WO2022270104A1 - インピーダンス測定装置およびインピーダンス測定方法 - Google Patents

インピーダンス測定装置およびインピーダンス測定方法 Download PDF

Info

Publication number
WO2022270104A1
WO2022270104A1 PCT/JP2022/015375 JP2022015375W WO2022270104A1 WO 2022270104 A1 WO2022270104 A1 WO 2022270104A1 JP 2022015375 W JP2022015375 W JP 2022015375W WO 2022270104 A1 WO2022270104 A1 WO 2022270104A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
current value
ammeter
circuit
Prior art date
Application number
PCT/JP2022/015375
Other languages
English (en)
French (fr)
Inventor
淳司 飯島
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022050094A external-priority patent/JP2023004862A/ja
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2022270104A1 publication Critical patent/WO2022270104A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to an impedance measuring device and an impedance measuring method capable of measuring the internal impedance of a battery as an object to be measured.
  • This impedance measuring device is configured to be able to measure the internal impedance of a battery, and includes an AC power supply unit that supplies an AC current for measurement, and an AC component of the voltage generated across the battery, which is amplified and measured at both ends. It is composed of an AC component amplifier that outputs a voltage and a calculator that calculates the internal impedance of the battery.
  • an AC power supply unit supplies an AC current for measurement to a battery as a measurement target.
  • an alternating current for measurement flows through the inside of the battery, and a voltage resulting from the addition of the alternating voltage resulting from the supply of the alternating current and the electromotive voltage of the battery is generated across the battery.
  • the AC component amplifying section amplifies only the AC component of the voltage generated across the battery and outputs a voltage value signal as the voltage across the battery to the computing section.
  • the calculation section receives the current value signal as the current value of the alternating current output from the AC power supply section and also receives the voltage value signal output from the AC component amplification section.
  • the calculator calculates the current value of the alternating current flowing through the battery based on the amplitude of the current value signal, and calculates the voltage value of the alternating current component generated across the battery based on the amplitude of the voltage value signal. Also, the calculation unit calculates a phase difference between the current value signal and the voltage value signal. After that, the calculation unit calculates the internal impedance of the battery based on the calculated current value, voltage value, and phase difference. In this manner, the impedance measuring device can measure the internal impedance of the battery.
  • the above impedance measurement device has the following problems. Specifically, for example, as shown in FIG. 3, let us measure the internal impedance Zb of the battery Bat1 in a circuit network NW1 configured by connecting one or more loads such as a motor in parallel to the battery Bat1 as the measurement object. However, it can be difficult to measure.
  • a circuit network NW1 configured by connecting one or more loads such as a motor in parallel to the battery Bat1 as the measurement object.
  • insulated wires are normally used for the connection conductors L1a and L1b for connecting the power source of the load Load1, and the base ends of the connection conductors L1a and L1b are connected to the load Load1 inside the load Load1.
  • connection conductors L2a and L2b are connected to the electrodes T1 and T2 of the battery Bat1, respectively.
  • an AC signal for measurement is supplied to each connection point between each power supply input portion of the load Load1 and each base end portion of the connection conductors L1a and L1b, and By measuring the voltage across the two connection points and by measuring the alternating current flowing between the tip end of the connection conductor L1a (or connection conductor L1b) and the electrode T1 (or electrode T2), the battery Bat1 It is conceivable to measure the internal impedance Zb of by the four-terminal method.
  • connection points of the connection conductors L1a and L1b exist inside the load Load1, a probe for supplying an AC signal for measurement and a probe for measuring voltage are connected at the connection points. (Contact) cannot be made, and the calculation of the internal impedance Zb by the calculation unit cannot be performed.
  • the electrodes T1 of a plurality of (for example, four in FIG. 4) batteries Bat1 to Bat4 are connected to each other by a bus bar BB1 made of a metal plate, and the batteries Bat1 to Bat4 are connected to each other.
  • a plurality of batteries Bat1 to Bat4 are connected in parallel by connecting the electrodes T2 with a bus bar BB2, which is also made of a metal plate, to form a ladder-shaped circuit network NW2 as a whole.
  • the current value of the AC current flowing only between the bus bar BB1 and the electrode T1 of the battery Bat2 is measured, and It is conceivable to measure the internal impedance Zb of the battery Bat2 by measuring the voltage between the bus bar BB2 by the four-terminal method.
  • the electrode T1 of the battery Bat2 and the bus bar BB1 are firmly connected by a metal plate, it is difficult to physically separate the electrode T1 of the battery Bat2 and the bus bar BB1. Therefore, the current value of the AC signal for measurement that flows only through the battery Bat2 cannot be measured, and the internal impedance Zb cannot be calculated by the calculation unit.
  • the present invention has been made in view of such problems, and an impedance measuring device capable of measuring the internal impedance of a battery to be measured in a state in which a load or another battery is connected in parallel to the battery to be measured.
  • the main object is to provide an impedance measurement method.
  • an impedance measuring apparatus supplies an alternating current for measurement across a circuit network configured by connecting one or more non-measuring objects in parallel to a battery to be measured.
  • a current detection circuit that detects the measurement current flowing through the battery when the measurement current is supplied as a detected current value; a voltage detection circuit that detects the generated alternating voltage as a detected voltage value; and an internal impedance of the battery based on the detected current value detected by the current detection circuit and the detected voltage value detected by the voltage detection circuit.
  • the current detection circuit comprises: a first ammeter capable of measuring the alternating current flowing across the network; and a parallel connection to the battery.
  • a clamp-type second ammeter capable of measuring the alternating current flowing through all of the non-measuring objects; and a differential current value detection circuit for detecting, as the detected current value, a differential current value obtained by subtracting the current value obtained from the differential current value.
  • an alternating current for measurement is supplied across a circuit network configured by connecting one or more non-measurement targets in parallel to a battery to be measured, and the measurement current is detecting the current for measurement flowing through the battery when supplied as a detected current value, detecting an alternating voltage generated across the battery when the current for measurement is supplied to the circuit network as a detected voltage value
  • An impedance measuring method for measuring the internal impedance of the battery based on the detected current value detected by the current detection circuit and the detected voltage value detected by the voltage detection circuit comprising: using a first ammeter and measuring the alternating current flowing through all of the non-measurable objects connected in parallel to the battery using a second clamp-type ammeter. , a difference current value obtained by subtracting the current value of the alternating current measured by the second ammeter from the current value of the alternating current measured by the first ammeter is detected as the detected current value.
  • the differential current value detection circuit of the current measuring circuit subtracts the current value measured by the second ammeter from the current value measured by the first ammeter.
  • the differential current value By detecting the differential current value as the detected current value, it is possible to reliably and easily measure the internal impedance of the battery in a state in which one or more non-measuring objects are connected in parallel to the battery to be measured.
  • the first ammeter is a clamp-type ammeter.
  • a clamp-type ammeter is used as the first ammeter.
  • the electrodes of a plurality of batteries are connected to each other by a bus bar composed of a metal plate.
  • a bus bar composed of a metal plate.
  • the processing unit controls the current source so that the difference current value is included in the target current value range, and the current value of the alternating current supplied to the circuit network is to adjust.
  • the current value of the alternating current supplied to the circuit network is adjusted so that the differential current value is included within the target current value range.
  • this impedance measuring device and impedance measuring method by adjusting the current value of the alternating current supplied to the circuit network (controlling the current source) so that the difference current value is within the target current value range, Since the ratio (S/N) of the signal level (S) to the noise level (N) of the detected current value or detected voltage value can be increased, the internal impedance can be measured with high accuracy.
  • the difference current value obtained by subtracting the current value measured by the second ammeter from the current value measured by the first ammeter is used as the detected current value.
  • FIG. 1 is a configuration diagram showing the configuration of an impedance measuring device 1;
  • FIG. It is a block diagram which shows a structure of 1 A of impedance measuring apparatuses.
  • 2 is a configuration diagram showing the configuration of a circuit network NW1;
  • FIG. 3 is a configuration diagram showing the configuration of a circuit network NW2;
  • FIG. 1 is a configuration diagram showing the configuration of an impedance measuring device 1;
  • FIG. It is a block diagram which shows a structure of 1 A of impedance measuring apparatuses.
  • 2 is a configuration diagram showing the configuration of a circuit network NW1;
  • FIG. 3 is a configuration diagram showing the configuration of a circuit network NW2;
  • the impedance measuring device 1 shown in FIG. 1 is an example of an “impedance measuring device” and includes one or more non-measured loads (in the figure, two loads Load1, Load1, Load 2) are connected in parallel, and the internal impedance Zb of the battery Bat1 in the circuit network NW1 can be measured. Since the circuit network NW1 shown in FIG. 1 is configured in the same manner as the circuit network NW1 shown in FIG. 3, the same components are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the impedance measuring device 1 as shown in FIG. configured as follows.
  • the components other than the probes P1, P2, probes P3, P4, and an ammeter 32, which will be described later, are housed in the device main body 100.
  • FIG. 1 the components other than the probes P1, P2, probes P3, P4, and an ammeter 32, which will be described later, are housed in the device main body 100.
  • FIG. 1 the components other than the probes P1, P2, probes P3, P4, and an ammeter 32, which will be described later, are housed in the device main body 100.
  • the probes P1 and P2 are contact-type probes whose tips are respectively connected (contacted) to the electrodes T1 and T2 of the battery Bat1 to supply an alternating current Iac for measurement, which will be described later.
  • the base end of the probe P2 is connected to one output of the current source 2 via a DC blocking capacitor C1, and the base end of the probe P2 is connected to the other output of the current source 2.
  • the probes P3 and P4 are generated across the battery Bat1 (between the electrodes T1 and T2) when the respective tips are connected (contacted) to the electrodes T1 and T2 of the battery Bat1 and the alternating current Iac is supplied.
  • a contact-type probe for measuring a voltage Vb as a voltage across the probe P3.
  • a base end of P4 is connected to the other input of the voltage measuring circuit 4 .
  • the current source 2 generates an AC signal S1 that is a sinusoidal signal for measuring the internal impedance Zb of the battery Bat1.
  • the current source 2 outputs an AC signal S1 between the probe P1 and the probe P2 via the capacitor C1, so that one or more non-measurement objects (in FIG. 1, two loads Load1, Load2) are connected in parallel to supply an alternating current Iac between both ends of a network NW1 (that is, between the electrodes T1 and T2 of the battery Bat1).
  • the current source 2 adjusts the signal level of the AC signal S1 to be output (also the current level of the AC current Iac) according to the control signal Sc output from the processing unit 5 .
  • the current measurement circuit 3 is a circuit for detecting, as a detected current value, an alternating current Iac flowing through the battery Bat1 when the alternating current Iac is supplied to the battery Bat1. ”), a second ammeter 32 (hereinafter also simply referred to as “ammeter 32 ”), and a differential current value detection circuit 33 .
  • the ammeter 31 is arranged between the other output of the current source 2 and the proximal end of the probe 2 to measure the alternating current flowing across the network NW1 (that is, the entire network NW1). Iac is measured and a current signal Sia indicating the measured AC current Iac is output to the differential current value detection circuit 33 .
  • the ammeter 31 may be configured to detect a current flowing through an internally provided shunt resistor and convert it into a voltage, or may be configured to have an internal arithmetic circuit to convert the current into a voltage. You may Also, an ammeter 31 may be arranged between one output of the current source 2 and the capacitor C1.
