WO2023030540A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2023030540A1
WO2023030540A1 PCT/CN2022/117366 CN2022117366W WO2023030540A1 WO 2023030540 A1 WO2023030540 A1 WO 2023030540A1 CN 2022117366 W CN2022117366 W CN 2022117366W WO 2023030540 A1 WO2023030540 A1 WO 2023030540A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
emitting chips
area
collimating
Prior art date
Application number
PCT/CN2022/117366
Other languages
English (en)
French (fr)
Inventor
李建军
田新团
李巍
田有良
刘显荣
顾晓强
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111037630.2A external-priority patent/CN113872042B/zh
Priority claimed from CN202111038583.3A external-priority patent/CN113764972B/zh
Priority claimed from CN202111045935.8A external-priority patent/CN113594847A/zh
Priority claimed from CN202111669286.9A external-priority patent/CN116417894A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2023030540A1 publication Critical patent/WO2023030540A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present disclosure relates to the field of display technology, in particular to a laser projection device.
  • Laser projection equipment includes light source components, light machines and lenses.
  • the illuminating light beam provided by the light source module becomes the projecting light beam after being optically mechanically modulated, and is projected onto the screen or the wall by the lens to form a projected image.
  • the light source component includes a laser, and a plurality of light-emitting chips are packaged in the laser. The plurality of light emitting chips are configured to emit laser light so that the laser light constitutes an illumination beam.
  • the laser projection device includes a light source assembly, an optical machine and a lens.
  • the light source assembly is configured to provide an illumination beam.
  • the optical machine is configured to modulate the illumination beam with an image signal to obtain a projection beam.
  • the lens is configured to project the projection beam into an image.
  • the light source assembly includes a bottom plate, a frame body, a plurality of light-emitting chips, a connection layer, a cover plate and a light-transmitting layer.
  • the frame body is located on the bottom plate, and an accommodation space is defined between the bottom plate and the frame body.
  • the plurality of light emitting chips are located in the containing space and configured to emit laser light.
  • the connection layer is configured to be fixed with the frame body, so as to fix the frame body with the cover plate by means of locally heated welding.
  • the outer edge of the cover plate is fixed to the side of the connection layer away from the bottom plate.
  • the edge of the transparent layer is fixed to the inner edge of the cover plate.
  • FIG. 1 is a block diagram of a laser projection device according to some embodiments
  • FIG. 2 is a timing diagram of a light source assembly in a laser projection device according to some embodiments
  • FIG. 3 is a diagram of an optical path in a laser projection device according to some embodiments.
  • FIG. 4 is a structural diagram of a color filter assembly according to some embodiments.
  • FIG. 5 is a structural diagram of a digital micromirror device according to some embodiments.
  • Fig. 6 is the position figure that a tiny mirror mirror swings in the digital micromirror device among Fig. 5;
  • Fig. 7 is a working principle diagram of a tiny mirror according to some embodiments.
  • FIG. 8 is another block diagram of a laser projection device according to some embodiments.
  • FIG. 9 is a structural diagram of a laser in the related art.
  • Figure 10 is a block diagram of a laser according to some embodiments.
  • Figure 11 is another block diagram of a laser according to some embodiments.
  • Figure 12 is an exploded view of a laser according to some embodiments.
  • Figure 13 is a top view of a laser according to some embodiments.
  • Figure 14 is another top view of a laser according to some embodiments.
  • Figure 15 is yet another block diagram of a laser according to some embodiments.
  • Figure 16 is yet another top view of a laser according to some embodiments.
  • Figure 17 is yet another top view of a laser according to some embodiments.
  • Figure 18 is yet another top view of a laser according to some embodiments.
  • Fig. 19 is a sectional view of the laser in Fig. 18 along b-b' line;
  • Figure 20 is yet another top view of a laser according to some embodiments.
  • Figure 21 is yet another top view of a laser according to some embodiments.
  • Figure 22 is yet another block diagram of a laser according to some embodiments.
  • Figure 23 is a block diagram of a collimating lens according to some embodiments.
  • Figure 24 is another block diagram of a collimating lens according to some embodiments.
  • Fig. 25 is another structural diagram of a collimating lens according to some embodiments.
  • Fig. 26 is another structural diagram of a collimating lens according to some embodiments.
  • FIG. 27 is yet another structural diagram of a collimating lens according to some embodiments.
  • Light source assembly 1 laser 10; tube shell 101; bottom plate 1011; first area A1; second area A2; frame body 1012; first raised portion 10121; second raised portion 10122; light emitting chip 102; Cover plate 104; light-transmitting layer 105; collimating lens group 106; collimating lens 1061; first surface D1; second surface D2; heat sink 107; reflective prism 108; Color component 14; Green color filter 141; Blue color filter 142; Red color filter 143; Drive unit 144;
  • Optical machine 2 Diffusion component 21; Convergence component 22; Transmission component 23; Digital micromirror device 24;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection When describing some embodiments, the expression “connected” and its derivatives may be used. For example, the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other. The embodiments disclosed herein are not necessarily limited by the context herein.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallel and approximately parallel, wherein the acceptable deviation range of approximately parallel can be, for example, a deviation within 5 degrees; Deviation within 5 degrees.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • the laser projection device 1000 includes a light source assembly 1 , an optical engine 2 and a lens 3 .
  • the light source assembly 1 is configured to provide an illumination beam.
  • the optical machine 2 is configured to use an image signal to modulate the illumination beam provided by the light source assembly 1 to obtain a projection beam.
  • the lens 3 is configured to project the projection beam onto a screen or a wall to form an image.
  • the light source assembly 1, the light engine 2 and the lens 3 are sequentially connected along the beam propagation direction.
  • one end of the optical machine 2 is connected to the light source assembly 1 , and the light source assembly 1 and the optical machine 2 are arranged along the outgoing direction of the illumination beam of the laser projection device 1000 (refer to the direction M in FIG. 1 ).
  • the other end of the optical machine 2 is connected to the lens 3, and the optical machine 2 and the lens 3 are arranged along the outgoing direction of the projection beam of the laser projection device 1000 (refer to the direction N in FIG. 1 ).
  • the emission direction M of the illumination light beam of the laser projection device 1000 is substantially perpendicular to the emission direction N of the projection light beam of the laser projection device 1000 .
  • Such setting can make the structural arrangement of the laser projection device 1000 reasonable, and avoid the optical path of the laser projection device 1000 in a certain direction (for example, direction M or direction N) from being too long.
  • the light source assembly 1 can sequentially provide three primary colors of light (ie, red light, green light and blue light). In some other embodiments, the light source assembly 1 can output three primary colors of light at the same time, so as to continuously emit white light. Of course, the light beam provided by the light source assembly 1 may also include lights other than the three primary colors, such as yellow light.
  • the light source assembly 1 includes a laser that can emit light of at least one color, such as blue laser.
  • the light source assembly 1 may sequentially output blue, red and green lighting beams.
  • the light source assembly 1 outputs blue laser light in the first time period T1, outputs red laser light in the second time period T2, and outputs green laser light in the third time period T3.
  • the time for the light source assembly 1 to complete a round of sequential output of the primary color light beams is one cycle of the output of the primary color light beams from the light source assembly 1 .
  • the light source assembly 1 performs a round of sequential output of each primary color light beam.
  • the display period of one frame of target image is equal to one cycle of the primary color light beam output by the light source assembly 1, which is equal to the first time period T1 , the sum of the second time period T2 and the third time period T3.
  • the human eye will superimpose the colors of the sequentially output blue light beams, red light beams, and green light beams. Therefore, what the human eyes perceive is white light after mixing the three primary color light beams.
  • the light source assembly 1 includes: a laser 10 , a light-combining mirror assembly 12 , a light-condensing assembly 13 , a color filter assembly 14 and a uniform light assembly 15 .
  • the laser 10 is configured to provide an illumination beam.
  • the light-combining mirror assembly 12 is disposed on the light-emitting side of the laser 10 and is configured to reflect the illumination beam provided by the laser 10 to the light-condensing assembly 13 .
  • the light-condensing assembly 13 is disposed on the light-emitting side of the light-combining mirror assembly 12 and is configured to converge the illumination beam from the light-combining mirror assembly 12 .
  • the color filter assembly 14 is disposed on the light emitting side of the light concentrating assembly 13 and is configured to filter the illumination light beam converged by the light concentrating assembly 13 to sequentially output three primary colors of light.
  • the dodging component 15 is arranged on the light emitting side of the color filter component 14 and is configured to evenly light the illumination beam filtered by the color filter component 14 .
  • light combining mirror assembly 12 may be a dichroic mirror.
  • the light combining mirror assembly 12 can combine the red laser, green laser and blue laser emitted by the laser 10 reflected to the light-collecting assembly 13.
  • the light concentrating assembly 13 includes at least one plano-convex lens, and the convex surface of the at least one plano-convex lens faces the light output direction of the light combining lens assembly 12 .
  • the color filter assembly 14 may include a green color filter 141 , a blue color filter 142 , a red color filter 143 and a driving part 144 .
  • the driving unit 144 is configured to drive the color filter assembly 14 to rotate, so that the illumination light beam emitted by the laser 10 is filtered by color filters of different colors during the display period of one frame of target image.
  • the color filter assembly 14 rotates to the position where the red color filter 143 covers the light spots of the three primary colors of light, the other colors of the three primary colors of light except the red beam The light beams are blocked, while the red light beams are transmitted through the color filter assembly 14 through the red color filter 143 .
  • the dodging component 15 may be a light pipe.
  • the light guide can be a tubular device spliced by four planar reflectors, that is, a hollow light guide.
  • the light beam is reflected multiple times inside the light guide to achieve uniform light effect.
  • the uniform light component 15 may also adopt a solid light pipe.
  • the light inlet and outlet of the light pipe are rectangles with the same shape and area, the illumination beam enters from the light inlet of the light pipe, and then emits from the light outlet of the light pipe, and the beam homogenization is completed in the process of passing through the light pipe and spot optimization.
  • the uniform light assembly 15 is a light guide
  • the light source assembly 1 includes a light guide
  • the light machine 2 may not be provided with a light guide; when the uniform light assembly 15 is other components except the light guide, the light The machine 2 also includes the above-mentioned light guide for receiving the illumination light beam from the light source assembly 1 .
  • the optical machine 2 includes a digital micromirror device 24 .
  • the digital micromirror device 24 is located at the light output side of the light source assembly 1 , and is configured to use an image signal to modulate the illumination beam provided by the light source assembly 1 to obtain a projection beam, and reflect the projection beam to the lens 3 . Since the digital micromirror device 24 can control the projected light beam to display different colors and brightness for different pixels of the image to be displayed to finally form a projected image, the digital micromirror device 24 is also called a light modulation device (or light valve). In addition, according to the number of digital micromirror devices 24 used in the optical machine 2, the optical machine 2 can be divided into a single-chip system, a two-chip system or a three-chip system.
  • the optical machine 2 shown in FIG. 3 applies a digital light processing (Digital Light Processing, DLP) projection architecture
  • the light modulation device in some embodiments of the present disclosure is Digital Micromirror Device (Digital Micromirror Device, DMD).
  • DMD Digital Micromirror Device
  • the present disclosure does not limit the architecture applied to the optical machine 2, the type of the optical modulation device, and the like.
  • the digital micromirror device 24 includes thousands of tiny reflective mirrors 241 that can be individually driven to rotate, these tiny reflective mirrors 241 are arranged in an array, and each tiny reflective mirror 241 corresponds to of a pixel.
  • each tiny mirror 241 is equivalent to a digital switch, which can swing within the range of ⁇ 12 degrees or ⁇ 17 degrees under the action of external force.
  • FIG. 6 takes an example in which each tiny reflective mirror 241 can swing within a range of ⁇ 12 degrees for illustration.
  • the light reflected by the micro mirror 241 at a negative deflection angle is called OFF light.
  • OFF light is invalid light.
  • the light reflected by the tiny mirror 241 at a positive deflection angle is called ON light.
  • the ON light is an effective light beam that is irradiated by the tiny reflective lens 241 on the surface of the digital micromirror device 24 to receive the illumination beam, and enters the lens 3 through a positive deflection angle, and is used for projection imaging.
  • the open state of the micro-reflector 241 is the state where the micro-reflector 241 is and can be maintained when the illumination beam emitted by the light source assembly 1 is reflected by the micro-reflector 241 and can enter the lens 3, that is, the micro-reflector 241 is at a positive deflection angle. status.
  • the closed state of the tiny reflective mirror 241 is the state where the tiny reflective mirror 241 is and can be maintained when the illuminating light beam emitted by the light source assembly 1 is reflected by the tiny reflective mirror 241 and does not enter the lens 3, that is, the tiny reflective mirror 241 is in a negative deflection angle status.
  • the tiny mirrors 241 will switch between the on state and the off state at least once, so as to realize a frame of image according to the duration of the tiny mirrors 241 in the on state and the off state respectively.
  • the gray scale of each pixel in . For example, when a pixel has 256 gray scales from 0 to 255, the tiny reflective mirror 241 corresponding to the pixel with the gray scale of 0 is in the off state during the entire display period of the frame of image, corresponding to the pixel with the gray scale of 255.
  • the tiny reflective mirror 241 is in the on state during the entire display period of a frame of image, and the tiny reflective mirror 241 corresponding to the pixel with a gray scale of 127 is in the on state half of the time in the display period of a frame image, and the other half of the time is in the on state. off state. Therefore, by controlling the state of each tiny mirror 241 in the display period of a frame image and the maintenance time of each state in the digital micromirror device 24 through the image signal, the brightness (gray gray) of the corresponding pixel of the tiny mirror 241 can be controlled. order), so as to modulate the illumination beam projected to the digital micromirror device 24 .
