WO2022091668A1 - 車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム - Google Patents

車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム Download PDF

Info

Publication number
WO2022091668A1
WO2022091668A1 PCT/JP2021/035411 JP2021035411W WO2022091668A1 WO 2022091668 A1 WO2022091668 A1 WO 2022091668A1 JP 2021035411 W JP2021035411 W JP 2021035411W WO 2022091668 A1 WO2022091668 A1 WO 2022091668A1
Authority
WO
WIPO (PCT)
Prior art keywords
end surface
vehicle interior
heater
heating
heater element
Prior art date
Application number
PCT/JP2021/035411
Other languages
English (en)
French (fr)
Inventor
由紀夫 宮入
昌明 桝田
浩文 山口
徹 早瀬
宏幸 長岡
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022558931A priority Critical patent/JPWO2022091668A1/ja
Priority to DE112021004997.6T priority patent/DE112021004997T5/de
Priority to CN202180071937.6A priority patent/CN116508395A/zh
Publication of WO2022091668A1 publication Critical patent/WO2022091668A1/ja
Priority to US18/307,880 priority patent/US20230382188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00128Electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2271Heat exchangers, burners, ignition devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures

Definitions

  • the present invention relates to a vehicle interior heating heater element, a vehicle interior heating heater unit, and a vehicle interior heating heater system.
  • Patent Document 1 proposes a heater unit in which a heater element in which a PTC element is integrated with an aluminum fin is laminated and arranged.
  • this heater element is provided with many parts such as an insulating plate and a conductive plate in addition to the PTC element and the aluminum fin, there is a problem that the heater element has a complicated structure, is expensive to assemble, and is expensive. ..
  • Patent Document 2 proposes a heater element using a honeycomb structure that is compact and can increase the heat transfer area per volume.
  • the heater element using this honeycomb structure has an advantage that it has a simpler structure than the above-mentioned heater element.
  • the present invention has been made to solve the above-mentioned problems, has a simpler structure than the existing heater element, and has a heater by changing the design of parts such as wiring and holder of the existing heater unit. It is an object of the present invention to provide a heater element for heating a passenger compartment, which can suppress the increase in size of the unit. Another object of the present invention is to provide a vehicle interior heating heater unit and a vehicle interior heating heater system using the vehicle interior heating heater element.
  • the present invention has an outer peripheral wall and a partition wall arranged inside the outer peripheral wall and partitioning a plurality of cells forming a flow path from the first end surface to the second end surface.
  • the honeycomb structure has a rectangular shape at the first end surface and the second end surface.
  • the vehicle interior heating heater element is a vehicle interior heating heater element further comprising a pair of connectors connected to the electrodes from one short side of each of the first end surface and the second end surface.
  • the present invention is a vehicle interior heating heater unit including two or more of the vehicle interior heating heater elements.
  • the present invention relates to the above-mentioned heater unit for heating the passenger compartment.
  • An inflow pipe that communicates the outside air introduction unit or the passenger compartment with the inlet of the heater unit for heating the passenger compartment.
  • It is a vehicle interior heating heater system including a battery for applying a voltage to the vehicle interior heating heater unit and an outflow pipe connecting the outlet of the vehicle interior heating heater unit and the vehicle interior.
  • the heater element has a simpler structure than the existing heater element, and the heater unit can be prevented from becoming large due to design changes of parts such as wiring and holders of the existing heater unit.
  • a heater element can be provided. Further, according to the present invention, it is possible to provide a vehicle interior heating heater unit and a vehicle interior heating heater system using the vehicle interior heating heater element.
  • the heater element according to the embodiment of the present invention can be suitably used as a heater element for heating the passenger compartment of a vehicle.
  • Vehicles are not particularly limited, and examples thereof include automobiles and trains. Examples of automobiles include, but are not limited to, gasoline-powered vehicles, diesel-powered vehicles, gas-fueled vehicles using CNG (compressed natural gas), LNG (liquefied natural gas), fuel cell vehicles, electric vehicles, and plug-in hybrid vehicles.
  • the heater element according to the embodiment of the present invention can be particularly suitably used for a vehicle having no internal combustion engine such as an electric vehicle and a train.
  • FIG. 1 is a schematic perspective view of a heater element according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the heater element seen from the direction A of FIG. 1.
  • FIG. 3 is a schematic perspective view of the honeycomb structure constituting the heater element of FIG.
  • the heater element 100 according to the embodiment of the present invention is arranged inside the outer peripheral wall 11 and the outer peripheral wall 11, and forms a plurality of cells 14 that form a flow path from the first end surface 13a to the second end surface 13b.
  • a honeycomb structure 10 having a partition wall 12 and a pair of electrodes 20 provided on the first end surface 13a and the second end surface 13b are provided.
  • the end faces (first end face 13a and second end face 13b) of the honeycomb structure 10 are rectangular.
  • the heater element 100 further includes a pair of connectors 30 connected to the electrode 20 from one short side 15 side of each of the first end surface 13a and the second end surface 13b.
  • the end face of the honeycomb structure 10 has a rectangular shape, and by having the pair of connectors 30 connected to the end faces of the honeycomb structure 10 as described above, the wiring and the holder of the existing heater unit can be used. It is possible to prevent the heater unit from becoming large due to the design change of parts, and to make it a compact heater unit.
  • the honeycomb structure 10 has a rectangular end face (first end face 13a and second end face 13b). That is, the end face of the honeycomb structure 10 has a rectangular shape having a short side 15 and a long side 16.
  • the ratio of the length of the short side 15 to the length of the long side 16 is not particularly limited, but is preferably 1: 2 to 1:10, and more preferably 1: 3 to 1: 8. By controlling the ratio in such a range, it is possible to adapt to the size of the heater element used in the existing heater unit.
  • the shape of the cell 14 in the cross section orthogonal to the flow path direction of the cell 14 is not particularly limited, but is preferably a quadrangle (rectangle, square), a hexagon, an octagon, or a combination of two or more thereof. Among these, a quadrangle and a hexagon are preferable.
  • the honeycomb structure 10 in the heater element 100 shown in FIG. 1 is an example in which the shape of the cell 14 in the cross section orthogonal to the flow path direction of the cell 14 is square.
  • the honeycomb structure 10 may be a honeycomb joint body having a plurality of honeycomb segments and a joint layer for joining between the plurality of honeycomb segments.
  • the honeycomb joint By using the honeycomb joint, it is possible to increase the total cross-sectional area of the cell 14, which is important for securing the gas flow rate, while suppressing the occurrence of cracks.
  • FIG. 4 shows a schematic end view of a honeycomb joint having five honeycomb segments.
  • the honeycomb joint 17 has five honeycomb segments 18 and a bonding layer 19 for joining between the honeycomb segments 18.
  • Each honeycomb segment 18 has an outer peripheral wall 11 and a partition wall 12 that is disposed inside the outer peripheral wall 11 and partitions a plurality of cells 14 that form a flow path from the first end surface 13a to the second end surface 13b.
  • the joint layer 19 can be formed by using a joint material.
  • the joining material is not particularly limited, but a ceramic material to which a solvent such as water is added to form a paste can be used.
  • the joining material may contain ceramics having PTC characteristics, or may contain the same ceramics as the outer peripheral wall 11 and the partition wall 12.
  • the joining material can be used as an outer peripheral coating material after joining the honeycomb segments 18 in addition to the role of joining the honeycomb segments 18 to each other.
  • the area of each end face of the honeycomb structure 10 is preferably 20 cm 2 or more, more preferably 50 cm 2 or more, still more preferably 70 cm 2 or more. From the viewpoint of making the heater element 100 compact, the area of each end face of the honeycomb structure 10 is preferably 500 cm 2 or less, more preferably 300 cm 2 or less, still more preferably 200 cm 2 or less. The area of each end face of the honeycomb structure 10 can be, for example, 20 to 500 cm 2 .
  • the length of the honeycomb structure 10 (flow path length of each cell 14) is preferably 40 mm or less, more preferably 30 mm or less, still more preferably 20 mm or less, still more preferably. Is 10 mm or less. From the viewpoint of ensuring heating performance and strength, the length of the honeycomb structure 10 (the length of the flow path of each cell 14) is preferably 3 mm or more. The length of the honeycomb structure 10 (the length of the flow path of each cell 14) can be, for example, 3 to 40 mm.
  • the outer peripheral wall 11 and the partition wall 12 of the honeycomb structure 10 are made of a material capable of generating heat by energization. Therefore, a gas such as outside air or vehicle interior air flows in from the first end surface 13a, passes through the plurality of cells 14, and flows out from the second end surface 13b. It can be heated by heat transfer from the partition wall 12.
  • the outer peripheral wall 11 and the partition wall 12 are made of a material having PTC (Positive Temperature Coefficient) characteristics. That is, the outer peripheral wall 11 and the partition wall 12 have a characteristic that when the temperature rises and exceeds the Curie point, the resistance value rapidly rises and it becomes difficult for electricity to flow. Since the outer peripheral wall 11 and the partition wall 12 have PTC characteristics, when the heater element 100 becomes hot, the current flowing through them is limited, so that excessive heat generation of the heater element 100 is suppressed.
  • PTC Pressure Temperature Coefficient
  • the outer peripheral wall 11 and the partition wall 12 are preferably ceramics made of a material containing barium titanate as a main component, and barium titanate is contained in an amount of 70% by mass or more. It is more preferable that the ceramic is made of a material containing 90% by mass or more of barium titanate, and more preferably the ceramic is made of a material containing 90% by mass or more of barium titanate.
  • a "main component” means a component which accounts for more than 50% by mass in the whole component.
  • the content of barium titanate can be determined by, for example, fluorescent X-ray analysis, EDAX (energy dispersive X-ray) analysis, or the like.
  • the ceramics contain one or more additives such as rare earth elements in order to obtain desired PTC characteristics.
  • Additives include semiconductor agents such as Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Sc and Lu, Sr, Sn and Zr.
  • PTC materials include composite materials containing cristobalite phase SiO 2 as a base material and a conductive filler.
  • cristobalite phase SiO 2 base material tridimite phase SiO 2 , cristobalite phase AlPO 4 , and tridimite phase AlPO 4 can also be used.
  • the outer peripheral wall 11 and the partition wall 12 are preferably ceramics made of a material substantially free of lead, and the lead content is 0.001% by mass or less. More preferably, it is a ceramic composed of a material. In addition, in this specification, “substantially not included” means that the ratio to the whole component is 0.01% by mass or less.
  • the lead content can be determined, for example, by fluorescent X-ray analysis, ICP-MS (inductively coupled plasma mass spectrometry), or the like.
  • the Curie point of the material constituting the outer peripheral wall 11 and the partition wall 12 is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 125 ° C. or higher, from the viewpoint of efficiently heating air for heating.
  • the upper limit of the Curie point is preferably 250 ° C. or lower, more preferably 225 ° C. or lower, still more preferably 200 ° C. or lower, still more preferably, from the viewpoint of safety as a part placed in or near the vehicle interior. Is below 150 ° C.
  • the Curie points of the materials constituting the outer peripheral wall 11 and the partition wall 12 can be adjusted by the type of shifter and the amount of addition.
  • the Curie point of barium titanate (BaTIO 3 ) is about 120 ° C., but the Curie point is shifted to the low temperature side by substituting a part of Ba and Ti with one or more of Sr, Sn and Zr. Can be done.
  • the Curie point is measured by the following method.
  • the sample is attached to a sample holder for measurement, mounted in a measuring tank (eg, MINI-SUBZERO MC-810P, manufactured by Tabai Espec), and the change in the electrical resistance of the sample with respect to the temperature change when the temperature rises from 10 ° C. , Measured using a DC resistance meter (eg, multimeter 3478A, manufactured by YHP).
  • a DC resistance meter eg, multimeter 3478A, manufactured by YHP
  • the thickness of the partition wall 12 in the honeycomb structure is preferably 0.125 mm or less, more preferably 0.075 mm or less.