  • the ammeter 32 is a clamp-type ammeter that can clamp the connection leads L1 and L2 (coated internal metal leads) without contact, and all non-measuring targets connected in parallel to the battery Bat1 (Fig. In 1, the AC current Iac flowing through the two loads (Load1, Load2) is measured, and a current signal Sib representing the measured AC current Iac is output to the differential current value detection circuit 33.
  • a differential current value detection circuit 33 detects a differential current value obtained by subtracting the current value measured by the ammeter 32 from the current value measured by the ammeter 31 as a current detection signal Si (detected current value).
  • the probes P1 and P3 are connected to the electrode T1 of the battery Bat1
  • the probes P2 and P4 are connected to the electrode T2 of the battery Bat1, respectively, and both the connection conductors L1a and L2a and the connection conductors L1b and L1b are connected. 2b (in FIG.
  • the ammeter 31 measures the current value of the alternating current Iac flowing through the entire circuit network NW1, That is, the sum of the current value (I1) of the alternating current Iac flowing only through the battery Bat1, the current value (I2) of the alternating current Iac flowing through only the load Load1, and the current value (I3) of the alternating current Iac flowing through only the load Load2 Measure the value (I1+I2+I3).
  • the ammeter 32 measures the total value (I2+I3) of the current value (I2) of the alternating current Iac flowing only through the load Load1 and the current value (I3) of the alternating current Iac flowing only through the load Load2. Then, the difference current value detection circuit 33 subtracts the current value (I2+I3) measured by the ammeter 32 from the current value (I1+I2+I3) measured by the ammeter 31 to obtain the difference current value (I1) as the current detection signal Si. Detect and output.
  • Voltage measurement circuit 4 converts AC voltage Vb generated across battery Bat1 (between electrode T1 and electrode T2) when AC current Iac is supplied to battery Bat1 (circuit network NW1) into voltage detection signal Sv (detected voltage value ) is detected and output.
  • the processing unit 5 includes amplifier circuits 11 i and 11 v, filter circuits 12 i and 12 v, A/D conversion circuits 13 i and 13 v, and a processing circuit 14 .
  • the amplifier circuit 11i amplifies the current detection signal Si and outputs it to the filter circuit 12i.
  • the filter circuit 12i removes noise contained in the AC signal S1 amplified by the amplifier circuit 11i and outputs the AC signal S1 to the A/D conversion circuit 13i.
  • the A/D conversion circuit 13i performs A/D conversion (analog/digital conversion) on the current detection signal Si that has passed through the filter circuit 12i to generate current data Di indicating the voltage value, frequency and phase of the sinusoidal current detection signal Si. to the processing circuit 14 .
  • the amplifier circuit 11v amplifies the voltage detection signal Sv and outputs it to the filter circuit 12v.
  • the filter circuit 12v removes noise contained in the AC signal Sv amplified by the amplifier circuit 11v and outputs the signal to the A/D conversion circuit 13v.
  • the A/D conversion circuit 13v performs A/D conversion (analog/digital conversion) on the voltage detection signal Sv that has passed through the filter circuit 12v to generate voltage data Dv indicating the voltage value, frequency and phase of the sinusoidal voltage detection signal Sv. to the processing circuit 14 .
  • the processing circuit 14 is composed of, for example, a CPU, and receives the current data Di output from the A/D conversion circuit 13i and the voltage data Dv output from the A/D conversion circuit 13v.
  • the processing circuit 14 also calculates the internal impedance Zb of the battery Bat1 based on the input current data Di and voltage data Dv. Specifically, the processing circuit 14 calculates the current value (I) of the alternating current Iac flowing through the battery Bat1 based on the amplitude of the current detection signal Si included in the current data Di, and Based on the amplitude of the voltage detection signal Sv received, the voltage Vb across the battery Bat1 is calculated as the voltage value (V) of the AC signal S1.
  • the processing circuit 14 determines whether or not the calculated current value (I) of the alternating current Iac is within a target current value range (for example, 1 mA ⁇ 0.1 mA) necessary for measuring the battery Bat1. If not, it outputs a control signal Sc to the current source 2 to adjust the signal level of the AC signal S1 (the current level of the AC current Iac) so that it falls within the target current value range.
  • a target current value range for example, 1 mA ⁇ 0.1 mA
  • the output unit 6 is configured by, for example, a display device (display) such as a liquid crystal panel or an organic EL panel. Display Zb on the screen. It should be noted that the output unit 6 may be configured by an interface device that performs data communication with an external device instead of the display device, and may adopt a configuration that outputs impedance data indicating the internal impedance Zb to the external device.
  • a display device display
  • display Zb on the screen.
  • the output unit 6 may be configured by an interface device that performs data communication with an external device instead of the display device, and may adopt a configuration that outputs impedance data indicating the internal impedance Zb to the external device.
  • the impedance measuring method for measuring the internal impedance Zb of the battery Bat1 as the object to be measured by the impedance measuring device 1 will be described with reference to the accompanying drawings. It is assumed that the battery Bat1 and the loads Load1 and Load2 are already connected by connecting wires L1a, L1b, L2a and L2b.
  • the probes P1 and P3 are connected (contacted) to the electrode T1 of the battery Bat1, respectively, and the probes P2 and P4 are connected to the electrode T2 of the battery Bat1.
  • either one of both the connection conductors L1a and L2a and both the connection conductors L1b and 2b is clamped by the ammeter 32 . In this case, it is assumed that both of the connection conductors L1b and 2b are clamped.
  • the processing circuit 14 outputs the control signal Sc to control the current source 2 to generate the AC signal S1.
  • the current source 2 outputs the AC signal S1 via the capacitor C1 and the probes P1 and P2, thereby generating the AC signal S1 between the electrodes T1 and T2 of the battery Bat1 (between both ends of the network NW1). is applied to cause an alternating current Iac to flow across the network NW1.
  • an AC voltage Vb is generated between the electrodes T1 and T2 of the battery Bat1.
  • the voltage measurement circuit 4 inputs the voltage Vb through the probes P3 and P4 and the capacitor C2, and outputs it to the processing unit 5 as the voltage detection signal Sv.
  • the ammeter 31 measures the current value of the alternating current Iac flowing through the entire network NW1, that is, the current value (I1) flowing only through the battery Bat1 to be measured and only the load Load1 to be measured.
  • the total value (I1+I2+I3) of the current value (I2) of the flowing alternating current Iac and the current value (I3) of the alternating current Iac flowing only through the non-measured load Load2 is measured and used as the current signal Sia by a differential current value detection circuit. 33.
  • the entire network NW1 constitutes the "network" of the present invention.
  • the ammeter 31 measures the alternating current Iac flowing "across the network".
  • Ammeter 32 measures alternating current Iac flowing through all non-measuring objects (two loads Load1 and Load2) connected in parallel to battery Bat1 to be measured. Specifically, the ammeter 32 measures the total value (I2+I3) of the current value (I2) of the alternating current Iac flowing only through the load Load1 and the current value (I3) of the alternating current Iac flowing only through the load Load2. It is output to the differential current value detection circuit 33 as a current signal Sib.
  • the differential current value detection circuit 33 subtracts the current value (I2+I3) measured by the ammeter 32 from the current value (I1+I2+I3) measured by the ammeter 31, and the current value (I1 ) is detected as a current detection signal Si and output to the processing unit 5 .
  • the amplifier circuit 11i amplifies the current detection signal Si and outputs it to the filter circuit 12i, and the filter circuit 12i removes noise contained in the AC signal S1 amplified by the amplifier circuit 11i. and output to the A/D conversion circuit 13i. Further, the A/D conversion circuit 13i A/D-converts the current detection signal Si that has passed through the filter circuit 12i and outputs the current data Di to the processing circuit 14 . Further, the amplifier circuit 11v amplifies the voltage detection signal Sv and outputs it to the filter circuit 12v. Output to the conversion circuit 13v. In addition, the A/D conversion circuit 13v A/D-converts the voltage detection signal Sv that has passed through the filter circuit 12v and outputs voltage data Dv to the processing circuit 14 .
  • the processing circuit 14 outputs the display data Dd to the output section 6 and causes the display device of the output section 6 to display the calculated internal impedance Zb. As described above, the calculation processing of the internal impedance Zb by the processing circuit 14 using the four-terminal method is completed.
  • the processing circuit 14 determines whether or not the calculated current value (I) of the alternating current Iac is within the target current value range necessary for measuring the battery Bat1, When not included, the control signal Sc is output to the current source 2 to adjust the signal level of the AC signal S1 (the current level of the AC current Iac) so that it is included within the target current value range. As a result, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal Si and the voltage detection signal Sv is increased.
  • the internal impedance Zb is well measured.
  • the current value of the alternating current Iac measured by the ammeter 31 is converted by the ammeter 32 (second ammeter) to By detecting the difference current value obtained by subtracting the current value of the alternating current Iac flowing through all of the measured one or more non-measurement loads Load1 and Load2 as the current detection signal Si, the battery Bat1 to be measured is It is possible to reliably and easily measure the internal impedance Zb of the battery Bat1 in a state in which one or more non-measurement loads Load1 and Load2 are connected in parallel.
  • the impedance measuring device 1A which is another example of the "impedance measuring device" will be described with reference to FIG.
  • Components having the same functions as those of the components in the impedance measuring apparatus 1 described above are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the impedance measuring device 1A is an example of an "impedance measuring device", and is configured by connecting one or more non-measurement batteries in parallel to one battery to be measured. It is configured to be able to measure the internal impedance of the battery.
  • the battery Bat2 is the object to be measured, and the other batteries Bat1, Bat3, and Bat4 are the batteries not to be measured.
  • the circuit network NW2 shown in FIG. 2 is configured in the same manner as the circuit network NW2 shown in FIG. 4, the same constituent elements are denoted by the same reference numerals and redundant explanations are omitted.
  • the impedance measuring device 1A includes a pair of probes P1 and P2, a pair of probes P3 and P4, a current source 2, a current measuring circuit 3A, a voltage measuring circuit 4, a processing section 5 and an output section 6, as shown in FIG. configured as follows.
  • the components other than probes P1, P2, probes P3, P4, and ammeters 31, 32, which will be described later, are housed within the apparatus main body 100A.
  • the impedance measuring device 1A differs from each component of the impedance measuring device 1 in the following points.
  • the ammeter 32 of the current measuring circuit 3 is configured similarly to the bus bar BB1 or BB2. is configured with a clamp-type ammeter 34 (first ammeter) capable of clamping .
  • the differential current value detection circuit 33 of the current measurement circuit 3A detects and processes the differential current value obtained by subtracting the current value measured by the ammeter 32 from the current value measured by the ammeter 34 as a current detection signal Si. Output to part 5.
  • the proximal end of the probe 2 is directly connected to the other output of the current source 2 .
  • the impedance measuring method for measuring the internal impedance Zb of the battery Bat2 as the object to be measured by the impedance measuring device 1A will be described with reference to FIG. It is assumed that the electrodes T1 of the batteries Bat1 to Bat4 are connected to a metal plate bus bar BB1, and the electrodes T2 of the batteries Bat1 to Bat4 are connected to a metal plate bus bar BB2.
  • the probes P1 and P3 are connected (contacted) to the ends of the bus bar BB1 (the leftmost end in the example of FIG. 2), and the probes P2 and P4 are connected to the ends of the bus bar BB2 (the leftmost end in the example of FIG. 2). , leftmost end), respectively.
  • the ammeters 32 and 33 clamp the busbars BB1 and BB2.
  • the ammeter 34 consists of one output of the current source 2, the capacitor C1, the probe P1, the bus bar BB1, the battery Bat2 to be measured, the bus bar BB2, the probe P2, and the other output of the current source 2.
  • any point on the busbars BB1, BB2 that forms only the largest closed loop from the connection (contact) position of the probes P1, P2 on the busbars BB1, BB2 (that is, the supply position of the alternating current Iac) (hereinafter referred to as "clamping point ) is clamped.
  • the ammeter 34 is clamped between the connection point of the electrode T2 of the battery Bat1 and the connection point of the electrode T2 of the battery Bat2 in the bus bar BB2.
  • the ammeter 34 may be clamped between the connection point of the electrode T1 of the battery Bat1 and the connection point of the electrode T1 of the battery Bat2 in the bus bar BB1.
