WO2022270070A1 - ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム - Google Patents

ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム Download PDF

Info

Publication number
WO2022270070A1
WO2022270070A1 PCT/JP2022/013315 JP2022013315W WO2022270070A1 WO 2022270070 A1 WO2022270070 A1 WO 2022270070A1 JP 2022013315 W JP2022013315 W JP 2022013315W WO 2022270070 A1 WO2022270070 A1 WO 2022270070A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heater element
honeycomb structure
outer peripheral
peripheral wall
Prior art date
Application number
PCT/JP2022/013315
Other languages
English (en)
French (fr)
Inventor
由紀夫 宮入
昌明 桝田
拓哉 中島
浩文 山口
徹 早瀬
晃司 葛谷
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112022002667.7T priority Critical patent/DE112022002667T5/de
Priority to CN202280038776.5A priority patent/CN117413621A/zh
Priority to JP2023529578A priority patent/JPWO2022270070A1/ja
Publication of WO2022270070A1 publication Critical patent/WO2022270070A1/ja
Priority to US18/527,771 priority patent/US20240107633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures

Definitions

  • the present invention relates to a heater element, a heater unit, and a heater system for heating a passenger compartment.
  • Patent Literature 1 proposes a heater unit in which heater elements in which PTC elements are integrated with aluminum fins are arranged in layers.
  • this heater element includes many parts such as an insulating plate and a conductive plate in addition to the PTC element and the aluminum fins, it has a complicated structure and is expensive due to high assembly costs. .
  • Patent Document 2 proposes a heater element using a honeycomb structure that is compact and capable of increasing the heat transfer area per unit volume.
  • a heater element using this honeycomb structure has the advantage of having a simpler structure than the heater element described above.
  • the heater element described in Patent Document 2 is a honeycomb structure having an outer peripheral wall and partition walls disposed inside the outer peripheral wall and partitioning and forming a plurality of cells forming a flow path from a first end face to a second end face.
  • a pair of electrodes are formed on both end surfaces of the honeycomb structure by applying and baking an electrode material.
  • the pair of electrodes may be indirectly connected to the conductive wire via a ring-shaped conductive member that is in contact with the pair of electrodes, or the pair of electrodes may be electrically connected to the conductive wire. Direct joining of lines can be mentioned.
  • the reason why the ring-shaped conductive member is used is to increase the contact area between the conductive wire and the pair of electrodes, thereby lowering the electrical resistance.
  • the method of directly joining a conductive wire to a pair of electrodes has a small conduction area and poor reliability in maintaining sufficient conductivity.
  • the ring-shaped conductive member is joined so as to block the cells adjacent to the outer peripheral wall as well as the outer peripheral wall of the honeycomb structure. Therefore, a heater element with this ring conductive member has less air flow path and an increased pressure loss. As a result, the flow velocity of the air passing through the cells of the honeycomb structure increases, so the heat transfer from the partition walls to the air becomes insufficient, and the heating performance deteriorates.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heater element, a heater unit, and a heater system for heating a passenger compartment, which suppress an increase in pressure loss and have high heating performance.
  • the present invention has an outer peripheral wall and a partition wall disposed inside the outer peripheral wall and partitioning and forming a plurality of cells serving as flow channels extending from a first end face to a second end face, wherein the outer peripheral wall and the partition wall a honeycomb structure composed of a material having PTC properties; a pair of electrode layers provided on the outer peripheral wall and the partition wall of the first end surface and the second end surface; A terminal capable of electrically connecting the electrode layer and the conducting wire, at least a part of the electrode layer has an extension extending outward from outer edges of the first end surface and the second end surface; The terminal is a heater element connected to the extension and arranged to face the side surface of the honeycomb structure.
  • the present invention includes: an outer peripheral wall; partition walls disposed inside the outer peripheral wall and partitioning and forming a plurality of cells serving as flow channels extending from a first end face to a second end face; a honeycomb structure having plugging portions in which at least part of the cells in the outer edge regions of two end faces are plugged, and the outer peripheral wall and the partition walls being made of a material having PTC characteristics; a pair of electrode layers provided on the outer peripheral wall of the first end surface and the second end surface, the partition wall, and the plugging portion; a terminal capable of electrically connecting the electrode layer and the conducting wire; with The terminal is a heater element provided at a position facing the plugged portion in the flow path direction of the honeycomb structure.
  • the present invention is a heater unit including two or more of the heater elements.
  • the present invention provides the heater element, or a heater unit including two or more of the heater elements, an inflow pipe that communicates between an outside air introduction part or a vehicle compartment and an inflow port of the heater element or the heater unit; a battery for applying voltage to the heater element or the heater unit;
  • the heater system for heating the vehicle compartment includes an outflow pipe communicating between an outflow port of the heater element or the heater unit and the vehicle compartment.
  • a heater element for heating a passenger compartment that suppress an increase in pressure loss and have high heating performance.
  • FIG. 1 is a schematic diagram of an end face of a heater element according to Embodiment 1 of the present invention
  • FIG. FIG. 2 is a schematic view of a cross section of the heater element of FIG. 1 parallel to the flow direction of the honeycomb structure
  • FIG. 5 is a schematic cross-sectional view of another heater element according to Embodiment 1 of the present invention parallel to the flow path direction of the honeycomb structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the structural example of the heater system which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a schematic diagram of an end face of a heater element according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic view of a cross-section of the heater element of FIG. 5 parallel to the flow direction of the honeycomb structure
  • FIG. 4 is a schematic cross-sectional view of another heater element according to Embodiment 2 of the present invention parallel to the flow path direction of the honeycomb structure.
  • the heater element according to Embodiment 1 of the present invention can be suitably used as a heater element for heating the cabin of a vehicle.
  • Vehicles include, but are not limited to, automobiles and trains. Vehicles include, but are not limited to, gasoline vehicles, diesel vehicles, gas fuel vehicles using CNG (compressed natural gas) or LNG (liquefied natural gas), fuel cell vehicles, electric vehicles, and plug-in hybrid vehicles.
  • the heater element according to Embodiment 1 of the present invention is particularly suitable for use in vehicles that do not have an internal combustion engine, such as electric vehicles and trains.
  • FIG. 1 is a schematic diagram of an end face of a heater element according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the heater element of FIG. 1 parallel to the direction of the flow path of the honeycomb structure.
  • the heater element 100 according to Embodiment 1 of the present invention includes an outer peripheral wall 11 and a flow path disposed inside the outer peripheral wall 11 and extending from a first end face 13a to a second end face 13b.
  • a honeycomb structure 10 having partition walls 12 that divide and form a plurality of cells 14 that serve as channels, a pair of electrode layers 20 provided on the outer peripheral wall 11 and the partition walls 12 of the first end face 13a and the second end face 13b, and electrodes
  • a terminal 30 is provided for electrically connecting the layer 20 and a conductor.
  • the outer peripheral wall 11 and the partition wall 12 are made of a material having PTC (Positive Temperature Coefficient) characteristics.
  • At least part of the electrode layer 20 has an extending portion 22 extending outward from the outer edges of the first end surface 13a and the second end surface 13b.
  • the terminal 30 is connected to the extending portion 22 and arranged to face the side surface of the honeycomb structure 10 .
  • the contact area between the electrode layer 20 and the terminals 30 can be increased without blocking the cells 14, and the amount of power supplied from the outside can be easily increased. It can improve performance.
  • Each component of the heater element 100 will be described in detail below.
  • honeycomb structure 10 The shape of the honeycomb structure 10 is composed of an outer peripheral wall 11 and partition walls 12 disposed inside the outer peripheral wall 11 and partitioning and forming a plurality of cells 14 serving as flow paths extending from a first end face 13a to a second end face 13b. It is not particularly limited as long as it has.
  • a cross section (outer shape) perpendicular to the flow channel direction is polygonal (quadrilateral (rectangle, square), pentagon, hexagon, heptagon, octagon). etc.), circular, oval (oval, elliptical, oval, rounded rectangular, etc.), and the like.
  • the end faces (first end face 13a and second end face 13b) have the same shape as the cross section. Also, when the cross section and end faces are polygonal, the corners may be chamfered.
  • the shape of the cell 14 is not particularly limited, but it can be polygonal (square, pentagon, hexagon, heptagon, octagon, etc.), circle, or oval in a cross section orthogonal to the direction of the flow path. These shapes may be used alone or in combination of two or more. Moreover, among these shapes, a square or a hexagon is preferable. By providing the cells 14 having such a shape, it is possible to reduce the pressure loss when the air flows.
  • 1 and 2 show, as an example, a honeycomb structure 10 in which the cross section (outer diameter) and the shape of the cells 14 in the cross section perpendicular to the flow path direction are square.
  • the honeycomb structure 10 may be a joined honeycomb body having a plurality of honeycomb segments and a joining layer that joins between the plurality of honeycomb segments.
  • a honeycomb bonded body By using a honeycomb bonded body, it is possible to increase the total cross-sectional area of the cells 14, which is important for securing the flow rate of air, while suppressing the occurrence of cracks.
  • the bonding layer can be formed using a bonding material.
  • the bonding material is not particularly limited, but a paste made by adding a solvent such as water to a ceramic material can be used.
  • the bonding material may contain ceramics having PTC properties, or may contain the same ceramics as the outer peripheral wall 11 and the partition walls 12 .
  • the joining material can also be used as an outer peripheral coating material after joining the honeycomb segments.
  • the outer peripheral wall 11 and the partition walls 12 forming the honeycomb structure 10 are made of a material having PTC properties.
  • a material having PTC properties is a material that can generate heat when energized. Therefore, the air in the passenger compartment flows in from the first end surface 13a, passes through the plurality of cells 14, and flows out from the second end surface 13b by heat transfer from the heat-generating outer peripheral wall 11 and the partition wall 12, thereby heating the air.
  • materials having PTC characteristics have characteristics such that when the temperature rises and exceeds the Curie point, the resistance value rises sharply, making it difficult for electricity to flow. Therefore, when the temperature of the heater element 100 becomes high, the partition wall 12 (or the outer peripheral wall 11 if necessary) limits the current flowing through them, thereby suppressing excessive heat generation of the heater element 100 .
  • the material having PTC properties is not particularly limited, but a material containing barium titanate (BaTiO 3 ) as a main component is preferable, and barium titanate (BaTiO 3 ) in which a portion of Ba is substituted with a rare earth element. It is more preferable to use a ceramic composed of a material containing system crystal grains as a main component.
  • the term "main component” means a component that accounts for more than 50% by mass of the total components.
  • the content of BaTiO 3 -based crystal particles can be determined by, for example, fluorescent X-ray analysis, EDAX (energy dispersive X-ray) analysis, or the like. Other crystal grains can also be measured in the same manner as this method.
  • the thermal expansion coefficient of a material containing barium titanate (BaTiO 3 ) as a main component is 8 to 15 ppm/K.
  • the coefficient of thermal expansion means the coefficient of thermal expansion measured by JIS R1618:2002 "Method for measuring thermal expansion by thermomechanical analysis of fine ceramics".
  • the composition formula of BaTiO3 - based crystal grains in which Ba is partially substituted with a rare earth element can be represented by (Ba1 - xAx ) TiO3 .
  • A represents one or more rare earth elements and satisfies 0.001 ⁇ x ⁇ 0.010.
  • A is not particularly limited as long as it is a rare earth element, but is preferably one or more selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Eu, Gd, Dy, Ho, Er and Yb, La is more preferred.
  • x is preferably 0.001 or more, more preferably 0.0015 or more, and still more preferably 0.002 or more.
  • x is preferably 0.010 or less, more preferably 0.009 or less, and still more preferably 0.008 or less from the viewpoint of suppressing insufficient sintering and excessively high electrical resistance at room temperature. .
  • the BaTiO 3 -based crystal particles in which a part of Ba is replaced with a rare earth element preferably have a (Ba+rare earth element)/Ti ratio of 1.005 to 1.050.
  • the element ratio of Ba, rare earth elements and Ti can be determined by, for example, fluorescent X-ray analysis, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
  • BaTiO 3 -based crystal particles in which a part of Ba is substituted with a rare earth element preferably have an average crystal grain size of 5 to 200 ⁇ m, more preferably 5 to 180 ⁇ m, still more preferably 5 to 160 ⁇ m. By controlling the average crystal grain size within such a range, the electrical resistance at room temperature can be stably lowered.
  • the average grain size of the BaTiO 3 -based crystal grains can be measured as follows. A square sample of 5 mm ⁇ 5 mm ⁇ 5 mm is cut out from ceramics and embedded in resin. The embedded sample is mirror-polished by mechanical polishing and observed with an SEM. For SEM observation, for example, model S-3400N manufactured by Hitachi High-Tech Co., Ltd.
  • the content of the BaTiO 3 -based crystal grains in which part of Ba is replaced with a rare earth element in the ceramics is not particularly limited as long as it is the amount that becomes the main component, but is preferably 90% by mass or more, more preferably 92% by mass or more. , more preferably 94% by mass or more.
  • the upper limit of the content of BaTiO 3 -based crystal particles is not particularly limited, it is generally 99% by mass, preferably 98% by mass.
  • the content of BaTiO 3 -based crystal particles can be measured by, for example, fluorescent X-ray analysis and EDAX (energy dispersive X-ray) analysis. Other crystal grains can also be measured in the same manner as this method.
  • Ceramics used for the outer peripheral wall 11 and the partition walls 12 preferably contain Ba 6 Ti 17 O 40 crystal grains.
  • the presence of Ba 6 Ti 17 O 40 crystal grains in ceramics can reduce the electrical resistance at room temperature. While not intending to limit the invention by theory, the Ba6Ti17O40 crystal grains liquefy during the firing process to promote rearrangement, grain growth and densification of the BaTiO3 - based crystal grains. Therefore, it is considered that the electrical resistance at room temperature is lowered.
  • the content of Ba 6 Ti 17 O 40 crystal particles in the ceramic is 1.0 to 10.0% by mass, preferably 1.2 to 8.0% by mass, more preferably 1.5 to 6.0% by mass. be.
  • the ceramics used for the outer peripheral wall 11 and partition walls 12 may further contain BaCO 3 crystal grains.