  • the thickness of the partition wall 12 is preferably 0.020 mm or more, more preferably 0.040 mm or more, still more preferably 0.060 mm or more.
  • the thickness of the partition wall 12 refers to the length at which the line segment crosses the partition wall 12 when the centers of gravity of adjacent cells 14 are connected by a line segment in a cross section orthogonal to the flow path direction of the cell 14.
  • the thickness of the partition wall 12 refers to the average value of the thicknesses of all the partition walls 12.
  • the thickness of the outer peripheral wall 11 is preferably 0.05 mm or more, more preferably 0.06 mm or more, still more preferably 0.08 mm or more.
  • the thickness of the outer peripheral wall 11 is preferably 1.0 mm or less, more preferably 0.5 mm or less. It is more preferably 0.4 mm or less, and even more preferably 0.3 mm or less.
  • the thickness of the outer peripheral wall 11 is the normal direction of the side surface from the boundary between the outer peripheral wall 11 and the cell 14 or the partition wall 12 on the outermost side to the side surface of the honeycomb structure in the cross section orthogonal to the flow path of the cell 14. Refers to the length of.
  • the cell density of the honeycomb structure 10 is preferably 93 cells / cm 2 or less, more preferably 62 cells / cm 2 or less.
  • the cell pitch of the honeycomb structure 10 is preferably 1.0 mm or more, more preferably 1.3 mm or more. By controlling the cell density or cell pitch within such a range, the ventilation resistance can be suppressed and the output of the blower can be suppressed.
  • the lower limit of the cell density of the honeycomb structure 10 is not particularly limited, but is preferably 10 cells / cm 2 or more, and more preferably 20 cells / cm 2 or more.
  • the upper limit of the cell pitch of the honeycomb structure 10 is not particularly limited, but is preferably 3.0 mm or less, more preferably 2.0 mm or less.
  • the cell density of the honeycomb structure 10 is a value obtained by dividing the number of cells by the area of each end face of the honeycomb structure 10.
  • the cell pitch of the honeycomb structure 10 refers to the length of a line segment connecting the centers of gravity of two adjacent cells 14 at each end surface of the honeycomb structure 10.
  • the heater element 100 includes a pair of electrodes 20 on the first end surface 13a and the second end surface 13b. By applying a voltage through the pair of electrodes 20, it is possible to energize and heat the honeycomb structure 10 by Joule heat.
  • the electrode 20 is not particularly limited, but has a stretched portion extending in the same direction from one short side 15 side of each of the first end surface 13a and the second end surface 13b toward the outside, and the stretched portion and the connector 30. Is preferably connected. By providing the extending portion, the connection with the connector 30 becomes easy.
  • the electrode 20 may be composed of a single member or may be composed of a plurality of members.
  • the electrode 20 can be an electrode layer 21 provided on the first end surface 13a and the second end surface 13b.
  • the electrode layer 21 is provided on the surfaces of the outer peripheral wall 11 and the partition wall 12 on the first end surface 13a and the second end surface 13b, and is provided from the short side 15 side of each of the first end surface 13a and the second end surface 13b. It has a stretched portion that extends in the same direction toward the outside.
  • the electrode 20 is composed of a plurality of members, for example, as shown in FIGS.
  • the electrode 20 has an electrode layer 21 provided on the first end surface 13a and the second end surface 13b and an electrode layer 21.
  • the electrode plate 22 provided in the above can be included.
  • the electrode layer 21 is provided on the surfaces of the outer peripheral wall 11 and the partition wall 12 on the first end surface 13a and the second end surface 13b, and the electrode plate 22 is provided on the outer peripheral wall 11 provided with the electrode layer 21. It is provided via.
  • the electrode plate 22 is formed with an opening so as not to block a portion other than the outer peripheral wall 11 provided with the electrode layer 21 (the surface of the partition wall 12 provided with the electrode layer 21 or the cell 14).
  • the electrode plate 22 has an elongated portion extending in the same direction from one short side 15 side of each of the first end surface 13a and the second end surface 13b toward the outside.
  • the method of connecting the electrode layer 21 and the electrode plate 22 is not particularly limited, and diffusion bonding, a mechanical pressure mechanism, welding, or the like can be used.
  • a carbon sheet may be provided between the electrode layer 21 and the electrode plate 22 from the viewpoint of improving the contact between the two.
  • the electrode layer 21 is not particularly limited, but for example, a metal or alloy containing at least one selected from Cu, Ag, Al, Ni and Si can be used. It is also possible to use an ohmic electrode layer capable of ohmic contact with the outer peripheral wall 11 and / or the partition wall 12 having PTC characteristics.
  • the ohmic electrode layer contains, for example, at least one selected from Au, Ag and In as a base metal, and at least one selected from Ni, Si, Ge, Sn, Se and Te for n-type semiconductors as a dopant.
  • the contained ohmic electrode layer can be used.
  • the electrode layer 21 may be one layer or two or more layers. When the electrode layers 21 are two or more layers, the materials of the respective layers may be the same type or different types.
  • the electrode plate 22 is not particularly limited, but can be formed of a plate-shaped material having excellent conductivity.
  • the electrode plate 22 can be, for example, a metal plate such as a copper plate or a stainless steel plate.
  • the heater element 100 includes a pair of connectors 30 connected to the electrode 20 from one short side 15 side of the first end surface 13a and the second end surface 13b of the honeycomb structure 10.
  • the connector 30 is a terminal that can be electrically connected to a power source.
  • the connector 30 is preferably connected to the surface of the stretched portion of the electrode 20 on the honeycomb structure 10 side. With such a configuration, the heater element 100 can be made compact, so that it can be easily applied to an existing heater unit.
  • the connection method between the electrode 20 and the connector 30 is not particularly limited as long as it is electrically connected, and can be connected by, for example, diffusion joining, a mechanical pressurizing mechanism, welding, or the like.
  • the material of the connector 30 is not particularly limited, but may be, for example, metal.
  • the metal a single metal, an alloy, or the like can be adopted, but from the viewpoint of corrosion resistance, electrical resistance, and linear expansion rate, for example, it is selected from the group consisting of Cr, Fe, Co, Ni, Cu, and Ti. It is preferable to use an alloy containing at least one kind, and stainless steel, Fe—Ni alloy, and phosphorus bronze are more preferable.
  • the shape and size of the connector 30 are not particularly limited, and may be appropriately adjusted according to the structure of the existing heater unit.
  • a method for manufacturing the heater element 100 according to the embodiment of the present invention will be exemplified.
  • a raw material composition containing a dispersion medium and a binder is mixed with a ceramic raw material and kneaded to prepare a clay, and then the clay is extruded to prepare a honeycomb molded body.
  • Additives such as a dispersant, a plasticizer, a semiconductor agent, a shifter, a metal oxide, a property improving agent, and a conductor powder can be added to the raw material composition, if necessary.
  • a base having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used.
  • the ceramic raw material can be provided, for example, in the form of powder.
  • oxides such as TIO 2 and BaCO 3 , which are the main components of barium titanate, and carbonate raw materials can be used.
  • semiconductor agents such as Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Sc and Lu, and low temperature side such as Sr, Sn and Zr. Shifters, shifters on the high temperature side such as (Bi-Na), (Bi-K), property improvers such as Mn, these oxides and carbonates, or oxalates that become oxides after firing. May be used.
  • Conductor powders such as carbon black and nickel may be added to control conductivity.
  • the addition of the alkali metal element of Na or K can also be used in the form of a binder containing the alkali metal element.
  • a dispersant and a binder are further added, and BaO (50.3 mol%) or TiO as a calcined product is added.
  • Lead is substantially added by blending so as to be 2 (49.6 mol%), La 2 O 3 (0.05 mol%), K 2 O (0.033 mol%), and Na 2 O (0.002 mol%). It is possible to obtain a honeycomb structure that is not contained (that is, lead-free).
  • the composition is not limited to this, and by blending the ceramics having the composition formula represented by the following formula so as to occupy 90% by mass or more, a honeycomb structure containing rare earth elements and alkali metal elements and not using lead is obtained. be able to. (Ba 1-xy A1 x A2 y ) TiO 3
  • A1 represents one or more rare earth elements
  • A2 represents one or more alkali metal elements, 0.001 ⁇ x ⁇ 0.01, 0.001 ⁇ y ⁇ 0.01, 0.002 ⁇ x + y ⁇ 0.02.
  • dispersion medium examples include water or a mixed solvent of water and an organic solvent such as alcohol, and water can be particularly preferably used.
  • binder examples include organic binders such as methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. In particular, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 4 to 9 parts by mass with respect to 100 parts by mass of the ceramic raw material from the viewpoint of increasing the strength of the honeycomb molded body and suppressing the occurrence of sharpening due to abnormal heat generation in the firing step. ..
  • the binder may be one that uses one type alone or one that uses two or more types in combination.
  • a surfactant such as ethylene glycol, dextrin, fatty acid soap, polyalcohol, or organic phosphorus compound can be used.
  • the dispersant may be used alone or in combination of two or more.
  • the content of the dispersant is preferably 0 to 2 parts by mass with respect to 100 parts by mass of the ceramic raw material.
  • the obtained honeycomb molded body is dried.
  • conventionally known drying methods such as hot air drying, microwave drying, dielectric drying, vacuum drying, vacuum drying, and freeze drying can be used. Among them, a drying method combining hot air drying and microwave drying or dielectric drying is preferable.
  • a columnar honeycomb structure can be manufactured by firing the dried honeycomb molded body.
  • a degreasing step to remove the binder can also be performed before firing.
  • the firing temperature is preferably 1100 to 1400 ° C.
  • the firing time is preferably about 1 to 4 hours.
  • the atmosphere when carrying out the degreasing step can be, for example, an atmospheric atmosphere, an inert atmosphere, or a decompressed atmosphere. Among these, it is preferable to use an inert atmosphere and a reduced pressure atmosphere.
  • the firing furnace is not particularly limited, but an electric furnace, a gas furnace, or the like can be used.
  • Electrodes 20 are formed on the first end surface 13a and the second end surface 13b of the honeycomb structure thus obtained.
  • the electrode layer 21 of the electrode 20 can be formed by a metal precipitation method such as sputtering, vapor deposition, electrolytic precipitation, or chemical precipitation. Further, the electrode layer 21 can also be formed by applying the electrode paste and then baking it. Further, the electrode layer 21 can also be formed by thermal spraying.
  • the electrode layer 21 may be a single layer, but may be a plurality of layers having different compositions.
  • the thickness of the electrode layer 21 is about 5 to 30 ⁇ m for baking paste, about 100 to 1000 nm for dry plating such as sputtering and vapor deposition, about 10 to 100 ⁇ m for thermal spraying, and wet plating such as electrolytic precipitation and chemical precipitation. Then, it is preferably about 5 to 30 ⁇ m.
  • the electrode plate 22 When the electrode plate 22 is provided on the electrode layer 21, the electrode plate 22 is arranged and connected on the electrode layer 21.
  • the above-mentioned method can be used as a method of connecting the electrode layer 21 and the electrode plate 22.
  • the heater element 100 can generate heat of the honeycomb structure 10 by applying a voltage from the connector 30 via the pair of electrodes 20.
  • a voltage from the viewpoint of rapid heating, it is preferable to apply a voltage of 200 V or more, and it is more preferable to apply a voltage of 250 V or more.
  • the gas can be heated by flowing the gas through the cell 14.
  • the temperature of the gas flowing into the cell 14 can be, for example, ⁇ 60 ° C. to 20 ° C., and typically ⁇ 10 ° C. to 20 ° C.
  • the heater element 100 according to the embodiment of the present invention has a simpler structure than the existing heater element in which the PTC element is integrated with the aluminum fin, and the design of parts such as the wiring and the holder of the existing heater unit is changed. It is possible to prevent the heater unit from becoming large. Further, in the existing heater element, the temperature rise rate (heat rise time) of the gas is not sufficient because the PTC element does not come into direct contact with the gas, but the heater element 100 according to the embodiment of the present invention has the outer peripheral wall 11 and the partition wall. Since the honeycomb structure 10 in which 12 is made of a material having PTC characteristics is in direct contact with the gas, the rate of temperature rise of the gas can be increased. Further, the heater element 100 according to the embodiment of the present invention consumes less power than the existing heater element.