  • the ammeter 32 the current value of the alternating current Iac flowing through the battery Bat2 was subtracted from the current value of the alternating current Iac measured by the ammeter 34 when the clamped portion was clamped by the ammeter 34. A portion where the alternating current Iac of the current value flows is clamped. Specifically, in the example of FIG. 1, the ammeter 32 is measured between the connection point of the electrode T1 of the battery Bat2 on the bus bar BB1 and the connection point of the electrode T1 of the battery Bat3 on the bus bar BB1, and between the electrode T2 of the battery Bat2 on the bus bar BB2. and the connection point of the electrode T2 of the battery Bat3 is clamped. In addition, in the same figure, an example of clamping is shown between the connecting portion of the electrode T2 of the battery Bat2 and the connecting portion of the electrode T2 of the battery Bat3 in the bus bar BB2.
  • the processing circuit 14 outputs the control signal Sc to control the current source 2 to generate the AC signal S1.
  • the current source 2 outputs the AC signal S1 via the capacitor C1 and the probes P1 and P2, so that the AC signal S1 is applied between the bus bars BB1 and BB2 (both ends of the network NW2).
  • an alternating current Iac flows across the network NW2.
  • an alternating current Iac having a current value (I1) flows through the battery Bat1
  • an alternating current Iac having a current value (I2) flows through the battery Bat2
  • an alternating current Iac having a current value (I3) flows through the battery Bat3.
  • the ammeter 34 measures the current value of the alternating current Iac flowing through at least the battery Bat2 to be measured in the network NW2, that is, the current value (I2) flowing only through the battery Bat2 to be measured, and The total value (I2+I3+I4) of the current value (I3) of the alternating current Iac flowing only through the target battery Bat3 and the current value (I4) of the alternating current Iac flowing through only the non-measured battery Bat4 is measured to obtain the current signal Si1. is output to the differential current value detection circuit 33 as.
  • the circuit network NW2A in which the battery Bat2 to be measured, the battery Bat3 to be measured, and the battery Bat4 to be measured, excluding the battery Bat1 not to be measured in the circuit network NW2, are connected in parallel is the "circuit network ” constitutes.
  • Ammeter 34 thus measures the alternating current Iac flowing "across the network”.
  • Ammeter 32 measures alternating current Iac flowing through all non-measuring objects (two batteries Bat3 and Bat4) in circuit network NW2A connected in parallel to battery Bat2 to be measured.
  • the ammeter 32 measures the sum of the current value (I3) of the alternating current Iac flowing only through the non-measured battery Bat3 and the current value (I4) of the alternating current Iac flowing only through the non-measured battery Bat4.
  • a value (I3+I4) is measured and output to the differential current value detection circuit 33 as a current signal Si2.
  • the differential current value detection circuit 33 detects the current value (I2 ) is detected as a current detection signal Si and output to the processing unit 5 .
  • the amplifier circuit 11i amplifies the current detection signal Si and outputs it to the filter circuit 12i, and the filter circuit 12i removes noise contained in the AC signal S1 amplified by the amplifier circuit 11i. and output to the A/D conversion circuit 13i. Further, the A/D conversion circuit 13i A/D-converts the current detection signal Si that has passed through the filter circuit 12i and outputs the current data Di to the processing circuit 14 . Further, the amplifier circuit 11v amplifies the voltage detection signal Sv and outputs it to the filter circuit 12v. Output to the conversion circuit 13v. In addition, the A/D conversion circuit 13v A/D-converts the voltage detection signal Sv that has passed through the filter circuit 12v and outputs voltage data Dv to the processing circuit 14 .
  • the processing circuit 14 calculates the current value (I) of the alternating current Iac flowing through the battery Bat2 based on the current data Di, and also calculates the voltage Vb across the bus bars BB1 and BB2 (that is, the voltage Vb of the battery Bat2 based on the voltage data Dv). (between the electrodes T1 and T2) is calculated as the voltage value (V) of the AC signal S1. Based on the current data Di and the voltage data Dv, the processing circuit 14 determines the phase difference ( ⁇ ) between the current detection signal Si and the voltage detection signal Sv, that is, the alternating current Iac and the voltage Vb (alternating current) generated across the battery Bat2. A phase difference ( ⁇ ) from the signal S1) is calculated.
  • the processing circuit 14 determines whether or not the calculated current value (I) of the alternating current Iac is included in the target current value range necessary for measuring the battery Bat2 in the process of calculating the internal impedance Zb,
  • the control signal Sc is output to the current source 2 to adjust the signal level of the AC signal S1 (the current level of the AC current Iac) so that it is included within the target current value range.
  • the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal Si and the voltage detection signal Sv is increased.
  • the internal impedance Zb is well measured.
  • the circuit network NW2 in which the battery Bat1 and non-measurement batteries Bat2, Bat3, and Bat4 are connected in parallel constitutes the "circuit network" of the present invention.
  • the ammeter 34 consists of one output section of the current source 2, a capacitor C1, a probe P1, a bus bar BB1, a battery Bat1 to be measured, a bus bar BB2, a probe P2, and the other output section of the current source 2.
  • any point on the busbars BB1, BB2 that forms only the largest closed loop from the connection (contact) position of the probes P1, P2 on the busbars BB1, BB2 (that is, the supply position of the alternating current Iac) (hereinafter referred to as "clamping point ) is clamped.
  • clamp point any point on the busbars BB1, BB2 that forms only the largest closed loop from the connection (contact) position of the probes P1, P2 on the busbars BB1, BB2 (that is, the supply position of the alternating current Iac)
  • clamp point is clamped.
  • FIG. 2 for the ammeter 34, between the end of the bus bar BB1 (the leftmost end in the example of FIG. 2) and the connection point between the electrode T1 of the battery Bat1 and the bus bar BB1, and the end of the bus bar BB2. Either the portion (the leftmost end portion in the example of the figure) and the connection portion between the electrode T2 of the battery Bat1 and the bus
  • the ammeter 32 As for the ammeter 32, the current value of the alternating current Iac flowing through the battery Bat1 was subtracted from the current value of the alternating current Iac measured by the ammeter 34 when the clamped portion was clamped by the ammeter 34. A portion where the alternating current Iac of the current value flows is clamped. Specifically, in the example of FIG. 2, the ammeter 32 is measured between the connection point of the electrode T1 of the battery Bat1 and the connection point of the electrode T1 of the battery Bat2 on the bus bar BB1, and between the electrode T2 of the battery Bat1 on the bus bar BB2. and the connection point of the electrode T2 of the battery Bat2 is clamped.
  • the circuit network NW2B in which the battery Bat3 and the non-measurement battery Bat4 are connected in parallel constitutes the "circuit network" of the present invention.
  • the ammeter 34 consists of one output of the current source 2, the capacitor C1, the probe P1, the bus bar BB1, the battery Bat3 to be measured, the bus bar BB2, the probe P2, and the other output of the current source 2.
  • any point on the busbars BB1, BB2 that forms only the largest closed loop from the connection (contact) position of the probes P1, P2 on the busbars BB1, BB2 that is, the supply position of the alternating current Iac) (hereinafter referred to as "clamping point ) is clamped.
  • connection point of the electrode T1 of the battery Bat2 and the connection point of T1 of the battery Bat3 on the bus bar BB1 Clamp either point between the connection points of T2.
  • the bus bar BB1 is located between the connection point of the electrode T1 of the battery Bat1 and the connection point of T1 of the battery Bat2 in the bus bar BB1, and the connection point of the electrode T2 of the battery Bat1 and the electrode T2 of the battery Bat2 in the bus bar BB2.
  • BB2 from the connection (contact) position of the probes P1, P2, as well as one output of the current source 2, the capacitor C1, the probe P1, the busbar BB1, the battery Bat2, the busbar BB2, the probe P2, and the It also forms another closed loop consisting of the other output of the current source 2 and therefore does not apply to the clamping point.
  • the current value of the alternating current Iac flowing through the battery Bat3 was subtracted from the current value of the alternating current Iac measured by the ammeter 34 when the clamped portion was clamped by the ammeter 34. A portion where the alternating current Iac of the current value flows is clamped.
  • the ammeter 32 is measured between the connection point of the electrode T1 of the battery Bat3 on the bus bar BB1 and the connection point of the electrode T1 of the battery Bat4 on the bus bar BB1, and between the electrode T2 of the battery Bat3 on the bus bar BB2. and the connection point of the electrode T2 of the battery Bat4 is clamped.
  • the ammeter 34 When the battery Bat4 is to be measured, the ammeter 34 includes one output of the current source 2, the capacitor C1, the probe P1, the bus bar BB1, the battery Bat4 to be measured, the bus bar BB2, the probe P2, and the current source. 2 and forms only the largest closed loop from the connection (contact) position of the probes P1 and P2 on the busbars BB1 and BB2 (hereinafter, "clamping point"). ) is clamped.
  • clamp point the ammeter 34, between the connection point of the electrode T1 of the battery Bat3 and the connection point of T1 of the battery Bat4 on the bus bar BB1, and between the connection point of the electrode T2 of the battery Bat3 and the electrode of the battery Bat4 on the bus bar BB2.
  • the current value (I4) measured by the ammeter 34 is output to the differential current value detection circuit 33 without using the ammeter 32, so that the current flowing only through the battery Bat4 to be measured is The value (I4) is output from the differential current value detection circuit 33 to the processing unit 5 as the current detection signal Si.
  • the impedance measuring device 1A and the impedance measuring method from the current value of the alternating current Iac measured by the ammeter 34 (first ammeter), the ammeter 32 (second ammeter) By detecting the difference current value obtained by subtracting the current value of the measured alternating current Iac as the current detection signal Si, one or more non-measurement batteries (in the above example, for example , batteries Bat1, Bat3, and Bat4) are connected in parallel, the internal impedance Zb of the battery Bat2 can be reliably and easily measured.
  • one or more non-measurement batteries in the above example, for example , batteries Bat1, Bat3, and Bat4
  • the impedance measuring device 1A and the impedance measuring method by using the ammeter 34 (first ammeter) configured by a clamp-type ammeter, a plurality (four in this example) of the batteries Bat1 to The electrodes T1 of Bat4 are connected to each other by a bus bar BB1 made of a metal plate, and the electrodes T2 of the batteries Bat1 to Bat4 are connected to each other by a bus bar BB2 made of a metal plate.
  • ⁇ Bat4 are connected in parallel to form a ladder-shaped network NW2 as a whole, and the internal impedance Zb of the battery to be measured (in the above example, battery Bat2, etc.) can be reliably and easily measured. can.
  • the circuits NW1 and NW2 By adjusting the current value of the alternating current Iac supplied to NW2A) (controlling the current source 2), the noise level (N) of the current detection signal Si (detected current value) and voltage detection signal Sv (detected voltage value) Since the ratio (S/N) of the signal level (S) to the signal level (S) can be increased, the internal impedance Zb can be measured with high accuracy in the calculation process of the internal impedance Zb performed by the processing circuit 14 .
  • the impedance measuring device 1 and the impedance measuring method described above an example of measuring the internal impedance Zb of the battery Bat1 in the circuit network NW1 in which the two loads Load1 and Load2 as non-measurement objects are connected in parallel to the battery Bat1 as the measurement object.
  • the internal impedance Zb of the battery Bat1 in a circuit network in which one or more loads as non-measurement targets are connected in parallel to the battery Bat1 can also be measured by applying the above measurement method.
  • the inside of the battery Bat12 in the circuit network NW2 in which three non-measured batteries Bat1, Bat3, and Bat4 are connected in parallel with the battery Bat2 to be measured An example of measuring the impedance Zb has been described. can also be measured by
  • the processing unit 5 of the impedance measuring devices 1 and 1A an example of performing the impedance calculation of the internal impedance Zb of the batteries Bat1 to Bat4 by digital processing has been described, but based on the current detection signal Si and the voltage detection signal Sv, analog It is also possible to employ a configuration in which the internal impedance Zb is obtained by analog calculation using a circuit.
  • the present invention it is possible to reliably and easily measure the internal impedance of a battery in which one or more non-measurement objects are connected in parallel to the battery to be measured. Accordingly, the present invention can be widely applied to such an impedance measurement apparatus and impedance measurement method.
  • Reference Signs List 1 1A impedance measuring device 2 current source 3 current measuring circuit 31 ammeter 32 ammeter 33 differential current value detecting circuit 4 voltage measuring circuit 5 processing unit Bat1 to Bat4 battery Load1, Load2 load NW1, NW2, NW2A circuit network Si current detection Signal Sv Voltage detection signal Zb Internal impedance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