  • the optical machine 2 further includes: a diffusing component 21 , a converging component 22 , a transmitting component 23 and a prism component 25 . It should be noted that the optical machine 2 may also include fewer or more components than those shown in FIG. 3 , which is not limited in the present disclosure.
  • the diffusion component 21 is located at the light output side of the light source component 1 and is configured to diffuse the illumination beam from the light source component 1 .
  • the converging component 22 is located at the light output side of the diffusing component 21 and is configured to converge the illuminating beam diffused by the diffusing component 21 .
  • the transmission component 23 is located at the light output side of the converging component 22 and is configured to transmit the illumination beam converged by the converging component 22 to the prism component 25 .
  • the prism assembly 25 reflects the illumination beam to the DMD 24 .
  • the lens 3 includes a multi-lens combination, which is usually divided into groups, and is divided into three sections of front group, middle group and rear group, or two sections of front group and rear group.
  • the front group is the lens group close to the light-emitting side of the laser projection device 1000 (that is, the side of the lens 3 in the direction N away from the optical machine 2 in FIG.
  • the lens 3 is a lens group on the side close to the optical engine 2 in the direction N).
  • a laser 10' of a laser projection device 1000' includes a base plate 1011', a frame body 1012', a plurality of light emitting chips 102', a cover plate 104' and a transparent layer 105'.
  • the frame body 1012' and the base plate 1011' enclose an accommodating space S', and the plurality of light-emitting chips 102' are disposed on the base plate 1011' and located in the accommodating space S'.
  • the outer edge of the ring-shaped cover plate 104' is fixed to the surface of the frame body 1012' away from the bottom plate 1011'; One surface is fixed to close the accommodation space S'.
  • the frame body 1012' When manufacturing the laser 10', the frame body 1012' needs to be welded on the bottom plate 1011' first to form the accommodation space S'. Then, a plurality of light-emitting chips 102' are placed in the accommodation space S' and fixed on the bottom plate 1011'. Afterwards, the edge of the light-transmitting layer 105' is fixed on the inner edge of the cover plate 104', and then solder is placed on the surface of the frame body 1012' away from the bottom plate 1011', and the outer edge of the cover plate 104' is placed on that surface.
  • the laser 10' in the related art described above has a problem of low reliability.
  • the inventors of the present disclosure found through research that: in the process of manufacturing the laser 10' using the method in the related art, it is necessary to heat all the components in the laser 10' to the melting temperature of the solder. The heating process will cause thermal damage to the plurality of light-emitting chips 102', so that the working life of the plurality of light-emitting chips 102' will be shortened, or even fail to work normally.
  • connection methods can be used to connect the frame body 1012' and the light-transmitting layer 105', the high-temperature heating process during the soldering connection process can be avoided, thereby avoiding the above-mentioned damage to the multiple light-emitting chips 102' caused by the high-temperature heating process. Further, the reliability of the laser 10' is improved.
  • a possible improvement solution is to change the material of the frame body 1012' from ceramics to metal. Since the frame body 1012' is made of ceramics and the cover plate 104' is made of metal, it is necessary to connect the frame body 1012' and the cover plate 104' by brazing. If the material of the frame body 1012' is replaced with metal, the frame body 1012' and the cover plate 104' can be connected by locally heated welding (for example, resistance welding), thereby avoiding the high-temperature heating process of brazing on multiple light-emitting chips. 102' causing the damage described above.
  • locally heated welding for example, resistance welding
  • Another possible improvement solution is to connect the frame body 1012' and the cover plate 104' by bonding. In this way, heating of the multiple light emitting chips 102' during the manufacturing process of the laser 10' can be avoided.
  • some embodiments of the present disclosure provide a laser projection device 1000, which can facilitate the lightweight design of the laser 10' and ensure that the frame body 1012' and the cover The reliability of the laser 10' is improved on the premise of the reliability of the connection of the board 104'.
  • the laser 10 in the laser projection device 1000 includes a bottom plate 1011 , a frame body 1012 , a plurality of light-emitting chips 102 , a connection layer 103 , a cover plate 104 and a transparent layer 105 .
  • the frame body 1012 is located on the bottom plate 1011 , and a receiving space S is defined between the bottom plate 1011 and the frame body 1012 .
  • the structure composed of the bottom plate 1011 and the frame body 1012 may be called the tube case 101 .
  • a plurality of light emitting chips 102 are located in the accommodation space S and configured to emit laser light.
  • the laser light exits the accommodation space S from a direction away from the bottom plate 1011 to form an illumination beam.
  • the connection layer 103 is configured to be fixed with the frame body 1012 so as to fix the frame body 1012 and the cover plate 104 in a welding manner using local heating.
  • An outer edge of the cover plate 104 is fixed to a side of the connection layer 103 away from the bottom plate 1011 .
  • Edges of the transparent layer 105 are fixed to inner edges of the cover plate 104 .
  • a connecting layer 103 is added between the frame body 1012 and the cover plate 104 of the laser 10 .
  • the base plate 1011 , the frame body 1012 and the connecting layer 103 can be welded to form a base assembly, and a plurality of light-emitting chips 102 can be fixed in the accommodation space S.
  • the light-transmitting layer 105 and the cover plate 104 are welded to form an upper cover assembly, and then the upper cover assembly is placed on the base assembly, and the outer edge of the cover plate 104 is connected and fixed to the connecting layer 103 by local heating welding, so as to The fabrication of the laser 10 is completed.
  • the laser projection device 1000 provided by the embodiment of the present disclosure can reduce the probability that a plurality of light-emitting chips 102 are damaged during the manufacturing process of the laser 10, thereby improving the efficiency of the laser 10. reliability.
  • the above local heating welding method may be resistance welding (for example, parallel sealing welding) or laser welding.
  • resistance welding for example, parallel sealing welding
  • laser welding In the case of using resistance welding to connect the upper cover assembly and the base assembly, the structure of the weld seam between the outer edge of the cover plate 104 and the connection layer 103 is relatively uniform, and the quality of the weld seam is better.
  • laser welding In the case of using laser welding to connect the upper cover component and the base component, the welding process is faster, and the deformation of the outer edge of the cover plate 104 and the connecting layer 103 is smaller.
  • the material of the frame body 1012 may be ceramics. In this way, the overall weight of the laser 10 is relatively light, which is beneficial to the lightweight design of the laser 10 .
  • the above-mentioned upper cover assembly can close the accommodating space S. As shown in FIG. In this way, moisture and oxygen in the external environment of the laser 10 can be prevented from corroding the plurality of light-emitting chips 102 , thereby prolonging the working life of the light-emitting chips 102 . It should be noted that assembly errors are allowed in the closed accommodation space S mentioned above. That is to say, the closed accommodation space S does not require absolute sealing.
  • the light emitting chip 102 is disposed on the base plate 1011 .
  • the heat generated by the light-emitting chip 102 during operation can be dissipated to the outside of the laser 10 through the bottom plate 1011 , which is beneficial to improve the heat dissipation efficiency of the laser 10 .
  • the following embodiments take the light-emitting chip 102 disposed on the bottom plate 1011 as an example for illustration, and the light-emitting chip 102 may also be disposed at other positions in the accommodation space S.
  • the light emitting chip 102 may be disposed on the surface of the frame body 1012 facing the accommodating space S, and emit laser light in a direction away from the bottom plate 1011 .
  • the material of the connection layer 103 includes iron-nickel alloy. In this way, since the expansion coefficient of the iron-nickel alloy is relatively close to that of the ceramic, when the connection layer 103 is made of the iron-nickel alloy and the frame body 1012 is made of a ceramic material, the connection layer 103 and the frame body 1012 can be more compact. tight bond.
  • connection layer 103 may also be other metals except iron-nickel alloy, or a non-metallic material suitable for local heating welding, which is not limited in the present disclosure.
  • connection layer 103 is fixed to the side of the frame body 1012 away from the bottom plate 1011 . In some other embodiments, the connection layer 103 may be fixed to the side of the frame body 1012 facing the accommodation space S. As shown in FIG. 10 , referring to FIG. 10 , the connection layer 103 is fixed to the side of the frame body 1012 away from the bottom plate 1011 . In some other embodiments, the connection layer 103 may be fixed to the side of the frame body 1012 facing the accommodation space S. As shown in FIG.
  • the outer edge W of the end of the frame body 1012 near the bottom plate 1011 protrudes relative to the inner edge N of the end, forming a first raised portion 10121 .
  • the first protrusion 10121 surrounds the bottom plate 1011 .
  • the inner edge N of the end portion is fixed to the side of the bottom plate 1011 facing the accommodating space S, and the side M of the first protrusion 10121 facing the bottom plate 1011 is fixed to the side of the bottom plate 1011 .
  • the contact area between the bottom plate 1011 and the frame body 1012 can be increased, and the frame body 1012 can be more firmly arranged on the bottom plate 1011 .
  • the material of the bottom plate 1011 is usually metal
  • the frame body 1012 is made of ceramic material
  • the hardness of the frame body 1012 is higher than that of the bottom plate 1011, and the frame body 1012 can protect the bottom plate 1011. Prevent the bottom plate 1011 from colliding, deforming, etc. under the action of external force.
  • the outer edge area W of the end of the frame body 1012 close to the bottom plate 1011 is flush with the surface of the bottom plate 1011 away from the accommodating space S. In this way, the outer contour of the overall structure of the laser 10 can be relatively flat, reducing the probability of the laser 10 bumping and damaging other components in the laser projection device 1000 , thereby improving the reliability of the laser projection device 1000 .
  • laser 10 also includes a plurality of conductive layers.
  • the plurality of conductive layers are disposed on a side of the second protrusion 10122 away from the base plate 1011 , and are configured to be coupled with a plurality of light emitting chips 102 .
  • the plurality of conductive layers can transmit current to the plurality of light-emitting chips 102 through an external power source, so as to provide power for the plurality of light-emitting chips 102 .
  • the distance between the surface of the second protruding portion 10122 away from the side of the bottom plate 1011 and the surface of the side of the bottom plate 1011 on which the plurality of light-emitting chips 102 are disposed is smaller than the height threshold. That is to say, the distance between the disposition surfaces of the plurality of conductive layers and the disposition surfaces of the plurality of light-emitting chips 102 is relatively small. Since the plurality of conductive layers are coupled to the plurality of light-emitting chips 102 through a plurality of wires, the length of the wires in this embodiment is relatively small, and the space occupied by the plurality of wires in the accommodation space S is relatively small. It is beneficial to the miniaturization design of the laser 10 .
  • the side of the second protrusion 10122 close to the bottom plate 1011 is fixed to the bottom plate 1011 .
  • the second raised portion 10122 can be supported by the bottom plate 1011 , and the stability of the arrangement of the second raised portion 10122 is improved.
  • the bottom plate 1011 includes a first area A1 and a second area A2 .
  • the second area A2 surrounds the first area A1, and the first area A1 protrudes relative to the second area A2.
  • the frame body 1012 is fixed in the second area A2, and a plurality of light emitting chips 102 are arranged in the first area A1.
  • a plurality of light-emitting chips 102 can be arranged through the raised first region A1 to reduce the distance between the arrangement surface of the plurality of light-emitting chips 102 and the arrangement surface of the above-mentioned plurality of conductive layers.
  • the disposition surface of the plurality of light-emitting chips 102 may be flush with the disposition surface of the above-mentioned plurality of conductive layers by adjusting the protrusion height of the first region A1. In this way, the length of wires connecting the plurality of conductive layers and the plurality of light emitting chips 102 can be reduced.
  • the base plate 1011 includes a first area A1, and a plurality of light emitting chips 102 are disposed in the first area A1.
  • the first area A1 includes a first sub-area and a second sub-area, and satisfies at least one of the following: the number of light-emitting chips 102 in the first sub-area is less than the number of light-emitting chips 102 in the second sub-area; or, the second sub-area
  • the arrangement density of the light-emitting chips 102 in one sub-region is smaller than the arrangement density of the light-emitting chips 102 in the second sub-region.
  • the above-mentioned second sub-region may surround the first sub-region.
  • the second subregion may surround the first subregion, or half surround the first subregion, or be located on opposite sides of the first subregion.
  • the above-mentioned second sub-region may also be located at one side of the first sub-region.
  • the present disclosure does not limit the relative positional relationship between the first sub-region and the second sub-region.
  • the light-emitting chips 102 in the first subregion and the light-emitting chips 102 in the second subregion take the x direction as the row direction and the y direction as the column direction, each in multiple rows and multiple columns. arranged.
  • the plurality of light-emitting chips 102 on the base plate 1011 are arranged in multiple rows.
  • the light emitting chips 102 in the second subregion may include the light emitting chips 102 located in the first row and the fourth row
  • the light emitting chips 102 in the first subregion may include the light emitting chips 102 in the second row and the third row.
  • the first sub-region is closer to the center of the bottom plate 1011 than the second sub-region, and the first sub-region can also be called the middle region; while the second sub-region is relatively
  • the first sub-area is closer to the edge of the bottom plate 1011, and the second sub-area may also be called an edge area.
  • the number of light-emitting chips 102 in the first subregion may refer to the total number of light-emitting chips 102 in the first subregion
  • the number of light-emitting chips 102 in the second subregion may refer to the total number of light-emitting chips 102 in the second subregion.
  • the light-emitting chips 102 in the first subregion are arranged in an array of multiple rows and columns
  • the light-emitting chips 102 in the second subregion are also arranged in an array of multiple rows and columns.