  • BaCO 3 crystal particles are crystal particles derived from BaCO 3 powder, which is a raw material for ceramics. BaCO 3 crystal grains do not need to be contained in the ceramics because they have little effect on the electrical resistance of the ceramics at room temperature. However, if the content of BaCO 3 crystal grains in the ceramics is too high, it may affect the electrical resistance at room temperature, and the amount of other crystal grains may be too small to obtain the desired characteristics. Therefore, the content of BaCO 3 crystal particles is preferably 2.0% by mass or less, more preferably 1.8% by mass or less, and even more preferably 1.5% by mass or less. Although the lower limit of the content of BaCO 3 crystal particles is not particularly limited, it is generally 0.1% by mass, preferably 0.2% by mass.
  • the ceramics used for the outer peripheral wall 11 and the partition walls 12 may further contain, in addition to the above-described crystal grains, components commonly added to materials having PTC properties.
  • Such components include additives such as shifters, property improving agents, metal oxides and conductor powders, as well as unavoidable impurities.
  • the ceramics used for the outer peripheral wall 11 and the partition walls 12 not substantially contain lead (Pb) from the viewpoint of reducing the environmental load.
  • the ceramic has a Pb content of preferably 0.01% by mass or less, more preferably 0.001% by mass or less, and even more preferably 0% by mass. Due to the low Pb content, for example, living organisms such as humans can be safely exposed to air heated by contact with ceramics.
  • the Pb content is preferably less than 0.03% by mass, more preferably less than 0.01% by mass, and still more preferably 0% by mass in terms of PbO.
  • the lead content can be determined by, for example, fluorescent X-ray analysis, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
  • the ceramics used for the outer peripheral wall 11 and the partition walls 12 preferably do not substantially contain alkali metals that may affect electrical resistance at room temperature.
  • the ceramic has an alkali metal content of preferably 0.01% by mass or less, more preferably 0.001% by mass or less, and even more preferably 0% by mass.
  • the alkali metal content can be determined by, for example, fluorescent X-ray analysis, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
  • the Curie point of the material forming the outer peripheral wall 11 and the partition wall 12 is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 125°C or higher, from the viewpoint of efficiently heating the air.
  • the upper limit of the Curie point is preferably 250°C, more preferably 225°C, even more preferably 200°C, and even more preferably 150°C, from the viewpoint of safety as a component placed in or near the vehicle compartment. °C.
  • the Curie point of the material forming the outer peripheral wall 11 and the partition wall 12 can be adjusted by the type and amount of shifter added.
  • the Curie point of barium titanate (BaTiO 3 ) is about 120° C., but the Curie point can be shifted to the low temperature side by substituting a portion of Ba and Ti with one or more of Sr, Sn and Zr. can be done.
  • the Curie point is measured by the following method. Attach the sample to the sample holder for measurement, install it in the measurement tank (eg: MINI-SUBZERO MC-810P, manufactured by ESPEC CORPORATION), and measure the change in the electrical resistance of the sample against the temperature change when the temperature is raised from 10°C. , measured using a DC resistance meter (eg, multimeter 3478A manufactured by YHP).
  • the Curie point is defined as the temperature at which the resistance value becomes twice the resistance value at room temperature (20° C.) according to the electrical resistance-temperature plot obtained by the measurement.
  • the honeycomb structure 10 has partition walls 12 with a thickness of 0.125 mm or less, a cell density of 93 cells/cm 2 or less, and a cell pitch of 1.0 mm or more.
  • the partition wall 12 By controlling the thickness of the partition wall 12, the cell density and the cell pitch within such a range, it is possible to suppress an increase in pressure loss when air passes through the cells 14, so that the output of a blower or the like can be suppressed. can be done.
  • the partition wall 12 have a thickness of 0.075 mm or less, a cell density of 62 cells/cm 2 or less, and a cell pitch of 1.3 mm or more.
  • the lower limit of the thickness of the partition wall 12 is not particularly limited, it is preferably 0.02 mm, more preferably 0.05 mm.
  • the lower limit of the cell density is also not particularly limited, but is preferably 10 cells/cm 2 , more preferably 20 cells/cm 2 .
  • the upper limit of the cell pitch is also not particularly limited, but is preferably 3.0 mm, more preferably 2.0 mm.
  • the thickness of the partition wall 12 refers to the length of the line segment that crosses the partition wall 12 when connecting the centers of gravity of the adjacent cells 14 with a line segment in a cross section perpendicular to the flow path direction.
  • the thickness of the partition walls 12 refers to the average thickness of all the partition walls 12 .
  • the cell density is a value obtained by dividing the number of cells by the area of each end face of the honeycomb structure 10 .
  • the cell pitch refers to the length of a line segment connecting the centers of gravity of two adjacent cells 14 on each end surface of the honeycomb structure 10 .
  • the honeycomb structure 10 has a partition wall 12 with a thickness of 0.14 to 0.36 mm, a cell density of 2.54 to 46.5 cells/cm 2 , and an open area ratio of the cells 14 of 80% or more. be.
  • the thickness of the partition walls 12 is 0.15 to 0.35 mm
  • the cell density is 2.80 to 45.0 cells/cm 2
  • the aperture ratio of the cells 14 is 83% or more.
  • the open area ratio of the cells 14 of the honeycomb structure 10 means that the area of the cells 14 in the cross section of the honeycomb structure 10 perpendicular to the flow path direction is the area of the entire cross section (the outer peripheral wall 11, the partition walls 12 and the cells 14 is the value obtained by dividing by the total area of
  • the honeycomb structure 10 preferably has a volume resistivity of 0.5 to 200 ⁇ cm at 25°C. If the volume resistivity is within this range, it can be said that the electrical resistance at room temperature (25° C.) is low. By reducing the electrical resistance at room temperature, it is possible to ensure the heat generation performance necessary for heating and to suppress the increase in power consumption.
  • the volume resistivity of the honeycomb structure 10 is obtained by measuring as follows. Two or more test pieces having dimensions of 30 mm ⁇ 30 mm ⁇ 15 mm are randomly cut and sampled from the honeycomb structure 10 . Then, the electrical resistance at the measurement temperature is measured by the two-probe method, and the volume resistivity is calculated from the shape of the test piece. Let the average value of the volume resistivity of all test pieces be the measured value at the measurement temperature.
  • the length of the honeycomb structure 10 in the flow direction and the cross-sectional area perpendicular to the flow direction may be adjusted according to the required size of the heater element 100, and are not particularly limited.
  • the honeycomb structure 10 when used in a compact heater element 100 while ensuring a predetermined function, has a length of 2 to 20 mm in the flow direction and a cross-sectional area perpendicular to the flow direction of 10 cm 2 or more. be able to.
  • the upper limit of the cross-sectional area perpendicular to the direction of the flow path is not particularly limited, it is, for example, 300 cm 2 .
  • Electrode layer 20 The electrode layer 20 is provided on the outer peripheral walls 11 and partition walls 12 of the first end face 13a and the second end face 13b. By applying a voltage in the direction of the flow path through the pair of electrode layers 20 provided in this manner, it is possible to generate heat in the honeycomb structure 10 by Joule heat. At least a portion of the electrode layer 20 has an extending portion 22 extending outward from the outer edges of the first end face 13a and the second end face 13b. By providing the extending portion 22, the contact area between the electrode layer 20 and the terminal 30 can be increased, so the amount of power supplied from the outside can be easily increased, and the heating performance of the heater element 100 can be improved.
  • the electrode layer 20 may have a single-layer structure or a structure of two or more layers.
  • a two-layer structure is preferred in order to maintain good electrical conductivity to 11 and partition wall 12 .
  • the first electrode layer 21a having good bondability to the first end face 13a and the second end face 13b of the honeycomb structure 10 and the second electrode layer 21b having good bondability to the first electrode layer 21a and the terminal 30
  • a two-layer structure may be used.
  • the extension 22 can be provided on the first electrode layer 21a, the second electrode layer 21b, or both. It is preferable to provide
  • the electrode layer 20 for example, a metal or alloy containing at least one selected from Cu, Ag, Al, Ni and Si can be used. Also, an ohmic electrode layer capable of ohmic contact with the outer peripheral wall 11 and/or the partition wall 12 having PTC characteristics may be used.
  • the ohmic electrode layer contains, for example, at least one selected from Au, Ag and In as a base metal, and at least one selected from Ni, Si, Ge, Sn, Se and Te for n-type semiconductors as a dopant. Containing ohmic electrode layers can be used.
  • an ohmic electrode layer is suitable for use as the first electrode layer 21a.
  • a configuration example of the electrode layer 20 includes a two-layer structure having an Al—Zn layer as the first electrode layer 21a and an Al layer as the second electrode layer 21b.
  • the thickness of the electrode layer 20 is not particularly limited, and can be appropriately set according to the method of forming the electrode layer 20 .
  • Methods of forming the electrode layer 20 include metal deposition methods such as sputtering, vapor deposition, electrolytic deposition, and chemical deposition.
  • the electrode layer 20 can also be formed by a method of applying an electrode paste and then baking it, or by thermal spraying.
  • the electrode layer 20 may be formed by joining metal or alloy plates.
  • the thickness of the electrode layer 20 is about 5 to 30 ⁇ m for baking electrode paste, about 100 to 1000 nm for dry plating such as sputtering and vapor deposition, about 10 to 100 ⁇ m for thermal spraying, and about 10 to 100 ⁇ m for wet plating such as electrolytic deposition and chemical deposition. It is preferably about 5 to 30 ⁇ m. Further, when joining metal or alloy plates, the thickness of the electrode layer 20 is preferably about 5 to 100 ⁇ m.
  • the terminal 30 is a member for electrically connecting the electrode layer 20 and the conducting wire.
  • the terminal 30 is connected to the extending portion 22 and arranged to face the side surface of the honeycomb structure 10 .
  • the contact area between the electrode layer 20 and the terminals 30 can be increased, so that the amount of power supplied from the outside can be easily increased, and the heating performance of the heater element 100 can be improved. be able to.
  • blockage of the cells 14 in the vicinity of the outer peripheral wall 11 can be avoided and an air flow path can be secured, an increase in pressure loss can be suppressed. Since the terminals 30 are arranged along the side surfaces of the honeycomb structure 10, the heater element 100 can be made compact.
  • the material of the terminal 30 is not particularly limited, but may be metal, for example.
  • the metal a single metal, an alloy, or the like can be employed, but from the viewpoint of corrosion resistance, electrical resistivity, and coefficient of linear expansion, for example, it is selected from the group consisting of Cr, Fe, Co, Ni, Cu, and Ti.
  • An alloy containing at least one of them is preferable, and stainless steel, Fe—Ni alloy, and phosphor bronze are more preferable.
  • the shape and size of the terminal 30 are not particularly limited, and may be appropriately adjusted according to the structure of the extension portion 22 of the electrode layer 20 and the like.
  • the terminal 30 may have an L-shaped cross section parallel to the flow path direction as shown in FIG. Such a shape increases the degree of structural freedom when connecting the terminal 30 to the conducting wire.
  • the method of connecting the terminal 30 and the electrode layer 20 is not particularly limited as long as they are electrically connected, and can be connected by, for example, diffusion bonding, mechanical pressure mechanism, welding, or the like.
  • an insulating portion 40 may be provided between the side surface of the honeycomb structure 10 and the terminal 30, if necessary. By providing the insulating portion 40 , uneven heating of the honeycomb structure 10 due to energization from the side surface of the honeycomb structure 10 can be suppressed.
  • the insulating part 40 also has a function of supporting the terminals 30 on the side surfaces of the honeycomb structure 10 .
  • the insulating part 40 is not particularly limited, but for example, a film (for example, a coating film formed by printing) formed of an insulating material such as alumina, ceramics, or heat-resistant resin can be used.
  • the thickness of the insulating portion 40 is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more. With a thickness within this range, the terminals 30 can be stably supported on the side surfaces of the honeycomb structure 10 while ensuring insulation between the side surfaces of the honeycomb structure 10 and the terminals 30 .
  • the method of manufacturing the honeycomb structure 10 includes a molding step and a firing step.
  • clay containing ceramic raw materials including BaCO 3 powder, TiO 2 powder, and rare earth nitrate or hydroxide powder is formed to produce a honeycomb formed body having a relative density of 60% or more.
  • a ceramic raw material can be obtained by dry-mixing powders to obtain a desired composition.
  • Clay can be obtained by adding a dispersion medium, a binder, a plasticizer and a dispersant to ceramic raw materials and kneading them. Additives such as shifters, metal oxides, property improving agents, and conductive powders may be added to the clay, if necessary.
  • the amount of the components other than the ceramic raw material to be blended is not particularly limited as long as the amount is such that the relative density of the formed honeycomb body is 60%.
  • dispersion medium examples include water, a mixed solvent of water and an organic solvent such as alcohol, and the like, but water is particularly suitable.
  • binders include organic binders such as methylcellulose, hydroxypropoxylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and polyvinyl alcohol. In particular, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose together.
  • One binder may be used alone, or two or more binders may be used in combination, but it is preferable that the binder does not contain an alkali metal element.
  • plasticizers include polyoxyalkylene alkyl ethers, polycarboxylic acid polymers, and alkyl phosphate esters.
  • Surfactants such as polyoxyalkylene alkyl ethers, ethylene glycol, dextrin, fatty acid soaps and polyalcohols can be used as dispersants.
  • a dispersing agent may be used individually by 1 type, or may be used in combination of 2 or more types.
  • a honeycomb molded body can be produced by extruding clay.
  • a die having a desired overall shape, cell shape, partition wall thickness, cell density, etc. can be used.
  • the relative density of the honeycomb molded body obtained by extrusion molding is 60% or more, preferably 61% or more. By controlling the relative density of the honeycomb formed body within such a range, it becomes possible to densify the honeycomb formed body and reduce the electrical resistance at room temperature.
  • the upper limit of the relative density of the honeycomb formed body is not particularly limited, it is generally 80%, preferably 75%.
  • the honeycomb molded body can be dried before the firing process.
  • the drying method is not particularly limited, but conventionally known drying methods such as hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, and freeze drying can be used. Among these, a drying method combining hot air drying with microwave drying or dielectric drying is preferable in that the entire molded body can be dried quickly and uniformly.
  • the firing step includes holding at 1150 to 1250° C., raising the temperature to a maximum temperature of 1360 to 1430° C. at a rate of 20 to 500° C./hour, and holding the temperature for 0.5 to 5 hours.
  • a honeycomb structure 10 having BaTiO 3 -based crystal particles in which a part of Ba is substituted with a rare earth element as a main component is obtained. be able to.
  • the Ba 2 TiO 4 crystal particles generated during the firing process are easily removed, so the honeycomb structure 10 can be densified.
  • 1.0 to 10.0% by mass of Ba 6 Ti 17 O 40 crystal particles are obtained.
  • the honeycomb structure 10 can be generated.
  • the holding time at 1150 to 1250° C. is not particularly limited, but preferably 0.5 to 5 hours. By setting such a holding time, the Ba 2 TiO 4 crystal particles generated during the firing process can be stably removed easily.
  • the firing step preferably includes holding at 900-950° C. for 0.5-5 hours.
  • BaCO 3 is efficiently decomposed, making it easier to obtain a honeycomb structure 10 having a predetermined composition.