測定対象の電池に負荷が並列接続されている状態におけるその電池の内部インピーダンスを測定可能なインピーダンス測定装置を提供する。 交流電流Iacを回路網NW1に供給する電流源2と、電池Bat1に流れる交流電流Iacを電流検出信号Siとして検出する電流測定回路3と、電池Bat1の両端に発生する電圧Vbを電圧検出信号Svとして検出する電圧測定回路4と、電流検出信号Siと電圧検出信号Svとに基づいて電池Bat1の内部インピーダンスZbを測定する処理部5とを備え、電流検出回路3は、回路網NW1を流れる交流電流Iacを測定可能な電流計31と、負荷Load1,Load2を流れる交流電流Iacを測定可能なクランプ型の電流計32と、電流計31で測定された電流値から電流計32で測定された電流値を差し引いた差分電流値を電流検出信号Siとして検出する差分電流値検出回路33とを備えている。

Description

インピーダンス測定装置およびインピーダンス測定方法
 本発明は、測定対象としての電池の内部インピーダンスを測定可能なインピーダンス測定装置およびインピーダンス測定方法に関するものである。
 この種のインピーダンス装置として、下記の特許文献に開示されたインピーダンス測定装置が知られている。このインピーダンス測定装置は、電池の内部インピーダンスを測定可能に構成されており、測定用の交流電流を供給する交流電源供給部と、電池の両端に発生する電圧のうちの交流成分を増幅して両端電圧として出力する交流成分増幅部と、電池の内部インピーダンスを演算する演算部とを備えて構成されている。
 このインピーダンス測定装置では、交流電源供給部が、測定対象としての電池に測定用の交流電流を供給する。この際には、測定用の交流電流が電池内部を流れることにより、その交流電流の供給に起因する交流電圧と電池の起電圧とを加算した電圧が電池の両端に発生する。そして、交流成分増幅部が、電池の両端に発生する電圧のうちの交流成分だけを増幅して両端電圧としての電圧値信号を演算部に出力する。次いで、演算部が、交流電源供給部から出力される交流電流の電流値としての電流値信号を入力すると共に交流成分増幅部から出力される電圧値信号を入力する。そして、演算部は、電流値信号の振幅に基づいて電池を流れる交流電流の電流値を算出すると共に、電圧値信号の振幅に基づいて電池の両端に発生した交流成分の電圧値を算出する。また、演算部は、電流値信号および電圧値信号の位相差を算出する。その後、演算部は、算出した電流値、電圧値および位相差に基づいて、電池の内部インピーダンスを演算する。このようにして、このインピーダンス測定装置では、電池の内部インピーダンスの測定が可能となっている。
特開2006-343108号公報(第4-8、第1図)
 ところが、上記のインピーダンス測定装置には、以下のような課題が存在する。具体的には、例えば、図3に示すように、測定対象としての電池Bat1に、モータなどの負荷が1以上並列接続されて構成された回路網NW1において、電池Bat1の内部インピーダンスZbを測定しようとしも、その測定が困難なことがある。なお、同図では、1以上の負荷として、2つの負荷Load1,Load2が電池Bat1に並列接続されている例を示している。より具体的には、通常、負荷Load1の電源接続の接続導線L1a,L1bには絶縁被覆電線が用いられており、接続導線L1a,L1bの各基端部は、負荷Load1の内部において、負荷Load1の図示しない一対の電源入力部にそれぞれ接続されている。そして、接続導線L1a,L1bの各先端部が電池Bat1の正極としての電極T1および負極としての電極T2にそれぞれ接続される。同様にして、負荷Load2の電源接続の接続導線L2a,L2bにも絶縁被覆電線が用いられており、接続導線L2a,L2bの各基端部は、負荷Load2の内部において、負荷Load2の図示しない一対の電源入力部にそれぞれ接続されている。そして、接続導線L2a,L2bの各先端部が電池Bat1の電極T1および電極T2にそれぞれ接続される。
 このような回路網NW1における電池Bat1の内部インピーダンスZbを測定しようとしたときには、電極T1と電極T2の間に測定用の交流信号を供給した際に、電池Bat1だけではなく、負荷Load1,Load2にも測定用の交流信号が流れることになる。このため、電池Bat1だけを流れる電流値が不明となるため、演算部による内部インピーダンスZbの演算を行うことができないという課題が存在する。
 この場合、例えば、負荷として1つの負荷Load1だけのときには、負荷Load1の各電源入力部と接続導線L1a,L1bの各基端部とのそれぞれの接続箇所に測定用の交流信号を供給すると共に、その2つの接続箇所間の両端電圧を測定し、かつ接続導線L1a(または接続導線L1b)の先端部端と電極T1(または電極T2)との間を流れる交流電流を測定することで、電池Bat1の内部インピーダンスZbを四端子法で測定することが考えられる。しかしながら、接続導線L1a,L1bの各接続箇所が、負荷Load1の内部に存在しているため、その接続箇所において、測定用の交流信号の供給のためのプローブや、電圧測定のためのプローブを接続(接触)させることができず、やはり演算部による内部インピーダンスZbの演算を行うことができないことになる。
 同様にして、図4に示すように、複数(例えば、同図では4つ)の電池Bat1~Bat4の各電極T1同士が金属板で構成されたバスバーBB1で接続されると共に電池Bat1~Bat4の各電極T2同士が同じく金属板で構成されたバスバーBB2で接続されることにより、複数の電池Bat1~Bat4が並列に接続されて全体として梯子形の回路網NW2が構成されていることがある。このような回路網NW2における例えば電池Bat2の内部インピーダンスZbを測定しようとしたときには、バスバーBB1とバスバーBB2との間に測定用の交流信号を供給した際に、すべての電池Bat1~Bat4に測定用の交流信号が流れることになる。このため、電池Bat2だけを流れる電流値が不明となるため、演算部による内部インピーダンスZbの演算を行うことができないという課題が存在する。
 この場合、例えば、バスバーBB1とバスバーBB2との間に測定用の交流信号を供給しつつ、バスバーBB1と電池Bat2の電極T1との間だけを流れる交流電流の電流値を測定すると共にバスバーBB1とバスバーBB2との間の電圧を四端子法で測定することで、電池Bat2の内部インピーダンスZbを測定することが考えられる。しかしながら、電池Bat2の電極T1とバスバーBB1とは金属板で強固に接続されているため、電池Bat2の電極T1とバスバーBB1とを物理的に分離することが困難である。このため、電池Bat2だけを流れる測定用の交流信号の電流値を測定することができず、やはり演算部による内部インピーダンスZbの演算を行うことができないことになる。
 本発明は、かかる課題に鑑みてなされたものであり、測定対象の電池に対して負荷や他の電池が並列接続されている状態における測定対象の電池の内部インピーダンスを測定可能なインピーダンス測定装置およびインピーダンス測定方法を提供することを主目的とする。
 上記目的を達成すべく、本発明に係るインピーダンス測定装置は、測定対象の電池に1以上の非測定対象が並列接続されて構成される回路網の両端間に交流の測定用電流を供給する電流源と、前記測定用電流を供給したときに前記電池に流れる当該測定用電流を検出電流値として検出する電流検出回路と、前記測定用電流を前記回路網に供給したときに前記電池の両端に発生する交流電圧を検出電圧値として検出する電圧検出回路と、前記電流検出回路によって検出された前記検出電流値と前記電圧検出回路によって検出された前記検出電圧値とに基づいて前記電池の内部インピーダンスを測定する処理部とを備えているインピーダンス測定装置であって、前記電流検出回路は、前記回路網の両端間を流れる前記交流電流を測定可能な第1の電流計と、前記電池に並列接続されている前記非測定対象の全てを流れる前記交流電流を測定可能なクランプ型の第2の電流計と、前記第1の電流計で測定された電流値から前記第2の電流計で測定された電流値を差し引いた差分電流値を前記検出電流値として検出する差分電流値検出回路とを備えて構成されている。
 また、本発明に係るインピーダンス測定方法は、測定対象の電池に1以上の非測定対象が並列接続されて構成される回路網の両端間に交流の測定用電流を供給し、前記測定用電流を供給したときに前記電池に流れる当該測定用電流を検出電流値として検出し、前記測定用電流を前記回路網に供給したときに前記電池の両端に発生する交流電圧を検出電圧値として検出し、前記電流検出回路によって検出された前記検出電流値と前記電圧検出回路によって検出された前記検出電圧値とに基づいて前記電池の内部インピーダンスを測定するインピーダンス測定方法であって、前記回路網の両端間を流れる前記交流電流を第1の電流計を用いて測定すると共に前記電池に並列接続されている前記非測定対象の全てを流れる前記交流電流をクランプ型の第2の電流計を用いて測定し、前記第1の電流計で測定された前記交流電流の電流値から前記第2の電流計で測定された前記交流電流の電流値を差し引いた差分電流値を前記検出電流値として検出する。
 このインピーダンス測定装置およびインピーダンス測定方法によれば、電流測定回路の差分電流値検出回路が、第1の電流計によって測定された電流値から、第2の電流計によって測定された電流値を差し引いた差分電流値を検出電流値として検出することにより、測定対象の電池に対して1以上の非測定対象が並列接続されている状態における電池の内部インピーダンスを確実かつ簡単に測定することができる。
 また、本発明に係るインピーダンス測定装置は、前記第1の電流計は、クランプ型の電流計で構成されている。
 また、本発明に係るインピーダンス測定方法は、前記第1の電流計としてクランプ型の電流計を用いる。
 このインピーダンス測定装置およびインピーダンス測定方法によれば、クランプ型の電流計で構成した第1の電流計を用いることにより、例えば、複数の電池の各電極同士が金属板で構成されたバスバーで接続されることにより、複数の電池が並列に接続されて全体として梯子形の回路網が構成されている場合における測定対象の電池の内部インピーダンスを確実かつ簡単に測定することができる。
 また、本発明に係るインピーダンス測定装置は、前記処理部は、前記差分電流値が目標電流値範囲内に含まれるように、前記電流源を制御して前記回路網に供給する交流電流の電流値を調整する。
 また、本発明に係るインピーダンス測定方法は、前記差分電流値が目標電流値範囲内に含まれるように、前記回路網に供給する交流電流の電流値を調整する。
 このインピーダンス測定装置およびインピーダンス測定方法によれば、差分電流値が目標電流値範囲内に含まれるように、回路網に供給する交流電流の電流値を調整する(電流源を制御)することにより、検出電流値や検出電圧値の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができるため、精度良く内部インピーダンスを測定することができる。