  • the heater unit according to the embodiment of the present invention can be suitably used as a heater unit for heating the passenger compartment of a vehicle.
  • the heater unit according to the embodiment of the present invention it is possible to prevent the heater unit from becoming large due to a design change of parts such as wiring and a holder of the existing heater unit. Therefore, the above-mentioned heater element 100 can be used instead of the existing heater element.
  • FIG. 5 is a schematic front view of the heater unit according to the embodiment of the present invention as viewed from the first end surface side of the heater element.
  • the heater unit 200 according to the embodiment of the present invention includes two or more heater elements 100. Further, in the heater unit 200, the heater elements 100 are laminated and arranged so that the surfaces of the outer peripheral walls 11 of the honeycomb structure 10 including the long sides of the first end surface 13a and the second end surface 13b face each other. With such a configuration, the heater unit 200 can be manufactured without significantly changing the design of parts such as wiring and holders of the existing heater unit.
  • the heater unit 200 may further include a housing (housing member) 110.
  • the material of the housing 110 is not particularly limited, and examples thereof include metal and resin. Among them, the material of the housing 110 is preferably resin. By using a resin housing, electric shock can be suppressed without grounding.
  • the shape and size of the housing 110 are not particularly limited, and may be the same as the existing heater unit.
  • the heater unit 200 may further include an insulating material 120 arranged between the heater elements 100 which are laminated and arranged. With such a configuration, it is possible to suppress an electrical short circuit between the plurality of heater elements 100.
  • an insulating material 120 a plate material, a mat, a cloth, or the like formed of an insulating material such as alumina or ceramics can be used.
  • the heater system according to the embodiment of the present invention can be suitably used as a heater system for heating the passenger compartment of a vehicle.
  • FIG. 6 is a schematic diagram showing a configuration example of the heater system according to the embodiment of the present invention.
  • the heater system 300 according to the embodiment of the present invention communicates the heater unit 200, the outside air introduction unit or the vehicle interior 310 according to the embodiment of the present invention with the inflow port 301 of the heater unit 200. It includes inflow pipes 320a and 320b, a battery 330 for applying a voltage to the heater unit 200, and an outflow pipe 325 that communicates the outlet 302 of the heater unit 200 with the passenger compartment 310.
  • the heater unit 200 can be configured to energize and generate heat by connecting to the battery 330 with an electric wire 340 and turning on the power switch in the middle of the connection, for example.
  • a steam compression heat pump 350 can be installed on the upstream side of the heater unit 200.
  • the steam compression heat pump 350 is configured as a main heating device, and the heater unit 200 is configured as an auxiliary heater.
  • the steam compression heat pump 350 includes heat including an evaporator 351 that absorbs heat from the outside during cooling and evaporates the refrigerant, and a condenser 352 that liquefies the refrigerant gas and releases the heat to the outside during heating. It can be equipped with a exchanger.
  • the steam compression heat pump 350 is not particularly limited, and a vapor compression heat pump 350 known in the art can be used.
  • a blower 360 can be installed on the upstream side and / or the downstream side of the heater unit 200.
  • the blower 360 is preferably installed on the upstream side of the heater unit 200 from the viewpoint of arranging the high voltage parts as far away from the passenger compartment 310 as possible to ensure safety.
  • the air is heated while passing through the heating unit 200 during heat generation.
  • the heated air flows out of the heater unit 200 and is sent into the vehicle interior 310 through the outflow pipe 325.
  • the outlet of the outflow pipe 325 may be arranged near the feet of the occupant so that the heating effect is particularly high even in the passenger compartment 310, or the pipe outlet may be arranged in the seat to warm the seat from the inside. Alternatively, it may be arranged near the window to have the effect of suppressing fogging of the window.
  • Valves 321a and 321b can be installed in the inflow pipe 320a and the inflow pipe 320b on the upstream side of the confluence, respectively.
  • By controlling the opening and closing of the valves 321a and 321b it is possible to switch between a mode in which the outside air is introduced into the heater unit 200 and a mode in which the air in the vehicle interior 310 is introduced into the heater unit 200.
  • the mode is set to introduce the outside air into the heater unit 200.
  • Example 1 A binder, a dispersant, a plasticizer, and water were added to the ceramic raw material, mixed, and kneaded to prepare a clay.
  • a ceramic raw material BaCO 3 powder, TiO 2 powder and La (NO 3 ) 3.6H 2 O powder are mixed so as to be barium titanate in which La is 0.1% substituted with respect to Ba after firing.
  • Methyl cellulose was used as the binder, and 6 parts by mass was blended with 100 parts by mass of the ceramic raw material.
  • As the dispersant potassium-containing alkyl phosphate was used, and 0.5 parts by mass was blended with respect to 100 parts by mass of the ceramic raw material.
  • the plasticizer an ether ester compound and an alkane diol were used, and the ether ester compound was blended in an amount of 0.5 parts by mass with respect to 100 parts by mass of the ceramic raw material, and the alkane diol was blended with 1 part by mass with respect to 100 parts by mass of the ceramic raw material.
  • the partition wall thickness is 0.100 mm
  • the cell density is 62 cells / cm 2
  • the cell pitch is 1.27 mm
  • the cross section orthogonal to the cell extending direction is a rectangular shape of 30 mm ⁇ 34 mm and the cell is extended.
  • a honeycomb molded body was obtained by extrusion molding so as to form a prismatic honeycomb segment having a length of 14 mm.
  • the honeycomb molded product was dried, degreased, and then calcined in the air at 1400 ° C. for 2 hours to obtain a honeycomb segment.
  • the honeycomb joint has a rectangular cross section of 30 mm ⁇ 175 mm perpendicular to the cell extending direction and a length of 14 mm in the cell extending direction.
  • a ceramic material to be made into a paste by adding a solvent such as water was used as the bonding material.
  • the area of the end face of this honeycomb joint was 52.5 cm 2 .
  • the silver electrode paste is applied and baked at 700 ° C. to obtain the Al—Ni electrode layer and the silver electrode.
  • a layer was formed.
  • the carbon sheet and the copper electrode plate were sequentially arranged and joined on the silver electrode layer formed on the surface of the outer peripheral wall on the outer peripheral side of the honeycomb joint.
  • the copper electrode plate has an opening that does not block a portion other than the outer peripheral wall provided with each electrode layer (the surface or cell of the partition wall provided with each electrode layer). A portion was formed, and a stretched portion extending in the same direction from one short side of the first end surface and the second end surface of the honeycomb joint body to the outside was provided. Further, the carbon sheet was arranged between the silver electrode layer and the copper electrode plate.
  • a connector made of phosphorus bronze was connected to the stretched portion of the copper electrode plate in the same manner as in the structures shown in FIGS. 1 and 2, and a heater element was obtained.
  • the above four heater elements were laminated and arranged, and housed in a housing to obtain a heater unit.
  • An alumina fiber mat (insulating material) was placed between the heater elements arranged in a laminated manner.
  • the above heater unit is incorporated into the HVAC (Heating Ventilation and Air Conditioning) of a commercial vehicle, and the current is limited to 30 A or less with a constant voltage control of 200 V, and an energization heating test of the heater unit is performed under a gas flow rate of 6 m / sec. rice field.
  • the gas temperature at the outlet of the HVAC reached 50 ° C. in 6 seconds after energization and heating, and rose to 88 ° C. in 60 seconds.
  • the electric power at this time was 2.8 kW.
  • the energy consumption 30 seconds after the start of energization was 90 kJ.
  • Example 2 Using the same clay as in Example 1, after firing, the partition thickness is 0.125 mm, the cell density is 62 cells / cm 2 , the cell pitch is 1.27 mm, and the cross section orthogonal to the cell extension direction is 30 mm ⁇ 175 mm.
  • a honeycomb molded body was obtained by extrusion molding so as to have a shape and a length of 14 mm in the direction in which the cell extends. Next, the honeycomb molded body was dried, degreased, and then fired in the air at 1400 ° C. for 2 hours to obtain a honeycomb structure. The area of the end face of this honeycomb structure was 52.5 cm 2 .
  • Example 2 Under the same conditions as in Example 1, an Al—Ni electrode layer and a silver electrode layer are formed on the first end face and the second end face of the honeycomb structure, and then a carbon sheet and a copper electrode plate are formed on the silver electrode layer. Are sequentially arranged and joined, and a connector is connected to the stretched portion of the copper electrode plate to obtain a heater element.
  • the above four heater elements were laminated and arranged, and housed in a housing to obtain a heater unit.
  • the above heater unit was incorporated into the HVAC of a commercial vehicle, the current was limited to 30 A or less under constant voltage control of 250 V, and an energization heating test of the heater unit was performed under a gas flow rate of 6 m / sec. As a result, the gas temperature at the outlet of the HVAC reached 60 ° C. in 8 seconds after energization and heating, and rose to 100 ° C. in 60 seconds. The electric power at this time was 3.4 kW. The energy consumption 30 seconds after the start of energization was 108 kJ.
  • FIG. 7 is a schematic plan view of the heater element.
  • the PTC element 500 has a size of 29 mm ⁇ 8 mm ⁇ 2 mm, and six elements are arranged in a row and housed inside the heater main body 520 by combining with members such as a frame, an insulating plate, and a conductive plate.
  • the heater main body 520 is provided with a connector 30.
  • the eight heater main bodies 520 are housed in the housing 110, and the aluminum fins 510 are arranged between the heater main bodies 520.
  • the PTC element 500 was composed of a material containing 49 mol% of TiO 2 , 32 mol% of BaO, 9 mol% of PbO, 8 mol% of CaO, 1 mol% of SrO, and 1 mol% of SiO 2 .
  • the above-mentioned conventional heater unit was incorporated into the HVAC of a commercial vehicle, the current was limited to 30 A or less under constant voltage control of 300 V, and an energization heating test of the heater unit was performed at a gas flow rate of 6 m / sec. As a result, the gas temperature at the outlet of the HVAC reached 50 ° C. in 11 seconds after energization and heating, and rose to 88 ° C. in 60 seconds. The electric power at this time was 2.8 kW. The energy consumption 30 seconds after the start of energization was 123 kJ.
  • FIG. 9 shows a graph comparing the energization test results of Example 1 and Comparative Example 1.
  • L1 is the gas temperature of the outlet of Example 1
  • L2 is the electric power of Example 1
  • L3 is the gas temperature of the outlet of Comparative Example 1
  • L4 is the electric power of Comparative Example 1
  • L5 is an example.
  • the gas temperature of the outlet of 2 and L6 represent the electric power of the second embodiment.
  • the heater unit of Example 1 was able to shorten the time for raising the gas temperature as compared with the heater unit of Comparative Example 1 (comparison between L1 and L3).
  • the time from the start of energization to the gas temperature of 50 ° C. is 6 seconds in Example 1 and 11 seconds in Comparative Example 1, which shortens the gas temperature raising time by 40%. I was able to.
  • the heater unit of Example 1 was able to reduce the maximum power during energization as compared with the heater unit of Comparative Example 1 (comparison between L2 and L4).
  • the maximum power during energization was 7.8 kW in Example 1 and 7.6 kW in Comparative Example 1, and the maximum power could be reduced by 25%. As shown in FIG.
  • the heater unit of the second embodiment can further shorten the time for raising the gas temperature as compared with the heater unit of the first embodiment, and the arrival temperature of the gas after 60 seconds can be further shortened. It was high (comparison between L1 and L5). On the other hand, the maximum power during energization was lower in the heater unit of Example 1 than in the heater unit of Example 2 (comparison between L2 and L6).
  • the present invention has a simpler structure than the existing heater element, and it is possible to suppress the enlargement of the heater unit due to the design change of parts such as the wiring and the holder of the existing heater unit. It is possible to provide a heater element for heating a passenger compartment. Further, according to the present invention, it is possible to provide a vehicle interior heating heater unit and a vehicle interior heating heater system using the vehicle interior heating heater element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで流路を形成する複数のセル14を区画形成する隔壁12とを有し、外周壁11及び隔壁12がPTC特性を有する材料で構成されたハニカム構造体10と、第1端面13a及び第2端面13bに設けられた一対の電極20とを備える車室暖房用ヒーターエレメント100である。ハニカム構造体10は、第1端面13a及び第2端面13bが矩形状である。車室暖房用ヒーターエレメント100は、第1端面13a及び第2端面13bのそれぞれの、一方の短辺15側から電極20に接続された一対のコネクタ30を更に備える。