  • a degreasing step for removing the binder may be performed before the firing step.
  • the atmosphere of the degreasing step is preferably an air atmosphere in order to completely decompose the organic components.
  • the atmosphere in the firing process is preferably an air atmosphere from the viewpoint of control of electrical properties and manufacturing cost.
  • a firing furnace used in the firing process and the degreasing process is not particularly limited, but an electric furnace, a gas furnace, or the like can be used.
  • Electrode layers 20 are formed on the outer peripheral walls 11 and the partition walls 12 of the first end face 13a and the second end face 13b of the honeycomb structure 10 thus obtained.
  • the electrode layer 20 can be formed by the method described above.
  • the insulating portions 40 are provided between the side surfaces of the honeycomb structure 10 and the terminals 30 , the insulating portions 40 are formed by applying an insulating material to the side surfaces of the honeycomb structure 10 .
  • the terminal 30 is arranged at a predetermined position, and the terminal 30 is connected to the electrode layer 20 .
  • the terminals 30 may extend outward from the side surfaces of the honeycomb structure 10 .
  • the terminal 30 may be composed of a plurality of metal parts and joined together.
  • the connection between the plurality of metal parts may be brazing, welding, or other mechanical connection such as a spring contact type.
  • the heater element 100 according to Embodiment 1 of the present invention can generate heat in the honeycomb structure 10 by, for example, applying a voltage from the terminals 30 through the pair of electrode layers 20 .
  • the working (applied) voltage can be appropriately adjusted from 12V to 800V.
  • the air can be heated by causing the air to flow through the cell 14 .
  • the temperature of the air entering the cell 14 can be, for example, -60°C to 20°C, typically -10°C to 20°C.
  • the terminals 30 are connected to the extending portions 22 of the electrode layers 20 provided on the first end surface 13a and the second end surface 13b of the honeycomb structure 10 as described above. Due to the arrangement, the contact area between the electrode layer 20 and the terminal 30 can be increased without blocking the cell 14 . Therefore, it becomes easier to increase the amount of electric power supplied from the outside, so that the heating performance can be improved. Furthermore, since blockage of the cells 14 in the vicinity of the outer peripheral wall 11 can be avoided and an air flow path can be secured, an increase in pressure loss can be suppressed.
  • the heater element 100 according to Embodiment 1 of the present invention has a simpler structure than the existing heater element in which the PTC element and the aluminum fins are integrated via the insulating ceramic plate, and the heater unit is increased in size. can be suppressed.
  • the PTC element does not come into direct contact with the air, so the temperature rise rate (heating time) of the air is not sufficient. Since the honeycomb structure 10 in which the partition walls 12 are made of a material having PTC properties is in direct contact with the air, the temperature rise rate of the air can be increased.
  • the heater unit according to Embodiment 1 of the present invention can be suitably used as a heater unit for heating the cabin of a vehicle.
  • the heater unit according to Embodiment 1 of the present invention includes two or more heater elements 100 .
  • the heater unit according to the first embodiment of the present invention uses the heater element 100 with high heat generation performance, the heat generation performance of the heater unit can be improved.
  • the heater element 100 can be made compact, it is possible to suppress an increase in the size of the heater unit.
  • the method of arranging the heater elements 100 is not particularly limited.
  • the heater elements 100 may be laminated and arranged so that the two face each other.
  • the heater elements 100 arranged in layers are preferably housed in a housing (housing member).
  • the material of the housing is not particularly limited, and examples thereof include metals and resins. Among them, the material of the housing is preferably resin. By using a housing made of resin, electric shock can be suppressed without grounding.
  • an insulating material may be arranged between the heater elements 100 arranged in layers. With such a configuration, electrical shorts between the plurality of heater elements 100 can be suppressed.
  • the insulating material a plate, mat, or cloth made of an insulating material such as alumina or ceramics can be used.
  • a heater system according to an embodiment of the present invention can be suitably used as a heater system for heating the cabin of a vehicle.
  • the heater system according to the first embodiment of the present invention uses the heater element 100 with high heat generation performance or the heater unit including two or more heater elements 100, so that the heat generation performance of the heater system can be improved.
  • the heater element 100 and the heater unit can be made compact, it is possible to suppress an increase in the size of the heater system.
  • FIG. 4 is a schematic diagram showing a configuration example of a heater system according to Embodiment 1 of the present invention.
  • the heater system 900 according to the first embodiment of the present invention includes a heater element or heater unit 600 according to the embodiment of the present invention, an outside air introduction section or vehicle compartment 910, and a heater element or heater unit 600.
  • Inflow pipes 920a and 920b communicating with the inflow port 650, a battery 940 for applying voltage to the heater element or heater unit 600, and an outflow pipe communicating between the outflow port 660 of the heater element or heater unit 600 and the vehicle compartment 910. 930.
  • the heater element or heater unit 600 can be configured, for example, to be connected to the battery 940 by a lead wire (electric wire) 950 and turn on a power switch in the middle of the connection so that the heater element or heater unit 600 is energized to generate heat. is.
  • a vapor compression heat pump 960 can be installed upstream of the heater element or heater unit 600 .
  • vapor compression heat pump 960 is configured as the primary heating device and heater element or heater unit 600 is configured as the auxiliary heater.
  • the vapor compression heat pump 960 includes an evaporator 961 that absorbs heat from the outside and evaporates the refrigerant during cooling, and a condenser 962 that liquefies the refrigerant gas and releases heat during heating.
  • An exchanger can be provided. Note that the vapor compression heat pump 960 is not particularly limited, and one known in the art can be used.
  • a blower 970 can be installed upstream and/or downstream of the heater element or heater unit 600 . It is preferable to install the blower 970 on the upstream side of the heater element or heater unit 600 from the viewpoint of ensuring safety by arranging high-voltage components as far away from the vehicle interior 910 as possible.
  • the blower 970 When the blower 970 is driven, air flows into the heater element or heater unit 600 from inside or outside the vehicle compartment 910 through the inflow pipes 920a and 920b. The air is heated while passing through the heat generating heater element or heater unit 600 . Heated air exits the heater element or heater unit 600 and is channeled into the passenger compartment 910 through the outflow line 930 .
  • the outlet of the outflow pipe 930 may be arranged near the feet of the occupant so that the heating effect is particularly high even in the passenger compartment 910, or the pipe outlet may be arranged in the seat to heat the seat from the inside. Alternatively, it may be arranged in the vicinity of the window to have the effect of suppressing fogging of the window.
  • the inflow pipe 920a and the inflow pipe 920b join in the middle.
  • Valves 921a and 921b can be installed in the inflow pipe 920a and the inflow pipe 920b, respectively, on the upstream side of the junction.
  • By controlling the opening and closing of the valves 921a and 921b it is possible to switch between a mode in which outside air is introduced into the heater element or heater unit 600 and a mode in which air in the passenger compartment 910 is introduced into the heater element or heater unit 600.
  • valve 921a is opened and valve 921b is closed, a mode is entered in which outside air is introduced into the heater element or heater unit 600.
  • FIG. It is also possible to open both valves 921 a and 921 b to introduce outside air and air inside the vehicle interior 910 into the heater element or heater unit 600 at the same time.
  • FIG. 5 is a schematic diagram of an end face of a heater element according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a cross section (aa' line cross section) of the heater element of FIG. 5 parallel to the flow path direction of the honeycomb structure. As shown in FIGS.
  • a heater element 200 according to Embodiment 2 of the present invention includes an outer peripheral wall 11 and a flow path disposed inside the outer peripheral wall 11 and extending from a first end face 13a to a second end face 13b.
  • a honeycomb structure having partition walls 12 partitioning and forming a plurality of cells 14 serving as channels, and plugging portions 15 in which at least part of the cells 14 in the outer edge regions of the first end face 13a and the second end face 13b are plugged.
  • the body 10 the pair of electrode layers 20 provided on the outer peripheral wall 11 of the first end surface 13a and the second end surface 13b, the partition wall 12, and the plugging portion 15, and the electrode layers 20 and the conducting wire can be electrically connected.
  • the outer peripheral wall 11 and the partition wall 12 are made of a material having PTC properties.
  • the terminal 30 is provided at a position facing the plugged portion 15 in the flow path direction of the honeycomb structure 10 .
  • each component used in the heater element 200 is basically the same as each component used in the heater element 100, so the common components are given the same reference numerals and their description is omitted. Only the constituent members that
  • the honeycomb structure 10 has plugged portions 15 in which at least some of the cells 14 in the outer edge regions of the first end face 13a and the second end face 13b are plugged.
  • the plugging portions 15 it is possible to increase the area of the electrode layer 20 formed on the plugging portions 15, the peripheral wall 11 and the partition wall 12 therearound. can increase the contact area with
  • the number of cells 14 provided with the plugging portions 15 can be, for example, 2 or more and 100 or less from the viewpoint of connectivity between the terminals 30 and the electrode layers 20 that are arranged to face each other.
  • the "outer edge region of the first end surface 13a and the second end surface 13b" means from the outer peripheral wall 11 to 1/4 of the diameter of the first end surface 13a and the second end surface 13b (when not circular, the equivalent circle diameter). means the area of
  • the material of the plugging portions 15 is not particularly limited, but from the viewpoint of matching the degree of thermal expansion with the material having the PTC characteristic that constitutes the outer peripheral wall 11 and the partition walls 12, a material with a thermal expansion coefficient of 8 to 15 ppm/K is used. preferably configured. If the coefficient of thermal expansion is within this range, it is possible to suppress the occurrence of cracks or the like due to the difference in the degree of thermal expansion between the outer peripheral wall 11 and the partition wall 12 and the plugging portions 15 when the heater element 200 is used. .
  • the plugging portions 15 are preferably made of a material having PTC properties, similarly to the outer peripheral wall 11 and the partition walls 12 .
  • the plugging portions 15 can be heated together with the outer peripheral wall 11 and the partition walls 12 by energization, so that the heat generation performance of the honeycomb structure 10 is improved.
  • the material of the plugging portions 15 may be different from the material of the outer peripheral wall 11 and the partition wall 12, but from the viewpoint of productivity, it is preferable that they are the same.
  • the plugged portions 15 can be formed by a plugging process known in the technical field.
  • the plugging treatment may be performed before firing the formed honeycomb body, or may be performed after firing.
  • a thin film having openings corresponding to the cells 14 on the end faces (first end face 13a and second end face 13b) of the formed honeycomb body or honeycomb structure 10 in which the plugging portions 15 are to be formed is attached.
  • the end face of the formed honeycomb body or honeycomb structure 10 is immersed in a slurry plugging material, and the plugging material enters the cells 14 of the formed honeycomb body or honeycomb structure 10 that are not blocked by the thin film.
  • the plugging portions 15 filled with the plugging material can be formed.
  • a material used for the plugging material a material used for producing a formed honeycomb body can be used.
  • the electrode layer 20 is provided on the outer peripheral walls 11, the partition walls 12 and the plugging portions 15 of the first end face 13a and the second end face 13b. By providing the electrode layer 20 at such a position, a region having a large area of the electrode layer 20 can be formed on the plugging portion 15 and the peripheral wall 11 and the partition wall 12 around it.
  • the terminal 30 is provided at a position facing the plugged portion 15 in the flow path direction of the honeycomb structure 10 .
  • the terminal 30 can be connected to a large area of the electrode layer 20 . Therefore, the increased contact area between the electrode layer 20 and the terminal 30 makes it easier to increase the amount of power supplied from the outside, and the heating performance can be improved.
  • the terminal 30 may have a shape such as an L-shaped cross section parallel to the flow path direction as shown in FIG.
  • the terminal 30, such as an L-shape may be made by mechanically combining multiple shaped metal members.
  • the metal member constituting the terminal 30 may be placed inside the outer edge of the honeycomb structure 10 or may extend outside the outer edge of the honeycomb structure 10 .
  • the shape of the terminal 30 may be a U-shape obtained by further bending the tip of the L-shape, or may have a curved surface, in addition to the L-shape. Such a shape increases the degree of structural freedom when connecting the terminal 30 to the conducting wire.
  • the terminal 30 and the side surface of the outer peripheral wall 11 are configured so as not to be in direct contact with each other. is preferred.
  • the insulating portion 40 may be arranged between the terminal 30 and the side surface of the outer peripheral wall 11 , or a space may be provided between the terminal 30 and the side surface of the outer peripheral wall 11 .
  • the heater element 200 according to Embodiment 2 of the present invention can be used in the same manner as the heater element 100. FIG.
  • the heater unit according to Embodiment 2 of the present invention can be suitably used as a heater unit for heating the cabin of a vehicle, like the heater unit according to Embodiment 1 of the present invention.
  • a heater unit according to Embodiment 2 of the present invention includes two or more heater elements 200 .
  • the heater unit according to the second embodiment of the present invention uses the heater element 200 with high heat generation performance, the heat generation performance of the heater unit can be improved.
  • the heater element 200 can be made compact, it is possible to suppress an increase in the size of the heater unit.
  • the structure of the heater unit according to Embodiment 2 of the present invention can be the same as that of the heater unit according to Embodiment 1 of the present invention, so description thereof will be omitted.
  • the heater system according to Embodiment 2 of the present invention can be suitably used as a heater system for heating the cabin of a vehicle.
  • the heater system according to the second embodiment of the present invention uses the heater element 200 with high heat generation performance or the heater unit including two or more heater elements 200, so that the heat generation performance of the heater system can be improved.
  • the heater element 200 and the heater unit can be made compact, it is possible to suppress an increase in the size of the heater system.
  • the structure of the heater system according to Embodiment 2 of the present invention can be the same as that of the heater system according to Embodiment 1 of the present invention, so the description thereof will be omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで延びる流路となる複数のセル14を区画形成する隔壁12とを有し、外周壁11及び隔壁12がPTC特性を有する材料で構成されたハニカム構造体10と、第1端面13a及び第2端面13bの外周壁11及び隔壁12に設けられた一対の電極層20と、電極層20と導線とを電気的に接続可能な端子30とを備えるヒーターエレメント100である。電極層20の少なくとも一部は、第1端面13a及び第2端面13bの外縁よりも外側に延出した延出部22を有する。端子30は、延出部22に接続され、且つハニカム構造体10の側面と対向するように配置されている。