  • the number of light-emitting chips 102 in the first sub-region may refer to the number of light-emitting chips 102 in a row
  • the number of light-emitting chips 102 in the second sub-region may refer to the number of light-emitting chips 102 in a row in the second sub-region.
  • the above-mentioned arrangement density of the light-emitting chips 102 is the dense arrangement of the light-emitting chips 102 , and the arrangement density can be characterized by the distance between adjacent light-emitting chips 102 .
  • the number of light emitting chips 102 in the first subregion is less than the number of light emitting chips 102 in the second subregion, and the arrangement density of light emitting chips 102 in the first subregion is equal to that of the second subregion.
  • the arrangement density of the light-emitting chips 102 in the sub-region is taken as an example for illustration. Taking FIG.
  • the first distance d1 in the row direction of the adjacent light-emitting chips 102 in the same row in the first sub-region is equal to the second distance d1 in the row direction of the adjacent light-emitting chips 102 in the same row in the second sub-region. distance d2.
  • the light-emitting chips 102 when the light-emitting chips 102 are arranged in such a way that the number of light-emitting chips 102 in the first sub-region is less than the number of light-emitting chips 102 in the second sub-region, it can be reduced
  • the total heat generated by the light-emitting chips 102 in the first sub-region reduces the heat density per unit area of the first sub-region, which facilitates the rapid dissipation of the heat generated by the light-emitting chips 102 in the first sub-region.
  • the number of single light-emitting chips 102 in the first subregion can be increased.
  • the area of the heat dissipation area is conducive to the rapid dissipation of the heat generated by the light-emitting chip 102 in the first sub-area.
  • the laser projection device 1000 in the above embodiment can improve the heat dissipation effect of the light-emitting chip 102 in the first sub-region of the laser 10, reduce the probability of thermal damage to the light-emitting chip 102 in the first sub-region due to heat accumulation, and further Improve the reliability of the laser projection device 1000.
  • the reliability of the laser 10 is improved, more light-emitting chips 102 can be provided in the laser 10 under the premise of ensuring that the multiple light-emitting chips 102 in the laser 10 work normally. In this way, the brightness of the illumination light beam provided by the laser 10 can be increased, thereby improving the display effect of the projection image projected by the laser projection device 1000 .
  • the number of light emitting chips 102 in the first subregion is less than the number of light emitting chips 102 in the second subregion, and the arrangement of the light emitting chips 102 in the first subregion The density is smaller than the arrangement density of the light emitting chips 102 in the second sub-region.
  • a plurality of light emitting chips 102 are arranged in two rows, and the first sub-region is located on one side of the second sub-region.
  • the number of light-emitting chips 102 (first row of light-emitting chips 102) in the first sub-region is less than the number of light-emitting chips 102 (second row of light-emitting chips 102) in the second sub-region, and the same row and the same row in the first sub-region
  • the first distance d1 between adjacent light-emitting chips 102 in the row direction is greater than the second distance d2 between adjacent light-emitting chips 102 in the same row in the second sub-region.
  • the total heat generated by the light-emitting chips 102 in the first sub-region is less, and the heat dissipation area of a single light-emitting chip 102 in the first sub-region is larger, which can speed up the heat dissipation speed of the light-emitting chips 102 in the first sub-region.
  • the plurality of light emitting chips 102 includes multiple rows of light emitting chips 102 . There is at least one row of light-emitting chips 102 among the multiple rows of light-emitting chips 102 , and the adjacent rows of light-emitting chips 102 of the at least one row of light-emitting chips 102 are alternately arranged.
  • the distance between the at least one row of light-emitting chips 102 and the adjacent rows of light-emitting chips 102 in the column direction can be increased without increasing the arrangement length of multiple rows of light-emitting chips 102 in the column direction, thereby increasing the
  • the heat dissipation area of the at least one row of light emitting chips 102 and the light emitting chips 102 in the adjacent row of light emitting chips 102 can accelerate the heat dissipation speed of the laser 10 .
  • the staggered arrangement of two rows of light-emitting chips 102 means that the two rows of light-emitting chips 102 are misaligned in the column direction, that is, at least one light-emitting chip 102 in a row of light-emitting chips 102 is not aligned in the column direction and the other row emits light.
  • the light emitting chip 102 in the chip 102 is the same as the first and seventh light-emitting chips 102 along the x-direction in the first row of light-emitting chips 102.
  • the six light-emitting chips 102 are aligned in the y direction; the second to sixth light-emitting chips 102 in the second row of light-emitting chips 102 along the x-direction are not aligned with the light-emitting chips 102 in the first row of light-emitting chips 102 in the y direction Align top. At this time, it can be said that the first row of light emitting chips 102 and the second row of light emitting chips 102 are arranged alternately.
  • the laser 10 may only include one type of light emitting chip 102 , and the working parameters of the multiple light emitting chips 102 in the laser 10 are the same.
  • the laser 10 may be a monochromatic laser (for example, a blue laser), and the lasers emitted by the plurality of light emitting chips 102 have the same color.
  • the operating parameters of the light emitting chip 102 refer to parameters that affect the operating temperature of the light emitting chip 102 when emitting light, such as the wavelength of the emitted laser light.
  • the laser 10 may include multiple types of light emitting chips 102 , and the working parameters of different types of light emitting chips 102 may be different. When different types of light-emitting chips 102 emit laser light, they generate different amounts of heat. At this time, the laser 10 may be a two-color laser or a multi-color laser, and the plurality of light-emitting chips 102 may emit two or three colors of laser light. At this time, the light emitting chips 102 can be distinguished according to the color of the emitted laser light.
  • the magnitude relationship of the heat generated by the plurality of light-emitting chips 102 can be determined, and the plurality of light-emitting chips 102 can be arranged according to the heat magnitude relationship.
  • the first parameter of the light emitting chips 102 in the first area is smaller than the first parameter of the light emitting chips 102 in the second area.
  • the first parameter includes at least one of light-to-heat conversion efficiency, power, or wavelength of emitted laser light.
  • the light-emitting chips 102 that generate high heat when emitting light can be arranged in the second region, and the light-emitting chips 102 that generate low heat can be arranged in the first region, thereby reducing heat accumulation in the first region.
  • the light-to-heat conversion efficiency refers to the efficiency of converting light energy into heat energy by the light-emitting chip 102 when emitting light.
  • the higher the light-to-heat conversion efficiency the higher the heat generated by the light-emitting chip 102 when emitting light.
  • the higher the power of the light emitting chip 102 the higher the brightness of the emitted laser light, and the higher the heat generated when the light emitting chip 102 emits light.
  • the longer the wavelength of the emitted laser light the higher the heat generated when the light emitting chip 102 emits light. For example, the heat generated when the red light-emitting chip emits light, the heat generated when the green light-emitting chip emits light, and the heat generated when the blue light-emitting chip emits light are gradually reduced.
  • the first parameter only includes the wavelength of the emitted laser light as an example
  • the laser 10 includes three types of light-emitting chips 102
  • the light-emitting chip 102 that emits laser light with a longer wavelength can be first arranged in the In the second area, if there is room in the second area, the light-emitting chip 102 with the second longest wavelength of emitted laser light is arranged in the free area.
  • the second area is not enough to arrange all the light-emitting chips 102 with the next longest wavelength of the emitted laser light, arrange the unarranged light-emitting chips 102 with the second longest wavelength of the emitted laser light in the first area, and place the emitted laser light
  • the light-emitting chips 102 with shorter wavelengths are arranged in the first area.
  • a row of light-emitting chips 102 may include different types of light-emitting chips 102, and in the row of light-emitting chips 102, light-emitting chips 102 that generate less heat may be disposed near the middle, and near both ends (head end or The light-emitting chip 102 that generates higher heat can be arranged at the position of the tail end).
  • different types of light emitting chips 102 may also be interleavedly arranged in a row of light emitting chips 102 .
  • the first row of light-emitting chips 102 can be 6 red light-emitting chips
  • the second row of light-emitting chips 102 can include green light-emitting chips and blue light-emitting chips, for example, include 4 green light-emitting chips and 3 Blue glowing chip.
  • the arrangement of the light-emitting chips 102 in the second row may be: the green light-emitting chips are arranged adjacently, and the blue light-emitting chips are arranged adjacently.
  • the first to fourth light emitting chips 102 in the second row are blue light emitting chips
  • the fifth to seventh light emitting chips 102 in the second row are green light emitting chips.
  • the arrangement of the light-emitting chips 102 in the second row may be: the green light-emitting chips and the blue light-emitting chips are arranged alternately.
  • the 2nd, 3rd, 5th and 6th light-emitting chips 102 in the second row are blue light-emitting chips
  • the 1st, 4th and 7th light-emitting chips 102 in the second row are green Light-emitting chips.
  • the laser 10 further includes a collimator lens group 106 .
  • the collimator lens group 106 is located on a side of the transparent layer 105 away from the bottom plate 1011 .
  • FIG. 15 takes an example in which the collimating lens group 106 is fixed to the surface of the outer edge of the cover plate 104 away from the bottom plate 1011 for example.
  • the collimating lens group 106 may also be fixed to the surface of the transparent layer 105 away from the bottom plate 1011 .
  • the collimating lens group 106 includes multiple collimating lenses 1061 arranged in multiple rows and multiple columns, and the multiple collimating lenses 1061 correspond to multiple light emitting chips 102 . Any one of the multiple collimating lenses 1061 is configured to collimate the laser light emitted by the corresponding light-emitting chip 102 .
  • the collimating lens 1061 corresponding to the light-emitting chip 102 in the first sub-region is located in the third sub-region of the collimating mirror group 106, and the collimating lens 1061 corresponding to the light-emitting chip 102 in the second sub-region is located in the collimating mirror group 106.
  • the fourth subregion of group 106 is located in the third sub-region of the collimating mirror group 106.
  • a plurality of collimating lenses 1061 satisfy at least one of the following: the number of collimating lenses 1061 in the third sub-region is less than the number of collimating lenses 1061 in the fourth sub-region; The distance between centers of two adjacent collimating lenses 1061 is greater than the distance between centers of two adjacent collimating lenses 1061 in the same row in the fourth sub-region.
  • the distance between the centers of the two collimating lenses 1061 refers to the distance between the center points of the orthographic projections of the two collimating lenses 1061 .
  • the distance between the centers of the two collimating lenses 1061 refers to the distance between the vertices of the convex arc surfaces of the two collimating lenses 1061 .
  • the arrangement of the collimator lenses 1061 in the collimator lens group 106 is the same as the arrangement of the light emitting chips 102 on the base plate 1011 . In this way, it can be ensured that the laser light emitted by the plurality of light-emitting chips 102 can be collimated by the corresponding collimating lens 1061 , so as to ensure the normal operation of the laser 10 .
  • the number of collimating lenses 1061 in the third area is less than that of the collimating lenses 1061 in the fourth area. quantity; and the distance between centers of two adjacent collimating lenses 1061 in the same row in the third region is greater than the distance between centers of two adjacent collimating lenses 1061 in the same row in the fourth region.
  • the width of at least one collimating lens 1061 in the third region is greater than the width of at least one collimating lens 1061 in the fourth region.
  • a row of collimating lenses 1061 in the third region can be closely arranged in the row direction. In this way, it is beneficial to reduce the difficulty of setting the collimating lens group 106 .
  • the front projection area of the collimating lens 1061 in the third area can be increased, so that the collimating lens 1061 in the third area can receive more laser light from the light-emitting chip 102 in the first sub-area, thereby improving the first sub-area.
  • the utilization rate of the laser light emitted by the light-emitting chip 102 in the sub-region is the utilization rate of the laser light emitted by the light-emitting chip 102 in the sub-region.
  • any one collimator lens 1061 of the plurality of collimator lenses 1061 includes end portions and a middle portion in the column direction.
  • the width of the end portion in the row direction is smaller than the width of the middle portion in the row direction.
  • at least part of the end of at least one collimating lens 1061 is located in the gap of the row of collimating lenses 1061 adjacent to the row of collimating lenses 1061 .
  • FIG. 19 there is an overlap between the projections of the plurality of collimator lenses 1061 on a plane perpendicular to the bottom plate 1011.
  • the collimating lens group 106 at least part of the collimating lens 1061 is also arranged in the gap between the ends of two adjacent collimating lenses 1061 in the same row, which improves the space utilization in the collimating lens group 106
  • the efficiency reduces the area of the collimating lens group 106 where no collimating lens 1061 is arranged, and increases the arrangement density of the collimating lens 1061. Therefore, among the laser light emitted by the plurality of light-emitting chips 102, the ratio of the laser light received by the collimator lens group 106 is increased, the utilization rate of the laser light emitted by the plurality of light-emitting chips 102 is improved, and the output of the laser 10 is further improved. efficiency.
  • the intermediate portions of two adjacent collimating lenses 1061 in a row are in contact.
  • the arrangement length of a row of collimating lenses 1061 in the row direction is small, which is beneficial to the miniaturization design of the laser 10 .
  • it can reduce the area of the region where no collimator lens 1061 is arranged in a row of collimator lenses 1061 , and improve the utilization rate of the row of collimator lenses 1061 for the laser light emitted by the corresponding light-emitting chip 102 .
  • ends of two adjacent rows of collimating lenses 1061 are in contact. In this way, the gap between the ends of two adjacent collimating lenses 1061 in the same row can be more filled by the ends of the adjacent rows of collimating lenses 1061 of the two collimating lenses 1061.
  • the arrangement of the collimating lenses 1061 is tighter, and the light extraction efficiency of the laser 10 is higher.