Description

車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム
 本発明は、車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステムに関する。
 近年、電気自動車の車室暖房用ヒーターシステムとして、蒸気圧縮ヒートポンプを主たるヒーターとして使用しつつ、車両始動時の急速加熱が必要なときや外気温が非常に低い時に、ジュール熱を利用したヒーターを補助的に使用するヒーターシステムが採用されてきた。
 このヒーターシステムで用いられるジュール熱を利用したヒーターとして、特許文献1には、PTC素子をアルミニウムフィンと一体化したヒーターエレメントが積層配列されたヒーターユニットが提案されている。
 しかしながら、このヒーターエレメントは、PTC素子及びアルミニウムフィン以外にも絶縁板や導電板などの多くの部品を備えているため、複雑な構造を有するとともに、組立コストがかかり、高価であるという課題がある。
 そこで、特許文献2には、コンパクトで体積当たりの熱伝達面積を大きくすることが可能なハニカム構造体を用いたヒーターエレメントが提案されている。このハニカム構造体を用いたヒーターエレメントは、上述のヒーターエレメントに比べて単純な構造であるという利点がある。
特開2007-157528号公報 国際公開第2020/036067号
 しかしながら、本発明者らの検討の結果、特許文献2に記載のヒーターエレメントを既存のヒーターユニットに用いる場合、既存のヒーターユニットの配線や保持具などの部品を設計変更する必要がある。それによってヒーターユニットが大型化してしまい、コンパクトなヒーターエレメントの利点を損なうため、改善の必要があるものであった。
 本発明は、上記のような課題を解決するためになされたものであり、既存のヒーターエレメントよりも単純な構造を有するとともに、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能な車室暖房用ヒーターエレメントを提供することを目的とする。また、本発明は、この車室暖房用ヒーターエレメントを用いた車室暖房用ヒーターユニット及び車室暖房用ヒーターシステムを提供することを目的とする。
 上記の課題は、以下の本発明によって解決されるものであり、本発明は以下のように特定される。
 すなわち、本発明は、外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで流路を形成する複数のセルを区画形成する隔壁とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
 前記第1端面及び前記第2端面に設けられた一対の電極と
を備える車室暖房用ヒーターエレメントであって、
 前記ハニカム構造体は、前記第1端面及び前記第2端面が矩形状であり、
 前記車室暖房用ヒーターエレメントは、前記第1端面及び前記第2端面のそれぞれの、一方の短辺側から前記電極に接続された一対のコネクタを更に備える、車室暖房用ヒーターエレメントである。
 また、本発明は、前記車室暖房用ヒーターエレメントを2個以上含む車室暖房用ヒーターユニットであって、
 前記第1端面及び前記第2端面の長辺を含む、前記ハニカム構造体の前記外周壁の表面同士が対向するように前記車室暖房用ヒーターエレメントが積層配列されている車室暖房用ヒーターユニットである。
 さらに、本発明は、前記車室暖房用ヒーターユニット、
 外気導入部又は車室と前記車室暖房用ヒーターユニットの流入口とを連通する流入配管、
 前記車室暖房用ヒーターユニットに電圧を印加するためのバッテリー、及び
 前記車室暖房用ヒーターユニットの流出口と前記車室とを連通する流出配管
を備える車室暖房用ヒーターシステムである。
 本発明によれば、既存のヒーターエレメントよりも単純な構造を有するとともに、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能な車室暖房用ヒーターエレメントを提供することができる。また、本発明によれば、この車室暖房用ヒーターエレメントを用いた車室暖房用ヒーターユニット及び車室暖房用ヒーターシステムを提供することができる。
本発明の実施形態に係るヒーターエレメントの模式的な斜視図である。 図1のA方向からみたヒーターエレメントの模式的な側面図である。 図1のヒーターエレメントを構成するハニカム構造体の模式的な斜視図である。 5個のハニカムセグメントを有するハニカム接合体の模式的な端面図である。 ヒーターエレメントの第1端面側からみた本発明の実施形態に係るヒーターユニットの模式的な正面図である。 本発明の実施形態に係るヒーターシステムの構成例を示す模式図である。 比較例で準備したヒーターエレメントの模式的な平面図である。 実施例1及び比較例1の通電試験結果を比較したグラフである。 実施例1及び実施例2の通電試験結果を比較したグラフである。
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。
(1.ヒーターエレメント)
 本発明の実施形態に係るヒーターエレメントは、車両の車室暖房用のヒーターエレメントとして好適に利用可能である。車両としては、特に限定されないが、自動車及び電車が挙げられる。自動車としては、特に限定されないが、ガソリン車、ディーゼル車、CNG(圧縮天然ガス)やLNG(液化天然ガス)などを用いるガス燃料車、燃料電池自動車、電気自動車及びプラグインハイブリッド自動車が挙げられる。本発明の実施形態に係るヒーターエレメントは、特に電気自動車及び電車のような内燃機関を持たない車両に好適に利用可能である。
 図1は、本発明の実施形態に係るヒーターエレメントの模式的な斜視図である。図2は、図1のA方向からみたヒーターエレメントの模式的な側面図である。図3は、図1のヒーターエレメントを構成するハニカム構造体の模式的な斜視図である。
 本発明の実施形態に係るヒーターエレメント100は、外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで流路を形成する複数のセル14を区画形成する隔壁12とを有するハニカム構造体10と、第1端面13a及び第2端面13bに設けられた一対の電極20とを備える。そして、ハニカム構造体10の端面(第1端面13a及び第2端面13b)は矩形状である。また、ヒーターエレメント100は、第1端面13a及び第2端面13bのそれぞれの、一方の短辺15側から電極20に接続された一対のコネクタ30を更に備える。このように、ハニカム構造体10の端面が矩形状であり、上記のようにハニカム構造体10の端面に接続された一対のコネクタ30を有することにより、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制し、コンパクトなヒーターユニットとすることができる。
(1-1.ハニカム構造体10)
 ハニカム構造体10は、端面(第1端面13a及び第2端面13b)が矩形状である。すなわち、ハニカム構造体10の端面は、短辺15と長辺16とを有する矩形状である。
 短辺15の長さと長辺16の長さとの比は、特に限定されないが、好ましくは1:2~1:10、より好ましくは1:3~1:8である。このような範囲の比に制御することにより、既存のヒーターユニットに用いられるヒーターエレメントのサイズに適合させることができる。
 セル14の流路方向に直交する断面におけるセル14の形状は、特に限定されないが、四角形(長方形、正方形)、六角形、八角形、又はこれらの二種以上の組み合わせであることが好ましい。これらの中でも、四角形及び六角形が好ましい。セル14の形状をこのような形状にすることにより、ハニカム構造体10にガスを流したときの圧力損失を小さくすることができる。なお、図1に示すヒーターエレメント100におけるハニカム構造体10は、セル14の流路方向に直交する断面におけるセル14の形状が正方形の例である。
 ハニカム構造体10は、複数のハニカムセグメントと、複数のハニカムセグメントの間を接合する接合層とを有するハニカム接合体であってもよい。ハニカム接合体を用いることにより、クラックの発生を抑えながらガスの流量確保に重要なセル14の総断面積を増やすことが可能となる。
 ここで、一例として、5個のハニカムセグメントを有するハニカム接合体の模式的な端面図を図4に示す。
 図4に示されるように、ハニカム接合体17は、5個のハニカムセグメント18と、ハニカムセグメント18の間を接合する接合層19とを有する。各ハニカムセグメント18は、外周壁11と、外周壁11の内側に配設され、第1端面13aから第2端面13bまで流路を形成する複数のセル14を区画形成する隔壁12とを有する。
 接合層19は、接合材を用いて形成することができる。接合材としては、特に限定されないが、セラミックス材料に、水などの溶媒を加えてペースト状にしたものを用いることができる。接合材は、PTC特性を有するセラミックスを含有してもよく、外周壁11及び隔壁12と同一のセラミックスを含有してもよい。接合材は、ハニカムセグメント18同士を接合する役割に加えて、ハニカムセグメント18を接合した後の外周コート材として用いることも可能である。
 ガス流量を確保するという観点から、ハニカム構造体10の各端面の面積は、好ましくは20cm2以上、より好ましくは50cm2以上、更に好ましくは70cm2以上である。ヒーターエレメント100をコンパクトにするという観点から、ハニカム構造体10の各端面の面積は、好ましくは500cm2以下、より好ましくは300cm2以下、更に好ましくは200cm2以下である。ハニカム構造体10の各端面の面積は、例えば20~500cm2とすることができる。
 ヒーターエレメント100をコンパクトにするという観点から、ハニカム構造体10の長さ(各セル14の流路長さ)は、好ましくは40mm以下、より好ましくは30mm以下、更に好ましくは20mm以下、更により好ましくは10mm以下である。加熱性能及び強度を確保するという観点からは、ハニカム構造体10の長さ(各セル14の流路長さ)は、好ましくは3mm以上である。ハニカム構造体10の長さ(各セル14の流路長さ)は、例えば3~40mmとすることができる。
(1-1-1.ハニカム構造体10の材質)
 ハニカム構造体10の外周壁11及び隔壁12は、通電によって発熱可能な材料から形成されている。したがって、外気又は車室内空気のようなガスが、第1端面13aから流入してから、複数のセル14を通過し、第2端面13bから流出するまでに、当該ガスは発熱する外周壁11及び隔壁12からの伝熱によって加熱されることが可能である。
