缩减制程时长,简化封装工序,降低材料和设备成本以及人工成本;且由于采用的电路板1上预先形成有用于防焊及防止窜光的防焊挡光层2,且该防焊挡光层2可代替传统电路板1上的防焊层,针对电路板1厂而言只是更换了防焊材料,并无工序及成本的增加;在制作发光组件时,可省略将发光芯片3在电路板1上键合后,在电路板1上额外进行压黑胶层、对黑胶层进行烘烤以及去除发光芯片上的残留黑胶等工序,因此可进一步简化制作工艺,大幅度缩减制程时长,并可省略传统的防焊层,使得制得的发光组件的厚度更小。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种电路板组件,包括:
    电路板,所述电路板上设有多个芯片键合区,所述芯片键合区内设有与至少一颗发光芯片的电极对应的焊盘;
    防焊挡光层,所述防焊挡光层包括设于所述电路板上,位于相邻所述芯片键合区之间的防焊挡光墙,所述防焊挡光墙阻挡相邻所述芯片键合区内的发光芯片所发出的光。
  2. 如权利要求1所述的电路板组件,其中,所述防焊挡光墙为黑色的防焊挡光墙。
  3. 如权利要求2所述的电路板组件,其中,所述防焊挡光墙为黑胶墙。
  4. 如权利要求1所述的电路板组件,其中,所述防焊挡光墙远离所述电路板的一面至所述电路板的第一距离,等于所述发光芯片键合于所述芯片键合区内后,所述发光芯片远离所述电路板的一面至所述电路板的第二距离。
  5. 如权利要求1所述的电路板组件,其中,所述电路板为显示背板。
  6. 一种发光组件,包括如权利要求1所述的电路板组件;
    所述发光组件还包括:
    键合于各所述芯片键合区内的发光芯片;
    设于各所述发光芯片及各所述防焊挡光墙之上的透光封装层。
  7. 如权利要求6所述的发光组件,其中,所述透光封装层包括设于各所述发光芯片及各所述防焊挡光墙之上的半透明胶层。
  8. 如权利要求7所述发光组件,其中,所述透光封装层还包括设于所述半透明胶层之上的透明盖板。
  9. 如权利要求7所述的发光组件,其中,所述半透明胶层的厚度为30微米至50微米。
  10. 如权利要求8所述发光组件,其中,所述透明盖板的厚度为100微米至150微米。
  11. 一种如权利要求6所述的发光组件的制作方法,包括:
    将各所述发光芯片转移至所述透光封装层上,各所述发光芯片在所述透光封装层上的分布,与所述电路板上的各所述芯片键合区相对应;
    将所述透光封装层上设有所述发光芯片的一面,与所述电路板上设有所述芯片键合区的一面相对压合,将各所述发光芯片的电极与对应的所述芯片键合区内相对应的所述焊盘键合。
  12. 如权利要求11所述的发光组件的制作方法,其中,所述透光封装层包括处于半固化状态的半透明胶层;
    所述将各所述发光芯片转移至所述透光封装层上包括:
    将各所述发光芯片转移至所述半透明胶层上,各所述发光芯片通过所述半透明胶层的黏性固定在所述半透明胶层上。
  13. 如权利要求12所述的发光组件的制作方法,其中,所述透光封装层还包括透明盖板,所述将各所述发光芯片转移至所述半透明胶层上之前,还包括:
    将所述半透明胶层设于所述透明盖板上。
  14. 如权利要求12所述的发光组件的制作方法,其中,各所述发光芯片的电极上设有第一焊料,各所述芯片键合区内的所述焊盘上设有第二焊料;
    所述将各所述发光芯片的电极与对应的所述芯片键合区内相对应的所述焊盘键合包括:
    将各所述发光芯片的电极上的第一焊料以及各所述芯片键合区内的所述焊盘上的第二焊料加热使其融化,从而使得各所述发光芯片的电极与对应的所述芯片键合区内相对应的所述焊盘键合。
  15. 如权利要求14所述的发光组件的制作方法,其中,所述半透明胶层为热固化胶层,所述半透明胶层的固化温度,大于等于所述第一焊料以及所述第二焊料的熔融温度。
  16. 如权利要求15所述的发光组件的制作方法,其中,所述半透明胶层的固化温度,大于所述第一焊料以及所述第二焊料的熔融温度;
    所述将各所述发光芯片的电极与对应的所述芯片键合区内相对应的所述焊盘键合后,还包括:
    对所述半透明胶层加热使其固化。
  17. 如权利要求16所述的发光组件的制作方法,其中,所述半透明胶层的固化温度大于等于160℃,所述第一焊料以及所述第二焊料的熔融温度小于等于150℃。
  18. 如权利要求11所述的发光组件的制作方法,其中,所述发光芯片为微米级发光芯片。
  19. 如权利要求12所述的发光组件的制作方法,其中,所述半透明胶层的材质为环氧树脂、硅胶或聚酰亚胺。
  20. 如权利要求13所述的发光组件的制作方法,其中,所述透明盖板的材质为玻璃、环氧树脂、硅胶或聚酰亚胺。
PCT/CN2021/107777 2021-07-22 2021-07-22 电路板组件、发光组件及其制作方法 WO2023000242A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107777 WO2023000242A1 (zh) 2021-07-22 2021-07-22 电路板组件、发光组件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107777 WO2023000242A1 (zh) 2021-07-22 2021-07-22 电路板组件、发光组件及其制作方法