Description

ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム
 本発明は、ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステムに関する。
 近年、電気自動車の車室暖房用ヒーターシステムとして、蒸気圧縮ヒートポンプを主たるヒーターとして使用しつつ、車両始動時の急速加熱が必要なときや外気温が非常に低い時に、ジュール熱を利用したヒーターを補助的に使用するヒーターシステムが採用されてきた。
 このヒーターシステムで用いられるジュール熱を利用したヒーターとして、特許文献1には、PTC素子をアルミニウムフィンと一体化したヒーターエレメントが積層配列されたヒーターユニットが提案されている。
 しかしながら、このヒーターエレメントは、PTC素子及びアルミニウムフィン以外にも絶縁板や導電板などの多くの部品を備えているため、複雑な構造を有するとともに、組立コストがかかり、高価であるという課題がある。
 そこで、特許文献2には、コンパクトで体積当たりの熱伝達面積を大きくすることが可能なハニカム構造体を用いたヒーターエレメントが提案されている。このハニカム構造体を用いたヒーターエレメントは、上述のヒーターエレメントに比べて単純な構造であるという利点がある。
特開2007-157528号公報 国際公開第2020/036067号
 特許文献2に記載のヒーターエレメントは、外周壁と、外周壁の内側に配設され、第1端面から第2端面まで流路を形成する複数のセルを区画形成する隔壁とを有するハニカム構造体を備え、ハニカム構造体の両端面に一対の電極が、電極材料の塗布・焼き付けによって形成されている。一対の電極において、外部電源に接続された導電線との電気接続法としては、一対の電極と接するリング状の導電部材を介して導電線と間接的に接合すること、又は一対の電極に導電線を直接的に接合することが挙げられる。リング状の導電部材を用いるのは、導電線と一対の電極との間の接触面積を増加させることで電気抵抗を下げるためである。他方、一対の電極に導電線を直接的に接合する方法は、導通面積が小さく十分な通電性を維持することに関して信頼性が乏しい。また、リング状の導電部材は、ハニカム構造体の外周壁とともに外周壁に隣接するセルも塞ぐように接合されている。したがって、このリングの導電部材を備えるヒーターエレメントは、空気の流路が少なく、圧力損失が増大する。その結果、ハニカム構造体のセルを通過する空気の流速が増加するので隔壁から空気への熱伝達が不十分になり、暖房性能が低下する。
 本発明は、上記のような問題を解決するためになされたものであり、圧力損失の増大を抑制し、暖房性能が高いヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステムを提供することを課題とする。
 上記の課題は、以下の本発明によって解決されるものであり、本発明は以下の通りである。
 本発明は、外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで延びる流路となる複数のセルを区画形成する隔壁とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
 前記第1端面及び前記第2端面の前記外周壁及び前記隔壁に設けられた一対の電極層と、
 前記電極層と導線とを電気的に接続可能な端子と
を備え、
 前記電極層の少なくとも一部は、前記第1端面及び前記第2端面の外縁よりも外側に延出した延出部を有し、
 前記端子は、前記延出部に接続され、且つ前記ハニカム構造体の側面と対向するように配置されているヒーターエレメントである。
 また、本発明は、外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで延びる流路となる複数のセルを区画形成する隔壁と、前記第1端面及び前記第2端面の外縁領域の少なくとも一部の前記セルが目封止された目封止部とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
 前記第1端面及び前記第2端面の前記外周壁、前記隔壁及び前記目封止部に設けられた一対の電極層と、
 前記電極層と導線とを電気的に接続可能な端子と、
を備え、
 前記端子は、前記ハニカム構造体の流路方向において前記目封止部と対向する位置に設けられているヒーターエレメントである。
 また、本発明は、前記ヒーターエレメントを2個以上含むヒーターユニットである。
 さらに、本発明は、前記ヒーターエレメント、又は前記ヒーターエレメントを2個以上含むヒーターユニットと、
 外気導入部又は車室と前記ヒーターエレメント又は前記ヒーターユニットの流入口とを連通する流入配管と、
 前記ヒーターエレメント又は前記ヒーターユニットに電圧を印加するためのバッテリーと、
 前記ヒーターエレメント又は前記ヒーターユニットの流出口と前記車室とを連通する流出配管と
を備える車室暖房用ヒーターシステムである。
 本発明によれば、圧力損失の増大を抑制し、暖房性能が高いヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステムを提供することができる。
本発明の実施形態1に係るヒーターエレメントの端面の模式図である。 ハニカム構造体の流路方向に平行な図1のヒーターエレメントの断面の模式図である。 ハニカム構造体の流路方向に平行な、本発明の実施形態1に係る別のヒーターエレメントの断面の模式図である。 本発明の実施形態1に係るヒーターシステムの構成例を示す模式図である。 本発明の実施形態2に係るヒーターエレメントの端面の模式図である。 ハニカム構造体の流路方向に平行な図5のヒーターエレメントの断面の模式図である。 ハニカム構造体の流路方向に平行な、本発明の実施形態2に係る別のヒーターエレメントの断面の模式図である。
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
<実施形態1>
(1.ヒーターエレメント)
 本発明の実施形態1に係るヒーターエレメントは、車両の車室暖房用のヒーターエレメントとして好適に利用可能である。車両としては、特に限定されないが、自動車及び電車が挙げられる。自動車としては、特に限定されないが、ガソリン車、ディーゼル車、CNG(圧縮天然ガス)やLNG(液化天然ガス)などを用いるガス燃料車、燃料電池自動車、電気自動車及びプラグインハイブリッド自動車が挙げられる。本発明の実施形態1に係るヒーターエレメントは、特に電気自動車及び電車のような内燃機関を持たない車両に好適に利用可能である。
 図1は、本発明の実施形態1に係るヒーターエレメントの端面の模式図である。図2は、ハニカム構造体の流路方向に平行な図1のヒーターエレメントの断面の模式図である。
 図1及び2に示されるように、本発明の実施形態1に係るヒーターエレメント100は、外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで延びる流路となる複数のセル14を区画形成する隔壁12とを有するハニカム構造体10と、第1端面13a及び第2端面13bの外周壁11及び隔壁12に設けられた一対の電極層20と、電極層20と導線とを電気的に接続可能な端子30とを備える。外周壁11及び隔壁12は、PTC(Positive Temperature Coefficient)特性を有する材料で構成されている。電極層20の少なくとも一部は、第1端面13a及び第2端面13bの外縁よりも外側に延出した延出部22を有する。端子30は、延出部22に接続され、且つハニカム構造体10の側面と対向するように配置されている。このようにして端子30を接続及び配置することにより、セル14を塞ぐことなく、電極層20と端子30との接触面積を増大させることができ、外部からの給電量を高め易くなるため、暖房性能を向上させることができる。
 以下、ヒーターエレメント100の各構成部材について詳細に説明する。
(1-1.ハニカム構造体10)
 ハニカム構造体10の形状は、外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで延びる流路となる複数のセル14を区画形成する隔壁12とを有していれば特に限定されない。ハニカム構造体10の形状としては、例えば、流路方向(セル14が延びる方向)に直交する断面(外形)を、多角形(四角形(長方形、正方形)、五角形、六角形、七角形、八角形など)、円形、オーバル形状(卵形、楕円形、長円形、角丸長方形など)などにすることができる。なお、端面(第1端面13a及び第2端面13b)は、当該断面と同一の形状である。また、断面及び端面が多角形の場合、角部は面取りしてもよい。
 セル14の形状は、特に限定されないが、流路方向に直交する断面において、多角形(四角形、五角形、六角形、七角形、八角形など)、円形、オーバル形状にすることができる。これらの形状は、単独又は二種以上を組み合わせてもよい。また、これらの形状の中でも四角形又は六角形が好ましい。このような形状のセル14を設けることにより、空気が流通する際の圧力損失を小さくすることができる。なお、図1及び2は、流路方向に直交する断面において、断面(外径)及びセル14の形状が四角形であるハニカム構造体10を一例として示している。
 ハニカム構造体10は、複数のハニカムセグメントと、複数のハニカムセグメントの間を接合する接合層とを有するハニカム接合体であってもよい。ハニカム接合体を用いることにより、クラックの発生を抑えながら空気の流量確保に重要なセル14の総断面積を増やすことが可能となる。
 なお、接合層は、接合材を用いて形成することができる。接合材としては、特に限定されないが、セラミックス材料に、水などの溶媒を加えてペースト状にしたものを用いることができる。接合材は、PTC特性を有するセラミックスを含有してもよく、外周壁11及び隔壁12と同一のセラミックスを含有してもよい。接合材は、ハニカムセグメント同士を接合する役割に加えて、ハニカムセグメントを接合した後の外周コート材として用いることも可能である。
 ハニカム構造体10を構成する外周壁11及び隔壁12は、PTC特性を有する材料で構成されている。
 PTC特性を有する材料は、通電によって発熱可能な材料である。そのため、車室の空気が第1端面13aから流入し、複数のセル14を通過して第2端面13bから流出するまでに、発熱する外周壁11及び隔壁12からの伝熱によって当該空気を加熱することが可能である。また、PTC特性を有する材料は、温度が上昇してキュリー点を超えると、急激に抵抗値が上昇して電気が流れ難くなるという特性を有する。そのため、隔壁12(必要に応じて外周壁11)は、ヒーターエレメント100が高温になったときに、これらに流れる電流が制限されるので、ヒーターエレメント100の過剰な発熱が抑制される。
 PTC特性を有する材料としては、特に限定されないが、チタン酸バリウム(BaTiO3)を主成分とする材料であることが好ましく、Baの一部が希土類元素で置換されたチタン酸バリウム(BaTiO3)系結晶粒子を主成分とする材料で構成されるセラミックスであることがより好ましい。なお、本明細書において「主成分」とは、成分全体に占める割合が50質量%を超える成分のことを意味する。BaTiO3系結晶粒子の含有量は、例えば、蛍光X線分析、EDAX(エネルギー分散型X線)分析などにより求めることができる。その他の結晶粒子についても、この方法と同様にして測定することができる。また、チタン酸バリウム(BaTiO3)を主成分とする材料の熱膨張率は8~15ppm/Kである。ここで、熱膨張率とは、JIS R1618:2002「ファインセラミックスの熱機械分析による熱膨張の測定方法」によって測定された熱膨張率を意味する。
 Baの一部が希土類元素で置換されたBaTiO3系結晶粒子の組成式は、(Ba1-xx)TiO3で表すことができる。組成式中、Aは一種以上の希土類元素を表し、0.001≦x≦0.010である。
 Aは、希土類元素であれば特に限定されないが、好ましくはSc、Y、La、Ce、Pr、Nd、Eu、Gd、Dy、Ho、Er及びYbからなる群から選択される一種以上であり、より好ましくはLaである。xは、室温における電気抵抗が高くなり過ぎることを抑制する観点から、好ましくは0.001以上、より好ましくは0.0015以上、更に好ましくは0.002以上である。一方、xは、焼結不足となって室温における電気抵抗が高くなりすぎることを抑制する観点から、好ましくは0.010以下、より好ましくは0.009以下、更に好ましくは0.008以下である。