 本発明に係るインピーダンス測定装置およびインピーダンス測定方法によれば、第1の電流計によって測定された電流値から、第2の電流計によって測定された電流値を差し引いた差分電流値を検出電流値として検出することにより、測定対象の電池に対して1以上の非測定対象が並列接続されている状態における電池の内部インピーダンスを確実かつ簡単に測定することができる。
インピーダンス測定装置1の構成を示す構成図である。 インピーダンス測定装置1Aの構成を示す構成図である。 回路網NW1の構成を示す構成図である。 回路網NW2の構成を示す構成図である。
 以下、インピーダンス測定装置およびインピーダンス測定方法の実施の形態について、添付図面を参照して説明する。
 図1に示すインピーダンス測定装置1は、「インピーダンス測定装置」の一例であって、測定対象の電池Bat1に対して1以上の非測定対象である負荷(同図では、一例として2つの負荷Load1,Load2)が並列接続されて構成された回路網NW1における電池Bat1の内部インピーダンスZbを測定可能に構成されている。なお、図1に示す回路網NW1は、上記した図3に示す回路網NW1と同様に構成されているため、同一の構成要素については、同一の符号を付して重複した説明を省略する。
 インピーダンス測定装置1は、図1に示すように、一対のプローブP1,P2、一対のプローブP3,P4、電流源2、電流測定回路3、電圧測定回路4、処理部5および出力部6を備えて構成されている。この場合、プローブP1,P2、プローブP3,P4および後述する電流計32を除く他の構成要素は、装置本体100内に収容されている。
 プローブP1,P2は、各先端部が電池Bat1の電極T1,T2にそれそれ接続(接触)されて後述する測定用の交流電流Iacを供給するための接触型のプローブであって、プローブP1の基端部が直流通過阻止用のコンデンサC1を介して電流源2の一方の出力部に接続され、プローブP2の基端部が電流源2の他方の出力部に接続されている。プローブP3,P4は、各先端部が電池Bat1の電極T1,T2にそれそれ接続(接触)されて交流電流Iacが供給されたときに電池Bat1の両端(電極T1および電極T2間)に発生する両端電圧としての電圧Vbを測定するための接触型のプローブであって、プローブP3の基端部が直流通過阻止用のコンデンサC2を介して電圧測定回路4の一方の入力部に接続され、プローブP4の基端部が電圧測定回路4の他方の入力部に接続されている。
 電流源2は、電池Bat1の内部インピーダンスZbを測定するための正弦波信号である交流信号S1を生成する。また、電流源2は、コンデンサC1を介してプローブP1およびプローブP2間に交流信号S1を出力することにより、測定対象の電池Bat1に1以上の非測定対象(図1では、2つの負荷Load1,Load2)が並列接続されて構成される回路網NW1の両端間(つまり電池Bat1の電極T1,T2間)に交流電流Iacを供給する。また、電流源2は、処理部5から出力される制御信号Scに従い、出力する交流信号S1の信号レベル(交流電流Iacの電流レベルでもある)を調整する。
 電流測定回路3は、電池Bat1に交流電流Iacを供給したときに電池Bat1に流れる交流電流Iacを検出電流値として検出する回路であって、第1の電流計31(以下、単に「電流計31」ともいう)、第2の電流計32(以下、単に「電流計32」ともいう)および差分電流値検出回路33を備えて構成されている。この場合、電流計31は、電流源2の他方の出力部と、プローブ2の基端部との間に配置されて、回路網NW1の両端間(つまり、回路網NW1全体)を流れる交流電流Iacを測定すると共にその測定した交流電流Iacを示す電流信号Siaを差分電流値検出回路33に出力する。この場合、この電流計31としては、内部に配設したシャント抵抗を流れる電流を検出して電圧に変換する構成でもよいし、内部に演算回路を有して電流から電圧に変換する構成を採用してもよい。また、電流源2の一方の出力部と、コンデンサC1との間に電流計31を配置してもよい。
 電流計32は、接続導線L1,L2(被覆された内部の金属導線)を非接触でクランプ可能なクランプ型の電流計で構成され、電池Bat1に並列接続されている非測定対象の全て(図1では、2つの負荷Load1,Load2)を流れる交流電流Iacを測定すると共にその測定した交流電流Iacを示す電流信号Sibを差分電流値検出回路33に出力する。差分電流値検出回路33は、電流計31で測定された電流値から電流計32で測定された電流値を差し引いた差分電流値を電流検出信号Si(検出電流値)として検出する。
 この電流測定回路3では、プローブP1,P3を電池Bat1の電極T1にそれぞれ接続すると共にプローブP2,P4を電池Bat1の電極T2にそれぞれ接続し、かつ接続導線L1a,L2aの両者および接続導線L1b,2bの両者のいずれか一方(図1では、接続導線L1b,2bの両者)を電流計32にクランプさせた測定状態において、電流計31が、回路網NW1全体を流れる交流電流Iacの電流値、すなわち電池Bat1のみを流れる交流電流Iacの電流値(I1)と、負荷Load1のみを流れる交流電流Iacの電流値(I2)と、負荷Load2のみを流れる交流電流Iacの電流値(I3)との合計値(I1+I2+I3)を測定する。また、電流計32が、負荷Load1のみを流れる交流電流Iacの電流値(I2)と、負荷Load2のみを流れる交流電流Iacの電流値(I3)の合計値(I2+I3)を測定する。そして、差分電流値検出回路33が、電流計31で測定された電流値(I1+I2+I3)から電流計32で測定された電流値(I2+I3)を差し引いた差分電流値(I1)を電流検出信号Siとして検出して出力する。
 電圧測定回路4は、交流電流Iacを電池Bat1(回路網NW1)に供給したときに電池Bat1の両端(電極T1および電極T2間)に発生する交流の電圧Vbを電圧検出信号Sv(検出電圧値)として検出して出力する。
 処理部5は、増幅回路11i,11v、フィルタ回路12i,12v、A/D変換回路13i,13vおよび処理回路14を備えて構成されている。この場合、増幅回路11iは、電流検出信号Siを増幅してフィルタ回路12iに出力する。フィルタ回路12iは、増幅回路11iで増幅された交流信号S1に含まれているノイズを除去してA/D変換回路13iに出力する。A/D変換回路13iは、フィルタ回路12iを通過した電流検出信号SiをA/D変換(アナログ/デジタル変換)して正弦波の電流検出信号Siの電圧値、周波数および位相を示す電流データDiを処理回路14に出力する。増幅回路11vは、電圧検出信号Svを増幅してフィルタ回路12vに出力する。フィルタ回路12vは、増幅回路11vで増幅された交流信号Svに含まれているノイズを除去してA/D変換回路13vに出力する。A/D変換回路13vは、フィルタ回路12vを通過した電圧検出信号SvをA/D変換(アナログ/デジタル変換)して正弦波の電圧検出信号Svの電圧値、周波数および位相を示す電圧データDvを処理回路14に出力する。
 処理回路14は、例えば、CPUで構成されて、A/D変換回路13iから出力された電流データDiを入力すると共にA/D変換回路13vから出力された電圧データDvを入力する。また、処理回路14は、入力した電流データDiと電圧データDvとに基づいて電池Bat1の内部インピーダンスZbを算出する。具体的には、処理回路14は、電流データDiに含まれている電流検出信号Siの振幅に基づいて電池Bat1を流れる交流電流Iacの電流値(I)を算出すると共に、電圧データDvに含まれている電圧検出信号Svの振幅に基づいて電池Bat1の両端の電圧Vbを交流信号S1の電圧値(V)として算出する。また、処理回路14は、電流データDiおよび電圧データDvに基づいて、電流検出信号Siおよび電圧検出信号Svの位相差(θ)、すなわち交流電流Iacと、電池Bat1の両端に生じる電圧Vb(交流信号S1)との位相差(θ)を算出する。また、処理回路14は、このようにして算出した交流電流Iacの電流値(I)、交流信号S1の電圧値(V)、および位相差(θ)に基づいて、電池Bat1の内部インピーダンスZb(Z=V/I、R=Z・cosθ、X=Z・sinθ)を算出する。また、処理回路14は、算出した電池Bat1の内部インピーダンスZbを表示させるための表示データDdを出力部6に出力する。また、処理回路14は、算出した交流電流Iacの電流値(I)が電池Bat1の測定に必要な目標電流値範囲内(例えば、1mA±0.1mA)に含まれているか否かを判別し、含まれていないときには、目標電流値範囲内に含まれるように、電流源2に制御信号Scを出力して交流信号S1の信号レベル(交流電流Iacの電流レベル)を調整する。
 出力部6は、一例として、液晶パネルや有機ELパネルなどの表示装置(ディスプレイ)で構成されて、処理部5(処理回路14)から出力された表示データDdを入力して電池Bat1の内部インピーダンスZbを画面上に表示する。なお、出力部6は、表示装置に代えて、外部装置とデータ通信を行うインターフェース装置で構成して、この外部装置に内部インピーダンスZbを示すインピーダンスデータを出力する構成を採用することもできる。
 次に、インピーダンス測定装置1による測定対象としての電池Bat1の内部インピーダンスZbを測定するインピーダンス測定方法について添付図面を参照して説明する。なお、電池Bat1と負荷Load1,Load2とは接続導線L1a,L1b,L2a,L2bで既に接続されているものとする。
 最初に、プローブP1,P3を電池Bat1の電極T1にそれぞれ接続(接触)させると共にプローブP2,P4を電池Bat1の電極T2にそれぞれ接続させる。次いで、接続導線L1a,L2aの両者と、接続導線L1b,2bの両者のいずれか一方を電流計32でクランプする。この場合、接続導線L1b,2bの両者をクランプするものとする。
 次いで、図外の測定開始スイッチを操作する。これにより、処理回路14が、制御信号Scを出力して電流源2を制御して交流信号S1を生成させる。この際には、電流源2が、コンデンサC1およびプローブP1,P2を介して交流信号S1を出力することにより、電池Bat1の電極T1,T2間(回路網NW1の両端間)に交流信号S1が印加されて、回路網NW1の両端間に交流電流Iacが流れる。この場合、交流電流Iacが電池Bat1(内部インピーダンスZb)を流れることに起因して、電池Bat1の電極T1,T2間に交流の電圧Vbが発生する。この際に、電圧測定回路4は、プローブP3,P4およびコンデンサC2を介して電圧Vbを入力して、電圧検出信号Svとして処理部5に出力する。
 また、電流測定回路3では、電流計31が、回路網NW1全体を流れる交流電流Iacの電流値、すなわち測定対象の電池Bat1のみを流れる電流値(I1)と、非測定対象の負荷Load1のみを流れる交流電流Iacの電流値(I2)と、非測定対象の負荷Load2のみを流れる交流電流Iacの電流値(I3)との合計値(I1+I2+I3)を測定して電流信号Siaとして差分電流値検出回路33に出力する。この場合、回路網NW1全体が本発明における「回路網」を構成する。したがって、電流計31は、「回路網の両端間」を流れる交流電流Iacを測定する。また、電流計32は、測定対象の電池Bat1に並列接続されている非測定対象の全て(2つの負荷Load1,Load2)を流れる交流電流Iacを測定する。具体的には、電流計32は、負荷Load1のみを流れる交流電流Iacの電流値(I2)と、負荷Load2のみを流れる交流電流Iacの電流値(I3)の合計値(I2+I3)を測定して電流信号Sibとして差分電流値検出回路33に出力する。