Publications (1)

Publication Number Publication Date
WO2023000242A1 true WO2023000242A1 (zh) 2023-01-26

Family

ID=84980300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107777 WO2023000242A1 (zh) 2021-07-22 2021-07-22 电路板组件、发光组件及其制作方法

Country Status (1)

Country Link
WO (1) WO2023000242A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243720A (ja) * 2002-02-14 2003-08-29 Citizen Electronics Co Ltd 発光ダイオードの製造方法
CN211320106U (zh) * 2020-03-10 2020-08-21 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器
CN111584469A (zh) * 2020-04-17 2020-08-25 南通沃特光电科技有限公司 一种led封装结构及其封装方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243720A (ja) * 2002-02-14 2003-08-29 Citizen Electronics Co Ltd 発光ダイオードの製造方法
CN211320106U (zh) * 2020-03-10 2020-08-21 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器
CN111584469A (zh) * 2020-04-17 2020-08-25 南通沃特光电科技有限公司 一种led封装结构及其封装方法

Similar Documents

Publication Publication Date Title
CN109741685B (zh) 一种led显示模组及其制作方法
KR101784406B1 (ko) 투명 전광 장치
TWI809246B (zh) 固晶結構及其製造方法
KR20200007498A (ko) 마이크로 엘이디 디스플레이 및 이의 제작 방법
TWI451610B (zh) 發光裝置之母板結構以及發光裝置及其製造方法
CN207947017U (zh) 一种柔性透明显示屏
CN114023777B (zh) 电路板组件、发光组件及其制作方法
WO2021082132A1 (zh) 一种显示面板及显示装置
CN110783254A (zh) 一种芯片转移方法及半导体器件
CN113130466A (zh) Led显示模组及其制作方法
CN115394763A (zh) 显示模组及其制作方法
CN113809114B (zh) 一种led显示模组的制造方法及led显示模组
TWI792486B (zh) 顯示面板、顯示背板及其製作方法
CN114220902A (zh) Led光源组件及其制作方法
CN116154049A (zh) 显示模组的制作方法、显示模组以及返修方法
CN219123261U (zh) Led显示模组及led显示屏
WO2022236813A1 (zh) 显示面板、显示背板及其制作方法
WO2023000242A1 (zh) 电路板组件、发光组件及其制作方法
TWI751848B (zh) 電子元件的接合方法
WO2022236750A1 (zh) 芯片临时组件、显示面板及其制作方法
CN208271494U (zh) 一种led显示屏
CN111867245A (zh) 一种MiniLed基板、模组以及模组制作方法
CN113192433A (zh) 一种基于薄膜夹胶的led显示屏及制作工艺
JP3720524B2 (ja) 電極間の接続方法
WO2023070369A1 (zh) 一种微发光二极管显示器及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950497

Country of ref document: EP

Kind code of ref document: A1