  • the shape of the end of a row of collimating lenses 1061 coincides with the shape of the gap between the row of collimating lenses 1061 adjacent to the row of collimating lenses 1061 .
  • the ends of the row of collimating lenses 1061 can fill the gaps between the ends of the row of collimating lenses 1061 adjacent to the row of collimating lenses 1061 .
  • the orthographic projection shapes of the multiple collimating lenses 1061 in the collimating lens group 106 on the base plate 1011 are the same.
  • the arrangement of the multiple collimating lenses 1061 is relatively regular, which can reduce the difficulty of setting the multiple collimating lenses 1061 .
  • the obtained light spot shape is relatively uniform, which can improve the quality of the illumination beam provided by the laser 10 .
  • the shapes of the orthographic projections of the multiple collimating lenses 1061 in the collimating lens group 106 on the base plate 1011 are not completely the same.
  • the collimator lenses 1061 with irregular shapes can be used to fill the gaps between the ends of the collimator lenses 1061 with regular shapes, and the requirements for the consistency of multiple collimator lenses 1061 are relatively low. Therefore, this example can be used to modify the collimating lens group in the related art.
  • some of the collimating lenses having a regular shape may be replaced with collimating lenses having an irregular shape, so that the gaps at the ends of the collimating lenses having a part of a regular shape can be improved. filling.
  • the collimator lens realizes the collimation of the laser light by reducing the divergence angle of the laser light of the light-emitting chip 102 ′ corresponding to the collimator lens.
  • the reduction amount of the divergence angle of the laser beam by the collimator lens is the same in all directions.
  • the divergence angle of the laser light emitted by the light-emitting chip 102 ′ in the direction of the fast axis is greater than the divergence angle of the laser light in the direction of the slow axis. Therefore, the collimation of the collimating lens in the related art is poor.
  • any one of the collimating lenses 1061 in the plurality of collimating lenses 1061 is configured to collimate a part of the laser light, so as to reduce the length of the light spot of the part of the laser light on the fast axis, which is different from the length of the light spot on the fast axis. The difference between the lengths on the slow axis.
  • the part of the laser light is the laser light emitted by the light-emitting chip 102 corresponding to any one of the collimating lenses 1061 .
  • the adjustment amount of the collimator lens 1061 to the divergence angle of the laser light emitted by the light-emitting chip 102 corresponding to the collimator lens 1061 is different in different directions, so that the light spot of the laser light can be adjusted on the fast axis.
  • the difference between the length and the length of the light spot on the slow axis is reduced, thereby improving the collimation effect of the laser, increasing the brightness of the illumination beam provided by the laser 10, and further improving the display effect of the projected image.
  • the above-mentioned part of the laser light enters the collimating lens 1061 from the first surface D1 of the corresponding collimating lens 1061, and exits the collimating lens 1061 from the second surface D2 of the collimating lens 1061.
  • the first surface D1 is configured to increase the divergence angle of the part of the laser light on the slow axis; the second face D2 is configured to reduce the divergence angle of the part of the laser light on the slow axis and the fast axis.
  • the utilization rate of the laser light emitted by the plurality of light emitting chips 102 can be improved.
  • the first surface D1 includes a concave arc surface.
  • the fast axis of the laser light emitted by the plurality of light-emitting chips 102 is parallel to the x direction
  • the slow axis is parallel to the y direction as an example for illustration.
  • the curvature radius of the concave arc surface on the slow axis is smaller than the curvature radius of the concave arc surface on the fast axis.
  • the concave arc surface of the lens has a diffusion effect on the light entering the lens, and the smaller the radius of curvature of the concave arc surface indicates the greater the curvature of the concave arc surface, and the concave arc surface The stronger the diffusion effect, the greater the amount of diffusion for the divergence angle of the light. Therefore, the radius of curvature of the concave arc surface of the collimator lens 1061 on the slow axis of the above-mentioned part of the laser light is smaller than the radius of curvature on the fast axis. The expansion amount of the divergence angle on the fast axis is smaller than the expansion amount of the divergence angle on the slow axis.
  • the second surface D2 includes a convex arc surface, and the curvature radius of the convex arc surface on the slow axis is greater than or equal to the curvature radius of the convex arc surface on the fast axis.
  • the curvature radius of the convex arc surface on the slow axis is equal to the curvature radius of the convex arc surface on the fast axis.
  • the convex arc surface in the second surface D2 has the same curvature on the slow axis and the fast axis of the above-mentioned part of the laser light, and the convex arc surface can be, for example, a part of a spherical surface.
  • the convex arc surface can only collimate the part of the laser light as a whole, so that the reduction of the divergence angle of the part of the laser light on the fast axis is close to the decrease of the divergence angle on the slow axis.
  • Curvatures in different directions of the convex arc surface are designed differently, and the structure of the convex arc surface is relatively simple.
  • the radius of curvature of the convex arc surface on the slow axis is greater than the radius of curvature of the convex arc surface on the fast axis.
  • the convex arc surface in the second surface D2 is a free curved surface.
  • the convex arc surface of the lens has a converging effect on the incident light, and the smaller the curvature radius of the convex arc surface is, the greater the curvature of the convex arc surface is, and the more the converging effect of the convex arc surface is on the light. Stronger, the greater the reduction in the divergence angle of light.
  • the radius of curvature of the convex arc surface of the collimating lens 1061 on the slow axis of the above-mentioned part of the laser light is greater than the radius of curvature of the convex arc surface on the fast axis, then the part of the laser light passes through the convex arc surface of the collimating lens 1061, A decrease in the divergence angle of the part of the laser light on the fast axis is greater than a decrease in the divergence angle on the slow axis.
  • the convex arc surface can further reduce the difference between the length of the light spot of the part of the laser light on the fast axis and the length on the slow axis.
  • the first surface D1 includes a concave cylindrical surface.
  • the straight generatrix of the concave cylinder is parallel to the fast axis.
  • a cylinder is a curved surface formed by parallel movement of a moving straight line along a fixed curve, and the moving straight line is called the straight generatrix of the cylinder.
  • the straight generatrix of the concave cylindrical surface can be, for example, the straight line L1 in FIG. 25 . This straight line L1 is parallel to the x direction.
  • the light rays entering the concave cylindrical surface along the fast axis direction are equivalent to entering a plane, and the concave cylindrical surface does not change the intensity of the light rays entering the concave cylindrical surface along the fast axis direction. transmission path.
  • Light rays entering the concave cylindrical surface along the slow axis direction are equivalent to entering a concave arc surface, and the concave cylindrical surface will increase the divergence angle of light rays entering the concave cylindrical surface along the slow axis direction. Therefore, the concave cylindrical surface can reduce the difference between the length of the part of the laser spot on the fast axis and the length on the slow axis.
  • the first surface D1 is a plane.
  • the first surface D1 does not change the propagation path of the above-mentioned part of the laser light.
  • the side of the collimating lens group 106 close to the bottom plate 1011 is relatively flat, and the collimating lens group 106 can be more firmly arranged on the connection layer 103 or the transparent layer 105 , thereby improving the reliability of the laser 10 .
  • the second surface D2 includes a convex arc.
  • the curvature radius of the convex arc surface on the slow axis is larger than the curvature radius of the convex arc surface on the fast axis.
  • the convex arc surface of the second surface D2 can collimate the part of the laser light and make the spot of the part of the laser light on the fast axis The difference between the length of and the length on the slow axis decreases.
  • the plurality of light emitting chips 102 includes a first type of light emitting chip and a second type of light emitting chip.
  • the first type of light-emitting chip is configured to emit the first type of laser light
  • the second type of light-emitting chip is configured to emit the second type of laser light
  • the divergence angle of the first type of laser light is smaller than the divergence angle of the second type of laser light .
  • the above-mentioned part of the laser is the first type of laser or the second type of laser.
  • the second surface D2 of the collimator lens 1061 corresponding to the first type of light-emitting chip reduces the divergence angle of the first type of laser light less than the second surface D2 of the collimator lens 1061 corresponding to the second type of light-emitting chip. The amount of reduction in the divergence angle of the laser.
  • the first type of laser may include green laser and blue laser
  • the second type of laser may include red laser.
  • the reduction of the divergence angle of the first type of laser light or the second type of laser light on the second surface D2 can be adjusted by adjusting the radius of curvature of the convex arc surface of the second surface D2.
  • the second surface D2 of the collimator lens 1061 corresponding to different types of light-emitting chips 102 reduces the divergence angle of the light differently, so that the different types of light-emitting chips 102 can pass through the collimator lens group 106 After collimation, have the same size spot. In this way, the uniformity of the illumination beam provided by the laser 10 can be improved, and the quality of the illumination beam can be improved, thereby improving the display effect of the projected image.
  • the laser 10 further includes a plurality of heat sinks 107 .
  • the plurality of heat sinks 107 corresponds to the plurality of light emitting chips 102 .
  • a heat sink 107 is located between the corresponding light-emitting chip 102 and the base plate 1011 , and is configured to assist the light-emitting chip 102 to dissipate heat, so that the heat generated by the light-emitting chip 102 can be transferred to the base plate 1011 faster.
  • multiple light emitting chips 102 may also share one heat sink 107 , which is not limited in the present disclosure.
  • the laser 10 further includes a plurality of reflective prisms 108 .
  • the plurality of reflective prisms 108 correspond to the plurality of light emitting chips 102 .
  • a heat sink 107 is located on the light-emitting side of the corresponding light-emitting chip 102 , and is configured to guide the laser light emitted by the light-emitting chip 102 away from the bottom plate 1011 , so that the laser light exits the accommodation space S.
  • the laser projection device 1000 provided by the embodiment of the present disclosure can avoid putting a plurality of light-emitting chips 102 into a heating furnace for heating during the manufacturing process of the laser 10, so as to prevent the high temperature during brazing from damaging the plurality of light-emitting chips 102. Chip 102, thereby improving the reliability of the laser 10. Moreover, by adjusting the arrangement of multiple light-emitting chips 102 and the corresponding multiple collimator lenses 1061 in different areas, the heat dissipation speed of the multiple light-emitting chips 102 during operation can be accelerated, preventing the multiple light-emitting chips 102 from working. thermal damage in.
  • the area of the area where the collimating lens 1061 is not arranged in the collimating lens group 106 is reduced, and the emission of the plurality of light-emitting chips 102 is improved.
  • the utilization rate of the laser improves the brightness of the illumination beam.