 Baの一部が希土類元素で置換されたBaTiO3系結晶粒子は、(Ba+希土類元素)/Ti比が、好ましくは1.005~1.050である。このような範囲に(Ba+希土類元素)/Ti比を制御することにより、室温における電気抵抗を安定して低下させることができる。Ba、希土類元素及びTiの元素比は、例えば、蛍光X線分析、ICP-MS(誘導結合プラズマ質量分析)などにより求めることができる。
 Baの一部が希土類元素で置換されたBaTiO3系結晶粒子は、平均結晶粒径が、好ましくは5~200μm、より好ましくは5~180μm、更に好ましくは5~160μmである。このような範囲に平均結晶粒径を制御することにより、室温における電気抵抗を安定して低下させることができる。
 このBaTiO3系結晶粒子の平均結晶粒径は、次のようにして測定することができる。セラミックスから、5mm×5mm×5mmの角状試料を切り出し、樹脂で包埋する。包埋した試料を機械研磨により鏡面研磨してSEM観察する。SEM観察は、例えば株式会社日立ハイテク製の型式S-3400Nを使用し、加速電圧15kV、倍率3000で行う。SEM観察像(縦30μm×横45μm)において、視野の縦方向全体にまたがる太さ0.3μmの直線を10μmの間隔で4本引き、この直線が一部でも通過するBaTiO3系結晶粒子の数を数える。直線の長さをBaTiO3系結晶粒子の数で割ったものの4カ所以上のSEM観察像の平均を平均結晶粒径とする。
 Baの一部が希土類元素で置換されたBaTiO3系結晶粒子のセラミックスにおける含有量は、主成分となる量であれば特に限定されないが、好ましくは90質量%以上、より好ましくは92質量%以上、より好ましくは94質量%以上である。なお、BaTiO3系結晶粒子の含有量の上限値は、特に限定されないが、一般的に99質量%、好ましくは98質量%である。
 このBaTiO3系結晶粒子の含有量は、例えば、蛍光X線分析、EDAX(エネルギー分散型X線)分析によって測定することができる。その他の結晶粒子についても、この方法と同様にして測定することができる。
 外周壁11及び隔壁12に用いられるセラミックスは、Ba6Ti1740結晶粒子を含むことが好ましい。セラミックスにおいてBa6Ti1740結晶粒子を存在させることにより、室温における電気抵抗を低下させることができる。理論によって本発明が限定されることを意図するものではないが、Ba6Ti1740結晶粒子は、焼成過程で液相化してBaTiO3系結晶粒子の再配列、粒成長及び緻密化を促進させるため、室温における電気抵抗が低下するものと考えられる。
 セラミックスにおけるBa6Ti1740結晶粒子の含有量は、1.0~10.0質量%、好ましくは1.2~8.0質量%、より好ましくは1.5~6.0質量%である。Ba6Ti1740結晶粒子を1.0質量%以上とすることにより、Ba6Ti1740結晶粒子の存在による効果(すなわち、室温における電気抵抗を低下させる効果)を得ることができる。また、Ba6Ti1740結晶粒子を10.0質量%以下とすることにより、PTC特性を確保することができる。
 外周壁11及び隔壁12に用いられるセラミックスは、BaCO3結晶粒子を更に含むことができる。BaCO3結晶粒子は、セラミックスの原料であるBaCO3粉末に由来する結晶粒子である。
 BaCO3結晶粒子は、セラミックスの室温における電気抵抗にはほとんど影響しないため、セラミックスに含まれていなくてもよい。ただし、セラミックスにおけるBaCO3結晶粒子の含有量が多すぎると、室温における電気抵抗に影響する可能性がある上、他の結晶粒子が少なくなって所望の特性が得られない可能性がある。そのため、BaCO3結晶粒子の含有量は、好ましくは2.0質量%以下、より好ましくは1.8質量%以下、更に好ましくは1.5質量%以下である。なお、BaCO3結晶粒子の含有量の下限値は、特に限定されないが、一般的に0.1質量%、好ましくは0.2質量%である。
 外周壁11及び隔壁12に用いられるセラミックスは、上記の結晶粒子に加えて、PTC特性を有する材料に慣用的に添加されている成分を更に含んでいてもよい。このような成分としては、シフター、特性改善剤、金属酸化物及び導電体粉末などの添加剤の他、不可避的不純物が挙げられる。
 外周壁11及び隔壁12に用いられるセラミックスは、環境負荷を軽減するという観点から、鉛(Pb)を実質的に含まないことが望ましい。具体的には、セラミックスは、Pb含有量が、好ましくは0.01質量%以下、より好ましくは0.001質量%以下、更に好ましくは0質量%である。Pb含有量が少ないことにより、例えば、セラミックスに接触させることで加温した空気をヒトなどの生物に安全に当てることができる。なお、セラミックスにおいて、Pb含有量は、PbOに換算すると、好ましくは0.03質量%未満、より好ましくは0.01質量%未満、更に好ましくは0質量%である。鉛の含有量は、例えば、蛍光X線分析、ICP-MS(誘導結合プラズマ質量分析)などにより求めることができる。
 外周壁11及び隔壁12に用いられるセラミックスは、室温における電気抵抗に影響を与える可能性があるアルカリ金属を実質的に含まないことが好ましい。具体的には、セラミックスは、アルカリ金属の含有量が、好ましくは0.01質量%以下、より好ましくは0.001質量%以下、更に好ましくは0質量%である。このような範囲にアルカリ金属の含有量を制御することにより、室温における電気抵抗を安定して低下させることができる。アルカリ金属の含有量は、例えば、蛍光X線分析、ICP-MS(誘導結合プラズマ質量分析)などにより求めることができる。
 外周壁11及び隔壁12を構成する材料のキュリー点は、空気を効率良く加熱する観点から、好ましくは100℃以上、より好ましくは110℃以上、更に好ましくは125℃以上である。また、キュリー点の上限値については、車室又は車室近傍に置かれる部品としての安全性の観点から、好ましくは250℃、より好ましくは225℃、更に好ましくは200℃、更により好ましくは150℃である。
 外周壁11及び隔壁12を構成する材料のキュリー点は、シフターの種類及び添加量によって調整可能である。例えば、チタン酸バリウム(BaTiO3)のキュリー点は約120℃であるが、Ba及びTiの一部をSr、Sn及びZrの一種以上で置換することにより、キュリー点を低温側にシフトさせることができる。
 本発明において、キュリー点は以下の方法により測定される。試料を測定用の試料ホルダーに取りつけ、測定槽(例:MINI-SUBZERO MC-810P エスペック株式会社製)内に装着して、10℃から昇温したときの温度変化に対する試料の電気抵抗の変化を、直流抵抗計(例:マルチメーター3478A YHP社製)を用いて測定する。測定により得られた電気抵抗-温度プロットにより、抵抗値が室温(20℃)における抵抗値の2倍になるときの温度をキュリー点とする。
 ハニカム構造体10は、一態様において、隔壁12の厚さが0.125mm以下、セル密度が93セル/cm2以下、セルピッチが1.0mm以上である。このような範囲に隔壁12の厚さ、セル密度及びセルピッチを制御することにより、空気がセル14を通過する際の圧力損失の増大を抑制することができるため、送風機などの出力を抑制することができる。このような効果を安定して得る観点から、隔壁12の厚さは0.075mm以下、セル密度が62セル/cm2以下、セルピッチが1.3mm以上であることが好ましい。
 なお、隔壁12の厚さの下限値は、特に限定されないが、好ましくは0.02mm、より好ましくは0.05mmである。また、セル密度の下限値も、特に限定されないが、好ましくは10セル/cm2、より好ましくは20セル/cm2である。また、セルピッチの上限値も、特に限定されないが、好ましくは3.0mm、より好ましくは2.0mmである。
 ここで、隔壁12の厚さとは、流路方向に直交する断面において、隣接するセル14の重心同士を線分で結んだときに当該線分が隔壁12を横切る長さを指す。隔壁12の厚さは、全ての隔壁12の厚さの平均値を指す。また、セル密度とは、ハニカム構造体10の各端面の面積でセル数を除して得られる値である。さらに、セルピッチは、ハニカム構造体10の各端面において、隣接する2つのセル14の重心同士を結ぶ線分の長さを指す。
 ハニカム構造体10は、別の態様において、隔壁12の厚さが0.14~0.36mm、セル密度が2.54~46.5セル/cm2、セル14の開口率が80%以上である。このような範囲に隔壁12の厚さ、セル密度及びセル14の開口率を制御することにより、圧力損失の増大を抑制しつつ、ハニカム構造体10の強度及び空気との接触面積を増大させることができる。このような効果を安定して得る観点から、隔壁12の厚さが0.15~0.35mm、セル密度が2.80~45.0セル/cm2、セル14の開口率が83%以上であることが好ましい。
 なお、セル14の開口率の上限値は、特に限定されないが、好ましくは94%、より好ましくは92%である。
 ここで、ハニカム構造体10のセル14の開口率とは、ハニカム構造体10の流路方向に直交する断面において、セル14の面積を、断面全体の面積(外周壁11、隔壁12及びセル14の合計面積)で除して得られた値を百分率で表した値である。
 ハニカム構造体10は、25℃における体積抵抗率が、好ましくは0.5~200Ω・cmである。このような範囲の体積抵抗率であれば、室温(25℃)における電気抵抗が低いということができる。そして、室温における電気抵抗を低くすることで、暖房に必要な発熱性能を確保することができるとともに、消費電力が大きくなるのを抑制することができる。
 なお、ハニカム構造体10の体積抵抗率は、以下のように測定することで得られる。ハニカム構造体10から、30mm×30mm×15mmの寸法の試験片をランダムに2個以上切削加工し採取する。そして、測定温度における電気抵抗を2端子法にて測定し、試験片の形状から体積抵抗率を算出する。全ての試験片の体積抵抗率の平均値を測定温度における測定値とする。
 ハニカム構造体10の流路方向の長さ及び流路方向に直交する断面積は、要求されるヒーターエレメント100のサイズにあわせて調整すればよく、特に限定されない。例えば、所定の機能を確保しつつコンパクトなヒーターエレメント100に用いられる場合、ハニカム構造体10は、流路方向の長さを2~20mm、流路方向に直交する断面積を10cm2以上とすることができる。なお、流路方向に直交する断面積の上限値は、特に限定されないが、例えば、300cm2である。
(1-2.電極層20)
 電極層20は、第1端面13a及び第2端面13bの外周壁11及び隔壁12に設けられる。このように設けられた一対の電極層20によって流路方向に電圧を印加することにより、通電してジュール熱によりハニカム構造体10を発熱させることが可能となる。
 電極層20は、少なくとも一部が、第1端面13a及び第2端面13bの外縁よりも外側に延出した延出部22を有する。延出部22を設けることにより、電極層20と端子30との接触面積を増大させることができるため、外部からの給電量を高め易くなり、ヒーターエレメント100の暖房性能を向上させることができる。
 電極層20は、単層構造であっても二層以上の構造であってもよいが、ハニカム構造体10の第1端面13a及び第2端面13bに対する接合性を高めるとともに、端子30から外周壁11及び隔壁12への良好な導電性を維持するために、二層構造であることが好ましい。例えば、ハニカム構造体10の第1端面13a及び第2端面13bに対する接合性が良好な第1電極層21aと、第1電極層21a及び端子30に対する接合性が良好な第2電極層21bとの二層構造とすればよい。二層構造の電極層20の場合、延出部22は、第1電極層21a、第2電極層21b又はそれらの両方に設けることができるが、製造性の観点から、第2電極層21bに設けることが好ましい。
 電極層20としては、例えば、Cu、Ag、Al、Ni及びSiから選択される少なくとも一種を含有する金属又は合金を使用することができる。また、PTC特性を有する外周壁11及び/又は隔壁12とオーミック接触が可能なオーミック電極層を使用することもできる。オーミック電極層は、例えば、ベース金属としてAu、Ag及びInから選択される少なくとも一種を含有し、ドーパントとしてn型半導体用のNi、Si、Ge、Sn、Se及びTeから選択される少なくとも一種を含有するオーミック電極層を使用することができる。特に、オーミック電極層は、第1電極層21aとして用いるのに適している。
 電極層20の構成例としては、第1電極層21aとしてAl-Zn層、第2電極層21bとしてAl層を有する二層構造が挙げられる。