 また、外周壁11及び隔壁12は、PTC(Positive Temperature Coefficient)特性を有する材料で構成されている。つまり、外周壁11及び隔壁12は、温度が上昇してキュリー点を超えると、急激に抵抗値が上昇して電気が流れ難くなるという特性を有する。外周壁11及び隔壁12がPTC特性を有することによって、ヒーターエレメント100が高温になったときに、これらに流れる電流が制限されるので、ヒーターエレメント100の過剰な発熱が抑制される。
 通電発熱可能であり且つPTC特性を有するという観点から、外周壁11及び隔壁12は、チタン酸バリウムを主成分とする材料で構成されるセラミックスであることが好ましく、チタン酸バリウムを70質量%以上含有する材料で構成されるセラミックスであることがより好ましく、チタン酸バリウムを90質量%以上含有する材料で構成されるセラミックスであることが更に好ましい。なお、本明細書において「主成分」とは、成分全体に占める割合が50質量%を超える成分のことを意味する。チタン酸バリウムの含有量は、例えば、蛍光X線分析、EDAX(エネルギー分散型X線)分析などにより求めることができる。
 当該セラミックスは、希土類元素などの添加物を一種以上含有することが所望のPTC特性を得る上で好ましい。添加物としては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Sc及びLuのような半導体化剤、Sr、Sn及びZrのような低温側のシフター、(Bi-Na)、(Bi-K)のような高温側のシフター、Mnのような特性改善剤、酸化バナジウム及び酸化イットリウムのような金属酸化物(特に希土類元素の酸化物)、並びにカーボンブラック及びニッケルのような導電体粉末が挙げられる。このほかのPTC材料として、クリストバライト相SiO2を母材とし導電フィラーを含む複合材がある。クリストバライト相SiO2母材の代替にトリジマイト相SiO2、クリストバライト相AlPO4、トリジマイト相AlPO4を用いることもできる。
 また、廃棄物の環境影響の観点から、外周壁11及び隔壁12は、鉛を実質的に含まない材料で構成されるセラミックスであることが好ましく、鉛の含有量が0.001質量%以下の材料で構成されるセラミックスであることがより好ましい。なお、本明細書において「実質的に含まない」とは、成分全体に占める割合が0.01質量%以下であることを意味する。鉛の含有量は、例えば、蛍光X線分析、ICP-MS(誘導結合プラズマ質量分析)などにより求めることができる。
 外周壁11及び隔壁12を構成する材料のキュリー点は、暖房用に空気を効率良く加熱する観点から、好ましくは100℃以上、より好ましくは110℃以上、更に好ましくは125℃以上である。また、キュリー点の上限については、車室又は車室近傍に置かれる部品としての安全性の観点から、好ましくは250℃以下、より好ましくは225℃以下、更に好ましくは200℃以下、更により好ましくは150℃以下である。
 外周壁11及び隔壁12を構成する材料のキュリー点は、シフターの種類及び添加量によって調整可能である。例えば、チタン酸バリウム(BaTiO3)のキュリー点は約120℃であるが、Ba及びTiの一部をSr、Sn及びZrの一種以上で置換することにより、キュリー点を低温側にシフトさせることができる。
 本発明において、キュリー点は以下の方法により測定される。試料を測定用の試料ホルダーに取りつけ、測定槽(例:MINI-SUBZERO MC-810P タバイ エスペック社製)内に装着して、10℃から昇温したときの温度変化に対する試料の電気抵抗の変化を、直流抵抗計(例:マルチメーター3478A YHP製)を用いて測定する。測定により得られた電気抵抗-温度プロットにより、抵抗値が室温(20℃)における抵抗値の2倍になるときの温度をキュリー点とする。
(1-1-2.ハニカム構造体10の隔壁12の厚さ)
 初期電流を抑えるという観点からは、電流通路を小さくして電気抵抗を大きくすることが有利である。したがって、ハニカム構造体における隔壁12の厚さは、好ましくは0.125mm以下、より好ましくは0.075mm以下である。但し、ハニカム構造体10の強度を確保するという観点からは、隔壁12の厚さは、好ましくは0.020mm以上、より好ましくは0.040mm以上、更に好ましくは0.060mm以上である。隔壁12の厚さとは、セル14の流路方向に直交する断面において、隣接するセル14の重心同士を線分で結んだときに当該線分が隔壁12を横切る長さを指す。隔壁12の厚さは、全ての隔壁12の厚さの平均値を指す。
 ハニカム構造体10を補強するという観点からは、外周壁11の厚さは、好ましくは0.05mm以上、より好ましくは0.06mm以上、更に好ましくは0.08mm以上である。ただし、電気抵抗を大きくし、初期電流を抑える観点、及びガス通過時の圧力損失を低減する観点からは、外周壁11の厚さは、好ましくは1.0mm以下、より好ましくは0.5mm以下、更に好ましくは0.4mm以下、更により好ましくは0.3mm以下である。外周壁11の厚さは、セル14の流路に直交する断面において、外周壁11と最も外周側のセル14又は隔壁12との境界からハニカム構造体の側面までの、当該側面の法線方向の長さを指す。
(1-1-3.ハニカム構造体10のセル密度及びセルピッチ)
 ハニカム構造体10のセル密度は、好ましくは93セル/cm2以下、より好ましくは62セル/cm2以下である。また、ハニカム構造体10のセルピッチは、好ましくは1.0mm以上、より好ましくは1.3mm以上である。このような範囲にセル密度又はセルピッチを制御することにより、通風抵抗を抑えて送風機の出力を抑制することができる。
 なお、ハニカム構造体10のセル密度の下限は、特に限定されないが、好ましくは10セル/cm2以上、より好ましくは20セル/cm2以上である。また、ハニカム構造体10のセルピッチの上限も、特に限定されないが、好ましくは3.0mm以下、より好ましくは2.0mm以下である。ハニカム構造体10のセル密度は、ハニカム構造体10の各端面の面積でセル数を除して得られる値である。また、ハニカム構造体10のセルピッチは、ハニカム構造体10の各端面において、隣接する2つのセル14の重心同士を結ぶ線分の長さを指す。
(1-2.電極20)
 本発明の実施形態に係るヒーターエレメント100は、第1端面13a及び第2端面13bに一対の電極20を備える。一対の電極20によって電圧を印加することにより、通電してジュール熱によりハニカム構造体10を発熱させることが可能となる。
 電極20としては、特に限定されないが、第1端面13a及び第2端面13bのそれぞれの、一方の短辺15側から外部に向かって同方向に伸びる延伸部を有し、延伸部とコネクタ30とが接続されていることが好ましい。延伸部を設けることにより、コネクタ30との接続が容易になる。
 電極20は、単一の部材から構成されていてもよいし、複数の部材から構成されていてもよい。
 電極20を単一の部材から構成する場合、例えば、電極20は、第1端面13a及び第2端面13b上に設けられた電極層21とすることができる。この場合、電極層21は、第1端面13a及び第2端面13bにおける外周壁11及び隔壁12の表面に設けられ、第1端面13a及び第2端面13bのそれぞれの、一方の短辺15側から外部に向かって同方向に伸びる延伸部を有する。
 電極20を複数の部材から構成する場合、例えば、図1及び2に示されるように、電極20は、第1端面13a及び第2端面13b上に設けられた電極層21と、電極層21上に設けられた電極板22を含むことができる。この場合、電極層21は、第1端面13a及び第2端面13bにおける外周壁11及び隔壁12の表面に設けられ、電極板22は、電極層21が設けられた外周壁11上に電極層21を介して設けられる。電極板22は、電極層21が設けられた外周壁11以外の部分(電極層21が設けられた隔壁12の表面やセル14)を塞がないように開口部が形成される。また、電極板22は、第1端面13a及び第2端面13bのそれぞれの、一方の短辺15側から外部に向かって同方向に伸びる延伸部を有する。
 電極層21と電極板22との接続方法としては、特に限定されず、拡散接合、機械的な加圧機構、溶接などを用いることができる。
 電極層21と電極板22との間には、両者の接触を向上させる観点から、必要に応じてカーボンシートを設けてもよい。
 電極層21としては、特に限定されないが、例えば、Cu、Ag、Al、Ni及びSiから選択される少なくとも一種を含有する金属又は合金を使用することができる。また、PTC特性を有する外周壁11及び/又は隔壁12とオーミック接触が可能なオーミック電極層を使用することもできる。オーミック電極層は、例えば、ベース金属としてAu、Ag及びInから選択される少なくとも一種を含有し、ドーパントとしてn型半導体用のNi、Si、Ge、Sn、Se及びTeから選択される少なくとも一種を含有するオーミック電極層を使用することができる。また、電極層21は、1層であっても、2層以上であってもよい。電極層21が2層以上である場合、それぞれの層の材質は、同じ種類であってもよいし、異なる種類であってもよい。
 電極板22としては、特に限定されないが、板状であり、導電性に優れる材料から形成することができる。電極板22は、例えば、銅板、ステンレス板などの金属板とすることができる。
(1-3.コネクタ30)
 本発明の実施形態に係るヒーターエレメント100は、ハニカム構造体10の第1端面13a及び第2端面13bの、一方の短辺15側から電極20に接続される一対のコネクタ30を備える。コネクタ30は、電源に電気的に接続可能な端子である。このような位置に一対のコネクタ30を設けることにより、既存のヒーターエレメントの代わりに用いることが可能であり、既存のヒーターユニットの配線などの部品の設計変更によってヒーターユニットが大型化することが抑制される。
 コネクタ30は、電極20の延伸部のハニカム構造体10側の表面に接続されていることが好ましい。このような構成とすることにより、ヒーターエレメント100のコンパクト化が可能となるため、既存のヒーターユニットに適用し易くなる。
 電極20とコネクタ30との接続方法は、電気的に接続されていれば特に限定されず、例えば、拡散接合、機械的な加圧機構、溶接などによって接続することができる。
 コネクタ30の材質としては、特に限定されないが、例えば、金属とすることができる。金属としては、単体金属及び合金などを採用することもできるが、耐食性、電気抵抗率及び線膨張率の観点から、例えば、Cr、Fe、Co、Ni、Cu及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金、リン青銅がより好ましい。
 コネクタ30の形状及び大きさは、特に限定されず、既存のヒーターユニットの構造に応じて適宜調整すればよい。