  • the shape and curvature of the first surface D1 and the second surface D2 of the collimator lens 1061 the collimation effect of the laser light emitted by the plurality of light emitters 102 is improved, thereby improving the display effect of the projected image.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影设备(1000),包括光源组件(1)、光机(2)和镜头(3)。光源组件(1)被配置为提供照明光束。光机(2)被配置为利用图像信号对照明光束进行调制,以获得投影光束。镜头(3)被配置为将投影光束投影成像。其中,光源组件(1)包括底板(1011)、框体(1012)、多个发光芯片(102)、连接层(103)、盖板(104)和透光层(105)。框体(1012)位于底板(1011)上,底板(1011)与框体(1012)之间限定出容纳空间(S)。多个发光芯片(102)位于容纳空间(S)中,且被配置为发出激光。激光从远离底板(1011)的方向射出容纳空间(S),以构成照明光束。连接层(103)被配置为与框体(1012)固定,以采用局部加热的焊接方式将框体(1012)与盖板(104)固定连接。盖板(104)的外边缘与连接层(103)远离底板(1011)的一侧固定。透光层(105)的边缘与盖板(104)的内边缘固定。

Description

激光投影设备
本申请要求于2021年09月06日提交的、申请号为202111038583.3的中国专利申请的优先权,于2021年09月06日提交的、申请号为202111037630.2的中国专利申请的优先权,于2021年09月07日提交的、申请号为202111045935.8的中国专利申请的优先权,以及于2021年12月31日提交的、申请号为202111669286.9的中国专利申请的优先权;其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种激光投影设备。
背景技术
激光投影设备包括光源组件、光机和镜头。光源组件提供的照明光束经光机调制后成为投影光束,并由镜头投影至屏幕或墙壁上,形成投影图像。其中,光源组件包括激光器,该激光器中封装有多个发光芯片。该多个发光芯片被配置为发出激光,以使该激光构成照明光束。
发明内容
本公开一些实施例提供了一种激光投影设备。该激光投影设备包括光源组件、光机和镜头。所述光源组件被配置为提供照明光束。所述光机被配置为利用图像信号对所述照明光束进行调制,以获得投影光束。所述镜头被配置为将所述投影光束投影成像。所述光源组件包括底板、框体、多个发光芯片、连接层、盖板和透光层。所述框体位于所述底板上,所述底板与所述框体之间限定出容纳空间。所述多个发光芯片位于所述容纳空间中,且被配置为发出激光。所述激光从远离所述底板的方向射出所述容纳空间,以构成所述照明光束。所述连接层被配置为与所述框体固定,以采用局部加热的焊接方式将所述框体与所述盖板固定连接。所述盖板的外边缘与所述连接层远离所述底板的一侧固定。所述透光层的边缘与所述盖板的内边缘固定。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的激光投影设备的一个结构图;
图2为根据一些实施例的激光投影设备中光源组件的时序图;
图3为根据一些实施例的激光投影设备中的光路图;
图4为根据一些实施例的滤色组件的结构图;
图5为根据一些实施例的数字微镜器件的结构图;
图6为图5中的数字微镜器件中一个微小反射镜片摆动的位置图;
图7为根据一些实施例的微小反射镜片的工作原理图;
图8为根据一些实施例的激光投影设备的另一个结构图;
图9为相关技术中的激光器的结构图;
图10为根据一些实施例的激光器的一个结构图;
图11为根据一些实施例的激光器的另一个结构图;
图12为根据一些实施例的激光器的爆炸图;
图13为根据一些实施例的激光器的一个俯视图;
图14为根据一些实施例的激光器的另一个俯视图;
图15为根据一些实施例的激光器的又一个结构图;
图16为根据一些实施例的激光器的又一个俯视图;
图17为根据一些实施例的激光器的又一个俯视图;
图18为根据一些实施例的激光器的又一个俯视图;
图19为图18中的激光器沿b-b′线的剖视图;
图20为根据一些实施例的激光器的又一个俯视图;
图21为根据一些实施例的激光器的又一个俯视图;
图22为根据一些实施例的激光器的又一个结构图;
图23为根据一些实施例的准直透镜的一个结构图;
图24为根据一些实施例的准直透镜的另一个结构图;
图25为根据一些实施例的准直透镜的又一个结构图;
图26为根据一些实施例的准直透镜的又一个结构图;
图27为根据一些实施例的准直透镜的又一个结构图。
附图标记:
激光投影设备1000;
光源组件1;激光器10;管壳101;底板1011;第一区域A1;第二区域A2;框体1012;第一凸起部10121;第二凸起部10122;发光芯片102;连接层103;盖板104;透光层105;准直镜组106;准直透镜1061;第一面D1;第二面D2;热沉107;反射棱镜108;合光镜组件12;聚光组件13;滤色组件14;绿色滤色片141;蓝色滤色片142;红色滤色片143;驱动部144;
光机2;扩散组件21;会聚组件22;传输组件23;数字微镜器件24;微小反射镜片241;光吸收部件242;棱镜组件25;
镜头3。
具体实施方式
下面将结合本公开实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,然而,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5度以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5度以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本公开一些实施例提供了一种激光投影设备1000。如图1所示,该激光投影设备1000包括光源组件1,光机2以及镜头3。该光源组件1被配置为提供照明光束。该光机2被配置为利用图像信号对光源组件1提供的照明光束进行调制以获得投影光束。该镜头3被配置为将投影光束投射在屏幕或墙壁上成像。
光源组件1、光机2和镜头3沿着光束传播方向依次连接。在一些示例中,光机2的一端与光源组件1连接,且光源组件1和光机2沿着激光投影设备1000的照明光束的出射方向(参照图1中的方向M)设置。光机2的另一端与镜头3连接,且光机2和镜头3沿着激光投影设备1000的投影光束的出射方向(参照图1中的方向N)设置。
如图1所示,在一些示例中,激光投影设备1000的照明光束的出射方向M与激光投影设备1000的投影光束的出射方向N大致垂直。这样设置,能够使得激光投影设备1000的结构排布合理,避免该激光投影设备1000在某一方向(例如,方向M或方向N)上的光路过长。
在一些实施例中,光源组件1可以时序性地提供三基色光(即,红光、绿光和蓝光)。在另一些实施例中,光源组件1可以同时输出三基色光,以持续发出白光。当然,光源组件1提供的照明光束中也可以包括三基色光之外的光,例如黄光等。光源组件1包括激光器,该激光器可发出至少一种颜色的光,比如蓝色激光。
在一些示例中,如图2所示,在一帧目标图像的投影过程中,光源组件1可以时序性地输出蓝色、红色和绿色照明光束。示例性地,光源组件1在第一时间段T1内输出蓝色激光,在第二时间段T2内输出红色激光,在第三时间段T3内输出绿色激光。在该示例中,光源组件1完成一轮各基色光束的时序性输出的时间为光源组件1的输出基色光束的一个周期。一帧目标图像的显示周期内,光源组件1进行一轮各基色光束的时序性输出,因此,一帧目标图像的显示周期与光源组件1输出基色光束的一个周期相等,等于第一时间段T1、第二时间段T2和第三时间段T3的和。在该示例中,由于视觉暂留现象,人眼会将时序性输出的蓝色光束、红色光束和绿色光束进行颜色叠加,因此,人眼感知到的是三基色光束混合后的白光。
下面主要结合附图,对上述光源组件1、光机2和镜头3的结构进行示例性说明。
参照图3,光源组件1包括:激光器10、合光镜组件12、聚光组件13、滤色组件14和匀光组件15。其中,激光器10被配置为提供照明光束。合光镜组件12设置在激光器10的出光侧,且被配置为将激光器10提供的照明光束反射至聚光组件13。聚光组件13设置在合光镜组件12的出光侧,且被配置为将来自合光镜组件12的照明光束进行会聚。滤色组件14设置在聚光组件13的出光侧,且被配置为对经聚光组件13会聚的照明光束进行滤色,以时序性地输出三基色光。匀光组件15设置在滤色组件14的出光侧,且被配置为对经滤色组件14滤色的照明光束进行匀光。
在一些实施例中,合光镜组件12可以为二向色镜。当光源组件1同时或时序性地输出三基色光(即,激光器10同时或时序性地输出三基色光)时,合光镜组件12可以将激光器10发出的红色激光、绿色激光和蓝色激光反射至聚光组件13。
在一些实施例中,聚光组件13包括至少一个平凸透镜,且该至少一个平凸透镜的凸面朝向合光镜组件12的出光方向。
在一些实施例中,如图4所示,滤色组件14可以包括绿色滤色片141、蓝色滤色片142、红色滤色片143和驱动部144。其中,驱动部144被配置为驱动滤色组件14旋转,以使在一帧目标图像的显示周期内,激光器10发出的照明光束得以被不同颜色的滤色片过滤。在一些示例中,当激光器10同时输出三基色光、且滤色组件14转动至红色滤色片143覆盖该三基色光的光斑的位置处时,该三基色光中除红色光束外的其他颜色的光束被阻挡,而红色光束通过红色滤色片143透射滤色组件14。
在一些实施例中,匀光组件15可以为光导管。该光导管可以为由四片平面反射片拼接而成的管状器件,即,空心光导管。照明光束在光导管内部多次反射,以达到匀光的效果。当然,该匀光组件15也可以采用实心光导管。例如,光导管的入光口和出光口为形状和面积一致的矩形,照明光束从光导管的入光口进入,再从光导管的出光口发射, 在经过光导管的过程中完成光束匀化以及光斑优化。
需要说明的是,当匀光组件15为光导管时,光源组件1中包括了光导管,光机2中可以不设置光导管;当匀光组件15为除光导管以外的其他部件时,光机2还包括上述光导管,用以接收来自光源组件1的照明光束。
光源组件1发出的照明光束进入光机2。参照图3,光机2包括数字微镜器件24。
数字微镜器件24位于光源组件1的出光侧,且被配置为利用图像信号对光源组件1提供的照明光束进行调制以得到投影光束,并将该投影光束反射至镜头3中。由于数字微镜器件24可以控制投影光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成投影图像,因此数字微镜器件24也被称为光调制器件(或光阀)。此外,根据光机2中使用的数字微镜器件24的数量,可以将光机2分为单片系统、双片系统或三片系统。
需要说明的是,由于在本公开的一些实施例中,图3所示的光机2应用数字光处理(Digital Light Processing,DLP)投影架构,因此,本公开一些实施例中的光调制器件为数字微镜器件(Digital Micromirror Device,DMD)。然而,本公开对光机2所应用的架构、光调制器件的类型等不做限制。
如图5所示,数字微镜器件24包含成千上万个可被单独驱动以转动的微小反射镜片241,这些微小反射镜片241呈阵列排布,每个微小反射镜片241对应待显示图像中的一个像素。如图6所示,在DLP投影架构中,每个微小反射镜片241相当于一个数字开关,在外力作用下可以在±12度或者±17度的范围内摆动。图6以每个微小反射镜片241可以在±12度的范围内摆动为例,进行示例性说明。
如图7所示,微小反射镜片241在负的偏转角度反射的光,称为OFF光。OFF光为无效光。微小反射镜片241在正的偏转角度反射的光,称为ON光。ON光是数字微镜器件24表面的微小反射镜片241接收照明光束照射,并通过正的偏转角度射入镜头3的有效光束,用于投影成像。微小反射镜片241的开状态为光源组件1发出的照明光束经微小反射镜片241反射后可以进入镜头3时,微小反射镜片241所处且可以保持的状态,即微小反射镜片241处于正的偏转角度的状态。微小反射镜片241的关状态为光源组件1发出的照明光束经微小反射镜片241反射后未进入镜头3时,微小反射镜片241所处且可以保持的状态,即微小反射镜片241处于负的偏转角度的状态。
在一帧图像的显示周期内,部分或全部微小反射镜片241会在开状态和关状态之间切换至少一次,从而根据微小反射镜片241在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶为0的像素对应的微小反射镜片241在该一帧图像的整个显示周期内处于关状态,与灰阶为255的像素对应的微小反射镜片241在一帧图像的整个显示周期内处于开状态,而与灰阶为127的像素对应的微小反射镜片241在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此,通过图像信号控制数字微镜器件24中每个微小反射镜片241在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片241对应像素的亮度(灰阶),从而对投射至数字微镜器件24的照明光束进行调制。
在一些实施例中,继续参照图3,光机2还包括:扩散组件21,会聚组件22,传输组件23以及棱镜组件25。需要说明的是,光机2中还可以包括比图3中示出的部件更少或更多的部件,本公开对此不做限制。
在该实施例中,扩散组件21位于光源组件1的出光侧,且被配置为扩散来自光源组件1的照明光束。会聚组件22位于扩散组件21的出光侧,且被配置为会聚经扩散组件21扩散的照明光束。传输组件23位于会聚组件22的出光侧,且被配置为传输经会聚组件22会聚的照明光束至棱镜组件25。棱镜组件25将照明光束反射至数字微镜器件24。
如图8所示,镜头3包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近激光投影设备1000出光侧(即,图8中镜头3在方向N上远离光机2的一侧)的镜片群组,后群是靠近光机2出光侧(即,图8中镜头3在方向N上靠近光机2的一侧)的镜片群组。
在相关技术中,如图9所示,激光投影设备1000′的激光器10′包括底板1011′、框体 1012′、多个发光芯片102′、盖板104′以及透光层105′。框体1012′与底板1011′围出容纳空间S′,该多个发光芯片102′设置在底板1011′上且位于该容纳空间S′中。环状的盖板104′的外边缘与框体1012′远离底板1011′一侧的表面固定,该盖板104′的内边缘与透光层105′的边缘与框体1012′远离底板1011′一侧的表面固定,以封闭该容纳空间S′。