 電極層20の厚みは、特に限定されず、電極層20の形成方法に応じて適宜設定することができる。電極層20の形成方法としては、スパッタリング、蒸着、電解析出、化学析出のような金属析出法が挙げられる。また、電極ペーストを塗布した後、焼き付ける方法や、溶射によっても電極層20を形成することもできる。さらに、金属又は合金板を接合することによって電極層20としてもよい。
 電極層20の厚みは、電極ペーストの焼付けでは5~30μm程度、スパッタリング及び蒸着のような乾式めっきでは100~1000nm程度、溶射では10~100μm程度、電解析出及び化学析出のような湿式めっきでは5~30μm程度とすることが好ましい。また、金属又は合金板の接合では電極層20の厚みを5~100μm程度とすることが好ましい。
(1-3.端子30)
 端子30は、電極層20と導線とを電気的に接続するための部材である。
 端子30は、延出部22に接続され、且つハニカム構造体10の側面と対向するように配置される。このように端子30を接続及び配置することにより、電極層20と端子30との接触面積を増大させることができるため、外部からの給電量を高め易くなり、ヒーターエレメント100の暖房性能を向上させることができる。また、外周壁11付近のセル14の閉塞を避けて、空気の流路を確保可能であるため、圧力損失の増大を抑制することができる。端子30がハニカム構造体10の側面に沿って配置されるため、ヒーターエレメント100をコンパクト化することもできる。
 端子30の材質としては、特に限定されないが、例えば、金属とすることができる。金属としては、単体金属及び合金などを採用することもできるが、耐食性、電気抵抗率及び線膨張率の観点から、例えば、Cr、Fe、Co、Ni、Cu及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金、リン青銅がより好ましい。
 端子30の形状及び大きさは、特に限定されず、電極層20の延出部22の構造などに応じて適宜調整すればよい。例えば、端子30は、図3に示されるような流路方向に平行な断面がL字型の形状とすることができる。このような形状とすることにより、端子30を導線と接続する際の構造的な自由度が高くなる。
 端子30と電極層20との接続方法は、電気的に接続されていれば特に限定されず、例えば、拡散接合、機械的な加圧機構、溶接などによって接続することができる。
(1-4.絶縁部40)
 本発明の実施形態1に係るヒーターエレメント100は、必要に応じて、ハニカム構造体10の側面と端子30との間に絶縁部40を設けてもよい。絶縁部40を設けることにより、ハニカム構造体10の側面からの通電によってハニカム構造体10が不均一に加熱されることを抑制することができる。また、絶縁部40は、ハニカム構造体10の側面に端子30を支持する機能も有する。
 絶縁部40としては、特に限定されないが、例えば、アルミナやセラミックス、耐熱樹脂などの絶縁材料から形成された皮膜(例えば、印刷塗布による塗工膜)などを用いることができる。
 絶縁部40の厚みは、特に限定されないが、好ましくは10μm以上、より好ましくは50μm以上である。この範囲の厚みであれば、ハニカム構造体10の側面と端子30との間の絶縁性を確保しつつ、ハニカム構造体10の側面に端子30を安定して支持することができる。
(1-5.ヒーターエレメント100の製造方法)
 次に、本発明の実施形態1に係るヒーターエレメント100を製造する方法について例示的に説明する。
 ヒーターエレメント100を構成するハニカム構造体10の材質をセラミックスとする場合、ハニカム構造体10の製造方法は、成形工程及び焼成工程を含む。
 成形工程では、BaCO3粉末、TiO2粉末、及び希土類の硝酸塩又は水酸化物の粉末を含むセラミックス原料を含有する坏土を成形し、相対密度が60%以上のハニカム成形体を作製する。
 セラミックス原料は、所望する組成となるように各粉末を乾式混合することによって得ることができる。
 坏土は、セラミックス原料に、分散媒、バインダ、可塑剤及び分散剤を添加して混錬することによって得ることができる。坏土には、シフター、金属酸化物、特性改善剤、導電体粉末などの添加剤を必要に応じて含有させてもよい。
 セラミックス原料以外の成分の配合量は、ハニカム成形体の相対密度が60%となるような量であれば特に限定されない。
 ここで、本明細書において「ハニカム成形体の相対密度」とは、セラミックス原料全体の真密度に対するハニカム成形体の密度の割合のことを意味する。具体的には、以下の式によって求めることができる。
 ハニカム成形体の相対密度(%)=ハニカム成形体の密度(g/cm3)/セラミックス原料全体の真密度(g/cm3)×100
 ハニカム成形体の密度は、純水を媒体とするアルキメデス法により測定することができる。また、セラミックス原料全体の真密度は、各原料の質量を合計した値(g)を、各原料の実の体積を合計した値(cm3)で除することによって求めることができる。
 分散媒としては、水、又は水とアルコールなどの有機溶媒との混合溶媒などを挙げることができるが、特に水を好適に用いることができる。
 バインダとしては、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコールなどの有機バインダを例示することができる。特に、メチルセルロース及びヒドロキシプロポキシルセルロースを併用することが好適である。バインダは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよいが、アルカリ金属元素を含有していないことが好ましい。
 可塑剤としては、ポリオキシアルキレンアルキルエーテル、ポリカルボン酸系高分子、アルキルリン酸エステルなどを例示することができる。
 分散剤には、ポリオキシアルキレンアルキルエーテル、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコールなどの界面活性剤を用いることができる。分散剤は、一種を単独で使用するものであっても、二種以上を組み合わせて使用するものであってもよい。
 ハニカム成形体は、坏土を押出成形することによって作製することができる。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度などを有する口金を用いることができる。
 押出成形によって得られるハニカム成形体の相対密度は、60%以上、好ましくは61%以上である。このような範囲にハニカム成形体の相対密度を制御することにより、ハニカム成形体を緻密化し、室温における電気抵抗を低下させることが可能となる。なお、ハニカム成形体の相対密度の上限値は、特に限定されないが、一般に80%、好ましくは75%である。
 ハニカム成形体は、焼成工程の前に乾燥させることができる。乾燥方法としては、特に限定されないが、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥などの従来公知の乾燥方法を用いることができる。これらの中でも、成形体全体を迅速かつ均一に乾燥することができる点で、熱風乾燥と、マイクロ波乾燥又は誘電乾燥とを組み合わせた乾燥方法が好ましい。
 焼成工程は、1150~1250℃で保持した後、20~500℃/時の昇温速度で1360~1430℃の最高温度に昇温させて0.5~5時間保持すること含む。
 ハニカム成形体を1360~1430℃の最高温度で0.5~5時間保持することにより、Baの一部が希土類元素で置換されたBaTiO3系結晶粒子を主成分とするハニカム構造体10を得ることができる。
 また、1150~1250℃で保持することにより、焼成過程で生成するBa2TiO4結晶粒子が除去され易くなるため、ハニカム構造体10を緻密化させることができる。
 さらに、1150~1250℃から1360~1430℃の最高温度までの昇温速度を20~500℃/時とすることにより、1.0~10.0質量%のBa6Ti1740結晶粒子をハニカム構造体10に生成させることができる。
 1150~1250℃での保持時間は、特に限定されないが、好ましくは0.5~5時間である。このような保持時間とすることにより、焼成過程で生成するBa2TiO4結晶粒子が安定して除去され易くなる。
 焼成工程は、900~950℃で0.5~5時間保持することを含むことが好ましい。900~950℃で0.5~5時間保持することにより、BaCO3が効率良く分解し、所定の組成を有するハニカム構造体10が得られ易くなる。
 なお、焼成工程の前には、バインダを除去するための脱脂工程を行ってもよい。脱脂工程の雰囲気は、有機成分を完全に分解するために大気雰囲気とすることが好ましい。
 また、焼成工程の雰囲気も、電気特性の制御と製造コストの観点から大気雰囲気とすることが好ましい。
 焼成工程や脱脂工程に用いられる焼成炉としては、特に限定されないが、電気炉、ガス炉などを用いることができる。
 このようにして得られたハニカム構造体10の第1端面13a及び第2端面13bの外周壁11及び隔壁12に電極層20を形成する。電極層20は上述の方法によって形成することができる。
 次に、ハニカム構造体10の側面と端子30との間に絶縁部40を設ける場合、ハニカム構造体10の側面に絶縁材料を塗布等して絶縁部40を形成する。
 次に、端子30を所定の位置に配置し、電極層20に端子30を接続する。電極層20と端子30との接続方法としては、上述の方法を用いることができる。なお、端子30は、ハニカム構造体10の側面より外側へ延出させてもよい。この場合、端子30を複数の金属部品で構成して接合してもよい。また、複数の金属部品間の接続は、ろう付けでも、溶接でも、バネ接点式などのその他の機械的接続でもよい。
(1-6.ヒーターエレメント100の使用方法)
 本発明の実施形態1に係るヒーターエレメント100は、例えば、端子30から一対の電極層20を介して電圧を印加することでハニカム構造体10を発熱させることができる。ハニカム構造体10に使用する材料の体積抵抗やハニカム構造体10の大きさを選択することにより、使用(印加)電圧は、12Vから800Vまで適宜調整することができる。
 ヒーターエレメント100が、電圧の印加によって発熱しているときに、セル14に空気を流すことで、空気を加熱することができる。セル14に流入する空気の温度としては、例えば-60℃~20℃とすることができ、典型的には-10℃~20℃とすることができる。
 本発明の実施形態1に係るヒーターエレメント100は、上記のように、ハニカム構造体10の第1端面13a及び第2端面13bに設けられた電極層20の延出部22に端子30を接続及び配置しているため、セル14を塞ぐことなく、電極層20と端子30との接触面積を増大させることができる。そのため、外部からの給電量を高め易くなるため、暖房性能を向上させることができる。さらに、外周壁11付近のセル14の閉塞を避けて、空気の流路を確保可能であるため、圧力損失の増大を抑制することができる。また、本発明の実施形態1に係るヒーターエレメント100は、PTC素子とアルミニウムフィンとを、絶縁セラミックス板を介して一体化した既存のヒーターエレメントよりも単純な構造を有するとともに、ヒーターユニットが大型化することを抑制可能である。また、既存のヒーターエレメントは、PTC素子が空気と直接接しないため、空気の昇温速度(昇温時間)が十分でないが、本発明の実施形態1に係るヒーターエレメント100は、外周壁11及び隔壁12がPTC特性を有する材料で構成されたハニカム構造体10が空気と直接接するため、空気の昇温速度を高めることができる。
(2.ヒーターユニット)
 本発明の実施形態1に係るヒーターユニットは、車両の車室暖房用のヒーターユニットとして好適に利用可能である。本発明の実施形態1に係るヒーターユニットは、ヒーターエレメント100を2個以上含む。特に、本発明の実施形態1に係るヒーターユニットでは、発熱性能が高いヒーターエレメント100を用いているため、ヒーターユニットの発熱性能を向上させることができる。また、ヒーターエレメント100はコンパクト化が可能であるため、ヒーターユニットが大型化することも抑制可能である。
 本発明の実施形態1に係るヒーターユニットにおいて、ヒーターエレメント100の配列方法としては、特に限定されないが、例えば、ハニカム構造体10の流路方向に平行であり且つ電極層20が設けられていない側面が対向するようにヒーターエレメント100を積層配列すればよい。
 また、積層配列されるヒーターエレメント100は、筐体(ハウジング部材)に収容されていることが好ましい。筐体の材質としては、特に限定されず、金属、樹脂などが挙げられる。その中でも筐体の材質は樹脂であることが好ましい。樹脂製の筐体とすることにより、接地しなくても感電を抑制することができる。