(1-4.ヒーターエレメント100の製造方法)
 次に、本発明の実施形態に係るヒーターエレメント100を製造する方法について例示的に説明する。まず、セラミックス原料に、分散媒及びバインダを含有する原料組成物を混ぜ合わせ、混練して坏土を調製した後、坏土を押出成形してハニカム成形体を作製する。原料組成物中には分散剤、可塑剤、半導体化剤、シフター、金属酸化物、特性改善剤、導電体粉末などの添加剤を必要に応じて配合することができる。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度などを有する口金を用いることができる。
 セラミックス原料は、例えば粉末の形態で提供することができる。セラミックス原料としては、チタン酸バリウムの主成分となるTiO2やBaCO3などの酸化物や炭酸塩原料が使用可能である。また、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Sc及びLuのような半導体化剤、Sr、Sn及びZrのような低温側のシフター、(Bi-Na)、(Bi-K)のような高温側のシフター、Mnのような特性改善剤などとして、これらの酸化物や炭酸塩、あるいは焼成後に酸化物になるシュウ酸塩を用いてもよい。導電率を制御するため、カーボンブラック及びニッケルのような導電体粉末を添加してもよい。NaやKのアルカリ金属元素の添加は、アルカリ金属元素を含むバインダの形態で用いることもできる。
 また、例えば、TiO2やBaCO3などの原料粉末に、La(NO33・6H2Oを加えた後、分散剤及びバインダを更に加え、焼成体としてBaO(50.3mol%)、TiO2(49.6mol%)、La23(0.05mol%)、K2O(0.033mol%)、Na2O(0.002mol%)になるように配合することで、鉛を実質的に含まない(すなわち、鉛フリーの)ハニカム構造体を得ることができる。ただし、この組成に限らず、組成式が下記式で表されるセラミックスが90質量%以上を占めるように配合することで、希土類元素とアルカリ金属元素を含み、鉛を用いないハニカム構造体とすることができる。
  (Ba1-x-yA1xA2y)TiO3
 式中、A1は一種又は二種以上の希土類元素を表し、A2は一種又は二種以上のアルカリ金属元素を表し、0.001≦x≦0.01、0.001≦y≦0.01、0.002≦x+y≦0.02である。
 分散媒としては、水、又は水とアルコールなどの有機溶媒との混合溶媒などを挙げることができるが、特に水を好適に用いることができる。
 バインダとしては、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコールなどの有機バインダを例示することができる。特に、メチルセルロース及びヒドロキシプロポキシルセルロースを併用することが好適である。また、バインダの含有量は、ハニカム成形体の強度を高めるとともに、焼成工程での異常発熱によるキレ発生を抑制する観点から、セラミックス原料100質量部に対して4~9質量部であることが好ましい。バインダは、1種類を単独で使用するものであっても、2種類以上を組み合わせて使用するものであってもよい。
 分散剤には、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール、有機リン化合物などの界面活性剤を用いることができる。分散剤は、1種類を単独で使用するものであっても、2種類以上を組み合わせて使用するものであってもよい。分散剤の含有量は、セラミックス原料100質量部に対して0~2質量部であることが好ましい。
 次いで、得られたハニカム成形体を乾燥する。乾燥工程においては、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥などの従来公知の乾燥方法を用いることができる。なかでも、熱風乾燥と、マイクロ波乾燥又は誘電乾燥とを組み合わせた乾燥方法が好ましい。
 次いで、乾燥後のハニカム成形体に対して焼成を行うことで柱状のハニカム構造体を製造可能である。焼成の前にバインダを除去するための脱脂工程を行うこともできる。例えば、ハニカム成形体の材質がチタン酸バリウムを主成分とする場合、焼成温度は、1100~1400℃が好ましい。また、焼成時間は、1~4時間程度とすることが好ましい。
 脱脂工程を実施する際の雰囲気としては、例えば大気雰囲気、不活性雰囲気、減圧雰囲気とすることができる。これらの中でも、不活性雰囲気かつ減圧雰囲気とすることが好ましい。焼成炉としては、特に限定されないが、電気炉、ガス炉などを用いることができる。
 このようにして得られたハニカム構造体の第1端面13a及び第2端面13bに、電極20を形成する。例えば、電極20の電極層21は、スパッタリング、蒸着、電解析出、化学析出のような金属析出法によって形成することができる。また、電極層21は、電極ペーストを塗布した後、焼き付けることによって形成することもできる。さらに、電極層21は、溶射によって形成することもできる。電極層21は単層であってよいが、組成の異なる複数層であってもよい。上記の方法で電極層21を形成するとき、電極層21の厚みが過度に大きくならないように設定すれば、セル14を塞がないようにすることができる。例えば、電極層21の厚みは、ペーストの焼付けでは5~30μm程度、スパッタリング及び蒸着のような乾式めっきでは100~1000nm程度、溶射では10~100μm程度、電解析出及び化学析出のような湿式めっきでは5~30μm程度とすることが好ましい。
 電極層21上に電極板22を設ける場合、電極層21上に電極板22を配置して接続する。電極層21と電極板22との接続方法としては、上述の方法を用いることができる。
 次に、電極20にコネクタ30を接続する。電極20とコネクタ30との接続方法としては、上述の方法を用いることができる。
(1-5.ヒーターエレメント100の使用方法)
 本発明の実施形態に係るヒーターエレメント100は、例えば、コネクタ30から一対の電極20を介して電圧を印加することでハニカム構造体10を発熱させることができる。印加電圧としては、急速加熱の観点から、200V以上の電圧を印加することが好ましく、250V以上の電圧を印加することがより好ましい。
 ヒーターエレメント100が、電圧の印加によって発熱しているときに、セル14にガスを流すことで、ガスを加熱することができる。セル14に流入するガスの温度としては、例えば-60℃~20℃とすることができ、典型的には-10℃~20℃とすることができる。
 本発明の実施形態に係るヒーターエレメント100は、PTC素子をアルミニウムフィンと一体化した既存のヒーターエレメントよりも単純な構造を有するとともに、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能である。また、既存のヒーターエレメントは、PTC素子がガスと直接接しないため、ガスの昇温速度(昇温時間)が十分でないが、本発明の実施形態に係るヒーターエレメント100は、外周壁11及び隔壁12がPTC特性を有する材料で構成されたハニカム構造体10がガスと直接接するため、ガスの昇温速度を高めることができる。さらに、本発明の実施形態に係るヒーターエレメント100は、既存のヒーターエレメントに比べて電力消費量も少ない。
(2.ヒーターユニット)
 本発明の実施形態に係るヒーターユニットは、車両の車室暖房用のヒーターユニットとして好適に利用可能である。特に、本発明の実施形態に係るヒーターユニットでは、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能である。したがって、既存のヒーターエレメントの代わりに上述のヒーターエレメント100を用いることができる。
 図5は、ヒーターエレメントの第1端面側からみた本発明の実施形態に係るヒーターユニットの模式的な正面図である。
 図5に示されるように、本発明の実施形態に係るヒーターユニット200は、ヒーターエレメント100を2個以上含む。また、このヒーターユニット200では、第1端面13a及び第2端面13bの長辺を含む、ハニカム構造体10の外周壁11の表面同士が対向するようにヒーターエレメント100が積層配列されている。このような構成とすることにより、既存のヒーターユニットの配線や保持具など部品の設計を大幅に変更することなく、ヒーターユニット200を作製することができる。
 本発明の実施形態に係るヒーターユニット200は、筐体(ハウジング部材)110を更に備えることができる。
 筐体110の材質としては、特に限定されず、金属、樹脂などが挙げられる。その中でも筐体110の材質は樹脂であることが好ましい。樹脂製の筐体とすることにより、接地しなくても感電を抑制することができる。
 筐体110の形状及びサイズとしては、特に限定されず、既存のヒーターユニットと同様にすることができる。
 本発明の実施形態に係るヒーターユニット200は、積層配列されるヒーターエレメント100の間に配置される絶縁材120を更に備えることができる。このような構成とすることにより、複数のヒーターエレメント100の間の電気的なショートを抑制することができる。
 絶縁材120としては、アルミナやセラミックスなどの絶縁材料から形成された板材、マットやクロスなどを用いることができる。
(3.ヒーターシステム)
 本発明の実施形態に係るヒーターシステムは、車両の車室暖房用のヒーターシステムとして好適に利用可能である。特に、本発明の実施形態に係るヒーターシステムでは、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能である。
 図6は、本発明の実施形態に係るヒーターシステムの構成例を示す模式図である。
 図6に示されるように、本発明の実施形態に係るヒーターシステム300は、本発明の実施形態に係るヒーターユニット200、外気導入部又は車室310とヒーターユニット200の流入口301とを連通する流入配管320a,320b、ヒーターユニット200に電圧を印加するためのバッテリー330、及びヒーターユニット200の流出口302と車室310とを連通する流出配管325を備える。
 ヒーターユニット200は、例えば、バッテリー330と電線340で接続し、その途中の電源スイッチをONにすることでヒーターユニット200を通電発熱するように構成することが可能である。
 ヒーターユニット200の上流側には蒸気圧縮ヒートポンプ350を設置することができる。ヒーターシステム300において、蒸気圧縮ヒートポンプ350が主暖房装置として構成されており、ヒーターユニット200が補助ヒーターとして構成されている。蒸気圧縮ヒートポンプ350は、冷房時に外部から熱を吸収して冷媒を蒸発させる働きをする蒸発器351、及び暖房時に冷媒ガスを液化させて熱を外部へ放出する働きをする凝縮器352を含む熱交換器を備えることができる。なお、蒸気圧縮ヒートポンプ350としては、特に限定されず、当該技術分野において公知のものを用いることができる。