 そして、差分電流値検出回路33が、電流計31で測定された電流値(I1+I2+I3)から電流計32で測定された電流値(I2+I3)を差し引いた測定対象の電池Bat1のみを流れる電流値(I1)である差分電流値(I1)を電流検出信号Siとして検出して処理部5に出力する。
 一方、処理部5では、増幅回路11iが、電流検出信号Siを増幅してフィルタ回路12iに出力し、フィルタ回路12iが、増幅回路11iで増幅された交流信号S1に含まれているノイズを除去してA/D変換回路13iに出力する。また、A/D変換回路13iが、フィルタ回路12iを通過した電流検出信号SiをA/D変換して電流データDiを処理回路14に出力する。また、増幅回路11vが、電圧検出信号Svを増幅してフィルタ回路12vに出力し、フィルタ回路12vが、増幅回路11vで増幅された交流信号Svに含まれているノイズを除去してA/D変換回路13vに出力する。また、A/D変換回路13vが、フィルタ回路12vを通過した電圧検出信号SvをA/D変換して電圧データDvを処理回路14に出力する。
 また、処理回路14が、電流データDiに基づいて電池Bat1を流れる交流電流Iacの電流値(I)を算出すると共に、電圧データDvに基づいて電池Bat1の両端の電圧Vbを交流信号S1の電圧値(V)として算出する。また、処理回路14は、電流データDiおよび電圧データDvに基づいて、電流検出信号Siおよび電圧検出信号Svの位相差(θ)、すなわち交流電流Iacと、電池Bat1の両端に生じる電圧Vb(交流信号S1)との位相差(θ)を算出する。次いで、処理回路14は、算出した交流電流Iacの電流値(I)、交流信号S1の電圧値(V)、および位相差(θ)に基づいて、電池Bat1の内部インピーダンスZb(Z=V/I、R=Z・cosθ、X=Z・sinθ)を算出する。その後、処理回路14は、表示データDdを出力部6に出力して、算出した内部インピーダンスZbを出力部6の表示装置に表示させる。以上により、四端子法を用いた処理回路14による内部インピーダンスZbの算出処理が修了する。
 また、処理回路14は、内部インピーダンスZbの算出処理において、算出した交流電流Iacの電流値(I)が電池Bat1の測定に必要な目標電流値範囲内に含まれているか否かを判別し、含まれていないときには、目標電流値範囲内に含まれるように、電流源2に制御信号Scを出力して交流信号S1の信号レベル(交流電流Iacの電流レベル)を調整する。これにより、電流検出信号Siや電圧検出信号Svの雑音レベル(N)に対する信号レベル(S)の比率(S/N)が高まるため、処理回路14によって行われる内部インピーダンスZbの算出処理において、精度良く内部インピーダンスZbが測定される。
 このように、このインピーダンス測定装置1およびインピーダンス測定方法によれば、電流計31(第1の電流計)によって測定された交流電流Iacの電流値から、電流計32(第2の電流計)によって測定された1以上の非測定対象である負荷Load1,Load2の全てを流れる交流電流Iacの電流値を差し引いた差分電流値を電流検出信号Siとして検出することにより、測定対象の電池Bat1に対して1以上の非測定対象である負荷Load1,Load2が並列接続されている状態における電池Bat1の内部インピーダンスZbを確実かつ簡単に測定することができる。
 次に、「インピーダンス測定装置」の他の一例であるインピーダンス測定装置1Aについて、図2を参照して説明する。なお、以下、上記したインピーダンス測定装置1における各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略する。
 インピーダンス測定装置1Aは、「インピーダンス測定装置」の一例であって、測定対象の1つの電池に対して1以上の非測定対象である電池が並列接続されて構成された回路網NW2における測定対象の電池の内部インピーダンスを測定可能に構成されている。なお、以下の説明においては、電池Bat2を測定対象とし、他の電池Bat1,Bat3,Bat4を非測定対象の電池とする。また、図2に示す回路網NW2は、上記した図4に示す回路網NW2と同様に構成されているため、同一の構成要素については、同一の符号を付して重複した説明を省略する。
 インピーダンス測定装置1Aは、図2に示すように、一対のプローブP1,P2、一対のプローブP3,P4、電流源2、電流測定回路3A、電圧測定回路4、処理部5および出力部6を備えて構成されている。この場合、プローブP1,P2、プローブP3,P4および後述する電流計31,32を除く他の構成要素は、装置本体100A内に収容されている。
 このインピーダンス測定装置1Aは、インピーダンス測定装置1の各構成要素とは、以下の点で相違する。まず、インピーダンス測定装置1Aの電流測定回路3Aでは、インピーダンス測定装置1における電流測定回路3の電流計31に代えて、電流測定回路3の電流計32と同じく構成されてバスバーBB1,BB2のいずれかをクランプ可能なクランプ型の電流計34(第1の電流計)で構成されている。また、電流測定回路3Aの差分電流値検出回路33は、電流計34で測定された電流値から電流計32で測定された電流値を差し引いた差分電流値を電流検出信号Siとして検出して処理部5に出力する。また、プローブ2の基端部は電流源2の他方の出力部に直接接続されている。
 次に、インピーダンス測定装置1Aによる測定対象としての電池Bat2の内部インピーダンスZbを測定するインピーダンス測定方法について、図2を参照して説明する。なお、電池Bat1~Bat4の各電極T1は金属板のバスバーBB1にそれぞれ接続され、電池Bat1~Bat4の各電極T2は金属板のバスバーBB2にそれぞれ接続されているものとする。
 最初に、プローブP1,P3をバスバーBB1の端部(図2の例では、最も左側の端部)にそれぞれ接続(接触)させると共にプローブP2,P4をバスバーBB2の端部(同図の例では、最も左側の端部)にそれぞれ接続させる。次いで、電流計32,33でバスバーBB1,BB2をクランプする。この場合、電流計34については、電流源2の一方の出力部、コンデンサC1、プローブP1、バスバーBB1、測定対象の電池Bat2、バスバーBB2、プローブP2、および電流源2の他方の出力部からなり、バスバーBB1,BB2上のプローブP1,P2の接続(接触)位置(つまり交流電流Iacの供給位置)から最も大きい閉ループのみを形成するバスバーBB1,BB2上のいずれかの箇所(以下、「クランプ箇所」ともいう)をクランプさせる。図2の例では、電流計34について、バスバーBB2における電池Bat1の電極T2の接続箇所と電池Bat2の電極T2の接続箇所の間をクランプさせる。なお、電流計34をバスバーBB1における電池Bat1の電極T1の接続箇所と電池Bat2の電極T1の接続箇所の間をクランプさせてもよい。
 一方、電流計32については、上記のクランプ箇所を電流計34でクランプしたときに、電流計34によって測定される交流電流Iacの電流値から、電池Bat2を流れる交流電流Iacの電流値を差し引いた電流値の交流電流Iacが流れる箇所をクランプさせる。具体的には、同図の例では、電流計32については、バスバーBB1における電池Bat2の電極T1の接続箇所と電池Bat3の電極T1の接続箇所との間、およびバスバーBB2における電池Bat2の電極T2の接続箇所と電池Bat3の電極T2の接続箇所との間のいずれか一方の箇所をクランプさせる。なお、同図では、バスバーBB2における電池Bat2の電極T2の接続箇所と電池Bat3の電極T2の接続箇所との間をクランプさせた例を示している。
 次いで、図外の測定開始スイッチを操作する。これにより、処理回路14が、制御信号Scを出力して電流源2を制御して交流信号S1を生成させる。この際には、電流源2が、コンデンサC1およびプローブP1,P2を介して交流信号S1を出力することにより、バスバーBB1,BB2間(回路網NW2の両端間)に交流信号S1が印加されて、回路網NW2の両端間に交流電流Iacが流れる。この際に、電池Bat1を電流値(I1)の交流電流Iacが流れ、電池Bat2を電流値(I2)の交流電流Iacが流れ、電池Bat3を電流値(I3)の交流電流Iacが流れ、電池Bat4を電流値(I4)の交流電流Iacが流れるものとする。また、交流電流Iacが電池Bat1~Bat4(電池Bat1~Bat4の各内部インピーダンスZb)を流れることに起因して、バスバーBB1,BB2間(電池Bat2の電極T1および電極T2間)に電圧Vbが発生する。この際に、電圧測定回路4は、プローブP3,P4およびコンデンサC2を介して電圧Vbを入力して、電圧検出信号Svとして処理部5に出力する。
 また、電流測定回路3では、電流計34が、回路網NW2の少なくとも測定対象の電池Bat2を流れる交流電流Iacの電流値、すなわち測定対象の電池Bat2のみを流れる電流値(I2)と、非測定対象の電池Bat3のみを流れる交流電流Iacの電流値(I3)と、非測定対象の電池Bat4のみを流れる交流電流Iacの電流値(I4)との合計値(I2+I3+I4)を測定して電流信号Si1として差分電流値検出回路33に出力する。この場合、回路網NW2における非測定対象の電池Bat1を除く、測定対象の電池Bat2、非測定対象の電池Bat3および非測定対象の電池Bat4が並列接続された回路網NW2Aが本発明における「回路網」を構成する。したがって、電流計34は、「回路網の両端間」を流れる交流電流Iacを測定する。また、電流計32は、測定対象の電池Bat2に並列接続されている回路網NW2Aにおける非測定対象の全て(2つの電池Bat3,Bat4)を流れる交流電流Iacを測定する。具体的には、電流計32は、非測定対象の電池Bat3のみを流れる交流電流Iacの電流値(I3)と、非測定対象の電池Bat4のみを流れる交流電流Iacの電流値(I4)の合計値(I3+I4)を測定して電流信号Si2として差分電流値検出回路33に出力する。
 そして、差分電流値検出回路33が、電流計34で測定された電流値(I2+I3+I4)から電流計32で測定された電流値(I3+I4)を差し引いた測定対象の電池Bat2のみを流れる電流値(I2)である差分電流値(I2)を電流検出信号Siとして検出して処理部5に出力する。
 一方、処理部5では、増幅回路11iが、電流検出信号Siを増幅してフィルタ回路12iに出力し、フィルタ回路12iが、増幅回路11iで増幅された交流信号S1に含まれているノイズを除去してA/D変換回路13iに出力する。また、A/D変換回路13iが、フィルタ回路12iを通過した電流検出信号SiをA/D変換して電流データDiを処理回路14に出力する。また、増幅回路11vが、電圧検出信号Svを増幅してフィルタ回路12vに出力し、フィルタ回路12vが、増幅回路11vで増幅された交流信号Svに含まれているノイズを除去してA/D変換回路13vに出力する。また、A/D変換回路13vが、フィルタ回路12vを通過した電圧検出信号SvをA/D変換して電圧データDvを処理回路14に出力する。