 さらに、積層配列されるヒーターエレメント100の間には、絶縁材が配置されていてもよい。このような構成とすることにより、複数のヒーターエレメント100の間の電気的なショートを抑制することができる。絶縁材としては、アルミナやセラミックスなどの絶縁材料から形成された板材、マットやクロスなどを用いることができる。
(3.ヒーターシステム)
 本発明の実施形態に係るヒーターシステムは、車両の車室暖房用のヒーターシステムとして好適に利用可能である。特に、本発明の実施形態1に係るヒーターシステムでは、発熱性能が高いヒーターエレメント100又はヒーターエレメント100を2個以上含むヒーターユニットを用いているため、ヒーターシステムの発熱性能を向上させることができる。また、ヒーターエレメント100及びヒーターユニットはコンパクト化が可能であるため、ヒーターシステムが大型化することも抑制可能である。
 図4は、本発明の実施形態1に係るヒーターシステムの構成例を示す模式図である。
 図4に示されるように、本発明の実施形態1に係るヒーターシステム900は、本発明の実施形態に係るヒーターエレメント又はヒーターユニット600、外気導入部又は車室910とヒーターエレメント又はヒーターユニット600の流入口650とを連通する流入配管920a,920b、ヒーターエレメント又はヒーターユニット600に電圧を印加するためのバッテリー940、及びヒーターエレメント又はヒーターユニット600の流出口660と車室910とを連通する流出配管930を備える。
 ヒーターエレメント又はヒーターユニット600は、例えば、バッテリー940と導線(電線)950で接続し、その途中の電源スイッチをONにすることでヒーターエレメント又はヒーターユニット600を通電発熱するように構成することが可能である。
 ヒーターエレメント又はヒーターユニット600の上流側には蒸気圧縮ヒートポンプ960を設置することができる。ヒーターシステム900において、蒸気圧縮ヒートポンプ960が主暖房装置として構成されており、ヒーターエレメント又はヒーターユニット600が補助ヒーターとして構成されている。蒸気圧縮ヒートポンプ960は、冷房時に外部から熱を吸収して冷媒を蒸発させる働きをする蒸発器961、及び暖房時に冷媒ガスを液化させて熱を外部へ放出する働きをする凝縮器962を含む熱交換器を備えることができる。なお、蒸気圧縮ヒートポンプ960としては、特に限定されず、当該技術分野において公知のものを用いることができる。
 ヒーターエレメント又はヒーターユニット600の上流側及び/又は下流側には送風機970を設置することができる。高電圧の部品をできるだけ車室910から離して配置して安全を確保する観点から、送風機970はヒーターエレメント又はヒーターユニット600の上流側に設置することが好ましい。送風機970を駆動すると、車室910内又は車室910外から空気が流入配管920a,920bを通ってヒーターエレメント又はヒーターユニット600に流入する。発熱中のヒーターエレメント又はヒーターユニット600を通過する間に空気は加熱される。加熱された空気は、ヒーターエレメント又はヒーターユニット600から流出し、流出配管930を通って車室910内に送られる。流出配管930の出口は車室910内でも特に暖房効果が高くなるよう乗員の足元近傍に配置してもよいし、座席シート内へ配管出口を配置して座席シートを内側から温めるようにしてもよいし、ウィンドウ近傍に配置してウィンドウの曇りを抑制する効果を合わせ持たせてもよい。
 流入配管920aと流入配管920bとは途中で合流する。流入配管920a及び流入配管920bには、合流地点よりも上流側において、バルブ921a,921bをそれぞれ設置することができる。バルブ921a,921bの開閉を制御することで、外気をヒーターエレメント又はヒーターユニット600に導入するモードと、車室910内の空気をヒーターエレメント又はヒーターユニット600に導入するモードの間で切り替えることができる。例えば、バルブ921aを開き、バルブ921bを閉じると、外気をヒーターエレメント又はヒーターユニット600に導入するモードとなる。バルブ921a及びバルブ921bの両者を開いて、外気及び車室910内の空気を同時にヒーターエレメント又はヒーターユニット600に導入することも可能である。
<実施形態2>
(1.ヒーターエレメント)
 本発明の実施形態2に係るヒーターエレメントは、本発明の実施形態1に係るヒーターエレメント100と同様に、車両の車室暖房用のヒーターエレメントとして好適に利用可能である。
 図5は、本発明の実施形態2に係るヒーターエレメントの端面の模式図である。図6は、ハニカム構造体の流路方向に平行な図5のヒーターエレメントの断面(a-a’線の断面)の模式図である。
 図5及び6に示されるように、本発明の実施形態2に係るヒーターエレメント200は、外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで延びる流路となる複数のセル14を区画形成する隔壁12と、第1端面13a及び第2端面13bの外縁領域の少なくとも一部のセル14が目封止された目封止部15とを有するハニカム構造体10と、第1端面13a及び第2端面13bの外周壁11、隔壁12及び目封止部15に設けられた一対の電極層20と、電極層20と導線とを電気的に接続可能な端子30とを備える。外周壁11及び隔壁12は、PTC特性を有する材料で構成されている。端子30は、ハニカム構造体10の流路方向において目封止部15と対向する位置に設けられている。このようにして端子30を接続及び配置することにより、外周壁11に隣接するセル14の一部しか塞がれないようにすることができる。また、電極層20と端子30との接触面積を増大させることができるため、外部からの給電量を高め易くなり、暖房性能を向上させることができる。また、セル14の一部しか閉塞されないので、外周壁11付近のセル14の閉塞を低減し、空気の流路を確保可能であるため、圧力損失の増大を抑制することができる。
 以下、ヒーターエレメント200の構成部材について詳細に説明する。なお、ヒーターエレメント200に用いられる各構成部材は、ヒーターエレメント100に用いられる各構成部材と基本的に共通しているため、共通する構成部材は同一の符号を付して説明を省略し、相違する構成部材のみについて説明する。
 ハニカム構造体10は、外周壁11及び隔壁12に加えて、第1端面13a及び第2端面13bの外縁領域の少なくとも一部のセル14が目封止された目封止部15を有する。目封止部15を設けることにより、目封止部15、並びにその周辺の外周壁11及び隔壁12上に形成された電極層20の面積を増大させることができるため、電極層20と端子30との接触面積を増大させることができる。目封止部15が設けられるセル14の数としては、対向して配置される端子30と電極層20との接続性の点から、例えば、2個以上100個以下とすることができる。
 ここで、「第1端面13a及び第2端面13bの外縁領域」とは、外周壁11から第1端面13a及び第2端面13bの直径(円形でない場合は、円相当径)の1/4までの領域のことを意味する。
 目封止部15の材質は、特に限定されないが、外周壁11及び隔壁12を構成するPTC特性を有する材料と熱膨張の程度を揃える観点から、熱膨張率が8~15ppm/Kの材料で構成されていることが好ましい。この範囲の熱膨張率であれば、ヒーターエレメント200の使用時に、外周壁11及び隔壁12と目封止部15との間の熱膨張の程度の違いによるクラックなどの発生を抑制することができる。
 目封止部15は、外周壁11及び隔壁12と同様に、PTC特性を有する材料で構成されていることが好ましい。PTC特性を有する材料で目封止部15を構成することにより、通電によって外周壁11及び隔壁12とともに目封止部15も発熱させることができるため、ハニカム構造体10の発熱性能が向上する。
 なお、目封止部15の材質は、外周壁11及び隔壁12の材質と異なっていてもよいが、生産性の観点から、同一であることが好ましい。
 目封止部15は、当該技術分野において公知の目封止処理によって形成することができる。目封止処理は、ハニカム成形体を焼成する前に行ってもよいし、焼成した後に行ってもよい。例えば、目封止部15を形成すべきハニカム成形体又はハニカム構造体10の端面(第1端面13a及び第2端面13b)のセル14に対応する箇所が開口した薄膜フィルムを貼り付ける。そして、ハニカム成形体又はハニカム構造体10の端面をスラリー状の目封止材に浸漬し、薄膜フィルムで塞がれていないハニカム成形体又はハニカム構造体10のセル14に目封止材を進入させることにより、目封止材が充填された目封止部15を形成することができる。目封止材に用いられる材料としては、ハニカム成形体の作製に用いられる材料を用いることができる。
 電極層20は、第1端面13a及び第2端面13bの外周壁11、隔壁12及び目封止部15に設けられる。このような位置に電極層20を設けることにより、目封止部15、並びにその周辺の外周壁11及び隔壁12上に、電極層20の面積が大きい領域を形成することができる。
 端子30は、ハニカム構造体10の流路方向において目封止部15と対向する位置に設けられる。このような位置に端子30を設けることにより、電極層20の面積が大きい領域と端子30を接続することができる。そのため、電極層20と端子30との接触面積の増大によって外部からの給電量を高め易くなり、暖房性能を向上させることができる。なお、端子30は、図7に示されるような流路方向に平行な断面がL字型などの形状とすることができる。L字型などの端子30は、複数の形状の金属部材の機械的結合で作製されていてもよい。端子30を構成する金属部材は、ハニカム構造体10の外縁よりも内側におさめられる形態であってもよいし、ハニカム構造体10の外縁よりも外側まで伸びる形態であってもよい。また、端子30の形状は、L字型以外に、L字の先端がさらに折れ曲がったコの字型であってもよいし、曲面を有してもよい。このような形状とすることにより、端子30を導線と接続する際の構造的な自由度が高くなる。なお、図7に示されるような構造のL字型の端子30を設ける場合、端子30と外周壁11の側面(流路方向に平行な外周面)とが直接的に接しないように構成することが好ましい。具体的には、端子30と外周壁11の側面との間に絶縁部40を配置したり、端子30と外周壁11の側面との間に空間を設けたりすればよい。
 また、本発明の実施形態2に係るヒーターエレメント200は、ヒーターエレメント100と同様にして使用することができる。
(2.ヒーターユニット)
 本発明の実施形態2に係るヒーターユニットは、本発明の実施形態1に係るヒーターユニットと同様に、車両の車室暖房用のヒーターユニットとして好適に利用可能である。本発明の実施形態2に係るヒーターユニットは、ヒーターエレメント200を2個以上含む。特に、本発明の実施形態2に係るヒーターユニットでは、発熱性能が高いヒーターエレメント200を用いているため、ヒーターユニットの発熱性能を向上させることができる。また、ヒーターエレメント200はコンパクト化が可能であるため、ヒーターユニットが大型化することも抑制可能である。
 なお、本発明の実施形態2に係るヒーターユニットの構造は、本発明の実施形態1に係るヒーターユニットと同様にすることができるため、説明を省略する。
(3.ヒーターシステム)
 本発明の実施形態2に係るヒーターシステムは、車両の車室暖房用のヒーターシステムとして好適に利用可能である。特に、本発明の実施形態2に係るヒーターシステムでは、発熱性能が高いヒーターエレメント200又はヒーターエレメント200を2個以上含むヒーターユニットを用いているため、ヒーターシステムの発熱性能を向上させることができる。また、ヒーターエレメント200及びヒーターユニットはコンパクト化が可能であるため、ヒーターシステムが大型化することも抑制可能である。
 なお、本発明の実施形態2に係るヒーターシステムの構造は、本発明の実施形態1に係るヒーターシステムと同様にすることができるため、説明を省略する。
 10 ハニカム構造体
 11 外周壁
 12 隔壁
 13a 第1端面
 13b 第2端面
 14 セル
 15 目封止部
 20 電極層
 21a 第1電極層
 21b 第2電極層
 22 延出部
 30 端子
 40 絶縁部
 100,200 ヒーターエレメント
 600 ヒーターエレメント又はヒーターユニット
 900 ヒーターシステム
 910 車室
 920a,920b 流入配管
 921a,921b バルブ
 930 流出配管
 940 バッテリー
 950 導線
 960 蒸気圧縮ヒートポンプ
 961 蒸発器
 962 凝縮器
 970 送風機