 ヒーターユニット200の上流側及び/又は下流側には送風機360を設置することができる。高電圧の部品をできるだけ車室310から離して配置して安全を確保する観点から、送風機360はヒーターユニット200の上流側に設置することが好ましい。送風機360を駆動すると、車室310内又は車室310外から空気が流入配管320a,320bを通ってヒーターユニット200に流入する。発熱中のヒーターユニット200を通過する間に空気は加熱される。加熱された空気は、ヒーターユニット200から流出し、流出配管325を通って車室310内に送られる。流出配管325の出口は車室310内でも特に暖房効果が高くなるよう乗員の足元近傍に配置してもよいし、座席シート内へ配管出口を配置して座席シートを内側から温めるようにしてもよいし、ウィンドウ近傍に配置してウィンドウの曇りを抑制する効果を合わせ持たせてもよい。
 流入配管320aと流入配管320bとは途中で合流する。流入配管320a及び流入配管320bには、合流地点よりも上流側において、バルブ321a,321bをそれぞれ設置することができる。バルブ321a,321bの開閉を制御することで、外気をヒーターユニット200に導入するモードと、車室310内の空気をヒーターユニット200に導入するモードの間で切り替えることができる。例えば、バルブ321aを開き、バルブ321bを閉じると、外気をヒーターユニット200に導入するモードとなる。バルブ321a及びバルブ321bの両者を開いて、外気及び車室310内の空気を同時にヒーターユニット200に導入することも可能である。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
 (実施例1)
 セラミックス原料に、バインダ、分散剤、可塑剤及び水を加えて混ぜ合わせ、混錬して坏土を調製した。セラミックス原料としては、焼成後に、Baに対してLaが0.1%置換されたチタン酸バリウムとなるように、BaCO3粉末、TiO2粉末及びLa(NO33・6H2O粉末を混合したものを用いた。バインダとしてはメチルセルロースを用い、セラミックス原料100質量部に対して6質量部配合した。分散剤としてはカリウム含有アルキルホスフェートを用い、セラミックス原料100質量部に対して0.5質量部配合した。可塑剤としてはエーテルエステル化合物及びアルカンジオールを用い、エーテルエステル化合物はセラミックス原料100質量部に対して0.5質量部、アルカンジオールはセラミックス原料100質量部に対して1質量部それぞれ配合した。
 次に、焼成後に隔壁厚みが0.100mm、セル密度が62セル/cm2及びセルピッチが1.27mmとなり、セルが延びる方向に直交する断面が30mm×34mmの矩形状であり且つセルが延びる方向の長さが14mmの角柱状のハニカムセグメントとなるように押出成形を行ってハニカム成形体を得た。
 次に、ハニカム成形体を乾燥させ、脱脂処理後に、大気中、1400℃で2時間焼成することにより、ハニカムセグメントを得た。
 次に、上記のハニカムセグメントを5個準備し、ハニカムセグメントの側面に接合材を塗布して接合することにより、図4に示されるようなハニカム接合体を得た。ハニカム接合体は、セルが延びる方向に直交する断面が30mm×175mmの矩形状であり且つセルが延びる方向の長さが14mmとした。接合材としては、セラミックス材料に、水などの溶媒を加えてペースト状にしたものを用いた。このハニカム接合体の端面の面積は、52.5cm2であった。
 次に、ハニカム接合体の第1端面及び第2端面上にAl-Ni電極用ペーストを塗布した後、銀電極用ペーストを塗布して700℃で焼き付けることにより、Al-Ni電極層及び銀電極層を形成した。
 次に、ハニカム接合体の外周側の外周壁の表面に形成された銀電極層上に、カーボンシート及び銅電極板を順次配置して接合した。銅電極板は、図1及び2に示される構造と同様に、各電極層が設けられた外周壁以外の部分(各電極層が設けられた隔壁の表面やセル)を塞がないような開口部を形成し、ハニカム接合体の第1端面及び第2端面の、一方の短辺側から外部に向かって同方向に伸びる延伸部を設けた。また、カーボンシートは、銀電極層と銅電極板との間に配置した。
 次に、図1及び2に示される構造と同様に、銅電極板の延伸部にリン青銅製のコネクタを接続し、ヒーターエレメントを得た。
 次に、図5に示される構造と同様に、上記のヒーターエレメントを4個積層配列し、筐体に収容してヒーターユニットを得た。積層配列したヒーターエレメントの間には、アルミナファイバ製マット(絶縁材)を配置した。
 上記のヒーターユニットを市販車のHVAC(Heating Ventilation and Air Conditioning)に組み込み、200Vの一定電圧制御で、30A以下の電流に制限し、6m/秒のガス流速下でヒーターユニットの通電加熱試験を行った。
 その結果、HVACの吹出口のガス温度は、通電加熱してから6秒で50℃に達し、60秒後には88℃まで上昇した。このときの電力は2.8kWであった。また、通電開始から30秒後の消費エネルギーは90kJであった。
 (実施例2)
 実施例1と同様の坏土を用い、焼成後に隔壁厚みが0.125mm、セル密度が62セル/cm2及びセルピッチが1.27mmとなり、セルが延びる方向に直交する断面が30mm×175mmの矩形状であり且つセルが延びる方向の長さが14mmの角柱状となるように押出成形を行ってハニカム成形体を得た。
 次に、ハニカム成形体を乾燥させ、脱脂処理後に、大気中、1400℃で2時間焼成することにより、ハニカム構造体を得た。このハニカム構造体の端面の面積は、52.5cm2であった。
 次に、実施例1と同様の条件で、ハニカム構造体の第1端面及び第2端面上にAl-Ni電極層及び銀電極層を形成した後、銀電極層上にカーボンシート及び銅電極板を順次配置して接合し、銅電極板の延伸部にコネクタを接続してヒーターエレメントを得た。
 次に、実施例1と同様の条件で、上記のヒーターエレメントを4個積層配列し、筐体に収容してヒーターユニットを得た。
 上記のヒーターユニットを市販車のHVACに組み込み、250Vの一定電圧制御で、30A以下に電流を制限し、6m/秒のガス流速下でヒーターユニットの通電加熱試験を行った。
 その結果、HVACの吹出口のガス温度は、通電加熱してから8秒で60℃に達し、60秒後には100℃まで上昇した。このときの電力は3.4kWであった。また、通電開始から30秒後の消費エネルギーは108kJであった。
 (比較例1)
 図7に示されるような、PTC素子500をアルミニウムフィン510と一体化したヒーターエレメントが積層配列された従来のヒーターユニットを準備した。なお、図7は、ヒーターエレメントの模式的な平面図である。
 PTC素子500は、29mm×8mm×2mmのサイズとし、6個を一列に配置するとともに、フレーム、絶縁板、導電板などの部材と組み合わせることにより、ヒーター本体520の内部に収容した。また、ヒーター本体520にはコネクタ30を設けた。さらに、8個のヒーター本体520は、筐体110内に収容し、各ヒーター本体520の間にアルミニウムフィン510が配置されるように構成した。
 なお、PTC素子500は、49mol%のTiO2、32mol%のBaO、9mol%のPbO、8mol%のCaO、1mol%のSrO及び1mol%のSiO2を含む材料から構成した。
 上記の従来のヒーターユニットを市販車のHVACに組み込み、300Vの一定電圧制御で、30A以下に電流を制限し、6m/秒のガス流速でヒーターユニットの通電加熱試験を行った。
 その結果、HVACの吹出口のガス温度は、通電加熱してから11秒で50℃に達し、60秒後には88℃まで上昇した。このときの電力は2.8kWであった。また、通電開始から30秒後の消費エネルギーは123kJであった。
 ここで、実施例1及び比較例1の通電試験結果を比較したグラフを図8に示す。また、実施例1及び実施例2の通電試験結果を比較したグラフを図9に示す。図8及び9において、L1は実施例1の吹出口のガス温度、L2は実施例1の電力、L3は比較例1の吹出口のガス温度、L4は比較例1の電力、L5は実施例2の吹出口のガス温度、L6は実施例2の電力を表す。
 図8に示されるように、実施例1のヒーターユニットは、比較例1のヒーターユニットに比べて、ガス温度の昇温時間を短縮することができた(L1とL3との比較)。例えば、通電開始から50℃のガス温度となるまでの時間は、実施例1が6秒であったのに対して比較例1が11秒であり、ガス温度の昇温時間を40%短縮することができた。また、実施例1のヒーターユニットは、比較例1のヒーターユニットに比べて、通電中の最大電力を低減することができた(L2とL4との比較)。例えば、通電中の最大電力は、実施例1が5.8kWであったのに対して比較例1が7.6kWであり、最大電力を25%低減することができた。
 図9に示されるように、実施例2のヒーターユニットは、実施例1のヒーターユニットに比べて、ガス温度の昇温時間を更に短縮することができるとともに、60秒後のガスの到達温度も高かった(L1とL5との比較)。その一方で、通電中の最大電力は、実施例2のヒーターユニットに比べて実施例1のヒーターユニットの方が低かった(L2とL6との比較)。
 以上の結果から、本発明によれば、既存のヒーターエレメントよりも単純な構造を有するとともに、既存のヒーターユニットの配線や保持具などの部品の設計変更によってヒーターユニットが大型化することを抑制可能な車室暖房用ヒーターエレメントを提供することができる。また、本発明によれば、この車室暖房用ヒーターエレメントを用いた車室暖房用ヒーターユニット及び車室暖房用ヒーターシステムを提供することができる。
 10 ハニカム構造体
 11 外周壁
 12 隔壁
 13a 第1端面
 13b 第2端面
 14 セル
 15 短辺
 16 長辺
 17 ハニカム接合体
 18 ハニカムセグメント
 19 接合層
 20 電極
 30 コネクタ
 100 ヒーターエレメント
 110 筐体
 120 絶縁材
 200 ヒーターユニット
 300 ヒーターシステム
 301 流入口
 302 流出口
 310 車室
 320a,320b 流入配管
 325 流出配管
 330 バッテリー
 340 電線
 350 蒸気圧縮ヒートポンプ
 351 蒸発器
 352 凝縮器
 360 送風機
 500 PTC素子
 510 アルミニウムフィン
 520 ヒーター本体