在制作激光器10′时,需要先将框体1012′焊接在底板1011′上,以形成容纳空间S′。然后,将多个发光芯片102′放置在容纳空间S′中,并固定在底板1011′上。之后,将透光层105′的边缘固定在盖板104′的内边缘上,再在框体1012′远离底板1011′一侧的表面上放置钎料,并将盖板104′的外边缘放置在该表面上。最后,将上述部件一起放入加热炉中,加热至钎料的熔化温度(320摄氏度至350摄氏度),以使盖板104′的外边缘通过钎焊的方式固定在框体1012′远离底板1011′一侧的表面上。这样,就完成了激光器10′的制作。
然而,上述相关技术中的激光器10′存在可靠性较低的问题。
针对相关技术中的上述技术问题,本公开的发明人研究发现:采用相关技术中的方法制作激光器10′的过程中,需要将激光器10′中的所有部件一起加热至钎料的熔化温度,该加热过程会造成多个发光芯片102′的热损伤,使该多个发光芯片102′的工作寿命缩短、甚至不能正常工作。因此,如果能够使用其他连接方式连接框体1012′与透光层105′,就能够避免钎焊连接过程中的高温加热过程,从而避免该高温加热过程对多个发光芯片102′造成上述损坏,进而提高激光器10′的可靠性。
基于上述技术构思,一种可能的改进方案是:将框体1012′的材料从陶瓷换成金属。由于上述框体1012′的材料为陶瓷,盖板104′的材料为金属,因此需要采用钎焊的方式连接该框体1012′与该盖板104′。如果将框体1012′的材料换成金属,就能通过局部加热的焊接方式(例如,电阻焊)连接框体1012′与盖板104′,从而避免钎焊的高温加热过程对多个发光芯片102′造成上述损坏。
然而,由于金属的密度比陶瓷的密度大,将框体1012′的材料换成金属后,激光器10′的整体重量会增加。因此,上述可能的改进方案不利于激光器10′的轻量化设计。
另一种可能的改进方案是:采用粘接的方式连接框体1012′与盖板104′。这样,可以避免在激光器10′的制作过程中加热多个发光芯片102′。
然而,由于粘接连接的稳固性低于焊接连接的稳固性,因此,上述可能的改进方案会降低框体1012′与盖板104′连接的可靠性。
针对上述相关技术中以及可能的改进方案中存在的技术问题,本公开的一些实施例提供了一种激光投影设备1000,可以在利于激光器10′的轻量化设计、且保证框体1012′与盖板104′连接的可靠性的前提下,提高激光器10′的可靠性。
如图10所示,激光投影设备1000中的激光器10包括底板1011、框体1012、多个发光芯片102、连接层103、盖板104以及透光层105。
框体1012位于底板1011上,底板1011与框体1012之间限定出容纳空间S。底板1011与框体1012组成的结构可以称为管壳101。
多个发光芯片102位于容纳空间S中,且被配置为发出激光。激光从远离底板1011的方向射出容纳空间S,以构成照明光束。连接层103被配置为与框体1012固定,以采用局部加热的焊接方式将框体1012与盖板104固定连接。盖板104的外边缘与连接层103远离底板1011的一侧固定。透光层105的边缘与盖板104的内边缘固定。
本公开实施例提供的激光投影设备1000,在激光器10的框体1012与盖板104之间,增加设置了连接层103。这样,在该激光器10的制作过程中,可以先将底板1011、框体1012以及连接层103焊接为底座组件,并将多个发光芯片102固定在容纳空间S中。然后,将透光层105与盖板104焊接为上盖组件,再将该上盖组件放置在底座组件上,采用局部加热的焊接方式将盖板104的外边缘与连接层103连接固定,以完成激光器10的制作。由于无需将多个发光芯片102放入加热炉中加热,因此,本公开实施例提供的激光投影设备1000能够降低多个发光芯片102在激光器10的制作过程中被损坏的概率,从而提高激光器10的可靠性。
在一些实施例中,上述局部加热的焊接方式可以为电阻焊(例如,平行封焊)或激光焊等。在采用电阻焊连接上盖组件与底座组件的情况下,盖板104的外边缘与连接层103之间的焊缝组织较为均匀,该焊缝质量较好。在采用激光焊连接上盖组件与底座组件的情况下,焊接过程较快,盖板104的外边缘和连接层103的变形较小。
在一些实施例中,上述框体1012的材料可以为陶瓷。这样,激光器10的整体重量较轻,利于该激光器10的轻量化设计。
在一些实施例中,上述上盖组件可以封闭容纳空间S。这样,可以避免激光器10外界环境中的水分、氧气等侵蚀多个发光芯片102,从而延长发光芯片102的工作寿命。需要说明的是,上述封闭容纳空间S允许存在装配误差。也就是说,封闭的容纳空间S不要求绝对密封。
在一些实施例中,继续参照图10,发光芯片102设置在底板1011上。这样,发光芯片102在工作中所产生的热量可以通过底板1011散发至激光器10外部,有利于提高激光器10的散热效率。
需要说明的是,下述实施例以发光芯片102设置在底板1011上为例,进行示例性说明,发光芯片102也可以设置在容纳空间S中的其他位置。例如,发光芯片102可以设置在框体1012朝向容纳空间S一侧的表面上,并朝向远离底板1011的方向发射激光。
在一些实施例中,连接层103的材料包括铁镍合金。这样,由于铁镍合金的膨胀系数与陶瓷的膨胀系数较为接近,因此,在采用铁镍合金制作连接层103、且采用陶瓷材料制作框体1012的情况下,连接层103与框体1012能够更紧密的结合。
需要说明的是,连接层103的材料也可以为除铁镍合金以外的其他金属,或者为适用于局部加热的焊接方式的非金属材料,本公开对此不做限制。
在一些实施例中,继续参照图10,连接层103与框体1012远离底板1011的一侧固定。在另一些实施例中,连接层103可以与框体1012朝向容纳空间S的一侧固定。
在一些实施例中,继续参照图10,框体1012靠近底板1011的端部的外边缘W相对于该端部的内边缘N凸起,形成第一凸起部10121。第一凸起部10121包围底板1011。该端部的内边缘N与底板1011朝向容纳空间S的一侧固定,第一凸起部10121朝向底板1011的侧面M与底板1011的侧面固定。
这样,可以增大底板1011与框体1012之间的接触面积,框体1012能够更稳固地设置在底板1011。此外,由于底板1011的材料通常为金属,因此,在框体1012采用陶瓷材料制成的情况下,框体1012的硬度高于底板1011的硬度,框体1012可以对底板1011起到保护作用,防止该底板1011在外力作用下发生磕碰、变形等。
在一些示例中,框体1012靠近底板1011的端部的外边缘区域W,与底板1011远离容纳空间S一侧的表面平齐。这样,可以使激光器10整体结构的外轮廓较为平整,降低激光器10磕碰损伤激光投影设备1000中其他部件的概率,从而提高激光投影设备1000的可靠性。
在一些实施例中,继续参照图10,框体1012的内壁朝向容纳空间S凸起,形成第二凸起部10122。在该实施例中,激光器10还包括多个导电层。该多个导电层设置在第二凸起部10122远离底板1011的一侧,且被配置为与多个发光芯片102耦接。这样,该多个导电层可以通过外部电源将电流传输至该多个发光芯片102,从而为该多个发光芯片102供电。
第二凸起部10122远离底板1011一侧的表面,与底板1011上设置有多个发光芯片102一侧的表面之间的距离,小于高度阈值。也就是说,上述多个导电层的设置面与该多个发光芯片102的设置面之间距离较小。由于该多个导电层通过多根导线与该多个发光芯片102耦接,因此,该实施例中的该导线的长度较小,该多根导线在容纳空间S中所占用的空间较小,有利于激光器10的小型化设计。
在一些示例中,继续参照图10,第二凸起部10122靠近底板1011的一侧与底板1011固定。这样,通过底板1011可以支撑该第二凸起部10122,提升该第二凸起部10122设置的稳固性。在另一些示例中,如图11所示,第二凸起部10122靠近底板1011的一侧与 底板1011之间具有空隙。这样,第二凸起部10122在容纳空间S中所占用的空间较小,有利于激光器10的小型化设计。
在一些实施例中,如图12所示,底板1011包括第一区域A1和第二区域A2。第二区域A2包围第一区域A1,且第一区域A1相对于第二区域A2凸起。框体1012固定在第二区域A2中,多个发光芯片102设置在第一区域A1中。
这样,可以通过凸起的第一区域A1设置多个发光芯片102,以缩小该多个发光芯片102的设置面与上述多个导电层的设置面之间的距离。示例性地,可以通过调节第一区域A1的凸起高度,使该多个发光芯片102的设置面与上述多个导电层的设置面平齐。这样,可以减小连接多个导电层与多个发光芯片102的导线的长度。
在一些实施例中,如图13所示,底板1011包括第一区域A1,多个发光芯片102设置在第一区域A1中。第一区域A1包括第一子区域和第二子区域,且满足以下至少之一:第一子区域中的发光芯片102的数量少于第二子区域中的发光芯片102的数量;或,第一子区域中的发光芯片102的排布密度小于第二子区域中的发光芯片102的排布密度。
需要说明的是,上述第二子区域可以环绕第一子区域。示例性地,该第二子区域可以包围该第一子区域,也可以半包围该第一子区域,还可以位于该第一子区域的相对两侧。或者,上述第二子区域也可以位于第一子区域的一侧。本公开对第一子区域和第二子区域之间的相对位置关系不做限制。
示例性地,如图13所示,第一子区域中的发光芯片102和第二子区域中的发光芯片102以x方向为行方向、以y方向为列方向,各自呈多行、多列排布。此时,底板1011上的多个发光芯片102呈多行排布。这样,第二子区域中的发光芯片102可以包括位于第一行和第四行发光芯片102,第一子区域中的发光芯片102可以包括第二行和第三行发光芯片102。
在第二子区域环绕第一子区域的情况下,第一子区域相对于第二子区域更靠近底板1011的中央,该第一子区域也可以称为中间区域;而第二子区域相对于第一子区域更靠近底板1011的边缘,该第二子区域也可以称为边缘区域。
在一些实施例中,第一子区域中的发光芯片102的数量可以指第一子区域中发光芯片102的总数量,第二子区域中的发光芯片102的数量可以指第二子区域中发光芯片102的总数量。在另一些实施例中,第一子区域中的发光芯片102呈多行、多列阵列排列,且第二子区域中的发光芯片102也呈多行、多列阵列排列,第一子区域中的发光芯片102的数量可以指第一子区域中一行发光芯片102的数量,第二子区域中的发光芯片102的数量可以指第二子区域中一行发光芯片102的数量。
在一些实施例中,上述发光芯片102的排布密度为发光芯片102排布的密集程度,该排布密度可以通过相邻发光芯片102之间的间距来表征。示例性地,相邻发光芯片102之间的间距越大,则发光芯片102的排布密度越小。需要说明的是,图13以第一子区域中的发光芯片102的数量少于第二子区域中的发光芯片102的数量,且第一子区域中的发光芯片102的排布密度等于第二子区域中发光芯片102的排布密度为例,进行示例性地说明。以图13为例,第一子区域中同行且相邻的发光芯片102的在行方向上的第一间距d1,等于第二子区域中同行且相邻的发光芯片102的在行方向上的第二间距d2。
在上述实施例中,激光器10的底板1011上,当发光芯片102的排布方式满足第一子区域中的发光芯片102的数量少于第二子区域中的发光芯片102的数量时,可以减少第一子区域中的发光芯片102产生的总热量,从而减小第一子区域的单位面积的热密度,有利于第一子区域中发光芯片102产生的热量快速散发。
当发光芯片102的排布方式满足第一子区域中的发光芯片102的排布密度小于第二子区域中的发光芯片102的排布密度时,可以增大第一子区域中单个发光芯片102的散热区域的面积,有利于第一子区域中发光芯片102产生的热量快速散发。
因此,上述实施例中的激光投影设备1000可以提升激光器10的第一子区域中的发光芯片102的散热效果,降低第一子区域中的发光芯片102由于热量聚集而出现热损坏的概率,进而提高激光投影设备1000可靠性。
此外,由于激光器10的可靠性得以提升,因此,在保证激光器10中的多个发光芯片102正常工作的前提下,该激光器10中可以设置更多的发光芯片102。这样,可以提高激光器10提供的照明光束的亮度,从而提升激光投影设备1000投射出的投影图像的显示效果。
在一些实施例中,如图14所示,第一子区域中的发光芯片102的数量少于第二子区域中的发光芯片102的数量,且第一子区域中的发光芯片102的排布密度小于第二子区域中的发光芯片102的排布密度。
在图14中,多个发光芯片102呈两行排列,第一子区域位于第二子区域的一侧。第一子区域中的发光芯片102(第一行发光芯片102)的数量少于第二子区域中的发光芯片102(第二行发光芯片102)的数量,且第一子区域中同行且相邻的发光芯片102在行方向上的第一间距d1,大于第二子区域中同行且相邻的发光芯片102的在行方向上的第二间距d2。这样,第一子区域中的发光芯片102产生的总热量较少,且第一子区域中单个发光芯片102的散热区域的面积较大,可以加快第一子区域中发光芯片102的散热速度。
在一些实施例中,多个发光芯片102包括多行发光芯片102。多行发光芯片102中存在至少一行发光芯片102,与该至少一行发光芯片102的相邻行发光芯片102交错排布。这样,可以在不增加多行发光芯片102在列方向上的排布长度的前提下,增大该至少一行发光芯片102与相邻行发光芯片102之间在列方向上的距离,从而增大该至少一行发光芯片102和该相邻行发光芯片102中发光芯片102的散热区域面积,加快激光器10的散热速度。
需要说明的是,两行发光芯片102交错排布指的是该两行发光芯片102在列方向上错位,即,一行发光芯片102中有至少一个发光芯片102在列方向上未对齐另一行发光芯片102中的发光芯片102。例如,继续参照图14,第二行发光芯片102中的沿x方向上的第1个和第7个发光芯片102,与第一行发光芯片102中的沿x方向上的第1个和第6个发光芯片102在y方向上对齐;第二行发光芯片102中的沿x方向上的第2个至第6个发光芯片102未与第一行发光芯片102中的发光芯片102在y方向上对齐。此时,可以称第一行发光芯片102与第二行发光芯片102交错排布。
在一些实施例中,激光器10可以仅包括一种类型的发光芯片102,激光器10中的多个发光芯片102的工作参数相同。此时,激光器10可以为单色激光器(例如,蓝色激光器),多个发光芯片102发出的激光的颜色相同。其中,发光芯片102的工作参数是指影响发光芯片102在发光时的工作温度的参数,例如发出的激光的波长等。
在另一些实施例中,激光器10可以包括多种类型的发光芯片102,不同类型的发光芯片102的工作参数可能不同。不同类型的发光芯片102发出激光时,产生的热量不同。此时,激光器10可以为双色激光器或多色激光器,多个发光芯片102可以发出两种或三种颜色的激光。此时,发光芯片102可以根据发出的激光的颜色进行区分。
在该实施例中,可以基于激光器10中各个发光芯片102的工作参数确定多个发光芯片102发光时产生的热量大小关系,并根据该热量大小关系排布该多个发光芯片102。在一些示例中,第一区域中存在发光芯片102的第一参数小于第二区域中的发光芯片102的第一参数。其中,第一参数包括光热转换效率、功率或发出的激光的波长中的至少一个。这样,可以将发光时产生的热量高的发光芯片102设置在第二区域,将产生的热量低的发光芯片102设置在第一区域,从而减少第一区域中的热量聚集。
其中,光热转换效率是指发光芯片102在发光时将光能转换成热能的效率,该光热转换效率越高,则发光芯片102在发光时产生的热量就越高。发光芯片102的功率越高,发出的激光的亮度越高,则该发光芯片102发光时产生的热量也越高。发出的激光的波长越长,发光芯片102发光时产生的热量越高。例如,红色发光芯片发光时产生的热量、绿色发光芯片发光时产生的热量和蓝色发光芯片发光时产生的热量递减。
示例性地,以第一参数仅包括发出的激光的波长为例,在激光器10包括三种类型的发光芯片102的情况下,可以先将发出的激光的波长较长的发光芯片102排布在第二区域,若第二区域还有空余,则在该空余区域排布发出的激光的波长次长的发光芯片102。若第 二区域不足以排布所有发出的激光的波长次长的发光芯片102,则将未排布的发出的激光的波长次长的发光芯片102排布在第一区域,且将发出的激光的波长较短的发光芯片102排布在第一区域。
在一些实施例中,一行发光芯片102中可以包括不同类型的发光芯片102,且该一行发光芯片102中靠近中间的位置可以设置产生的热量较低的发光芯片102,靠近两端(首端或尾端)的位置可以设置产生的热量较高的发光芯片102。或者,不同类型的发光芯片102也可以交错设置在一行发光芯片102中。
示例性地,继续参照图14,第一行发光芯片102可以为6个红色发光芯片,第二行发光芯片102可以包括绿色发光芯片和蓝色发光芯片,例如包括4个绿色发光芯片和3个蓝色发光芯片。此时,第二行发光芯片102的排列方式可以为:绿色发光芯片相邻排列,且蓝色发光芯片相邻排列。例如,第二行的第1个至第4个发光芯片102为蓝色发光芯片,第二行的第5个至第7个发光芯片102为绿色发光芯片。或者,第二行发光芯片102的排列方式可以为:绿色发光芯片与蓝色发光芯片交错排列。例如,第二行的第2个、第3个、第5个和第6个发光芯片102为蓝色发光芯片,第二行的第1个、第4个和第7个发光芯片102为绿色发光芯片。
在一些实施例中,如图15所示,激光器10还包括准直镜组106。准直镜组106位于透光层105远离底板1011的一侧。图15以准直镜组106与盖板104外边缘远离底板1011一侧的表面固定为例,进行示例性说明。示例性地,准直镜组106也可以与透光层105远离底板1011一侧的表面固定。
准直镜组106包括呈多行、多列排列的多个准直透镜1061,多个准直透镜1061与多个发光芯片102对应。多个准直透镜1061中的任一个准直透镜1061被配置为准直对应的发光芯片102发出的激光。与第一子区域中的发光芯片102所对应的准直透镜1061位于准直镜组106的第三子区域,与第二子区域中的发光芯片102所对应的准直透镜1061位于准直镜组106的第四子区域。
多个准直透镜1061满足以下至少之一:第三子区域中的准直透镜1061的数量少于第四子区域中的准直透镜1061的数量;或,第三子区域中的同行且相邻的两个准直透镜1061的中心间距,大于第四子区域中的同行且相邻的两个准直透镜1061的中心间距。
上述两个准直透镜1061的中心间距指该两个准直透镜1061的正投影的中心点之间的距离。当准直透镜1061的凸弧面的顶点与对应正投影的中心点重合时,两个准直透镜1061的中心间距指该两个准直透镜1061的凸弧面的顶点之间的距离。
示例性地,准直镜组106中准直透镜1061的排布方式与底板1011上发光芯片102的排布方式相同。这样,可以保证多个发光芯片102发出的激光能够通过对应的准直透镜1061进行准直,保证激光器10正常工作。
在一些实施例中,与图14中多个发光芯片102的排布方式对应,如图16所示,第三区域中的准直透镜1061的数量少于第四区域中的准直透镜1061的数量;且第三区域中的同行且相邻的两个准直透镜1061的中心间距,大于第四区域中的同行且相邻的两个准直透镜1061的中心间距。
在一些示例中,如图17所示,在行方向上,第三区域中的至少一个准直透镜1061的宽度大于第四区域中的至少一个准直透镜1061的宽度。在该示例中,第三区域中的一行准直透镜1061在行方向上能够紧密排布。这样,有利于降低准直镜组106的设置难度。同时,能够增大第三区域中的准直透镜1061的正投影面积,使得第三区域中的准直透镜1061能够接收更多来自第一子区域中的发光芯片102的激光,从而提升第一子区域中的发光芯片102发出的激光的利用率。
在一些实施例中,如图18所示,多个准直透镜1061中的任一个准直透镜1061包括列方向上的端部和中间部。该端部在行方向上的宽度,小于中间部在行方向上的宽度。多个准直透镜1061中,同行且相邻的两个准直透镜1061的端部之间具有空隙。多个准直透镜1061的一行准直透镜1061中,至少有一个准直透镜1061的端部中的至少部分,位于与一行准直透镜1061相邻行准直透镜1061的该空隙中。此时,如图19所示,多个准 直透镜1061在垂直于底板1011的平面上的投影之间有交叠。
这样,在准直镜组106中,同行且相邻的两个准直透镜1061的端部之间的空隙中也至少设置有部分准直透镜1061,提高了准直镜组106中的空间利用率,减小了准直镜组106中未设置有准直透镜1061的区域的面积,提高了准直透镜1061的排布密度。从而,增大了多个发光芯片102发出的激光中,被准直镜组106接收到的激光的比例,提高了该多个发光芯片102发出的激光的利用率,进而提高了激光器10的出光效率。
同时,由于准直镜组106中多个准直透镜1061的排布密度较大,因此,在不增大激光器10的体积的前提下,可以在该激光器10中设置更多准直透镜1061,利于激光器10的小型化设计。
在一些实施例中,继续参照图18,多个准直透镜1061中,同行且相邻的两个准直透镜1061的中间部相接触。这样,一行准直透镜1061在行方向上的排布长度较小,有利于激光器10的小型化设计。同时,可以减小一行准直透镜1061中未设置有准直透镜1061的区域的面积,提高该一行准直透镜1061对与其对应的发光芯片102发出的激光的利用率。
在一些实施例中,继续参照图18,多个准直透镜1061中,相邻两行准直透镜1061的端部相接触。这样,同行且相邻的两个准直透镜1061的端部之间的空隙,能够更多地被该两个准直透镜1061的相邻行准直透镜1061的端部填充,相邻两行准直透镜1061的排布更为紧密,激光器10的出光效率更高。
在一些实施例中,多个准直透镜1061中,一行准直透镜1061的端部的形状,和与该一行准直透镜1061的相邻行准直透镜1061的空隙的形状相吻合。这样,该一行准直透镜1061的端部可以填充该一行准直透镜1061的相邻行准直透镜1061的端部的空隙。
在一些示例中,如图20所示,准直镜组106中的多个准直透镜1061在底板1011上的正投影形状相同。这样,该多个准直透镜1061的排布较为规律,能够降低该多个准直透镜1061的设置难度。同时,该多个准直透镜1061的对相应的发光芯片102发出的激光进行准直后,得到的光斑形状较为统一,可以提高激光器10提供的照明光束的质量。
在另一些示例中,如图21所示,准直镜组106中的多个准直透镜1061在底板1011上的正投影形状不完全相同。这样,可以利用具有不规则形状的准直透镜1061填充具有规则形状的准直透镜1061的端部之间的间隙,对于多个准直透镜1061的一致性要求较低。因此,该示例可以用于改造相关技术中的准直镜组。即,可以将相关技术的多个准直透镜中,部分具有规则形状的准直透镜替换为具有不规则形状的准直透镜,以使该部分具有规则形状的准直透镜的端部的空隙得以填充。
在相关技术中,准直透镜通过减小与该准直透镜对应的发光芯片102′的激光的发散角度,实现该激光的准直。并且,该准直透镜对该激光的发散角度的减小量,在各方向上相同。然而,发光芯片102′发出的激光在快轴方向上的发散角度,大于该激光在慢轴方向上的发散角度。因此,相关技术中的准直透镜的准直较差。
在一些实施例中,多个准直透镜1061中的任一个准直透镜1061被配置为准直激光中的一部分激光,以减小该一部分激光的光斑在快轴上的长度,与该光斑在慢轴上的长度之间的差值。其中,该一部分激光为与该任一个准直透镜1061对应的发光芯片102发出的激光。
在上述实施例中,准直透镜1061对与该准直透镜1061对应的发光芯片102发出的激光的发散角度的调整量在不同方向上有所区别,可以使该激光的光斑在快轴上的长度,与该光斑在慢轴上的长度之间的差值减小,从而提升该激光的准直效果,提升激光器10提供的照明光束的亮度,进而提升投影图像的显示效果。
在一些实施例中,如图22所示,上述一部分激光从对应的准直透镜1061的第一面D1射入该准直透镜1061,并从该准直透镜1061的第二面D2射出该准直透镜1061。第一面D1被配置为增加该一部分激光在慢轴上的发散角度;第二面D2被配置为减小该一部分激光在慢轴和快轴上的发散角度。
这样,在该一部分激光透射第一面D1后,该第一部分激光的光斑在快轴上的长度与 该光斑在慢轴上的长度之间的差值得以减小。在该一部分激光透射第二面D2后,该一部分激光被该第二面D2准直,且该一部分激光的光斑得以缩小,从而可以保证该一部分激光射出激光器10后到达光源组件1中的其他部件处,避免该一部分激光中的光线因射出该光源组件1造成的光损,从而可以提高多个发光芯片102发出的激光的利用率。
在该实施例的一些示例中,如图23所示,第一面D1包括凹弧面。下述实施例以多个发光芯片102发出的激光的快轴平行于x方向、慢轴平行于y方向为例,进行示例性说明。如图23和图24所示,该凹弧面在慢轴上的曲率半径,小于该凹弧面在快轴上的曲率半径。
需要说明的是,透镜的凹弧面对于射入该透镜的光线有扩散作用,且该凹弧面的曲率半径越小表明该凹弧面的弯曲程度越大,进而该凹弧面对光线的扩散效果越强,对光线的发散角度的扩散量越大。因此,准直透镜1061的凹弧面在上述一部分激光的慢轴上的曲率半径小于在快轴上的曲率半径,则该一部分激光在透射准直透镜1061的凹弧面后,该一部分激光在快轴上的发散角度的扩大量小于在慢轴上的发散角度的扩大量。这样,该一部分激光在透射准直透镜1061的凹弧面后,该一部分激光的光斑在快轴上的长度与该光斑在慢轴上的长度之间的差值减小。
继续参照图23,第二面D2包括凸弧面,凸弧面在慢轴上的曲率半径,大于或等于凸弧面在快轴上的曲率半径。
示例性地,凸弧面在慢轴上的曲率半径等于该凸弧面在快轴上的曲率半径。此时,第二面D2中的凸弧面在上述一部分激光的慢轴和快轴上的曲率相同,该凸弧面例如可以为球面中的部分。这样,该凸弧面可以仅对该一部分激光进行整体的准直,使该一部分激光在快轴上的发散角度的减小量与在慢轴上的发散角度的减小量相近,无需对该凸弧面的不同方向的曲率进行不同的设计,该凸弧面的结构较为简单。
或者,继续参照图23和图24,凸弧面在慢轴上的曲率半径大于该凸弧面在快轴上的曲率半径。此时,第二面D2中的凸弧面为自由曲面。
需要说明的是,透镜的凸弧面对于射入的光线有会聚作用,且凸弧面的曲率半径越小表明该凸弧面的弯曲程度越大,进而该凸弧面对光线的会聚效果越强,对光线的发散角度减小量越大。因此,准直透镜1061的凸弧面在上述一部分激光的慢轴上的曲率半径大于该凸弧面在快轴上的曲率半径,则该一部分激光在透射准直透镜1061的凸弧面后,该一部分激光在快轴上的发散角度的减小量大于在慢轴上的发散角度的减小量。这样,除准直该一部分激光外,该凸弧面还可以进一步缩小该一部分激光的光斑在快轴上的长度与在慢轴上的长度的差值。
在该实施例的另一些示例中,如图25所示,第一面D1包括凹柱面。该凹柱面的直母线平行于快轴。
需要说明的是,柱面是动直线沿着一条定曲线平行移动所形成的曲面,该动直线称为该柱面的直母线。上述凹柱面的直母线例如可以为图25中的直线L1。该直线L1平行于x方向。
需要说明的是,在上述一部分激光中,沿快轴方向射入该凹柱面的光线相当于射入了一个平面,该凹柱面不改变沿快轴方向射入该凹柱面的光线的传播路径。沿慢轴方向射入该凹柱面的光线相当于射入了一个凹弧面,该凹柱面会增大沿慢轴方向射入该凹柱面的光线的发散角度。因此,该凹柱面可以缩小该一部分激光的光斑在快轴上的长度与在慢轴上的长度的差值。
在另一些实施例中,如图26所示,第一面D1为平面。在该实施例中,该第一面D1不改变上述一部分激光的传播路径。这样,准直镜组106靠近底板1011的一面较为平整,该准直镜组106能够更稳固地设置在连接层103或透光层105上,从而提高激光器10的可靠性。
在一些示例中,第二面D2包括凸弧面。参照图26和图27,该凸弧面在慢轴上的曲率半径,大于凸弧面在快轴上的曲率半径。
与上述实施例中的原理类似,在该示例中,上述一部分激光透射第二面D2的凸弧面 后,该凸弧面可以准直该一部分激光,且使该一部分激光的光斑在快轴上的长度与在慢轴上的长度的差值减小。
在一些实施例中,多个发光芯片102包括第一类发光芯片和第二类发光芯片。第一类发光芯片被配置为发出激光中的第一类激光,第二类发光芯片被配置为发出激光中的第二类激光,且第一类激光的发散角度小于第二类激光的发散角度。上述一部分激光为第一类激光或第二类激光。
第一类发光芯片对应的准直透镜1061的第二面D2对第一类激光的发散角度的减小量,小于第二类发光芯片对应的准直透镜1061的第二面D2对第二类激光的发散角度的减小量。
示例性地,第一类激光可以包括绿色激光和蓝色激光,第二类激光可以包括红色激光。上述第二面D2对第一类激光或第二类激光的发散角度的减小量,可通过调节该第二面D2的凸弧面的曲率半径来调整。相关原理可以参照上述实施例,在此不再赘述。
在上述实施例中,不同类别的发光芯片102对应的准直透镜1061的第二面D2对光线的发散角度的减小量不同,从而可以使得该不同类别的发光芯片102经由准直镜组106准直后,具有大小相同的光斑。这样,可以提高激光器10提供的照明光束的均匀性,提升该照明光束的质量,从而提升投影图像的显示效果。
在一些实施例中,继续参照图12和图13,激光器10还包括多个热沉107。该多个热沉107与多个发光芯片102对应。一个热沉107位于所对应的发光芯片102与底板1011之间,且被配置为辅助该发光芯片102散热,以使该发光芯片102产生的热量更快地传导至底板1011。在一些实施例中,也可以是多个发光芯片102共用一个热沉107,本公开对此不作限制。
在一些实施例中,继续参照图12和图13,激光器10还包括多个反射棱镜108。该多个反射棱镜108与多个发光芯片102对应。一个热沉107位于所对应的发光芯片102的出光侧,且被配置为将该发光芯片102发出的激光导向远离底板1011的方向,以使该激光射出容纳空间S。
综上所述,本公开实施例提供的激光投影设备1000,可以避免在激光器10的制作过程中,将多个发光芯片102放入加热炉中加热,防止钎焊时的高温损坏该多个发光芯片102,从而提高该激光器10的可靠性。并且,通过调整多个发光芯片102以及对应的多个准直透镜1061在不同区域的排布方式,可以加快该多个发光芯片102在工作时的散热速度,防止该多个发光芯片102在工作中的热损伤。另外,通过调整多个准直透镜1061在准直镜组106中的排列方式,减小了准直镜组106中未设置有准直透镜1061的区域的面积,提高了多个发光芯片102发出的激光的利用率,提高了照明光束的亮度。此外,通过设计准直透镜1061的第一面D1和第二面D2的形状、曲率等,提升了多个发光102发出的激光的准直效果,从而提升了投影图像的显示效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种激光投影设备,包括:
    光源组件,被配置为提供照明光束;
    光机,被配置为利用图像信号对所述照明光束进行调制,以获得投影光束;和
    镜头,被配置为将所述投影光束投影成像;其中,所述光源组件包括:
    底板;
    框体,位于所述底板上,所述底板与所述框体之间限定出容纳空间;
    多个发光芯片,位于所述容纳空间中,且被配置为发出激光;所述激光从远离所述底板的方向射出所述容纳空间,以构成所述照明光束;
    连接层,被配置为与所述框体固定,以采用局部加热的焊接方式将所述框体与盖板固定连接;
    所述盖板,所述盖板的外边缘与所述连接层远离所述底板的一侧固定;
    透光层,所述透光层的边缘与所述盖板的内边缘固定。
  2. 根据权利要求1所述的激光投影设备,其中,所述框体靠近所述底板的端部的外边缘,相对于所述端部的内边缘凸起,形成第一凸起部;
    所述第一凸起部包围所述底板,所述端部的内边缘与所述底板朝向所述容纳空间的一侧固定;所述第一凸起部朝向所述底板的侧面与所述底板的侧面固定。
  3. 根据权利要求1或2所述的激光投影设备,其中,所述多个发光芯片设置在所述底板上;所述框体的内壁朝向所述容纳空间凸起,形成第二凸起部;
    所述光源组件还包括:
    多个导电层,设置在所述第二凸起部远离所述底板的一侧,且被配置为与所述多个发光芯片耦接;
    所述第二凸起部远离所述底板一侧的表面,与所述底板上设置有所述多个发光芯片一侧的表面之间的距离,小于高度阈值。
  4. 根据权利要求3所述的激光投影设备,其中,所述底板包括:
    第一区域;
    第二区域,包围所述第一区域,且所述第一区域相对于所述第二区域凸起;所述框体固定在所述第二区域中,所述多个发光芯片设置在所述第一区域中。
  5. 根据权利要求1至4中任一项所述的激光投影设备,其中,所述连接层与所述框体远离所述底板的一侧固定;所述连接层的材料包括铁镍合金。
  6. 根据权利要求1至5中任一项所述的激光投影设备,其中,所述底板包括第一区域,所述多个发光芯片设置在所述第一区域中;所述第一区域包括第一子区域和第二子区域,且满足以下至少之一:
    所述第一子区域中的发光芯片的数量少于所述第二子区域中的发光芯片的数量;或,
    所述第一子区域中的发光芯片的排布密度小于所述第二子区域中的发光芯片的排布密度。
  7. 根据权利要求6所述的激光投影设备,其中,所述第一子区域中的发光芯片的数量少于所述第二子区域中的发光芯片的数量,且所述第一子区域中的发光芯片的排布密度小于所述第二子区域中的发光芯片的排布密度。
  8. 根据权利要求6或7所述的激光投影设备,其中,所述多个发光芯片包括多行发光芯片;
    所述多行发光芯片中存在至少一行发光芯片,与所述至少一行发光芯片的相邻行发光芯片交错排布。
  9. 根据权利要求6至8中任一项所述的激光投影设备,其中,所述第一子区域中存在发光芯片的第一参数小于所述第二子区域中的发光芯片的所述第一参数;其中,所述第一参数包括光热转换效率、功率或发出的激光的波长中的至少一个。
  10. 根据权利要求6至9中任一项所述的激光投影设备,其中,所述光源组件还包括:
    准直镜组,位于所述透光层远离所述底板的一侧;
    所述准直镜组包括呈多行、多列排列的多个准直透镜,所述多个准直透镜与所述多 个发光芯片对应;所述多个准直透镜中的任一个准直透镜被配置为准直对应的发光芯片发出的激光;
    与所述第一子区域中的发光芯片所对应的准直透镜位于所述准直镜组的第三子区域,与所述第二子区域中的发光芯片所对应的准直透镜位于所述准直镜组的第四子区域;所述多个准直透镜满足以下至少之一:
    所述第三子区域中的准直透镜的数量少于所述第四子区域中的准直透镜的数量;或,
    所述第三子区域中的同行且相邻的两个准直透镜的中心间距,大于所述第四子区域中的同行且相邻的两个准直透镜的中心间距。
  11. 根据权利要求10所述的激光投影设备,其中,所述第三子区域中的准直透镜的数量少于所述第四子区域中的准直透镜的数量;且所述第三子区域中的同行且相邻的两个准直透镜的中心间距,大于所述第四子区域中的同行且相邻的两个准直透镜的中心间距。
  12. 根据权利要求1至11中任一项所述的激光投影设备,其中,所述光源组件还包括:
    准直镜组,位于所述透光层远离所述底板的一侧;
    所述准直镜组包括呈多行、多列排列的多个准直透镜,所述多个准直透镜与所述多个发光芯片对应;所述多个准直透镜中的任一个准直透镜被配置为准直对应的发光芯片发出的激光;
    所述准直透镜包括列方向上的端部和中间部;所述端部在行方向上的宽度,小于所述中间部在行方向上的宽度;所述多个准直透镜中,同行且相邻的两个准直透镜的所述端部之间具有空隙;
    所述多个准直透镜的一行准直透镜中,至少有一个准直透镜的所述端部中的至少部分,位于与所述一行准直透镜相邻行准直透镜的所述空隙中。
  13. 根据权利要求12所述的激光投影设备,其中,所述多个准直透镜中,同行且相邻的两个准直透镜的所述中间部相接触。
  14. 根据权利要求12或13所述的激光投影设备,其中,所述多个准直透镜中,相邻两行准直透镜的所述端部相接触。
  15. 根据权利要求12至14中任一项所述的激光投影设备,其中,所述多个准直透镜中,一行准直透镜的所述端部的形状,与所述一行准直透镜的相邻行准直透镜的所述空隙的形状相吻合。
  16. 根据权利要求1至15中任一项所述的激光投影设备,其中,所述光源组件还包括:
    准直镜组,位于所述透光层远离所述底板的一侧;
    所述准直镜组包括呈多行、多列排列的多个准直透镜,所述多个准直透镜与所述多个发光芯片对应;
    所述多个准直透镜中的任一个准直透镜被配置为准直所述激光中的一部分激光,以减小所述一部分激光的光斑在快轴上的长度,与所述光斑在慢轴上的长度之间的差值;其中,所述一部分激光为与所述任一个准直透镜对应的发光芯片发出的激光。
  17. 根据权利要求16所述的激光投影设备,其中,所述一部分激光从对应的准直透镜的第一面射入所述准直透镜,并从所述准直透镜的第二面射出所述准直透镜;
    所述第一面被配置为增大所述一部分激光在所述慢轴上的发散角度;所述第二面被配置为减小所述一部分激光在所述慢轴和所述快轴上的发散角度。
  18. 根据权利要求17所述的激光投影设备,其中,所述第一面包括凹弧面,所述凹弧面在所述慢轴上的曲率半径,小于所述凹弧面在所述快轴上的曲率半径;或者,所述第一面包括凹柱面,所述凹柱面的直母线平行于所述快轴;
    所述第二面包括凸弧面,所述凸弧面在所述慢轴上的曲率半径,大于或等于所述凸弧面在所述快轴上的曲率半径。
  19. 根据权利要求16所述的激光投影设备,其中,所述一部分激光从对应的准直透 镜的第一面射入所述准直透镜,并从所述准直透镜的第二面射出所述准直透镜;
    所述第一面为平面;
    所述第二面包括凸弧面;所述凸弧面在所述慢轴上的曲率半径,大于所述凸弧面在所述快轴上的曲率半径。
  20. 根据权利要求17至19中任一项所述的激光投影设备,其中,所述多个发光芯片包括第一类发光芯片和第二类发光芯片;
    所述第一类发光芯片被配置为发出所述激光中的第一类激光,所述第二类发光芯片被配置为发出所述激光中的第二类激光,且所述第一类激光的发散角度小于所述第二类激光的发散角度;所述一部分激光为所述第一类激光或所述第二类激光;
    所述第一类发光芯片对应的所述准直透镜的所述第二面对所述第一类激光的发散角度的减小量,小于所述第二类发光芯片对应的所述准直透镜的所述第二面对所述第二类激光的发散角度的减小量。
PCT/CN2022/117366 2021-09-06 2022-09-06 激光投影设备 WO2023030540A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111038583.3 2021-09-06
CN202111037630.2 2021-09-06
CN202111037630.2A CN113872042B (zh) 2021-09-06 2021-09-06 激光器
CN202111038583.3A CN113764972B (zh) 2021-09-06 2021-09-06 激光器
CN202111045935.8A CN113594847A (zh) 2020-09-15 2021-09-07 激光器
CN202111045935.8 2021-09-07
CN202111669286.9 2021-12-31
CN202111669286.9A CN116417894A (zh) 2021-12-31 2021-12-31 激光器

Publications (1)

Publication Number Publication Date
WO2023030540A1 true WO2023030540A1 (zh) 2023-03-09

Family

ID=85410696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117366 WO2023030540A1 (zh) 2021-09-06 2022-09-06 激光投影设备

Country Status (1)

Country Link
WO (1) WO2023030540A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316175A (ja) * 2006-05-24 2007-12-06 Funai Electric Co Ltd プロジェクタ
CN112825406A (zh) * 2019-11-19 2021-05-21 青岛海信激光显示股份有限公司 激光器
CN112909730A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN112909729A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN113594847A (zh) * 2020-09-15 2021-11-02 青岛海信激光显示股份有限公司 激光器
CN113764972A (zh) * 2021-09-06 2021-12-07 青岛海信激光显示股份有限公司 激光器
CN113872042A (zh) * 2021-09-06 2021-12-31 青岛海信激光显示股份有限公司 激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316175A (ja) * 2006-05-24 2007-12-06 Funai Electric Co Ltd プロジェクタ
CN112825406A (zh) * 2019-11-19 2021-05-21 青岛海信激光显示股份有限公司 激光器
CN112909730A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN112909729A (zh) * 2019-11-19 2021-06-04 青岛海信激光显示股份有限公司 激光器
CN113594847A (zh) * 2020-09-15 2021-11-02 青岛海信激光显示股份有限公司 激光器
CN113764972A (zh) * 2021-09-06 2021-12-07 青岛海信激光显示股份有限公司 激光器
CN113872042A (zh) * 2021-09-06 2021-12-31 青岛海信激光显示股份有限公司 激光器

Similar Documents

Publication Publication Date Title
JP6979596B1 (ja) 投写型映像表示装置
JP4084713B2 (ja) ディスプレイ装置
WO2022053052A1 (zh) 多芯片激光器封装组件
JP2011049338A (ja) 発光装置および光装置
CN218887796U (zh) 激光器及投影光源
CN114609854A (zh) 投影光源及投影设备
CN113594847A (zh) 激光器
JP2006308778A (ja) 2灯合成光学系およびそれを備えた画像投影装置
WO2021259276A1 (zh) 光源组件和投影设备
CN113671780A (zh) 发光单元、光源系统和激光投影设备
WO2023030540A1 (zh) 激光投影设备
CN116300283A (zh) 激光器、投影光源和投影设备
WO2021259274A1 (zh) 光源组件和投影设备
CN113703271A (zh) 激光器及投影设备
CN114721159A (zh) 投影光源
WO2023124332A1 (zh) 激光投影设备
WO2023030068A1 (zh) 激光投影设备
WO2023030419A1 (zh) 激光投影设备
CN113671781A (zh) 发光单元、光源系统和激光投影设备
KR100646264B1 (ko) 프로젝션 시스템의 발광 다이오드(led) 조명장치
CN114253061A (zh) 激光器及投影设备
WO2018133325A1 (zh) 一种荧光芯片及其显示系统
WO2023029945A1 (zh) 激光投影设备
CN217007947U (zh) 投影光源及投影设备
US20230359113A1 (en) Laser source and laser projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE