WO2022268128A1 - 激光器及激光投影设备 - Google Patents

激光器及激光投影设备 Download PDF

Info

Publication number
WO2022268128A1
WO2022268128A1 PCT/CN2022/100506 CN2022100506W WO2022268128A1 WO 2022268128 A1 WO2022268128 A1 WO 2022268128A1 CN 2022100506 W CN2022100506 W CN 2022100506W WO 2022268128 A1 WO2022268128 A1 WO 2022268128A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frame body
laser
bottom plate
sealing layer
Prior art date
Application number
PCT/CN2022/100506
Other languages
English (en)
French (fr)
Inventor
李建军
张昕
田新团
田有良
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110693801.0A external-priority patent/CN113422287A/zh
Priority claimed from CN202110693475.3A external-priority patent/CN113451875B/zh
Priority claimed from CN202111057909.7A external-priority patent/CN113764973A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280044501.2A priority Critical patent/CN117561656A/zh
Publication of WO2022268128A1 publication Critical patent/WO2022268128A1/zh
Priority to US18/391,280 priority patent/US20240128709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present disclosure relates to the field of optoelectronic technology, in particular to a laser and laser projection equipment.
  • Lasers have been used more and more widely because of their pure and spectrally stable light quality.
  • Lasers can be used in laser projection devices.
  • Laser projection equipment is a projection display device that uses a laser light source as a display light source and cooperates with projection display technology for imaging, such as laser TVs, laser projectors, etc.
  • the laser includes a tube shell, an upper cover assembly and a plurality of light emitting assemblies.
  • the tube case includes a bottom plate and a frame.
  • the frame body is arranged on the bottom plate and forms an open accommodating space surrounded by the bottom plate; the frame body includes a first folded edge and a frame body body connected to each other, and the first folded edge is opposite to each other.
  • the frame body is bent, and the first edge is fixedly connected to the bottom plate.
  • the plurality of light emitting components are located in the accommodating space and arranged on the bottom plate.
  • the upper cover assembly is fixed to the tube case and closes the accommodating space.
  • FIG. 1 is an exploded structure diagram of a laser according to some embodiments
  • Figure 2 is a cross-sectional view of the assembled laser shown in Figure 1;
  • FIG. 3A is a partially enlarged view of part A in FIG. 2;
  • FIG. 3B is another partially enlarged view of part A according to some embodiments.
  • FIG. 3C is another partially enlarged view of part A according to some embodiments.
  • Fig. 4 is a partially enlarged view of part B in Fig. 2;
  • FIG. 5 is a structural diagram of another laser according to some embodiments.
  • Figure 6 is a block diagram of another laser according to some embodiments.
  • Figure 7 is an exploded view of another laser according to some embodiments.
  • Fig. 8 is a partially enlarged view of part D in Fig. 6;
  • FIG. 9 is a structural diagram of another laser according to some embodiments.
  • FIG. 10 is a structural diagram of a laser projection device according to some embodiments.
  • Fig. 11 is an optical path diagram of a light source, an optical machine and a lens in a laser projection device according to some embodiments;
  • Fig. 12 is another optical path diagram of a light source, an optical machine and a lens in a laser projection device according to some embodiments;
  • FIG. 13 is an arrangement diagram of tiny mirrors in a digital micromirror device according to some embodiments.
  • Fig. 14 is the position figure that a tiny reflector mirror swings in the digital micromirror device among Fig. 13;
  • Fig. 15 is a schematic diagram of the operation of the tiny mirror according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • At least one of A, B, and C has the same meaning as "at least one of A, B, or C" and both include the following combinations of A, B, and C: A only, B only, C only, A and B's A combination, a combination of A and C, a combination of B and C, and a combination of A, B, and C.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated. Thus, example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. The regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the example embodiments.
  • the laser projection device 1 includes a housing 400 (only part of the housing is shown in FIG. 200, and lens 300.
  • the light source 100 is configured to provide an illumination beam (laser beam).
  • the optical machine 200 is configured to use an image signal to modulate the illumination beam provided by the light source 100 to obtain a projection beam.
  • the lens 300 is configured to project the projection beam onto the projection screen 20 to form an image.
  • the light source 100, the light engine 200 and the lens 300 are connected in sequence along the beam propagation direction, and each is wrapped by a corresponding housing.
  • the housings of the light source 100 , the light engine 200 and the lens 300 support the corresponding optical components and make the optical components meet certain sealing or airtight requirements.
  • the light source 100 is hermetically sealed through its corresponding housing, which can better improve the problem of light attenuation of the light source 100 .
  • one end of the light engine 200 is connected to the light source 100 , and the other end is connected to the lens 300 .
  • the light source 100 and the optical machine 200 are arranged along the outgoing direction of the illumination beam of the laser projection device 1 (refer to the M direction shown in FIG. 10 ), and the optical machine 200 and the lens 300 are arranged along the outgoing direction of the projection beam of the laser projection device 1 (Refer to the N direction shown in FIG. 10 ) setting, the M direction is substantially perpendicular to the N direction. That is, the light source 100, the optical machine 200 and the lens 300 are connected in an "L" shape.
  • this connection structure can adapt to the optical path characteristics of the reflective light valve in the optical machine 200, and on the other hand, it is also beneficial to shorten one dimension.
  • the length of the light path in the direction is beneficial to the structural arrangement of the projection host. For example, when the light source 100, the light engine 200 and the lens 300 are arranged along one dimension direction (for example, the M direction), the length of the optical path in this direction will be very long, which is not conducive to the structural arrangement of the projection host.
  • the light source 100 can sequentially provide the three primary colors of light (other colors can also be added on the basis of the three primary colors of light). white light formed.
  • the light source 100 can also output three primary colors of light at the same time, continuously emitting white light.
  • the light source 100 includes a laser 10 (as shown in FIGS. 1 to 9 ), which can emit laser light of one color, such as red laser, blue laser or green laser.
  • the optical machine 200 includes: a light guide 210, a lens assembly 220, a mirror 230, a digital micromirror device (Digital Micromirror Device, DMD) 240 and a prism assembly 250.
  • the light guide 210 can receive the illumination beam provided by the light source 100 and homogenize the illumination beam.
  • the exit of the light pipe 210 may be rectangular, so as to have a shaping effect on the light spot.
  • the lens assembly 220 can firstly collimate the illumination beam and then converge it to the reflector 230 .
  • the mirror 230 can reflect the illumination beam to the prism assembly 250 .
  • the prism assembly 250 reflects the illumination beam to the digital micromirror device 240 , and the digital micromirror device 240 modulates the illumination beam to obtain a projection beam, and reflects the projection beam to the lens 300 .
  • the digital micromirror device 240 is the core component, and its function is to use the image signal to modulate the illumination beam provided by the light source 100, that is, to control the illumination beam to display different colors and brightness for different pixels of the image to be displayed, so as to Finally, an optical image is formed, so the digital micromirror device 240 is also called a light modulation device or a light valve. According to whether the light modulation device (or light valve) transmits or reflects the illumination beam, the light modulation device (or light valve) can be divided into a transmissive light modulation device (or light valve) or a reflective light modulation device (or light valve). ). For example, the digital micromirror device 240 shown in FIG.
  • the optical machine 200 reflects the illumination light beam, that is, it is a reflective light modulation device.
  • the liquid crystal light valve transmits the illumination beam, so it is a transmissive light modulation device.
  • the optical machine 200 can be classified into a single-chip system, a two-chip system or a three-chip system.
  • the optical machine 200 can be called a single-chip system.
  • three digital micromirror devices 240 are used, the optical machine 200 can be called a three-chip system.
  • the digital micromirror device 240 includes thousands of tiny mirror mirrors 2401 that can be individually driven to rotate. These tiny mirror mirrors 2401 are arranged in an array, and each tiny mirror mirror 2401 corresponds to of a pixel. As shown in FIG. 14 , each tiny mirror 2401 is equivalent to a digital switch, which can swing within the range of ⁇ 12° or ⁇ 17° under the action of an external electric field.
  • the light reflected by the tiny mirror 2401 at a negative deflection angle is called OFF light. absorbed by the light absorbing unit 500.
  • the light reflected by the tiny reflective lens 2401 at a positive deflection angle is called ON light.
  • the ON light is the effective light beam that the tiny reflective lens 2401 on the surface of the digital micromirror device 240 receives the illumination beam and is reflected to the lens 300. projection imaging.
  • the open state of the micro-reflector 2401 is the state where the micro-reflector 2401 is and can be maintained when the illumination light beam emitted by the light source 100 is reflected by the micro-reflector 2401 and can enter the lens 300, that is, the micro-reflector 2401 is in a positive deflection angle. state.
  • the closed state of the tiny reflective mirror 2401 is the state where the tiny reflective mirror 2401 is and can be maintained when the illumination light beam emitted by the light source 100 is reflected by the tiny reflective mirror 2401 and does not enter the lens 300, that is, the tiny reflective mirror 2401 is in a negative deflection angle. state.
  • the state at +12° is the on state
  • the state at -12° is the off state
  • the deflection between -12° and +12° The angle is not used in practice, and the actual working state of the tiny mirror 2401 is only on state and off state.
  • the state at +17° is the on state
  • the state at -17° is the off state.
  • part or all of the tiny mirrors 2401 will be switched once between the on state and the off state, so as to realize the display in one frame of image according to the duration time of the tiny mirrors 2401 respectively in the on state and the off state.
  • the gray scale of each pixel of For example, when a pixel has 256 gray scales from 0 to 255, the tiny mirrors corresponding to gray scale 0 are in the off state during the entire display period of one frame of image, and the tiny mirrors corresponding to gray scale 255 are in the off state during one frame.
  • the whole display period of the image is in the on state, and the tiny reflective mirror corresponding to the gray scale 127 is in the on state for half of the time in the display period of a frame of image, and the other half of the time is in the off state. Therefore, by controlling the state of each tiny mirror in the digital micromirror device 240 in the display period of a frame image and the maintenance time of each state through the image signal, the brightness (gray scale) of the pixel corresponding to the tiny mirror 2401 can be controlled. , to achieve the purpose of modulating the illumination beam projected to the digital micromirror device 240 .
  • the light pipe 210 at the front end of the digital micromirror device 240, the lens assembly 220 and the reflector 230 form an illumination light path, and the illumination light beam emitted by the light source 100 forms a light beam that meets the requirements of the digital micromirror device 240 after passing through the illumination light path. Beam size and angle of incidence.
  • the lens 300 includes a multi-lens combination, which is usually divided into groups, such as three-stage front group, middle group and rear group, or two-stage front group and rear group.
  • the front group is the lens group close to the light-emitting side of the laser projection device 1 (that is, along the N direction, the lens 300 is away from the side of the optical machine 200), and the rear group is close to the light-emitting side of the optical machine 200 (that is, along the N direction, the lens 300 is away from the lens group).
  • the lens 300 may be a zoom lens, or a fixed focus adjustable focus lens, or a fixed focus lens.
  • FIG. 1 is an exploded view of a laser according to some embodiments.
  • the laser 10 includes: a base plate 101 , a frame body 102 , a plurality of light emitting components 103 (not shown in FIG. 1 , refer to FIG. 2 or FIG. 5 ), a cover plate 104 and a light-transmitting sealing layer 105 .
  • the frame body 102 is disposed on the bottom plate 101 and forms an accommodating space.
  • a plurality of light-emitting components 103 are all located in the containing space and disposed on the base plate 101 .
  • the outer edge of the cover plate 104 is fixedly connected to the surface of the frame body 102 away from the bottom plate 101 , and the inner edge of the cover plate 104 is fixedly connected to the light-transmitting sealing layer 105 .
  • the laser 10 also includes a plurality of conductive pins 106 electrically connected to the plurality of light-emitting components 103.
  • the side wall of the frame body 102 has a plurality of burring holes K, and the conductive pins 106 protrude from a corresponding burring hole K and connect with the The external power supply is electrically connected, so that the light-emitting component 103 is excited to emit laser light through the external power supply.
  • the laser light is emitted through the light-transmitting sealing layer 105 to realize the light emission of the laser 10 .
  • FIG. 2 is a cross-sectional view of the assembled laser shown in FIG. 1 .
  • the bottom plate 101 is a plate-shaped structure, including a middle portion 1011 and a peripheral portion 1012 .
  • the middle portion 1011 has a greater thickness than the peripheral portion 1012 .
  • the middle part 1011 is configured to carry a plurality of light emitting components 103
  • the peripheral part 1012 is configured to carry the frame body 102 .
  • the surface of the bottom plate 101 carrying the plurality of light-emitting components 103 and the frame body 102 is an inner surface
  • the opposite surface of the bottom plate 101 is an outer surface. The outer surface is used for heat conduction in contact with the heat dissipation structure.
  • the bottom plate 101 is made of a material with good thermal conductivity, such as oxygen-free copper.
  • Oxygen-free copper has a large thermal conductivity, so that the heat generated by the multiple light-emitting components 103 arranged on the base plate 101 during operation can be quickly transferred to the heat dissipation structure outside the laser 10, and then dissipate heat quickly, avoiding heat accumulation.
  • the light emitting component 103 causes damage.
  • the frame body 102 is in the shape of a thin plate, and is fixedly connected with the peripheral portion 1012 of the base plate 101 . As shown in FIG. 1 , the frame body 102 is in the shape of a square ring. In an alternative embodiment, the frame body 102 may also be in the shape of a ring, a pentagonal ring, or other ring shapes. No matter what the shape of the frame body 102 is, it is used to enclose with the bottom plate 101 to form an accommodating space.
  • the material of the frame body 102 may include kovar alloy. For example, iron-nickel-cobalt alloy or iron-nickel alloy.
  • FIG. 3A is a partially enlarged view of part A in FIG. 2 .
  • the frame body 102 includes a first folded edge 1021 , a frame body body 1022 and a second folded edge 1023 connected in sequence. Both the first folded edge 1021 and the second folded edge 1023 are bent relative to the frame body 1022 .