Claims (11)

  1.  外周壁と、前記外周壁の内側に配設され、第1端面から第2端面まで流路を形成する複数のセルを区画形成する隔壁とを有し、前記外周壁及び前記隔壁がPTC特性を有する材料で構成されたハニカム構造体と、
     前記第1端面及び前記第2端面に設けられた一対の電極と
    を備える車室暖房用ヒーターエレメントであって、
     前記ハニカム構造体は、前記第1端面及び前記第2端面が矩形状であり、
     前記車室暖房用ヒーターエレメントは、前記第1端面及び前記第2端面のそれぞれの、一方の短辺側から前記電極に接続された一対のコネクタを更に備える、車室暖房用ヒーターエレメント。
  2.  前記第1端面及び前記第2端面は、短辺の長さと長辺の長さとの比が1:2~1:10である、請求項1に記載の車室暖房用ヒーターエレメント。
  3.  前記ハニカム構造体は、複数のハニカムセグメントと、前記複数のハニカムセグメントの間を接合する接合層とを有するハニカム接合体である、請求項1又は2に記載の車室暖房用ヒーターエレメント。
  4.  前記一対の電極が、前記第1端面及び前記第2端面のそれぞれの、一方の短辺側から外部に向かって同方向に伸びる延伸部を有し、前記延伸部と前記コネクタとが接続されている、請求項1~3のいずれか一項に記載の車室暖房用ヒーターエレメント。
  5.  前記ハニカム構造体は、前記隔壁の厚さが0.125mm以下、セル密度が93セル/cm2以下、セルピッチが1.0mm以上である、請求項1~4のいずれか一項に記載の車室暖房用ヒーターエレメント。
  6.  前記外周壁及び前記隔壁はチタン酸バリウムを主成分とし、鉛を実質的に含まない材料で構成されている、請求項1~5のいずれか一項に記載の車室暖房用ヒーターエレメント。
  7.  前記一対の電極は、前記第1端面及び前記第2端面上に設けられた電極層と、前記電極層上に設けられた電極板を含む、請求項1~6のいずれか一項に記載の車室暖房用ヒーターエレメント。
  8.  前記電極板は、前記第1端面及び前記第2端面のそれぞれの、一方の短辺側から外部に向かって同方向に伸びる延伸部を有し、前記延伸部が前記コネクタと接続されている、請求項7に記載の車室暖房用ヒーターエレメント。
  9.  請求項1~8のいずれか一項に記載の車室暖房用ヒーターエレメントを2個以上含む車室暖房用ヒーターユニットであって、
     前記第1端面及び前記第2端面の長辺を含む、前記ハニカム構造体の前記外周壁の表面同士が対向するように前記車室暖房用ヒーターエレメントが積層配列されている車室暖房用ヒーターユニット。
  10.  積層配列される前記車室暖房用ヒーターエレメントの間に絶縁材が配置されている、請求項9に記載の車室暖房用ヒーターユニット。
  11.  請求項9又は10に記載の車室暖房用ヒーターユニット、
     外気導入部又は車室と前記車室暖房用ヒーターユニットの流入口とを連通する流入配管、
     前記車室暖房用ヒーターユニットに電圧を印加するためのバッテリー、及び
     前記車室暖房用ヒーターユニットの流出口と前記車室とを連通する流出配管
    を備える車室暖房用ヒーターシステム。
PCT/JP2021/035411 2020-10-27 2021-09-27 車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム WO2022091668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022558931A JPWO2022091668A1 (ja) 2020-10-27 2021-09-27
DE112021004997.6T DE112021004997T5 (de) 2020-10-27 2021-09-27 Heizelement zum erwärmen eines fahrzeuginnenraums, heizeinheit zum erwärmen eines fahrzeuginnenraums und heizsystem zum erwärmen eines fahrzeuginnenraums
CN202180071937.6A CN116508395A (zh) 2020-10-27 2021-09-27 车厢供暖用加热器构件、车厢供暖用加热器单元及车厢供暖用加热器系统
US18/307,880 US20230382188A1 (en) 2020-10-27 2023-04-27 Heater element for heating vehicle interior, heater unit for heating vehicle interior, and heater system for heating vehicle interior

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020179951 2020-10-27
JP2020-179951 2020-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/307,880 Continuation US20230382188A1 (en) 2020-10-27 2023-04-27 Heater element for heating vehicle interior, heater unit for heating vehicle interior, and heater system for heating vehicle interior

Publications (1)

Publication Number Publication Date
WO2022091668A1 true WO2022091668A1 (ja) 2022-05-05

Family

ID=81383993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035411 WO2022091668A1 (ja) 2020-10-27 2021-09-27 車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム

Country Status (5)

Country Link
US (1) US20230382188A1 (ja)
JP (1) JPWO2022091668A1 (ja)
CN (1) CN116508395A (ja)
DE (1) DE112021004997T5 (ja)
WO (1) WO2022091668A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341787A (ja) * 1991-05-17 1992-11-27 Sharp Corp 暖房機を兼ねる空気清浄機
JPH08150323A (ja) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd 脱臭装置
JP2014054934A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
WO2017208659A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 電気ヒータ、および電気ヒータを備える空調装置
WO2020036067A1 (ja) * 2018-08-13 2020-02-20 日本碍子株式会社 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341787A (ja) * 1991-05-17 1992-11-27 Sharp Corp 暖房機を兼ねる空気清浄機
JPH08150323A (ja) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd 脱臭装置
JP2014054934A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
WO2017208659A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 電気ヒータ、および電気ヒータを備える空調装置
WO2020036067A1 (ja) * 2018-08-13 2020-02-20 日本碍子株式会社 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター

Also Published As

Publication number Publication date
JPWO2022091668A1 (ja) 2022-05-05
US20230382188A1 (en) 2023-11-30
CN116508395A (zh) 2023-07-28
DE112021004997T5 (de) 2023-07-20

Similar Documents

Publication Publication Date Title
US20210041141A1 (en) Heater element for vehicle compartment heating and method for using same, and heater for vehicle compartment heating
JP2014054934A (ja) ヒーター
CN114763308B (zh) 陶瓷体及其制造方法、加热器构件、加热器单元、加热器系统及净化系统
US20220371405A1 (en) Heater element for heating vehicle interior, and heater for heating vehicle interior
WO2022091668A1 (ja) 車室暖房用ヒーターエレメント、車室暖房用ヒーターユニット及び車室暖房用ヒーターシステム
US20230129722A1 (en) Heater element with functional material-containing layer and vehicle compartment purification system
JP7335994B2 (ja) ヒーターエレメント及びその使用方法
WO2022270070A1 (ja) ヒーターエレメント、ヒーターユニット及び車室暖房用ヒーターシステム
JP7393928B2 (ja) セラミックス体及びヒーターエレメント
JP7034047B2 (ja) 車室暖房用ヒーターエレメント及びその使用方法、並びに車室暖房用ヒーター
WO2022153594A1 (ja) 車室暖房用のヒーターエレメント、ヒーターユニット及びヒーターシステム、並びに車室浄化用のヒーターエレメント
JP6093130B2 (ja) ヒーター
US20230309195A1 (en) Ceramic body, honeycomb structure, method for producing ceramic body and heater element
WO2022264514A1 (ja) 機能材含有層付ヒーターエレメント、機能材含有層付ヒーターユニット、車室浄化システム及びハニカム構造体
JP2022109861A (ja) セラミックス体及びその製造方法、ヒーターエレメント、ヒーターユニット、ヒーターシステム並びに浄化システム
WO2023074202A1 (ja) ヒーターエレメント及び車室浄化システム
WO2024090131A1 (ja) 除湿デバイス、除湿デバイス用ヒーターエレメント及び車室除湿システム
JP2020034198A (ja) ヒートポンプ、暖房システム及び冷房システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558931

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180071937.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21885787

Country of ref document: EP

Kind code of ref document: A1