Claims (12)

  1.  外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで延びる流路となる複数のセルを区画形成する隔壁とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
     前記第1端面及び前記第2端面の前記外周壁及び前記隔壁に設けられた一対の電極層と、
     前記電極層と導線とを電気的に接続可能な端子と
    を備え、
     前記電極層の少なくとも一部は、前記第1端面及び前記第2端面の外縁よりも外側に延出した延出部を有し、
     前記端子は、前記延出部に接続され、且つ前記ハニカム構造体の側面と対向するように配置されているヒーターエレメント。
  2.  前記ハニカム構造体の側面と前記端子との間に設けられた絶縁部を更に備える、請求項1に記載のヒーターエレメント。
  3.  外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで延びる流路となる複数のセルを区画形成する隔壁と、前記第1端面及び前記第2端面の外縁領域の少なくとも一部の前記セルが目封止された目封止部とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
     前記第1端面及び前記第2端面の前記外周壁、前記隔壁及び前記目封止部に設けられた一対の電極層と、
     前記電極層と導線とを電気的に接続可能な端子と、
    を備え、
     前記端子は、前記ハニカム構造体の流路方向において前記目封止部と対向する位置に設けられているヒーターエレメント。
  4.  前記目封止部は、熱膨張率が8~15ppm/Kの材料で構成されている、請求項3に記載のヒーターエレメント。
  5.  前記目封止部は、PTC特性を有する材料で構成されている、請求項3に記載のヒーターエレメント。
  6.  前記電極層が二層構造を有する、請求項1~5のいずれか一項に記載のヒーターエレメント。
  7.  前記ハニカム構造体は、前記隔壁の厚さが0.125mm以下、セル密度が93セル/cm2以下、セルピッチが1.0mm以上である、請求項1~6のいずれか一項に記載のヒーターエレメント。
  8.  前記ハニカム構造体は、前記隔壁の厚さが0.14~0.36mm、セル密度が2.54~46.5セル/cm2、セルの開口率が80%以上である、請求項1~6のいずれか一項に記載のヒーターエレメント。
  9.  前記ハニカム構造体の25℃における体積抵抗率が0.5~200Ω・cmである、請求項1~8のいずれか一項に記載のヒーターエレメント。
  10.  前記PTC特性を有する材料は、チタン酸バリウムを主成分とし、鉛を実質的に含まない材料である、請求項1~9のいずれか一項に記載のヒーターエレメント。
  11.  請求項1~10のいずれか一項に記載のヒーターエレメントを2個以上含むヒーターユニット。
  12.  請求項1~11のいずれか一項に記載のヒーターエレメント、又は前記ヒーターエレメントを2個以上含むヒーターユニットと、
     外気導入部又は車室と前記ヒーターエレメント又は前記ヒーターユニットの流入口とを連通する流入配管と、
     前記ヒーターエレメント又は前記ヒーターユニットに電圧を印加するためのバッテリーと、
     前記ヒーターエレメント又は前記ヒーターユニットの流出口と前記車室とを連通する流出配管と
    を備える車室暖房用ヒーターシステム。
PCT/JP2022/013315 2021-06-24 2022-03-22 ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム WO2022270070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002667.7T DE112022002667T5 (de) 2021-06-24 2022-03-22 Heizelement, heizeinheit und heizsystem zum heizen eines fahrzeuginnenraums
CN202280038776.5A CN117413621A (zh) 2021-06-24 2022-03-22 加热器构件、加热器单元以及车厢供暖用加热器系统
JP2023529578A JPWO2022270070A1 (ja) 2021-06-24 2022-03-22
US18/527,771 US20240107633A1 (en) 2021-06-24 2023-12-04 Heater element, heater unit, and heater system for heating vehicle interior

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104974 2021-06-24
JP2021-104974 2021-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/527,771 Continuation US20240107633A1 (en) 2021-06-24 2023-12-04 Heater element, heater unit, and heater system for heating vehicle interior

Publications (1)

Publication Number Publication Date
WO2022270070A1 true WO2022270070A1 (ja) 2022-12-29

Family

ID=84544630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013315 WO2022270070A1 (ja) 2021-06-24 2022-03-22 ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム

Country Status (5)

Country Link
US (1) US20240107633A1 (ja)
JP (1) JPWO2022270070A1 (ja)
CN (1) CN117413621A (ja)
DE (1) DE112022002667T5 (ja)
WO (1) WO2022270070A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127460U (ja) * 1974-05-30 1976-02-28
JPS5626903U (ja) * 1979-08-08 1981-03-12
JPS6124186A (ja) * 1984-07-12 1986-02-01 ティーディーケイ株式会社 正特性サ−ミスタ装置
JPH0214687U (ja) * 1988-07-11 1990-01-30
WO2020036067A1 (ja) * 2018-08-13 2020-02-20 日本碍子株式会社 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157528A (ja) 2005-12-06 2007-06-21 Calsonic Kansei Corp Ptcヒータ構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127460U (ja) * 1974-05-30 1976-02-28
JPS5626903U (ja) * 1979-08-08 1981-03-12
JPS6124186A (ja) * 1984-07-12 1986-02-01 ティーディーケイ株式会社 正特性サ−ミスタ装置
JPH0214687U (ja) * 1988-07-11 1990-01-30
WO2020036067A1 (ja) * 2018-08-13 2020-02-20 日本碍子株式会社 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター

Also Published As

Publication number Publication date
US20240107633A1 (en) 2024-03-28
CN117413621A (zh) 2024-01-16
JPWO2022270070A1 (ja) 2022-12-29
DE112022002667T5 (de) 2024-04-04

Similar Documents

Publication Publication Date Title
US20210041141A1 (en) Heater element for vehicle compartment heating and method for using same, and heater for vehicle compartment heating
JP2014054934A (ja) ヒーター
CN114763308B (zh) 陶瓷体及其制造方法、加热器构件、加热器单元、加热器系统及净化系统
JP2022109861A (ja) セラミックス体及びその製造方法、ヒーターエレメント、ヒーターユニット、ヒーターシステム並びに浄化システム
US20220371405A1 (en) Heater element for heating vehicle interior, and heater for heating vehicle interior
WO2022270070A1 (ja) ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム
JP7335994B2 (ja) ヒーターエレメント及びその使用方法
JP6093130B2 (ja) ヒーター
JP7393928B2 (ja) セラミックス体及びヒーターエレメント
JP7034047B2 (ja) 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター
WO2022091668A1 (ja) 車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム
WO2022264514A1 (ja) 機能材含有層付ヒーターエレメント、機能材含有層付ヒーターユニット、車室浄化システム及びハニカム構造体
WO2022153594A1 (ja) 車室暖房用のヒーターエレメント、ヒーターユニット及びヒーターシステム、並びに車室浄化用のヒーターエレメント
JP2023047122A (ja) 機能材含有層付ヒーターエレメント及び車室浄化システム
JP2023141203A (ja) セラミックス体、ハニカム構造体、セラミックス体の製造方法、及びヒーターエレメント
WO2023074202A1 (ja) ヒーターエレメント及び車室浄化システム
JP2024092576A (ja) 車室空調用ヒーターエレメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280038776.5

Country of ref document: CN

Ref document number: 2023529578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022002667

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827990

Country of ref document: EP

Kind code of ref document: A1