 また、処理回路14が、電流データDiに基づいて電池Bat2を流れる交流電流Iacの電流値(I)を算出すると共に、電圧データDvに基づいてバスバーBB1,BB2の両端の電圧Vb(つまり電池Bat2の両端(電極T1および電極T2間)の電圧Vb)を交流信号S1の電圧値(V)として算出する。また、処理回路14は、電流データDiおよび電圧データDvに基づいて、電流検出信号Siおよび電圧検出信号Svの位相差(θ)、すなわち交流電流Iacと、電池Bat2の両端に生じる電圧Vb(交流信号S1)との位相差(θ)を算出する。次いで、処理回路14は、算出した交流電流Iacの電流値(I)、交流信号S1の電圧値(V)、および位相差(θ)に基づいて、電池Bat2の内部インピーダンスZb(Z=V/I、R=Z・cosθ、X=Z・sinθ)を算出する。その後、処理回路14は、表示データDdを出力部6に出力して、算出した内部インピーダンスZbを出力部6の表示装置に表示させる。以上により、四端子法を用いた処理回路14による内部インピーダンスZbの算出処理が修了する。
 また、処理回路14は、内部インピーダンスZbの算出処理において、算出した交流電流Iacの電流値(I)が電池Bat2の測定に必要な目標電流値範囲内に含まれているか否かを判別し、含まれていないときには、目標電流値範囲内に含まれるように、電流源2に制御信号Scを出力して交流信号S1の信号レベル(交流電流Iacの電流レベル)を調整する。これにより、電流検出信号Siや電圧検出信号Svの雑音レベル(N)に対する信号レベル(S)の比率(S/N)が高まるため、処理回路14によって行われる内部インピーダンスZbの算出処理において、精度良く内部インピーダンスZbが測定される。
 なお、電池Bat1を測定対象とするときには、電池Bat1および非測定対象の電池Bat2,Bat3,Bat4が並列接続された回路網NW2が本発明における「回路網」を構成する。この場合、電流計34については、電流源2の一方の出力部、コンデンサC1、プローブP1、バスバーBB1、測定対象の電池Bat1、バスバーBB2、プローブP2、および電流源2の他方の出力部からなり、バスバーBB1,BB2上のプローブP1,P2の接続(接触)位置(つまり交流電流Iacの供給位置)から最も大きい閉ループのみを形成するバスバーBB1,BB2上のいずれかの箇所(以下、「クランプ箇所」ともいう)をクランプさせる。図2の例では、電流計34について、バスバーBB1の端部(図2の例では、最も左側の端部)と電池Bat1の電極T1およびバスバーBB1の接続箇所との間、およびバスバーBB2の端部(同図の例では、最も左側の端部)と電池Bat1の電極T2およびバスバーBB2の接続箇所との間のいずれか一方をクランプさせる。
 また、電流計32については、上記のクランプ箇所を電流計34でクランプしたときに、電流計34によって測定される交流電流Iacの電流値から、電池Bat1を流れる交流電流Iacの電流値を差し引いた電流値の交流電流Iacが流れる箇所をクランプさせる。具体的には、図2の例では、電流計32については、バスバーBB1における電池Bat1の電極T1の接続箇所と電池Bat2の電極T1の接続箇所との間、およびバスバーBB2における電池Bat1の電極T2の接続箇所と電池Bat2の電極T2の接続箇所との間のいずれか一方の箇所をクランプさせる。なお、処理回路14による内部インピーダンスZbの算出処理や交流信号S1の信号レベル(交流電流Iacの電流レベル)の調整処理については、電池Bat2を測定対象とするときと同様のため、以下、重複する説明を省略する。
 また、電池Bat3を測定対象とするときには、電池Bat3および非測定対象の電池Bat4が並列接続された回路網NW2Bが本発明における「回路網」を構成する。この場合、電流計34については、電流源2の一方の出力部、コンデンサC1、プローブP1、バスバーBB1、測定対象の電池Bat3、バスバーBB2、プローブP2、および電流源2の他方の出力部からなり、バスバーBB1,BB2上のプローブP1,P2の接続(接触)位置(つまり交流電流Iacの供給位置)から最も大きい閉ループのみを形成するバスバーBB1,BB2上のいずれかの箇所(以下、「クランプ箇所」ともいう)をクランプさせる。図2の例では、電流計34について、バスバーBB1における電池Bat2の電極T1の接続箇所と電池Bat3のT1の接続箇所の間、およびバスバーBB2における電池Bat2の電極T2の接続箇所と電池Bat3の電極T2の接続箇所の間のいずれか一方の箇所をクランプさせる。なお、バスバーBB1における電池Bat1の電極T1の接続箇所と電池Bat2のT1の接続箇所の間、およびバスバーBB2における電池Bat1の電極T2の接続箇所と電池Bat2の電極T2の接続箇所については、バスバーBB1,BB2上のプローブP1,P2の接続(接触)位置から最も大きい閉ループだけでなく、電流源2の一方の出力部、コンデンサC1、プローブP1、バスバーBB1、電池Bat2、バスバーBB2、プローブP2、および電流源2の他方の出力部からなる他の閉ループも形成するため、クランプ箇所には該当しない。
 また、電流計32については、上記のクランプ箇所を電流計34でクランプしたときに、電流計34によって測定される交流電流Iacの電流値から、電池Bat3を流れる交流電流Iacの電流値を差し引いた電流値の交流電流Iacが流れる箇所をクランプさせる。具体的には、図2の例では、電流計32については、バスバーBB1における電池Bat3の電極T1の接続箇所と電池Bat4の電極T1の接続箇所との間、およびバスバーBB2における電池Bat3の電極T2の接続箇所と電池Bat4の電極T2の接続箇所との間のいずれか一方の箇所をクランプさせる。
 また、電池Bat4を測定対象とするときには、電流計34については、電流源2の一方の出力部、コンデンサC1、プローブP1、バスバーBB1、測定対象の電池Bat4、バスバーBB2、プローブP2、および電流源2の他方の出力部からなり、バスバーBB1,BB2上のプローブP1,P2の接続(接触)位置から最も大きい閉ループのみを形成するバスバーBB1,BB2上のいずれかの箇所(以下、「クランプ箇所」ともいう)をクランプさせる。図2の例では、電流計34について、バスバーBB1における電池Bat3の電極T1の接続箇所と電池Bat4のT1の接続箇所の間、およびバスバーBB2における電池Bat3の電極T2の接続箇所と電池Bat4の電極T2の接続箇所の間のいずれか一方の箇所をクランプさせる。なお、この例では、電流計32を使用することなく、電流計34によって測定される電流値(I4)だけを差分電流値検出回路33に出力させることにより、測定対象の電池Bat4のみを流れる電流値(I4)が電流検出信号Siとして差分電流値検出回路33から処理部5に出力される。
 このように、このインピーダンス測定装置1Aおよびインピーダンス測定方法によれば、電流計34(第1の電流計)によって測定された交流電流Iacの電流値から、電流計32(第2の電流計)によって測定された交流電流Iacの電流値を差し引いた差分電流値を電流検出信号Siとして検出することにより、測定対象の電池Bat2に対して1以上の非測定対象である電池(上記の例では、例えば、電池Bat1,Bat3,Bat4)が並列接続されている状態における電池Bat2の内部インピーダンスZbを確実かつ簡単に測定することができる。
 また、このインピーダンス測定装置1Aおよびインピーダンス測定方法によれば、クランプ型の電流計で構成した電流計34(第1の電流計)を用いることにより、複数(この例では4つ)の電池Bat1~Bat4の各電極T1同士が金属板で構成されたバスバーBB1で接続されると共に電池Bat1~Bat4の各電極T2同士が同じく金属板で構成されたバスバーBB2で接続されることにより、複数の電池Bat1~Bat4が並列に接続されて全体として梯子形の回路網NW2が構成されている場合における測定対象の電池(上記の例では、電池Bat2など)の内部インピーダンスZbを確実かつ簡単に測定することができる。
 また、インピーダンス測定装置1,1Aおよびインピーダンス測定方法によれば、差分電流値である算出した交流電流Iacの電流値(I)が目標電流値範囲内に含まれるように、回路網NW1,NW2(NW2A)に供給する交流電流Iacの電流値を調整する(電流源2を制御)することにより、電流検出信号Si(検出電流値)や電圧検出信号Sv(検出電圧値)の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができるため、処理回路14によって行われる内部インピーダンスZbの算出処理において、精度良く内部インピーダンスZbを測定することができる。
 なお、上記のインピーダンス測定装置1およびインピーダンス測定方法では、非測定対象としての2つの負荷Load1,Load2を測定対象としての電池Bat1に並列接続した回路網NW1における電池Bat1の内部インピーダンスZbを測定する例について説明したが、1つまたは3つ以上の非測定対象としての負荷を電池Bat1に並列接続した回路網における電池Bat1の内部インピーダンスZbを上記の測定方法を適用して測定することもできる。同様にして、インピーダンス測定装置1Aおよびインピーダンス測定方法では、一例として、測定対象の電池Bat2に対して3つの非測定対象としての電池Bat1,Bat3,Bat4を並列接続した回路網NW2における電池Bat12の内部インピーダンスZbを測定する例について説明したが、1つ、2つまたは4つ以上の非測定対象としての電池を電池Bat2に並列接続した回路網における電池Bat2の内部インピーダンスZbを上記の測定方法を適用して測定することもできる。
 また、インピーダンス測定装置1,1Aの処理部5において、電池Bat1~Bat4の内部インピーダンスZbのインピーダンス演算をデジタル処理で行う例について説明したが、電流検出信号Siおよび電圧検出信号Svに基づいて、アナログ回路によるアナログ演算で内部インピーダンスZbを求める構成を採用することもできる。
 本願発明によれば、測定対象の電池に対して1以上の非測定対象が並列接続されている状態における電池の内部インピーダンスを確実かつ簡単に測定することができる。これにより、本願発明は、このようなインピーダンス測定のインピーダンス測定装置およびインピーダンス測定方法に広く適用することができる。
    1,1A インピーダンス測定装置
    2 電流源
    3 電流測定回路
   31 電流計
   32 電流計
   33 差分電流値検出回路
    4 電圧測定回路
    5 処理部
 Bat1~Bat4 電池
Load1,Load2 負荷
  NW1,NW2,NW2A 回路網
   Si 電流検出信号
   Sv 電圧検出信号
   Zb 内部インピーダンス

Claims (6)

  1.  測定対象の電池に1以上の非測定対象が並列接続されて構成される回路網の両端間に交流の測定用電流を供給する電流源と、
     前記測定用電流を供給したときに前記電池に流れる当該測定用電流を検出電流値として検出する電流検出回路と、
     前記測定用電流を前記回路網に供給したときに前記電池の両端に発生する交流電圧を検出電圧値として検出する電圧検出回路と、
     前記電流検出回路によって検出された前記検出電流値と前記電圧検出回路によって検出された前記検出電圧値とに基づいて前記電池の内部インピーダンスを測定する処理部とを備えているインピーダンス測定装置であって、
     前記電流検出回路は、前記回路網の両端間を流れる前記交流電流を測定可能な第1の電流計と、前記電池に並列接続されている前記非測定対象の全てを流れる前記交流電流を測定可能なクランプ型の第2の電流計と、前記第1の電流計で測定された電流値から前記第2の電流計で測定された電流値を差し引いた差分電流値を前記検出電流値として検出する差分電流値検出回路とを備えて構成されているインピーダンス測定装置。
  2.  前記第1の電流計は、クランプ型の電流計で構成されている請求項1記載のインピーダンス測定装置。
  3.  前記処理部は、前記差分電流値が目標電流値範囲内に含まれるように、前記電流源を制御して前記回路網に供給する交流電流の電流値を調整する請求項1または2記載のインピーダンス測定装置。
  4.  測定対象の電池に1以上の非測定対象が並列接続されて構成される回路網の両端間に交流の測定用電流を供給し、
     前記測定用電流を供給したときに前記電池に流れる当該測定用電流を検出電流値として検出し、
     前記測定用電流を前記回路網に供給したときに前記電池の両端に発生する交流電圧を検出電圧値として検出し、
     前記電流検出回路によって検出された前記検出電流値と前記電圧検出回路によって検出された前記検出電圧値とに基づいて前記電池の内部インピーダンスを測定するインピーダンス測定方法であって、
     前記回路網の両端間を流れる前記交流電流を第1の電流計を用いて測定すると共に前記電池に並列接続されている前記非測定対象の全てを流れる前記交流電流をクランプ型の第2の電流計を用いて測定し、
     前記第1の電流計で測定された前記交流電流の電流値から前記第2の電流計で測定された前記交流電流の電流値を差し引いた差分電流値を前記検出電流値として検出するインピーダンス測定方法。
  5.  前記第1の電流計としてクランプ型の電流計を用いる請求項4記載のインピーダンス測定方法。
  6.  前記差分電流値が目標電流値範囲内に含まれるように、前記回路網に供給する交流電流の電流値を調整する請求項4または5記載のインピーダンス測定方法。
PCT/JP2022/015375 2021-06-25 2022-03-29 インピーダンス測定装置およびインピーダンス測定方法 WO2022270104A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021105298 2021-06-25
JP2021-105298 2021-06-25
JP2022050094A JP2023004862A (ja) 2021-06-25 2022-03-25 インピーダンス測定装置
JP2022-050094 2022-03-25

Publications (1)

Publication Number Publication Date
WO2022270104A1 true WO2022270104A1 (ja) 2022-12-29

Family

ID=84545403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015375 WO2022270104A1 (ja) 2021-06-25 2022-03-29 インピーダンス測定装置およびインピーダンス測定方法

Country Status (1)

Country Link
WO (1) WO2022270104A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274479A (ja) * 1990-03-26 1991-12-05 Yuasa Corp 鉛蓄電池の寿命判定方法
JPH0954147A (ja) * 1995-08-18 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 電池の劣化判定方法
JP2000299137A (ja) * 1998-08-10 2000-10-24 Toyota Motor Corp 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP2009126642A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Engineering Co Ltd 蓄電池容量判定装置
JP2013019832A (ja) * 2011-07-13 2013-01-31 Toyota Motor Corp 電流センサの異常検出装置および異常検出方法
JP2017060316A (ja) * 2015-09-17 2017-03-23 積水化学工業株式会社 電力管理システム及び電力管理方法
JP2017118642A (ja) * 2015-12-22 2017-06-29 ルネサスエレクトロニクス株式会社 電池駆動システム、電池パックおよび半導体装置
WO2019092794A1 (ja) * 2017-11-07 2019-05-16 Connexx Systems株式会社 複合電池、それを備えた自動車及び鉄道回生電力貯蔵装置
JP2020016493A (ja) * 2018-07-24 2020-01-30 株式会社豊田自動織機 電流測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274479A (ja) * 1990-03-26 1991-12-05 Yuasa Corp 鉛蓄電池の寿命判定方法
JPH0954147A (ja) * 1995-08-18 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 電池の劣化判定方法
JP2000299137A (ja) * 1998-08-10 2000-10-24 Toyota Motor Corp 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP2009126642A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Engineering Co Ltd 蓄電池容量判定装置
JP2013019832A (ja) * 2011-07-13 2013-01-31 Toyota Motor Corp 電流センサの異常検出装置および異常検出方法
JP2017060316A (ja) * 2015-09-17 2017-03-23 積水化学工業株式会社 電力管理システム及び電力管理方法
JP2017118642A (ja) * 2015-12-22 2017-06-29 ルネサスエレクトロニクス株式会社 電池駆動システム、電池パックおよび半導体装置
WO2019092794A1 (ja) * 2017-11-07 2019-05-16 Connexx Systems株式会社 複合電池、それを備えた自動車及び鉄道回生電力貯蔵装置
JP2020016493A (ja) * 2018-07-24 2020-01-30 株式会社豊田自動織機 電流測定装置

Similar Documents

Publication Publication Date Title
US9753062B2 (en) System and method for current measurement in the presence of high common mode voltages
WO2013004146A1 (zh) 在线式交流电流检测装置及方法
RU2381513C1 (ru) Способ определения сопротивлений изоляции присоединений в сети постоянного тока с изолированной нейтралью, устройство для его осуществления и дифференциальный датчик для этого устройства
WO2022270104A1 (ja) インピーダンス測定装置およびインピーダンス測定方法
Arseneau et al. An improved three-phase digital recorder system for calibrating power instrumentation
JPH0719670B2 (ja) 空間電位誤差を補正するトリプルプローブ・プラズマ測定装置
JP2023004862A (ja) インピーダンス測定装置
KR20130028460A (ko) 션트 저항을 이용한 3상 전력 시스템의 전력량계
US5248934A (en) Method and apparatus for converting a conventional DC multimeter to an AC impedance meter
JP2003315372A (ja) 電流測定装置
RU140217U1 (ru) Устройство для измерения сопротивления заземления
US11940476B2 (en) Three-phase power meter monitoring for star and delta configurations
JP2024507215A (ja) 主電源並列動作における分割された中間回路に接続されたdc電圧源の絶縁抵抗を測定する方法および装置
EP0965159B1 (en) An active filter device
TW201835581A (zh) 電阻量測系統及電阻量測裝置
JP2004184374A (ja) インピーダンス測定装置
CN106124968A (zh) 一种功率放大器并联调试装置及方法
JP2017020954A (ja) 直流非接地式電路における絶縁抵抗監視装置と監視方法
JPH10123189A (ja) 抵抗値測定方法および抵抗値測定装置
JP4227756B2 (ja) 平滑用コンデンサの特性測定装置
US11333690B2 (en) Current measurement compensation for harmonics
JPH0641174Y2 (ja) 電圧−電流測定装置
JP4333278B2 (ja) 測定装置
Oldham et al. A power factor standard using digital waveform generation
JPH1062463A (ja) 生体信号測定用電極の接触抵抗測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22828023

Country of ref document: EP

Kind code of ref document: A1