  • the lower part of the frame body 102 is folded toward the inside of the accommodating space to form a first edge 1021
  • the upper part of the frame body 102 is folded toward the outside of the accommodating space to form a second edge 1023 .
  • the second folded edge 1023 is folded to the outside of the accommodating space, it can avoid occupying the accommodating space, and ensure that a plurality of light-emitting components 103 have sufficient installation space.
  • the lower part of the frame body 102 can also be folded outward to form the first folded edge 1021
  • the lower part of the frame body 102 can also be folded inward to form the second folded edge 1023 . Both the first folded edge 1021 and the second folded edge 1023 can be turned inward, or both can be turned outward.
  • the frame body 102 is integrally formed, and the frame body 102 is a sheet metal part. In some embodiments, the frame body 102 is formed by a stamping process.
  • a board is stamped so that the board has bends, depressions, protrusions or flanges to obtain the frame body 102 .
  • one side of the plate is bent to form a first fold 1021, and the other opposite side of the plate is bent to form a second fold 1023; then the plate is bent into a ring shape,
  • the frame body 102 is obtained by folding the first folded edge 1021 to the inside of the ring structure and the second folded edge 1023 to the outside of the ring structure.
  • the frame body 1022 located between the first folded edge 1021 and the second folded edge 1023 can also be punched to form a folded edge Hole K (not shown in Figure 3A, see Figure 1 or Figure 2).
  • the present disclosure does not limit the manufacturing sequence of the first hem 1021 , the second hem 1023 and the hem hole K.
  • the flanging hole K can be made first, and the second flanging 1023 can also be made first.
  • each position of the frame body 102 may be the same or substantially the same; for example, the thicknesses of each position of the first folded edge 1021 , the frame body body 1022 and the second folded edge 1023 of the frame body 102 are approximately the same.
  • the thickness of the frame body 102 ranges from 0.1 mm to 1 mm, which can make the frame body have greater mechanical strength and meet stamping requirements.
  • the thickness of the frame body 102 is 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1 mm.
  • both the annular surfaces of the first folded edge 1021 and the second folded edge 1023 may be parallel to the inner surface of the bottom plate 101 .
  • the first folded edge 1021 may be disposed on the base plate 101 , for example, the surface of the first folded edge 1021 close to the base plate 101 is fixed to the base plate 101 .
  • the frame body 102 is fixed on the bottom plate 101 by brazing technology.
  • solder is placed between the first edge 1021 of the frame body 102 and the base plate 101 , and then the solder is heated to melt the solder, thereby fixing the frame body 102 on the base plate 101 .
  • the bottom plate and the frame need to withstand relatively large heat to be welded together. Greater heat will generate greater thermal stress. If the thickness of the frame is large, the frame will not easily deform under the action of this thermal stress, but the bottom plate will easily wrinkle under the action of this thermal stress, resulting in The flatness of the inner surface of the base plate used for arranging the plurality of light-emitting components is relatively poor, thereby affecting the arrangement of the plurality of light-emitting components. In addition, precise optical devices need to be mounted on the base plate to reflect, converge, and collimate the laser light emitted by multiple light-emitting components. If the flatness of the base plate changes, the light output effect of the optical devices will be easily reduced.
  • the frame body 102 is a sheet metal part, and the thickness of the frame body 102 is relatively small. Therefore, the thermal stress generated during brazing can cause the frame body 102 to mechanically deform, thereby preventing the bottom plate 101 from wrinkling or deforming under the action of thermal stress.
  • the frame body 102 can be slightly deformed under the action of the thermal stress to release the thermal stress, so as to prevent the base plate 101 from wrinkling or deforming under the action of thermal stress, thereby improving the flatness of the base plate 101 and improving the preparation effect of the laser , and improve the light emitting effect of the plurality of light emitting components 103 arranged on the base plate 101 .
  • the laser 10 also includes a plurality of conductive pins 106 electrically connected to the plurality of light emitting components 103 , and the plurality of conductive pins 106 need to pass through the frame body 102 to be electrically connected to an external power source.
  • the thickness of the frame body 102 is small, the contact area between the plurality of conductive pins 106 and the frame body 102 is reduced, resulting in reduced reliability of the frame body 102 for fixing the plurality of conductive pins 106 .
  • a plurality of flange holes K are provided in the frame body 1022 .
  • the flange hole K may be in a cylindrical shape protruding relative to the frame body 1022 , and the depth of the flange hole K is greater than the thickness of the frame body 1022 .
  • a plurality of conductive pins 106 correspondingly pass through a plurality of burring holes K to be fixed on the frame 102 , and the area on the frame 102 where the plurality of conductive pins 106 are fixed is the inner wall of the burring holes K.
  • flanging hole processing refers to the processing activity of turning over the periphery of the hole on the sheet metal part to increase the inner diameter and depth of the hole.
  • a small hole can be made on the frame body 1022 first (for example, the small hole is punched out through a punching process, and the depth of the small hole is the thickness of the sheet metal part), and then a punch (punch-pin ) flanging at the edge of the hole.
  • the edge portion of the small hole is stretched along the direction perpendicular to the plane where the frame body 1022 is located, so as to obtain the flanged hole K on the frame body 1022 .
  • the inner diameter of the flanged hole K is larger and the depth is also larger.
  • the depth of the flanging hole K is larger than the depth of the initial small hole, the area of the inner wall of the flanging hole K is larger, that is to say, the fixed contact area between the conductive pin 106 and the frame body 102 is larger, The reliability of fixing the plurality of conductive pins 106 by the frame body 102 is improved.
  • the flanged hole can be realized. Seal between K and conductive pin 106 . Therefore, the sealing effect of the flange hole and the airtightness of the accommodation space of the laser are improved, thereby improving the preparation effect and quality of the laser.
  • the leakage rate of the accommodating space of the laser 10 is less than or equal to 5 ⁇ 10 ⁇ 9 Pa cubic meters per second (Pa ⁇ m 3 /s). For example, 5 ⁇ 10 -9 Pa cubic meters per second, 4 ⁇ 10 -9 Pa cubic meters per second, 3 ⁇ 10 -9 Pa cubic meters per second, 2 ⁇ 10 -9 Pa cubic meters per second.
  • the frame body 102 has a plurality of flange holes K.
  • Each flange hole K can protrude toward the inside of the accommodating space, or protrude toward the outside of the accommodating space.
  • a part of the plurality of burring holes K protrudes toward the inside of the accommodating space, and another part protrudes toward the outside of the accommodating space.
  • each burring hole K protrudes toward the outside of the accommodating space, it can avoid occupying the accommodating space, so that a plurality of light-emitting components 103 have sufficient installation space.
  • the laser 10 provided in some embodiments of the present disclosure may be a multi-chip laser diode (Multi_chip Laser Diode, MCL) type laser. Therefore, the multiple light emitting components 103 in the laser 10 may include multiple rows and multiple columns of light emitting chips arranged in an array.
  • MCL multi-chip laser diode
  • the laser 10 is a monochromatic laser, and all light-emitting chips in the laser 10 can emit laser light of the same color.
  • the laser 10 can also be a multi-color laser, the laser 10 includes multiple types of light emitting chips, each type of light emitting chip is used to emit laser light of one color, and the colors of the laser light emitted by different types of light emitting chips are different.
  • FIG. 4 is a partially enlarged view of part B in FIG. 2 .
  • the light emitting component 103 includes a light emitting chip 1031 , a heat sink 1032 and a reflective prism 1033 (see FIG. 6 or FIG. 9 for the same structure).
  • the heat sink 1032 is fixed on the bottom plate 101
  • the light-emitting chip 1031 is fixed on the heat sink 1032
  • the reflective prism 1033 is located on the light-emitting side of the light-emitting chip 1031 .
  • the light-emitting chip 1031 emits laser light to the reflective prism 1033 , and the reflective prism 1033 reflects the incident laser light in a direction away from the base plate 101 .
  • the laser light can be emitted through the light-transmitting sealing layer 105, so as to realize the light emission of the laser.
  • the heat sink 1032 is used to assist in dissipating the heat generated when the light emitting chip 1031 emits light.
  • the light-emitting chip 1031 will generate more heat when it emits light, and the heat can be conducted to the base plate 101 through the heat sink 1032, and then dissipated to the outside of the laser 10 (for example, to the heat dissipation structure connected to the outer surface of the base plate 101), to avoid The heat builds up damage to the light emitting chip 1031 .
  • the heat can also be conducted to the frame body 102 through the bottom plate 101. At this time, the effect of the heat on the frame body 102 is the same as that of the heat generated by brazing on the frame body 102.
  • the frame body 102 can also generate a certain amount of heat under the action of the heat. deformation to counteract thermal stress and assist the dissipation of heat emitted by the light-emitting chip 1031 .
  • the cover plate 104 includes an outer edge area Q1 , an inner edge area Q2 , and at least one crease C located between the outer edge area Q1 and the inner edge area Q2 .
  • the inner edge region Q2 of the cover plate 104 defines an opening 1040 through which the laser light emitted by the plurality of light emitting components 103 passes.
  • the outer edge area Q1 of the cover plate 104 is fixed to the surface of the frame body 102 away from the bottom plate 101 , for example, to the second edge 1023 of the frame body 102 .
  • the inner edge area Q2 of the cover plate 104 is fixed to the light-transmitting sealing layer 105 .
  • the inner edge area Q2 is recessed toward the bottom plate 101 relative to the outer edge area Q1 .
  • Both the outer edge area Q1 and the inner edge area Q2 can be ring-shaped plate structures with flat upper and lower surfaces, so as to facilitate the fixing of the cover plate 104 to the frame body 102 and the light-transmitting sealing layer 105 .
  • the plane where the outer edge area Q1 is located may be parallel to the plane where the inner edge area Q2 is located.
  • the at least one crease C may protrude from the inner edge region Q2 in a direction away from the bottom plate 101 .
  • the at least one crease C may also be recessed from the inner edge region Q2 toward the bottom plate 101 .
  • the at least one corrugated portion C includes a corrugated portion C protruding from the inner edge region Q2 in a direction away from the bottom plate 101 .
  • the cover plate 104 and the frame body 102 are sealed and welded in parallel, the frame body 102 and the cover plate 104 will expand due to heat, thereby generating greater thermal stress.
  • the creased portion C will be squeezed by the inner edge region Q2 and the outer edge region Q1.
  • the folded portion C can be contracted and deformed similarly to a compression spring. In this way, the wrinkled portion C can absorb more stress to play a certain buffering role, so the stress transmitted to the light-transmitting sealing layer 105 is relatively small.
  • cover plate 104 shown in FIG. 3A has only one crease C, this should not be construed as a limitation of the present disclosure.
  • the at least one creased portion C includes two creased portions C, and the two creased portions C are sequentially arranged along the direction from the inner edge area Q2 to the outer edge area Q1 . Both of the two creases C protrude from the inner edge area Q2 in a direction away from the bottom plate 101 .
  • the two creases C absorb more stress than one crease C, and play a stronger buffering role. Therefore, the stress transmitted to the light-transmitting sealing layer 105 is also smaller.
  • the at least one creased portion C includes three creased portions C, and the three creased portions C are sequentially arranged along the direction from the inner edge area Q2 to the outer edge area Q1 .
  • the three corrugated portions C protrude from the inner edge region Q2 in a direction away from the bottom plate 101 .
  • the three folds C absorb more stress than one fold C or two folds C, and play a stronger buffering role, so the stress transmitted to the light-transmitting sealing layer 105 is also smaller.
  • the at least one wrinkle part C includes a plurality (greater than or equal to two) of the wrinkle parts C
  • the plurality of wrinkle parts C are arranged in sequence along the direction from the inner edge area Q2 to the outer edge area Q1. cloth.
  • the cross-sections of the plurality of creases C may be wave-shaped, and there is an interval between every two adjacent creases.
  • the creases C protrude from the inner edge region Q2 toward the direction away from the bottom plate 101 , or the creases C are recessed from the inner edge region Q2 toward the bottom plate 101 .
  • the cover plate 104 has a plurality of folds C
  • some folds C may protrude from the inner edge region Q2 toward the direction away from the bottom plate 101
  • some folds C may protrude from the inner edge region Q2 toward the bottom plate. 101 sunken.
  • the folds C protruding from the inner edge region Q2 toward the direction away from the bottom plate 101 are arranged alternately with the folds C recessed from the inner edge region Q2 toward the bottom plate 101 .
  • the crease portion C is tooth-shaped, for example, arc-toothed, pointed-toothed or square-toothed.
  • the cover plate 104 further includes an outer curved connection portion 1041 and an inner curved connection portion 1042 .
  • the outer curved connection portion 1041 connects the outer edge region Q1 and at least one crease portion C. As shown in FIG. Stress generated in the outer edge region Q1 can be transmitted to at least one crease C through the outer curved connection portion 1041 .
  • the outer curved connecting portion 1041 can also undergo certain deformation along its own bending direction under the action of the aforementioned stress, so as to absorb part of the stress, so as to reduce the stress transmitted to at least one folded portion C.
  • the inner curved connection portion 1042 connects the inner edge region Q2 and at least one crease portion C. As shown in FIG. Stress generated in the inner edge region Q2 can be transmitted to at least one crease C through the inner curved connection portion 1042 .
  • the inner curved connecting portion 1042 can also undergo a certain deformation along its own bending direction under the action of the aforementioned stress, so as to absorb part of the stress, thereby reducing the stress transmitted to the at least one folded portion C.
  • the outer curved connection portion 1041 or the inner curved connection portion 1042 is chamfered or rounded, so as to avoid excessive concentration of stress at the outer curved connection portion 1041 or the inner curved connection portion 1042 and cause the outer curved connection portion 1041 or The inner curved connection 1042 is damaged.
  • the cover plate 104 is a sheet metal part, and the thickness of each position of the cover plate 104 is the same or substantially the same.
  • the cover plate 104 may be formed by a stamping process.
  • an annular plate may be stamped such that the annular plate has bends, depressions or protrusions, thereby forming an outer edge region Q1, an inner edge region Q2 and at least one crease C, so as to obtain the advantages provided by some embodiments of the present disclosure. cover plate 104 .
  • the cover plate 104 is made of the same material as the frame body 102 . In this way, when the cover plate 104 and the frame body 102 are sealed and welded in parallel, the heated area of the cover plate 104 and the heated area of the frame body 102 can be directly fused together, and there will be no interaction between the cover plate 104 or the frame body 102. The body 102 deforms. This makes the fixing effect of the cover plate 104 and the frame body 102 better, and the sealing effect of the accommodating space of the laser 10 is better.
  • the material of the cover plate 104 may include Kovar.
  • Kovar iron-nickel-cobalt alloy or iron-nickel alloy.
  • the light-transmitting sealing layer 105 is sealed and fixed to the inner edge area Q2 of the cover plate 104 .
  • the light-transmitting sealing layer 105 may be a plate-like structure.
  • the light-transmitting sealing layer 105 can cover the opening 1040 of the cover 104 and be fixed with the cover 104 .
  • the material of the light-transmitting sealing layer 105 may be a light-transmitting material, such as glass, resin, and the like.
  • At least one surface of the light-transmitting sealing layer 105 close to the bottom plate 101 and the surface away from the bottom plate 101 may be attached with a brightness enhancement film to improve the output brightness of the laser 10 .
  • the light-transmitting sealing layer 105 and the cover plate 104 are fixed first, and then the cover plate 104 and the frame body 102 are fixed together by parallel sealing welding.
  • the cover plate 104 and the frame body 102 are sealed and welded in parallel, the frame body 102 and the cover plate 104 will expand due to heat, thereby generating greater thermal stress.
  • at least one crease C in the cover plate 104 will be pressed by the inner edge area Q2 and the outer edge area Q1 .
  • each folded part C can be contracted and deformed similarly to a compression spring. In this way, the at least one wrinkled portion C can absorb more stress to play a certain buffering role, and therefore, the stress transmitted to the light-transmitting sealing layer 105 is relatively small.
  • the cover plate 104 even if the cover plate 104 expands toward the light-transmitting sealing layer 105 when heated, at least one wrinkle portion C can shrink to a certain extent under the action of thermal stress, so the cover plate 104 is resistant to the light-transmitting sealing layer due to thermal expansion.
  • the amount of deformation produced by the sealing layer 105 is small, so the pressure of the cover plate 104 on the light-transmitting sealing layer 105 is small, which reduces the risk of cracking of the light-transmitting sealing layer 105 when the cover plate 104 and the frame body 102 are welded in parallel.
  • the at least one wrinkled portion C can absorb more thermal stress, the limit value of the stress on the cover plate 104 can be increased, and the adaptability of the cover plate 104 and the light-transmitting sealing layer 105 to a higher parallel sealing temperature can be enhanced. properties, reducing the requirements for the preparation conditions of the laser 10. In addition, this also reduces the requirements on the use environment of the laser 10 , thereby expanding the application range of the laser 10 .
  • the temperature of the frame body 102 and the cover plate 104 drops, and the at least one wrinkle portion C can return to its original state (that is, it is not affected by the inner edge region Q2 and the outer edge region Q1 shape when extruded).
  • the laser 10 further includes a plurality of ring-shaped sealing insulators 107 , and the ring-shaped sealing insulators 107 are used to fix a conductive pin 106 in the corresponding flange hole K.
  • the conductive pin 106 can be covered with an annular sealing insulator 107, and then penetrate into the flange hole K. That is, when the conductive pin 106 is located in the burring hole K, the annular sealing insulator 107 is located between the conductive pin 106 and the inner wall of the burring hole K. As shown in FIG.
  • the annular sealing insulator 107 is tubular.
  • the length of the annular sealing insulator 107 may be equal to the depth of the burring hole K, or may be slightly smaller or slightly larger than the depth of the burring hole K.
  • the ring-shaped sealing insulator 107 can be heated. For example, heat to 800-900 degrees Celsius to melt the ring-shaped sealing insulator 107 to fill the gap between the conductive pin 106 and the inner wall of the burring hole K.
  • the melted ring-shaped sealing insulator 107 can be used as a sealing adhesive to bond the conductive pin 106 and the inner wall of the flanged hole K, and then the ring-shaped sealing insulator 107 is cooled and solidified. In this way, not only the conductive pin 106 is fixed to the frame body 102 , but also the sealing between the conductive pin 106 and the flange hole K is realized.
  • the material of the annular sealing insulator 107 includes glass. It should be noted that the bonding effect between glass and Kovar alloy is better at high temperature.
  • the laser 10 provided by some embodiments of the present disclosure uses Kovar alloy to prepare the frame body 102, and uses glass to prepare the ring-shaped sealing insulator 107, so that the ring-shaped sealing insulator 107 can be well integrated with the flange hole K after melting, improving the Sealing effect on flanged holes.
  • the structure formed by the bottom plate 101 and the frame body 102 may be called a tube case or a base assembly.
  • the structure composed of the cover plate 104 and the light-transmitting sealing layer 105 may be referred to as an upper cover assembly.
  • the package has an opening opposite to the bottom plate 101 , and the cover plate 104 and the light-transmitting sealing layer 105 are used to seal the opening.
  • the tube shell, the cover plate 104 and the light-transmitting sealing layer 105 can enclose a closed accommodation space, and a plurality of light-emitting components 103 are located in the accommodation space.
  • the structure composed of the bottom plate 101 , the frame body 102 and the conductive pins 106 may also be referred to as a shell or a base assembly.
  • the light emitting chip 1031 in the light emitting component 103 may be a semiconductor chip.
  • Semiconductor chips are highly sensitive to moisture, harmful gases and pollutants in the environment, and are more likely to be damaged. For example, if particles such as dust, water vapor, or ion pollutants enter the laser 10 and adhere to the surface of the light-emitting chip 1031, the light-emitting chip 1031 will be short-circuited or opened, and eventually the light-emitting chip 1031 will fail. Therefore, the light-emitting chip 1031 needs to be hermetically packaged to isolate the light-emitting chip 1031 from the environment, ensure the cleanliness of the light-emitting chip 1031, and prevent the light-emitting chip 1031 from being damaged by foreign substances.
  • a plurality of conductive pins 106 are symmetrically distributed on both sides of the frame body 102 . Parts of the plurality of conductive pins 106 fixed on both sides of the frame body 102 located outside the frame body 102 are respectively electrically connected to the positive pole and the negative pole of the external power supply. The parts of the plurality of conductive pins 106 extending into the frame body 102 are electrically connected to the electrodes of the corresponding light-emitting chips 1031, so as to transmit external current to each light-emitting chip 1031 (not shown in FIG. 2 and FIG. 3A, see FIG. 4 ), and then excite a plurality of light-emitting chips 1031 to emit laser light of corresponding colors.
  • each light emitting component 103 can be mounted on the bottom plate 101 . Afterwards, wire bonding is performed on each conductive pin 106 and the corresponding light emitting chip 1031 , so that the electrodes of each light emitting chip 1031 are electrically connected to the corresponding conductive pin 106 .
  • the upper cover assembly may further include a sealing member 108 through which the light-transmitting sealing layer 105 and the cover plate 104 may be fixed.
  • the seal 108 may comprise low temperature glass solder.
  • the sealing member 108 may also include glass melt, epoxy sealant or other sealants.
  • the edge area of the light-transmitting sealing layer 105 can be made in contact with the inner edge area Q2 of the cover plate 104, and the side surface of the light-transmitting sealing layer 105 can be covered by the sealing member 108, so as to improve the protection against the light-transmitting sealing layer 105.
  • the bonding reliability of the laser 10 is improved, and the sealing reliability of the light-transmitting sealing layer 105 to the accommodating space of the laser 10 is improved.
  • both the light-transmitting sealing layer 105 and the sealing member 108 can be placed on the cover plate 104, and the light-transmitting sealing layer 105 covers the opening 1040 of the cover plate 104, and the sealing member 108 is located between the light-transmitting sealing layer 105 and the cover plate. 104 and protrude from the side of the light-transmitting sealing layer 105 . Afterwards, the sealing member 108 is heated to melt the sealing member 108 and fill the gap between the light-transmitting sealing layer 105 and the cover 104 , thereby fixing the light-transmitting sealing layer 105 and the cover 104 .
  • the light-transmitting sealing layer 105 and the cover plate 104 can be fixed through the sealing member 108 to obtain the upper cover assembly. Afterwards, the upper cover assembly and the tube case are fixed, for example, the cover plate 104 and the frame body 102 in the upper cover assembly are fixed by using parallel sealing welding technology.
  • the upper cover assembly can be placed on the side of the frame body 102 away from the bottom plate 101 , and the outer edge region Q1 of the cover plate 104 overlaps the second edge 1023 of the frame body 102 .
  • sealing and welding equipment is used to heat the outer edge region Q1 and the second folded edge 1023, so that the part of the outer edge region Q1 and the second folded edge 1023 at the contact position is melted, and then the outer edge region Q1 and the second folded edge are Edge 1023 is welded and fixed.
  • Fig. 5 is a structural diagram of yet another laser according to some embodiments.
  • the laser 10 further includes a collimator lens group 109 .
  • the collimator lens group 109 is located on a side of the upper cover assembly away from the bottom plate 101 .
  • the edge of the collimator lens group 109 is fixed to the outer edge region Q1 of the cover plate 104 .
  • the collimator lens group 109 is used to collimate the laser light emitted by the plurality of light emitting components 103 before emitting it.
  • the collimator lens group 109 includes a plurality of collimator lenses corresponding to the plurality of light emitting components 103 in the laser 10 .
  • the laser light emitted by the light emitting component 103 is irradiated to the corresponding collimating lens, and then is collimated by the collimating lens before being emitted.
  • collimating light refers to converging diverging light so that the divergence angle of the light becomes smaller and is closer to parallel light.
  • the collimating lens group 109 can be suspended on the side of the cover plate 104 away from the bottom plate 101, and the alignment of the collimating lens to the laser light emitted by the light emitting assembly 103 can be adjusted. Straight effect.
  • an adhesive is coated on the outer edge area Q1 of the cover plate 104, and then the The collimator lens group 109 is fixed to the cover plate 104 .
  • the adhesive includes epoxy sealant or other sealing glue.
  • the position of the collimating lens group 109 can be adjusted, even if the heat generated during brazing or parallel sealing causes the frame body 102 to be slightly deformed, it can be reduced or eliminated by adjusting the position of the collimating lens group 109.
  • the deformation of the frame body 102 affects the laser emission of the plurality of light emitting components 103 , thereby realizing the normal light emission of the laser 10 .
  • collimating lenses in the collimating lens group 109 can be integrally formed.
  • the side of the collimator lens group 109 away from the bottom plate 101 has multiple convex arc surfaces curved toward the side away from the bottom plate 101 , and the part where each convex arc surface is located can be used as a collimating lens. Therefore, the collimating lens group 109 may include a plurality of collimating lenses.
  • the collimating lens may be a plano-convex lens.
  • the collimating lens may have a convex arc surface and a plane, and the convex arc surface and the plane may be two opposite surfaces.
  • the plane may be parallel to the inner surface or the outer surface of the bottom plate 101 and be disposed close to the bottom plate 101 .
  • Each convex arc surface of the collimator lens group 109 can be used as a convex arc surface in a collimating lens.
  • each ring-shaped sealing insulator 107 when assembling the laser, can be set on each conductive pin 106 first, and then the conductive pin 106 covered with the ring-shaped sealing insulator 107 can be inserted into the flip of the frame body 102.
  • the edge hole K, and the annular sealing insulator 107 is located in the edge hole K.
  • the frame body 102 is placed on the bottom board 101 , and solder (such as silver copper solder) is placed between the frame body 102 and the bottom board 101 .
  • solder such as silver copper solder
  • the structure composed of the bottom plate 101, the frame body 102 and the conductive pins 106 is put into a high-temperature furnace for sealing and sintering. After being sealed, sintered and solidified, the bottom plate 101 , the frame body 102 , and the conductive pins 106 can become a whole (that is, the base assembly), and the airtightness at the flange hole K of the frame body 102 is realized.
  • a plurality of light-emitting components 103 can be soldered to corresponding positions on the base plate 101 .
  • the light-transmitting sealing layer 105 and the cover plate 104 can also be fixed by a sealing material to obtain an upper cover assembly, and then the upper cover assembly is welded on the surface of the frame body 102 away from the bottom plate 101 by using parallel sealing welding technology.
  • the collimating lens group 109 is fixed on the side of the upper cover assembly away from the bottom plate 101 through epoxy sealant, and the assembly of the laser 10 is completed so far.
  • Fig. 6 is a structural diagram of another laser according to some embodiments
  • Fig. 7 is an exploded view of another laser according to some embodiments
  • Fig. 6 may be a diagram of the laser shown in Fig. 7 along the bb' line Sectional view. Only the differences between the laser shown in FIG. 6 and FIG. 7 and the laser shown in FIG. 5 will be described below, and the similarities will not be repeated. It should be noted that in FIGS. 6 and 7 , the same reference numerals as those shown in FIG. 5 are used for the same components as those in the laser shown in FIG. 5 .
  • the laser 10 omits the cover plate 104 , but is directly fixed to the package by the light-transmitting sealing layer 105 .
  • the bottom plate 101 and the frame body 102 in the tube shell can be of integral structure, or can be independent structures respectively, which are welded together to form the tube shell.
  • the cover plate 104 and the light-transmitting sealing layer 105 form an upper cover assembly.
  • the upper cover assembly and the tube shell are fixed together by parallel sealing welding.
  • parallel sealing welding two objects to be sealed and welded are superimposed together, and the sealing and welding equipment rolls on the surface of the two superimposed objects to be sealed and welded to apply heat to the two objects to be sealed and welded, so that the two objects The contact surfaces of two objects to be sealed and welded are melted under the action of heat, thereby fixing the two objects to be sealed and welded together.
  • the process parameters of parallel sealing welding mainly include welding current and welding speed.
  • the greater the welding current the greater the heat generated by the sealing and welding equipment.
  • the slower the welding speed the more heat the object to be sealed receives.
  • the welding current is too small, it will not be possible to form welded joints between the objects to be welded, which will affect the sealing between the objects to be welded. If the welding current is too large, the heat impact on the object to be welded is too great, which will cause the object to be welded to be burned out. If the welding speed is too small, the welding time will be prolonged, and the welding heat will increase, resulting in deformation of the object to be welded, resulting in uneven sealing welding track. If the welding speed is too high, it will cause discontinuity of the sealing and welding track, which will affect the sealing between the objects to be welded. Therefore, the manipulation of parallel sealing welding is more difficult.
  • the inner edge region Q2 of the cover plate 104 is bonded to the light-transmitting sealing layer 105 through the sealing member 108 .
  • the sealing member 108 may include low-temperature glass solder, glass melt, epoxy sealant or other sealing glue. However, air bubbles will be generated during the low-temperature sintering process of the sealing member 108 , so that there is a risk of air leakage in the accommodating space.
  • the cover plate 104 includes at least one crease C, which can absorb a certain stress during the parallel sealing welding process, so the laser 10 shown in FIG. 5 is also intended to be protected by the present disclosure. of.
  • the laser 10 shown in FIG. 6 and FIG. 7 omits the cover plate 104 , so that the light-transmitting sealing layer 105 is directly welded to the package by soldering.
  • the solder welding method is simple to operate, has high sealing reliability, can ensure the sealing requirements of the accommodating space, and does not need to consider complicated welding parameters, and can simplify the process steps of laser 10 packaging .
  • the cover plate 104 is omitted, there is no need to use the sealing member 108 to fix the cover plate 104 and the light-transmitting sealing layer 105 , thereby avoiding air leakage in the accommodating space.
  • the cover plate 104 since the cover plate 104 is omitted, the volume of the laser 10 is also reduced, which is beneficial to realize miniaturization and thinning of the laser 10 .
  • the shape and size of the light-transmitting sealing layer 105 are adapted to the shape and size of the tube shell.
  • the length range of the light-transmitting sealing layer 105 is 17.05 mm to 17.35 mm, such as 17.05 mm, 17.10 mm, 17.15 mm, 17.20 mm, 17.25 mm, 17.30 mm, 17.35 mm;
  • the thickness of the light-transmitting sealing layer 105 ranges from 0.65 mm to 0.75 mm, such as 0.65 mm, 0.70 mm mm, 0.75 mm.
  • the light-transmitting sealing layer 105 When the opening of the package is sealed by the light-transmitting sealing layer 105, the light-transmitting sealing layer 105 also needs to have sufficient hardness and strength to protect the components in the package (for example, a plurality of light-emitting components 103).
  • the laser light emitted by the plurality of light-emitting components 103 needs to be emitted through the light-transmitting sealing layer 105 , so the light transmittance of the light-transmitting sealing layer 105 also needs to be relatively high.
  • the Mohs hardness of the light-transmitting sealing layer 105 needs to be greater than or equal to 9, such as 9,10; and/or, the light transmittance of the light-transmitting sealing layer 105 needs to be greater than or equal to 85%, such as 85%, 88%, 90 %, 95%.
  • the material of the light-transmitting sealing layer 105 is sapphire.
  • the Mohs hardness of sapphire is as high as 9.0, the light transmittance is greater than 85%, and it has high transmittance for visible light and infrared light.
  • the edge of one side of the light-transmitting sealing layer 105 may be provided with a solder layer H, and the area where the solder layer H is provided may be a ring-shaped area.
  • the solder layer H in the light-transmitting sealing layer 105 is located on a side close to the base plate 101 .
  • the side of the light-transmitting sealing layer 105 away from the bottom plate 101 is placed upward.
  • the light-transmitting sealing layer 105 can be fixed to the surface of the frame body 102 away from the bottom plate 101 through the solder layer H, and the light-transmitting sealing layer 105 is used to seal the opening of the package, and then the bottom plate 101, the frame body 102 and the light-transmitting sealing layer 105 can be The airtight accommodating space is formed.
  • the plurality of light emitting components 103 can be located in the confined space, thereby avoiding external water and oxygen erosion, and improving the reliability of the plurality of light emitting components 103 .
  • the solder layer H may be disposed on the light-transmitting sealing layer 105 , that is, the solder layer H is preset on the light-transmitting sealing layer 105 . In an alternative embodiment, the solder layer H may also be provided on the light-transmitting sealing layer 105 when the laser 10 is manufactured.
  • the material of the solder layer H may include gold and tin.
  • the solder layer H may be a gold-tin solder layer, and the content (weight) of gold in the gold-tin solder layer may account for 80%, and the content (weight) of tin may account for 20%.
  • Gold-tin solder has high corrosion resistance, high creep resistance and good thermal and electrical conductivity.
  • the thermal conductivity of gold-tin solder can reach 57 watts/(meter Kelvin) (W/m K). Therefore, the welding strength of the object welded by gold-tin solder is high, and the process of welding by gold-tin solder is better in controllability, and the yield rate of welding by gold-tin solder is high.
  • the solder layer H may include a platinum layer and a gold-tin alloy layer successively stacked on the edge of the light-transmitting sealing layer 105 along a direction away from the light-transmitting sealing layer 105 .
  • a thin layer of platinum can be firstly arranged on the light-transmitting sealing layer 105, and then gold-tin alloy can be plated on the platinum layer. layer to ensure the adhesion firmness of the gold-tin alloy layer.
  • the thickness of the platinum layer ranges from 0.2 micron to 0.3 micron, for example, the thickness of the platinum layer is 0.2 micron, 0.22 micron, 0.25 micron, 0.28 micron, 0.3 micron.
  • the thickness of the gold-tin alloy layer ranges from 2 microns to 3 microns, for example, the thickness of the gold-tin alloy layer is 2 microns, 2.2 microns, 2.5 microns, 2.8 microns, and 3 microns.
  • both the platinum layer and the gold-tin alloy layer in the solder layer H are ring-shaped, and the shapes and sizes of the platinum layer and the gold-tin alloy layer can be the same.
  • the width of the solder layer H ranges from 1 mm to 1.5 mm, that is, the width of the solder layer H is greater than or equal to 1 mm and less than or equal to 1.5 mm; for example, 1 mm, 1.1 mm, 1.2 mm, 1.3 mm , 1.4 mm, 1.5 mm.
  • the widths of the platinum layer and the gold-tin alloy layer in the solder layer H may also both range from 1 mm to 1.5 mm.
  • the width at each position of the solder layer H is the same; or the width at different positions of the solder layer H may also be different, and at this time, the width at each position of the solder layer H can still be at the above-mentioned width of the solder layer H within range.
  • the light-transmitting sealing layer 105 is fixed to the frame body 102 through the ring-shaped solder layer H at the edge of the light-transmitting sealing layer 105 . Since the solder layer H on the light-transmitting sealing layer 105 is preset, the larger the contact area between the solder layer H and the frame body 102 is, the better the fixing effect between the light-transmitting sealing layer 105 and the frame body 102 is.
  • the width of the second folded edge 1023 of the frame body 102 away from the bottom plate 101 is greater than the width of the solder layer H in the light-transmitting sealing layer 105, so as to ensure that the light-transmitting sealing layer 105 is arranged on the second edge of the frame body 102 away from the bottom plate 101.
  • the solder layer H can completely contact the frame body 102 .
  • the width of each position of the second folded edge 1023 of the frame body 102 is the same, for example, the width of the second folded edge 1023 is greater than 1.5 mm, such as 1.6 mm, 1.7 mm, 1.8 mm, 2 mm, 3 mm and so on.
  • the surface of the edge of the light-transmitting sealing layer 105 provided with the solder layer H and the second folded edge of the frame body 102 The flatness of the surfaces is high, so as to avoid sealing failure due to unevenness defects on the surface of the edge of the light-transmitting sealing layer 105 or the surface of the second folded edge 1023 .
  • the flatness of the surface of the second hem 1023 may be less than or equal to 0.2 millimeters, that is, the distance between the most concave point and the most convex point on the surface of the second hem 1023 in the direction perpendicular to the surface is less than Or equal to 0.2 mm.
  • a gold layer may be disposed on the annular surface of the second folded edge 1023 .
  • the annular surface of the second flange 1023 is pre-plated with a gold layer.
  • the gold-tin solder layer on the light-transmitting sealing layer 105 can dissolve with the gold layer on the frame body 102 to better integrate . Furthermore, the welding firmness between the light-transmitting sealing layer 105 and the second hem 1023 can be further improved.
  • Gold-tin solder has good wettability and no corrosion to the gold layer. Since the composition of the gold-tin alloy layer is close to that of the gold layer, the gold-tin alloy layer has a low degree of immersion into the gold layer through diffusion, which avoids the influence of the soldering process on the original characteristics of the light-transmitting sealing layer 105 and the frame body 102 .
  • FIG. 6 and FIG. 7 do not show the first folded edge 1021 and the second folded edge 1023 of the frame body 102 . Moreover, in some embodiments, the first folded edge 1021 and the second folded edge 1023 of the frame body 102 are not necessary.
  • the base plate 101 and the frame body 102 may be welded first, and then a plurality of light emitting components 103 are mounted on the base plate 101 .
  • the light-transmitting sealing layer 105 provided with the solder layer H can be disposed on the side of the frame body 102 away from the bottom board 101 , and the solder layer H is in contact with the surface of the frame body 102 away from the bottom board 101 .
  • the edge of the light-transmitting sealing layer 105 may also be heated to melt the solder in the solder layer H disposed on the light-transmitting sealing layer 105 .
  • the light-transmitting sealing layer 105 attached with the melted solder layer H is disposed on the side of the frame body 102 away from the base plate 101 , and the solder layer H is in contact with the surface of the frame body 102 away from the base plate 101 .
  • the melted solder layer H is solidified to obtain the assembled laser.
  • multiple light emitting components 103 in the laser 10 are arranged in multiple rows and multiple columns.
  • the laser 10 includes 20 light emitting components 103 arranged in four rows and five columns, wherein the row direction is the X direction, and the column direction is the Y direction.
  • FIG. 8 is a partially enlarged view of part D in FIG. 6 .
  • the light emitting component 103 includes a light emitting chip 1031 , a heat sink 1032 and a reflective prism 1033 . Both the heat sink 1032 and the reflective prism 1033 are fixed on the bottom plate 101 , the light-emitting chip 1031 is fixed on the heat sink 1032 , and the reflective prism 1033 is located on the light-emitting side of the light-emitting chip 1031 .
  • the surface F of the reflective prism 1033 opposite to the light-emitting chip 1031 is a reflective surface, which is used to reflect the incident laser light, so as to realize the reflective function of the reflective prism 1033 for the laser light.
  • the surface of the reflective prism 1033 opposite to the light-emitting chip 1031 may be coated with a reflective film to form the reflective surface F.
  • the included angle ⁇ between the reflective surface F of the reflective prism 1033 and the inner surface of the bottom plate 101 can be an acute angle, so as to ensure that the laser light emitted by the light-emitting chip 1031 is reflected away from the bottom plate 101 .
  • the included angle between the reflective surface F and the inner surface of the bottom plate 101 is 30°, 45°, 60°, etc.
  • the sides of the reflective prism 1033 may be in the shape of a right-angled trapezoid.
  • the side surfaces of the reflective prism 1033 may also be in the shape of a right triangle, or an acute triangle, or other shapes, which are not limited in the present disclosure.
  • the collimator lens group 109 of the laser 10 includes a plurality of collimator lenses T corresponding to a plurality of light emitting chips 1031 .
  • the light-emitting chip 1031 can emit laser light to the reflective surface F of the corresponding reflective prism 1033 , and the reflective surface F of the reflective prism 1033 reflects the incident laser light to the light-transmitting sealing layer 105 .
  • the laser light After the laser light is transmitted through the light-transmitting sealing layer 105 , it can be irradiated to the collimator lens T corresponding to the light-emitting chip 1031 .
  • the collimating lens T can collimate the incident laser light and emit it, so as to realize the light emission of the laser 10 .
  • the structure of the reflective prism 1033 can be modified so that the reflective prism 1033 can collimate the incident laser light and reflect the laser light, thereby omitting the collimating lens group 109 .
  • Fig. 9 is a structural diagram of another laser according to some embodiments.
  • the reflective surface F of the reflective prism 1033 corresponding to the light emitting chip 1031 is a concave arc surface.
  • the light-emitting chip 1031 radiates laser light to the concave arc surface, and the concave arc surface can adjust the divergence angle of the incident laser light, collimate the incident laser light, and reflect the laser light in a direction away from the base plate 101 . Furthermore, the laser light can be irradiated to the light-transmitting sealing layer 105 , and transmitted through the light-transmitting sealing layer 105 to be emitted to realize the light emission of the laser 10 .
  • the reflective prism 1033 corresponding to the light-emitting chip 1031 can directly collimate the laser light, and the reflective prism 1033 can realize the function of the collimating mirror group 109 .
  • the collimating lens group 109 can no longer be provided to collimate the laser, the components in the laser can be reduced to a certain extent, the thickness of the laser can be reduced, and the volume of the laser can be reduced.
  • corresponding reflective prisms 1033 can be independently provided for each light-emitting chip 1031, and the corresponding positional relationship between the reflective prism 1033 and the light-emitting chip 1031 can be set relatively accurately, which improves the collimation of the laser light emitted by the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种激光器(10),包括管壳、上盖组件和多个发光组件(103);管壳包括底板(101)和框体(102);框体(102)设置在底板(101)上,与底板(101)围合形成具有敞口的容置空间;框体(102)包括相互连接的第一折边(1021)和框体本体(1022),第一折边(1021)相对于框体本体(1022)弯折,且第一折边(1021)与底板(101)固定连接;多个发光组件(103)位于容置空间内,并设置在底板(101)上;上盖组件与管壳固定,并封闭容置空间。

Description

激光器及激光投影设备
本申请要求于2021年6月22日提交的、申请号为202110693801.0的中国专利申请、2021年6月22日提交的、申请号为202110693475.3的中国专利申请,以及于2021年9月9日提交的、申请号为202111057909.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光电技术领域,尤其涉及一种激光器及激光投影设备。
背景技术
随着光电技术的发展,激光器被广泛应用。激光器因其发出的光质量纯净、光谱稳定而取得了越来越广泛的应用。例如,激光器可以应用在激光投影设备中。激光投影设备是是采用激光光源作为显示光源并配合投影显示技术成像的投影显示设备,例如激光电视、激光投影仪等。
发明内容
本申请一些实施例提供一种激光器。所述激光器包括管壳、上盖组件和多个发光组件。所述管壳包括底板和框体。所述框体设置在所述底板上,与所述底板围合形成具有敞口的容置空间;所述框体包括相互连接的第一折边和框体本体,所述第一折边相对于所述框体本体弯折,且所述第一折边与所述底板固定连接。所述多个发光组件位于所述容置空间内,并设置在所述底板上。所述上盖组件与所述管壳固定,并封闭所述容置空间。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种激光器的爆炸结构图;
图2为图1所示的激光器组装后的剖视图;
图3A为图2中A部分的局部放大图;
图3B为根据一些实施例的A部分的再一种局部放大图;
图3C为根据一些实施例的A部分的另一种局部放大图;
图4为图2中B部分的局部放大图;
图5为根据一些实施例的再一种激光器的结构图;
图6为根据一些实施例的另一种激光器的结构图;
图7为根据一些实施例的另一种激光器的爆炸图;
图8为图6中D部分的局部放大图;
图9为根据一些实施例的又一种激光器的结构图;
图10为根据一些实施例的一种激光投影设备的结构图;
图11为根据一些实施例的激光投影设备中光源、光机和镜头的光路图;
图12为根据一些实施例的激光投影设备中光源、光机和镜头的另一种光路图;
图13为根据一些实施例的一种数字微镜器件中微小反射镜片的排列图;
图14为图13中的数字微镜器件中一个微小反射镜片摆动的位置图;
图15为根据一些实施例的微小反射镜片的工作示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。因此, 可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开一些实施例提供一种激光投影设备,如图10所示,激光投影设备1包括壳体400(图10中仅示出部分壳体),装配于壳体400中的光源100,光机200,以及镜头300。该光源100被配置为提供照明光束(激光束)。该光机200被配置为利用图像信号对光源100提供的照明光束进行调制以获得投影光束。该镜头300被配置为将投影光束投射在投影屏幕20上成像。
光源100、光机200和镜头300沿着光束传播方向依次连接,各自由对应的壳体进行包裹。光源100、光机200和镜头300各自的壳体对相应的光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。比如,光源100通过其对应的外壳实现气密性密封,可以较好地改善光源100的光衰问题。
在一些实施例中,光机200的一端与光源100连接,另一端与镜头300连接。光源100与光机200沿着激光投影设备1的照明光束的出射方向(参照图10中所示的M方向)设置,且光机200与镜头300沿着激光投影设备1的投影光束的出射方向(参照图10中所示的N方向)设置,M方向与N方向大致垂直。即,光源100、光机200和镜头300三者连接呈“L”型,这种连接结构一方面可以适应光机200中反射式光阀的光路特点,另一方面,还有利于缩短一个维度方向上光路的长度,利于投影主机的结构排布。例如,当将光源100、光机200和镜头300沿一个维度方向(例如,M方向)设置时,该方向上光路的长度就会很长,从而不利于投影主机的结构排布。
在一些实施例中,光源100可以时序性地提供三基色光(也可以在三基色光的基础上增加其他色光),由于人眼的视觉暂留现象,人眼看到的是由三基色光混合形成的白光。光源100也可以同时输出三基色光,持续发出白光。光源100包括激光器10(如图1至图9所示),该激光器可以发出一种颜色的激光,比如红色激光、蓝色激光或绿色激光。
光源100发出的照明光束进入光机200。参考图11和图12,光机200包括:光导管210,透镜组件220,反射镜230,数字微镜器件(Digital Micromirror Device,DMD)240以及棱镜组件250。该光导管210可以接收光源100提供的照明光束,并对该照明光束进行匀化。光导管210的出口可以为矩形,从而对光斑具有整形效果。透镜组件220可以对照明光束先进行准直后进行会聚并出射至反射镜230。反射镜230可以将照明光束反射至棱镜组件250。棱镜组件250将照明光束反射至数字微镜器件240,数字微镜器件240对照明光束进行调制以得到投影光束,并将投影光束反射至镜头300中。
光机200中,数字微镜器件240是核心部件,其作用是利用图像信号对光源100提供的照明光束进行调制,即:控制照明光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成光学图像,因此数字微镜器件240也被称为光调制器件或光阀。根据光调制器件(或光阀)对照明光束进行透射还是进行反射,可以将光调制器件(或光阀)分为透射式光调制器件(或光阀)或反射式光调制器件(或光阀)。例如,图12所示的数字微镜器件240对照明光束进行反射,即为一种反射式光调制器件。而液晶光阀对照明光束进行透射,因此是一种透射式光调制器件。此外,根据光机200中使用的光调制器件(或光阀)的数量,可以将光机200分为单片系统、双片系统或三片系统。例如,图12所示 的光机200中仅使用了一片数字微镜器件240,因此光机200可被称为单片系统。当使用三片数字微镜器件240时,则光机200可以被称为三片系统。
如图13所示,数字微镜器件240包含成千上万个可被单独驱动以旋转的微小反射镜片2401,这些微小反射镜片2401呈阵列排布,每个微小反射镜片2401对应待显示图像中的一个像素。如图14所示,每个微小反射镜片2401相当于一个数字开关,在外加电场作用下可以在±12°或者±17°的范围内摆动。
如图15所示,微小反射镜片2401在负的偏转角度反射出的光,称之为OFF光,OFF光为无效光,通常打到投影主机的壳体上、光机200的壳体上或者光吸收单元500上吸收掉。微小反射镜片2401在正的偏转角度反射出的光,称之为ON光,ON光是数字微镜器件240表面的微小反射镜片2401接收照明光束照射,并反射至镜头300的有效光束,用于投影成像。微小反射镜片2401的开状态为光源100发出的照明光束经微小反射镜片2401反射后可以进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于正的偏转角度的状态。微小反射镜片2401的关状态为光源100发出的照明光束经微小反射镜片2401反射后未进入镜头300时,微小反射镜片2401所处且可以保持的状态,即微小反射镜片2401处于负的偏转角度的状态。
例如,对于偏转角度为±12°的微小反射镜片2401,位于+12°的状态即为开状态,位于-12°的状态即为关状态,而对于-12°和+12°之间的偏转角度,实际中未使用,微小反射镜片2401的实际工作状态仅开状态和关状态。而对于偏转角度为±17°的微小反射镜片2401,位于+17°的状态即为开状态,位于-17°的状态即为关状态。图像信号通过处理后被转换成0、1这样的数字代码,这些数字代码可以驱动所述微小反射镜片2401摆动。
在一帧图像的显示周期内,部分或全部微小反射镜片2401会在开状态和关状态之间切换一次,从而根据微小反射镜片2401在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶0对应的微小反射镜片在一帧图像的整个显示周期内均处于关状态,与灰阶255对应的微小反射镜片在一帧图像的整个显示周期内均处于开状态,而与灰阶127对应的微小反射镜片在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此通过图像信号控制数字微镜器件240中每个微小反射镜片在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片2401对应像素的亮度(灰阶),实现对投射至数字微镜器件240的照明光束进行调制的目的。
如图11和12所示,数字微镜器件240前端的光导管210,透镜组件220和反射镜230形成照明光路,光源100发出的照明光束经过照明光路后形成符合数字微镜器件240所要求的光束尺寸和入射角度。
如图11所示,镜头300包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近激光投影设备1的出光侧(即沿着N方向,镜头300远离光机200的一侧)的镜片群组,后群是靠近光机200出光侧(即沿着N方向,镜头300靠近光机200的一侧)的镜片群组。镜头300可以为变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。
下面详细描述根据本公开一些实施例的光源100中的激光器10。本公开一些实施例提供一种激光器。图1为根据一些实施例的一种激光器的爆炸结构图。如图1所示,该激光器10包括:底板101、框体102、多个发光组件103(图1中未显示,可参见图2 或图5)、盖板104和透光密封层105。框体102设置在底板101上,并形成容置空间。多个发光组件103均位于容置空间内,并设置于底板101上。盖板104的外边缘固定连接于框体102远离底板101的表面,盖板104的内边缘固定连接于透光密封层105。
激光器10还包括与多个发光组件103电连接的多个导电引脚106,框体102的侧壁具有多个翻边孔K,导电引脚106从对应的一个翻边孔K伸出并与外部电源电连接,从而通过外部电源激发发光组件103发出激光。该激光穿过透光密封层105射出,实现激光器10的发光。
图2为图1所示的激光器组装后的剖视图。如图1和图2所示,在一些实施例中,底板101为板状结构,包括中间部分1011和周边部分1012。中间部分1011的厚度比周边部分1012的厚度更大。中间部分1011被配置为承载多个发光组件103,周边部分1012被配置为承载框体102。底板101的承载多个发光组件103和框体102的表面为内表面,底板101的另一相对表面为外表面。外表面用于与散热结构接触导热。底板101采用导热性能好的材料制成,例如,无氧铜(oxygen-free copper)。无氧铜的导热系数较大,使得设置在底板101上的多个发光组件103在工作时产生的热量可以快速地传导至激光器10外部的散热结构,进而较快地散发热量,避免热量聚集对发光组件103造成损伤。
框体102呈薄板状,并与底板101的周边部分1012固定连接。如图1所示,框体102呈方环状。在替代实施例中,框体102也可以呈圆环状,五边形的环状,或者其他的环状。不管框体102是什么形状,其均用于与底板101围合形成容置空间。框体102的材料可以包括可伐合金(kovar alloy)。例如,铁镍钴合金或铁镍合金。
图3A为图2中A部分的局部放大图。如图3A所示,框体102包括依次连接的第一折边1021、框体本体1022和第二折边1023。该第一折边1021与第二折边1023均相对于框体本体1022弯折。
框体102的下部向所述容置空间的内部翻折形成第一折边1021,框体102的上部向所述容置空间的外部翻折形成第二折边1023。当第二折边1023向所述容置空间的外部翻折时,可以避免对所述容置空间的占用,保证多个发光组件103具有足够的设置空间。但并不局限于此,框体102的下部也可以向外翻折形成第一折边1021,框体102的下部也可以向内翻折形成第二折边1023。第一折边1021和第二折边1023可以均向内翻折,也可以均向外翻折。
在一些实施例中,框体102一体成型,框体102为钣金件。在一些实施例中,框体102采用冲压工艺形成。
示例性地,对一块板进行冲压,使得该板具有弯折、凹陷、凸起或翻边,以得到框体102。例如,对该板的一个侧边进行弯折以形成第一折边1021,对该板的另一个相对侧边进行弯折以形成第二折边1023;之后将该板弯折成环状,以使第一折边1021向该环状结构的内侧翻折、第二折边1023向该环状结构的外侧翻折,从而得到框体102。
此外,如后文中将要介绍的,在将上述板弯折成环状之前,还可以对位于第一折边1021和第二折边1023之间的框体本体1022进行冲孔,以形成翻边孔K(图3A中未显示,可参见图1或图2)。
需要说明的是,本公开不对第一折边1021、第二折边1023以及翻边孔K的制作顺序进行限制。根据工艺要求,可以先制作翻边孔K,也可以先制作第二折边1023。
框体102各个位置的厚度可以相同或大致相同;例如,框体102中的第一折边1021、框体本体1022与第二折边1023中各个位置的厚度大致相同。
示例性地,框体102的厚度范围为0.1毫米至1毫米,该厚度可以使得框体具备较大的机械强度,且满足冲压要求。例如,框体102的厚度为0.1毫米、0.2毫米、0.3毫米、0.4毫米、0.5毫米、0.6毫米、0.7毫米、0.8毫米、0.9毫米、1毫米。
在一些实施例中,第一折边1021和第二折边1023的环面均可以平行于底板101的内表面。第一折边1021可以设置于底板101上,例如,第一折边1021靠近底板101的表面与底板101固定。
在一些实施例中,框体102通过钎焊技术固定在底板101上。示例性地,将焊料放置在框体102的第一折边1021和底板101之间,然后对该焊料进行加热使焊料熔化,进而将框体102固定在底板101上。
需要说明的是,在进行钎焊时,底板和框体需要承受较大热量才能焊接在一起。较大的热量会产生较大的热应力,如果框体的厚度较大,则框体不容易在该热应力的作用下发生变形,但底板却容易在该热应力的作用下发生褶皱,导致底板的用于设置多个发光组件的内表面平整度较差,进而影响多个发光组件的设置。此外,底板上还需要贴装精密的光学器件以对多个发光组件发出的激光进行反射、会聚、准直等,如果底板的平整度发生变化,则容易降低光学器件的出光效果。
在本公开一些实施例提供的激光器中,框体102为钣金件,该框体102的厚度较小。因此,在钎焊时产生的热应力可以使框体102产生机械形变,从而避免底板101在热应力的作用下发生褶皱或变形。例如,框体102可以在该热应力的作用下发生轻微形变以释放该热应力,以避免底板101在热应力的作用下发生褶皱或变形,从而提高底板101的平整度,提高激光器的制备效果,以及提高设置在底板101上的多个发光组件103的出光效果。
如前所述,激光器10还包括与多个发光组件103电连接的多个导电引脚106,多个导电引脚106需要从框体102中穿出以和外部电源电连接。当框体102的厚度较小时,多个导电引脚106与框体102的接触面积减小,导致框体102对多个导电引脚106进行固定的可靠性降低。
为此,如图1所示,在框体本体1022中设置了多个翻边孔K。翻边孔K可以呈相对于框体本体1022凸出的筒状,翻边孔K的深度大于框体本体1022的厚度。多个导电引脚106对应地穿过多个翻边孔K,从而固定在框体102上,框体102上与多个导电引脚106固定的区域即为翻边孔K的内壁。
需要说明的是,翻边孔加工指的是将钣金件上的孔的周边翻折,从而加大孔的内径和孔的深度的加工活动。示例性地,可以先在框体本体1022上制作一个小孔(例如,通过冲孔工艺冲出该小孔,该小孔的深度为钣金件的厚度),之后使用凸模(punch-pin)在小孔的边缘进行翻边。例如,将该小孔的边缘部分沿垂直框体本体1022所在平面的方向进行拉伸,以得到框体本体1022上的翻边孔K。相对于初始的小孔,该翻边孔K的内径更大且深度也更大。
由于翻边孔K的深度相对于初始的小孔的深度更大,所以翻边孔K的内壁的面积更大,也就是说,导电引脚106与框体102的固定接触的面积更大,框体102对多个导电引脚106进行固定的可靠性提高。此外,即使翻边孔K的内壁上的某一位置与导电引脚106的接触不够紧密,只要翻边孔K的深度方向上的其他位置与导电引脚106紧密接触,即可以实现 翻边孔K与导电引脚106之间的密封。因此,提高了翻边孔的密封效果,以及激光器的容置空间的气密性,进而提高了激光器的制备效果和质量。
本公开一些实施例提供的激光器10的容置空间的泄漏率小于等于5×10 -9帕立方米每秒(Pa×m 3/s)。例如,5×10 -9帕立方米每秒、4×10 -9帕立方米每秒、3×10 -9帕立方米每秒、2×10 -9帕立方米每秒。
框体102具有多个翻边孔K。各个翻边孔K可以朝所述容置空间的内部凸出,也可以朝所述容置空间的外部凸出。或者,多个翻边孔K中的一部分朝所述容置空间的内部凸出,另一部分朝所述容置空间的外部凸出。当各个翻边孔K朝所述容置空间的外部凸出时,能够避免对所述容置空间的占用,使得多个发光组件103具备充足的设置空间。
本公开一些实施例提供的激光器10可以为多芯片激光二极管(Multi_chip Laser Diode,MCL)型的激光器。因此,激光器10中的多个发光组件103可以包括阵列排布的多行多列发光芯片。
在一些实施例中,激光器10为单色激光器,激光器10中的所有发光芯片可以均发出相同颜色的激光。或者激光器10也可以为多色激光器,该激光器10包括多类发光芯片,每类发光芯片用于发出一种颜色的激光,且不同类发光芯片发出的激光的颜色不同。
图4为图2中B部分的局部放大图。如图4所示,发光组件103包括发光芯片1031、热沉1032和反射棱镜1033(同样的结构也可参见图6或图9)。热沉1032固定在底板101上,发光芯片1031固定在热沉1032上,反射棱镜1033位于发光芯片1031的出光侧。
发光芯片1031向反射棱镜1033发出激光,反射棱镜1033将射入的激光朝远离底板101的方向反射。该激光可以穿过透光密封层105射出,从而实现激光器的发光。
热沉1032用于辅助散发发光芯片1031发光时的产生的热量。发光芯片1031在发光时会产生较多的热量,该热量可以通过热沉1032传导至底板101,进而散发至激光器10的外部(例如,散发至与底板101的外表面连接的散热结构),避免热量聚集对发光芯片1031的损伤。该热量还可以通过底板101传导至框体102,此时该热量对框体102的作用与钎焊产生的热量对框体102的作用相同,框体102也可以在该热量的作用下发生一定的变形,以抵消热应力,辅助发光芯片1031发出的热量的散发。
如图1至图3A所示,盖板104包括外边缘区域Q1、内边缘区域Q2、以及位于外边缘区域Q1和内边缘区域Q2之间的至少一个褶皱部C。盖板104的内边缘区域Q2界定一个开口1040,多个发光组件103发出的激光透过该开口1040。盖板104的外边缘区域Q1与框体102远离底板101的表面固定,例如与框体102的第二折边1023固定。盖板104的内边缘区域Q2与透光密封层105固定。
内边缘区域Q2相对于外边缘区域Q1朝底板101凹陷。外边缘区域Q1与内边缘区域Q2均可以为上下表面平坦的环形板状结构,以便于盖板104与框体102以及透光密封层105固定。该外边缘区域Q1所在的平面可以平行于内边缘区域Q2所在的平面。
该至少一个褶皱部C可以从内边缘区域Q2朝远离底板101的方向凸起。或者,该至少一个褶皱部C也可以从内边缘区域Q2朝底板101凹陷。
如图3A所示,该至少一个褶皱部C包括一个褶皱部C,该褶皱部C从内边缘区域Q2朝远离底板101的方向凸起。在对盖板104和框体102进行平行封焊时,框体102和盖板104会受热膨胀,进而产生较大的热应力。在该热应力的作用下,该褶皱部C会受到内边缘区域Q2和外边缘区域Q1的挤压。此时该褶皱部C可以类似于压缩弹簧,进行收缩形 变。这样,该褶皱部C可以吸收较多的应力,以起到一定的缓冲作用,因此,传导至透光密封层105的应力较小。
虽然图3A所示的盖板104仅具有一个褶皱部C,但这并不能理解为对本公开的限制。
如图3B所示,在一些实施例中,该至少一个褶皱部C包括两个褶皱部C,两个褶皱部C沿从内边缘区域Q2到外边缘区域Q1的方向依次排布。该两个褶皱部C均从内边缘区域Q2朝远离底板101的方向凸起。该两个褶皱部C吸收的应力相比于一个褶皱部C更多,起到的缓冲作用也更强,因此,传导至透光密封层105的应力也更小。
如图3C所示,在一些实施例中,该至少一个褶皱部C包括三个褶皱部C,三个褶皱部C沿从内边缘区域Q2到外边缘区域Q1的方向依次排布。该三个褶皱部C均从内边缘区域Q2朝远离底板101的方向凸起。该三个褶皱部C吸收的应力相比于一个褶皱部C或两个褶皱部C更多,起到的缓冲作用也更强,因此,传导至透光密封层105的应力也更小。
如图3B和图3C所示,当该至少一个褶皱部C包括多个(大于等于两个)褶皱部C时,多个褶皱部C沿从内边缘区域Q2到外边缘区域Q1的方向依次排布。
在盖板104具有多个褶皱部C时,该多个褶皱部C的截面可以呈波形,每两个相邻褶皱部之间具有间隔。褶皱部C从内边缘区域Q2朝远离底板101的方向凸起,或者褶皱部C从内边缘区域Q2朝底板101凹陷。
但并不局限于此,在盖板104具有多个褶皱部C时,可以有部分褶皱部C从内边缘区域Q2朝远离底板101的方向凸起,部分褶皱部C从内边缘区域Q2朝底板101凹陷。在一些实施例中,从内边缘区域Q2朝远离底板101的方向凸起的褶皱部C与从内边缘区域Q2朝底板101凹陷的褶皱部C交替排布。
在一些实施例中,褶皱部C呈齿状,例如,弧齿状、尖齿状或方齿状。
在一些实施例中,盖板104还包括外弯曲连接部1041和内弯曲连接部1042。外弯曲连接部1041连接外边缘区域Q1与至少一个褶皱部C。外边缘区域Q1产生的应力可以通过该外弯曲连接部1041传输至至少一个褶皱部C。该外弯曲连接部1041也可以在前述应力的作用下沿其自身的弯曲方向发生一定的形变,以吸收部分应力,从而减少向至少一个褶皱部C传递的应力。
内弯曲连接部1042连接内边缘区域Q2与至少一个褶皱部C。内边缘区域Q2产生的应力可以通过该内弯曲连接部1042传输至至少一个褶皱部C。该内弯曲连接部1042也可以在前述应力的作用下沿其自身的弯曲方向发生一定的形变,以吸收部分应力,从而减少向至少一个褶皱部C传递的应力。
在一些实施例中,外弯曲连接部1041或内弯曲连接部1042为倒角或圆角,以避免外弯曲连接部1041或内弯曲连接部1042处的应力太过集中导致外弯曲连接部1041或内弯曲连接部1042损坏。
在一些实施例中,盖板104为钣金件,盖板104各个位置的厚度相同或大致相同。
盖板104可以通过冲压工艺形成。例如,可以对一块环形板进行冲压,使得该环形板具有弯折、凹陷或凸起,从而形成外边缘区域Q1、内边缘区域Q2和至少一个褶皱部C,以得到本公开一些实施例提供的盖板104。
在一些实施例中,盖板104与框体102的材质相同。如此,在对盖板104与框体102进行平行封焊时,该盖板104的受热区域与框体102的受热区域可以直接熔融为一体,且不会产生相互作用而导致盖板104或框体102产生变形。这使得盖板104与框体102的固 定效果较好,且激光器10的容置空间的密封效果较好。
盖板104的材质可以包括可伐合金。例如,铁镍钴合金或铁镍合金。
如图1和图2所示,透光密封层105与盖板104的内边缘区域Q2密封固定。透光密封层105可以为板状结构。透光密封层105可以覆盖盖板104的开口1040且与盖板104固定。透光密封层105的材质可以为透光材质,例如,玻璃,树脂等。
在一些实施例中,透光密封层105靠近底板101的表面和远离底板101的表面中,至少一个表面上还可以贴附增亮膜,以提高激光器10的出光亮度。
在一些实施例中,先将透光密封层105与盖板104固定,然后再将盖板104和框体102通过平行封焊固定在一起。在对盖板104和框体102进行平行封焊时,框体102和盖板104会受热膨胀,进而产生较大的热应力。在该热应力的作用下,盖板104中的至少一个褶皱部C会受到内边缘区域Q2和外边缘区域Q1的挤压。此时各个褶皱部C可以类似于压缩弹簧,进行收缩形变。这样,该至少一个褶皱部C可以吸收较多的应力,以起到一定的缓冲作用,因此,传导至透光密封层105的应力较小。
在一些实施例中,即使盖板104受热会向透光密封层105膨胀,但由于至少一个褶皱部C能够在热应力的作用下进行一定地收缩,故盖板104由于受热膨胀而针对透光密封层105产生的形变量较小,故盖板104对透光密封层105的挤压较小,降低了透光密封层105在盖板104和框体102进行平行封焊时破裂的风险。
另外,由于该至少一个褶皱部C可以吸收较多的热应力,因此可以提高盖板104受力的极限值,增强了盖板104及透光密封层105对于较高的平行封焊温度的适应性,降低了对激光器10的制备条件的要求。此外,这也降低了对激光器10的使用环境的要求,从而扩大了激光器10的适用范围。
在平行封焊结束,不再对盖板104进行加热后,框体102和盖板104的温度下降,进而该至少一个褶皱部C可以恢复原状(即未受到内边缘区域Q2和外边缘区域Q1的挤压时的形状)。
如图1、图2和图3A所示,激光器10还包括多个环状密封绝缘子107,环状密封绝缘子107用于将一个导电引脚106固定在相应的翻边孔K中。
导电引脚106可以套有一个环状密封绝缘子107,进而才穿入翻边孔K。即,在导电引脚106位于翻边孔K中时,该环状密封绝缘子107位于导电引脚106与翻边孔K的内壁之间。
在一些实施例中,环状密封绝缘子107呈管状。环状密封绝缘子107的长度可以等于翻边孔K的深度,也可以略小于或略大于该翻边孔K的深度。
在将套有环状密封绝缘子107的导电引脚106穿入翻边孔K之后,可以对该环状密封绝缘子107进行加热。例如,加热到800至900摄氏度,使环状密封绝缘子107熔融,进而填充导电引脚106与翻边孔K的内壁之间的缝隙。
熔融后的环状密封绝缘子107可以作为密封粘合剂,粘合导电引脚106与该翻边孔K的内壁,之后使环状密封绝缘子107冷却固化。这样,不仅使得导电引脚106与框体102固定,而且还实现了导电引脚106与翻边孔K之间的密封。
在一些实施例中,环状密封绝缘子107的材质包括玻璃。需要说明的是,玻璃与可伐合金在高温下的粘合效果较好。本公开一些实施例提供的激光器10采用可伐合金制备框体102,采用玻璃制备环状密封绝缘子107,以使得环状密封绝缘子107在熔融后可以与 翻边孔K较好地融合,提高了对翻边孔的密封效果。
在一些实施例中,底板101和框体102组成的结构可以称为管壳或底座组件。盖板104和透光密封层105组成的结构可以称为上盖组件。如图1所示,在一些实施例中,管壳具有与底板101相对的敞口,盖板104和透光密封层105用于密封该敞口。管壳、盖板104和透光密封层105可以围成一个密闭的容置空间,多个发光组件103位于该容置空间中。在一些实施例中,也可以将底板101、框体102和导电引脚106组成的结构称为管壳或底座组件。
发光组件103中的发光芯片1031可以为半导体芯片。半导体芯片对环境中的湿气、有害气体和污染物的敏感性较高,较容易受到损伤。例如灰尘、水汽或者离子污染物等颗粒若进入激光器10内部,附着在发光芯片1031表面将引发发光芯片1031短路或开路,最终导致发光芯片1031失效。因此,需要对发光芯片1031进行气密性封装,以使发光芯片1031隔绝环境,保证发光芯片1031的清洁,避免发光芯片1031由于外界物质受到损害。
该容置空间的密封效果越好,发光组件103就可以更少地受到外部水氧的侵蚀,从而可以降低发光组件103的损坏风险,延长发光组件103的使用寿命,提高发光组件103的发光效果的稳定性,以及提高激光器10的质量和使用效果,延长激光器10的使用寿命。
如图2和图3A所示,在一些实施例中,多个导电引脚106对称地分布在框体102的两侧。固定于框体102两侧的多个导电引脚106位于框体102外的部分分别与外部电源的正极和负极电连接。而多个导电引脚106伸入框体102内的部分,分别与对应的发光芯片1031的电极电连接,以将外部电流传输至各个发光芯片1031(图2和图3A中未显示,可参见图4),进而激发多个发光芯片1031发出对应颜色的激光。
在一些实施例中,可以将底板101、框体102以及导电引脚106组装完成后,也即在得到底座组件后,再将各个发光组件103贴装于底板101上。之后针对各个导电引脚106以及对应的发光芯片1031进行打线(wire bonding),以使各个发光芯片1031的电极与对应的导电引脚106电连接。
如图1所示,上盖组件还可以包括密封件108,透光密封层105与盖板104可以通过该密封件108进行固定。
该密封件108可以包括低温玻璃焊料。或者,该密封件108也可以包括玻璃熔胶、环氧密封胶或其他密封胶水。
在一些实施例中,可以使透光密封层105的边缘区域与盖板104的内边缘区域Q2接触,且使密封件108包覆透光密封层105的侧面,以提高对透光密封层105的粘贴可靠度,且提高透光密封层105对激光器10的容置空间的密封可靠度。
示例性地,可以将透光密封层105与密封件108均放置在盖板104上,且使透光密封层105覆盖盖板104的开口1040,密封件108位于透光密封层105与盖板104之间且伸出透光密封层105的侧面。之后对密封件108进行加热,以使密封件108熔融并填充透光密封层105与盖板104之间的缝隙,从而固定透光密封层105与盖板104。
在一些实施例中,可以先将透光密封层105与盖板104通过密封件108固定,得到上盖组件。之后再将上盖组件与管壳固定,例如,采用平行封焊技术将上盖组件中的盖板104与框体102固定。
示例性地,可以将上盖组件放置在框体102远离底板101的一侧,且使盖板104的外 边缘区域Q1搭接在框体102的第二折边1023上。之后采用封焊设备对该外边缘区域Q1和第二折边1023进行加热,使该外边缘区域Q1与第二折边1023处于接触位置的部分熔融,进而将该外边缘区域Q1与第二折边1023焊接固定。
图5为根据一些实施例的再一种激光器的结构图。在一些实施例中,如图5所示,在图2的基础上,激光器10还包括准直镜组109。准直镜组109位于上盖组件远离底板101的一侧。例如,准直镜组109的边缘与盖板104的外边缘区域Q1固定。
准直镜组109用于将多个发光组件103发出的激光进行准直后射出。准直镜组109包括多个准直透镜,该多个准直透镜与激光器10中的多个发光组件103对应。发光组件103发出的激光射向对应的准直透镜,进而被该准直透镜进行准直后射出。
需要说明的是,对光线进行准直指的是对发散光线进行会聚,使得光线的发散角度变小,更加接近平行光。
在一些实施例中,在将底座组件与上盖组件组装完成之后,可以将准直镜组109悬于盖板104远离底板101的一侧,调试准直透镜对发光组件103发出的激光的准直效果。
在确定准直镜组109的位置可以实现发光组件103射出的激光可以穿过对应的准直透镜后,在盖板104的外边缘区域Q1上涂覆粘接剂,进而通过该粘接剂将准直镜组109与盖板104固定。
在一些实施例中,该粘接剂包括环氧密封胶或其他密封胶水。
由于可以对准直镜组109的位置进行调整,故即使钎焊或平行封焊时产生的热量导致框体102发生轻微形变,也可以通过对准直镜组109的位置进行调整来减少或消除框体102发生形变对多个发光组件103的激光出射产生的影响,进而实现激光器10的正常发光。
准直镜组109中的多个准直透镜可以一体成型。例如,准直镜组109远离底板101的一侧具有朝远离底板101的一侧弯曲的多个凸弧面,每个凸弧面所在的部分可以作为一个准直透镜。因此,准直镜组109可以包括多个准直透镜。
该准直透镜可以为平凸透镜。该准直透镜可以具有一个凸弧面和一个平面,该凸弧面和平面可以是两个相对的面。该平面可以平行于底板101的内表面或外表面,且靠近底板101设置。准直镜组109具有的每个凸弧面均可以作为一个准直透镜中的凸弧面。
在一些实施例中,在组装激光器时,可以先将各个环状密封绝缘子107套在各个导电引脚106上,之后将套有环状密封绝缘子107的导电引脚106穿入框体102的翻边孔K,且使环状密封绝缘子107位于该翻边孔K中。
之后将框体102放置在底板101上,且在框体102和底板101之间放置焊料(如银铜焊料)。接着将底板101、框体102和导电引脚106组成的结构放入高温炉中进行密封烧结。待密封烧结并固化后,底板101、框体102、以及导电引脚106即可成为一个整体(也即底座组件),且实现了框体102的翻边孔K处的气密。
接着可以将多个发光组件103焊接在底板101上的对应位置。还可以通过密封材料将透光密封层105与盖板104进行固定,得到上盖组件,继而采用平行封焊技术将上盖组件焊接在框体102远离底板101的表面上。
最后对准直镜组109的位置进行对准后,将准直镜组109通过环氧密封胶固定在上盖组件远离底板101的一侧,至此完成激光器10的组装。
需要说明的是,上述组装过程仅为本公开实施例提供的一种示例性的过程,其中的各个步骤中采用的焊接工艺也可以采用其他工艺代替,各个步骤的先后顺序也可以适应调 整,本公开实施例对此不做限定。
图6为根据一些实施例的另一种激光器的结构图,图7为根据一些实施例的另一种激光器的爆炸图,图6可以为图7所示的激光器的沿b-b’线的截面图。下面仅描述图6和图7所示的激光器与前述图5所示激光器的不同之处,相同之处不再赘述。需要说明的是,在图6和图7中,对于与图5所示的激光器中相同的零部件,使用与图5示出的相同的附图标记。在一些实施例中,如图6和图7所示,该激光器10省略了盖板104,而是由透光密封层105直接与管壳固定。
管壳中的底板101与框体102可以为一体结构,或者也可以分别为独立的结构,通过焊接在一起形成管壳。
在图5所示的激光器中,盖板104和透光密封层105组成上盖组件。上盖组件与管壳通过平行封焊固定在一起。进行平行封焊时,将两个待封焊的物体叠加在一起,封焊设备在叠加的两个待封焊的物体表面滚动,以向该两个待封焊的物体施加热量,使该两个待封焊的物体的接触面在热量的作用下熔融,进而将该两个待封焊的物体固定在一起。
平行封焊的工艺参数主要有焊接电流和焊接速度。焊接电流越大,封焊设备产生的热量越大。焊接速度越慢,待封焊物体接收的热量越多。
若焊接电流太小,则无法在待焊接的物体之间形成熔焊点,会影响待焊接物体之间的密封。若焊接电流太大,则待焊接的物体受到的热量冲击太大,会导致待焊接的物体被烧坏。若焊接速度太小,则焊接时间延长,焊接热量增大,导致待焊接的物体变形,从而导致封焊轨迹不平整。若焊接速度过大,则会导致封焊轨迹不连续,影响待焊接物体之间的密封。因此平行封焊的操控较为困难。
此外,如前所述,当使用盖板104时,在一些实施例中,盖板104的内边缘区域Q2通过密封件108与透光密封层105粘接在一起。密封件108可以包括低温玻璃焊料,也可以包括玻璃熔胶、环氧密封胶或其他密封胶水。而密封件108在低温烧结的过程中会产生气泡,从而使所述容置空间存在漏气的风险。
但这并不表明要放弃图5所示的激光器10的结构。例如,由上面的描述可知,盖板104包括至少一个褶皱部C,该至少一个褶皱部C在平行封焊过程中可以吸收一定的应力,因此图5所示的激光器10也是本公开想要保护的。
图6和图7所示的激光器10省略了盖板104,使透光密封层105直接与管壳通过焊料焊接在一起。如此一来,相对于平行封焊,焊料焊接的方式操作简单,密封可靠性高,能够保证所述容置空间的密封性要求,也无需考虑复杂的焊接参数,可以简化激光器10封装的工艺步骤。由于省略了盖板104,因此无需采用密封件108固定盖板104和透光密封层105,避免了所述容置空间的漏气现象。并且,由于省略了盖板104,激光器10的体积也减小了,有利于实现激光器10的小型化和薄型化。
透光密封层105的形状和尺寸与管壳的形状和尺寸相适应。示例性地,透光密封层105的长度范围为17.05毫米至17.35毫米,例如17.05毫米、17.10毫米、17.15毫米、17.20毫米、17.25毫米、17.30毫米、17.35毫米;该透光密封层105的宽度范围为11.15毫米至11.45毫米,例如11.15毫米、11.20毫米、11.25毫米、11.30毫米、11.35毫米、11.40毫米、11.45毫米;该透光密封层105的厚度范围为0.65毫米至0.75毫米,例如0.65毫米、0.70毫米、0.75毫米。
通过透光密封层105对管壳的敞口进行密封时,透光密封层105还需要具备足够的硬 度以及强度,以对管壳内的部件(例如,多个发光组件103)进行保护。此外,多个发光组件103发出的激光需要通过透光密封层105射出,因此该透光密封层105的透光率也需要较大。例如,透光密封层105的摩氏硬度需要大于或等于9,例如9、10;和/或,透光密封层105的透光率需要大于或等于85%,例如85%、88%、90%、95%。
示例性地,透光密封层105的材质为蓝宝石。蓝宝石的摩氏硬度高达9.0,透光率大于85%,且对于可见光和红外波段的光都具有较高的透过率。
透光密封层105一面的边缘可以设置有焊料层H,该焊料层H的设置区域可以为环状区域。
透光密封层105中的焊料层H位于其靠近底板101的一面。图7中为了便于示意,将透光密封层105远离底板101的一面朝上放置。透光密封层105可以通过该焊料层H与框体102远离底板101的表面固定,透光密封层105用于密封管壳的敞口,进而底板101、框体102和透光密封层105可以形成密闭的所述容置空间。多个发光组件103可以位于该密闭空间中,进而避免外界的水氧侵蚀,提高多个发光组件103的可靠性。
需要说明的是,在供应商提供透光密封层105时,该透光密封层105上就可以设置有焊料层H,也即是透光密封层105上预置有焊料层H。在替代实施例中,也可以在制备激光器10时,再在该透光密封层105上设置焊料层H。
焊料层H的材质可以包括金和锡。例如,该焊料层H可以为金锡焊料层,该金锡焊料层中金的含量(重量)可以占到80%,锡的含量(重量)可以占到20%。金锡焊料具有高耐腐蚀性、高抗蠕变性及良好的导热和导电性。
例如,金锡焊料的热传导系数可以达到57瓦/(米·开尔文)(W/m·K)。因此,采用金锡焊料进行焊接后的物体的焊接强度较高,且通过金锡焊料进行焊接的工艺的可操控性较好,通过金锡焊料进行焊接的成品率较高。
示例性地,该焊料层H可以包括沿远离透光密封层105的方向,依次叠加在透光密封层105的边缘的铂层和金锡合金层。
需要说明的是,由于金较难直接在透光密封层105上附着,故可以先在透光密封层105上设置一层较薄的铂层,之后再在该铂层上镀上金锡合金层,以保证金锡合金层的附着牢固度。
示例性地,铂层的厚度范围为0.2微米至0.3微米,例如,该铂层的厚度为0.2微米、0.22微米、0.25微米、0.28微米、0.3微米。金锡合金层的厚度范围为2微米至3微米,例如,该金锡合金层的厚度为2微米、2.2微米、2.5微米、2.8微米、3微米。
焊料层H中的铂层和金锡合金层均呈环状,且铂层和金锡合金层的形状大小可以均相同。示例性地,焊料层H的宽度范围为1毫米至1.5毫米,也即焊料层H的宽度大于或等于1毫米,且小于或等于1.5毫米;例如,1毫米、1.1毫米、1.2毫米、1.3毫米、1.4毫米、1.5毫米。焊料层H中的铂层和金锡合金层的宽度范围也可以均为1毫米至1.5毫米。
示例性地,该焊料层H各个位置处的宽度均相同;或者焊料层H不同位置处的宽度也可以存在差异,此时焊料层H各个位置处的宽度仍可以均处于焊料层H的上述宽度范围内。
需要说明的是,在采用焊料H焊接两个物体时,该两个物体通过该焊料层H相接触的面积越大,该两个物体的焊接牢固度越高。在一些实施例中,通过透光密封层105边缘的环状的焊料层H将透光密封层105与框体102进行固定。由于透光密封层105上的焊料层H是预先设置的,故该焊料层H与框体102的接触面积越大,则透光密封层105与框体102 的固定效果越好。
示例性地,框体102中远离底板101的第二折边1023的宽度大于透光密封层105中焊料层H的宽度,以保证将透光密封层105设置在框体102远离底板101的第二折边1023上时,该焊料层H可以全部接触到框体102。例如,框体102的第二折边1023的各个位置的宽度均相同,例如第二折边1023的宽度大于1.5毫米,例如1.6毫米、1.7毫米、1.8毫米、2毫米、3毫米等。
在一些实施例中,为了提高透光密封层105与框体102之间的密封效果,需要使透光密封层105的设置有焊料层H的边缘的表面与框体102的第二折边的表面的平整度均较高,以避免由于透光密封层105的边缘的表面或者第二折边1023的表面存在凹凸缺陷,导致密封失效的情况。
示例性地,第二折边1023的表面的平整度可以小于或等于0.2毫米,也即是该第二折边1023的表面中最凹点与最凸点在垂直该表面的方向上的距离小于或等于0.2毫米。
示例性地,第二折边1023的环状表面上可以设置有金层。例如,第二折边1023的环状表面上预先镀有金层。
由于金锡焊料层中大部分成分为金,对透光密封层105加热后,透光密封层105上的金锡焊料层可以与框体102上的金层互溶,以更好地融为一体。进而可以进一步提高透光密封层105与第二折边1023的焊接牢固性。
金锡焊料具有良好的浸润性且对金层无浸蚀现象。由于金锡合金层与金层的成分接近,因而金锡合金层通过扩散对金层的浸溶程度很低,避免了焊接工艺对透光密封层105和框体102原有特性的影响。
需要说明的是,为了简化附图,图6和图7未示出框体102的第一折边1021和第二折边1023。而且,在一些实施例中,框体102的第一折边1021和第二折边1023也不是必需的。
制备图6和图7所示的激光器10时,可以先将底板101与框体102进行焊接,然后将多个发光组件103贴装在底板101上。
之后可以将设置有焊料层H的透光密封层105设置在框体102远离底板101的一侧,且使焊料层H与框体102远离底板101的表面接触。
接着再对透光密封层105的边缘进行加热使焊料层H中的焊料熔化,之后将熔化后的焊料层H固化,即可得到组装后的激光器10。
示例性地,在将底板101与框体102焊接后,也可以先对透光密封层105的边缘进行加热,以使透光密封层105上设置的焊料层H中的焊料熔化。接着将附着有熔化后的焊料层H的透光密封层105设置在框体102远离底板101的一侧,且使该焊料层H与框体102远离底板101的表面接触。最后将将熔化后的焊料层H固化,以得到组装后的激光器。
如图6和图7所示,在一些实施例中,激光器10中的多个发光组件103排成多行多列。在图7中,以激光器10包括排成四行五列的20个发光组件103为例,其中行方向为X方向,列方向为Y方向。
图8为图6中D部分的局部放大图,如图8所示,发光组件103包括发光芯片1031、热沉1032和反射棱镜1033。热沉1032和反射棱镜1033均固定在底板101上,发光芯片1031固定于热沉1032上,反射棱镜1033位于发光芯片1031的出光侧。
反射棱镜1033中与发光芯片1031相对的表面F为反光面,该反光面用于反射射入的 激光,以实现反射棱镜1033对激光的反射功能。在一些实施例中,反射棱镜1033中与发光芯片1031相对的表面可以镀有反射膜,以形成该反光面F。
如图8所示,反射棱镜1033的反光面F与底板101的内表面的夹角θ可以为锐角,进而保证将发光芯片1031发出的激光朝远离底板101的方向反射。示例性地,该反光面F与底板101的内表面的夹角为30°、45°、60°等。
如图8所示,在一些实施例中,反射棱镜1033的侧面可以呈直角梯形。在替代实施例中,反射棱镜1033的侧面也可以呈直角三角形,或者锐角三角形,或者其他形状,本公开对此不做限定。
如图6和图7所示,激光器10的准直镜组109包括与多个发光芯片1031对应的多个准直透镜T。
发光芯片1031可以向对应的反射棱镜1033的反光面F发出激光,该反射棱镜1033的反光面F将射入的激光反射向透光密封层105。该激光透射透光密封层105后,可以射向与该发光芯片1031对应的准直透镜T。准直透镜T可以将射入的激光准直后射出,进而实现激光器10的发光。在一些实施例中,可以对反射棱镜1033的结构进行改造,以使反射棱镜1033对射入的激光进行准直,并将该激光进行反射,从而省略准直镜组109。
示例性地,图9为根据一些实施例的又一种激光器的结构图。如图9所示,在一些实施例中,发光芯片1031对应的反射棱镜1033的反光面F为凹弧面。
发光芯片1031将激光射向该凹弧面,该凹弧面可以调整射入的激光的发散角度,对射入的激光进行准直后,将激光沿远离底板101的方向反射。进而该激光可以射向透光密封层105,并透射透光密封层105后射出,实现激光器10的发光。
在本公开的一些实施例中,对于图9所示的激光器,发光芯片1031对应的反射棱镜1033可以直接对激光进行准直,该反射棱镜1033可以实现准直镜组109的作用。如此可以不再设置准直镜组109来进行激光的准直,激光器中的部件可以进行一定的减少,激光器的厚度可以减薄,激光器的体积可以减小。
另外,由于不再进行准直镜组的耦合工序,还能够减少激光器的制备难度。并且,可以针对各个发光芯片1031分别独立设置对应的反射棱镜1033,反射棱镜1033与发光芯片1031的对应位置关系可以设置的较为精准,提高了激光器射出的激光的准直度。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种激光器,包括管壳、上盖组件和多个发光组件;其中,
    所述管壳包括:
    底板;和
    框体,设置在所述底板上,与所述底板围合形成具有敞口的容置空间;所述框体包括相互连接的第一折边和框体本体,所述第一折边相对于所述框体本体弯折,且所述第一折边与所述底板固定连接;
    所述多个发光组件位于所述容置空间内,并设置在所述底板上;
    所述上盖组件与所述管壳固定,并封闭所述容置空间。
  2. 根据权利要求1所述的激光器,其中,所述框体本体包括多个翻边孔,翻边孔的深度大于所述框体本体的厚度;
    所述激光器还包括多个导电引脚,导电引脚与对应的一个发光组件电连接后穿过对应的一个翻边孔,并伸出到所述容置空间的外部。
  3. 根据权利要求2所述的激光器,其中,翻边孔呈相对于所述框体本体向所述容置空间的外部凸出的筒状。
  4. 根据权利要求2或3所述的激光器,还包括多个环状绝缘子;其中,环状绝缘子位于对应的一个导电引脚与对应的一个翻边孔的内壁之间,并被配置为将一个导电引脚固定在对应的翻边孔中。
  5. 根据权利要求1所述的激光器,其中,所述框体还包括第二折边,所述第二折边与所述框体本体连接,所述第一折边位于所述框体本体的一侧、所述第二折边位于所述框体本体的另一相对侧;
    所述上盖组件与所述第二折边固定连接。
  6. 根据权利要求5所述的激光器,其中,所述第一折边相对于所述框体本体向所述容置空间的内部翻折,所述第二折边相对于所述框体本体向所述容置空间的外部翻折。
  7. 根据权利要求1所述的激光器,其中,所述框体为钣金件,且所述框体各个位置的厚度相同;所述框体的厚度范围为0.1毫米至1毫米。
  8. 根据权利要求1所述的激光器,其中,所述上盖组件包括:
    盖板,所述盖板的外边缘与所述框体远离所述底板的表面固定;和
    透光密封层,所述透光密封层与所述盖板的内边缘固定。
  9. 根据权利要求8所述的激光器,其中,所述盖板的材质与所述框体的材质相同。
  10. 根据权利要求8或9所述的激光器,其中,所述盖板包括:
    外边缘区域,与所述框体远离底板的表面固定;
    内边缘区域,与所述透光密封层固定,所述内边缘区域界定一个开口,所述透光密封层覆盖并封闭所述开口;和
    至少一个褶皱部,位于所述外边缘区域和所述内边缘区域之间,褶皱部从所述内边缘区域朝所述底板的方向凸起或凹陷。
  11. 根据权利要求10所述的激光器,其中,所述盖板还包括:外弯曲连接部,连接所述外边缘区域与一个褶皱部;和/或,内弯曲连接部,连接所述内边缘区域与一个褶皱部。
  12. 根据权利要求8至11中任一项所述的激光器,其中,所述透光密封层靠近所 述底板的表面和远离所述底板的表面中的至少一个表面上贴附有增亮膜。
  13. 根据权利要求8至11中任一项所述的激光器,其中,所述上盖组件还包括密封件,所述透光密封层与所述盖板通过所述密封件进行固定;
    所述密封件包括低温玻璃焊料、玻璃熔胶或环氧密封胶中的任一个。
  14. 根据权利要求1所述的激光器,其中,所述上盖组件包括:
    透光密封层,与所述框体远离所述底板的表面固定;和
    焊料层,位于所述透光密封层与所述框体远离所述底板的表面之间,以固定所述透光密封层与所述框体远离所述底板的表面。
  15. 根据权利要求14所述的激光器,其中,所述焊料层包括沿远离所述透光密封层的方向,依次叠加在所述透光密封层的边缘的铂层和金锡合金层。
  16. 根据权利要求15所述的激光器,其中,所述铂层的厚度范围为0.2微米至0.3微米;所述金锡合金层的厚度范围为2微米至3微米;所述焊料层的宽度范围为1毫米至1.5毫米。
  17. 根据权利要求15或16所述的激光器,其中,所述框体远离所述底板的表面上设置有金层。
  18. 根据权利要求14至17中任一项所述的激光器,其中,所述框体远离所述底板的表面的平整度小于或等于0.2毫米。
  19. 根据权利要求1至18中任一项所述的激光器,其中,所述底板包括:
    中间部分,被配置为承载所述多个发光组件;和
    周边部分,被配置为承载所述框体,所述周边部分的厚度小于所述中间部分的厚度。
  20. 一种激光投影设备,包括:
    光源,所述光源包括如权利要求1至19中任一项所述的激光器,所述光源被配置为发出照明光束;
    光机,所述光机被配置为将所述光源发出的照明光束进行调制以获得投影光束;和镜头,所述镜头被配置为将所述投影光束进行成像。
PCT/CN2022/100506 2021-06-22 2022-06-22 激光器及激光投影设备 WO2022268128A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280044501.2A CN117561656A (zh) 2021-06-22 2022-06-22 激光器及激光投影设备
US18/391,280 US20240128709A1 (en) 2021-06-22 2023-12-20 Laser device and laser projection apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110693801.0A CN113422287A (zh) 2021-06-22 2021-06-22 激光器
CN202110693475.3 2021-06-22
CN202110693801.0 2021-06-22
CN202110693475.3A CN113451875B (zh) 2021-06-22 2021-06-22 激光器
CN202111057909.7A CN113764973A (zh) 2021-09-09 2021-09-09 激光器及其制备方法
CN202111057909.7 2021-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/391,280 Continuation US20240128709A1 (en) 2021-06-22 2023-12-20 Laser device and laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2022268128A1 true WO2022268128A1 (zh) 2022-12-29

Family

ID=84545181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100506 WO2022268128A1 (zh) 2021-06-22 2022-06-22 激光器及激光投影设备

Country Status (3)

Country Link
US (1) US20240128709A1 (zh)
CN (1) CN117561656A (zh)
WO (1) WO2022268128A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205578725U (zh) * 2016-05-04 2016-09-14 宁德时代新能源科技股份有限公司 箱体密封装置
JP2018085368A (ja) * 2016-11-21 2018-05-31 日本特殊陶業株式会社 蓋部材、該蓋部材を用いた発光装置、およびこれらの製造方法
US20210083451A1 (en) * 2019-09-13 2021-03-18 Nichia Corporation Light emission device
CN112825409A (zh) * 2019-11-19 2021-05-21 青岛海信激光显示股份有限公司 激光器
CN113422287A (zh) * 2021-06-22 2021-09-21 青岛海信激光显示股份有限公司 激光器
CN113451875A (zh) * 2021-06-22 2021-09-28 青岛海信激光显示股份有限公司 激光器
CN113764973A (zh) * 2021-09-09 2021-12-07 青岛海信激光显示股份有限公司 激光器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205578725U (zh) * 2016-05-04 2016-09-14 宁德时代新能源科技股份有限公司 箱体密封装置
JP2018085368A (ja) * 2016-11-21 2018-05-31 日本特殊陶業株式会社 蓋部材、該蓋部材を用いた発光装置、およびこれらの製造方法
US20210083451A1 (en) * 2019-09-13 2021-03-18 Nichia Corporation Light emission device
CN112825409A (zh) * 2019-11-19 2021-05-21 青岛海信激光显示股份有限公司 激光器
CN113422287A (zh) * 2021-06-22 2021-09-21 青岛海信激光显示股份有限公司 激光器
CN113451875A (zh) * 2021-06-22 2021-09-28 青岛海信激光显示股份有限公司 激光器
CN113764973A (zh) * 2021-09-09 2021-12-07 青岛海信激光显示股份有限公司 激光器及其制备方法

Also Published As

Publication number Publication date
US20240128709A1 (en) 2024-04-18
CN117561656A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2022053052A1 (zh) 多芯片激光器封装组件
CN113451875B (zh) 激光器
US10739554B2 (en) Electro-optical device, manufacturing method of electro-optical device, and electronic apparatus
CN112038884A (zh) 激光器
JP2017139444A (ja) 光源装置、光源装置の製造方法およびプロジェクター
WO2022268128A1 (zh) 激光器及激光投影设备
CN113422287A (zh) 激光器
US10156779B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
CN217004310U (zh) 激光光源装置及照明系统
CN116107145A (zh) 激光投影设备
CN114253061A (zh) 激光器及投影设备
US10156717B2 (en) Electro-optical device, method of manufacturing electro-optical device, electro-optical unit, and electronic apparatus
US20230013971A1 (en) Laser device and laser projection apparatus
JP7428129B2 (ja) 発光装置および投射型表示装置
CN113703271A (zh) 激光器及投影设备
CN113764973A (zh) 激光器及其制备方法
CN112909730B (zh) 激光器
WO2023185081A1 (zh) 激光投影设备
JP2017212363A (ja) 光源装置及びプロジェクター
CN217507923U (zh) 激光器
WO2023030540A1 (zh) 激光投影设备
JP4967911B2 (ja) 光源装置およびその製造方法、プロジェクタ、モニター装置
WO2022111334A1 (zh) 激光器和投影设备
US20230305376A1 (en) Light source apparatus and projector
CN217522371U (zh) 激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280044501.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE